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Abstract

This paper proves new limitations on the power of quantum computers to solve approzimate
counting—that is, multiplicatively estimating the size of a nonempty set S C [N].

Given only a membership oracle for S, it is well known that approximate counting takes
©(+/N/|S]) quantum queries. But what if a quantum algorithm is also given “QSamples”—i.e.,
copies of the state [S) = ), g |i)—or even the ability to apply reflections about |S)? Our
first main result is that, even then, the algorithm needs either @(\/ N/|S |) queries or else
@(min{|§’|1/3 AN/ |S|}> reflections or samples. We also give matching upper bounds.

We prove the lower bound using a novel generalization of the polynomial method of Beals
et al. to Laurent polynomials, which can have negative exponents. We lower-bound Laurent
polynomial degree using two methods: a new “explosion argument” that pits the positive- and
negative-degree parts of the polynomial against each other, and a new formulation of the dual
polynomials method.

Our second main result rules out the possibility of a black-box Quantum Merlin-Arthur (or
QMA) protocol for proving that a set is large. More precisely, we show that, even if Arthur can
make T quantum queries to the set S C [N], and also receives an m-qubit quantum witness from
Merlin in support of S being large, we have Tm = Q(min{|5\ N/ |S|}) This resolves the
open problem of giving an oracle separation between SBP, the complexity class that captures
approximate counting, and QMA.

Note that QMA is “stronger” than the queries+QSamples model in that Merlin’s witness can
be anything, rather than just the specific state |S), but also “weaker” in that Merlin’s witness
cannot be trusted. Intriguingly, Laurent polynomials also play a crucial role in our QMA lower
bound, but in a completely different manner than in the queries+QSamples lower bound. This
suggests that the “Laurent polynomial method” might be broadly useful in complexity theory.
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1 Introduction

The quantum query complexity of approrimate counting was one of the first topics studied in quantum
algorithms. Given a nonempty finite set S C [N] (here and throughout, [N] = {1,..., N}), suppose
we want to estimate its cardinality, |S|, to within some multiplicative accuracy . Approximate
counting is a fundamental task with a rich history in classical computer science, including the
work of Stockmeyer [Sto85], who showed that approximate counting is in the polynomial hierarchy,
and Sinclair and Jerrum [SJ89], who showed the equivalence between approximate counting and
approximate sampling that enabled the development of new algorithms using Markov chains.

In the query model (see [BAWO02]), we assume we are given a membership oracle for S: one that,
for any i € [N], returns whether i € S. How many queries must we make, as a function of both NV
and |S|, to solve approximate counting with high probability?

For classical randomized algorithms, one can show that ©(NN/|S|) membership queries are
necessary and sufficient, for approximate counting to within some constant accuracy € > 0. Moreover,
any accuracy ¢ is achievable at the cost of a O(1/¢?) multiplicative overhead. Intuitively, in the
worst case, we might need ©(N/|S|) queries just to find any elements from S, but once we do,
estimating their frequency is just a standard statistics problem. Furthermore, for the O(N/|S|)
estimation strategy to work, we don’t need to suppose (circularly) that |S| is approximately known
in advance, but can decide when to halt dynamically, depending on when the first element in S is
found.

In the quantum setting, we can query the membership oracle on superpositions of inputs.
Here Brassard et al. [BHT98a, BHMT02] gave an algorithm for approximate counting that makes
only O(y/N/|S|) queries, for any constant ¢ > 0. Moreover, they showed how to achieve any
accuracy ¢ with O(1/e) multiplicative overhead [BHMT02, Theorem 15]. To do so, one uses
amplitude amplification, the basic primitive of Grover’s search algorithm [Gro96]. The original
algorithm of Brassard et al. also used quantum phase estimation, in effect combining Grover’s
algorithm with Shor’s period-finding algorithm. However, it’s a folklore fact that one can remove
the phase estimation, and adapt Grover search with an unknown number of marked items, to get
an approximate count of the number of marked items as well.

On the lower bound side, it follows immediately from the optimality of Grover’s algorithm (i.e.,
the BBBV Theorem [BBBV97]) that even with a quantum computer, Q(/N/[S]) queries are needed
for approximate counting to any constant accuracy. Hence the classical and quantum complexity of
approximate counting with membership queries is completely understood.

In this paper we study approximate counting in models of computation that go beyond member-
ship queries. Before delving into the models, let us define a simple decision version of approximate
counting that will be convenient to use throughout this paper.

Problem 1 (Approximate Counting). In the ApxCounty ,, problem, our goal is to decide whether a
nonempty set S C [N] satisfies |S| > 2w (YES) or |S| <w (NO), promised that one of these is the
case.

1.1 Do quantum samples and reflections help?

Quantum samples. In practice, when trying to estimate the size of a set S C [N], often we can
do more than make membership queries to S. At the least, often we can efficiently generate nearly
uniform samples from S, for instance by using Markov Chain Monte Carlo techniques. To give two



examples, if S is the set of perfect matchings in a bipartite graph, or the set of grid points in a
high-dimensional convex body, then we can efficiently sample S using the seminal algorithms of
Jerrum, Sinclair, and Vigoda [JSV04] or of Dyer, Frieze, and Kannan [DFK91], respectively.
Sometimes we can even “QSample” S—a term coined in 2003 by Aharonov and Ta-Shma
[ATS03], and which simply means that we can approximately prepare the uniform superposition

1
via a polynomial-time quantum algorithm (where “polynomial” here means poly(log N)). Because
we need to uncompute any garbage, the ability to prepare |S) as a coherent superposition is a more
stringent requirement than the ability to sample S. Indeed, as Aharonov and Ta-Shma [ATS03]
pointed out, the quantum lower bound for finding collisions [Aar02, AS04] has the corollary that, in
the black-box setting, there are classes of sets S that can be efficiently sampled but not efficiently
QSampled.

On the other hand, Aharonov and Ta-Shma [ATS03], and Grover and Rudolph [GR02], observed
that many interesting sets S can be QSampled as well. In particular, this holds for all sets .S such
that we can approximately count not only S itself, but also the restrictions of S obtained by fixing
bits of its elements. Or, what’s known to be equivalent [SJ89], it holds for all sets S such that we
can efficiently sample not only the uniform distribution over S elements, but also the conditional
distributions obtained by fixing bits. So in particular, the set of perfect matchings in a bipartite
graph, and the set of grid points in a convex body, can both be efficiently QSampled. There are
other sets that can be QSampled but not because of this reduction. A simple example would be a
set S such that |S| > W' in that case we can efficiently prepare |.S) using postselection, but
approximately counting S’s restrictions might be hard.

Quantum reflections. We can further generalize the setting above to allow not only QSamples,
but also reflections about |S): that is, applications of the unitary transformation

Rs :=1-2[5)(S], (2)

which has eigenvalue —1 for |.S) and eigenvalue +1 for all states orthogonal to |S). The ability to
perform the unitary Rg follows in a completely black-box way from the ability to prepare the state
|S) unitarily. More concretely, let U be the unitary that performs the map U|0) = |S), for some
canonical starting state |0). Since we know the circuit U, we can also implement UT, by reversing
the order of all the gates and replacing all the gates with their adjoints. Then Rg is simply

Rs=1-2[S)(S| =U (1—-2|0)0) UT. (3)

Note that a priori, QSamples and reflections about |S) could be incomparable resources; it
is not obvious how to simulate either one using the other. On the other hand, it is known how
to apply a quantum channel that is e-close to Rg (in the diamond norm) using ©(1/¢) copies of
|S) [LMR14, KLL*17].

Results. It is now natural to ask! whether one could solve approximate counting efficiently, using
any combination of poly(log V) queries, samples, and reflections.
In this work, we show emphatically that the answer is no:

We thank Paul Burchard (personal communication) for bringing this question to our attention.



Theorem 2. Let () be a quantum algorithm that makes T queries to the membership oracle for
S, and uses a total of R copies of |S) and reflections about |S). If Q decides whether |S| = w or
|S| = 2w with high probability, promised that one of those is the case, then either

T=Q ( {Z) or R=Q (min{wl/g, @}) . (4)

So if (for example) we set w := N 3/5 then any quantum algorithm must either query S, or use
the state |S) or reflections about |S), at least Q(N'/®) times. This means that there’s at most a
quadratic speedup compared to classical approximate counting.

We also prove that the lower bounds in Theorem 2 are optimal. As mentioned before, Brassard
et al. [BHT98a] gave a quantum algorithm to solve the problem using 7' = O(1/N/w) queries alone,
which proves the optimality of the lower bound on the number of queries.

On the other hand, it’s easy to solve the problem using O (y/w) copies of |S) alone, by simply
measuring each copy of |S) in the computational basis and then searching for birthday collisions.
Alternately, we can solve the problem using O(%) copies of |S) alone, by projecting onto the
state |¢) = ﬁ (|1y 4+ --- 4+ |N)) or its orthogonal complement. This measurement succeeds with

probability [(S|¢)|? = %', so we can approximate |S| by simply counting how many measurements
succeed.

In Section 3.2 we improve on these algorithms by using samples and reflections, and thereby
establish that Theorem 2 is tight.

Theorem 3. There is a quantum algorithm that solves ApxCounty ., with high probability using R

copies of |S) and reflections about |S), where R = O (min {w1/3, ﬁ})

The Laurent polynomial method. In our view, at least as interesting as Theorem 2 is the
technique used to achieve it. In 1998, Beals et al. [BBCT01] famously observed that, if a quantum
algorithm ) makes T' queries to an input X, then Q’s acceptance probability can be written as
a real multilinear polynomial in the bits of X, of degree at most 2T. And thus, crucially, if we
want to rule out a fast quantum algorithm to compute some function f(X), then it suffices to show
that any real polynomial p that approximates f pointwise must have high degree. This general
transformation, from questions about quantum algorithms to questions about polynomials, has been
used to prove many results that were not known otherwise at the time, including the quantum lower
bound for the collision problem [Aar02, AS04] and the first direct product theorems for quantum
search [Aar05a, KSAWO07).

In our case, even in the simpler model with only queries and samples (and no reflections),
the difficulty is that the quantum algorithm starts with many copies of the state |S). As a
consequence of this—and specifically, of the 1/ m normalizing factor in |S)—when we write the
average acceptance probability of our algorithm as a function of |S|, we find that we get a Laurent
polynomial: a polynomial that can contain both positive and negative integer powers of |S|. The
degree of this polynomial (the highest power of |S|) encodes the sum of the number of queries, the
number of copies of |S), and the number of uses of Rg, while the “anti-degree” (the highest power
of |S|™) encodes the sum of the number of copies of |S) and uses of Rg. We're thus faced with
the task of lower-bounding the degree and the anti-degree of a Laurent polynomial that’s bounded
in [0, 1] at integer points and that encodes the approximate counting problem.



We then lower bound the degree of Laurent polynomials that approximate ApxCounty, ,,,, showing

that degree @(min{wl/ 3 N/ w}) is necessary. We show this using two very different arguments.
The first approach, which we call the “explosion argument,” is shorter but yields suboptimal lower
bounds, whereas the second approach using “dual polynomials” yields the optimal lower bound.

Before describing these techniques at a high level, observe that there are rational functions?® of
degree O(log(N/w)) that approximate ApxCounty ,,. This follows, for example, from Aaronson’s
PostBQP = PP theorem [Aar05b], or alternately from the classical result of Newman [N*64] that
shows for any k > 0, there is a rational polynomial of degree O(k) that pointwise approximates the
sign function on domain [—n, —1] U[1,n] to error 1 — n~%*. Thus, our proof relies on the fact that
Laurent polynomials are an extremely special kind of rational function.

Overview of the explosion argument. Our first proof uses an “explosion argument” that, as
far as we know, is new in quantum query complexity. We separate out the purely positive degree?
and purely negative degree parts of our Laurent polynomial as ¢ (|S|) = u (|S]) + v(1/|S]), where
u and v are ordinary polynomials. We then show that, if © and v both have low enough degree,
namely deg (u) = o(y/N/w) and deg (v) = o (w1/4), then we get “unbounded growth” in their
values. That is: for approximation theory reasons, either u or v must attain large values, far outside
of [0,1], at some integer values of |S|. But that means that, for ¢ itself to be bounded in [0,1] (and
thus represent a probability), the other polynomial must also attain large values. And that, in
turn, will force the first polynomial to attain even larger values, and so on forever—thereby proving
that these polynomials could not have existed.

Overview of the method of dual polynomials. Our second argument obtains the (optimal)
lower bound stated in Theorem 2, via a novel adaptation of the so-called method of dual polynomials.

With this method, to lower-bound the approximate degree of a Boolean function f, one exhibits
an explicit dual polynomial 1 for f, which is a dual solution to a certain linear program. Roughly
speaking, a dual polynomial ¢ is a function mapping the domain of f to R that is (a) uncorrelated
with any polynomial of degree at most d, and (b) well-correlated with f.

Approximating a univariate function g via low-degree Laurent polynomials is also captured by a
linear program, but the linear program is more complicated because Laurent polynomials can have
negative-degree terms. We analyze the value of this linear program in two steps.

In Step 1, we transform the linear program so that it refers only to ordinary polynomials rather
than Laurent polynomials. Although simple, this transformation is crucial, as it lets us bring
techniques developed for ordinary polynomials to bear on our goal of proving Laurent polynomial
degree lower bounds.

In Step 2, we explicitly construct an optimal dual witness to the transformed linear program
from Step 1. We do so by first identifying two weaker dual witnesses: 11, which witnesses that
ordinary (i.e., purely positive degree) polynomials encoding approximate counting require degree
at least Q(\/N /w), and vy, which witnesses that purely negative degree polynomials encoding
approximate counting require degree Q(wl/ 3). The first witness is derived from prior work of Bun
and Thaler [BT13], while the second builds on a non-constructive argument of Zhandry [Zhal2].

2 A rational function of degree d is of the form %, where p and ¢ are both real polynomials of degree at most d.

3Throughout this paper we allow any “purely positive degree” Laurent polynomial and any “purely negative degree”
Laurent polynomial to include a constant (degree zero) term.



Finally, we show how to “glue together” 11 and 9, to get a dual witness ) showing that any
general Laurent polynomial that encodes approximate counting must have either positive degree

Q(y/N/w) or negative degree Q(w'/3).

Overview of the upper bound. To recap, Theorem 2 shows that any quantum algorithm for
ApxCounty ,, needs either ©(y/N/w) queries or @(min{wl/S, V/N/w}) samples and reflections.
Since we know from the work of Brassard, Hgyer, Tapp [BHT98a] that the problem can be solved
with O(y/N/w) queries alone, it remains only to show the matching upper bound using samples
and reflections.

First we describe a simple algorithm that uses O(y/N/w) samples and reflections. If we take one
copy of |S), and perform a projective measurement onto |¢) = ﬁ (J1) + -+ 4+ |N)) or its orthogonal

complement, the measurement will succeed with probability [(S|¢)|? = |S| /N. We can now use
amplitude amplification [BHMT02] to distinguish the probabilities w/N and 2w/N, and this will
cost O(1/N/w) repetitions. Note that amplitude amplification requires reflecting about the initial
state, |S), so we use O(y/N/w) reflections about |S) and one copy of |S).

Our second algorithm solves the problem with O(wl/ 3) reflections and samples and is based on
the quantum collision-finding algorithm [BHT98b]. We first use O(w'/3) copies of |S) to learn w'/?
distinct elements in S. We now know a fraction of elements in S, and this fraction is either w=2/3
or %w*Q/ 3. We then use amplitude amplification (or quantum counting) to distinguish these two
cases, which costs O(wl/ 3) repetitions, where each repetition uses a reflection about |S).

1.2 Do quantum witnesses help?

We have shown that copies of |S) and reflections about |S) do not help solve approximate counting
efficiently. This raises a question: what about other quantum states, besides |S)?

In the commonly-studied Merlin-Arthur setting, a skeptical verifier (Arthur) receives a quantum
witness state [¢) from an all-powerful but untrustworthy prover (Merlin), in support of some
predetermined conclusion such as S being large. Arthur then needs to verify |¢), via some
algorithm that satisfies the twin properties of completeness and soundness. That is, if the answer
to the ApxCounty ,, instance is YES, then there must exist some [t)) that causes Arthur to accept
with high probability, while if the answer is NO, then every |¢) must cause Arthur to reject with
high probability. We call such a protocol a QMA (Quantum Merlin-Arthur) protocol.

There are two resources to consider: the length of the quantum witness and the number of
queries Arthur makes to the membership oracle for S. A QMA protocol for ApxCounty ,, is efficient
if both are poly(log N). Does such an efficient protocol exist? Our second main result answers
this question in the negative:

Theorem 4. Consider a QMA protocol that solves ApxCounty . If the protocol receives a quantum
witness of length m, and makes T queries to the membership oracle for S, then

m-T:Q(min{w, \/W}> . (5)

QMA lower bounds. In certain special cases, it is trivial to lower-bound QMA query complexity:
for example, the standard BBBV Theorem [BBBV97] immediately implies the existence of an oracle
relative to which coNP ¢ QMA, and directly related to that, it is easy to show that the complement
of ApxCounty ,, is not in QMA (i.e., that there are no short QMA witnesses proving that a set S



is small). Outside of those cases, though, lower-bounding QMA query complexity is challenging.
Essentially all QMA lower bounds in the literature have exploited the containment QMA C SBQP,
where SBQP is a complexity class that models quantum algorithms with tiny acceptance and
rejection probabilities.

We say that a function f has SBQP query complexity at most k if there exists a k-query quantum
algorithm that

e outputs 1 with probability > « when f(z) =1, and

e outputs 1 with probability < «/2 when f(z) =0,

for any « that the algorithm chooses in advance. Note that when a = 2/3, we recover standard
quantum query complexity. But a could be also be exponentially small, which makes SBQP
algorithms very powerful.

Nevertheless, one can establish significant limitations on SBQP algorithms, by using a variation
of the polynomial method of Beals et al. [BBCT01]. If a function f can be evaluated by an SBQP
algorithm with &k queries, then there exists a real polynomial p of degree 2k such that p(X) € [0, 1]
whenever f(X) =0 and p(X) > 2 whenever f(X) = 1. The minimum degree of such a polynomial
is sometimes called “one-sided approximate degree” [BT15, Thal6].

The relationship between SBQP and QMA protocols is very simple: if f has a QMA protocol
that receives an m-qubit witness and makes T' queries, then it also has an SBQP algorithm that
makes O(mT') queries. This was essentially observed by Marriott and Watrous [MWO05, Remark
3.9] and used by Aaronson [Aarl2] to show an oracle relative to which SZK ¢ QMA; we also state it
for completeness as Lemma 16.

Thus, an obvious route to ruling out a QMA protocol for ApxCounty ,, would be to rule out
an SBQP algorithm. Unfortunately, this cannot work, since ApxCounty ,, does have an SBQP
algorithm: namely, the algorithm that simply picks an ¢ € [N] uniformly at random, and accepts if
and only if ¢ € S. So clearly we need a different strategy.

Proof overview. To get around the issue of ApxCount,, being in SBQP, we use a clever strategy
that was previously used by G6os et al. [GLM™T16], and that was suggested to us by Thomas Watson
(personal communication).

Our strategy exploits the fact that QMA is closed under intersection, but (at least relative to
oracles, and as we’ll show) SBQP is not.

More precisely, given a function f, let ANDs o f be the AND of two copies of f on separate
inputs. Then if f has small QMA query complexity, it’s not hard to see that ANDs o f does as
well: Merlin simply sends witnesses corresponding to both inputs; then Arthur checks both of them
independently. While it’s not completely obvious, one can verify that a dishonest Merlin would
gain nothing by entangling the two witness states. Hence if ApxCounty ,, had an efficient QMA
protocol, then so would AND2 o ApxCounty ,,, with the witness size and query complexity increasing
by only a constant factor.

By contrast, even though ApxCounty ,, does have an efficient SBQP algorithm, we will show
that AND2 o ApxCounty ,, does not. This is the technical core of our proof.

In more detail, suppose by way of contradiction that ApxCounty ,, had an efficient QMA protocol.
Then as we said above, ANDy o ApxCounty ,, would have an efficient QMA protocol as well—which
means that the latter function would also have an efficient SBQP algorithm. But by using the



N A
=)
el p(z,y) > 2
=p
)
= ISH
2w
w -
p(z,y)
€ [0,1] p(z,y) €[0,1]
0 T T T
0 w 2w N

xT

Figure 1: The behavior of the (Minsky—Papert symmetrized) bivariate polynomial p(z,y) at
integer points (x,y) in the proof of Theorem 5. The polynomial ¢ obtained by erase-all-subscripts
symmetrization is not depicted. We later restrict ¢ to a hyperbola similar to the one drawn in blue.

polynomial method, we will show that AND2 o ApxCounty ,, does not have a query-efficient SBQP
algorithm, thereby yielding the desired contradiction.

Theorem 5. Consider an SBQP algorithm for AND2 o ApxCounty ,, that makes T queries to
membership oracles for the two instances of ApxCounty .. Then T'= () (min{w, \/N/w}).

Note that Theorem 5 is quantitatively optimal, as we’ll exhibit matching upper bounds as well.
Combined with Lemma 16 (the connection between QMA and SBQP), Theorem 5 immediately
implies Theorem 4.

At a high level, the proof of Theorem 5 assumes that there’s an efficient SBQP algorithm for
ANDg2 o ApxCounty ,,. This assumption yields a low-degree one-sided approximating polynomial
for the problem in 2N Boolean variables, where N variables come from each ApxCounty ,, instance.
We then symmetrize the polynomial (using the standard Minsky—Papert symmetrization argu-
ment [MP88]) to obtain a bivariate polynomial in two variables x and y that represent the Hamming
weight of the original instances. This yields a polynomial p(z, y) that for integer pairs x,y (also called
lattice points) satisfies p(z,y) € [0, 1] when either z € {0,...,w} and y € {0,...,w}U{2w,..., N},
or (symmetrically) y € {0,...,w} and x € {0,...,w} U{2w,...,N}. If both z € {2w,..., N} and
y € {2w,..., N}, then p(x,y) > 2. This polynomial p is depicted in Figure 1.

One difficulty is that we have a guarantee on the behavior of p at lattice points only, whereas the
rest of our proof requires better control over the polynomial, even at non-integer points. To obtain
better control over our polynomial at non-integer points, we use a newer symmetrization argument
due to Servedio, Tan, and Thaler [STT12] that we call “erase all subscripts” symmetrization (see



Lemma 12).# This symmetrization yields a polynomial g of the same degree as p. Both types of
symmetrization play an important role in our analysis, as we use p to bound ¢ when the polynomials
have degree o(w), using tools from approximation theory and Chernoff bounds.

The second difficulty is that we want to lower-bound the degree of a bivariate polynomial,
but almost all known lower bound techniques apply only to univariate polynomials. To reduce
the number of variables (from 2 to 1) in a degree-preserving way, we pass a hyperbola through
the zy plane (see Figure 1) and consider the polynomial ¢ restricted to the hyperbola. Doing so
gives us a new univariate Laurent polynomial £(t), whose positive and negative degree is at most
deg(q). This Laurent polynomial has an additional symmetry, which stems from the fact that
AND; o ApxCounty,, is the AND of two identical problems (namely, ApxCounty ,,). We leverage
this symmetry to view £(t), a Laurent polynomial in ¢, as an ordinary univariate polynomial in
t 4+ 1/t of degree deg(q). Finally, we appeal to classical results in approximation theory to argue
that this univariate polynomial must have degree Q(\/N )

There are two aspects of this that we find surprising: first, that Laurent polynomials appear
at all, and second, that they seem to appear in a completely different way than they did in the
proof of Theorem 2, despite the close connection between the two statements. For Theorem 2,
Laurent polynomials were fundamentally needed just to describe the quantum algorithm’s acceptance
probability, whereas for Theorem 5, ordinary polynomials sufficed; Laurent polynomials appeared
only when we restricted a bivariate polynomial to a hyperbola in the plane. In any case, our results
suggest that the “Laurent polynomial method” might be useful for other problems as well.

Complexity-theoretic perspective.  The complexity class SBP, which is sandwiched between
MA (Merlin-Arthur) and AM (Arthur-Merlin), is captured by the following complete problem: given
a polynomial-time computable Boolean function f and an integer w, decide whether the number
of inputs that f accepts is less than w or greater than 2w, promised that one of these is the case.
The class SBQP (discussed above, following Theorem 4), first defined by Kuperberg [Kupl5], is a
quantum analogue of SBP that contains both SBP and QMA.

By the usual connection between oracle separations and query complexity lower bounds, The-
orem 4 implies the first oracle separation between SBP and QMA—i.e., there exists an oracle A
such that SBP# ¢ QMA“4.  Prior to our work, it was known that there exist oracles 4, B such
that SBP? ¢ MA“ [BGMO06] and AMZ ¢ QMA® [Ver92], but the relation between SBP and QMA
remained elusive.” Figure 2 shows the known inclusion relations among these classes (all of which
hold relative to all oracles).

Previous oracle separation techniques failed because they either used lower-bound techniques
specific to MA, or they established lower bounds against PP, which contains QMA (see Figure 2) .

Now the reason that SBP4 ¢ QMAA4 (our new result) is much harder to establish than SBPA ¢
MA# (from [BGMO6]) is the following: We know lower bound methods for MA that do not also
apply to SBP. In particular, MA is contained in Yo, which is not known to contain SBP, and
Bohler et al. exploit this relationship to prove the oracle separation SBPA 4 MA4. However, the
primary method for proving QMA lower bounds is exploit the fact that QMA C SBQP and to show
lower bounds on SBQP. Unfortunately, SBQP also contains SBP, and hence can solve approximate
counting efficiently.

41t is possible to obtain a suboptimal lower bound without using erase-all-subscripts symmetrization. See
arXiv:1902.02398 for details.

5Tt is interesting to note that in the non-relativized world, under plausible derandomization assumptions [MV99],
we have NP = MA = SBP = AM. In this scenario, all these classes are equal, and all are contained in QMA.
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Figure 2: Relationships between complexity classes. An upward line indicates that a complexity
class is contained in the one above it relative to all oracles.

As described in the proof overview above, we resolve this by using a difference in structural
properties of the involved complexity classes. While QMA is easily seen to be closed under
intersection, SBQP is not obviously closed under intersection, and in fact our results also show the
existence of an oracle relative to which SBQP is not closed under intersection. Hence we separate
SBP and QMA by taking a complete problem for SBP and considering the AND of two copies of the
problem, which we then show is not in SBQP in the black-box setting.

2 Preliminaries

In this section we introduce some definitions and known facts about polynomials and complexity
classes.

2.1 Approximation theory

We will use several results from approximation theory, each of which has previously been used (in
some form) in other applications of the polynomial method to quantum lower bounds. We start
with the basic inequality of A.A. Markov [Mar90].

Lemma 6 (Markov). Let p be a real polynomial, and suppose that

max |p(z) —p(y)| < H. (6)
x,y€la,b]
Then for all x € [a,b], we have
H
[P (2)] < 5 deg (p)". (7)

We'll also need a bound that was explicitly stated by Paturi [Pat92], and which amounts to
the folklore fact that, among all degree-d polynomials that are bounded within a given range, the
Chebyshev polynomials have the fastest growth outside that range.

Lemma 7 (Paturi). Let p be a real polynomial, and suppose that |p(x)| <1 for all |x| < 1. Then

for all x <1+ p, we have
[p(z)] < exp (2deg (p) V2p + /ﬂ) : (8)
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We now state a useful corollary of Lemma 7, which says (in effect) that slightly shrinking the
domain of a low-degree real polynomial can only modestly shrink its range.

Corollary 8. Let p be a real polynomial of degree d, and suppose that

max |p(z) —p(y)| = H. (9)
z,y€(a,b]

Let e < 155z and o/ == a+¢e(b—a). Then

max |[p(z) —p(y)| >

H
z,y€(a’,b] 2’

Proof. Suppose by contradiction that

H
2

Ip(z) —p(y)| < (11)

for all z,y € [a/,b]. By affine shifts, we can assume without loss of generality that |p (z)| < £ for
all z € [@/,b]. Then by Lemma 7, for all € [a,b] we have

p()| < 1 exp 2d\/2 <11_€—1>+<1i5_1>2> <% (12)

But this violates the hypothesis. |

We will also need a bound that relates the range of a low-degree polynomial on a discrete set of
points to its range on a continuous interval. The following lemma generalizes a result due to Ehlich
and Zeller [EZ64] and Rivlin and Cheney [RC66], who were interested only in the case where the
discrete points are evenly spaced.

Lemma 9. Let p be a real polynomial of degree at most Vk, and let 0 = 21 < --- < zpr = k be a list
of points such that zi11 — z; < 1 for all i (the simplest example being the integers 0,... k). Suppose
that

max [p(z) —p(y)| = H. (13)
z,y€[0,k]
Then
H
max [p (z:) —p ()] 2 5 (14)
Proof. Suppose by contradiction that
H
p(=) ~p () < 5 (15)

for all 4, j. By affine shifts, we can assume without loss of generality that |p(z;)| < % for all i. Let

_ p ()]
" acon HJ4 (16)
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. . . ;s
If ¢ < 1, then the hypothesis clearly fails, so assume ¢ > 1. Suppose that the maximum, |p (z)| = &,

is achieved between z; and z;+1. Then by basic calculus, there exists an z* € [z;, z;1+1] such that

2(c—=1) H _(¢c—1)H

e M (17)
So by Lemma 6,
-1 H H/4
= DH _cHA o )2 (18)
2 k
Solving for ¢, we find
2k
c< —— <2 (19)
2k — deg (p)
But if ¢ < 2, then max ¢z [p (7)] < I which violates the hypothesis. [ |

We also use a related inequality due to Coppersmith and Rivlin [CR92] that bounds a polynomial
on a continuous interval in terms of a bound on a discrete set of points, but now with the weaker
assumption that the degree is at most k, rather than vk. This gives a substantially weaker bound.

Lemma 10 (Coppersmith and Rivlin). Let p be a real polynomial of degree at most k, and suppose
that |p(z)| <1 for all integers x € {0,1,...,k}. Then there exist universal constants a,b such that
for all x € [0, k], we have

Ip(z)| < a-exp (bdeg(p)®/k) . (20)

2.2 Symmetric polynomials

Univariate symmetrizations. Our starting point is the well-known symmetrization lemma of
Minsky and Papert [MP88] (see also Beals et al. [BBCT01] for its application to quantum query
complexity), by which we can often reduce questions about multivariate polynomials to questions
about univariate ones.

Lemma 11 (Minsky—Papert symmetrization). Let p : {0, 1}N — R be a real multilinear polynomial
of degree d, and let q : {0,1,..., N} — R be defined as

q (k) == Ejxj=x [p (X)] - (21)
Then q can be written as a real polynomial in k of degree at most d.

We now introduce a different, lesser known notion of symmetrization, due to Servedio, Tan, and
Thaler [STT12], which we call the erase-all-subscripts symmetrization for reasons to be explained
shortly.

Lemma 12 (Erase-all-subscripts symmetrization). Let p : {0,1} — R be a real multilinear
polynomial of degree d, and for any real number k € [0,1], let My, denote the distribution over
{0,1}V, wherein each coordinate is selected independently to be 1 with probability k. Let q : [0,1] — R
be defined as

q (k) :=En, [p(X)]. (22)

Then q can be written as a real polynomial in k of degree at most d.
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Proof. (Appears in [STT12, Proof of Theorem 3]). Given the multivariate polynomial expansion
of p, we can obtain ¢ easily just by “erasing all the subscripts in each variable”. For example, if
p(z1, 22, 13) = 27129+ T23+ T2, We replace every x; with k to obtain q(k) = 2k-k+k-k+k = 3k>+k.
This follows from linearity of expectation along with the fact that My, is defined to be the product
distribution wherein each coordinate has expected value k. [

We highlight the following key difference between Minsky—Papert symmetrization and the
erase-all-subscripts symmetrization. Let p : {0, 1}N — [0,1] be a real multivariate polynomial
whose evaluations at Boolean inputs are in [0, 1], i.e., for all 2 € {0,1}", we have p(z) € [0,1]. If
q is the the erase-all-subscripts symmetrization of p, then ¢ takes values in [0, 1] at all real-valued
inputs in [0, 1]: ¢(k) € [0,1] for all k € [0,1]. If g is the Minsky-Papert symmetrization of p, then
it is only guaranteed to take values in [0, 1] at integer-valued inputs in [0, N], i.e., ¢(k) € [0,1] is
only guaranteed to hold at k € {0,1,..., N}. This is the main reason we use erase-all-subscripts
symmetrization in this work.

Bivariate symmetrizations. In this paper, it will be convenient to consider bivariate versions
of both Minsky—Papert and erase-all-subscripts symmetrization, and their applications to oracle
separations. To this end, define X € {0, l}N, the “characteristic string” of the set S C [N], by
x; =1if i € S and x; = 0 otherwise. Let Og denote the unitary that performs a membership query
to S, defined as

Os i) [b) = (1 — 2bx;) |i) [b) (23)

for any index 7 € [N] and bit b € {0, 1}.

Because we study oracle intersection problems, it is often convenient to think of an algorithm
as having access to two oracles, wherein the first bit in the oracle register selects the choice of
oracle. As a consequence, we need a slight generalization of a now well-established fact in quantum
complexity: that the acceptance probability of a quantum algorithm with an oracle can be expressed
as a polynomial in the bits of the oracle string.

Lemma 13 (Symmetrization with two oracles). Let Q%5091 be a quantum algorithm that makes
T queries to a pair of membership oracles for sets So,S1 C [N]. Let D, denote the distribution
over subsets of [N] wherein each element is selected independently with probability 4. Then there
exist bivariate real polynomials q(s,t) and p(z,y) of degree at most 2T satisfying:

for all real numbers s,t € [0, N], q(s,t) =Eg,~p,, [Pr[QOSO’OSI accepts]] , and
Si1i~Dy

for all integers x,y € {0,1,...,N}, p(x,y) = E|g)|=0, [PI[QOSO’OSI accepts]] .
[S1l=y

Proof. Take X = X|X; to be the concatenation of the characteristic strings of the two oracles,
and let S C [2N] be such that X is the characteristic string of S. Then, Lemma 4.2 of Beals et al.
[BBCT01] tells us that there is a real multilinear polynomial r(X) of degree at most 27" in the bits
of X such that 7(X) = Pr[QYs accepts].

Observe that r has a meaningful probabilistic interpretation over arbitrary inputs in [0,1]. A
vector X € [0,1]2V of probabilities corresponds to a distribution over {0, 1}V wherein each bit is
chosen from a Bernoulli distribution with the corresponding probability. Because r is multilinear, r
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in fact computes the expectation of the acceptance probability over this distribution. In particular,
the polynomial

S S t t Oc..O
q(s,t) :7"(,...,,,...,) = Eg,~p,, |Pr[Q 5051 accepts] (24)
NN NN oD [ ]

N times N times

corresponds to selecting So ~ D and S1 ~ D;. The total degree of ¢ is obviously at most the degree
of r, by the same reasoning as in the proof of Lemma 12.

To construct p, we apply the symmetrization lemma of Minsky and Papert [MP88] to symmetrize
r, first with respect to Xy, then with respect to X;:

po(z, X1) = E|g)|= (X0, X1) = E|gy|=2 [Pr[QOSO’Osl accepts]] (25)
p(x,y) = By, =y po(2, X1) = Eg=p, [Pr[QP50 P51 accepts]] (26)
[S1l=y
The degree of p is at most the degree of r, due to Lemma 11. |

We remark that, as a consequence of their definitions in Lemma 13, p and ¢ satisfy:
q(s,t) =E[p(X,Y)], (27)
where X and Y are drawn from N-trial binomial distributions with means s and ¢, respectively.

Symmetric Laurent polynomials. Finally, we state a useful fact about Laurent polynomials:

Lemma 14 (Symmetric Laurent polynomials). Let ¢(x) be a real Laurent polynomial of positive
and negative degree d that satisfies £(x) = €(1/x). Then there exists a (ordinary) real polynomial q
of degree d such that {(x) = q(x + 1/x).

Proof. /(z) = ¢(1/z) implies that the coefficients of the ! and x~¢ terms are equal for all i,
as otherwise ¢(x) — ¢(1/z) would not equal the zero polynomial. Thus, we may write ¢(x) =
Z?:o a; - (x* + 27%) for some coefficients a;. So, it suffices to show that % + 2% can be expressed as
a polynomial in x 4+ 1/z for all 0 <i < d.

We prove by induction on i. The case ¢ = 0 corresponds to constant polynomials. For ¢ > 0,
by the binomial theorem, observe that (z + 1/x)" = ' + 27" + r(x) where r is a degree i — 1 real
Laurent polynomial satisfying r(xz) = r(1/x). By the induction assumption, r can be expressed as
a polynomial in z + 1/z, so we have 2' + 27" = (z + 1/x)" — r(z) is expressed as a polynomial in
x+1/z. [ ]

2.3 Complexity classes

Though SBP and SBQP can be defined in terms of counting complexity functions, for our purposes
it is easier to work with the following equivalent definitions (see Bohler et al. [BGMO06]):

Definition 15. The complexity class SBP consists of the languages L for which there exists a
probabilistic polynomial time algorithm M and a polynomial o with the following properties:

1. If x € L, then Pr[M(z) accepts] > 2-7(=]),
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2. If & ¢ L, then Pr[M(z) accepts) < 27701 /2.

The complexity class SBQP is defined analogously, wherein the classical algorithm is replaced
with a quantum algorithm.

A classical (respectively, quantum) algorithm that satisfies the above promise for a particular
language will be referred to as an SBP (respectively, SBQP) algorithm throughout. Using this
definition, a query complexity relation between QMA protocols and SBQP algorithms follows from
the procedure of Marriott and Watrous [MWO05], which shows that one can exponentially improve
the soundness and completeness errors of a QMA protocol without increasing the witness size. See
Aaronson [Aarl2, Lemma 5] for a proof of the following lemma:

Lemma 16 (Guessing lemma). Suppose there is a QMA protocol for some problem that makes T
queries and receives an m-qubit witness. Then there is an SBQP algorithm for the same problem
that makes O(mT') queries.

3 Approximate counting with quantum samples and reflections

3.1 The Laurent polynomial method

By using Minsky—Papert symmetrization (Lemma 11), we now prove the key fact that relates
quantum algorithms, of the type we're considering, to real Laurent polynomials in one variable.
The following lemma generalizes the connection between quantum algorithms and real polynomials
established by Beals et al. [BBCT01].

Lemma 17. Let Q be a quantum algorithm that makes T queries to Og, uses Ry copies of |S), and
makes Ry uses of the unitary Rg. Let R:= Ry + 2Ry. For ke {1,... N}, let

q (k) == Eg/= [Pr {QOS’RS (]S>®R1) accepts” . (28)

Then q can be written a univariate Laurent polynomaial, with mazimum exponent at most 2T + R
and minimum exponent at least —R.

Proof. Let |tnitia) denote the initial state of the algorithm, which we can write as

Ry
|tinitial) = |S)EF = ( Z] ) = Z
\/F €S \/F i€[N]
1 . .
’ | il,...,iR1€[N}
Thus, each amplitude is a complex multilinear polynomial in X = (z1,...,zy) of degree Ry, divided

by |5|f/2.

Throughout the algorithm, each amplitude will remain a complex multilinear polynomial in X
divided by some power of |S|. Since x? = x; for all i, we can always maintain multilinearity without
loss of generality.

Like Beals et al. [BBCT01], we now consider how the polynomial degree of each amplitude and

the power of |S| in the denominator change as the algorithm progresses. We have to handle 3
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different kinds of unitaries that the quantum circuit may use: the membership query oracle Og,
unitaries independent of the input, and the reflection unitary Rg.

The first two cases are handled as in Beals et al. Since Og is a unitary whose entries are degree-1
polynomials in X, each use of this unitary increases a particular amplitude’s degree as a polynomial
by 1 and does not change the power of |S| in the denominator. Second, input-independent unitary
transformations only take linear combinations of existing polynomials and hence do not increase
the degree of the amplitudes or the power of |S| in the denominator. Finally, we consider the

2y |S|-2xixy

reflection unitary Rg = 1 —2[S)(S|. The (i, j)" entry of this operator is 1 — S = e - Since

|S| = >, @, this is a degree-2 polynomial divided by |S|. Hence applying this unitary will increase
the degree of the amplitudes by 2 and increase the power of |S| in the denominator by 1.

In conclusion, we start with each amplitude being a polynomial of degree R; divided by |S |Rl/ 2,
T queries to the membership oracle will increase the degree of each amplitude by at most T and
leave the power of |S| in the denominator unchanged. R uses of the reflection unitary will increase
the degree by at most 2Ry and the power of |S| in the denominator by Rs. It follows that @’s final
state has the form

[Yhnat) = ) @z (X) [2), (29)

where each a, (X) is a complex multilinear polynomial in X of degree at most Ry +2Rs+T = R+ T,
divided by |S ]Rl/ 2HR2 — 1 61R/2 Since X itself is real-valued, it follows that the real and imaginary
parts of a, (X), considered individually, are real multilinear polynomials in X of degree at most
R+ T divided by |S|7/2.
Hence, if we let
p(X):=Pr [QOS’RS (|S>®R1> accepts} , (30)

then

p(X)= > JeXP= > (R’a:(X)+In’a, (X)) (31)

accepting z accepting z

is a real multilinear polynomial in X of degree at most 2 (R + T'), divided through (in every
monomial) by |S|% = |X|*.
Now consider
q (k) = Ex= [p(X)]. (32)

By Lemma 11, this is a real univariate polynomial in |X| of degree at most 2 (R + T), divided
through (in every monomial) by |S|® = |X|®. Or said another way, it’s a real Laurent polynomial
in | X|, with maximum exponent at most R + 27" and minimum exponent at least —R. |

3.2 Upper bounds

Before proving our lower bounds on the degree of Laurent polynomials approximating ApxCounty ,,,
we establish some simpler upper bounds. We show upper bounds on Laurent polynomial degree and
in the queries, samples, and reflections model.

Laurent polynomial degree of approximate counting. We now describe a purely negative
degree Laurent polynomial of degree O(wl/ 3) for approximate counting. This upper bound will serve
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as an important source of intuition when we prove the (matching) lower bound of Theorem 2 (see
Section 3.4.3). We are thankful to user “fedja” on MathOverflow for describing this construction.’

Lemma 18 (fedja). For all w, there is a real polynomial p such that |p (1/k)| <1 for all k € [2w],
and p (L) < 1 while p (L) > 2, and deg (p) = O (w'/3).

Proof. Assuming for simplicity that w is a perfect cube, consider
w(z) =1 —x)(1—2z)- (1—w1/3x>. (33)

Notice that deg (u) = w'/3 and u (+) = 0 for all k € [w!/3]. Furthermore, we have |u (z)| < 1 for
all € [0, ﬁ] and also u (z) € [1 —0 (ﬁ) ,1} for all 7 € [0,1]. Now, let v be the Chebyshev

polynomial of degree w'/3, affinely adjusted so that |v(z)] < 1 for all = € [O, ﬁ] rather than
all |z| < 1, and with a large jump between 5 and +. Then the product, p (z) := u (z) v (z), has

2w
1/3

degree 2w"'/° and satisfies all the requirements. |

Interestingly, if we restrict our attention to purely negative degree Laurent polynomials, then
a matching lower bound is not too hard to show. In the same MathOverflow post, user fedja
also proves the following, which can also be shown using earlier work of Zhandry [Zhal2, Proof of
Theorem 7.3)):

Lemma 19. Let p be a real polynomial, and suppose that |p(1/k)| <1 for all k € [2w], and that
p(%) <% whilep (35) 2 . Then deg (p) = @ (w'/?).

Section 3.3 and Section 3.4 below take the considerable step of extending Lemma 19 from the
setting of purely negative degree Laurent polynomials to general Laurent polynomials.

Upper bounds in the queries, samples, and reflections model. Although we showed that
there is a purely negative degree Laurent polynomial of degree O(wl/ 3) for ApxCount Nw» this does
not imply the existence of a quantum algorithm in the queries, samples, and reflections model with
similar complexity.

We now show that our lower bounds in the queries, samples, and reflections model (in Theorem 2)
are tight (up to constants). This is Theorem 3 in the introduction, restated here for convenience:

Theorem 3. There is a quantum algorithm that solves ApxCounty ., with high probability using R
copies of |S) and reflections about |S), where R = O (min {w1/3, \/ g})

Proof. We describe two quantum algorithms for this problem with the two stated complexities.
The first algorithm uses O(wl/ 3) samples and reflections. This algorithm is reminiscent of the
original collision finding algorithm of Brassard, Hgyer, and Tapp [BHT98b]. We first use O(w'/3)
copies of |S) to learn a set M C S of size w'/3 by simply measuring copies of |S) in the computational
basis. Now we know that the ratio |S|/|M] is either w?/® or 2w?/3. Now consider running Grover’s
algorithm on the set .S where the elements in M are considered the “marked” elements. Grover’s
algorithm alternates reflections about the uniform superposition over the set being searched, .S, with
an operator that reflects about the marked elements in M. The first reflection is simply Rg, which

5See https://mathoverflow.net/questions/302113/real-polynomial-bounded-at-inverse-integer-points
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we have access to. The second unitary can be constructed since we have an explicit description
of the set M. Now Grover’s algorithm can be used to distinguish whether the fraction of marked
elements is 1/w?/? or half of that, and the cost will be O(w!/?).

N

The second algorithm uses O( E) samples and reflections. We start with the state |\S) and

perform the two-outcome measurement that projects the state onto the uniform superposition
over all N elements, Zie[ N |i). The probability of obtaining this measurement outcome is exactly
the square of the inner product between this state and |S), which is |S|/N. This probability is
either w/N or 2w/N. We can distinguish these two probabilities using amplitude amplification,
and the number of steps of amplitude amplification required is O(1/N/w). Note that amplitude
amplification will require reflections about the starting state |S), which we have available. |

Note that both the algorithms presented above generalize to the situation where we want to
distinguish |S| = w from |S| = (1 + ¢)w. For the first algorithm, we now pick a subset M of size
w'/?/e2/3. Now we want to (1 + ¢)-approximate the fraction of marked elements, which is either
1/(we)?/3 or (14¢)~! times that. This can be done with approximate counting [BHMT02, Theorem

15], and the cost will be O (%(wa)l/?’) =0 <1;21—//§)
The second algorithm is simpler to generalize, as we only need to distinguish the two probabilities
more accurately. This will incur a O(1/¢) overhead, since we want to approximate the probability

to (14 ¢) relative error. This will yield an algorithm that uses O (;w / g) copies and reflections

about |S). Another way to derive this bound is to consider running the usual approximate counting
algorithm that uses queries to S. The membership oracle in that algorithm is only used to reflect
about the subspace of all elements in S. However, we can simply replace that reflection with a
reflection about |S). This is because the analysis of the algorithm reveals that the state of the
algorithm always remains in a two-dimensional subspace, and within that subspace the reflection
about elements in S and reflection about |S) are identical operators.

3.3 Lower bound using the explosion argument

We now show a weaker version of Theorem 2 using the explosion argument described in the
introduction. The difference between the following theorem and Theorem 2 is the exponent of w in
the lower bound.

Theorem 20. Let Q be a quantum algorithm that makes T queries to the membership oracle for
S, and uses a total of R copies of |S) and reflections about |S). If Q decides whether |S| = w or
|S| = 2w with success probability at least 2/3, promised that one of those is the case, then either

T=0Q ( Z) or R=Q (min{w”{ﬁ}) . (34)

Proof. Since we neglect multiplicative constants in our lower bounds, let us allow the algorithm to
use up to R copies of |S) and R uses of Rg. Let

q (k) :=Eg)=k [Pr [QOS’RS (|S>®R) accepts” . (35)
Then by Lemma 17, we can write g as a Laurent polynomial, like so:
q(k) =u(k)+v(1/k), (36)
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where w is a real polynomial in k with deg (u) = O(T + R), and v is a real polynomial in 1/k with
deg (v) = O(R). So to prove the theorem, it suffices to show that either deg (u) = Q ( N), or

w

else deg (v) = Q (w'/*). To do so, we'll assume that deg (u) = o (w / g) and deg (v) = o (w!/*),

and derive a contradiction.

Our high-level strategy is as follows: we’ll observe that, if approximate counting is successfully
being solved, then either u or v must attain a large first derivative somewhere in its domain. By the
approximation theory lemmas that we proved in Section 2.1, this will force that polynomial to have
a large range—even on a subset of integer (or inverse-integer) points. But the sum, u (k) + v (1/k),
is bounded in [0, 1] for all k& € [N]. So if one polynomial has a large range, then the other does
too. But this forces the other polynomial to have a large derivative somewhere in its domain, and
therefore (by approximation theory) to have an even larger range, forcing the first polynomial to
have an even larger range to compensate, and so on. As long as deg (u) and deg (v) are both small
enough, this endless switching will force both u and v to attain unboundedly large values—with the
fact that one polynomial is in k, and the other is in 1/k, crucial to achieving the desired “explosion.”
Since v and v are polynomials on compact sets, such unbounded growth is an obvious absurdity,
and this will give us the desired contradiction.

In more detail, we will study the following quantities.

Gy = MAX, e[/ 2u] lu () — u (y)| Gy = MaX, e[ 1 1] [v(z) — v (y)|
Ay = WA, [ /25 9] |u' ()] A, = Max, 1 1 |v" ()]
H, = maxx,ye[\/m]v] lu () —u(y)| H, = maxx,ye[%,ﬁ] v (z) — v (y)] (37)
I = masy e Ju (2) — u W) Io=max_q 1@ o)
z,y€ Qw’ﬁ]
Ly = max, yefw,.. N} lu(z) —u(y)| L, := Max, el /. 9w} ‘v (%) —v (i)’

We have 0 < ¢ (k) <1 for all k£ € [N], since in those cases ¢ (k) represents a probability. Since
@ solves approximate counting, we also have ¢ (w) < % and ¢ (2w) > % This means in particular
that either

(i) v(2w) —u(w) > %, and hence G, > %, or else
(i) v (ﬁ) —v(L) > %, and hence G, > %.

We will show that either case leads to a contradiction.
We have the following inequalities regarding u:

Gy,>L,—1 by the boundedness of ¢

Ay > % by basic calculus

H, > Ad(g (;)“f) by Lemma 6 (38)
I, > % by Corollary 8

L, > %“ by Lemma 9

Here the fourth inequality uses the fact that, setting e := %, we have deg (u) = o (ﬁ) (thereby

satisfying the hypothesis of Corollary 8), while the fifth inequality uses the fact that deg(u) =

o (VN).

20



Meanwhile, we have the following inequalities regarding v:

Gy>L,—1 by the boundedness of ¢
A, > Gyw by basic calculus
> 2, (39)
v Z " eg(? v Lemma 6
I, > Ié“ by Corollary 8
L, > %” by Lemma 9
Here the fourth inequality uses the fact that, setting ¢ := 11//—2\/% = ﬁ, we have deg (v) = o <ﬁ>

(thereby satisfying the hypothesis of Corollary 8). The fifth inequality uses the fact that, if we set
V (x) := v (z/w), then the situation satisfies the hypothesis of Lemma 9: we are interested in the
range of V on the interval [%, \/17)], compared to its range on discrete points %, ﬁ, .+, 50 that
are spaced at most 1 apart from each other; and we also have deg (V') = deg (v) = o (wl/ 4.

All that remains is to show that, if we insert either G, > % or G, > % into the coupled system
of inequalities above, then we get unbounded growth and the inequalities have no solution. Let us
collapse the two sets of inequalities to

Lo IR (NG
4 deg (u)” 2w wdeg (u)
1 1
L, > 1\/57]\2[(}010 :Q< v 2Gv> )
4 deg () des (0)

Hence

Gusz—1:Q<\/EQGU) Y
deg (v)

szLu—1:Q<N2Gu> ~1.
wdeg (u)

By the assumption that deg (v) = 0(w1/4) and deg (u) = 0( g), we have % > 1 and
_N

wdoa()? > 1. Plugging in G, > % or Gy > %, this is enough to give us unbounded growth. |

3.4 Lower bound using dual polynomials

In this section we use the method of dual polynomials to establish our main result, Theorem 2,
restated for convenience:

Theorem 2. Let (Q be a quantum algorithm that makes T queries to the membership oracle for
S, and uses a total of R copies of |S) and reflections about |S). If Q decides whether |S| = w or
|S| = 2w with high probability, promised that one of those is the case, then either

T=0Q ( Z) or R=Q (min{w1/3, \/i}) . (4)
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Let p(r) be a univariate Laurent polynomial of negative degree D; and positive degree Dy. That
is, let p(r) be of the form

p(r) = ao/rP* + a1 /rP* M + - dap,_1/r +ap, +ap, 417+ +ap,ep, - rP2 (40)

Theorem 2 follows by combining the Laurent polynomial method (Lemma 17) and the following
theorem.

Theorem 21. Let e < 1. Suppose that p has negative degree Dy and positive degree Do and satisfies
the following properties.

o [p(w) —1[<e
o p(2w)+1]<e

o p(0)| <1+4c¢€ forallte{l,2,...,n}

Then either D1 > Q) (w1/3) or Dy > Q («/N/w).

In fact, our proof of Theorem 21 will show that the lower bound holds even if [p(¢)] < 1+ ¢
only for £ € {w'/3 w'/3 4+ 1,... wyU{2w,2w+1,...,N}. We refer to a Laurent polynomial p
satisfying the three properties of Theorem 21 as an approxzimation for approximate counting.

Proof of Theorem 21. Let p be any Laurent polynomial satisfying the hypothesis of Theorem 21.
We begin by transforming p into a (standard) polynomial ¢ in a straightforward manner. This
transformation is captured in the following lemma, whose proof is so simple that we omit it.

Lemma 22. If p satisfies the properties of Theorem 21, then the polynomial q(r) = p(r) - rPr =
ap+air+---+ap,+p,rP1P2 is a (standard) polynomial of degree at most Dy + Do, and q satisfies
the following three properties.

o |g(w) —wPr| <e-wh
o |q2w) + (2w)P1| < e - (2w)™
o |g(0)] < (1 +¢e)fPr forall ¢ € {1,2,...,N}

We now turn to showing that, for any constant € < 1, no polynomial g can satisfy the conditions
of Lemma 22 unless D; > Q(w'/3) or Dy > Q («/N/w).

Consider the following linear program. The variables of the linear program are €, and the
Dy + Dy + 1 coefficients of q.

minimize &
such that
la(w) —wP| < - wh
4(20) + (2w)P1| < & - (2w) 1
qO)| < (1 4¢)-£P1 for all £ € {1,2,...,N}

(41)
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Standard manipulations reveal the dual.

maximize ¢(w) - wP' — ¢(2w) - (2w)Pr — Zee{l ..... N} 0 {w 2w} |p(£)] - £P1

such that

S o) -1 =0for j=0,1,2,...,Dy + Dy (42)
Sl le()] - P =1

¢o:R—-R

Theorem 21 will follow if we can exhibit a solution ¢ to the dual linear program achieving value
e > 0, for some setting of Dy > Q(w1/3) and Dy > Q) <\/N ).7 We now turn to this task.

3.4.1 Constructing the dual solution

For a set T C {0,1,..., N}, define
Qriy=" J[ -9 (43)
i=0,1,...,N,igT

Let ¢ > 2 be a constant that we will choose later (the bigger we choose ¢ to be, the better the
objective value achieved by our final dual witness. But choosing a bigger ¢ will also lower the
degrees D1, Dy of Laurent polynomials against which our lower bound will hold).

We now define two sets T} and T,. The size of T7 will

= (/)] = © (') (44)
and the size of Ty will be dy for

d = | N/(cw)J:@(W). (45)

Let
T1={Lw/(ci2)J:i:1,2,...,d1} (46)
and
T2:{C'iQ‘w:i:1,2,...’d2:: N/(cw)}. (47)
Finally, define
T = {w, 2w} UT, UTs. (48)

At last, define ®: {0,1,..., N} — R via

o0 = (1" () -er(o, (49)

Our final dual solution ¢ will be a scaled version of ®. Specifically, ® itself does not satisfy the
second constraint of the dual linear program, that Zév:l |®(¢)| - ¢P+ = 1. So letting

N
t

N

C=> 2] £, (50)

/=1
our final dual witness ¢ will be ®/C.

"We will alternatively refer to such dual solutions ¢ as dual witnesses, since they act as a witness to the fact that
any low-degree Laurent polynomial p approximating the approximate counting problem must have large error.
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The sizes of 77 and T5. Clearly, under the above definition of T5, |T3| = d2 as claimed above.
It is not as immediately evident that |T}| = d;: to establish this, we must show that for distinct
i,5 €{1,2,...,d1}, |w/(ci?)] # |w/(cj?)|. This is handled in the following easy lemma.

Lemma 23. Let i # j be distinct numbers in {1,...,d1} and ¢ > 2 be a constant. Then as long as
dy < (w/c)/3, it holds that |w/(ci?)] # |w/(cj?)].

Proof. Assume without loss of generality that i > j. Then w/(cj?) — w/(ci?) is clearly minimized
when i = dj and j = ¢ — 1. For the remainder of the proof, fix ¢ = dy. In this case,

w/(cj?) —w/(ci®) = w/ (c(i = 1)*) —w/ (i) =

w 21— 1 w 21—1 w
=— >
¢ i?(i—1) c

Here, the final inequality holds because i* = d} < w/c.
Equation (51) implies the lemma, as two numbers whose difference is at least 1 cannot have the
same integer floor. [ |

Lemma 23 is false for d; = w(wl/ 3), highlighting on a technical level why one cannot choose d;
larger than ©(w'/3) without the entire construction and analysis of ® breaking down.

3.4.2 Intuition: “gluing together” two simpler dual solutions

Before analyzing the dual witnesses ® and ¢ constructed in Equation (49) and Equation (50), in
this subsection and the next, we provide detailed intuition for why the definitions of ® and ¢ are
natural, and briefly overview their analysis.

A dual witness for purely positive degree (i.e., approximate degree). Suppose we were
merely interested in showing an approximate degree lower bound of Q(y/N/w) for approximate
counting (i.e., a lower bound on the degree of traditional polynomials that distinguish input w from
2w, and are bounded at all other integer inputs in 1,..., N). This is equivalent to exhibiting a
solution to the dual linear program with D; = 0. A valid dual witness ¢ for this simpler case is to
also use Equation (49), but to set

T ={w,2w} UTy, (52)

rather than T' = {w, 2w} U T U T5.

We will explain intuition for why Equation (52) is a valid dual solution for the approximate degree
of approximate counting in the next subsection. For now, we wish to explain how this construction
relates to prior work. In [BT13], for any constant § > 0, a dual witness is given for the fact that the
(1 — 6)-approximate degree of OR is Q(v/N). This dual witness nearly corresponds to the above,
with w = 1. Specifically, Bun and Thaler [BT13] use the set T' = {0,1} U {ci%: i = 1,2,...,\/N/c},
and they show that almost all of the “mass” of this dual witness is located on the inputs 0 and 1,

ie.,
N

[2(0)] + (1) = (L= 8)- Y [@(0)]. (53)

=2
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Here, the bigger ¢ is chosen to be, the smaller the value of § for which Equation (53) holds.

In the case of w = 1, our dual witness for approximate counting differs from this only in that
{0,1} is replaced with {1,2}. This is because, in order to show a lower bound for distinguishing
input w = 1 from input 2w = 2, we want almost all of the mass to be on inputs {1, 2} rather than
{0,1} (this is what will ensure that the objective function of the dual linear program is large).

For general w, we want most of the mass of ¥ to be concentrated on inputs w and 2w. Accordingly,
relative to the w = 1 case, we effectively multiply all points in T" by w, and one can show that this
does not affect the calculation regarding concentration of mass.

A dual witness for purely negative degree. Now, suppose we were merely interested in
showing that Laurent polynomials of purely negative degree require degree Q(wl/ 3) to approximate
the approximate counting problem. This is equivalent to exhibiting a solution to the dual linear
program with Dy = 0. Then a valid dual witness ¢o for this simpler case is to also use Equation (49),
but to set

T ={w,2w}UT. (54)

Again, we will give intuition for why this is a valid dual solution in the next subsection
(Section 3.4.3). For now, we wish to explain how this construction relates to prior work. Essentially,
the (wl/ 3)—degree lower bound for Laurent polynomials with only negative powers was proved
by Zhandry [Zhal2, Theorem 7.3]. Translating Zhandry’s theorem into our setting is not entirely
trivial, and he did not explicitly construct a solution to our dual linear program. However (albeit
with significant effort), one can translate his argument to our setting to show that Equation (54)
gives a valid dual solution to prove a lower bound against Laurent polynomials with only negative
powers.

Gluing them together. The above discussion explains that the key ideas for constructing dual
solutions ¢1, ¢o witnessing degree lower bounds for Laurent polynomials of only negative or only
positive powers were essentially already known, or at least can be extracted from prior work with
enough effort. In this work, we are interested in proving lower bounds for Laurent polynomials
with both positive and negative powers. Our dual solution ® essentially just “glues together” the
dual solutions that can be derived from prior work. By this, we mean that the set T of integer
points on which our @ is nonzero is the union of the corresponding sets for ¢; and ¢9 individually.
Moreover, this union is nearly disjoint, as the only points in the intersection of the two sets being
unioned are w and 2w.

Overview of the analysis. To show that we have constructed a valid solution to the dual linear
program (Equation (42)), we must establish that (a) ® is uncorrelated with every polynomial of
degree at most D; + Do and (b) ® is well-correlated with any function g that evaluates to +1 on
input w, to —1 on input 2w, and is bounded in [—1, 1] elsewhere. In (b), the correlation is taken with
respect to an appropriate weighting of the inputs, that on input ¢ € [N] places mass proportional to
/P

The definition of ® as a “gluing together” of ¢1 and ¢o turns out, in a straightforward manner,
to ensure that ® is uncorrelated with polynomials of degree at D1 + Ds. All that remains is to show
that @ is well-correlated with g under the appropriate weighting of inputs. This turns out to be
technically demanding, but ultimately can be understood as stemming from the fact that ¢, and ¢o
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are individually well-correlated with g (albeit, in the case of ¢o, under a different weighting of the
inputs than the weighting that is relevant for ®).

3.4.3 Intuition via complementary slackness

We now attempt to lend some insight into why the dual witnesses ¢; and ¢ for the purely
positive degree and purely negative degree take the form that they do. This section is deliberately
slightly imprecise in places, and builds on intuition that has been put forth in prior works proving
approximate degree lower bounds via dual witnesses [BT13, Thal6, BKT18|.

Notice that ¢y is precisely defined so that ¢ (i) = 0 for any i ¢ {w, 2w}UT5, and similarly ¢9(i) =
0 for any i € {w,2w} UT;. The intuition for why this is reasonable comes from complementary
slackness, which states that an optimal dual witness should equal 0 except on inputs that correspond
to primal constraints that are made tight by an optimal primal solution. By “constraints made
tight by an optimal primal solution”, we mean constraints that, for the optimal primal solution,
hold with equality rather than (strict) inequality.

Unpacking that statement, this means the following. Suppose that ¢ is an optimal solution to
the primal linear program of Section 3.4, meaning it minimizes the error € amongst all polynomials
of the same same degree. The constraints made tight by ¢ are precisely those inputs £ at which ¢
hits its “maximum error” (e.g., an input £ such that |g(¢)| = (1 +¢) - £P1). We call these inputs
mazimum-error inputs for q. Complementary slackness says that there is an optimal solution to
the dual linear program (Equation (42)) that equals 0 at all inputs that are not maximum-error
inputs for gq.

In both the purely positive degree case, and the purely negative degree case, we know roughly
what primal optimal solutions ¢ look like, and moreover we know what roughly their maximum-error
points look like. In the first case, the maximum-error points are well-approximated by the points
in 75, and in the purely negative degree case, the maximum error points are well-approximated by
the points in T7. Let us explain.

Purely positive degree case. Let T, be the degree d Chebyshev polynomial of the first kind. It
can be seen that P({) =T 57 (1 4+ 2/N — £/N) satisfies P(1) > 2, while [P({)| <1for £=2,3,...,N.
That is, up to scaling, P approximates the approximate counting problem for w = 1, and its known
that its degree is within a constant factor of optimal.

It is known that the extreme points of Ty are of the following form, for k =1,...,d:

2k —1
cos (ZE=1 ) o - k?/(2d%), (55)
2d

where the approximation uses the Taylor expansion of the cosine function around 0. Equation (55)
means that the extreme points of P are roughly those inputs ¢ such that 1+2/N —¢/N ~ 1—k?/(2d?),
where d = v/N. Such ¢ are roughly of the form ¢ ~ ¢ - % for some constant ¢, as i ranges from 1 up
to O(N1/2).

More generally, when w > 1, an asymptotically optimal approximation for distinguishing input
w from 2w is P({) = T\/m (14+2w/N —¢/(wN)). The extreme points of P are roughly of the

form ¢ ~ c - i? - w for some constant c, as i ranges from 1 up to ©(y/N/w), which is exactly the
form of the points in our set 75.
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Purely negative degree case. In Lemma 18, we exhibited a simple, purely negative degree
Laurent polynomial p (i.e., p(f) is a standard polynomial in 1/¢) with degree D; = w'/3 that solves
the approximate counting problem (the construction is due to MathOverflow user “fedja”). Roughly
speaking, p can be written as a product p(¢) = u(€) - v(£), where u(¢) has the roots £ = 1,2,...,w'/?,
and v(¢) is (an affine transformation) of a Chebyshev polynomial of degree w'/3, applied to 1/£.
One can easily look at this construction and see that p(¢) outputs exactly the correct value on
inputs {1,2,... ,wl/ 31, so these are not maximum error points for p. Moreover, the analysis of the
maximum error points for Chebyshev polynomials above can be applied to show that the maximum
error points of p are roughly of the form ¢ such that 1/¢ = c-i?/w for some constant ¢, with i
ranging from 1 up to ©(w'/3). This means that the extreme points are roughly of the form ¢ ~ =,
which is why our set T consists of points of the form | % | (the floors are required because we are
proving lower bounds against polynomials whose behavior is only constrained at integer inputs).

3.4.4 Analysis of the dual solution ®
Lemma 24. Let dy = |T1| and do = [Tz|. Then for any j = 0,1,...,dy + da, it holds that

> a() - =0.

N
(=1

Proof. A basic combinatorial fact is that for any polynomial @ of degree at most N — 1, the

following identity holds:
Y /N
> ( ) ) (~1'Q() = 0. (56)
=0

Observe that for any j < dj +ds + 1,
Q7(¢) - ¥ is a polynomial in £ of degree at most N — 1. (57)

Furthermore, ®(0) = 0, because 0 ¢ T'. Hence

=0

Thus, we can calculate:

Here, the second equality follows from Equation (58), while the third follows from Equations (56)
and (57). [

Let us turn to analyzing ®’s value on various inputs. Clearly the following condition holds:
dl)=0forall £ &T. (59)

27



Next, observe that for any r € T,

1
- LerjprIr =il

[@(r)] = N

Consider any quantity ¢ -i?-w € T5. Then

e jpw v =7l
[Lier jzeiza [0 —j|

=20l (T2 Jo =2 -ul) - (T2 (w- | 2]))
cri2ew—w| e 2w = 2ul - (T o e 2 —w-c 2)) - (T (wee-2 = | 2]))
e (e (= ) T (v - )

(it = 1) (e 2)- oot ([T, it = 721) - (TI (w2 = [ 25])
) e (I (2 = ) T (w0 [ 2]
(e ) (e = 2) - (T 2 = 221) - (T (e 2 = 2))

Now, observe that

(o [5]) <01 (o5 ) - o (- 3): ()

= j=1 2
<Hw (1—> <1+(1_11/C).w> < (ﬁlw <1CJ12>) ~(14o0(1)).  (61)

|@(c-w-i?)|/|@(w)] =

(60)

=
J

Hence, we see that Expression (60) is bounded by

(I 62~ 1) - (I (1 22)) -1+
(ci2 = 1) (ci2 = 2) - (T12, i - 321) - (18 (2 = 22a))
c- (do!)?- (H‘t1 (1 - %)) (14 0(1))
(ci2 — 1) - (ci2 — 2) - (H?il,j# i — i +J\) (c-i?)h (H?:l (1 - ﬁ))
e (da)? 22 (TI (1= ) - (1+ (1))
(ci2 —1) - (ci%2 — 2) - (do +9)! (da —i)! - (c - i2)dr - (H?Ll (1 — = ))

<

]2
< c- 2. (dz!) “(1+0(1)) < 2(1+0(1)) ' (62)
“ (ci2=1)(ci2—2) - (dg + ) (do —i)! - (c-i2)d — (1 — c%) (c-12=2)-(c-i2)h
: : : (da))? (D)
In the penultimate inequality, we used the fact that BTG = (%22) <1.
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Next, consider any quantity L J € Ti. Then

= ([ ))]/ e
fw— 2wl (152, fw - es?wl) (T2 (v - | %]))
([ 2%]) - (2w = [ 2]) (T2 (w5~ (%)) T
fw—2u| (T2, o - es?wl) (T2 (v - | %))
(w—2) - (2= ) (T2 (w0 e 2 = 20) ) Tk [22) = [ 222
_ 2w (T e — ) (T (v ) - (1 +000)
T (w— ) 2w — ) (T2 (w0 e = 2) ) Ty | L) — | 2]

Here, the final inequality used Equation (61). Let us consider the expression [ P
This quantity is at least

] — | ot

IN

[e) = |2 |

dl 2 ;252
(e 5o 1 U0
=ty MO =i

d . . . . ;252

a1 1—1[ =l - g+l — =

=w Ci2j2

j=1#

dr o 22

b=t =l -1+ = =5

- (012) H 52 B (64)

j=1#i

We claim that Expression (64) is at least

(022>d1 1 % (65)

In the case that ¢ = 2 and d; is (at most) w'/3, this is precisely [Zhal2, Claim 4]. We will ultimately
take ¢ to be a constant strictly greater than 2 and hence d; = |(w/c)"/?| is a constant factor
smaller than w'/3. The proof of [Zhal2, Claim 4] works with cosmetic changes in this case. For
completeness, we present a derivation of the claim in Appendix A.

Equation (65) implies that Expression (63) is at most:

jw—2w| (T2, o = ¢j?wl) (T (w——))
(w—2) - (20— 2) (T2, (wee- 72— 2)) (
(I - ) (T <—1»>
(=) 2 ) (T (e 2 -
26 - 1/0) (L (1- ) -
u—m»@—#wm;w—ﬁmeaﬁl
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2(1 1 _
< (1+o(1)) <y (CiQ)dl 1 (66)
(1= ) (- o) ()™
ci? ci?/) \ci?
Summarizing Equations (62) and (66), we have shown that: for any quantity c-i% - w € Tb,
2(1+o0(1))

|(c-w-i*)| /|®(w)] < (1—-25) (c-2—2)-(c @)k (67)
and for any quantity L J e T,
o ([ )] /et < a- @)™ ()

Let ¢ = ®/C, where C is as in Equation (50). Let D; = d; and Dy = dp. Lemma 24 implies
that ¢ is a feasible solution for the dual linear program of Section 3.4.1. We now show that, for
any constant § > 0, by choosing ¢ to be a sufficiently large constant (that depends on ¢), we can
ensure that ¢ achieves objective value 1 — 20.

Let

A = ow)]-w”,
B = [9(2w) - (2w)>,

and
dy
E:Z\@(Lw/cizjﬂ (lw/ei®]) —i—Z\(I) |w - ci? (w'c-i2)D1.
=1

By Equation (59), C = A+ B+ E.

Moreover, observe that sgn(®(w)) = —sgn(®(2w)), so without loss of generality we may assume
®(w) > 0 and ®(2w) < 0 (if not, then replace ® with —&® throughout).

We now claim that by choosing ¢ to be a sufficiently large constant, we can ensure that £ < §- A.
To see this, observe that Equations (67) and (68), along with the fact that D; = d; and Dy = ds
implies that

1 [[& - &z o012 (1= ) (1+0(1)
E/A< —5; [(;(LW/WZJ) 4+ (c?)" 1) + (; (w-e-i?)” (c(.i2_2;.(c i?)d1)>]
4 _ & 2(1—-5) (1+o0(1
D e B O S R e e )|
ag o 2(140(1)
“(S78) (S oEed )

Since 52, 1/(ci?) < g—z, we see that choosing ¢ to be a sufficiently large constant depending on
d ensures that E/A < ¢ as desired.
Hence, ¢ achieves objective value at least

¢(w) - w — $(2w) - (2w)" — > |6(0)] - €71
Le{l,...,N} fZ{w,2w}
A+B-E _(1-§A+B

>1- 2.
“A+B+E-(1+0)A+B "
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Figure 3: Diagram of Theorem 25 (not drawn to scale).

4 Approximate counting with a quantum witness

As described in the introduction, in this section we first lower bound the SBQP complexity of the
AND3 o ApxCount,, problem (Theorem 5), and then use Lemma 16 to prove a lower bound on the
QMA complexity of ApxCounty ,, (Theorem 4).

4.1 Lower bound for SBQP algorithms

Our lower bound on the SBQP complexity of AND2 o ApxCounty ,, hinges on the following theorem.
The theorem uses Laurent polynomials to prove a degree lower bound for bivariate polynomials that
satisfy an upper bound on an “L”-shaped pair of rectangles and a lower bound at a nearby point:

Theorem 25. Let 0 < w < 32w < N. Let Ry = [4w, N] x [0,w/2] and Rz = [0, w/2] x [4w, N| be
disjoint rectangles in the plane, and let L = R; U Ry. Let p(z,y) be a real polynomial of degree d
with the following properties:

1. p(4w,4w) > 1.5.
2. 0<p(z,y) <1 forall (x,y) € L.

Then d = Q(y/N/w).

Proof. Observe that if p(x,y) satisfies the statement of the theorem, then so does p(y,z). This is
because the constraints in the statement of the theorem are symmetric in « and y (in particular,
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because R; and Ry are mirror images of one another along the line z = y; see Figure 3). As a result,
we may assume without loss of generality that p is symmetric, i.e., p(z,y) = p(y, x). Else, we may
replace p by w because the set of polynomials that satisfy the inequalities in the statement
of the theorem are closed under convex combinations.

Consider the hyperbolic parametric curve (z = 4wt,y = 4w/t) as it passes through R; (see
Figure 3). We can view the restriction of p(z,y) to this curve as a Laurent polynomial ¢(t) =
p(4wt, 4w /t) of positive and negative degree d. The bound of p(z,y) on all of R implies that
|6(t)] < 1 when t € [8, 2] and that ¢(1) > 1.5 (see Figure 3). Moreover, the condition that p(z,y)
is symmetric implies that £(t) = £(1/t).

By Lemma 14 for symmetric Laurent polynomials, £(¢) can be viewed as a degree d polynomial
q(t+1/t). Under the transformation s =t + 1/¢, ¢ satisfies |¢(s)| < 1 for s € [8+1/8, &L + 4] and
q(2) > 1.5. Note that the length of the interval [8 4+ 1/8, % + 4] is O(N/w) because w < N. By
an appropriate affine transformation of ¢, we can conclude from Lemma 7 with = ©(w/N) that

d = Q(/N/w). n

Why is Theorem 25 useful? Omne may be tempted to apply this theorem directly to the
polynomial p(x,y) obtained in Lemma 13 to conclude a degree lower bound (and thus a query
complexity lower bound), as the “L”-shaped pair of rectangles L = R; U Ry correspond to “no”
instances of AND2 o ApxCounty ,,, while (4w, 4w) corresponds to a “yes” instance. However, even
though p(x,y) is bounded at lattice points in L, it need not be bounded along the entirety of L.®

To obtain a lower bound, we instead use the connection between the polynomials p(x,y) and
q(s,t) from Lemma 13, and establish Theorem 5 from the introduction, restated for convenience:

Theorem 5. Consider an SBQP algorithm for AND2 o ApxCounty ,, that makes T' queries to
membership oracles for the two instances of ApxCounty .. Then T'= () (min{w, \/N/w}).

Proof. Let N > 32w (otherwise the theorem holds trivially). Since @ is an SBQP algorithm, we
may suppose that () accepts with probability at least 2. on a “yes” instance and with probability
at most a on a “no” instance (note that o may be exponentially small in N). Take p(z,y) and
q(s,t) to be the symmetrized bivariate polynomials of degree at most 27" defined in Lemma 13.
Define L' = ([0, w] x [0, w]) U ([0, w] X [2w, N]) U ([2w, N] x [0, w]). The conditions on the acceptance
probability of @ for all Sy, S that satisfy the ApxCounty,, promise imply that p(z,y) satisfies these
corresponding conditions:

1. 1> p(x,y) > 2a for all (z,y) € ([2w, N] x [2w, N]) N Z2.
2. 0 < p(z,y) < aforall (z,y) € L' NZ2

Our strategy is to show that if 7" = o(w), then these conditions on p imply that the polynomial
q(s,t) - % satisfies the statement of Theorem 25 for all sufficiently large w. This in turn implies
T = Q(y/N/w). This allows us conclude that either T' = Q(w) or T = Q(y/N/w), which proves the
theorem.

80ne can nevertheless use this intuition to obtain a nontrivial (though suboptimal) lower bound by inspecting p
alone. Using the Markov brothers’ inequality (Lemma 6), if deg(p) = o(y/w), then the bounds on p(z,y) at lattice
points in L imply that |p(z,y)| < 14 ow(1) for all (z,y) € L. Thus, Theorem 25 applies if deg(p) = o(/w), so

overall we get a lower bound of (2 (min {\/'LT), \/N/w}) for the SBQP query complexity of AND2 o ApxCounty . See
arXiv:1902.02398 for details.
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Suppose T' = o(w), so that p(z,y) and q(s,t) both have degree o(w). We begin by bounding
p(z,y) at the lattice points (z,y) outside of L. We claim the following:

(a) |p(z,y)| < a-a-exp(bd?/w) < a-a-exp(bd) whenever (z,y) € L' and either = or y is an integer,
where a and b are the constants from Lemma 10. This follows from Lemma 10 by fixing either x
or y to be an integer and viewing the resulting restriction of p(z,y) as a univariate polynomial
in the other variable.

() |p(z,y)| < a-a-exp(bd) - exp(2v/3d) = a - a - exp((b + 2v/3)d) whenever z € [w,2w], y € [0,w],
and y is an integer. This follows Lemma 7: consider the univariate polynomial p(-,y) on the
intervals [0, w] and [2w, 3w], where it is bounded by (a).

(c) |p(z,y)| < a-a-exp((b+2v3)d)-a-exp(bd?/w) < a-a?-exp((2b+2+v/3)d) whenever x € [w, 2w]
and y € [0, w]. This follows from Lemma 10: consider the univariate polynomial p(z,-) on the
interval [0, w], where it is bounded at integer points by (b).

(d) |p(z,y)| < a-a®-exp((2b + 2v/3)d) - exp(4dy/w) = a - a® - exp((2b + 2v/3 + 4y /w)d) whenever
x € [0,N], y € [w+ 1,N], and z is an integer. This follows from Lemma 7: consider the
univariate polynomial p(x,-) on the interval [0, w], where it is bounded by (a) when z € [0, w]
or x € [2w, N], or bounded by (c) when z € [w,2w]. By an affine shift, this corresponds to
applying Lemma 7 with p = 2y/w — 2, with the observation that \/2u + u? < p+ 2.

We now use this to upper bound ¢(s,t) when s € [4w, N] and t € [0, w/2]. Let X and Y be drawn
from N-trial binomial distributions with means s and ¢, respectively, so that ¢(s,t) = E[p(X,Y)].
Using the above bounds and basic probability, we have

Ep(X,Y)| < a- (Pr[X >2w,Y <w|+Pr[X <2w,Y <w|-a-exp ((b+2\/§> d) +

+ i Pr[Y =y -a2~exp<(25+2\/§+43//w> d)) (69)

y=w-+1

<o- <1+Pr[XSQw]-a-exp((b+2\/§)d>+

+ i\]: Pr[YZy]'a2-exp<(2b+2\/§+4y/w> d)) (70)

y=w+1
The probabilities above are easily bounded with a Chernoff bound:

E[p(X,Y)] <a- (1 +a-exp ((b+2\/§> d—w/2> +

+ g: aQ-exp((2b+2x/§+4y/w)d—y/6))- (71)

y=w-+1

Because a and b are universal constants from Lemma 10, when d = o(w), the first exponential
term becomes arbitrarily small for all sufficiently large w. Moreover, for all sufficiently large w, the
remaining sum becomes bounded by a geometric sum. For some constant ¢, we have

g: a2-exp<<2b+2\/§+4y/w)d—y/6> < i c-exp(—y/12)

y=w+1 y=w+1
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= 0y(1).

Thus we conclude that 0 < ¢(s,t) < a-(1+0y4(1)) when s € [dw, N] and ¢t € [0,w/2] (i.e., (s,t) € Ry
in the statement of Theorem 25). By symmetry, we can conclude the same bound when s € [0, w/2]
and t € [4w, N] (i.e., (s,t) € Ry in the statement of Theorem 25).

Now, we lower bound ¢(4w,4w). Let X and Y be drawn from independent N-trial binomial
distributions with mean 4w, so that (4w, 4w) = E [p(X,Y)]. Then we have

Ep(X,Y)] > 2a-PrlX > 2w, Y > 2uw]
> 2a- (1 — Pr[X < 2w] — Pr[Y < 2uw])
> 2 (1 —2exp(—w/2))
> 20 (1 —o0y(1))

We conclude that ¢(s,t) - % satisfies the statement of Theorem 25 for all sufficiently large w. W

We remark that this lower bound is tight, i.e., there exists an SBQP algorithm that makes
(@) (min {w, N/w}) queries. The O(y/N/w) upper bound follows from the BQP algorithm of

Brassard, Hoyer, and Tapp [BHT98a]. The O(w) upper bound is in fact an SBP upper bound with
the following algorithmic interpretation: first, guess w + 1 items randomly from each of Sy and Sj.
Then, verify using the membership oracle that the first w + 1 items all belong to Sy and that the
latter w 4 1 items all belong to S1, accepting if and only if this is the case. Clearly, this accepts
with nonzero probability if and only if [Sp| > w + 1 and |S;| > w + 1.

4.2 Lower bound for QMA

We now show some implications for QMA that follow from the SBQP lower bound of Theorem 5.
Using the guessing lemma (Lemma 16), we can quantitatively lower bound the QMA complexity of
ApxCounty ,, as stated in the introduction:

Theorem 4. Consider a QMA protocol that solves ApxCounty ,,,. If the protocol receives a quantum
witness of length m, and makes T queries to the membership oracle for S, then

m-T:Q(min{w, M}) . (5)

Proof. Running the verifier, V, a constant number of times with fresh witnesses to reduce the
soundness and completeness errors, one obtains a verifier with soundness and completeness errors
1/6 that receives an O(m)-length witness and makes O(T') queries. Repeating twice with two
oracles and computing the AND, one obtains a QMA verifier V950951 for AND;y o ApxCount Now
with soundness and completeness errors 1/3 that receives an O(m)-length witness and makes
O(T) queries. Applying the guessing lemma (Lemma 16) to V', there exists an SBQP algorithm
Q95091 for AND; o ApxCounty ,, that makes O(m - T') queries. Theorem 5 tells us that m - T' =

0 (min {w, \/m}) m

Theorem 5 also implies several oracle separations:
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Corollary 26. There exists an oracle A and a pair of languages Lo, L1 such that:

1. Ly, L, € SBPA
2. LoN Ly ¢ SBQPA.
3. SBPA ¢ QMAA.

Proof. For an arbitrary function A : {0,1}* — {0,1} and i € {0, 1}, define AT = {z € {0,1}" :
A(i,z) = 1}. Define the unary language L{ = {17 : |A?| > 2/2}. Observe that as long as A
satisfies the promise |A?| > 2/2 or |A?| < 272! for all n € N, then L € SBPA. Intuitively, the
oracles A that satisfy this promise encode a pair of ApxCounty,, instances |Af| and [AT| for every
n € N where N = 2" and w = 2"/2~1.

Theorem 5 tells us that an SBQP algorithm Q that makes 0(2"/%) queries fails to solve AND; o
ApxCounty ,, on some pair (Sp, S1) that satisfies the promise. Thus, one can construct an A such
that Lo, L, € SBP? and Lo N L; & SBQP#, by choosing (A, A7) so as to diagonalize against all
SBQP algorithms.

Because QMA4 is closed under intersection for any oracle A, and because QMA4 - SBQP# for
any oracle A, it must be the case that either Ly & QMA4 or L, ¢ QMA~A. |

We remark that this gives an alternative construction of an oracle relative to which SBP is not
closed under intersection. To our knowledge, this is the first that uses the polynomial method
directly.

5 Discussion and open problems

5.1 Approximate counting with samples and queries only

If we consider the model where we only have membership queries and samples (but no reflections),
then the best upper bound we can show is O (min {\/E, \/N/w}>, using the sampling algorithm

that looks for birthday collisions, and the quantum counting algorithm. It would be interesting to
improve the lower bound further in this case, but it is clear that the Laurent polynomial approach
cannot do so, since it hits a limit at w!/3. Hence a new approach is needed to tackle the model
without reflections.

We now give what we think is a viable path to solve this problem. Specifically, we observe
that our problem—of lower-bounding the number of copies of |S) and the number of queries to Og
needed for approximate counting of S—can be reduced to a pure problem of lower-bounding the
number of copies of |S). To do so, we use a hybrid argument, closely analogous to an argument
recently given by Zhandry [Zhal7] in the context of quantum money.

Given a subset S C [L], let |S) be a uniform superposition over S elements. Then let

prni = Escir) - isi-w | (15) (5)*] (72)
be the mixed state obtained by first choosing S uniformly at random subject to |S| = w, then taking

k copies of |S). Given two mixed states p and o, recall also that the trace distance, ||p — o||,, is
the maximum bias with which p can be distinguished from ¢ by a single-shot measurement.
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Theorem 27. Let 2w < L < N. Suppose ||prwi — PL2wkll, < 1—10. Then any quantum algorithm
Q requires either (\ / ]}f) queries to Og or else Q (k) copies of |\S) to decide whether |S| = w or

|S| = 2w with success probability at least 2/3, promised that one of those is the case.

Proof. Choose a subset S C [N] uniformly at random, subject to |S| = w or |S| = 2w, and consider
S to be fixed. Then suppose we choose U C [N] uniformly at random, subject to both |U| = L
and S C U. Consider the hybrid in which @ is still given R copies of the state |S), but now gets

oracle access to Oy rather than Og. Then so long as () makes o \/% queries to its oracle, we

claim that @ cannot distinguish this hybrid from the “true” situation (i.e., the one where @) queries
Og) with € (1) bias. This claim follows almost immediately from the BBBV Theorem [BBBV97].
In effect, @ is searching the set [IN]\ S for any elements of U \ S (the “marked items,” in this
context), of which there are L — | S| scattered uniformly at random. In such a case, we know that

Q ( JE:N?D =Q <\ / g) quantum queries are needed to detect the marked items with constant

bias.

Next suppose we first choose U C [N] uniformly at random, subject to |U| = L, and consider U
to be fixed. We then choose S C U uniformly at random, subject to |S| = w or |S| = 2w. Note
that this produces a distribution over (.S, U) pairs identical to the distribution that we had above.
In this case, however, since U is fixed, queries to Oy are no longer relevant. The only way to decide
whether [S| = w or |S| = 2w is by using our copies of |S)—of which, by assumption, we need 2 (k)
to succeed with constant bias, even after having fixed U. |

One might think that Theorem 27 would lead to immediate improvements to our lower bound for
the queries and samples model. In practice, however, the best lower bounds that we currently have,
even purely on the number of copies of |S), come from the Laurent polynomial method (Theorem 2)!
Having said that, we are optimistic that one could obtain a lower bound that beats Theorem 2 at
least when w is small, by combining Theorem 27 with a brute-force computation of trace distance.

5.2 Approximate counting to multiplicative factor 1+ ¢

Throughout, we considered the task of approximating |S| to within a multiplicative factor of 2. But
suppose our task was to distinguish the case |S| < w from the case |S| > (1 + ¢) w; then what is the
optimal dependence on €7 As discussed in Section 1, with only membership queries the quantum

query complexity of this problem is O(% ﬂ). One can also show without too much difficulty

w

that in the queries+QSamples model, the problem can be solved with

Vw 1 [N
0 (min{;u, }) (73)
et eV w
queries and copies of |S).

As observed after Theorem 3, the problem can also be solved with
. w3 1 [N
O min m, g E (74)
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samples and reflections. On the lower bound side, what generalizations of Theorem 2 can we prove
that incorporate €7 We note that the explosion argument doesn’t automatically generalize; one
would need to modify something to continue getting growth in the polynomials v and v after the
first iteration. The lower bound using dual polynomials should generalize, but back-of-the-envelope
calculations show that the lower bound does not match the upper bound.

5.3 Other questions

Non-oracular example of our result. Is there any interesting real-world example of a class
of sets for which QSampling and membership testing are both efficient, but approximate counting is
not? (Le., is there an interesting non-black-box setting that appears to exhibit the behavior that
this paper showed can occur in the black-box setting?)

Improved QMA lower bounds. The QMA lower bound trade-off between m and T for
ApxCounty ,, is not optimal in general: when w = O(1), there is no QMA protocol for ApxCounty,,
that receives a constant size witness and makes a constant number of queries for large IN. Since our
SBQP lower bound is optimal, proving better QMA lower bounds will require new techniques.

The Laurent polynomial connection. At a deeper level, is there is any meaningful connection
between our two uses of Laurent polynomials? And what other applications can be found for the
Laurent polynomial method?
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A Establishing Equation 65

A.1 A clean calculation establishing a loose version of equation 65

For clarity of exposition, we begin by presenting a relatively clean calculation that establishes a
slightly loose version of Equation (65). Using just this looser bound, we would be able to establish
that Equation (65) holds (with the constant 1/2 replaced by a slightly smaller constant) so long as
we set di to be © (wl/ 3/log w). A slightly more involved calculation (cf. Appendix A.2) is required
to establish Equation (65) for our desired value of dy = | (w/c)Y/?].

Expression (64) equals

. d1 .9 .9
w >d1—1 i? < . afy
<f. : NI RUELREE
ci? (D w
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( w )dl*l ;2 ﬁ Gi—il i (1- ci?j? )
= -3 : : J—il-|j+i
@) a4 NErIES
_ <£>d1—1 (d1 +1) d1 —1) ﬁ ( ci?j? ) (75)
2 2 ((dy L w - |j —illj + 1|
dai-1 1 o ct”yj
> -
- (612) 2 H <1 \J—ZHJH\)
=1
(s s
@) e\ 2 e
5 di
w\da-1 1 ci? 42
> (N 1o S — 76
(@) e\ X e o

72

Let us consider the expression ZJ 1jti m If 2 ¢ [52/2,352/2], then the j’th term in
this sum is at most 2. Hence, letting H; denote the ith Harmonic number and using the fact that

H; <In(i+1),

d .
e =il +
V2] 9

S2dt Y
i=1\/2/3i]
[V2:] ,
S 2- dl + Z ﬁ
i=1v/2/34
(V2-1)i
<2+ V20 > 2/f
j=1
< 2dy +2V2 i H; < 2dy + 2v2in(i + 1). (77)

We conclude that if d; were set to a value less than w'/3/(100 - ¢ - In(w)) (rather than to
L(w/c)l/gj), then Expression (76) is at least

(%)dl—l‘ 1—21/6. (78)

A.2 The tight bound

To obtain the tight bound, we need a tighter sequence of inequalities following Expression (75).
Specifically, Expression (75) is bounded below by:
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The rough idea of how to proceed is as follows. Equation (77) implies that for i < w'/3/Inw,

the factor
ﬁ ci2j2
F1 = (1 - - T f >
w-lj—1 i
Pyt |7 —all7 +1]
is at some a positive constant, and hence Expression (79) is bounded below by the desired quantity.
If i > w'/3/Inw, then Equation (77) does not yield a good bound on this factor, leaving open the
possibility that this factor is subconstant. But in this case, the factor F5 := e’/ (2d1) > eSUd) - and

the largeness of F> dominates the smallness of Fj.

In more detail, let z; ; = % Then for all ¢ # j such that ¢, j < dy,

c-d3(dy—1)? _c-d}
<1/2, 80
T = (2dy —1)-w — 2w — / (80)

where in the final inequality we used the fact that dy < (w/c)'/3.

Using the fact that 1 — 2 > e~*~*" for all = € [0,1/2], we can write

d1
2
F > H e I i

j=Li#i
Hence,
dy
F1 . F2 > exp Z2/(2d1) - Z —Tij — l‘?’j
j=Li#i
From Equations (77) and (80), we know that
il ci? ci?
Y wigtal; < (3d1 +3v/2iIn(i + 1)) < (4dy n(dy)).
’ w

J=1j#i

Hence,

2
F, - Fy > exp <i2/(2d1) — % : 4cln(d1))
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o)

exp <7;2 : 21dl (1 - 0(1)))

> 1.

Vv

Equation (65) follows.
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