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Abstract

A random variable X is an (n, k)-zero-fixing source if for some subset V ⊆ [n], X is
the uniform distribution on the strings {0, 1}n that are zero on every coordinate outside
of V . An ε-extractor for (n, k)-zero-fixing sources is a mapping F : {0, 1}n → {0, 1}m,
for some m, such that F (X) is ε-close in statistical distance to the uniform distribution
on {0, 1}m for every (n, k)-zero-fixing source X. Zero-fixing sources were introduced
by Cohen and Shinkar in [10] in connection with the previously studied extractors
for bit-fixing sources. They constructed, for every µ > 0, an efficiently computable
extractor that extracts a positive fraction of entropy, i.e., Ω(k) bits, from (n, k)-zero-
fixing sources where k ≥ (log log n)2+µ.

In this paper we present two different constructions of extractors for zero-fixing
sources that are able to extract a positive fraction of entropy for k essentially smaller
than log log n. The first extractor works for k ≥ C log log log n, for some constant C.
The second extractor extracts a positive fraction of entropy for k ≥ log(i) n for any
fixed i ∈ N, where log(i) denotes i-times iterated logarithm. The fraction of extracted
entropy decreases with i. The first extractor is a function computable in polynomial
time in n (for ε = o(1), but not too small); the second one is computable in polynomial
time when k ≤ α log log n/ log log log n, where α is a positive constant.

1 Introduction

A randomness extractor is, roughly speaking, a function F that maps n bits to l bits, where
l � n in such a way that for every distribution X from some class of distributions on n-bit
strings, the output F (X) is close to the uniform distribution on l-bit strings. A necessary
condition for the existence of an extractor is that the entropy of the sources is ≥ l− o(l). If
the only condition on the sources of randomness is a lower bound on their entropies, then F
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needs a few additional truly random bits, called a random seed, as a part of input. There
are many interesting classes of sources for which no additional random bits are needed for
their extractors; such extractors are called deterministic (in order to distinguish them from
those that do need random seeds, which are called seeded extractors). Examples of sources
for which deterministic extractors have been constructed are sources that consist of two, or
several, independent parts, affine sources, which are uniform distributions on affine subspaces
of Fn2 of a given dimension, bit-fixing sources where all bits are fixed except of bits on some
subset V ⊆ [n], |V | = k, where the bits are truly random (these are special cases affine
sources of dimension k), and zero-fixing sources, which are a special case of bit-fixing sources
where all fixed bits are zeros. (For a precise definition of the latter two concepts, see the
next section.)

Bit-fixing sources were introduced in the 1980s, see [13, 8, 9]. Initially the study of
these sourced was connected with applications in cryptography, communication complexity
and fault-tolerant computations. Recently more applications were found, in particular, in
proving lower bounds on the formula size and designing compression algorithms.

In [12] Kamp and Zuckerman proved that for every n and k ≤ n there exists an extractor
that extracts (1

2
− o(1)) log k bits of entropy. As Cohen and Shinkar observed in [10], in

general one cannot get more bit of entropy, because the Ramsey Theorem implies that if n
is sufficiently large w.r.t. k, then for any coloring of subsets of size at most k there exists a
subset V , |V | = k, such that for all l ≤ k the color of all l-subsets is the same.

The fist construction of an extractor for (n, k)-bit-fixing source with k = o(n) that outputs
kΩ(1) bits is due to Kamp-Zuckerman [12]. This was improved to k = logc n, for some c,
by Gabizon, Raz and Shaltiel [11]. Their extractor also outputs almost all entropy bits
(1−o(1))k. More recently, Cohen and Shinkar found a construction for k = (1+o(1)) log log n
with k − O(1) output bits, however their construction only gives functions computable in
quasipolynomial time [10].

In the same paper, Cohen and Shinkar proposed to study zero-fixing extractors. Their
motivation was twofold. First, impossibility results for the existence of zero-fixing extrac-
tors are also impossibility results for bit-fixing extractors. Second, constructing zero-fixing
extractors seems to be an easier task, which may eventually help us to construct extractors
for bit-fixing sources. And, indeed, they were able to find a polynomial time construction
of an extractor for (n, k)-zero-fixing sources with k = (log log n)O(1) and Ω(k) output bits
(i.e., they gave a polynomial time construction in the regime where only quasipolynimal time
constructions are known for bit-fixing sources). Moreover, extractors for zero-fixing sources
are very related to problems studied in Ramsey theory.

Our aim in this paper is to go beyond the state of art given by k ≈ log log n with
extractors for zero-fixing sources. We will present two polynomial time constructions of
extractors that produce Ω(k) bits for zero-fixing sources with where k can be essentially
smaller than log log n. It should be noted that for k = o(log log n) a random function is not
an extractor. So prior to our work even the mere existence of such extractors had not been
known.

Our first construction, presented in Section 3, is based on a method of Erdős and Haj-
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nal [4] which they used to prove lower bounds on certain infinite Ramsey numbers and which
was later used to prove lower bounds on finite Ramsey numbers, see [2]. The basic idea is to
project subsets of a set A to subsets of an exponentially smaller set B as follows. Assume,
w.l.o.g., that the cardinality of A is a power of two. Take a complete binary tree T with
A as the set of its leaves. Let B := {0, 1, . . . , log |A|} and view it as the set of levels of T .
Given a subset V ⊆ A, generate a subtree TV of T with the set of leaves equal to V and
define the projection of V to be indices of levels on which the inner vertices of T occur. In
general the projection of V is not one-to-one, so one has to do something more complicated.
We use this projection to reduce the construction of an extractor for zero-fixing sources to
an extractor for bit-fixing sources on an exponentially smaller set. Since a construction of
for doubly logarithmic bit-fixing sources is known, we obtain a polynomial time construction
of extractors for triply logarithmic zero-fixing sources.

Our second construction, presented in Section 4, is based on shift graphs, which are
certain graphs defined on l-tuples of elements of a set. They were also first studied on
infinite sets by Erdős, Hajnal and Rado [1]. These graphs have some remarkable properties,
one of which is their low chromatic numbers; moreover the colorings with small number of
colors can be explicitly constructed. We use these colorings to define the first stage of our
extractor which condenses a positive fraction of the entropy to a set of size δk, for some
δ > 0. The resulting distribution is very much like a bit-fixing source, so we can apply
a random function to obtain a distribution close to the uniform. To find such a function
requires a brute-force search, but if k is small enough, it can be done in polynomial time.
Furthermore, we believe that some explicit constructions of extractors for bit-fixing sources
could be adapted to this end.

These two constructions together with the previous ones for smaller k show that there
are polynomial time computable extractors for the whole range {k | ∃i ∈ N.k ≥ log(i) n}.
For each fixed i, if k ≥ log(i) n, the extractors produce Ω(k) bits, but with i increasing, the
fraction of extracted bits decreases exponentially.

Finally, in Section 5 we prove an upper bound on the amount of entropy that can be
extracted from small zero-fixing sources. According to this bound, if i ≤ (1− o(1))k then a
loss of approximately i − 1 bits of entropy is inevitable if k ≤ log(i) n. Instead of using the
Ramsey theorem as a black box, we use its proof streamlined for our purpose. Thus we get,
in particular, a better bound on the relation of n and k for which only (1

2
− o(1)) log k bits

can be extracted than the bound proved in [10]. That said, the upper and lower bounds are
still very far apart. In fact, even in the case of k being the triply iterated logarithm there is
a huge gap: the upper bound gives approximately k − 2, while our constructions only give
εk for a fairly small ε > 0.

2 Notation and definitions

We will mostly use standard notation. For a positive integer n, [n] denotes the set {1, . . . , n}.
For a set V and a positive integer k,

(
V
k

)
(respectively

(
V
≤k

)
) denotes the set of all subsets of

V of cardinality k (at most k), and P(V ) denotes the power set of V . For sets X, Y ⊆ N,
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X < Y means that maxX < minY . We say that σ ∈ {0, 1, ∗}n is a partial vector, or a
restriction, and ρ ∈ {0, 1, ∗}n is its extension, if ρi = σi for every i such that σi 6= ∗. Here, ρ
may be a total vector, i.e., a vector without any ∗s. We denote by

expir(x) := rr
··
·r
x

– tower of i rs,

the iterated exponential. We will omit i if it is equal to 1. All logarithms in this paper are in
base 2. We denote by log(i) x the i-times iterated logarithm, and log∗ x stands for the least
i such that log(i) x ≤ 1. The entropy of a random variable X : Ω→ R is defined by

H[X] :=
∑
r∈R

Prob[X = r] log
1

Prob[X = r]
.

Note that H[X] ≤ log |R|, with equality iff the values of X are uniformly independently
distributed. The total variation distance of probability measures µ and ν, often called the
statistical distance, is defined by

d(µ, ν) := 1
2
‖µ− ν‖1 = 1

2

∑
x

|µ(x)− ν(x)|.

Let µX denote the probability distribution on R defined by µX(r) := Prob[X = r], where R is
the range of X, and let UR denote the uniform distribution on R. An important parameter
in the theory of extractors is the distance of the probability distribution generated by a
random variable X from the uniform distribution on the range of X:

d(µX , UR) = ‖µX − UR‖1 = 1
2

∑
r∈R

|Prob[X = r]− |R|−1|.

If the statistical distance d(µX , UR) is small, then X has large entropy: for every ε > 0 there
exists δ > 0 such that

d(µX , UR) ≤ δ ⇒ H[X] ≥ (1− ε) log |R|.

Note that this also implies that there must be at least |R|1−ε elements in the range of X.
The opposite is not true; in order to get a good upper bound on d(µX , UR), we must know
that the entropy is very close to the maximum, which is log |R|.

2.1 Sources of randomness and extractors

In this paper, a source of randomness is either a random variable X, or the probability
distribution µX associated with it. It is convenient to keep both interpretations, because
random variables can be composed with functions, whereas probability distributions can be
handled as vectors in RR. In this section we will view a source as a probability distribution
µ on some set R. We imagine that it has small entropy relative to the size (cardinality) of
R. An extractor is a function F that maps R to a smaller set S so that µ is mapped to a
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probability distribution ν where ν keeps a substantial part of the entropy of µ and is close
to the uniform distribution on S.

We will now explain extractors in more detail. Let F : R → S. We define a mapping
LF : RR → RS as follows. Let α ∈ RR, and for r ∈ R, let α(r) denote its r-th coordinate.
Then for s ∈ S, the s-th coordinate of LF (α) is defined by

LF (α)(s) =
∑

r;F (r)=s

α(r).

We note some basic properties of the function LF .

1. LF is linear;

2. LF maps a probability distribution to a probability distribution:

LF (µX) = µF (X);

3. LF is contracting w.r.t. to `1 norm, i.e., ‖LF (α)‖1 ≤ ‖α‖1;

4. it follows that d(LF (α), LF (β)) ≤ d(α, β).

Here we confine ourselves to deterministic extractors, which means that F is a function
without any additional random seed. Such extractors exist only for restricted classes of
sources, sources with some particular structure. Before going into details, we suggest the
reader to imagine the task of constructing an extractor as a game. In this game we know that
there is randomness in the source, but we do not know where exactly. E.g., in the case of
bit-fixing sources, we know that there is a subset V of bits with perfect randomness, but we
do not know V . We should prepare a function F that will work, i.e., produce random bits,
whatever source an enemy chooses; in the case of bit-fixing sources, this means whatever set
V the enemy picks.

Definition 1 Let {Xj}j∈J be a family of sources with range R, i.e., Xj : Ωj → R for some
Ωj, j ∈ J . We say that an F : R→ S is an ε-extractor for {Xj}j∈J if

d(µF(Xj),US) = d(LF(µXj
),US) ≤ ε

for every j ∈ J .

A necessary condition for the existence of an o(1)-extractor is that log |S| ≤ minj H[Xj]+o(1);
in the interesting cases it is always log |S| < minj H[Xj]. In most cases that appeared in the
literature the sets R and S are sets of all 0-1 strings of some length. The next important
and well-known fact follows easily from the properties of LF listed above.

Lemma 2.1 If F is an ε-extractor for {Xj}j∈J , then F is also an ε-extractor for every
convex combination of the sources {Xj}j∈J .
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Note that if X is a convex combination of Xj : Ωj → R, then µX is a convex combination
of µXj , j ∈ J , as vectors in RR. What we will need in our proofs is a slightly more general
principle than Lemma 2.1, which also follows easily from basic principles:

Lemma 2.2 Let F be an ε-extractor for {Xj}j∈J and let Y be an arbitrary source. Let Z
be a convex combination of sources Xj and Y in which Y has weight ≤ δ. Then F is an
(ε+ δ)-extractor for Z.

In this paper we will construct extractors for zero-fixing sources, but we will also need a
more general class of bit-fixing sources as building blocks.

Definition 2

1. A random variable X is an (n, k)-zero-fixing source if for some vector σ ∈ {0, ∗}n with
exactly k stars, X is the uniform distribution on vectors s ∈ {0, 1}n that extend σ.
Equivalently, X is a uniform distribution on P(V ) for some V ⊆ [n], |V | = k.

2. A random variable X is an (n, k)-bit-fixing source if for some vector σ ∈ {0, 1, ∗}n
with exactly k stars, and X is the uniform distribution on vectors s ∈ {0, 1}n that
extend σ.

Lemma 2.3 If F is an ε-extractor for (n, k)-bit-fixing sources, then F is also an ε-extractor
for (n, k′)-bit-fixing sources for every k′ ≥ k.

Proof. Given σ with k′ stars defining a (n, k′)-bit-fixing source with k′ > k, we can represent
it as convex combination of (n, k)-bit-fixing sources by fixing some subset of k′ − k stars in
all 2k

′−k ways.

3 An extractor for zero-fixing sources of triply loga-

rithmic size

In this section we present our construction based on the idea of the stepping-up lemma of
Erdős and Hajnal [4]. Given k and n they used binary trees to project [2n+1] on [n] in such
a way that from a coloring of

(
[n]
k

)
without large monochromatic sets, one can construct a

coloring of
(

[2n+1]
k+1

)
without large monochromatic subsets. We will use a similar projection

mapping to reduce the construction of zero-fixing extractor on a set A to a construction of
a bit-fixing extractor on an exponentially smaller set B. Since a construction of extractors
for (n, k) bit-fixing sources are known for k ≈ log log n, we obtain an extractor for (n, k)
zero-fixing sources with k = O(log log log n). To this end we show that the projection of
a (N, k)-zero-fixing source is a convex combination of (n, k′)-bit-fixing sources with a small
error, where k′ = Ω(k) and N = 2Ω(n/k).

We will prove the following:
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Theorem 3.1 There exist constants δ1, δ2 > 0 and C such that for every N and k such that
C log log logN ≤ k ≤ logN there exists an ε-extractor F : {0, 1}N → {0, 1}m for (N, k)-zero-
fixing sources where m = δ1k and ε = max{(logN)−1, 2−δ2k}. The extractor is computable
in polynomial time.

3.1 Trees

Our main tool will be binary trees with edges directed towards the root, which means that
every node has indegree either 2 or 0. The 0-indegree verticas are leaves (note that our
leaves are vertices, not edges). Furthermore, we will assume that the two children of each
inner node are ordered. This induces a natural linear ordering on the leaves. In the rest of
this section all trees are binary, therefore we will often omit the specification “binary”.

We will measure the size of a tree by the number of its leaves; thus |T | will denote the
number of leaves of T .1 The number of edges in a binary tree is 2|T | − 2.

Given a tree T and a subset of leaves X, we will denote by TX the subtree of T with leaves
X defined as follows. View T as an ordered structure where the root is the the maximum
and the leaves are minimal elements. This ordering defines an upper semilattice. Then TX
is the subsemilattice generated by X. We will call such subtrees leaf-generated subtrees.

We will distinguish two types of leaves. A twin is a leaf that shares a parent with another
leaf (which in turn is also a twin). The other leaves will be called lone leaves. A pair of
twins sharing a parent will be called a twin pair. There are at most |T | − 2 lone leaves (and
there are trees in which this bound is attained). Parents of lone leaves and twins will be
called lone parents and twin parents respectively.

Lemma 3.2 If T is a tree and X is a nonempty subset of leaves, then TX has at most as
many twins as T .

Proof. By induction—if T is not a single vertex, consider the two maximal proper subtrees
of T .

However, the number of lone leaves may increase.
The skeleton of a tree T , denoted by Sk(T ), is the subtree leaf-generated by twins (see

Figure 1). The inner edges of Sk(T ), the edges that are not connected to the leaves, will
play a special role. The following is the key structural property of trees that we will use.

Lemma 3.3 Every binary tree T with at least two leaves can be represented as Sk(T ) ex-
tended with

1. new nodes on the inner edges and leaves attached to them,

2. a chain with lone leaves attached on the root of Sk(T ).

1This notation seems to be in conflict with our notation for the cardinality of sets, but notice that a
binary tree with k leaves can be represented by a set of k binary strings.
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Proof. By induction—if T has more than two leaves, consider the two maximal subtrees
of T .

From Lemma 3.2, we have
|Sk(TX)| ≤ |Sk(T )|.

The number of inner edges of a skeleton is, clearly, |Sk(T )| − 2, which is at most |T | − 2 and
when it is equal to |T | − 2, then T does not have any lone leaves. Given a tree T we will
enumerate (starting with 1) the inner edges of Sk(T ) in a systematic way so that the edges
in isomorphic skeletons are enumerated in the same way. We will denote the i-th inner edge
of Sk(T ) by ei(T ).

Let T be a tree with leaves L and let σ : L→ {0, 1, ∗}. Then

Tσ := T{i|σ(i)∈{∗,1}},

i.e., Tσ is the tree leaf-generated by leafs labeled by 1s and ∗s of σ. We will call the leaves
of Tσ labeled by ∗ free.

3.2 The projection mapping

Suppose, w.l.o.g., that k−1 divides n. Let T be the complete binary tree of depth n/(k−1)+1.
Split the set [n] into k − 1 disjoint sets, say consecutive intervals, D0, . . . , Dk−2 each of size
n/(k − 1). For i = 0, . . . , k − 2, let βi be a projection of the levels of T , excluding the level
of leaves,2 onto Di, i.e., for two non-leaf nodes u, v ∈ T of different rank3, βi(u) 6= βi(v).

We will identify the set of leaves of T with [N ], where N = 2n/(k−1)+1. Let K ⊆ {0, 1}N
denote the set of all vectors with at most k ones. Alternatively, we can view K as the set of
characteristic vectors of subsets X ⊆ [N ] of size at most k.

The function F1 maps K on strings in {0, 1}n with at most k − 2 ones as follows. For
s ∈ K,

F1(s) := b0 ∪ b1 ∪ . . . ∪ bj
where

• j is the number of inner edges of Sk(Ts),

• b0 = {β0(v0,1), . . . , β0(v0,l0)}, where v0,1, . . . , v0,l0 are the nodes of Ts above the root of
Sk(Ts), and

• for i = 1, . . . , j, bi = {βi(vi,1), . . . , βi(vi,l)}, where vi,1, . . . , vi,l are the nodes of Ts on
the edge ei(Sk(Ts)).

(Any of bi may be empty; in fact all of them.) In plain words, we project the lone parents
of Ts to [n], for each inner edge of Sk(T ), to a different part of [n], and the lone parents

2in fact, we also do not need the level next to the bottom one
3the distance from the root
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of Ts that are above the root of Sk(T ) to another part. Since the nodes on one ei(T ) have
different ranks, this ensures that the projection is bijective,4 see Figure 2.

Let a (N, k) zero fixing source defined by σ be given. Let V := {i | σ(i) = ∗}. The
projections F1(s) for s ∈ {0, 1}N , σ ⊆ s, do not form a zero-fixing source on [n]. The
reason is that for different vectors s, the skeletons Sk(Ts) may be different and thus the
same lone parents may be mapped to different blocks Di. Therefore we need to decompose
the resulting source in such a way that on each part the skeleton is fixed while there are still
enough parents of free leaves.

3.3 The skeleton fixing procedure

Let T be a tree with leaves L, |T | = k. We will define a randomized procedure that produces
a restriction ρ : L → {0, 1, ∗} such that in Tρ all twins are fixed to 1. Our aim is to show
that with probability close to 1 the the resulting tree Tρ has at least δ1k lone leaves for some
δ1 > 0.

The procedure starts with ρ = ∗k and gradually extends ρ by setting stars to zeros or
ones. At each step the procedure checks if there is a twin in the restricted tree Tρ that still
has a star. If there is no such twin, then it stops. If there is some, it picks a suitable one and
sets it randomly to 0 or 1 with equal probability. We will specify the order in which twins
are chosen when we prove the following lemma. When the procedure stops, all twins in Tρ
are fixed to 1, which means that the skeleton is fixed.

Note that we can view the resulting set of restrictions obtained as a binary decision tree;
in particular, any two restrictions are incompatible.

Lemma 3.4 There exist constants γ < 1 and δ > 0 such that for every tree T , |T | = k,
there exists a fixing procedure that with probability ≥ 1 − γk produces a restriction ρ such
that all twins in Tρ are fixed to 1 and such that there are at least δk leaves free (which are
lone leaves in Tρ).

We will prove this lemma in Section 6.1.

3.4 The extractor

Let X be a (N, k)-zero-fixing source given by a subset V ⊆ [N ], |V | = k. We will now
describe the decomposition of F1(X) into a convex combination of bit-fixing sources on [n].
Each of the sources is a k′-bit-fixing source for some k′ ≥ δk, where δ > 0 is a constant,
except for some sources whose total weight is exponentially small.

The source X generates a random string r ∈ {0, 1}V randomly uniformly. We can view
the process of generating the random string r as having two parts: first we run the skeleton
fixing procedure to obtain some ρ ∈ {0, 1, ∗}V and then we randomly extend it to a full

4This is certainly not the most economical way to ensure bijectivity. E.g., we can omit D0, because we
can map the lone parents above the root of Sk(Ts) to any block Di, we can also omit Dk−2, because bk−2 is
always empty, etc.
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vector r ⊇ ρ. The probability that we obtain ρ is the weight of the source that ρ produces
(it is 2−t, where t is the number of leaves set to 0 or 1 by ρ). Let S be the set of lone leaves
of Tρ and let F1(S) denote the projection of their parents to [n]. Then F1(s) ⊆ F1(S) for
every s ⊇ ρ, because the skeleton is fixed. Moreover, F1 maps a 0-1 string defined on S
to a 0-1 string defined on F1(S) in a 1-1 way.5 Hence extensions of ρ are mapped by F1

to a (n, k′)-bit-fixing source on [n], where k′ is the number of stars in ρ. Note that it is a
bit-fixing source, rather than zero-fixing one, because in Tρ there may be some lone leaves
fixed to 1.

Now we are in a position to define our extractor and prove its properties. We use the
extractor constructed by Cohen and Shinkar [10], see Theorem 5.1. in their paper. They
constructed an ε′-extractor, which we will denote by F2 : {0, 1}n → {0, 1}m, for (n, k′)-bit-
fixing sources which works for k′ ≥ log((log n)/ε′2)+2 log log((log n)/ε′)+O(1). Our extractor
is the composition of F1 with F2 for k′ = δk, where δ is the constant from the skeleton fixing
procedure. Thus we get an extractors for (N, k)-zero-fixing sources for k = O(log log logN).
Furthermore, one can check that if k′ ≤ logN and ε ≤ max{(logN)−1, 2−δ2k}, then F2 is
computable in time sublinear in N . Since, clearly, F1 is computable in polynomial time,
F := F2 ◦ F1 can also be computed in polynomial time.

To finish the proof of Theorem 3.1, it remains to compute the parameters m, ε, and the
time needed to compute the function F in the whole range of parameters allowed in the
theorem. We will defer these computations to section 6.2.

4 Extractors based on shift graphs

In this section we will present our second construction of extractors, based on colorings of
shift graphs.

Theorem 4.1 There exists a constant α < 1 and, for every l ∈ N, a constant δl > 0
such that for every N and k ≥ log(l) N , there exists an αk-extractor F : {0, 1}N → {0, 1}m
for (N, k)-zero-fixing sources, where m = bδlkc. Moreover, the extractor is computable in
polynomial time if k ≤ β log logN/ log log logN where β > 0 is a constant.

4.1 Shift graphs

Definition 3 Let 2 ≤ l ≤ n − 1. The shift graph S = S(n, l) is a graph with vertex set
V (S) =

(
[n]
l

)
and edge set

E(S) = {{{x1, . . . , xl}, {x2, . . . , xl, xl+1}}| 1 ≤ x1 < x2 < . . . < xl+1 ≤ n}.

The key property of shift graphs is that their chromatic numbers decrease exponentially
with l. In order to express the upper bounds on the chromatic numbers we will use a function
that is asymptotically equal to the binary logarithm. We define

5F1 is defined on strings K ⊆ {0, 1}N , but now we focus on string of a given source where the strings are
0 outside of V , so we can view F1 as defined on {0, 1}V .
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1. blog x := x for x = 1, 2, 3, 4 and

2. blog x := m where m is the integer satisfying
(
m−1
bm−1

2
c

)
≤ x <

(
m
bm

2
c

)
for x ≥ 4.

We note that blog x is nondecreasing and

blog x ≈ log2 x. (1)

Let χ denote the chromatic number of a graph. We will need the following facts.

Fact 1 If χ(S(n, l)) ≤
(
m
bm

2
c

)
, then χ(S(n, l + 1)) ≤ m.

Since, trivially, χ(S(n, 1)) = n, we have

χ(S(n, l)) = O(log(l−1) n). (2)

Fact 2 If χ(S(n, l − 1)) ≤ 4, then χ(S(n, l + 1)) ≤ 3.

It follows from these facts that for every n there exists an integer l such that χ(S(n, l))) ≤ 3.
On the other hand we have:

Fact 3 If n ≥ 2l + 1, then S(n, l) contains an odd cycle and consequently χ(S(n, l)) ≥ 3.

The bound from Fact 1 was first proved for infinite cardinals be Erdős and Hajnal [4].
The version for finite cardinals, the one above, appeared in [5]. Fact 2 has not appeared in
the literature, but a similar idea was used by Schmerl [7], Poljak [6], and Duffus, Lefman,
and Rödl [3]. We will prove these facts in Section 6.3. There we will also see that the
colorings witnessing these upper bounds are constructible in polynomial time, where time is
measured in terms of the number of vertices of the graphs.

4.2 Special symbol-fixing sources and their extractors

A symbol-fixing source, introduced in [12], is like a bit-fixing source except that the alphabet
of the strings is larger than 2. We will introduce an auxiliary concept that we need in our
construction, which is a sort of cross-bread between a symbol-fixing source and a bit-fixing
source.

Definition 4 A special (n, k, d)-symbol-fixing source X is a random variable producing
strings from [d]n of the following form. For some string σ ∈ ([d] ∪

(
[d]
2

)
)n that has exactly k

pairs from
(

[d]
2

)
, X produces strings s ∈ [d]n that are consistent with σ each with probability

2−k. We say that s is consistent with σ if si = σi or si ∈ σi for every i = 1, . . . , n.

In plain words, values on some coordinates are fixed and on other coordinates there are two
values allowed; the two values may be different for different coordinates.

Example. Let d = 3, n = 3 and σ = (1, {1, 2}, {2, 3}). Then the source produces strings
112, 113, 122, 123 with equal probability.
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Lemma 4.2 For every ε, n, k,m and d, if

d ≤ exp2

(
log e · ε2 · 2k − 2m

6n
− 1

)
,

then there exists an ε-extractor F for special (n, k, d)-symbol-fixing sources with m outputs
bits, i.e., F : [d]n → {0, 1}m.

This lemma is proved by a standard counting argument, see section 6.4.

4.3 The extractor

The extractor will again be constructed as a composition of two functions F1 and F2. The
first function transforms an (N, k)-zero-fixing source into a special symbol-fixing source, the
second one is an extractor for symbol-fixing sources. The essential difference is that now the
size of domain of F2 only depends on k and it is not much larger than k.

Let l ≥ 2 be a constant, let k and N be such that log(l−1)N ≤ k < log(l−2)N , and
suppose N is sufficiently large. Let ψ be a coloring of the shift graph S(N, l) by d colors
where d = O(k). Let p := bk−1

l
c. Define a mapping

F1 :

(
[N ]

≤ k

)
→ [d]p,

by putting, for X ⊆ [N ], |X| ≤ k,

F1(X) = (ψ(X1), ψ(X2), . . . , ψ(Xj), 1, . . . , 1),

where
X = X1 ∪ . . . ∪Xj ∪ Z,

|X1| = . . . |Xj| = l, |Z| < l,

X1 < X2 < . . . < Xj < Z.

Lemma 4.3 Let k′ := 2−2l−3p. If X is a (N, k)-zero-fixing source, then F1(X) is a convex
combination of special (p, t, d)-symbol-fixing sources where the total weight of sources with
t < k′ is exponentially small, 2−Ω(k).

Proof. Let a (N, k)-zero-fixing source be given by some V ⊆ [N ], |V | = k. Let

V = I1 ∪ I2 ∪ . . . ∪ Iq, I1 < I2 < . . . < Iq,

be a partition of V into blocks of sizes |I2i+1| = l + 1, |I2i| = l − 1, with the exception that
the last block Iq may be smaller. According to our choice of p, the number of blocks with
odd indices and size l + 1 is dp/2e.

12



Let X be a random subset of V (generated by our zero-fixing source). For odd i, let
Ai(X) be the event defined by the conjunction of the following three clauses:

|X ∩ (I1 ∪ . . . ∪ Ii−1)| ≡ 0 mod l, (C1)

X ∩ Ii−1 is an initial segment of Ii−1, (C2)

X ∩ Ii = Ii \ {max Ii} or X ∩ Ii = Ii \ {min Ii}. (C3)

For i = 1, clauses C1 and C2 are always true, hence Prob[A1(X)] = 2−l, and for every odd
i ≥ 3 and Y ⊆ I1 ∪ . . . ∪ Ii−2,

Prob[Ai(X) | X ∩ (I1 ∪ . . . ∪ Ii−2) = Y ] = 2−2l−1, (3)

because this probability is equal to

Prob[X ∩ Ii−1 = Z and C3 | X ∩ (I1 ∪ . . . ∪ Ii−2) = Y ],

where Z is the initial segment of Ii−1 such that |Y ∪Z| ≡ 0 mod l. Hence E[|{i | Ai(X)}|] ≥
2−2l−2p. Furthermore, since the probability in (3) is 2−2l−1 independently of Y ,6 the events
Ai(X), for i odd, are independent. Thus we have, by the Chernoff inequality and recalling
that k′ = 2−2l−3p,

Prob[|{i | Ai(X)}| < k′] ≤ e−p/8. (4)

We will now define a decomposition of F1(X) into a convex combination of special (p, t, d)
symbol-fixing sources. A source in this combination is given by

1. a subset J of odd integers in [p] and

2. sets Yi ⊆ Ii for i ∈ [p] \ J

such that

• for i ∈ J , |
⋃
j<i,j 6∈J Yj| ≡ 0 mod l and Yi−1 is an initial segment of Ii−1 if i ≥ 3,

• for i odd i 6∈ J , |
⋃
j<i,j 6∈J Yj| 6≡ 0 mod l, or Yi 6∈ {Ii \ {max Ii}, Ii \ {min Ii}}.

The source determined by (J, {Yi}i 6∈J) produces uniformly independently all X ⊆ V such
that

1. for all i 6∈ J , X ∩ Ii = Yi, and

2. for all i ∈ J , either X ∩ Ii = Ii \ {max Ii} or X ∩ Ii = Ii \ {min Ii}.
6This is the reason why we have clause (C2). Without this clause the argument would be more compli-

cated, because we would not be able to use the Chernoff inequality, although we might get a better constant
by a more complicated argument.
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Let X be produced by this source, i.e., X satisfies 1. and 2. above. Let X = X1∪ . . .∪Xj∪Z
be the partition of X into segments of length l, except for Z. Then for every i ∈ J , there is an
i′ such that Xi′ = Ii\{max Ii} or Xi′ = Ii\{min Ii}. Hence ψ(Xi′) is either ψ(Ii\{max Ii}) or
ψ(Ii\{min Ii}) and these two colors are different. The blocks Xi′ that are not associated with
any Ii in this way are fixed. Hence (J, {Yi}i 6∈J) determines a special (p, t, d) symbol-fixing
source.

Note that the weight of the source is the probability that a random X satisfies 1. and 2.
The probability in the inequality (4) is the probability that a random X satisfies these
conditions for some source (J, {Yi}i 6∈J) with |J | < k′. Thus we have shown that the total
weight of the special (p, t, d) with t < k′ is exponentially small.

To finish the proof of Theorem 4.1, we only need to compose F1 with an extractor F2 for
special (p, k′, d) symbol-fixing sources whose existence follows from Lemma 4.2. In order to
be able to apply the lemma, we only need to take ε ≥ αk for α < 1 sufficiently close to 1, and
m = bδlkc for a sufficiently small δl > 0. The resulting F is not explicitly defined, because we
do not have an explicit definition of F2. However, since F1 is computable in polynomial time
and a brute force search for F2 can be done in polynomial time if k is sufficiently small, we
obtain a polynomial time algorithm for F for all sufficiently small k. We will now estimate
how small k should be. We have to search through all functions F2 : [d]p → 2m. Here we

have d = O(k), p,m < k. Hence the number of such functions is ≤ 22O(k log k)
. Since the time

needed to test each function is negligible w.r.t. the number of functions, the total time can
also be bounded by ≤ 22O(k log k)

. Thus there exists β > 0 such that the time needed for the
search is polynomial if k ≤ β log log n/ log log log n.

4.4 A loss-less disperser

The following version of our construction can produce only o(k) bits of entropy, but it has
the interesting feature that it is a loss-less disperser, by which we mean that all possible
values are always present. Although it also holds true for colorings of

(
[n]
≤k

)
it is more natural

to state it for k-tuples.
Let λ(n) be the minimal l with χ(S(n, l)) ≤ 3. It follows from (1) that

λ(n) = (1 + o(1)) log∗ n.

Theorem 4.4 Let λ(n) ≤ k ≤ n. Then there exists an efficiently computable function
F :

(
[n]
k

)
→ [m], where m = 3bk/λ(n)c, such that for every V ⊆ [n], |V | = 2k + bk/λ(n)c,

F maps
(

[V ]
k

)
onto [m].

Proof. We will use essentially the same mapping as F1 in the construction of our extractor,
except that we now take l large enough for the shift graph to be colorable by three colors.
In more detail, let l := λ(n) and assume w.l.o.g. that l divides k. Let X ∈

(
[n]
k

)
. Divide X

into consecutive parts X1, . . . , Xk/l of size l and define

F (X) := (γ(X1), . . . , γ(Xk/l)),
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where γ is the three-coloring of S(n, l).
Let V ⊆ [n], |V | = 2k + k/l be given. Divide V into k/l consecutive parts V1, . . . , Vk/l of

size 2l+ 1. On each block Vi, each of the three colors must appear for some Y ⊆ Vi, |Y | = l,
by Fact 3. Hence for every vector v ∈ [3]k/l we can pick sets X1 ⊆ V1, . . . , Xk/l ⊆ Vk/l such
that F (X1 ∪ . . . ∪Xk/l) = v.

5 Upper bounds on the available entropy

In this section we will prove that if N is slightly more than i-times iterated exponential, then
for every F : {0, 1}N → {0, 1}k there exists a (N, k)-zero-fixing source X such that F (X)
has at most k − i+O(i/2k−i) bits of entropy.

For a finite nonempty set of integers X, we denote by ∂X := X \ {maxX}.

Lemma 5.1 Let k, n,m,N be such that k ≤ n and N ≥ n · m( n−1
≤k−1).7 Then for every

ϕ :
(

[N ]
≤k

)
→ [m] there exists V ⊆ [N ], |V | = n, such that for every X ⊆ V , X 6= ∅, ϕ(X)

depends only on ∂X.

The latter condition means that ϕ(X) = ϕ′(∂X) for some function ϕ′ :
(

[N ]
≤k−1

)
→ [m].

Proof. Let k, n,m,N and ϕ satisfying the assumption be given. We will describe the con-
struction of V by the following pseudocode.

1. V := ∅, U := [N ]
2. c := the most frequent c = ϕ({u}) for u ∈ U
3. U := {u ∈ U | ϕ({u}) = c}
4. V := {minU}, U := U \ {minU}
5. do while |V | < n and U 6= ∅:
6. do for all X ⊆ V such that 1 ≤ |X| ≤ k and maxX = maxV :
7. c := the most frequent c = ϕ(X ∪ {u}) for u ∈ U
8. U := {u ∈ U | ϕ(X ∪ {u}) = c}
9. V := V ∪ {minU}, U := U \ {minU}
10. output V

It is clear that the algorithm produces a set V with the required properties if the loop
reaches some V such that |V | = n−1 while U is still nonempty. So we only need to estimate
how big N suffices. Since we have m colors, the size of U at 3. is at least N/m. Then at
4. it decreases by one. Similarly in the loop 6., the size of U decreases at most by a factor

m(|U|−1
≤k )−1 and then at 9. it decreases by one. Each division (in 3. and 8.) can be coupled

with a subset Y of V \ {maxV }, |Y | ≤ k − 1, where V is the output V . Similarly, each
subtraction of 1 is coupled with an element of V \ {maxV }. Hence we can lower bound the

7
(

n−1
≤k−1

)
denotes

∑
i≤k−1

(
n−1
i

)
.
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size of U at the end of the procedure (when 9. is reached for the last time) by a number
obtained from N by

(
n−1
≤k−1

)
divisions by m interleaved by n − 1 subtractions of 1. If we

postpone subtracting 1 to a later stage, we, clearly, get a smaller (or equal) number. Hence,
for the lower bound, we can assume that all subtractions are done at the end. Thus in order
for the algorithm to produce a V with properties required, it suffices that

N/m( n−1
≤k−1) − (n− 1) ≥ 1,

which gives us the bound stated in the lemma.

Lemma 5.2 Let k,m, i,N be numbers such that i ≤ k and

N ≥ mexpi−1

mk
(2k−i+1).

Then for every ϕ :
(

[N ]
≤k

)
→ [m] there exists a V ⊆ [N ], |V | = k such that

1. for subsets X ⊆ V of cardinality ≤ k − i their color ϕ(X) only depends on their
cardinality (i.e., ϕ(X) = α(|X|) for some function α : N→ [m]),

2. for subsets X ⊆ V of cardinality > k − i their color ϕ(X) does not depend on the last
i elements of X (i.e., ϕ(X) = ϕ(i)(∂iX) for some function ϕ(i) : P(∂iV )→ [m]).

Proof. This lemma follows by repeated applications of Lemma 5.1. Namely, we first obtain
ϕ′ from ϕ and all one-element sets have the same ϕ-color. Then we apply the lemma to ϕ′;
we get ϕ′′ and all one element sets get the same ϕ′-color, hence all two-element sets get the
same ϕ-color; and so on.

So it remains to estimate how big N suffices for performing these operations. To this end
we need to simplify the bound from Lemma 5.1. We will use two bounds:

1. n ·m( n−1
≤k−1) ≤ m2n−1+logn/ logm ≤ m2n ,

2. n ·m( n−1
≤k−1) ≤ m(n−1)(k−1)+logn/ logm ≤ mnk ,

for m,n ≥ 2 and k ≥ 1.
In the last step we need V of size n = k−i+1. So using 1., it suffices to take N1 = m2k−i+1

.
Assuming we have shown that in the jth step before the end it suffices to have

Nj = mexpj−1

mk
(2k−i+1),

then according to 2., it suffices to put

Nj+1 = mNk
j = m

(
m

exp
j−1

mk
(2k−i+1)

)k
= mm

k·expj−1

mk
(2k−i+1)

= m(mk)
exp

j−1

mk
(2k−i+1)

= mexpj
mk

(2k−i+1)
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The following bound can easily be proven by induction: for all i ≥ 0, x ≥ 1 and r ≥ 2,

expir(x) ≤ expi2(x log r + log log r + 1). (5)

Theorem 5.3 Let k,m, i,N be numbers such that k ≥ 2, i ≤ k, 2 ≤ m ≤ 2k and

N ≥ expi+1
2 (k + 2 log k + 2).

Then for every ϕ :
(
N
≤k

)
→ [m] there exists a V ⊆ [N ], |V | = k such that the number of

colors of ϕ(X) for subsets X ⊆ V is at most 2k−i + i. Hence the entropy of ϕ(X) on such a
source X is at most log(2k−i + i).

Proof. The theorem follows from the previous lemma by observing that if X ⊆ V then
∂iX ⊆ ∂iV for subsets X with at least i elements and |∂iV | = k − i. Hence these sets have
at most 2k−i ϕ-colors. The sets with < i elements have at most i colors, because their colors
only depend on their cardinalities.

It remains to show that the expression in Lemma 5.2 can be bounded by the one in the
theorem, where m ≤ 2k. Using m ≤ mk and the inequality (5), we can bound it by

≤ expimk(2
k−i+1) ≤ expi2(2k−i+1(logmk + log logmk + 1)) ≤ expi2(2k−i+1(k2 + 2 log k + 1))

≤ expi+1
2 (k + 2 log k + 2).

6 The skipped proofs

6.1 The skeleton fixing procedure–proof of Lemma 3.4

Recall that starting with ρ = ∗k, the procedure extends ρ by setting stars to zeros or ones
until all twins in Tρ are fixed to 1. At each step the procedure picks a twin of Tρ that is
labeled by ∗ and sets it randomly to 0 or 1. Such a twin may come either from a twin pair
in which the other twin is still labeled by ∗, or a twin pair in which the other twin is already
labeled by 1, but there is no reason to give preference to one type of these twin pairs over
the other. However, in Case 2(a) we are reducing the proof to Case 1, and therefore we do
preferably pick certain twin pairs.

Case 1. T has ≥ k/10 lone leaves. Let A be the set of lone parents of T . We consider two
subcases.

(a) Suppose that there is an antichain C ⊆ A, |C| ≥ |A|/10. Let v ∈ C and let l be its
lone leaf and S the neighbor tree of l, i.e., the two maximal proper subtrees below v
are S and the single element tree l. In order for l to be queried in the process, l must
become a twin, which means that S must be reduced to a single node. There is at
least one twin pair in S. When the procedure queries the first twin below v it fixes it
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to 1 with probability 1/2. Before S is reduced to a single leaf, the procedure has to
query the other twin and it fixes it to 1 with probability 1/2. Hence with probability at
least 1/4 S will not be reduced to a single leaf and thus l survives to the end (meaning
that ρ(l) = ∗ in the finial restriction). For two different nodes v, u ∈ C the events
that a twin pair is fixed are independent. Hence we can apply Chernoff inequality and
conclude that there are at least |C|/5 ≥ k/500 lone leaves l with ρ(l) = ∗ in Tρ for the
final restriction ρ with probability exponentially close to 1.

(b) Suppose that for every antichain C ⊆ A, |C| < |A|/10. Suppose that the procedure
outputs ρ. For a node v ∈ T , we will denote by v̂ its parent.

Let D1 be the set of lone leaves l of T such that ρ(l) = 1 and l̂ 6∈ Tρ. Hence if l ∈ D1,

then l is the unique leaf below l̂ that is fixed to 1 by ρ. This implies that {l̂ | l ∈ D1}
is an antichain. By the assumption of this subcase, it follows that |D1| < |A|/10.

Let D2 be the set of lone leaves l of T such that ρ(l) = 1 and l̂ ∈ Tρ.
We claim that all leaves in D2 are twins in Tρ. Indeed, for l to be fixed in the process it

must first become a twin. That is, l and some v are twins in some σ ⊆ ρ. Since l̂ ∈ Tρ,
we also have l̂ ∈ Tσ. (Once a node disappears in the process, it is never restored.) So
v must also be fixed to 1 in ρ, otherwise l̂ would not be generated by the leaves of Tρ.

Parents of twins in Tρ are incomparable and since it is a subtree of T , they are also

incomparable in T . This implies that {l̂ | l ∈ D2} is an antichain and |D2| < |A|/10.

Thus every ρ fixes at most 2
10

of lone leaves of A to 1. Since the process assigns zeros
and ones randomly independently, with probability exponentially close to 1, it will not
fix more than 1

2
of the lone leaves of T . Hence with probability exponentially close

to 1, Tρ has at least k/20 lone leaves l with ρ(l) = ∗.

Case 2. T has < k/10 lone leaves. Let T ′ be the tree obtained from Sk(T ) by removing all
leaves. We consider two subcases again.

(a) Suppose that T ′ has ≥ 3
10
k lone leaves. In this case the process will first query twins

of T that are attached to lone leaves of T ′. When the first twin is queried, then it is
fixed to 0 with probability 1/2. If this happens, the second twin will become a lone
leaf in the reduced tree. Thus we obtain with probability exponentially close to 1 at
least k/10 lone leaves. Then we can apply the argument of Case 1 on the reduced tree.
The situation only differs in that we now have some leaves fixed to 1 already at the
beginning.

More precisely, to reduce this case to Case 1, we need to consider the skeleton fixing
procedure that starts with some ρ that fixes some elements of T to 1 and such that Tρ
has at least k/10 lone leaves l with ρ(l) = ∗. Then in the definition of A, D1 and D2

we must only use the lone leaves that are initially set to ∗. The verification that the
argument in Case 1 works with this modification is straightforward.
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(b) Finally, suppose that T ′ has < 3
10
k lone leaves. Then there are < 6

10
k twins attached

to the lone leaves of T ′ (i.e., twins that together with lone leaves form subtrees with 3
leaves). Hence there are ≥ 1

10
k twins of T attached to twins of T ′. Then there are at

least ≥ 1
40
k quadruples of twins attached to pairs twin pairs of T ′. For each of these

quadruples, we have probability 1/8 that it will be fixed in such a way that one twin
pair is fixed to ones and from the other one twin is fixed to 0 and the other remains
free and becomes a free lone leaf (i.e., they will form a subtree with 3 leaves in which
the twins are fixed to 1 and the lone leaf is ∗). Hence with probability exponentially
close to 1, the resulting tree Tρ will have at least 1

160
k lone leaves.

6.2 The rest of the proof of Theorem 3.1

We want to use an ε′-extractor F2 : {0, 1}n → {0, 1}m for (n, k′)-bit-fixing sources with the
following parameters:

1. k′ = log((log n)/ε′2) + 2 log log((log n)/ε′) +O(1),

2. m = k′ − 2 log(1/ε′)−O(1),

3. furthermore, F2(s) can be computed in time nO(log2((logn)/ε′)).

If we want to get error ε for our extractor, which the composed function F2 ◦ F1, then
we need to have the error ε′ of F2 slightly smaller, because part of the sources in the convex
combination are not (n, k′)-bit-fixing sources. The weight of the bad sources in the convex
combination is exponentially small, so we have ε = ε′ + o(1). Note that even if ε were larger
by a constant factor, the expressions above would still keep the same form if we replaced ε′

by ε, because the term o(1) would be consumed by the big O.
Recall that we are projecting an (N, k)-zero-fixing source to (n, k′)-bit-fixing sources.

The construction gives us n ≤ k logN and k′ = Ω(k). Since we assume k ≤ logN in the
statement of the theorem, we have

n ≤ (logN)2. (6)

We need to show three things:

i. k can be as small as O(log log logN),

ii. m = Ω(k),

iii. F can be computed in polynomial time.

To prove i., we will use 1. in the list of the properties of F2. According to (6), log log n =
log log logN + O(1). We need to check that the contribution of the 1/ε2 in 1. is also of the
order (log n)O(1). If k = O(log log n) and ε ≥ 2−δ2k, then we also have k′ = O(log log n) and
ε′ ≥ 2−Ω(k), hence indeed, 1/ε′2 = (log n)O(1).
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To prove ii., it suffices to have ε ≥ 2−δ2k for a sufficiently small δ2, because then the
negative terms in 2. are smaller than k′/2.

Since F1 is computable in polynomial time, in order to prove iii., we only need to bound
the time for F2. This amounts to substitute our bounds on n and ε′ into nO(log2((logn)/ε′)).
Let us first only estimate the expression without ε′; we will use (6).

nO(log2(logn)) ≤ 2O(log2(log((logN)2))·(log((logN)2))).

This is, clearly, sublinear. The contribution of ε′ will be

nO(log2(1/ε′)) = 2O(log2(1/ε′)·(log((logN)2))).

Since in the theorem we assume ε ≥ (logN)−1, the resulting term is also sublinear.

6.3 Properties of shift graphs

In this section we prove Facts 1-3.

Proof. (of Fact 1) Let ψ :
(

[n]
l

)
→
(

[m]
bm/2c

)
be a coloring, which means that ψ(L1) 6= ψ(L2)

whenever (L1, L2) ∈ E(S(n, l)). We define φ :
(

[n]
l+1

)
→ [m] as follows. For 1 ≤ x1 < x2 <

. . . < xl+1 ≤ n, we choose x ∈ ψ(x1, x2, . . . , xl)\ψ(x2, . . . , xl, xl+1), say the first such element,
and set φ(x1, x2, . . . , xl, xl+1) := x.

Now, if ((x1, . . . , xl+1), (x2, . . . , xl+2)) ∈ E(S(n, l + 1)), then we have

φ(x1, . . . , xl+1) ∈ ψ(x1, . . . , xl) \ ψ(x2, . . . , xl+1), and

φ(x2, . . . , xl+2) ∈ ψ(x2, . . . , xl+1) \ ψ(x3, . . . , xl+2).

Consequently, φ(x1, . . . , xl+1) 6= φ(x2, . . . , xl+2).

Proof. (of Fact 2) Consider a 4-coloring ψ : S(n, l− 1)→ [4]. We define φ : S(n, l+ 1)→ [3]
as follows. For 1 ≤ x1 < x2 < . . . < xl+1 ≤ n, set

φ(x1, . . . , xl+1) := ψ(x2, . . . , xl) if ψ(x2, . . . , xl) 6= 4, otherwise

:= some j ∈ [4] \ {ψ(x1, . . . , xl−1), ψ(x2, . . . , xl), ψ(x3, . . . , xl+1)}.

Consider ((x1, . . . , xl+1), (x2, . . . , xl+2)) ∈ E(S(n, l + 1)). We distinguish two cases.

a. If ψ(x2, . . . , xl) 6= 4, then φ(x1, . . . , xl+1) = ψ(x2, . . . , xl). On the other hand, φ(x2, . . . , xl+2)
equals either to ψ(x3, . . . , xl+1), or belongs to [3] \ ψ(x2, . . . , xl). Since ψ(x2, . . . , xl) 6=
ψ(x3, . . . , xl+1), we have in either case φ(x1, . . . , xl+1) 6= φ(x2, . . . , xl+2).

b. If ψ(x2, . . . , xl) = 4, then ψ(x3, . . . , xl+1) 6= 4 and we have

φ(x1, . . . , xl+1) ∈ [3] \ {ψ(x1, . . . , xl−1), ψ(x3, . . . , xl+1)}
φ(x2, . . . , xl+2) = ψ(x3, . . . , xl+1).

Consequently φ(x1, . . . , xl+1) 6= φ(x2, . . . , xl+2).
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Proof. (of Fact 3) Let n ≥ 2l + 1. Then the sets

{1, 2, . . . , l}, {2, . . . , l, l + 1}, . . . , {l + 1, . . . , 2l}, {l + 2, . . . , 2l + 1},

{l, l + 2, . . . , 2l}, {l − 1, l, l + 2, . . . , 2l − 1}, . . . , {2, 3, . . . , l − 1, l, l + 2}

form an odd cycle in S(n, l).

6.4 Proof of Lemma 4.2

We need to recall an equivalent definition of the total variation distance.

d(µ, ν) = sup
A
|Probµ(A)− Probν(A)|.

The supremum is over all events A.8

Let X be a special (n, k, d)-symbol-fixing source. The random variable X produces strings
from some set S of size 2k, each string with the same probability 2−k (this is all we need
to know about X). Let Y be distributed uniformly on {0, 1}m. Let A ⊆ {0, 1}m be an
arbitrary event on {0, 1}m. Consider random function F : [d]n → {0, 1}m. We need to
bound the following probability

ProbF [|Prob[A(F (X))]− Prob[A(Y )]| > ε].

The outer probability is, as indicated, with respect to randomly chosen function F . The
term Prob[A(F (X))] is the number of strings s from S such that F (s) ∈ A divided by |S|,
which is 2k. The term Prob[A(Y )] is the probability that a random string t chosen from
{0, 1}m is in A, which is |A|/2m; let us denote it by p. Since S is fixed, we only need to
know the values of F on this set. For a given s ∈ S, we have ProbF [A(F (s))] = p and for
s, s′ ∈ S, s 6= s′, the events A(F (s)) and A(F (s′)) are independent. Hence we can apply the
Chernoff bound, which gives us

ProbF [|Prob[A(F (X))]− Prob[A(Y )]| > ε] ≤ 2e−
ε22k

3 .

We will use this bound to show that there exists an F such that |Prob[A(F (X))] −
Prob[A(Y )]| ≤ ε for every (n, k, d)-symbol-fixing source and every event A. This property
of F is equivalent to being an ε-extractor for such sources.

The number of events A is 22m . Let K denote the number of special (n, k, d)-symbol-fixing
sources. Then, by the union bound, the probability that |Prob[A(F (X))]−Prob[A(Y )]| > ε
for some source X and some predicate A is bounded by

2e
−ε22k

3 · 22m ·K.
8In this paper the supremum is always the maximum, since we only consider finite probability spaces.
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The number of special (n, k, d)-symbol-fixing sources can be bounded by

K ≤
(
d+

(
d

2

))n
≤ (d2)n = d2n.

Hence, there exists an ε-extractor if

2e
−ε22k

3 · 22m · d2n < 1.

7 Conclusions and open problems

For k being a finite number iterated logarithm of n, our extractors extract a positive fraction
of entropy from (n, k)-zero-fixing sources. On the other hand the upper bounds on the
amount of entropy that can be extracted only show that with each logarithm there is a
loss of approximately one bit of entropy. Can one narrow down this gap? In this paper we
have not tried hard to make the fraction of extracted entropy as large as possible. One can
certainly get larger fractions of the available entropy by analyzing our constructions more
carefully, but we do not see how one can get the amount of extracted entropy close to k, say
0.9k. We think that new ideas are needed to this end.

The biggest challenge is to construct extractors for small bit-fixing sources. We hope that
our constructions will eventually help construct also extractors for small bit-fixing sources.
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Figure 1: A binary tree with its skeleton consisting of black nodes
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Figure 2: The projection mapping
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