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Abstract
Błasiok (SODA’18) recently introduced the notion of a subgaussian sampler, defined as an averaging

sampler for approximating the mean of functions f : {0, 1}m → R such that f(Um) has subgaussian tails,
and asked for explicit constructions. In this work, we give the first explicit constructions of subgaussian
samplers (and in fact averaging samplers for the broader class of subexponential functions) that match the
best-known constructions of averaging samplers for [0, 1]-bounded functions in the regime of parameters
where the approximation error ε and failure probability δ are subconstant. Our constructions are
established via an extension of the standard notion of randomness extractor (Nisan and Zuckerman,
JCSS’96) where the error is measured by an arbitrary divergence rather than total variation distance, and a
generalization of Zuckerman’s equivalence (Random Struct. Alg.’97) between extractors and samplers. We
believe that the framework we develop, and specifically the notion of an extractor for the Kullback–Leibler
(KL) divergence, are of independent interest. In particular, KL-extractors are stronger than both standard
extractors and subgaussian samplers, but we show that they exist with essentially the same parameters
(constructively and non-constructively) as standard extractors.

1 Introduction
1.1 Averaging samplers
Averaging (or oblivious) samplers, introduced by Bellare and Rompel [BR94], are one of the main objects
of study in pseudorandomness. Used to approximate the mean of a [0, 1]-valued function with minimal
randomness and queries, an averaging sampler takes a short random seed and produces a small set of
correlated points such that any given [0, 1]-valued function will (with high probability) take approximately
the same mean on these points as on the entire space. Formally,

Definition 1.1 ([BR94]). A function Samp : {0, 1}n → ({0, 1}m)D is a (δ, ε) averaging sampler if for all
f : {0, 1}m → [0, 1], it holds that

Pr
x∼Un

[∣∣∣∣∣ 1
D

D∑
i=1

f(Samp(x)i)− E[f(Um)]

∣∣∣∣∣ > ε

]
≤ δ,

where Un is the uniform distribution on {0, 1}n. The number n is the randomness complexity of the sampler,
and D is the sample complexity. A sampler is explicit if Samp(x, i) can be computed in time poly(n,m, logD).

Traditionally, averaging samplers have been used in the context of randomness-efficient error reduction for
algorithms and protocols, where the function f is the indicator of a set ({0, 1}-valued), or more generally the
acceptance probability of an algorithm or protocol ([0, 1]-valued). There has been significant effort in the
literature to establish optimal explicit and non-explicit constructions of samplers, which we summarize in
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Table 1. We recommend the survey of Goldreich [Gol11b] for more details, especially regarding non-averaging
samplers1.

Key Idea Randomness complexity Sample complexity Best regime
Pairwise Independence [CG89] m+ log(1/δ) + 2 log(1/ε)

+O(1)
O
( 1
δε2

)
δ = Ω(1)

Extractors
[Zuc97, GW97, RVW00, GUV09]

m+ (1 + α) · log(1/δ)
any constant α > 0

poly(log(1/δ), 1/ε) ε, δ = o(1)

Expander Walks [Gil98] m+O(log(1/δ)/ε2) O
(

log(1/δ)
ε2

)
ε = Ω(1)

Non-Explicit [Zuc97] m+ log(1/δ)− log log(1/δ)
+O(1)

O
(

log(1/δ)
ε2

)
All

Lower Bound [CEG95, Zuc97, RT00] m+ log(1/δ)− log log(1/δ)
− log(1/ε)−O(1)

Ω
(

log (1/δ)
ε2

)
N/A

Table 1: Best known constructions of averaging samplers for [0, 1]-valued functions

However, averaging samplers can also have uses beyond bounded functions: Błasiok [Bła18b], motivated
by an application in streaming algorithms, introduced the notion of a subgaussian sampler, which he defined
as an averaging sampler for functions f : {0, 1}m → R such that f(Um) is a subgaussian random variable.
Since subgaussian random variables have strong tail bounds, subgaussian functions from {0, 1}m have a
range of size O(

√
m), and thus one can construct a subgaussian sampler from a [0, 1]-sampler by simply

scaling the error ε by a factor of O(
√
m). Unfortunately, looking at Table 1 one sees that this induces a

multiplicative dependence on m in the sample complexity, and for the expander-walk sampler induces a
dependence of m log(1/δ) in the randomness complexity. This loss can be avoided for some samplers, such
as the sampler of Chor and Goldreich [CG89] based on pairwise independence (as its analysis requires only
bounded variance), but Błasiok showed [Bła18a] that the expander-walk sampler does not in general act as
a subgaussian sampler without reducing the error to o(1). We remark briefly that the median-of-averages
sampler of Bellare, Goldreich, and Goldwasser [BGG93] still works and is optimal up to constant factors
in the subgaussian setting (since the underlying pairwise independent sampler works), but it is not an
averaging sampler1, and matching its parameters with an averaging sampler remains open in general even for
[0, 1]-valued functions.

One of the contributions of this work is to give explicit averaging samplers for subgaussian functions (in
fact even for subexponential functions that satisfy weaker tail bounds) matching the extractor-based samplers
for [0, 1]-valued functions in Table 1 (up to the hidden polynomial in the sample complexity). This achieves
the best parameters currently known in the regime of parameters where ε and δ are both subconstant, and
in particular has no dependence on m in the sample complexity. We also show non-constructively that
subgaussian samplers exist with essentially the same parameters as [0, 1]-valued samplers.

Theorem 1.2 (Informal version of Theorem 6.1 and Corollary 6.5). For every integer m ∈ N, 1 > δ, ε > 0,
and α > 0, there is an explicit subgaussian (in fact subexponential) sampler Samp : {0, 1}n → ({0, 1}m)D

with randomness complexity n = m + (1 + α) · log(1/δ) and sample complexity D = poly(log(1/δ), 1/ε).
Furthermore, there is a non-explicit subgaussian sampler with n = m+ log(1/δ)− log log(1/δ) +O(1) and
D = O(log(1/δ)/ε2).

1.2 Randomness extractors
To prove Theorem 1.2, we develop a corresponding theory of generalized randomness extractors which we
believe is of independent interest. For bounded functions, Zuckerman [Zuc97] showed that averaging samplers

1A non-averaging sampler is an algorithm Samp which makes oracle queries to f and outputs an estimate of its average which
is good with high probability, but need not simply output the average of f ’s values on the queried points.
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are essentially equivalent to randomness extractors, and in fact several of the best-known constructions of
such samplers arose as extractor constructions. Formally, a randomness extractor is defined as follows:

Definition 1.3 (Nisan and Zuckerman [NZ96]). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is said to
be a (k, ε) extractor if for every distribution X over {0, 1}m satisfying maxx∈{0,1}n Pr[X = x] ≤ 2−k, the
distributions Ext(X,Ud) and Um are ε-close in total variation distance. Equivalently, for all f : {0, 1}m → [0, 1]
it holds that E[f(Ext(X,Ud))]− E[f(Um)] ≤ ε. The number d is called the seed length, and m the output
length.

The formulation of Definition 1.3 in terms of [0, 1]-valued functions implies that extractors produce an
output distribution that is indistinguishable from uniform by all bounded functions f . It is therefore natural
to consider a variant of this definition for a different set F of test functions f : {0, 1}m → R which need not
be bounded.

Definition 1.4 (Special case of Definition 3.1 using Definition 2.5). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is said to be a (k, ε) extractor for a set of real-valued functions F from {0, 1}m if for every distribution
X over {0, 1}m satisfying maxx∈{0,1}n Pr[X = x] ≤ 2−k and every f ∈ F , it holds that E[f(Ext(X,Ud))]−
E[f(Um)] ≤ ε.

We show that much of the theory of extractors and samplers carries over to this more general setting.
In particular, we generalize the connection of Zuckerman [Zuc97] to show that extractors are samplers for
any class of functions, along with the converse (though as for total variation distance, there is some loss
of parameters in this direction). Thus, to construct a subgaussian sampler it suffices (and is preferable) to
construct a corresponding extractor for subgaussian test functions, which is how we prove Theorem 1.2.

Unfortunately, the distance induced by subgaussian test functions is not particularly pleasant to work with:
for example the point masses on 0 and 1 in {0, 1} are O(1) apart, but embedding them in the larger universe
{0, 1}m leads to distributions which are Θ(

√
m) apart. We solve this problem by constructing extractors for

a stronger notion, the Kullback–Leibler (KL)-divergence, equivalently, extractors whose output is required to
have very high Shannon entropy.

Definition 1.5 (Special case of Definition 3.1 using KL divergence). A function Ext : {0, 1}n × {0, 1}d →
{0, 1}m is said to be a (k, ε) KL-extractor if for every distribution X over {0, 1}m satisfying maxx∈{0,1}n
Pr[X = x] ≤ 2−k it holds that KL(Ext(X,Ud) ‖ Um) ≤ ε, or equivalently H(Ext(X,Ud)) ≥ m− ε.

A strong form of Pinsker’s inequality (e.g. [BLM13, Lemma 4.18]) implies that a (k, ε2) KL-extractor is also
a (k, ε) extractor for subgaussian test functions. The KL divergence has the advantage that is nonincreasing
under the application of functions (the famous data-processing inequality), and although it does not satisfy a
traditional triangle inequality, it does satisfy a similar inequality when one of the segments satisfies stronger
`2 bounds. These properties allow us to use composition techniques from the literature due to Goldreich and
Wigderson [GW97] and Reingold, Wigderson, and Vadhan [RVW00] to construct KL-extractors with seed
length depending on n and k only through the entropy deficiency n− k of X rather than n itself, which in the
sampler perspective corresponds to a sampler with sample complexity depending on the failure probability δ
rather than the universe size 2m. Hence, we prove Theorem 1.2 by constructing corresponding KL-extractors.

Theorem 1.6 (Informal version of Theorem 6.2). For all integers m, 1 > δ, ε > 0, and α > 0 there is an
explicit (k, ε) KL-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with n = m+ (1 +α) · log(1/δ), k = n− log(1/δ),
and d = O(log log(1/δ) + log(1/ε)).

Though the above theorem is most interesting in the high min-entropy regime where n− k = o(n), we also
show the existence of KL-extractors matching most of the existing constructions of total variation extractors.
In particular, we note that extractors for `2 are immediately KL-extractors without loss of parameters, and
also that any extractor can be made a KL-extractor by taking slightly smaller error, so that the extractors
of Guruswami, Umans, and Vadhan [GUV09] can be taken to be KL-extractors with essentially the same
parameters.

Furthermore, in addition to our explicit constructions, we also show non-constructively that KL-extractors
(and hence subgaussian extractors) exist with very good parameters:
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Theorem 1.7 (Informal version of Theorem 5.31). For any integers k < n ∈ N and 1 > ε > 0 there
is a (k, ε) KL-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d = log(n − k) + log(1/ε) + O(1) and
m = k + d− log(1/ε)−O(1).

One key thing to note about the nonconstructive KL extractors of the above theorem is that they incur an
entropy loss of only 1 · log(1/ε), whereas total variation extractors necessarily incur entropy loss 2 · log(1/ε)
by the lower bound of Radhakrishnan and Ta-Shma [RT00]. In particular, by Pinsker’s inequality, (k, ε2)
KL-extractors with the above parameters are also optimal (k, ε) standard (total variation) extractors [RT00],
so that one does not lose anything by constructing a KL-extractor rather than a total variation extractor.
We also remark that the above theorem gives subgaussian samplers with better parameters than a naive
argument that a random function should directly be a subgaussian sampler, as it avoids the need to take a
union bound over O(MM ) = O(2M logM ) test functions (for M = 2m) which results in additional additive
log log factors in the randomness complexity.

In the total variation setting, there are only a couple of methods known to explicitly achieve optimal
entropy loss 2 · log(1/ε), the easiest of which is to use an extractor which natively has this sort of loss, of
which only three are known: An extractor from random walks over Ramanujan Graphs due to Goldreich
and Wigderson [GW97], the Leftover Hash Lemma due to Impagliazzo, Levin, and Luby [ILL89] (see also
[McI87, BBR88]), and the extractor based on almost-universal hashing of Srinivasan and Zuckerman [SZ99].
Unfortunately, all of these are `2 extractors and so must have seed length linear in min(n − k,m) by a
lower bound of Vadhan [Vad12, Problem 6.4], rather than logarithmic in n− k as known non-constructively.
The other alternative is to use the generic reduction of Raz, Reingold, and Vadhan [RRV02] which turns
any extractor Ext with entropy loss ∆ into one with entropy loss 2 · log(1/ε) +O(1) by paying an additive
O(∆ + log(n/ε)) in seed length. We show that all of these `2 extractors and the [RRV02] transformation also
work to give KL-extractors with entropy loss 1 · log(1/ε) +O(1), so that applications which require minimal
entropy loss can also use explicit constructions of KL-extractors.

1.3 Future directions
Broadly speaking, we hope that the perspective of KL-extractors will bring new tools (perhaps from information
theory) to the construction of extractors and samplers. For example, since KL-extractors can have seed
length with dependence on ε of only 1 · log(1/ε), trying to explicitly construct a KL-extractor with seed
length 1 · log(1/ε) + o(min(n, k)) may also shed light on how to achieve optimal dependence on ε in the total
variation setting.

In the regime of constant ε = Ω(1), we do not have explicit constructions of subgaussian samplers
matching the expander-walk sampler of Gillman [Gil98] for [0, 1]-valued functions, which achieves randomness
complexity m+O(log(1/δ)) and sample complexity O(log(1/δ)). From the extractor point-of-view, it would
suffice (by the reduction of [GW97, RVW00] that we analyze for KL-extractors) to construct explicit linear
degree KL-extractors with parameters matching the linear degree extractor of Zuckerman [Zuc07], i.e. with
seed length d = log(n) +O(1) and m = Ω(k) for ε = Ω(1). A potentially easier problem, since the Zuckerman
linear degree extractor is itself based on the expander-walk sampler, could be to instead match the parameters
of the near-linear degree extractors of Ta-Shma, Zuckerman, and Safra [TZS06] based on Reed–Muller codes,
thereby achieving sample complexity O(log(1/δ) · poly log log(1/δ)).

Finally, we hope that KL-extractors can also find uses beyond being subgaussian samplers and total
variation extractors: for example it seems likely that there are applications (perhaps in coding or cryptography,
c.f. [BDK+11]) where it is more important to have high Shannon entropy in the output than small total
variation distance to uniform, in which case one may be able to use (k, ε) KL-extractors with entropy loss
only 1 · log(1/ε) directly, rather than a total variation extractor or (k, ε2) KL-extractor with entropy loss
2 · log(1/ε).
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2 Preliminaries
2.1 (Weak) statistical divergences and metrics
Our results in general will require very few assumptions on notions of “distance” between probability
distributions, so we will give a general definition and indicate in our theorems when we need which assumptions.

Definition 2.1. A weak statistical divergence (or simply weak divergence) on a finite set X is a function
D from pairs of probability distributions over X to R ∪ {±∞}. We write D(P ‖ Q) for the value of D on
distributions P and Q. Furthermore

1. If D(P ‖ Q) ≥ 0 with equality iff P = Q, then D is positive-definite, and we simply call D a divergence.

2. If D(P ‖ Q) = D(Q ‖ P ), then D is symmetric.

3. If D(P ‖ R) ≤ D(P ‖ Q) + D(Q ‖ R), then D is satisfies the triangle inequality.

4. If D(λP1 + (1− λ)P2 ‖ λQ1 + (1− λ)Q2) ≤ λD(P1 ‖ Q1) + (1 − λ) D(P2 ‖ Q2) for all λ ∈ [0, 1], then
D is jointly convex. If this holds only when Q1 = Q2 then D is convex in its first argument.

5. If D is defined on all finite sets Y and for all functions f : X → Y the divergence is nonincreasing under
f , that is D(f(P ) ‖ f(Q)) ≤ D(P ‖ Q), then D satisfies the data-processing inequality.

If D is positive-definite, symmetric, and satisfies the triangle inequality, then it is called a metric.

Example 2.2. The `p distance for p > 0 between probability distributions over X is

d`p(P,Q) def=
(∑
x∈X

∣∣Px −Qx∣∣p)1/p

and is positive-definite and symmetric. Furthermore, for p ≥ 1 it satisfies the triangle inequality (and so is a
metric), and is jointly convex. The `p distance is nonincreasing in p.

Example 2.3. The total variation distance is

dTV (P,Q) def= 1
2d`1(P,Q) = sup

S⊆X

∣∣∣Pr[P ∈ S]− Pr[Q ∈ S]
∣∣∣ = sup

f∈[0,1]X

(
E[f(P )]− E[f(Q)]

)
and is a jointly convex metric that satisfies the data-processing inequality.

Example 2.4 (Rényi Divergences [Rén61]). For two probability distributions P and Q over a finite set X ,
the Rényi α-divergence or Rényi divergence of order α is defined for real 0 < α 6= 1 by

Dα(P ‖ Q) def= 1
α− 1 log

(∑
x∈X

Pαx
Qα−1
x

)

where the logarithm is in base 2 (as are all logarithms in this paper unless noted otherwise). The Rényi
divergence is continuous in α and so is defined by taking limits for α ∈ {0, 1,∞}, giving for α = 0
D0(P ‖ Q) def= log(1/Prx∼Q[Px 6= 0]), for α = 1 the Kullback–Leibler (or KL) divergence

KL(P ‖ Q) def= D1(P ‖ Q) =
∑
x∈X

Px log Px
Qx

,

and for α = ∞ the max-divergence D∞(P ‖ Q) def= maxx∈X log Px
Qx

. The Rényi divergence is nondecreasing
in α. Furthermore, when α ≤ 1 the Rényi divergence is jointly convex, and for all α the Rényi divergence
satisfies the data-processing inequality [vEH14].
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When Q = UX is the uniform distribution over the set X , then for all α, Dα(P ‖ UX ) = log|X | −Hα(P )
where 0 ≤ Hα(P ) ≤ log|X | is called the Rényi α-entropy of P . For α = 0, H0(P ) = log|Supp(P )| is the
max-entropy of P , for α = 1, H1(P ) =

∑
x∈X Px log(1/Px) is the Shannon entropy of P , and for α = ∞,

H∞(P ) = minx∈X log(1/Px) is the min-entropy of P .
For α = 2, the Rényi 2-entropy can be expressed in terms of the `2-distance to uniform:

log|X | −H2(P ) = D2(P ‖ UX ) = log
(
1 + |X | · d`2(P,UX )2)

2.2 Statistical weak divergences from test functions
Zuckerman’s connection [Zuc97] between samplers for bounded functions and extractors for total variation
distance is based on the following standard characterization of total variation distance as the maximum
distinguishing advantage achieved by bounded functions,

dTV (P,Q) = sup
f∈[0,1]X

E[f(P )]− E[f(Q)].

By considering an arbitrary class of functions in the supremum, we get the following weak divergence:

Definition 2.5. Given a finite X and a set of real-valued functions F ⊆ RX , the F-distance on X between
probability measures on X is denoted by DF and is defined as

DF (P ‖ Q) def= sup
f∈F

(
E[f(P )]− E[f(Q)]

)
= sup
f∈F

D{f}(P ‖ Q),

where we use a superscript to avoid confusion with the Csiszár-Morimoto-Ali-Silvey f -divergences [Csi63,
Mor63, AS66].

We call the set of functions F symmetric if for all f ∈ F there is c ∈ R and g ∈ F such that g = c− f ,
and distinguishing if for all P 6= Q there exists f ∈ F with D{f}(P ‖ Q) > 0.

Example 2.6. If F = {0, 1}X or F = [0, 1]X , then DF is exactly the total variation distance.

Remark 2.7. An equivalent definition of F being symmetric is that for all f ∈ F there exists g ∈ F with
D{g}(P ‖ Q) = −D{f}(P ‖ Q) = D{f}(Q ‖ P ) for all distributions P and Q. Hence, one might also consider
a weaker notion of symmetry that reverses quantifiers, where F is “weakly-symmetric” if for all f ∈ F and
distributions P and Q there exists g ∈ F such that D{g}(P ‖ Q) = −D{f}(P ‖ Q) = D{f}(Q ‖ P ). However,
such a class F gives exactly the same weak divergence DF as its “symmetrization” F = F ∪ {−f | f ∈ F}, so
we do not need to introduce this more complex notion.
Remark 2.8. By identifying distributions with their probability mass function, one can realize E[f(P )]−E[f(Q)]
as an inner product 〈P −Q, f〉. Definition 2.5 can thus be written as DF (P ‖ Q) = supf∈F 〈P −Q, f〉, which
is essentially the notion of indistinguishability considered in several prior works, (see e.g. the survey of
Reingold, Trevisan, Tulsiani, and Vadhan [RTTV08]), but without requiring all f to be bounded.
Remark 2.9. For simplicity, all our probabilistic distributions are given only for random variables and
distributions over finite sets as this is all we need for our application. A more general version of Definition 2.5
has been studied by e.g. Zolotarev [Zol84] and Müller [Mül97] and is commonly used in developments of
Stein’s method in probability.

We now establish some basic properties of DF .

Lemma 2.10. Let F ⊆ RX be a set of real-valued functions over a finite set X . Then DF satisfies the
triangle inequality and is jointly convex, and

1. if F is symmetric then DF is symmetric and

DF (P ‖ Q) = sup
f∈F

∣∣∣E[f(P )]− E[f(Q)]
∣∣∣ ≥ 0,
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2. if F is distinguishing then DF is positive-definite,

so that if F is both symmetric and distinguishing then DF is a jointly convex metric on probability distributions
over X , in which case we also use the notation dF (P,Q) def= DF (P ‖ Q).

Proof. The triangle inequality and joint convexity both follow from the linearity of each D{f}, as by linearity
of expectation, for all f : X → R it holds that

D{f}(P ‖ R) = D{f}(P ‖ Q) + D{f}(Q ‖ R)

D{f}(λP1 + (1− λ)P2 ‖ λQ1 + (1− λ)Q2) = λD{f}(P1 ‖ Q1) + (1− λ) D{f}(P2 ‖ Q2).

Upper bounding the terms on the right-hand side by DF and taking the supremum of the left hand side
over f ∈ F then gives the claims. The symmetry and positive-definite claims are immediate from the
definitions.

Furthermore, the notion of dual norm has an appealing interpretation in this framework via Remark 2.8,
generalizing the fact that total variation distance corresponds to [0, 1]-valued test functions (or equivalently
that `1 distance corresponds to to [−1, 1]-valued functions).

Proposition 2.11. Let 1 ≤ p, q ≤ ∞ be Hölder conjugates (meaning 1/p+ 1/q = 1), and let

Mq
def=
{
f : {0, 1}m → R

∣∣∣ ‖f(Um)‖q
def= E[|f(Um)|q]1/q ≤ 1

}
be the set of real-valued functions from {0, 1}m with bounded q-th moments. Then d`p = 2−m/q · dMq

, in the
sense that for all probability distributions A and B over {0, 1}m it holds that d`p(A,B) = 2−m/q · dMq (A,B).

In particular, taking p = 1 and q =∞ recovers the result for `1 (equivalently total variation) distance.

Proof. As mentioned this is just the standard fact that the `p and `q norms are dual, but for completeness we
include a proof in our language using the extremal form of Hölder’s inequality (note that since we are dealing
with finite probability spaces the extremal equality holds even for p = ∞ and q = 1). Given probability
distributions A and B over {0, 1}m, we have that

d`p(A,B) =
(∑

x

|Ax −Bx|p
)1/p

= 2m/p E
x∼Um

[|Ax −Bx|p]
1/p

= 2m/p max
f :{0,1}m→R
‖f(Um)‖q≤1

∣∣∣∣ E
x∼Um

[f(x)(Ax −Bx)]
∣∣∣∣ (Hölder’s extremal equality)

= 2−m+m/p max
f :{0,1}m→R
‖f(Um)‖q≤1

∣∣∣E[f(A)]− E[f(B)]
∣∣∣

= 2−m/q · dMq (A,B) (by symmetry ofMq)

as desired.

3 Extractors for weak divergences and connections to samplers
3.1 Definitions
We now use this machinery to extend the notion of an extractor due to Nisan and Zuckerman [NZ96] and the
average-case variant of Dodis, Ostrovsky, Reyzin, and Smith [DORS08].
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Definition 3.1 (Extends Definition 1.4). Let D be a weak divergence on the set {0, 1}m, and Ext :
{0, 1}n × {0, 1}d → {0, 1}m. Then if for all distributions X over {0, 1}n with H∞(X) ≥ k it holds that

1. D(Ext(X,Ud) ‖ Um) ≤ ε, then Ext is said to be a (k, ε) extractor for D, or a (k, ε) D-extractor.

2. Es∼Ud [D(Ext(X, s) ‖ Um)] ≤ ε, then Ext is said to be a (k, ε) strong extractor for D, or a (k, ε) strong
D-extractor.

Furthermore, if for all joint distributions (Z,X) where X is distributed over {0, 1}n with H̃∞(X|Z) def=
log
(
1/Ez∼Z

[
2−H∞(X|Z=z)]) ≥ k, it holds that

3. Ez∼Z [D(Ext(X|Z=z, Ud) ‖ Um) ≤ ε], then Ext is said to be a (k, ε) average-case extractor for D, or a
(k, ε) average-case D-extractor.

4. Ez∼Z,s∼Ud [D(Ext(X|Z=z, s) ‖ Um)] ≤ ε, then Ext is said to be a (k, ε) average-case strong extractor for
D, or a (k, ε) average-case strong D-extractor.

Remark 3.2. By taking D to be the total variation distance we recover the standard definitions of extractor
and strong extractor due to [NZ96] and the definition of average-case extractor due to [DORS08].

However, our definitions are phrased slightly differently for strong and average-case extractors as an
expectation rather than a joint distance, that is, for strong average-case extractors we require a bound on the
expectation Ez∼Z,s∼Ud [D(Ext(X|Z=z, s) ‖ Um)] rather than a bound on D(Z,Ud,Ext(X,Ud) ‖ Z,Ud, Um). In
our setting, the weak divergence D need not be defined over the larger joint universe, but it is defined for all
random variables over {0, 1}m. In the case of dTV and KL divergence, both definitions are equivalent (for KL
divergence, this is an instance of the chain rule).
Remark 3.3. The strong variants of Definition 3.1 are also non-strong extractors assuming the weak divergence
D is convex in its first argument, as it is for most weak divergences of interest, including the `p norms for
p ≥ 1, all DF defined by test functions, the KL divergence, Rényi divergences for α ≤ 1, and all Csiszár-
Morimoto-Ali-Silvey f -divergences. The average-case variants are always non-average-case extractors by
taking Z to be independent of X.
Remark 3.4. We gave Definition 3.1 for general weak divergences which need not be symmetric, and made the
particular choice that the output of the extractor was on the left-hand side of the weak divergence and that
the uniform distribution was on the right-hand side. This is motivated by the standard information-theoretic
divergences such as KL divergence, which require the left-hand distribution to have support contained in the
support of the right-hand distribution, and putting the uniform distribution on the right ensures this is always
the case. Furthermore, the KL divergence to uniform has a natural interpretation as an entropy difference,
KL(P ‖ Um) = m − H(P ) for H the Shannon entropy, so that in particular a KL extractor with error ε
requires the output to have Shannon entropy at least m− ε. If for a weak divergence D the other direction is
more natural, one can always reverse the sides by considering the weak divergence D′(Q ‖ P ) = D(P ‖ Q).
Remark 3.5. Definition 3.1 does not technically need even a weak divergence, as it suffices to simply have a
measure of distance to uniform. However, since weak divergences have minimal constraints, one can define a
weak divergence from any distance to uniform by ignoring the second component (or setting it to be infinite
for non-uniform distributions).

We also give the natural definition of averaging samplers for arbitrary classes of functions F extending
Definition 1.1, along with the strong variant of Zuckerman [Zuc97].

Definition 3.6. Given a class of functions F : {0, 1}m → R, a function Samp : {0, 1}n → ({0, 1}m)D is said
to be a (δ, ε) strong averaging sampler for F or a (δ, ε) strong averaging F-sampler if for all f ∈ F , it holds
that

Pr
x∼Un

[
E

i∼U[D]

[
fi(Samp(x)i)− E[fi(Um)]

]
> ε

]
≤ δ
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where [D] = {1, . . . , D}. If this holds only when f1 = · · · = fD, then it is called a (non-strong) (δ, ε) averaging
sampler for F or (δ, ε) averaging F-sampler. We say that Samp is a (δ, ε) strong absolute averaging sampler
for F if it also holds that

Pr
x∼Un

[∣∣∣∣ E
i∼U[D]

[
fi(Samp(x)i)− E[fi(Um)]

]∣∣∣∣ > ε

]
≤ δ.

with the analogous definition for non-strong samplers.

Remark 3.7. We separated a single-sided version of the error bound in Definition 3.6 as in [Vad12], as it makes
the connection between extractors and samplers cleaner and allows us to be specific about what assumptions
are needed. Note that if F is symmetric then every (δ, ε) (strong) sampler for F is a (2δ, ε) (strong) absolute
sampler for F , recovering the standard notion up to a factor of 2 in δ.

3.2 Equivalence of extractors and samplers
We now show that Zuckerman’s connection [Zuc97] does indeed generalize to this broader setting as promised.

Theorem 3.8. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be an (n − log(1/δ), ε)-extractor (respectively strong
extractor) for the weak divergence DF defined by a class of test functions F : {0, 1}m → R as in Definition 2.5.
Then the function Samp : {0, 1}n → ({0, 1}m)D for D = 2d defined by Samp(x)i = Ext(x, i) is a (δ, ε)-sampler
(respectively strong sampler) for F .

Proof. The proof is essentially the same as that of [Zuc97].
Fix a collection of test functions f1, . . . , fD ∈ F , where if Ext is not strong we restrict to f1 = · · · = fD,

and let Bf1,...,fD ⊆ {0, 1}
n be defined as

Bf1,...,fD
def=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼U[D]

[
fi(Ext(x, i))− E[fi(Um)]

]
> ε

}
=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼U[D]

[
D{fi}

(
U{Ext(x,i)}

∥∥ Um)] > ε

}
,

where U{z} is the point mass on z. Then if X is uniform over Bf1,...,fD , we have

ε < E
x∼X

[
E

i∼U[D]

[
fi(Ext(x, i))− E[fi(Um)]

]]
= E
i∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]
=
{

D{f1}(Ext(X,Ud) ‖ Um) if f1 = · · · = fD

Ei∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]
always

≤

{
DF (Ext(X,Ud) ‖ Um) if f1 = · · · = fD

Ei∼U[D]

[
DF (Ext(X, i) ‖ Um)

]
always

Since Ext is a (n − log(1/δ), ε)-extractor (respectively strong extractor) for DF we must have H∞(X) <
n− log(1/δ). But H∞(X) = log|Bf1,...,fD | by definition, so we have |Bf1,...,fD | < δ2n. Hence, the probability
that a random x ∈ {0, 1}n lands in Bf1,...,fD is less than δ, and since Bf1,...,fD is exactly the set of seeds
which are bad for Samp, this concludes the proof.

Remark 3.9. Hölder’s inequality implies that an extractor for `p with error ε ·2−m(p−1)/p is also an `1 extractor
and thus [−1, 1]-averaging sampler with error ε. Proposition 2.11 and Theorem 3.8 show that they are in fact
samplers for the much larger class of functionsMp/(p−1) with bounded p/(p− 1) moments (rather than just
∞ moments), also with error ε.
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Furthermore, if all the functions in F have bounded deviation from their mean (for example, subgaussian
functions from f : {0, 1}m → R have such a bound of O(

√
m) by the tail bounds from Lemma 4.3), then we

also have a partial converse that recovers the standard converse in the case of total variation distance.

Theorem 3.10. Let F be a class of functions F ⊂ {0, 1}m → R with finite maximum deviation from the
mean, meaning max dev(F) def= supf∈F maxx∈{0,1}n

(
f(x)− E[f(Um)]

)
<∞. Then given a (δ, ε) F-sampler

(respectively (δ, ε) strong F-sampler) Samp : {0, 1}n → ({0, 1}m)D, the function Ext : {0, 1}n × {0, 1}d →
{0, 1}m for d = logD defined by Ext(x, i) = Samp(x)i is a

(
k, ε + δ · 2n−k · max dev(F)

)
DF -extractor

(respectively strong DF -extractor) for every 0 ≤ k ≤ n.
In particular, Ext is an

(
n−log(1/δ)+log(1/η), ε+η ·max dev(F)

)
average-case DF -extractor (respectively

strong average-case DF -extractor) for every δ ≤ η ≤ 1.

Proof. Again the proof is analogous to the one in [Zuc97].
Fix a distribution X over {0, 1}m with H∞(X) ≥ k and a collection of test functions f1, . . . , fD ∈ F ,

where if Samp is not strong we restrict to f1 = · · · = fD. Then since Samp is a (δ, ε) F-sampler, we know
that the set of seeds for which the sampler is bad must be small. Formally, the set

Bf1,...,fD
def=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼Ud

[
fi(Samp(x)i)− E[fi(Um)]

]
> ε

}
=
{
x ∈ {0, 1}n

∣∣∣∣ E
i∼Ud

[
fi(Ext(x, i))− E[fi(Um)]

]
> ε

}
has size |Bf1,...,fD | ≤ δ2n. Thus, since X has min-entropy at least k we know Pr[X ∈ Bf1,...,fD ] ≤ 2−k · δ2n,
so we have

E
i∼Ud

[
E
[
fi(Ext(X, i))− E[fi(Um)]

]]
= E
X

[
E

i∼Ud

[
fi(Ext(X, i))− E[fi(Um)]

]]
= Pr[X ∈ Bf1,...,fD ] · E

X

[
E

i∼Ud

[
fi(Ext(X, i))− E[fi(Um)]

] ∣∣∣∣X ∈ Bf1,...,fD

]
+ Pr[X 6∈ Bf1,...,fD ] · E

X

[
E

i∼Ud

[
fi(Ext(X, i))− E[fi(Um)]

] ∣∣∣∣X 6∈ Bf1,...,fD

]
≤ Pr[X ∈ Bf1,...,fD ] ·max dev(F) + Pr[X 6∈ Bf1,...,fD ] · ε

≤ 2−k · δ2n ·max dev(F) + ε

completing the proof of the main claim. The “in particular” statement follows since if (Z,X) are jointly
distributed with H̃∞(X|Z) ≥ n− log(1/δ) + log(1/η) we have

E
z∼Z

[
ε+ δ · 2n−H∞(X|Z=z) ·max dev(F)

]
= ε+ δ · 2n−H̃∞(X|Z) ·max dev(F) ≤ ε+ η ·max dev(F)

by definition of conditional min-entropy.

3.3 All extractors are average-case
Under a similar boundedness condition for general weak divergences, we can recover the standard fact that
all extractors are average-case extractors under a slight loss of parameters (the same loss as achieved by
Dodis, Ostrovsky, Reyzin, and Smith [DORS08] for the case of total variation distance). More interestingly,
if the weak divergence is given by DF for a symmetric class of (possibly unbounded) functions F , we can also
generalize and recover the result of Vadhan [Vad12, Problem 6.8] that shows that a (k, ε) extractor (for total
variation) is a (k, 3ε) average-case extractor without any other loss.

10



Theorem 3.11. Let D be a bounded weak divergence over {0, 1}m, meaning that

0 ≤ ‖D‖∞
def= sup
P on {0,1}m

D(P ‖ Um) <∞.

Then a (k, ε)-extractor for D (respectively strong extractor) Ext : {0, 1}n × {0, 1}d → {0, 1}m is also a
(k + log(1/η), ε+ η · ‖D‖∞) average-case-extractor for D (respectively strong average-case-extractor) for any
0 < η ≤ 1.

Proof. The proof is analogous to that of [DORS08]. We prove it only for non-strong extractors, the proof for
strong extractors is completely analogous by adding more expectations.

For jointly distributed random variables (Z,X) such that H̃∞(X|Z) ≥ k+ log(1/η), we have by [DORS08,
Lemma 2.2] that the probability that Prz∼Z [H∞(X|Z=z) < k] ≤ η. Thus

E
z∼Z

[
D
(
Ext

(
X|Z=z, Ud

) ∥∥ Um)]
= Pr
z∼Z

[H∞(X|Z=z) < k] · E
z∼Z

[
D
(
Ext

(
X|Z=z, Ud

) ∥∥ Um) ∣∣H∞(X|Z=z) < k
]

+ Pr
z∼Z

[H∞(X|Z=z) ≥ k] · E
z∼Z

[
D
(
Ext

(
X|Z=z, Ud

) ∥∥ Um) ∣∣H∞(X|Z=z) ≥ k
]

≤ η · ‖D‖∞ + 1 · ε

Theorem 3.12. Let F be a symmetric class of test functions and Ext : {0, 1}n×{0, 1}d → {0, 1}m be a (k, ε)
extractor (respectively strong extractor) for DF , where k is at most n− 1. Then Ext is an (k, 3ε) average-case
extractor (respectively strong average-case extractor) for DF .

The proof of Theorem 3.12 follows the strategy outlined by Vadhan [Vad12, Problem 6.8]. We first
isolate the following key lemma which shows that any extractor with error that gracefully decays with lower
min-entropy is average-case with minimal loss of parameters, as opposed to Theorem 3.11 which used a
worst-case error bound when the min-entropy is low.

Lemma 3.13. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) extractor (respectively strong extractor) for
D such that for every 0 ≤ t ≤ k, Ext is also a (k − t, 2t+1 · ε) extractor (respectively strong extractor) for D.
Then Ext is a (k, 3ε) average-case extractor (respectively strong average-case extractor) for D.

Proof. We prove this for strong extractors, the non-strong case is analogous. For every (Z,X) with X
distributed on {0, 1}n and H̃∞(X|Z) ≥ k, we have

E
z∼Z,s∼Ud

[D(Ext(X|Z=z, s) ‖ Um)] = E
z∼Z

[
E

s∼Ud
[D(Ext(X|Z=z, s) ‖ Um)]

]
≤ E
z∼Z

[{
ε if H∞(X|Z=z) ≥ k
2k−H∞(X|Z=z)+1 · ε otherwise

]
≤ ε · E

z∼Z

[
1 + 2k−H∞(X|Z=z)+1

]
≤ 3ε

where the last inequality follows from the fact that Ez∼Z
[
2−H∞(X|Z=z)] = 2− H̃∞(X|Z) by definition of

conditional min-entropy.

Proof of Theorem 3.12. By the previous lemma, it suffices to prove that for every t ≥ 0, Ext is a (k −
t, (2t+1 − 1) · ε) extractor (respectively strong extractor) for DF . Since DF is convex in its first argument by
Lemma 2.10, following Chor and Goldreich [CG88] it is enough to consider only distributions with min-entropy
k− t that are supported on a set of at most 2n−1. Fix such a distribution X and a collection of test functions
f1, . . . , fD ∈ F with f1 = · · · = fD if Ext is not strong. Then since X is supported on a set of size at most
2n−1, the distribution Y that is uniform over the complement of Supp(X) has min-entropy at least n− 1 ≥ k,
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and furthermore the mixture 2−tX+(1−2−t)Y has min-entropy at least k. Hence, as Ext is a (k, ε) extractor
(respectively strong extractor) for DF ,

ε ≥ E
i∼U[D]

[
D{fi}

(
Ext

(
2−tX + (1− 2−t)Y, i

) ∥∥ Um)]
= 2−t E

i∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]
+ (1− 2−t) E

i∼U[D]

[
D{fi}(Ext(Y, i) ‖ Um)

]
= 2−t E

i∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]
− (1− 2−t) E

i∼U[D]

[
D{ci−fi}(Ext(Y, i) ‖ Um)

]
≥ 2−t E

i∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]
− (1− 2−t) · ε (since H∞(Y ) ≥ k)(

2t+1 − 1
)
· ε ≥ E

i∼U[D]

[
D{fi}(Ext(X, i) ‖ Um)

]
where ci ∈ R is such that ci − fi ∈ F as guaranteed to exist by the symmetry of F .

Remark 3.14. Theorem 3.12 also applies to extractors for the `p norms via Proposition 2.11.

4 Subgaussian distance and connections to other notions
Now that we’ve introduced the general machinery we need, we can go back to our motivation of subgaussian
samplers. We will need some standard facts about subgaussian and subexponential random variables, we
recommend the book of Vershynin [Ver18] for an introduction.

Definition 4.1. A real-valued mean-zero random variable Z is said to be subgaussian with parameter σ if
for every t ∈ R the moment generating function of Z is bounded as

lnE
[
etZ
]
≤ t2σ2

2 .

If this is only holds for |t| ≤ b then Z is said to be (σ, b)-subgamma, and if Z is (σ, 1/σ)-subgamma then Z is
said to be subexponential with parameter σ.

Remark 4.2. There are many definitions of subgaussian (and especially subexponential) random variables in
the literature, but they are all equivalent up to constant factors in σ and only affect constants already hidden
in big-O’s.

Lemma 4.3. Let Z be a real-valued random variable. Then

1. (Hoeffding’s lemma) If Z is bounded in the interval [0, 1], then Z − E[Z] is subgaussian with parameter
1/2.

2. If Z is mean-zero, then Z is subgaussian (respectively subexponential) with parameter σ if and only if
cZ is subgaussian (respectively subexponential) with parameter |c|σ for every c 6= 0.

Furthermore, if Z is mean-zero and subgaussian with parameter σ, then

1. For all t > 0, max
(
Pr[Z > t],Pr[Z < −t]

)
≤ e−t2/2σ2 .

2. ‖Z‖p
def= E[|Z|p]1/p ≤ 2σ√p for all p ≥ 1.

3. Z is subexponential with parameter σ.

We are now in a position to formally define the subgaussian distance.
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Definition 4.4. For every finite set X , we define the set GX of subgaussian test functions on X (respectively
the set EX of subexponential test functions on X ) to be the set of functions f : X → R such that the random
variable f(UX ) is mean-zero and subgaussian (respectively subexponential) with parameter 1/2. Then GX
and EX are symmetric and distinguishing, so by Lemma 2.10 the respective distances induced by GX and EX
are jointly convex metrics called the subgaussian distance and subexponential distance respectively and are
denoted as dG(P,Q) and dE(P,Q).

Remark 4.5. We choose subgaussian parameter 1/2 in Definition 4.4 as by Hoeffding’s lemma, all functions
f : {0, 1}m → [0, 1] have that f(Um)− E[f(Um)] is subgaussian with parameter 1/2, so this choice preserves
the same “scale” as total variation distance. However, the choice of parameter is essentially irrelevant by
linearity, as different choices of parameter simply scale the metric dG .

Note that absolute averaging samplers for G{0,1}m from Definition 3.6 are exactly subgaussian samplers as
defined in the introduction. Thus, by Remark 3.7 and Theorem 3.8, to construct subgaussian samplers it is
enough to construct extractors for the subgaussian distance dG .

4.1 Composition
Unfortunately, the subgaussian distance has a major disadvantage compared to total variation distance
that complicates extractor construction: it does not satisfy the data-processing inequality, that is, there are
probability distributions P and Q over a set A and a function f : A→ B such that

dG(f(P ), f(Q)) 6≤ dG(P,Q).

This happens because subgaussian distance is defined by functions which are required to be subgaussian only
with respect to the uniform distribution. A simple explicit counterexample comes from taking f : {0, 1}1 →
{0, 1}m defined by x 7→ (x, 0m−1) and taking P to be the point mass on 0 and Q the point mass on 1. Their
subgaussian distance in {0, 1}1 is obviously O(1), but the subgaussian distance of f(P ) and f(Q) in {0, 1}m
is Θ(

√
m).

The reason this matters because a standard operation (c.f. Nisan and Zuckerman [NZ96]; Goldreich
and Wigderson [GW97]; Reingold, Vadhan, and Wigderson [RVW00]) in the construction of samplers and
extractors for bounded functions is to do the following: given extractors

Extout : {0, 1}n × {0, 1}d → {0, 1}m

Extin : {0, 1}n
′
× {0, 1}d

′
→ {0, 1}d,

define Ext : {0, 1}n+n′ × {0, 1}d
′
→ {0, 1}m by

Ext
(
(x, y), s

)
= Extout

(
x,Extin(y, s)

)
.

The reason this works for total variation distance is exactly the data-processing inequality: if Y has enough
min-entropy given X, then Extin(Y, Ud′) will be close in total variation distance to Ud, and by the data-
processing inequality for total variation distance this closeness is not lost under the application of Extout.
The assumption that Y has min-entropy given X means that (X,Y ) is a so-called block-source, and is implied
by (X,Y ) having enough min-entropy as a joint distribution. From the sampler perspective, this construction
uses the inner sampler Extin to subsample the outer sampler. On the other hand, for subgaussian distance,
the distribution Extin(Y, Ud′) can be ε-close to uniform but still have some element with excess probability
mass Ω(ε/

√
d), and this element (seed) when mapped by Extout can retain2 this excess mass in {0, 1}m,

which results in subgaussian distance Θ(ε
√
m/d)� ε. Similarly, from the sampler perspective, even when the

outer sampler Extout is a good subgaussian sampler for {0, 1}m, there is no reason that a good subgaussian
sampler Extin for {0, 1}d the seeds of Extout will preserve the larger sampler property when m� d.

2Given a subgaussian extractor Ext with d ≥ log(m/ε), adding a single extra seed ∗ to Ext such that Ext(x, ∗) = 0m results
in a subgaussian extractor with error at most 2−d ·

√
2m + ε ≤ 3ε by convexity of dG and the fact that

∥∥dG{0,1}m

∥∥
∞

<
√

2m.
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Thus, since this composition operation is needed to construct high-min entropy extractors with the desired
seed length even for total variation distance, to construct such extractors for subgaussian distance we need to
bypass this barrier. The natural approach is to construct extractors for a better-behaved weak divergence
that bounds the subgaussian distance.
Remark 4.6. Similar reasoning shows that if Ext is a strong (k, ε) subgaussian extractor, then it is not
necessarily the case that the function (x, s) 7→ (s,Ext(x, s)) that prepends the seed to the output is a
(non-strong) (k, ε) subgaussian extractor (in contrast to extractors for total variation distance), though the
converse does hold.

4.2 Connections to other weak divergences
Therefore, to aid in extractor construction, we show how dG relates to other statistical weak divergences.

Most basically, the subgaussian distance over {0, 1}m differs from total variation distance up to a factor
of O(

√
m).

Lemma 4.7. Let P and Q be distributions on {0, 1}m. Then

dTV (P,Q) ≤ dG(P,Q) ≤
√

2 ln 2 ·m · dTV (P,Q)

Proof. That dTV ≤ dG is immediate from Hoeffding’s lemma and the discussion in Remark 4.5. The reverse
bound holds since any subgaussian function takes values at most

√
ln 2/2 ·m away from the mean by the

tail bounds from part 3 of Lemma 4.3, and so any subgaussian test function f has the property that
1/2 + f/

√
2 ln 2 ·m is [0, 1]-valued and thus lower bounds the total variation distance.

While this allows constructing subgaussian extractors and samplers from total variation extractors, as
discussed in the introduction the fact that the upper bound depends on m leads to suboptimal bounds. By
starting with a stronger measure of error, we pay a much smaller penalty.

Lemma 4.8. Let P and Q be distributions on {0, 1}m. Then for every α > 0

2dTV (P,Q) = d`1(P,Q) ≤ 2mα/(1+α) · d`1+α(P,Q)

dG(P,Q) ≤ 2mα/(1+α)
√

1 + 1
α
· d`1+α(P,Q)

In particular, that there is only an additional
√

1 + 1/α factor when moving to subgaussian distance
compared to total variation, which in particular does not depend on m and is constant for constant α.

Proof. By Proposition 2.11, for any function f : {0, 1}m → R it holds that

D{f}(P ‖ Q) ≤ ‖f(Um)‖1+ 1
α
· dM1+ 1

α

(P,Q) = ‖f(Um)‖1+ 1
α
· 2mα/(1+α) · d`1+α(P,Q).

The result follows since [−1, 1]-valued functions f satisfy moment bounds ‖f(Um)‖q ≤ 1 for all q ≥ 1, and
functions f which are subgaussian satisfy moment bounds ‖f(Um)‖q ≤

√
q by Lemma 4.3.

One downside of starting with bounds on `1+α is that, extending a result of Vadhan [Vad12, Problem
6.4], we show in Corollary 5.30 that for every 1 > α > 0, there is a constant cα > 0 such any `1+α extractor
with error smaller than cα · 2−mα/(1+α) requires seed length linear in α ·min(n− k,m), for n− k the entropy
deficiency and m the output length. One might hope that sending α to 0 would eliminate this linear lower
bound but still bound the subgaussian distance, but phrased this way sending α to 0 just results in a total
variation extractor.

However, with a shift in perspective essentially the same approach works: by Example 2.4, d`2(P,Um) ≤
ε · 2−m/2 implies D2(P ‖ Um) ≤ ε2/ ln 2, and there is an analogous linear seed length lower bound on constant
error D1+α extractors for every α > 0. In this case, however, sending α to 0 results in the KL divergence,
which does upper bound the subgaussian distance, and in fact with the same parameters as for total variation
distance.
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Lemma 4.9. Let P and Q be distributions on {0, 1}m. Then

dG(P,Um) ≤
√

ln 2
2 ·KL(P ‖ Um)

dE(P,Um) ≤
{√

ln 2
2 ·KL(P ‖ Um) if KL(P ‖ Um) ≤ 1

2 ln 2
ln 2
2 ·KL(P ‖ Um) + 1

4 if KL(P ‖ Um) > 1
2 ln 2

where these bounds are concave in KL(P ‖ Um). In the reverse direction, it holds that

KL(P ‖ Um) ≤ m · dTV (P,Um) + h(dTV (P,Um))

where h(x) = x log(1/x) + (1− x) log(1/(1− x)) is the (concave) binary entropy function.

Proof. The upper bound on subgaussian distance follows from a general form of Pinsker’s inequality as in
[BLM13, Lemma 4.18], but for the extension to subexponential functions we reproduce its proof here, based
on the Donsker–Varadhan “variational” formulation of KL divergence [DV76] (c.f. [BLM13, Corollary 4.15])

KL(P ‖ Um) = 1
ln 2 · sup

g:{0,1}m→R

(
E[g(P )]− logE

[
eg(Um)

])
.

Now if f : {0, 1}m → R satisfies E[f(Um)] = 0, then by letting g(x) = t · f(x), this implies

E[f(P )]− E[f(Um)] = 1
t
· E[g(P )] ≤

ln 2 ·KL(P ‖ Um) + logE
[
et·f(Um)]

t

for all t > 0. Thus, when E
[
et·f(Um)] ≤ t2/8, we have E[f(P )]− E[f(Um)] ≤ ln 2 ·KL(P ‖ Um)/t+ t/8.

Then since subgaussian random variables satisfy such a bound for all t, we can make the optimal choice
t =

√
8 ln 2 ·KL(P ‖ Um) to get the claimed bound on dG . For subexponential random variables, which

satisfy such a bound only for |t| ≤ 2, we choose t = min(
√

8 ln 2 ·KL(P ‖ Um), 2), which gives

dE(P,Um) ≤
{√

ln 2
2 ·KL(P ‖ Um) if KL(P ‖ Um) ≤ 1

2 ln 2
ln 2
2 ·KL(P ‖ Um) + 1

4 if KL(P ‖ Um) > 1
2 ln 2

as desired. The concavity of this bound follows by noting that it has a continuous and nonincreasing derivative.
For the reverse inequality, we use a bound on the difference in entropy between distributions P and Q on

a set of size S which states

|H(P )−H(Q)| ≤ lg(S − 1) · dTV (P,Q) + h(dTV (P,Q)).

This inequality is a simple consequence of Fano’s inequality as noted by Goldreich and Vadhan [GV99, Fact B.1],
and implies the desired result by taking Q = Um as KL(P ‖ Um) = H(Um)−H(P ) and |{0, 1}m| = 2m.

Remark 4.10. There are sharper upper bounds on the KL divergence than given in Lemma 4.9, such as the
bound of Audenaert and Eisert [AE05, Theorem 6], but the bound we use has the advantage of being defined
for the entire range of the total variation distance and being everywhere concave.

5 Extractors for KL divergence
By Lemma 4.9, the subgaussian distance can be bounded in terms of the KL divergence to uniform, so by the
following easy lemma to construct subgaussian extractors it suffices to construct extractors for KL divergence.

Lemma 5.1. Let V1 and V2 be weak divergences on the set {0, 1}m and f : R→ R be a function such that
V1(P ‖ UM ) ≤ f(V2(P ‖ Um)) for all distributions P on {0, 1}m. Then if f is increasing on (0, ε), every
(k, ε) extractor Ext for V1 is also a (k, f(ε))-extractor for V2, and if f is also concave, then if Ext is strong
or average-case as a V1-extractor, it has the same properties as a (k, f(ε)) extractor for V2.
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Importantly, the KL divergence does not have the flaws of subgaussian distance discussed in Section 4.1.
The classic data-processing inequality says that KL divergence is non-increasing under postprocessing by
(possibly randomized) functions, and the chain rule for KL divergence says that

KL(A,B ‖ X,Y ) = KL(A ‖ X) + E
a∼A

[KL(B|A=a ‖ Y |X=a)]

for all distributions A, B, X, and Y , so that in particular

E
s∼Ud

[KL(Ext(X, s) ‖ Um)] = KL(Ud,Ext(X,Ud) ‖ Ud, Um)

and prepending the seed of a strong KL-extractor does in fact give a non-strong KL-extractor:

Lemma 5.2. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε) strong KL-extractor (respectively
strong average-case KL-extractor) if and only if the function Ext′ : {0, 1}n × {0, 1}d → {0, 1}d+m defined by
Ext′(x, s) = (s,Ext(x, s)) is a (non-strong) (k, ε) KL-extractor (respectively average-case KL-extractor).

Furthermore, KL divergence satisfies a type of triangle inequality when combined with higher Rényi
divergences:

Lemma 5.3. Let P , Q, and R be distributions over a finite set X . Then for all α > 0, it holds that

KL(P ‖ R) ≤
(

1 + 1
α

)
·KL(P ‖ Q) + D1+α(Q ‖ R)

Proof. This follows from a characterization of Rényi divergence due to van Erven and Harremoës [vE10,
Lemma 6.6] [vEH14, Theorem 30] and Shayevitz [Sha11, Theorem 1], who prove that for for every positive
real β 6= 1 and distributions X and Y that

(1− β) Dβ(X ‖ Y ) = inf
Z

{
βKL(Z ‖ X) + (1− β) KL(Z ‖ Y )

}
.

In particular, choosing β = 1 + α, X = Q, and Y = R and upper bounding the infimum by the particular
choice of Z = P gives the claim.

5.1 Composition
These properties imply that composition does work as we want (without any loss depending on the output
length m) assuming we have extractors for KL and higher divergences.

Theorem 5.4 (Composition for high min-entropy Rényi entropy extractors, c.f. [GW97]). Suppose

1. Extout : {0, 1}n × {0, 1}d → {0, 1}m is an (n− log(1/δ), εout) extractor for D1+α with α > 0,

2. Extin : {0, 1}n
′
× {0, 1}d

′
→ {0, 1}d is an (n′ − log(1/δ), εin) average-case extractor for KL,

and define Ext : {0, 1}n+n′ × {0, 1}d
′
→ {0, 1}m by Ext

(
(x, y), s

)
= Extout(x,Extin(y, s)). Then Ext is a

(n+ n′ − log(1/δ), εout + (1 + 1/α) · εin) extractor for KL. Furthermore, if Extin is a strong average-case
KL-extractor, then Ext is a strong KL-extractor, and if Extout is average-case then so is Ext.

Proof. Let (Z,X, Y ) be jointly distributed random variables with X distributed over {0, 1}n and Y over
{0, 1}n

′
conditionally independent of X given Z such that H̃∞(X,Y |Z) ≥ n + n′ − log(1/δ). Let S′ be a

distribution over {0, 1}d
′
which is independent of X, Y , and Z. Then for every z ∈ Supp(Z), we have by
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Lemma 5.3 and the data-processing inequality for KL divergence that

KL(Ext((X|Z=z, Y |Z=z), S′) ‖ Um)
= KL(Extout(X|Z=z,Extin(Y |Z=z, S

′)) ‖ Um)
≤ (1 + 1/α) ·KL(Extout(X|Z=z,Extin(Y |Z=z, S

′)) ‖ Extout(X|Z=z, Ud))
+ D1+α(Extout(X|Z=z, Ud) ‖ Um)

≤ (1 + 1/α) ·KL(X|Z=z,Extin(Y |Z=z, S
′) ‖ X|Z=z, Ud) + D1+α(Extout(X|Z=z, Ud) ‖ Um)

= (1 + 1/α) · E
x∼X|Z=z

[KL(Extin(Y |X=x,Z=z, S
′) ‖ Ud)] + D1+α(Extout(X|Z=z, Ud) ‖ Um)

where the last equality follows from the chain rule for KL divergence. Now by standard properties of
conditional min-entropy (see for example [DORS08, Lemma 2.2]), we know that H̃∞(X|Z) ≥ H̃∞(X,Y |Z)−
log|Supp(Y )| ≥ n− log(1/δ) and H̃∞(Y |X,Z) ≥ H̃∞(X,Y |Z)− log|Supp(X)| ≥ n′ − log(1/δ).

If Extout is not average-case, take Z to be a constant independent of X and Y , and if Extout is average-case
then take the average of both sides over Z. The claim for non-strong Extin then follows by taking S′ = Ud
which bounds the first term by (1 + 1/α) · εin and the second by εout. The claim for strong Extin follows by
choosing S′ = U{s} to be the point mass on s ∈ {0, 1}d and then taking the expectation of both sides over a
uniform s ∈ {0, 1}d.

Remark 5.5. Theorem 5.4 in fact a construction of a block-source KL-extractor, meaning that the claimed error
bounds hold for any joint distributions (X,Y ) such that H∞(Y ) ≥ n′− log(1/δ) and H̃∞(X|Y ) ≥ n− log(1/δ)
rather than just those distributions with H∞(X,Y ) ≥ n + n′ − log(1/δ). The extra log(1/δ) entropy loss
inherent in the non-block analysis is why Reingold, Wigderson, and Vadhan [RVW00] introduced the zig-zag
product for extractors, which we will apply for KL-extractors in Corollary 5.20.

5.2 Existing explicit constructions
The construction of Theorem 5.4 required both a D1+α-extractor and an average-case KL-extractor, so for the
result not to be vacuous we need to show the existence of such extractors. Thankfully, Example 2.4 implies
that extractors for `2 are also extractors for D2, so we can use existing `2 extractors from the literature, such
as the Leftover Hash Lemma of Impagliazzo, Levin, and Luby [ILL89] (see also [McI87, BBR88]) and its
variant using almost-universal hash functions due to Srinivasan and Zuckerman [SZ99].

Proposition 5.6 ([McI87, BBR88, ILL89, IZ89, SZ99, DORS08]). Let H be a collection of ε-almost universal
hash functions from the set {0, 1}n to the set {0, 1}m, meaning that for all x 6= y ∈ {0, 1}n it holds
that Prh∼H[h(x) = h(y)] ≤ (1 + ε)/2m. Then the function Ext : {0, 1}n × H → H × {0, 1}m defined by
Ext(x, h) = (h, h(x)) is an average-case (m+ log(1/ε), 2/ ln 2 · ε) D2-extractor.

In particular, for every k, n ∈ N and 1 > ε > 0 there is an explicit strong average-case (k, ε) extractor for
D2 (and KL) with seed length d = O(k + log(n/ε)) and m = k − log(1/ε)−O(1), given by Ext′(x, h) = h(x)
for h drawn from an appropriate almost-universal hash family.

Proof. The D2 claim is implicit in Rackoff’s proof of the Leftover Hash Lemma (see [IZ89]) and Srinivasan
and Zuckerman’s proof of the claim for total variation [SZ99], which both analyzed the collision probability
of the output, and the average-case claim was proved by Dodis, Ostrovsky, Reyzin, and Smith [DORS08],
though we include a proof here for completeness.

Given a joint distribution (Z,X) such that X is distributed over {0, 1}n with H̃∞(X|Z) ≥ m+ log(1/ε),
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we have

E
z∼Z

[D2(Ext(X|Z=z,H) ‖ H × Um)]

= E
z∼Z

[
log
(

2m · |H| · Pr
h,h′∼H,x,x′∼X|Z=z

[(h, h(x)) = (h′, h′(x′))]
)]

= E
z∼Z

[
log
(

2m · Pr
h∼H,x,x′∼X|Z=z

[
x = x′ ∨

(
x 6= x′ ∧ h(x) = h(x′)

)])]
≤ E
z∼Z

[
log
(

2m ·
(

2−H∞(X|Z=z) + 1 + ε

2m

))]
≤ log

(
E
z∼Z

[
2m−H∞(X|Z=z)

]
+ 1 + ε

)
(by Jensen’s inequality)

= log
(

2m−H̃∞(X|Z) + 1 + ε
)
≤ log(1 + 2ε) ≤ 2

ln 2 · ε.

The in particular statement follows from Lemma 5.7 below and from the existence of ε-almost universal hash
families with size poly(2k, n, 1/ε) as constructed by [SZ99].

To establish the claim about strong extractors, we generalize Lemma 5.2 to extractors for D1+α for α > 0:

Lemma 5.7. If Ext : {0, 1}n×{0, 1}d → {0, 1}d×{0, 1}m is a (k, ε) D1+α-extractor (respectively average-case
D1+α-extractor) for α > 0 such that Ext(x, s) = (s,Ext′(x, s)), then Ext′ is a strong (k, ε) D1+α-extractor
(respectively strong average-case (k, ε) D1+α-extractor).

Proof.

E
s∼Ud

[
D1+α

(
Ext′(X, s)

∥∥ Um)] = E
s∼Ud

 1
α

log

1 + 2mα
∑

y∈{0,1}m
Pr
[
Ext′(X, s) = y

]1+α


≤ 1
α

log

1 + 2mα E
s∼Ud

 ∑
y∈{0,1}m

Pr
[
Ext′(X, s) = y

]1+α


= 1
α

log

1 + 2α(m+d)
∑

(s,y)∈{0,1}d+m

Pr
[
(Ud,Ext′(X,Ud)) = (s, y)

]1+α


= D1+α(Ext(X,Ud) ‖ Ud, Um)

Following Vadhan [Vad12], we also note that the extractor based on expander walks due to Goldreich
and Wigderson [GW97], which has the nice property that its seed length depends only on n− k the entropy
deficiency of the source rather than n itself, is also an `2 extractor.

Proposition 5.8 ([GW97] [Vad12, Discussion after Theorem 6.22]). For all k ≤ n ∈ N and 1 ≥ ε > 0
there is an explicit average-case (k, ε/ ln 2) D2-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with seed length
d = O(n− k + log(1/ε)) and output length m = n.

Furthermore, Ext has the property that the function (x, s) 7→ (s,Ext(x, s)) is an injection out of {0, 1}n ×
{0, 1}d.

Proof. We sketch the proof for completeness. First, recall from Example 2.4 that for every distribution P
that D2(P ‖ Um) = log

(
1 + 2md`2(P,Um)2) ≤ 2md`2(P,Um)2/ ln 2, so it suffices to construct a (k,

√
ε/2m/2)

`2-extractor.
Let G be an undirected g-regular graph on {0, 1}n with transition matrixM = 1

gA where A is the adjacency
matrix of G, and let 1 = λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 be the spectrum of M . Then if λ = max{λ2,−λn} we
know that for every distribution D on {0, 1}n, the `2 distance between D and uniform decreases by a factor of
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λ after one random step on G. Hence, since every distribution X on {0, 1}n with H∞(X) ≥ k has `2 distance
from uniform at most

√
2−k − 2−n ≤ 2−k/2, a walk of length logλ

(√
ε · 2−n/2

/
2−k/2

)
suffices to reduces the

`2 distance to uniform to
√
ε · 2−n/2, which takes d random bits for

d = log g · logλ
√
ε · 2−n/2

2−k/2
= (n− k + log(1/ε)) · log g

log(1/λ2) .

Hence, we need G on {0, 1}n such that log g/ log(1/λ2) is constant: for this, we can take G to be the explicit
constant degree expander of Margulis–Gabber–Galil [Mar73, GG81] (technically this requires n even, which
following Goldreich [Gol11a] we can solve when n is odd by joining two graphs on {0, 1}n−1 by the canonical
perfect matching, and we can add self-loops to ensure the degree is a power of 2). This graph has the
property that edges are labelled by invertible transformations on the vertex set. Hence, given s and an output
vertex v = Ext(x, s), we can recover the input x by walking back from v according to the inverses of the
transformations associated to the path s, and thus (x, s) 7→ (s,Ext(x, s)) is injective as desired.

The average-case claim holds since we have in fact shown that for any distribution Y on {0, 1}n that
D2(Ext(Y,Ud) ‖ Um) ≤ ε · 2k−H∞(Y )/ ln 2, so for a joint distribution (Z,X) with H̃∞(X|Z) ≥ k, letting
Y = X|Z=z and taking the expectation over Z finishes the proof.

Remark 5.9. The fact that (s,Ext(x, s)) is an injection implies that, unlike for the extractors from hashing of
Proposition 5.6, the result of prepending the seed to the output of the expander-walk extractor does not give
a D2 extractor. However, it will be very useful in concert with Reingold, Vadhan, and Wigderson’s zig-zag
product for extractors [RVW00] to avoid the entropy loss in Theorem 5.4.
Remark 5.10. Given suitable explicit constructions of Ramanujan graphs (or just with λ = O(1/√g)), one
can take the seed length to be d = (n− k + log(1/ε))(1 + O(log−1 t)) which for t = 2Ω(n−k+log(1/ε)) is
n− k + log(1/ε) +O(1). Furthermore, such graphs give a (k, ε) D2-extractor (and thus KL-extractor) with
seed length n− k + log(1/ε) +O(1) and entropy loss log(1/ε) +O(1), which has optimal dependence on ε as
we show in Theorem 5.27.

Because Proposition 5.8 has seed length depending only on n− k the entropy deficiency of the source
rather than n itself, when written as a high min-entropy extractor it has the appealing property that given
an entropy deficiency ∆ and error ε there is a single seed length d that works for all input lengths.

Corollary 5.11. There is a universal constant C > 0 such that for every 1 > ε > 0, ∆ > 0, and n ∈ N there
is an explicit (n −∆, ε) D2-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}n with d = dC · (∆ + log(1/ε))e such
that the function (x, s) 7→ (s,Ext(x, s)) is an injection.

Remark 5.12. In particular, for ∆, ε fixed, one can take n in Corollary 5.11 depending on d.
We argued that the above extractors are KL-extractors using the fact they are `2 (and thus D2) extractors,

but one can also show that any total variation extractor with sufficiently small error is a KL-extractor, albeit
with some loss of parameters.

Lemma 5.13. For every (k, ε) extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m for total variation distance such
that ε ≤ 1/2, Ext is also a (k,m · ε+ h(ε))-KL-extractor, where h(x) = x log(1/x) + (1− x) log(1/(1− x)) is
the binary entropy function. Furthermore, if Ext is strong, average-case, or both as a total variation extractor,
then it has the same properties as a KL-extractor.

In particular, if ε′ = min(ε,1/2)
48(m+log(1/ε)) , then every (k, ε′) extractor (respectively strong extractor) is an

average-case (k, ε) KL-extractor (respectively strong average-case (k, ε) KL-extractor).

Proof. The main claim is an immediate corollary of Lemmas 4.9 and 5.1. The in particular statement
follows since Ext being a (k, ε′) extractor (respectively strong extractor) implies by Theorem 3.12 that it
is a (k, 3ε′) average-case (respectively strong average-case) extractor, so since we have chosen ε′ to make
m · 3ε′ + h(3ε′) ≤ ε, we know Ext is an average-case (k, ε) KL-extractor (respectively strong average-case
KL-extractor).
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Remark 5.14. Reducing ε by a factor of m+ log(1/ε) increases the seed length and entropy loss of the input
extractor. For the former, this is often (but not always) tolerable since the input extractor may already
depend suboptimally on log(n/ε). For the latter, we will show in Corollary 5.22 how to use the transform of
Raz, Reingold, and Vadhan [RRV02] to recover O(log(m/ε)) bits of lost entropy (at least this much must be
lost by Radhakrishnan and Ta-Shma [RT00]) at a cost of O(log(n/ε)) in the seed length.

Instantiating Lemma 5.13 with the Guruswami–Umans–Vadhan [GUV09] extractor for total variation
distance, we see that the increased seed length and entropy loss are simply absorbed into the existing hidden
constants:

Theorem 5.15 (KL-analogue of [GUV09, Theorem 1.5]). For every n ∈ N, k ≤ n, and 1 > α, ε > 0, there is
an explicit average-case (respectively strong average-case) (k, ε) KL-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m
with d ≤ lgn+Oα(lg(k/ε)) and m ≥ (1− α)k (respectively m ≥ (1− α)k −Oα(log(n/ε))).

5.3 Reducing the entropy loss of KL-extractors
In this section, we show how to avoid the entropy loss inherent in Theorem 5.4 using the zig-zag product for
extractors, introduced by Reingold, Vadhan, and Wigderson [RVW00]. This product combines a technique
of Raz and Reingold [RR99] to preserve entropy and the method of Wigderson and Zuckerman [WZ99] to
extract entropy left over in a source after an initial extraction, and we show that these techniques extend to
the setting of KL-extractors. Furthermore, these techniques (along with the Leftover Hash Lemma) are also
the key to the transformation of Raz, Reingold, and Vadhan [RRV02] to convert an arbitrary extractor into
one with optimal entropy loss, so we show that this transformation works for KL-extractors as well.

For all of these results, the key is the following lemma:

Lemma 5.16 (Re-extraction from leftovers). Let

1. Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 be a (k1, ε1) KL-extractor,

2. W1 : {0, 1}n × {0, 1}d1 → {0, 1}w be a function such that (Ext1,W1) : {0, 1}n × {0, 1}d1 → {0, 1}m1 ×
{0, 1}w is an injective map,

3. Ext2 : {0, 1}w × {0, 1}d2 → {0, 1}m2 be a (k2, ε2) average-case KL-extractor for k2 ≤ k1 + d1 −m1.

Then Ext : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 defined by Ext
(
x, (s, t)

)
=
(
Ext1(x, s),Ext2

(
W1(x, s), t

))
is

a (k1, ε1 + ε2) KL-extractor. Furthermore, if Ext1 is average-case then so is Ext.

Remark 5.17. The pair (Ext1,W1) is a special case of what Raz and Reingold [RR99] called an extractor-
condenser pair. One can think of W1 as preserving “leftovers” or “waste,” which is then “re-extracted” or
“recycled” by Ext2. The identity function on {0, 1}n×{0, 1}d1 is a valid choice of W1, but the advantage of the
more general formulation is that w can be much smaller than n+ d1, and most known explicit constructions
of extractors have seed length depending on the input length of the source.

Proof. Given any joint distribution (Z,X) such that X is distributed over {0, 1}n and H̃∞(X|Z) ≥ k1, we
have for every z ∈ Supp(Z) that

KL(Ext(X|Z=z, (Ud1 , Ud2)) ‖ Um1+m2)
= KL

(
Ext1(X|Z=z, Ud1),Ext2

(
W1(X|Z=z, Ud1), Ud2

) ∥∥ Um1 , Um2

)
= KL(Ext1(X|Z=z, Ud1) ‖ Um1)

+ E
o1∼Ext1(X|Z=z,s)

[
KL
(

Ext2

(
W1(X,Ud1)|Z=z,Ext1(X,Ud1 )=o1 , Ud2

) ∥∥∥ Um2

)]
(5.17.1)
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where the last line follows from the chain rule for KL divergence. Note that

H̃∞
(

W1
(
X,Ud1

) ∣∣∣ Z,Ext1
(
X,Ud1

))
= H̃∞

(
Ext1

(
X,Ud1

)
,W1

(
X,Ud1

) ∣∣∣ Z,Ext1
(
X,Ud1

))
= H̃∞

(
X,Ud1

∣∣∣ Z,Ext1
(
X,Ud1

))
((Ext1,W1) is an injection)

≥ H̃∞(X,Ud1 | Z)− log
∣∣Supp

(
Ext1

(
X,Ud1

))∣∣ (*)
= H̃∞(X | Z) + H∞(Ud1)− log

∣∣Supp
(
Ext1

(
X,Ud1

))∣∣ (by independence)
≥ k1 + d1 −m1 ≥ k2

where the line (*) follows from standard properties of conditional min-entropy (e.g. [DORS08, Lemma 2.2]).
That Ext is a (k1, ε1 + ε2) KL-extractor now follows immediately from Eq. (5.17.1) by taking Z independent
of X, and the average-case claim follows from taking expectations over z ∼ Z.

Remark 5.18. The proof above in fact works any weak divergence D such that D(X,Y ‖ Um1 , Um2) ≤
D(X ‖ Um1) + Ex∼X [D(Y |X=x ‖ Um2)] for all joint distributions (X,Y ) independent of (Um1 , Um2). In
particular, the proof also gives Lemma 5.16 for standard (total variation) extractors.

By Lemma 5.2, we get an analogous result for strong KL-extractors.

Corollary 5.19. Let

1. Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m1 be a strong (k1, ε1) KL-extractor,

2. W1 : {0, 1}n × {0, 1}d1 → {0, 1}w be a function such that the map (x, s) 7→ (s,Ext1(x, s),W1(x, s)) is
an injection,

3. Ext2 : {0, 1}w × {0, 1}d2 → {0, 1}m2 be a (k2, ε2) strong average-case KL-extractor for k2 ≤ k1 −m1.

Then Ext : {0, 1}n × {0, 1}d1+d2 → {0, 1}m1+m2 defined by Ext
(
x, (s, t)

)
=
(
Ext1(x, s),Ext2

(
W1(x, s), t

))
is

a strong (k1, ε1 + ε2) KL-extractor. Furthermore, if Ext1 is average-case then so is Ext.

The zig-zag product for extractors due to Reingold, Vadhan, and Wigderson [RVW00] (in the special
case of injective (Ext,W)-pairs) is an immediate consequence of Lemma 5.16 and Theorem 5.4 our basic
composition result. Recall that Theorem 5.4 was able to combine an “outer” extractor, generally taken to
have seed length depending only (but linearly) on n− k, with an “inner” extractor to produce seeds for the
outer extractor with logarithmic seed length. However, as discussed in Remark 5.5 that basic composition
necessarily lost log(1/δ) bits of entropy, so the zig-zag product uses Lemma 5.16 to recover this entropy, using
an (Ext,W)-pair to ensure that the re-extraction adds additional seed length depending logarithmically on
n− k rather than n.

Corollary 5.20 (Zig-zag product for KL-extractors, analogous to [RVW00, Theorem 3.6]). Let

1. Extout : {0, 1}n × {0, 1}d → {0, 1}m be an (n− log(1/δ), εout) extractor for D1+α with α > 0,

2. Wout : {0, 1}n × {0, 1}d → {0, 1}w be a function such that the pair (Extout,Wout) is an injection from
{0, 1}n × {0, 1}d,

3. Extin : {0, 1}n
′
× {0, 1}d

′
→ {0, 1}d be an (n′ − log(1/δ), εin) average-case KL-extractor,

4. Win : {0, 1}n
′
× {0, 1}d

′
→ {0, 1}w

′
be such that the pair (Extin,Win) is an injection from {0, 1}n

′
×

{0, 1}d
′
,

5. Extwaste : {0, 1}w+w′ × {0, 1}d
′′
→ {0, 1}m

′′
be an average-case (n + n′ − log(1/δ) − m, εwaste) KL-

extractor,
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and define

1. Extcomp : {0, 1}n+n′ × {0, 1}d
′
→ {0, 1}m by Extcomp

(
(x, y), s

)
= Extout

(
x,Extin(y, s)

)
as in Theo-

rem 5.4,

2. Wcomp : {0, 1}n+n′ × {0, 1}d
′
→ {0, 1}w+w′ by Wcomp((x, y), s) = (Wout(x,Extin(y, s)),Win(y, s)),

3. Ext : {0, 1}n+n′ × {0, 1}d
′+d′′ → {0, 1}m+m′′ by

Ext
(
(x, y), (s, t)

)
=
(

Extcomp
(
(x, y), s

)
,Extwaste

(
Wcomp

(
(x, y), s

)
, t
))

as in Lemma 5.16.

Then Ext is an (n+ n′ − log(1/δ), εout + (1 + 1/α) · εin + εwaste)-extractor for KL. Furthermore, if Extin
and Extwaste are strong average-case KL-extractors, then Ext is a strong KL-extractor, and if Extout is
average-case then so is Ext.

Proof. We claim that Wcomp is such that (Extcomp,Wcomp) is an injection: by assumption on (Extout,Wout)
we have that given Extout(x,Extin(y, s)) and Wout(x,Extin(y, s)) we can recover x and Extin(y, s), and by
assumption on (Extin,Win) given Extin(y, s) and Win(y, s) we can recover (y, s), so that (Extcomp,Wcomp)
has an inverse and is injective as desired. Therefore, since Theorem 5.4 implies Extcomp is an (n + n′ −
log(1/δ), εout + (1 + 1/α) · εin) KL-extractor, the result follows from Lemma 5.16. The furthermore claims
follow from the corresponding claims of these lemmas (and Corollary 5.19 for the strong case).

Remark 5.21. Corollary 5.20 was presented by Reingold, Vadhan, and Wigderson [RVW00] as a transformation
that combined three extractor-condenser pairs into a new extractor-condenser pair. We do not use this
generality, so for simplicity we do not present it here, but both Lemma 5.16 and Corollary 5.20 can be easily
extended in this manner if required.

The Raz–Reingold–Vadhan [RRV02] transformation to avoid entropy loss follows similarly using the
Leftover Hash Lemma (Proposition 5.6).

Corollary 5.22 (KL-extractor analogue of [RRV02, Lemma 28]). Let Ext1 : {0, 1}n×{0, 1}d1 → {0, 1}m1 be
a strong (k, ε/2) KL-extractor with entropy loss ∆1, meaning m1 = k−∆1. Then for every dextra ≤ ∆1 there
is an explicit (k, ε) strong KL-extractor Ext : {0, 1}n×{0, 1}d

′
→ {0, 1}m

′
with seed length d′ = d1 +O(dextra+

log(n/ε)) and entropy loss ∆1 − dextra + log(1/ε)−O(1), meaning m′ = k− (∆1 − dextra)− log(1/ε) +O(1),
which is computable in polynomial time making one oracle call to Ext1. Furthermore, if Ext1 is average-case
then so is Ext.

In particular, by taking dextra = ∆1 we get an extractor with optimal entropy loss log(1/ε) + O(1) by
paying an additional O(∆ + log(n/ε)) in seed length.

Proof. Let W1 : {0, 1}n × {0, 1}d1 → {0, 1}n be given by W1(x, s) = x, and let Ext2 : {0, 1}n × {0, 1}d2 →
{0, 1}m2 be the strong average-case (dextra, ε/2) KL-extractor of Proposition 5.6 using almost-universal hash
functions, so that d2 = O(dextra + log(n/ε)) and m2 = dextra − log(1/ε) − O(1). The result follows from
taking Ext to be the extractor of Corollary 5.19.

Remark 5.23. An analogous versions of the above claim for non-strong KL-extractors follows by taking
W1(x, s) = (x, s) and using Lemma 5.16.

We can apply Corollary 5.22 to Theorem 5.15 the KL-extractors from the total variation extractors of
Guruswami, Umans, and Vadhan [GUV09], thereby avoiding the extra O(log(n/ε)) entropy loss in the strong
extractors.

Corollary 5.24. For every n ∈ N, 1 > α, ε > 0, and k, k′ ≥ 0 with k + k′ ≤ n, there is an explicit strong
average-case (k + k′, ε) KL-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with d ≤ Oα(log(n/ε)) + O(k′) and
m ≥ (1− α)k + k′ − log(1/ε)−O(1).
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5.4 Lower bounds
In this section, we give lower bounds on extractors for the Rényi divergences Dβ of all orders, including the
special case β = 1 of KL-extractors. A reader primarily interested in explicit constructions of subgaussian
samplers can skip to Section 6.

For Rényi divergences Dβ with β ≤ 1 we reduce to Radhakrishnan and Ta-Shma’s [RT00] lower bounds
for total variation extractors and dispersers, which can be understood as a one-sided relaxation of total
variation extractors.

Definition 5.25 (Sipser [Sip88], Cohen and Wigderson [CW89]). A function Disp : {0, 1}n × {0, 1}d →
{0, 1}m is a (k, ε) disperser if for all random variables X over {0, 1}n with H∞(X) ≥ k, it holds that
|Supp(Disp(X,Ud))| ≥ (1− ε)2m.

Dispersers are of interest in the context of Rényi extractors because the Rényi 0-entropy of a random
variable is the logarithm of its support size (see Example 2.4), and hence dispersers are equivalent to
D0-extractors:

Lemma 5.26. Disp is a (k, ε) disperser if and only if Disp is a
(
k, log

(
1/(1− ε)

))
D0-extractor.

Given Lemma 5.26, we can use the Radhakrishnan and Ta-Shma [RT00] lower bounds to give an optimal
lower bound on the seed length of Dβ-extractors for β ≤ 1 in terms of the error ε, input length n and
supported entropy k (we will give a matching non-explicit upper bound in the next section), as well as lower
bounds on the entropy loss. For the case β = 1 of KL-extractors, the non-explicit upper bound (Theorem 5.31)
also shows that the entropy loss lower bound is optimal.

Theorem 5.27. Let 0 ≤ β ≤ 1 and Ext : {0, 1}n×{0, 1}d → {0, 1}m be a (k, ε) extractor for Dβ with k ≤ n−2,
d ≤ m− 1, and 22−m < ε < 1/4. Then d ≥ log(n− k) + log(1/ε)−O(1) and m ≤ k+ d− log log(1/ε) +O(1).
Furthermore, if ε is at most β/(2 ln 2) then m ≤ k + d− log(1/ε) + log(1/β) +O(1).

Proof. Since Dβ is nondecreasing in β we have that Ext is a (k, ε) extractor for D0, and thus by Lemma 5.26
it is a (k, 1 − 2−ε) disperser. Then the disperser seed length lower bound of Radhakrishnan and Ta-
Shma [RT00] tells us that d ≥ log(n − k) + log(1/(1 − 2−ε)) − O(1) ≥ log(n − k) + log(1/ε) − O(1) and
m ≤ k + d− log log(1/(1− 2−ε)) +O(1) ≤ k + d− log log(1/ε) +O(1).

For the other entropy loss lower bound, we use Gilardoni’s [Gil10] generalization of Pinsker’s inequality,
which shows in particular that dTV (P,Um) ≤

√
ln 2/(2β) ·Dβ(P ‖ Um). Thus, Ext is also a (k,

√
ε · ln 2/(2β))

total variation extractor, and if
√
ε · ln 2/(2β) ≤ 1/2 (equivalently ε ≤ β/(2 ln 2)) then the [RT00] total

variation extractor entropy loss lower bound implies that m ≤ k + d − 2 log(1/
√
ε · ln 2/(2β)) + O(1) ≤

k + d− log(1/ε) + log(1/β) +O(1).

Remark 5.28. For the case of 0 < β < 1, we do not know whether the entropy loss lower bound of Theorem 5.27
is tight.

It is well-known that `2-extractors (which are equivalent to D2-extractors by Example 2.4) require seed
length at least linear in min(n − k,m) (see e.g. [Vad12, Problem 6.4]). We generalize this to give a seed
length lower bound on Dβ extractors for all β > 1, in the regime of constant ε.

Theorem 5.29. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, 0.99) D1+α-extractor for α > 0. Then
d ≥ min

{
(n− k − 3) · α, (m− 2) · α/(α+ 1)

}
.

Proof. We follow the strategy suggested by Vadhan [Vad12, Problem 6.4], and view Ext as a bipartite
graph with N = {0, 1}n left-vertices, M = {0, 1}m right-vertices, and D = 2d edges per left-vertex given by
E = {(x ∈ {0, 1}n, y ∈ {0, 1}m) | ∃s ∈ {0, 1}d : Ext(x, s) = y}.

Assume for the sake of contradiction that d ≤ α/(α+1)·(m−2) and d ≤ α(n−k−3), so thatM ≥ 4D1+1/α

and N/(8D1/α) ≥ K. Now, we claim there exists a set T ⊆ {0, 1}m of size at most M/(2D1+1/α) such that
X = {x ∈ {0, 1}n | ∃s ∈ {0, 1}d s.t Ext(x, s) ∈ T} has size at least N/(8D1/α) ≥ K. This follows from the
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following iterative procedure: until |X| ≥ N/(8D1/α), choose the vertex y ∈ {0, 1}m of highest degree, add it
to T , and remove y and its neighbors from the graph (the neighbors go in X). Then at each step we will add
to X a number of vertices at least the average degree

(N − |X|) ·D
M − |T |

≥ (N −N/(8D1/α)) ·D
M

≥ ND

2M ,

so that the size of T will be at most
⌈
N/(8D1/α) · 2M/ND

⌉
=
⌈
M/(4D1+1/α)

⌉
≤M/(2D1+1/α) as desired.

Now, since X has size at least K and Ext is a (k, 0.99) D1+α-extractor, we have that

0.99 ≥ D1+α(Ext(UX , Ud) ‖ Um)

= 1
α

log

 ∑
y∈{0,1}m

Pr[Ext(UX , UD) = y]1+α

2−mα


≥ 1
α

log

Mα
∑
y∈T

Pr[Ext(UX , UD) = y]1+α


≥ 1
α

log

Mα · |T |−α ·

∑
y∈T

Pr[Ext(UX , Ud) = y]

1+α
 (By Hölder’s inequality)

≥ 1
α

log
(
Mα · (M/(2D1+1/α))−α · (1/D)1+α

)
= 1 (By definition of T )

which is a contradiction, as desired.

We can also use this lower bound to get a similar lower bound for d`1+α -extractors for all α > 0, though
in this case the lower bound applies up to an error threshold that depends on α.

Corollary 5.30. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a
(
k, εα · 2−mα/(1+α)) extractor for d`1+α where

α > 0 and εα = (2/3) · α/(α+ 1). Then d ≥ min
{

(n− k − 3) · α, (m− 2) · α/(α+ 1)
}
.

Proof. Note that the proof of Theorem 5.29 gave a lower bound on the sum
∑
y∈{0,1}m P

1+α
y where P =

Ext(UX , Ud), whereas d`1+α(P,Um)1+α =
∑
y∈{0,1}m |Py − 2−m|1+α. For `2 these can be related without any

loss, but in general we can use the triangle inequality to get

D1+α(P ‖ Um) ≤ 1
α
· log

(
2mα ·

(
d`1+α(P,Um) + 2−mα/(α+1)

)1+α
)

so that if d`1+α(P,Um) ≤ εα·2−mα/(1+α) where εα = (2/3)·α/(α+1) ≤ 20.99·α/(α+1)−1, then D1+α(P ‖ Um) ≤
0.99, and we conclude by Lemma 5.1 and Theorem 5.29.

5.5 Non-explicit construction
In this section, we show non-constructively the existence of KL-extractors matching the lower-bound of
Theorem 5.27 and in particular implying the optimal parameters of standard extractors for total variation
distance. Formally, we will prove:

Theorem 5.31. For every n ∈ N, k ≤ n, and 1 > ε > 0 there is an average-case (respectively strong average-
case) (k, ε) KL-extractor Ext : {0, 1}n×{0, 1}d → {0, 1}m with seed length d = log(n−k+1)+log(1/ε)+O(1)
and output length m = k + d− log(1/ε) +O(1) (respectively m = k − log(1/ε)−O(1)).

Remark 5.32. For ε� 1 the above parameters are not necessarily optimal, and it would be interested to get
matching upper and lower bounds in this regime of parameters.

24



We will prove Theorem 5.31 using the probabilistic method, analogously to Zuckerman [Zuc97] or
Radhakrishnan and Ta-Shma [RT00] for total variation extractors. However, rather than using Hoeffding’s
inequality, we use the following lemma:

Lemma 5.33. Let X be uniform over a subset of {0, 1}n of size K. Then if Ext : {0, 1}n×{0, 1}d → {0, 1}m
is a random function, it holds for every ε > 0 that

Pr
Ext

[
E

s∼Ud
[KL(Ext(X, s) ‖ Um)] > ε

]
≤ 2MD−KDε/3

where D = 2d and M = 2m.

Remark 5.34. For total variation extractors, the analogous bound is

Pr
Ext

[
dTV

(
(Ud,Ext(X,Ud)), (Ud, Um)

)
> ε
]
≤ 2MD−2KDε2/ ln 2.

One sees that the bounds are very similar, except the KL divergence version depends on ε rather than ε2.
For the regime where ε < 1 the linear dependence is preferable, and is responsible for the 1 · log(1/ε) seed
length for KL-extractors compared to the 2 · log(1/ε) seed length for total variation extractors.

Proof of Lemma 5.33. Note that for each s ∈ {0, 1}d and fixed Ext, the random variable Ext(X, s) is uniform
over the multiset {Ext(x, s) | x ∈ Supp(X)}. Hence, since Ext is a random function, this multiset is distributed
exactly as taking K iid uniform samples from {0, 1}m, so we wish to bound the KL divergence between this
empirical distribution and the true distribution. For this, the author [Agr19] gave the moment generating
function bound

E
Ext

[
2t·KL(Ext(X,s) ‖ Um)

]
≤
(

2t/K

1− t/K

)M−1

for every 0 ≤ t < K, which for t = K/3 is at most 2M . Then since Ext(X, s) is independent across s ∈ {0, 1}d,
we have

Pr
Ext

[
E

s∼Ud
[KL(Ext(X, s) ‖ Um)] > ε

]
= Pr

Ext

[
2K/3·

∑
s∈{0,1}d

KL(Ext(X,s) ‖ Um)
> 2K/3·Dε

]
≤ 2−KDε/3 ·

D∏
i=1

2M

We can now prove Theorem 5.31:

Proof of Theorem 5.31. We will show that a random function Ext : {0, 1}n × {0, 1}d → {0, 1}m is a strong
average-case (k, ε) KL-extractor with positive probability, the non-strong version then follows from Lemma 5.2.
By Lemma 3.13, it is enough to prove that Ext is a strong (k− t, 2t+1/3 · ε) KL-extractor for every t ≥ 0. To
reduce the range of t we need to consider, note that it suffices to be a (log

⌊
2k−t

⌋
, 2t+1/3 · ε) extractor for

every t ≥ 0, so that by rounding down it is enough to be a (k − t, 2t/3 · ε) strong KL-extractor for each t ≥ 0
such that 2k−t is an integer.

Now, consider a fixed t ≥ 0 such that 2k−t is an integer. Since the KL divergence is convex in its first
argument and all distributions of min-entropy at least k − t are convex combinations of “flat” distributions
which are uniform over a set of size 2k−t (Chor and Goldreich [CG88]), it suffices to analyze the behavior of
Ext on such distributions. Then for every subset X ⊆ {0, 1}n of size 2k−t, Lemma 5.33 tells us that

Pr
Ext

[
E

s∼Ud
[KL(Ext(UX , s) ‖ Um)] > 2t/3 · ε

]
≤ 2MD−2k−t·D·(2t/3·ε)/3 = 2MD−KDε/9
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where M = 2m, D = 2d, and K = 2k. There are
∑K
j=0

(
N
j

)
such subsets X of {0, 1}n for which we

simultaneously need to establish that Es∼Ud [KL(Ext(UX , s) ‖ Um)] ≤ 2t/3 · ε, so we have by a union bound
that the probability that Ext is not a strong average-case (k, ε) KL-extractor is at most

2MD−KDε/9 ·
K∑
j=0

(
N

j

)
≤ 2MD−KDε/9 ·

(
Ne

K

)K
= 2MD+K log(Ne/K)−KDε/9.

Hence, as long as

MD <
KDε

18 K log
(
Ne

K

)
<
KDε

18
m ≤ k − log(1/ε)−O(1) d ≥ log(n− k + 1) + log(1/ε) +O(1)

we know that a random function is a strong average-case (k, ε) KL-extractor with positive probability as
desired.

6 Constructions of subgaussian samplers
6.1 Subconstant ε and δ

The goal of this section is to establish the following theorem, which is our explicit construction of subgaussian
samplers with sample complexity having no dependence on m, and with randomness complexity and sample
complexity matching the best-known [0, 1]-valued sampler when ε and δ are subconstant (up to the hidden
polynomial in the sample complexity).

Theorem 6.1. For all m ∈ N, 1 > ε, δ > 0, and α > 0 there exists an explicit (δ, ε) absolute averaging
sampler (respectively strong absolute averaging sampler) for subgaussian and subexponential functions Samp :
{0, 1}n → ({0, 1}m)D with sample complexity D = poly(log(1/δ), 1/ε) and randomness complexity n =
m+ (1 + α) · log(1/δ) (respectively n = m+ (1 + α) · log(1/δ) + 2 log(1/ε) +O(1)).

We will use essentially the same construction used for bounded samplers in this regime, namely applying
the Reingold, Wigderson, and Vadhan [RVW00] zig-zag product for extractors to combine the expander
extractor of Goldreich and Wigderson [GW97] and an extractor with logarithmic seed length. However, as
described in detail in Section 4.1, even the basic composition used in this construction does not work for
general subgaussian extractors, so we will instead use the zig-zag product for KL-extractors (Corollary 5.20)
combining extractors for Rényi divergences, specifically the D2-extractor from Proposition 5.8 and the
KL-extractor from Corollary 5.24, to get the following high-entropy KL-extractor:

Theorem 6.2. For all integers m and 1 > α, δ, ε > 0 there is an explicit average-case (respectively strong
average-case) (k, ε) KL-extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with n = m + (1 + α) log(1/δ) − O(1)
(respectively n = m+ (1 + α) · log(1/δ) + log(1/ε) +O(1)), k = n− log(1/δ), and d = Oα(log(log(1/δ)/ε)).

Proof. We prove the claim for strong extractors, for the non-strong claim one can simply define Ext(x, (s, t)) =
Extstrong((x, t), s) where t has length log(1/ε) +O(1).

By Corollary 5.11, there is a universal constant C > 0 such that for dout = dC log(1/(δε))e ≤ C log(1/δ) +
C log(1/ε) + 1 there is an explicit average-case (nout − log(1/δ), ε/4) D2-extractor Extout : {0, 1}nout ×
{0, 1}dout → {0, 1}nout with nout = m − dout. Furthermore, Extout has the property that the function
Wout(x, s) = s is such that (Extout,Wout) is an injection.

Let k′in = C log(1/δ)/(1 − β), k′′in = (C + 1) log(1/ε) + O(1), and kin = k′in + k′′in for 0 < β < 1 some
parameter to be chosen later. Then by Corollary 5.24, there is an explicit (kin, ε/4) strong average-case KL-
extractor Extin : {0, 1}nin×{0, 1}din → {0, 1}min with nin = kin+log(1/δ), din = Oβ(log(nin/ε))+O(k′′in) =
Oβ(log(log(1/δ)/ε)), and mout = (1 − β)k′in + k′′in − log(1/ε) − O(1) = dout. Furthermore, the function
Win(x, s) = (x, s) is an injection.
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Furthermore, for kwaste = (nout + nin − log(1/δ))− nout = nin − log(1/δ) = kin = k′in + k′′in, by Corol-
lary 5.24 there is also an explicit (kwaste, ε/4) strong average-case KL-extractor Extwaste : {0, 1}dout+nin+din×
{0, 1}dwaste → {0, 1}mwaste such that mwaste = dout and dwaste = Oβ(log((dout + nin + din)/ε)) +O(k′′in) =
Oβ(log(log(1/δ)/ε)).

Then by the zig-zag product for KL-extractors (Corollary 5.20), there is an explicit (nout+nin−log(1/δ), ε)
strong average-case KL-extractor Ext : {0, 1}nout+nin × {0, 1}din+dwaste → {0, 1}nout+mwaste , where we have

nout + nin = (m− dout) +
((
C log(1/δ)/(1− β) + (C + 1) log(1/ε) +O(1)

)
+ log(1/δ)

)
≤ m+ log(1/δ) + log(1/ε) + log(1/δ) · C ·

(
1/(1− β)− 1

)
+O(1)

din + dwaste = Oβ(log(log(1/δ)/ε))
nout + nwaste = (m− dout) + dout = m.

Choosing β = α/(α+ C) ≤ α/(1 + C) so that C ·
(
1/(1− β)− 1

)
≤ α gives the claim.

We can now prove Theorem 6.1.

Proof of Theorem 6.1. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be the explicit
(
n− log

(
1/(δ/2)

)
, ε2) KL-

extractor (respectively strong KL-extractor) of Theorem 6.2, so that d = Oα(log log(1/δ)/ε) and n =
m+ (1 + α) log(1/δ) (respectively n = m+ (1 + α) log(1/δ) + 2 log(1/ε) +O(1)).

Then by Lemmas 4.9 and 5.1, Ext is also an
(
n− log

(
1/(δ/2)

)
, ε
)
dE -extractor (respectively strong

dE -extractor), so by Theorem 3.8 the function Samp : {0, 1}n × ({0, 1}m)D given by Samp(x)i = Ext(x, i) is
an explicit (δ/2, ε) sampler for E (respectively strong sampler for E), and thus by symmetry of E an explicit
(δ, ε) absolute subexponential sampler (respectively absolute strong subexponential sampler) as desired.

6.2 Constant δ
We also recall from the introduction that the pairwise independent sampler of Chor and Goldreich works for
subgaussian functions, and in fact the more general class of functions with bounded variance. The sampler
has exponentially worse dependence on δ than is necessary for subgaussian samplers but optimal randomness
complexity and dependence on ε, so this sampler is optimal for constant δ.

Theorem 6.3 ([CG89]). For all m ∈ N and 1 > ε, δ > 0 there is an explicit strong sampler Samp : {0, 1}n →
({0, 1}m)D for functions with bounded variance M2, with randomness complexity n = m + 2 log(1/ε) +
log(1/δ) +O(1) and sample complexity D = O

( 1
ε2δ

)
defined as Samp(h)d = h(d) where h is drawn at random

from a size 2n pairwise-independent hash family H of functions from [D]→ {0, 1}m.

Proof. The fact that pairwise independence gives rise to a strong bounded-variance sampler is immediate by
Chebyshev’s inequality. The existence of pairwise independent hash functions with the claimed parameters is
due to Chor and Goldreich [CG89], with similar constructions in the probability literature dating back to
Joffe [Jof71].

6.3 Non-explicit construction
Applying Lemmas 4.9 and 5.1 to Theorem 5.31 our non-explicit construction of KL-extractors gives:

Corollary 6.4. For every n ∈ N, k ≤ n, and 1 > ε > 0 there is an average-case (respectively strong
average-case) (k, ε) dE -extractor Ext : {0, 1}n ×{0, 1}d → {0, 1}m with d = log(n− k+ 1) + 2 log(1/ε) +O(1)
and m ≥ k + d− 2 log(1/ε)−O(1) (respectively m ≥ k − 2 log(1/ε)−O(1))

Since dE -extractors are also total variation extractors, Corollary 6.4 is optimal up to additive constants
by the lower bound of Radhakrishnan and Ta-Shma [RT00].

Using the fact that extractors are samplers (Theorem 3.8), we get
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Corollary 6.5. For every integer m and 1 > δ, ε > 0 there is a (δ, ε) sampler (respectively strong sampler)
Samp : {0, 1}n → ({0, 1}m)D for subgaussian and subexponential functions with sample complexity D =
O
(

log 1/δ
ε2

)
and randomness complexity n = m+log(1/δ)− log log(1/δ)+O(1) (respectively n = m+log(1/δ)+

2 log(1/ε) +O(1)).

Note that this matches the best-known (non-explicit) parameters of averaging samplers for [0, 1]-valued
functions due to Zuckerman [Zuc97].
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