
Randomness and Intractability in Kolmogorov
Complexity
Igor Carboni Oliveira
Department of Computer Science, University of Oxford, UK
igor.carboni.oliveira@cs.ox.ac.uk

Abstract
We introduce randomized time-bounded Kolmogorov complexity (rKt), a natural extension of

Levin’s notion [24] of Kolmogorov complexity. A string w of low rKt complexity can be decompressed
from a short representation via a time-bounded algorithm that outputs w with high probability.

This complexity measure gives rise to a decision problem over strings: MrKtP (The Minimum rKt
Problem). We explore ideas from pseudorandomness to prove that MrKtP and its variants cannot
be solved in randomized quasi-polynomial time. This exhibits a natural string compression problem
that is provably intractable, even for randomized computations. Our techniques also imply that
there is no n1−ε-approximate algorithm for MrKtP running in randomized quasi-polynomial time.

Complementing this lower bound, we observe connections between rKt, the power of randomness
in computing, and circuit complexity. In particular, we present the first hardness magnification
theorem for a natural problem that is unconditionally hard against a strong model of computation.

2012 ACM Subject Classification Theory of computation

Keywords and phrases computational complexity, randomness, circuit lower bounds, Kolmogorov
complexity

1 Introduction

The Kolmogorov complexity of a string w is the length of the shortest program that prints
w. This concept has found connections to a variety of topics in mathematics and computer
science. Notably, Kolmogorov complexity can be used to derive Gödel’s incompleteness
theorems (see e.g. [12, 20, 22] and references therein), and the associated incompressibility
method has numerous applications in areas such as graph theory, combinatorics, probability,
and number theory (see [25] for a comprehensive treatment of the subject).

It is well known that computing the Kolmogorov complexity of a string is undecidable.
Indeed, it is easy to see that if it were computable, then it would be possible to inspect all
strings of length n and print the first string z that has complexity at least n. The resulting
program provides a shorter description of z, which is contradictory.

Despite its many applications, the uncomputability of Kolmogorov complexity can render
it useless in situations where an upper bound on the running time of algorithms is desirable.
A time-bounded variant of Kolmogorov complexity introduced by Levin [24] has been very
influential in algorithms and complexity theory (see e.g. [1, 2, 13]). In Levin’s definition, the
complexity of a string w takes into account not only the description length of a program
generating w, but also its running time. A bit more formally, we use Kt(w) to denote the
minimum over |M | + log t, where M is a machine that prints w when it computes for t
steps. The choice of log t in this definition can be justified by its applications in theory of
computation, such as Levin’s optimal universal search (see [1]).

Kolmogorov complexity and Levin complexity are important measures of the “random-
ness”, or “information”, of a string. But while the computability aspects of Kolmogorov
complexity are well understood, the complexity-theoretic aspects of time-bounded Kolmogorov
complexity remain mysterious. It is easy to see that Kt(w) can be computed in exponential
time 2O(|w|). Note however that the argument presented above for the uncomputability of

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 64 (2019)

mailto:igor.carboni.oliveira@cs.ox.ac.uk

2 Randomness and Intractability in Kolmogorov Complexity

Kolmogorov complexity simply does not work when one takes into account running time.
Let MKtP (The Minimum Kt Problem) denote the problem of deciding the Kt complexity

of an input string. The question of whether MKtP ∈ P was explicitly posed in [4]. There is
evidence that the problem is hard, since under standard cryptographic assumptions it follows
that MKtP /∈ P. The best known upper bound on the complexity of MKtP is its inclusion in
E = DTIME[2O(n)]. Since it is known that E * P by the deterministic time hierarchy theorem,
unconditionally proving that MKtP /∈ P might be within reach of existing techniques.

In this work, we investigate time-bounded Kolmogorov complexity in the presence of
randomness. More precisely, we consider a natural extension of Kt complexity obtained when
one allows the algorithm generating the string to be randomized. The only requirement is
that it generates the desired string (in some fixed time bound t) with high probability. Thus
we let rKt(w) denote the minimum over |M |+ log t, where M is a probabilistic machine that
prints w with probability at least 2/3 when it computes for t steps.

This extension of Kt complexity is motivated from several perspectives. First, it is in line
with the ubiquitous role of probabilistic algorithms in modern theoretical computer science.
Second, it allows many results on time-bounded Kolmogorov complexity to be extended to
the randomized setting. (For instance, it is not hard to see that if SAT ∈ BPTIME[t], then
every satisfiable formula φ admits a satisfying assignment of (conditional) rKt complexity at
most O(log t+ log |φ|).1 This allows one to define an optimal randomized universal search,
in the spirit of Levin’s result [23].) Moreover, rKt complexity can be interpreted as an
extension of Kt complexity to the pseudodeterministic setting (see [15] and papers citing this
reference), an active research direction in algorithms and complexity. Finally, by interpreting
time-bounded Kolmogorov complexity as a measure of data compression, it becomes rather
natural to admit representations that can be decoded via randomized algorithms. This might
allow better compression rates and faster decompression procedures.2

Several basic questions pose themselves: What is the computational complexity of deciding
rKt(w)? Does randomization provide better compression, in the sense that rKt(w) might
be substantially smaller than Kt(w) for some strings w? How does rKt and its associated
decision problem relate to the complexity of deciding MKtP?

In addition to putting forward the concept of randomized time-bounded Kolmogorov
complexity, our work contains the following contributions.

Our Results. In order to state our results in a general form, we let rKtλ denote the
minimum over |M |+ log t, where M is a probabilistic machine that prints w with probability
at least λ when it computes for t steps.3 We let MrKtP[β, α, s] denote the promise problem
of distinguishing whether rKtβ(w) ≤ s(|w|) or rKtα(w) > s(|w|), where 1/2 < α ≤ β < 1 and
s : N→ N. The problem is easier the larger the gap between α and β, but our lower bound
applies to all settings of the two parameters.

1 It is possible to use the assumption to find the lexicographic first satisfying assignment of φ given the
description of φ in probabilistic time poly(t, |φ|).

2 While the definition of rKt appears to be rather natural in hindsight, to our knowledge it has not been
previously considered in the literature, despite the many variants of time-bounded Kolmogorov complexity
investigated in other works (see e.g. [4, 5]). Intuitively, allowing randomness in the computation is
somewhat counter-intuitive, given that Kolmogorov complexity tries to capture how far from random
the output string is. This may explain in part why this concept had not been identified before this
work. It is worth noting that our definition is influenced by the emerging area of pseudodeterministic
algorithms. Indeed, rKt is a candidate definition for the “pseudodeterministic complexity” of a string.
This might explain why defining rKt is more evident at this point compared to previous works.

3 We assume for definiteness thatM is a “clocked” machine that runs in time at most t on all computation
paths. This is not essential, and does not significantly affect the asymptotics of rKt.

Igor C. Oliveira 3

It is not hard to prove that MrKtP can be solved in randomized exponential time if α < β.
Our main technical result is the following unconditional lower bound.

I Theorem 1. Let 1/2 < α ≤ β < 1 and s(n) = nγ , where 0 < γ < 1. Then MrKtP[β, α, s] /∈
Promise-BPTIME[npoly(logn)].

Note that MrKtP is a total function if α = β, and that the lower bound also holds in
this regime. Theorem 1 presents a natural string compression problem that is provably
intractable, even with randomness. While it is known that BPEXP * BPQP, existing proofs
of this separation and its extensions only produce artificial computational problems (see
e.g. [19, 7, 14, 9] for more background). The proof of Theorem 1 employs different techniques,
and the argument is robust enough to establish the hardness of several variants of the problem.
We will discuss one of these extensions later in this section.

The main technique used in the proof of Theorem 1 is indirect diagonalization. The
argument makes use of results from the theory of pseudorandomnenss, and relies on recent
insights from the investigation of pseudodeterministic algorithms [30] and connections between
learning algorithms and lower bounds [29]. While pseudorandomness has been explored in
the context of Kolmogorov complexity at least since the work of [4], these new perspectives
were crucial in the discovery of this unconditional lower bound.

Theorem 1 can be extended to running times that are larger than quasi-polynomial, but it is
unclear how to adapt the proof to show a lower bound against randomized algorithms running
in time 2nε for a small ε > 0. (Similarly, it is not known if BPTIME[2n] ⊆ BPTIME[2nε].)
A sub-exponential lower bound is open even with respect to deterministic algorithms.
Nevertheless, we can prove a weaker lower bound in this direction that relates the deterministic
complexities of MKtP and MrKtP[β, α, s]. For convenience, we let MrKtP denote the problem
with parameters β = 3/4, α = 2/3, and s(n) = n/2.

I Theorem 2. Either MKtP /∈ P or MrKtP /∈ Promise-EXP.

Since MrKtP can be computed in Promise-BPE, this result shows a weakness of determin-
istic algorithms solving these problems. The proof of Theorem 2 combines previous results
on MKtP that also rely on pseudorandomness with some observations about rKt and MrKtP.

Theorems 1 and 2 indicate that these problems are good candidates for non-uniform
circuit lower bounds. In order to discuss our next result, it is convenient to introduce
a variant of MrKtP. For a string w ∈ {0, 1}n, let rKt(w) def= rKtλ(w) for λ = 2/3. For
functions s1, s2 : N→ N, we let Gap-MrKtP[s1, s2] be the (promise) problem of distinguishing
between rKt(w) ≤ s1(n) versus rKt(w) > s2(n). Again, it is not hard to solve this problem
in randomized exponential time if there is a certain (small) gap between s1(n) and s2(n).

We obtain the following complexity results for Gap-MrKtP.

I Theorem 3. Let C ≥ 1 be a sufficiently large constant. The following results hold.
(i) For every constructive s : N→ N, Gap-MrKtP[s(n), s(n)+C logn] ∈ Promise-BPTIME[2O(n)].
(ii) For every 0 < γ < 1, Gap-MrKtP[nγ , n/2] /∈ Promise-BPTIME[npoly(logn)].
(iii) If there is ε > 0 such that for every 0 < γ < 1, Gap-MrKtP[nγ , nγ +C logn] /∈ SIZE[n1+ε],

then Promise-BPEXP * SIZE[poly].

Theorem 3 (ii) implies a strong inapproximability result for computing rKt (see [16]
for a recent work where inapproximability of “complexity” plays a role). On the other
hand, Theorem 3 (iii) proves that weak non-uniform lower bounds for Gap-MrKtP can be
“magnified” (cf. [31]) to super-polynomial lower bounds for a problem in Promise-BPEXP.

4 Randomness and Intractability in Kolmogorov Complexity

(Such lower bounds are only known for languages in MAEXP [10], which combines randomness
and nondeterminism in the exponential-time regime.)

In contrast to previous work (cf. [28] and references therein), Theorem 3 provides the first
hardness magnification theorem for a natural problem that is provably hard against a strong
model of computation (randomized polynomial-time algorithms).4 The proof of Theorem 3
(ii) is similar to the proof of Theorem 1, while part (iii) follows by an adaptation of a version
of the result established for Gap-MKtP in [28]. Note that Theorem 3 exhibits an interesting
contrast between proving uniform and non-uniform lower bounds.

Finally, we consider the relation between Kt and rKt. In other words, can we have shorter
descriptions if we allow randomized decoding?5 As a concrete example, the results in [30]
imply that infinitely many prime numbers (represented as binary strings) have sub-polynomial
rKt complexity. This is not known to hold with respect to Kt complexity.

We employ standard techniques to establish two results that relate rKt and Kt. The first
result links the deterministic complexity of MKtP to the gap between Kt and rKt.

I Theorem 4. If MKtP ∈ P then there is a sequence {wn}n≥1 with wn ∈ {0, 1}n such that
rKt(wn) = O(logn) and Kt(wn) = Ω(n).

On the other hand, the next theorem (roughly) shows that Kt and rKt are linearly
related for every string if and only if randomized exponential time computations can be
derandomized. (We refer to [2] for similar results involving other notions of time-bounded
Kolmogorov complexity.)

I Theorem 5. The following implications hold.
(i) If Promise-BPE ⊆ Promise-E, then Kt(w) = O(rKt(w)) for every string w.
(ii) If Kt(w) = O(rKt(w)) for every string w, then BPE ⊆ E/O(n).
In particular, rKt and Kt are linearly related if E requires exponential size boolean circuits.

This result implies that, under the standard derandomization assumption that Promise-
BPE is contained in Promise-E, the problems MrKtP and MKtP essentially coincide. Therefore,
our unconditional results for MrKtP and its variants provide strong evidence that MKtP is
intractable.

Related Work. Pseudodeterministic algorithms and hardness magnification are active
research areas. We refer to the references in [15, 28] and to papers citing these works for more
details. Quantum versions of Kolmogorov complexity have been proposed in [32, 26, 35, 8].
Before this work, unconditional lower bounds were shown for a non-deterministic formulation
of Kt, where it was proved that the corresponding decision problem is in PNE but not in
NP ∩ coNP. We refer to [5] for more information. Finally, there is a huge literature on
time-bounded Kolmogorov complexity and its applications in theory of computation. A
recent reference such as [3] contains pointers to many other works in the area.

Concluding Remarks. We view the unconditional lower bounds in Theorem 1 and Theorem
3 (ii) as a step toward understanding the hardness of computing the “complexity” of strings.
Such problems are important in computer science. In particular, the conjectured security of

4 Discussions on the feasibility of previous magnification results as an approach toward new non-uniform
lower bounds relied either on conjectured separations between complexity classes or on cryptographic
assumptions.

5 Note that it is possible to recover with high probability a string w from its description in time at most
2O(rKt(w)). Additionally, one can exactly recover w (i.e. with probability 1) by cycling through all choices
of the randomness and taking a majority vote.

Igor C. Oliveira 5

modern cryptography implies that distinguishing “structured” strings from “random” strings
(according to different measures) is hard. In this work, the complexity of a string is explored
from the perspective of rKt, which is likely to be essentially equivalent to Kt complexity
(as suggested by Theorem 5). Previous unconditional lower bounds on the associated
decision problems applied only to strong measures, such as the non-deterministic version
of Kolmogorov complexity studied in [5]. Our work is the first to show an unconditional
lower bound for a notion of complexity that appears to be equivalent to Levin’s seminal Kt
complexity. Our techniques are also robust, and lead to a hardness of approximation result.
We mention that an average-case lower bound in the sense of [17] can be proved as well.

We leave open the problem of showing an exponential lower bound on the complexity of
deciding rKt complexity. Theorem 3 (iii) and its extensions to different circuit classes also sug-
gest that investigating non-uniform lower bounds for this problem might be a fruitful direction.

Organization. The next section formalizes some definitions and observations mentioned
above, and discusses a couple of basic facts and examples related to randomized time-bounded
Kolmogorov complexity. The proofs of Theorems 1 and 2 appear in Section 3. This is followed
by a sketch of the proof of Theorem 3 in Section 4. Section 5 discusses Theorems 4 and 5.

2 Preliminaries

For background in (time-bounded) Kolmogorov complexity and related topics, we refer to
[25]. We fix a reasonable representation of Turing machines, and let |M | denote the length
of the binary encoding of a machine M . Our results are not sensitive to particular encoding
choices. We assume that machines have an extra tape with random bits. We let M≤t denote
the random variable that represents the content of the output tape of M when it computes
for (at most) t steps over the empty string.

I Definition 6 (Ktλ Complexity). For λ ∈ [0, 1] and w ∈ {0, 1}∗, we let

Ktλ(w) = min
M,t
{|M |+ dlog te | Pr[M≤t = w] ≥ λ}.

The randomized time-bounded Kolmogorov complexity of w is given by rKt(w) def= Kt2/3(w).

As a concrete example, the main result of [30] implies that for every ε > 0, there is
a sequence {pm}m≥1 of increasing prime numbers such that rKt(pm) ≤ |pm|ε for every m,
where |pm| denotes the length of the binary representation of pm. For the reader familiar
with the ideas from [15] and subsequent work, the randomized time-bounded Kolmogorov
complexity of a string can be seen as a measure of its “pseudodeterministic” complexity.

It is easy to see that the definition of rKt(w) does not change substantially if we use
another threshold parameter 1/2 < λ < 1.6 The (deterministic) time-bounded Kolmogorov
complexity of a string w corresponds to Ktλ(w) for λ = 1. Note that if α ≤ β then
Ktα(w) ≤ Ktβ(w).

I Definition 7 (MrKtP[β, α, s]). For 0 < α ≤ β ≤ 1 and s : N→ N, we let MrKtP[β, α, s] be
the promise problem (YESn,NOn)n∈N, where

YESn = {w ∈ {0, 1}n | Ktβ(w) ≤ s(n)},
NOn = {w ∈ {0, 1}n | Ktα(w) > s(n)}.

6 It is not hard either to prove this claim for a constant 0 < λ ≤ 1/2, and we leave it as an exercise. (Hint:
Use a short advice string to distinguish w from any other string that is output with probability ≥ λ/2.)

6 Randomness and Intractability in Kolmogorov Complexity

For concreteness, we let MrKtP denote MrKtP[β, α, s] for β = 3/4, α = 2/3, and s = n/2.

We will tacitly assume that s is constructive in all results.

I Lemma 8. For rationals 0 < α < β ≤ 1 and a function s : N → N, MrKtP[β, α, s] ∈
Promise-BPE.

Proof Sketch. Let α < η < β, for a fixed rational η. For all appropriate machines M
and running times t, estimate with confidence at least 1 − 2−ω(n) the probability that M
generates w when it computes for t steps. Consider M and its time bound t to be “good”
if this probability estimate is at least η. Accept w if and only if a good pair has combined
complexity at most s.

The correctness of the algorithm follows by a concentration bound and a standard union
bound. The upper bound on its running time uses that Ktλ(w) is at most O(|w|) for every
string w and λ ∈ [0, 1]. J

Note that if β = α then MrKtP[β, α, s] is a total problem. However, it is unclear if the
problem is in BPE for this choice of parameters.

It is also convenient to consider a close variant of MrKtP. Recall that rKt(w) = Kt2/3(w).

I Definition 9 (Gap-MrKtP[s1, s2]). Let s1, s2 : N→ N, where s1(n) ≤ s2(n) for every n ∈ N.
We let Gap-MrKtP[s1, s2] be the promise problem (YESn,NOn)n∈N, where

YESn = {w ∈ {0, 1}n | rKt(w) ≤ s1(n)},
NOn = {w ∈ {0, 1}n | rKt(w) > s2(n)}.

I Lemma 10. Suppose that s1(n) + c logn ≤ s2(n), where c ≥ 1 is a large enough constant.
Then Gap-MrKtP[s1, s2] ∈ Promise-BPE.

Proof. Given Lemma 8, it is enough to reduce Gap-MrKtP[s1, s2] to MrKtP[2/3, 3/5, s1].
Clearly, the set of positive instances of both problems coincide. On the other hand, it is easy
to see that Kt2/3(w) ≤ Kt3/5(w) + c logn if c is a sufficiently large universal constant, by
amplification of the underlying randomized algorithm. As a consequence,

{w ∈ {0, 1}n | rKt(w) > s2(n)} ⊆ {w ∈ {0, 1}n | Kt3/5(w) > s1(n)},

since if rKt(w) > s2(n) then Kt3/5(w) > s2(n)− c logn, and by assumption s2(n)− c logn ≥
s1(n). In other words, the set of negative instances of Gap-MrKtP[s1, s2] is contained in the
set of negative instances of MrKtP[2/3, 3/5, s1]. J

Remark. For simplicity of the exposition, we might abuse notation in some statements and
compare a promise problem with a standard complexity class. However, in all proofs the
distinction between the two cases is carefully considered.

3 The computational hardness of MrKtP

3.1 MrKtP is not in BPP
The main result established in this section is the following lower bound.

I Theorem 11. Let 1/2 < α ≤ β < 1 and nγ ≤ s(n) ≤ n/2 for every large enough n ∈ N,
where γ > 0 is fixed but arbitrary. Then MrKtP[β, α, s] /∈ BPTIME[npoly(logn)]. In other
words, no randomized algorithm running in quasi-polynomial time accepts with probability
≥ 2/3 the positive instances of MrKtP[β, α, s] and rejects with probability ≥ 2/3 the negative
instances of MrKtP[β, α, s].

Igor C. Oliveira 7

The proof given here requires the following results, which assume parameters α, β, and s
as in Theorem 11. (We refer to [4] for applications of similar techniques.)

I Lemma 12. BPE ≤P/poly
tt MrKtP[β, α, s]. In particular, given any sequence {gn}n≥1 of

total boolean functions gn : {0, 1}n → {0, 1} that compute MrKtP[β, α, s], every language
in BPE can be computed by (deterministic) polynomial size oracle circuits with access to
{gn}n≥1.

I Lemma 13. PSPACE ⊆ BPPMrKtP[β,α,s]. More precisely, given any fixed oracle O ⊆
{0, 1}∗ that agrees with MrKtP[β, α, s] over the relevant input strings, PSPACE ⊆ BPPO.
Furthermore, if O is randomized and satisfies the promise of bounded acceptance probabilities
over the inputs of MrKtP[β, α, s], then the corresponding algorithm in BPPO satisfies this
promise over all input strings.

We postpone the proof of these lemmas. The next lemma is well known, and can be
proved by a diagonalization argument (see e.g. [29, Corollary 2]).

I Lemma 14. Let s1, s2 : N→ N be space-constructible functions such that s2(n)2 = o(s1(n)),
s2(n) = Ω(n), and s1(n) = 2o(n). Then there is a language in DSPACE[s1(n)] that cannot be
computable by circuits of size s2(n).

We are ready to prove Theorem 11, assuming these results.

Proof of Theorem 11. Suppose toward a contradiction that MrKtP[β, α, s] can be computed
in BPTIME[n(logn)a], for some a > 0. Then, by standard non-uniform derandomization,
MrKtP[β, α, s] can be computed by circuits of size O(n(logn)b), for some b > 0. It follows from
Lemma 12 that every language L ∈ BPE can be computed by circuits of size O(n(logn)cL),
for some cL > 0.

Let L∗ be a language given by Lemma 14 for appropriate parameters s1(n) = 2no(1) and
s2(n) = n(logn)ω(1) . In other words, L∗ ∈ DSPACE[s1] \ SIZE[s2]. Lemma 13 and our initial
assumption imply that PSPACE ⊆ BPTIME[npoly(logn)]. By a standard padding argument,
we get that L∗ ∈ BPE. But then the upper and lower bounds on the circuit complexity of
L∗ are in contradiction. This completes the proof of Theorem 11. J

We proceed with the proofs of Lemmas 12 and 13. Given a function f : {0, 1}∗ → {0, 1},
we consider an associated “pseudorandom” generator Gf . (Formally, the argument employs
a uniform sequence of generators, one for each n ≥ 1.) More precisely, the generator
GBFNW
f : {0, 1}nε → {0, 1}n can be computed in deterministic time exp(O(nε)) given oracle

access to f on inputs of length at most nε, and satisfies the following crucial property.

I Theorem 15 (see [6, 21]). Let f : {0, 1}∗ → {0, 1} be a function, ε > 0 be arbitrary, and
GBFNW
f be the associated sequence of functions mentioned above. Moreover, let T ⊆ {0, 1}∗

be an arbitrary test. If ∣∣∣∣ Pr
r∈Un

[r ∈ T]− Pr
x∈Unε

[GBFNW
f (x) ∈ T]

∣∣∣∣ ≥ 1/n

for every large enough n, then there is a sequence {Cn}n≥1 of polynomial size oracle circuits
with access to T that compute f on each input length n and query T nonadaptively.

Proof of Lemma 12. Let L ∈ BPE, and {fn}n≥1 be the corresponding sequence of boolean
functions that compute L. Recall the constants 1/2 < α ≤ β < 1 and γ > 0 from the
statements of Theorem 11 and Lemma 12. Take ε def= γ/2, and consider the generator

8 Randomness and Intractability in Kolmogorov Complexity

GBFNW
f obtained from f and ε. Moreover, let {gn}n≥1 be a sequence of boolean functions

gn : {0, 1}n → {0, 1} that agree with MrKtP[β, α, s] over input strings in YESn ∪ NOn.
Finally, set T def=

⋃
n≥1 g

−1
n (0).

We claim that T distinguishes the output of GBFNW
f from a random n-bit string. First, for

each seed w ∈ {0, 1}nε , GBFNW
f (w) can be computed in time at most exp(O(nε)) given w and

oracle access to f1, . . . , fnε . Since each function fi for i ≤ nε can be computed in randomized
time exp(O(nε)) and with error probability at most exp(−n) by a uniform algorithm, it
follows that Ktβ(GBFNW

f (w)) ≤ Kt1−o(1)(GBFNW
f (w)) ≤ O(nε) < nγ ≤ s(n), for n sufficiently

large. Therefore, GBFNW
f (w) /∈ T for every w ∈ {0, 1}nε . On the other hand, a typical random

n-bit string r ∈ Un has (standard) Kolmogorov complexity K(r) ≥ (1− o(1))n. It is easy
to see that if λ > 1/2, then K(x) ≤ Ktλ(x) for a string x. As a consequence, with high
probability Ktα(r) > n/2 ≥ s(n), in which case we have r ∈ T .

Since T distinguishes the generator from random, it follows from Theorem 15 that L can
be computed by polynomial size oracle circuits that make non-adaptive queries to T , i.e., to
the functions {gn}n≥1. J

In order to prove Lemma 13, we need a uniform version of Theorem 15. A result of
this form was established in [18], and we discuss it in more detail now. For ε > 0 and
a function f : {0, 1}∗ → {0, 1}, the generator GIW

f : {0, 1}nε → {0, 1}n is also computable
in deterministic time exp(O(nε)) with oracle access to f on inputs of size at most nε. In
addition, it satisfies the following property.

I Theorem 16 (see [18]). Let f : {0, 1}∗ → {0, 1} be a function that is both random self-
reducible and downward self-reducible, ε > 0 be arbitrary, and GIW

f be the associated sequence
of functions mentioned above. Moreover, let T ⊆ {0, 1}∗ be an arbitrary test. If∣∣∣∣ Pr

r∈Un

[r ∈ T]− Pr
x∈Unε

[GIW
f (x) ∈ T]

∣∣∣∣ ≥ 1/n

for every large enough n, then there is a randomized polynomial-time Turing machine with
oracle access to T that on every input x outputs f(x) with high probability.

I Theorem 17 (see [33]). There is a language LTV ∈ DSPACE[O(n)] that is PSPACE-hard,
random self-reducible, and downward self-reducible.

We are ready to prove Lemma 13, which completes the proof of Theorem 11.

Proof of Lemma 13 (Sketch). Let LTV be the language from Theorem 17. Since this
language is PSPACE-hard under polynomial-time reductions, it suffices to show that LTV ∈
BPPMrKtP[β,α,s].

We argue as in the proof of Lemma 12. More precisely, we let ε def= γ/2, and we instantiate
the generator GIW

f using the function f that computes the characteristic function of LTV.
If O is a deterministic test that agrees with MrKtP[β, α, s], then a similar argument shows
that every output string of the generator has randomized Kt complexity at most s(n), while
a random string has almost maximum complexity. The only modification here is that
f1, . . . , fnε can all be computed in deterministic time exp(O(nε)), which follows from the fact
that LTV is computable in linear space. Theorem 16 immediately implies that LTV ∈ BPPO,
as desired.

Suppose that O is a randomized procedure that accepts the positive instances of
MrKtP[β, α, s] with high probability, and rejects the negative instances of MrKtP[β, α, s]
with high probability. We make no assumptions on the acceptance probabilities of O over

Igor C. Oliveira 9

the remaining input strings. In order to establish the furthermore part in Lemma 13, it is
necessary to inspect the proof of Theorem 16. The crucial observation is that the oracle O is
only used as a distinguisher during the computation of LTV, and that any procedure that
distinguishes with noticeable advantage the output of the generator from a random string
can be used in place of O. (The argument sketched in the paragraph above can be used to
show that the output of O on strings that violate the promise condition affects in a negligible
way its advantage as a distinguisher.)

We also note that it is possible to reduce the analysis of the case of a randomized algorithm
A as oracle to the deterministic case. By running polynomially many independent copies
of A and taking a majority vote, one gets a randomized algorithm A′ that is correct with
probability at least 1− 2−m2 on every fixed string of length at most m satisfying the promise
condition (think of m as n` for a large enough constant `, where n is the input length of
LTV). By a union bound, randomly fixing the string in the random tape of A′ provides w.h.p
a deterministic oracle O that is correct on all strings of length at most m satisfying the
promise condition. The analysis now reduces to the deterministic case.

This completes the proof of Lemma 13. J

Sketch of an alternate presentation via learning algorithms. Suppose that MrKtP ∈
BPP, i.e., there is a polynomial time randomized algorithm that is correct with high prob-
ability over inputs satisfying the promise condition. Then, by adapting ideas from [11], it
is possible to prove that for every reasonable function t : N→ N, SIZE[t] can be learned in
BPTIME[poly(t)] in the model of learning with membership queries under the uniform distri-
bution. The connection between learning algorithms and lower bounds (see [29]) now implies
that, for any choice of s(n) ≤ npoly(logn), BPEXP * SIZE[s(n)]. But this is in contradiction
to Lemma 12 and the assumption that MrKtP ∈ BPP, which imply BPEXP ⊆ SIZE[poly(n)].

We remark that common to both approaches are elements from the theory of pseudor-
andomness, such as the use of pseudorandom generators based on [27], and ideas that go
back to the work of [18] on connections between algorithms and lower bounds via random
self-reducibility and downward self-reducibility. The use of [6] in the proof of Lemma 12
appears to be crucial in the arguments presented above.

3.2 Weakness of deterministic algorithms for MKtP and MrKtP
It is natural to conjecture that BPEXP * BPTIME[2o(n)] (a strong hierarchy theorem for

randomized time) and MrKtP /∈ BPTIME[2o(n)] (a nearly-optimal lower bound for MrKtP).
However, it is unclear even how to show that MrKtP /∈ DTIME[2no(1)]. It is also open whether
MKtP ∈ P. In this section, we place limits on the efficiency of deterministic algorithms
solving these problems. We start with the following observation.

I Proposition 18. Either EXP * BPTIME[2o(n)] or MrKtP /∈ EXP.

Proof. Suppose MrKtP = MrKtP[β, α, s] is in DTIME[2nd] for some constant d, where β = 3/4,
α = 2/3, and s = n/2. LetMMrKtP be a Turing machine that witnesses this inclusion. Consider
the following language:

L
def= {〈M, 1n, w〉 |M is a TM that accepts in time ≤ 2n

d

some n-bit string y whose prefix is w}.

Note that L ∈ EXP, i.e., L can be computed in deterministic time 2mO(1) on inputs of length
m. Assume that EXP ⊆ BPTIME[2o(n)], and let ML be a randomized Turing machine for L
that witnesses this inclusion. It is easy to see that ML can be used to find w.h.p. and in time

10 Randomness and Intractability in Kolmogorov Complexity

2o(n) the lexicographic first string z ∈ {0, 1}n accepted byMMrKtP, the complement of machine
MMrKtP (observe that such string must exist). It follows that the triple (ML,MMrKtP, 1n)
can be used to give a shorter description of z. More precisely, rKt1−o(1)(z) = o(n). On the
other hand, since MMrKtP(z) = 1 and MMrKtP computes MrKtP, we must have rKtβ(z) > s.
These inequalities imply that n/2 = s < rKtβ(z) ≤ rKt1−o(1)(z) ≤ o(n), a contradiction.
This completes the proof of Proposition 18. J

Additionally, we will use the following reductions.

I Lemma 19 (see [4]). EXP ⊆ NPMKtP.

I Lemma 20 (see [4]). If MKtP ∈ P then PSPACE ⊆ ZPP.

As alluded to above, the next result shows hardness of deciding deterministic/random-
ized time-bounded Kolmogorov complexity using deterministic algorithms. (It should be
contrasted with the inclusion MrKtP ∈ Promise-BPE from Lemma 8.)

I Theorem 21. Either MKtP /∈ P or MrKtP /∈ EXP.

Proof. Suppose MKtP ∈ P. Then PSPACE ⊆ ZPP follows by Lemma 20. Moreover, Lemma
19 gives EXP ⊆ NP. Combining these two class inclusions, we get that EXP ⊆ BPP. But this
implies that MrKtP /∈ EXP via Proposition 18, which is the desired result. J

4 Non-uniform versus randomized lower bounds for MrKtP

It is not hard to see that the proof of Theorem 11 carries over with Gap-MrKtP[s1, s2] in
place of MrKtP[β, α, s]. We state the result here for completeness.

I Theorem 22. Let γ > 0 be an arbitrarily small constant, and consider functions s1, s2 : N→
N. Suppose that nγ ≤ s1(n) ≤ s2(n) ≤ n/2. Then Gap-MrKtP[s1, s2] /∈ BPTIME[npoly(logn)].

Proof Sketch. The algorithm for MrKtP[β, α, s] is only used as a distinguisher in the proof
of Theorem 11. It is possible to check that an algorithm for Gap-MrKtP[s1, s2] works equally
well as a distinguisher in the proofs of Lemmas 12 and 13. J

By a straightforward extension of results from [31, 28], one can show that weak non-
uniform lower bounds for Gap-MrKtP[s1, s2] can be “magnified” to super-polynomial circuit
lower bounds for some explicit problem. We state a version of the result for general boolean
circuits, but the proof can be adapted to other boolean devices (similarly to [28]).

I Theorem 23. There is a universal constant d ≥ 1 for which the following holds. If there
exists ε > 0 such that for every small enough β > 0 we have Gap-MrKtP[nβ , nβ + d logn] /∈
SIZE[n1+ε], then Promise-BPEXP * SIZE[poly].

Proof Sketch. We verify that the relevant steps in the proof of [28, Theorem 1 Part 1,
Section 3] carry over to Gap-MrKtP[nβ , nβ + d logn], under minor modifications. (Note that
N denotes the input length in [28], while here input length is denoted by n.) First, we
observe that Claims 11 and 12 also work for rKt, since the error-correcting code routines are
deterministic. Using a similar notation (i.e., z = ECC(w) ∈ {0, 1}m, where m = m(n) = O(n)
and n = |w|), it follows that if rKt(w) ≤ nβ then rKt(z) ≤ nβ + c0 logn, and that if
rKt(w) > nβ + d logn then rKt(z′) > nβ + c1 logn for any z′ ∈ {0, 1}m that disagrees with z
on at most a δ-fraction of coordinates, where 1 ≤ c0 < c1 < d are constants, and we assume
that d is large enough so that c0 and c1 are sufficiently far apart.

Igor C. Oliveira 11

The crucial part of the argument is to replace the language L ∈ EXP from their Claim
13 by an appropriate problem Π ∈ Promise-BPEXP. The input to Π is a string y encoding
a tuple of the form (m, 1t, (i1, b1), . . . , (ir, br)), where m is a positive integer represented
in binary, t is a positive integer, i1, . . . , ir ∈ {0, 1}logm, b1, . . . , br ∈ {0, 1}, and r ∈ N. For
t = nβ and r = n2β , we let

Πyes
n

def= {y | ∃z ∈ {0, 1}m such that rKt(z) ≤ t+ c0 logn and zi1 = b1, . . . , zir = br}, and

Πno
n

def= {y | @z ∈ {0, 1}m such that rKt(z) ≤ t+ c1 logn and zi1 = b1, . . . , zir = br}.

Note that these sets are disjoint, and that Π ∈ Promise-BPEXP by an argument analogous to
the proof of Lemma 10, using that the gap between constants c0 and c1 is sufficiently large.

It remains to check that their Claim 14 still holds in our context. For part (a), note
that if rKt(w) ≤ nβ then by the discussion above rKt(z) ≤ nβ + c0 logn. Consequently, the
corresponding input y generated by the randomized reduction is in Πyes

n with probability
1. Similarly, for part (b) we rely on the claim that if rKt(w) > nβ + d logn then rKt(z′) >
nβ + c1 logn for any z′ ∈ {0, 1}m that disagrees with z on at most a δ-fraction of coordinates.
The same union bound over exponentially small probabilities shows that y ∈ Πno

n with
probability at least ≥ 1/2.

The rest of the construction remains unaffected. J

5 On the relation between rKt and Kt

First, we observe that the worst-case gap between rKt and Kt over strings of length n is
closely related to the derandomization of exponential time computations.7

I Theorem 24. The following implications hold.
(i) If Promise-BPE ⊆ Promise-E, then Kt(w) = O(rKt(w)) for every string w.
(ii) If Kt(w) = O(rKt(w)) for every string w, then BPE ⊆ E/O(n).
In particular, rKt and Kt are linearly related if E requires exponential size boolean circuits.

Proof. We start with a proof of (i). Let w ∈ {0, 1}n, and suppose M and t are such that
Pr[M≤t = w] ≥ 2/3 and |M |+ log t = rKt(w). We would like to use M and the assumption
that Promise-BPE ⊆ Promise-E to upper bound the Kt complexity of w. A potential difficulty
here is that the latter inclusion offers an asymptotic upper bound, while M and w are fixed
objects of finite size. In order to handle this issue, we adopt a more general perspective.

Let U be a randomized universal Turing machine that simulates computations with a
polynomial overhead. In other words, given the description of a randomized machine M ′, a
time bound t′ specified as a binary string, and an input string x′, U(M ′, t′, x′) uses its internal
randomness to simulate M ′(x′) for at most t′ steps, and outputs whatever M ′ outputs on
x′. We assume that the computation of U(M ′, t′, x′) takes time at most c(|M ′|+ t′ + |x′|)c,
where c = c(U) ≥ 1 is a universal constant.

We consider a promise problem Π, defined as follows. The YES instances consist of
tuples (M ′, t′, 1c·log t′ , i), where M ′ is the description of a randomized Turing machine, t′
and i are positive integers represented in binary, and Pr[The i-th bit of M ′

≤t′ is 1] ≥ 2/3.
On the other hand, the set NO of negative instances of Π is defined by the condition

7 Recall that if BPP ⊆ P then BPEXP ⊆ EXP by translation. Consequently, derandomizing exponential
time computations is not harder than derandomizing polynomial time computations. Indeed, it is not
hard to prove that the derandomization of exponential time is equivalent to the derandomization of
sparse languages in BPP.

12 Randomness and Intractability in Kolmogorov Complexity

Pr[The i-th bit of M ′
≤t′ is 0] ≥ 2/3. Clearly, YES ∩ NO = ∅. We claim that Π ∈ Promise-

BPE. In order to see this, given a valid input (M ′, t′, 1c·log t′ , i) of Π, run the randomized
universal machine U on (M ′, t′, ε) for t′ steps, where ε is the empty string, and output 1 if
and only if the i-th bit in the output of M ′ is 1. This defines a randomized machine that runs
in time O((|M ′|+ t′)c + i), which is at most exponential in its total input length. Since the
randomness of U is used to simulate the randomness of M ′, every string in YES is accepted
with probability at least 2/3, while every string in NO is rejected with probability at least
2/3. This shows that Π ∈ Promise-BPE.

Under the hypothesis of (i), we obtain that Π is computed by a deterministic machine
AΠ that runs in time at most 2Cm on inputs of length m, where C is fixed. Now given the
pair (M, t) witnessing the rKt complexity of w (a string of length n), we can use AΠ, M , t,
and n to upper bound its Kt complexity. Indeed, w can be generated by the deterministic
machine that runs AΠ on (M, t, 1c·log t, i) for each i ∈ [n]. Note that each input to AΠ
satisfies the promise condition of Π, and that AΠ runs in time at most 2C(|M |+log t+c log t+log i).
Therefore, rKt(w) ≤ O(|M | + |AΠ| + log t + logn) + log(O(n · 2C(|M |+log t+c log t+logn))) =
O(|M |+ log t+ logn) = O(rKt(w) + log |w|) = O(rKt(w)), where the last inequality uses that
rKt(w) ≥ log |w| since any machine that prints w runs in time at least |w|.

To prove (ii), let L ∈ BPE, and let M be a machine for L that runs in randomized
exponential time. Define a sequence {wn}n≥1 of strings wn ∈ {0, 1}2

n+1 , where wn encodes
the output of L on all strings of length at most n. Given n as an input, by amplifying the
success probability of M , we can print wn with high probability in time 2O(n). Consequently,
rKt(wn) = O(n), which is logarithmic in |wn|. Under the assumption that Kt(w) = O(rKt(w))
for every string w, it follows that for every n, Kt(wn) = O(n). In particular, some deterministic
machine Mn with |Mn| = O(n) decides L on inputs of length at most n in time 2O(n). Now
using the sequence {Mn}n≥1 as advice and computing in the obvious way, it follows that
L ∈ E/O(n). This completes the proof of (ii).

Finally, under the assumption that there is a language in E that requires circuits of size
2Ω(n) on every large input length, there are quick pseudorandom generators of logarithmic
seed length (cf. [34]). Such generators can be used to derandomize not only BPTIME[t] but
also Promise-BPTIME[t], hence it follows from (i) that rKt and Kt are linearly related. J

We now relate the deterministic complexity of MKtP to the gap between rKt and Kt.

I Theorem 25. If MKtP ∈ P then there is a sequence {wn}n≥1 with wn ∈ {0, 1}n such that
rKt(wn) = O(logn) and Kt(wn) = Ω(n).

Proof. The proof is inspired by a related idea of Schuichi Hirahara (private communication).
Let {Dn}n≥1 be a P-uniform sequence of polynomial size circuits computing MKtPt, for a
Kt complexity threshold parameter t(n) = n/2. The existence of such circuits follows from
the hypothesis of the theorem. Now Lemma 20 implies that there is a randomized algorithm
running in time polynomial in n that solves the circuit satisfiability problem for circuits of
size poly(n) over n input variables. We can use this algorithm and self-reduction to find with
high probability the lexicographic first string wn accepted by the complement of Dn. Then,
by construction, we get that rKt(wn) = O(logn) and Kt(wn) = Ω(n). J

Acknowledgements. I am grateful to Ján Pich, Eric Allender, Ryan Williams, Shuichi Hirahara,
Michal Koucký, Rahul Santhanam, and Jan Krajíček for discussions. Part of this work was completed
while the author was visiting the Simons Institute for the Theory of Computing. This work was
supported in part by the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2014)/ERC Grant Agreement no. 615075.

REFERENCES 13

References

1 Eric Allender. Applications of time-bounded Kolmogorov complexity in complexity theory.
In Kolmogorov complexity and computational complexity, pages 4–22. Springer, 1992.

2 Eric Allender. When worlds collide: Derandomization, lower bounds, and kolmogorov
complexity. In Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 1–15, 2001. URL: https://doi.org/10.1007/
3-540-45294-X_1, doi:10.1007/3-540-45294-X_1.

3 Eric Allender. The complexity of complexity. In Computability and Complexity, pages
79–94. Springer, 2017.

4 Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef
Ronneburger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.
URL: https://doi.org/10.1137/050628994, doi:10.1137/050628994.

5 Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive
reach of resource-bounded Kolmogorov complexity in computational complexity theory. J.
Comput. Syst. Sci., 77(1):14–40, 2011. URL: https://doi.org/10.1016/j.jcss.2010.
06.004, doi:10.1016/j.jcss.2010.06.004.

6 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs. Computa-
tional Complexity, 3:307–318, 1993. URL: https://doi.org/10.1007/BF01275486,
doi:10.1007/BF01275486.

7 Boaz Barak. A probabilistic-time hierarchy theorem for "slightly non-uniform" algorithms.
In International Workshop on Randomization and Approximation Techniques (RANDOM),
pages 194–208, 2002. URL: https://doi.org/10.1007/3-540-45726-7_16, doi:10.
1007/3-540-45726-7_16.

8 André Berthiaume, Wim van Dam, and Sophie Laplante. Quantum Kolmogorov com-
plexity. J. Comput. Syst. Sci., 63(2):201–221, 2001. URL: https://doi.org/10.1006/
jcss.2001.1765, doi:10.1006/jcss.2001.1765.

9 Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional lower bounds
against advice. In International Colloquium on Automata, Languages and Programming
(ICALP), pages 195–209, 2009. URL: https://doi.org/10.1007/978-3-642-02927-1_
18, doi:10.1007/978-3-642-02927-1_18.

10 Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing separations.
In Conference on Computational Complexity (CCC), pages 8–12, 1998. URL: https:
//doi.org/10.1109/CCC.1998.694585, doi:10.1109/CCC.1998.694585.

11 Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Conference on Computational Complexity
(CCC), pages 10:1–10:24, 2016. URL: https://doi.org/10.4230/LIPIcs.CCC.2016.10,
doi:10.4230/LIPIcs.CCC.2016.10.

12 Gregory J. Chaitin. Information-theoretic limitations of formal systems. J. ACM,
21(3):403–424, 1974. URL: https://doi.org/10.1145/321832.321839, doi:10.1145/
321832.321839.

13 Lance Fortnow. Kolmogorov complexity and computational complexity. Complexity of
Computations and Proofs. Quaderni di Matematica, 13, 2004.

14 Lance Fortnow, Rahul Santhanam, and Luca Trevisan. Hierarchies for semantic classes.
In Symposium on Theory of Computing (STOC), pages 348–355, 2005. URL: http:
//doi.acm.org/10.1145/1060590.1060642, doi:10.1145/1060590.1060642.

https://doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1007/3-540-45294-X_1
http://dx.doi.org/10.1007/3-540-45294-X_1
https://doi.org/10.1137/050628994
http://dx.doi.org/10.1137/050628994
https://doi.org/10.1016/j.jcss.2010.06.004
https://doi.org/10.1016/j.jcss.2010.06.004
http://dx.doi.org/10.1016/j.jcss.2010.06.004
https://doi.org/10.1007/BF01275486
http://dx.doi.org/10.1007/BF01275486
https://doi.org/10.1007/3-540-45726-7_16
http://dx.doi.org/10.1007/3-540-45726-7_16
http://dx.doi.org/10.1007/3-540-45726-7_16
https://doi.org/10.1006/jcss.2001.1765
https://doi.org/10.1006/jcss.2001.1765
http://dx.doi.org/10.1006/jcss.2001.1765
https://doi.org/10.1007/978-3-642-02927-1_18
https://doi.org/10.1007/978-3-642-02927-1_18
http://dx.doi.org/10.1007/978-3-642-02927-1_18
https://doi.org/10.1109/CCC.1998.694585
https://doi.org/10.1109/CCC.1998.694585
http://dx.doi.org/10.1109/CCC.1998.694585
https://doi.org/10.4230/LIPIcs.CCC.2016.10
http://dx.doi.org/10.4230/LIPIcs.CCC.2016.10
https://doi.org/10.1145/321832.321839
http://dx.doi.org/10.1145/321832.321839
http://dx.doi.org/10.1145/321832.321839
http://doi.acm.org/10.1145/1060590.1060642
http://doi.acm.org/10.1145/1060590.1060642
http://dx.doi.org/10.1145/1060590.1060642

14 REFERENCES

15 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electronic Colloquium on Computational Complexity
(ECCC), 18:136, 2011.

16 Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In
Symposium on Foundations of Computer Science (FOCS), pages 247–258, 2018. URL:
https://doi.org/10.1109/FOCS.2018.00032, doi:10.1109/FOCS.2018.00032.

17 Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of MCSP and
its variants. In Computational Complexity Conference (CCC), pages 7:1–7:20, 2017. URL:
https://doi.org/10.4230/LIPIcs.CCC.2017.7, doi:10.4230/LIPIcs.CCC.2017.7.

18 Russell Impagliazzo and Avi Wigderson. Randomness vs time: Derandomization under a
uniform assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001. URL: https://doi.
org/10.1006/jcss.2001.1780, doi:10.1006/jcss.2001.1780.

19 Marek Karpinski and Rutger Verbeek. On the Monte Carlo space constructible functions
and seperation results for probabilistic complexity classes. Inf. Comput., 75(2):178–
189, 1987. URL: https://doi.org/10.1016/0890-5401(87)90057-5, doi:10.1016/
0890-5401(87)90057-5.

20 Makoto Kikuchi. Kolmogorov complexity and the second incompleteness theorem. Archive
for Mathematical Logic, 36(6):437–443, 1997.

21 Adam R. Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexpo-
nential size proofs unless the polynomial-time hierarchy collapses. SIAM J. Com-
put., 31(5):1501–1526, 2002. URL: https://doi.org/10.1137/S0097539700389652,
doi:10.1137/S0097539700389652.

22 Shira Kritchman and Ran Raz. The surprise examination paradox and the second
incompleteness theorem. Notices of the AMS, 57(11):1454–1458, 2010.

23 Leonid A. Levin. Universal sequential search problems. Problemy Peredachi Informatsii,
9(3):115–116, 1973.

24 Leonid A. Levin. Randomness conservation inequalities; information and independence
in mathematical theories. Information and Control, 61(1):15–37, 1984. URL: https://
doi.org/10.1016/S0019-9958(84)80060-1, doi:10.1016/S0019-9958(84)80060-1.

25 Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its
Applications. Texts in Computer Science. Springer, 2008. URL: https://doi.org/10.
1007/978-0-387-49820-1, doi:10.1007/978-0-387-49820-1.

26 Caterina E. Mora and Hans J. Briegel. Algorithmic complexity and entanglement of
quantum states. Phys. Rev. Lett., 95:200503, 2005. doi:10.1103/PhysRevLett.95.
200503.

27 Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci.,
49(2):149–167, 1994. URL: https://doi.org/10.1016/S0022-0000(05)80043-1, doi:
10.1016/S0022-0000(05)80043-1.

28 Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near
state-of-the-art lower bounds. Electronic Colloquium on Computational Complexity
(ECCC), 25:158, 2018. URL: https://eccc.weizmann.ac.il/report/2018/158.

29 Igor Carboni Oliveira and Rahul Santhanam. Conspiracies between learning algorithms,
circuit lower bounds, and pseudorandomness. In Computational Complexity Conference
(CCC), pages 18:1–18:49, 2017. URL: https://doi.org/10.4230/LIPIcs.CCC.2017.18,
doi:10.4230/LIPIcs.CCC.2017.18.

30 Igor Carboni Oliveira and Rahul Santhanam. Pseudodeterministic constructions in
subexponential time. In Symposium on Theory of Computing (STOC), pages 665–677,

https://doi.org/10.1109/FOCS.2018.00032
http://dx.doi.org/10.1109/FOCS.2018.00032
https://doi.org/10.4230/LIPIcs.CCC.2017.7
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.7
https://doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1006/jcss.2001.1780
http://dx.doi.org/10.1006/jcss.2001.1780
https://doi.org/10.1016/0890-5401(87)90057-5
http://dx.doi.org/10.1016/0890-5401(87)90057-5
http://dx.doi.org/10.1016/0890-5401(87)90057-5
https://doi.org/10.1137/S0097539700389652
http://dx.doi.org/10.1137/S0097539700389652
https://doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1016/S0019-9958(84)80060-1
http://dx.doi.org/10.1016/S0019-9958(84)80060-1
https://doi.org/10.1007/978-0-387-49820-1
https://doi.org/10.1007/978-0-387-49820-1
http://dx.doi.org/10.1007/978-0-387-49820-1
http://dx.doi.org/10.1103/PhysRevLett.95.200503
http://dx.doi.org/10.1103/PhysRevLett.95.200503
https://doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
https://eccc.weizmann.ac.il/report/2018/158
https://doi.org/10.4230/LIPIcs.CCC.2017.18
http://dx.doi.org/10.4230/LIPIcs.CCC.2017.18

REFERENCES 15

2017. URL: http://doi.acm.org/10.1145/3055399.3055500, doi:10.1145/3055399.
3055500.

31 Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems.
In Symposium on Foundations of Computer Science (FOCS), pages 65–76, 2018. URL:
https://doi.org/10.1109/FOCS.2018.00016, doi:10.1109/FOCS.2018.00016.

32 Karl Svozil. Quantum algorithmic information theory. J. UCS, 2(5):311–346, 1996. URL:
https://doi.org/10.3217/jucs-002-05-0311, doi:10.3217/jucs-002-05-0311.

33 Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity
via uniform reductions. Computational Complexity, 16(4):331–364, 2007. URL: https:
//doi.org/10.1007/s00037-007-0233-x, doi:10.1007/s00037-007-0233-x.

34 Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst.
Sci., 67(2):419–440, 2003. URL: https://doi.org/10.1016/S0022-0000(03)00046-1,
doi:10.1016/S0022-0000(03)00046-1.

35 Paul M. B. Vitányi. Quantum Kolmogorov complexity based on classical descriptions.
IEEE Trans. Information Theory, 47(6):2464–2479, 2001. URL: https://doi.org/10.
1109/18.945258, doi:10.1109/18.945258.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://doi.acm.org/10.1145/3055399.3055500
http://dx.doi.org/10.1145/3055399.3055500
http://dx.doi.org/10.1145/3055399.3055500
https://doi.org/10.1109/FOCS.2018.00016
http://dx.doi.org/10.1109/FOCS.2018.00016
https://doi.org/10.3217/jucs-002-05-0311
http://dx.doi.org/10.3217/jucs-002-05-0311
https://doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1007/s00037-007-0233-x
http://dx.doi.org/10.1007/s00037-007-0233-x
https://doi.org/10.1016/S0022-0000(03)00046-1
http://dx.doi.org/10.1016/S0022-0000(03)00046-1
https://doi.org/10.1109/18.945258
https://doi.org/10.1109/18.945258
http://dx.doi.org/10.1109/18.945258

