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Abstract. We prove resolution lower bounds for k-Clique on the Erdos-Renyi ran-

dom graph G(n, n
−2ξ
k−1 ) (where ξ > 1 is constant). First we show for k = nc0 ,

c0 ∈ (0, 1/3), an exp(Ω(n(1−ε)c0)) average lower bound on resolution where ε is arbi-

trary constant.

We then propose the model of a-irregular resolution. Extended from regular res-

olution, this model is interesting in that the power of general-over-regular resolution

from all known exponential separations is below it. We prove an nΩ(k) average lower

bound of k-Clique for this model, for any k < n1/3−Ω(1).

1. Introduction

The Clique problem, given input (G, k), asks whether a graph G contains a clique

of size k. As one of the fundamental NP-complete problems ([19]), its computational

hardness has been intensively studied in both algorithmic and lower bound worlds

([22, 24, 15, 31, 27, 30, 13]). In computational complexity, the case k = nΩ(1) (where

n is the number of vertices in G) is complete as other cases poly-time reduce to it by

a simple padding.

Translated to proof complexity, the problem becomes about proving (the CNF trans-

lation of) the nonexistence of k-cliques in a k-clique-free graph. Instead of particular

graphs, a more interesting setting is where the underlying graph is random, and we ask

whether the CNF is hard on average (=w.h.p., with high probability). This somewhat

reflects the experience in complexity world that, random input of the problem is hard,

and we want to know what “quasi-random1” feature makes it hard—here, it is in the

sense of why familiar proof systems fail to efficiently prove “G is k-clique-free”. To

make sense, the graph should be k-clique-free w.h.p. (as there is no short proof for a

wrong claim). The most studied such setting is the Erdos-Renyi random graph G(n, p)

with p below the so-called threshold (take p = n−
2ξ
k−1 , with ξ > 1 constant for instance).

Lower bounds in this setting are known for some proof systems. For example there are

degree bounds on SOS ([20, 16, 3], for the planted k-clique version), and size lower
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1This strict term is defined by density conditions; we borrow it here only to mean “random-like”.
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2 LARGE CLIQUE IS HARD ON AVERAGE FOR RESOLUTION

bounds on subsystems of resolution like tree-like resolution ([7]) and regular resolution

([2]). But the problem remains widely open, in particular, for resolution. In general,

the question of lower bounds of CNF instances for resolution is made more interesting

by the fact that nearly all temporary algorithms (usually called SAT-solvers) for CNF

satisfiability can be formulated within this system ([8, 4, 17, 21]).

As is usual for weak systems, here the encoding matters. There are two natural CNF

encodings from the literature, which are denoted as Clique(G, k) and Cliqueblock(G, k)

(Section 2). Roughly speaking, the two differ by whether allowing permutations of the

k vertices of the clique. Among them, Cliqueblock(G, k) is the one prohibiting such

permutations, and it is the “stronger” one (i.e., its lower bound easily implies that for

Clique(G, k)). With Theorem 2.1, we will see that actually it is the proper encoding,

in capturing hardness of k-Clique from the underlying graph G.

Our results. Our first result is for k = nΩ(1), the k-clique problem is hard on average

for resolution. More precisely, we prove an exp(k1−ε) lower bound (ε > 0 is arbitrary

constant) for Cliqueblock(n, k), for k = nc0 , c0 ∈ (0, 1/3), on the Erdos-Renyi random

graph (Corollary 3.1). The bound applies to graphs with some certain “quasi-random”

combinatorial property (neighbor-denseness).

Our second result, Theorem 4.1, is an nΩ(k)-type average lower bound (for the same

CNF but any k this time), for the model which we call a-irregular resolution, a ∈ (0, 1),

which sits between regular and general resolution. The significance of such model is

that, as we will see in Section 4.1, it captures the known power of general-over-regular

resolutions. I.e., for known CNFs exponentially separating the two, they have short

resolution proofs actually in this model for small a (Remark 4.1, 4.2, 4.3). In other

words, the model is not less powerful than general resolution from the view of current

knowledge. Therefore, for a target CNF, particularly those whose hardness for regular

resolution is known (e.g., the situation of k-Clique and nk-type lower bound), testing

hardness in this model seems legitimate, and helps realize if we are faced with some

“novel power” of general-over-regular resolution.

We now describe this model (loosely). It allows “irregularities”, but requires them

to be structured in the following way: viewing a resolution as a top-down DAG,

If a clause P has large (block-) width, then (blocks of) variables

irregularly resolved after P are not too many.

Here, both large and many are characterized by parameter a ∈ (0, 1); the word block is

used as the model assumes a variable partition in input (Definition 4.2). In Section 4.1,

we show how this model captures the power of general-over-regular resolution; with the
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concept of blcok-width (which is defined for any CNF) we also ask there, if it is possible

to generalize the well-known width-size relation.

Proof method. The proofs are formulated in the top-down view of resolution (see

Section 2. See also the paragraph below the next, for the possibility of using restrictions

instead). We formalize properties of random graph first. Then we design the answering

strategy based on these properties, and analyze in the classical bottleneck counting

framework ([14]). For the first result, the strategy flips random coins before the process

starts, then it forces the process to recover clauses at which, significant amount of

information of the random coins is released. The idea is to branch to clause that is not

“dead” but in “danger” (i.e., no axiom is violated, but for many i ∈ [k], pigeon i has

few vertices to go for maintaining a clique; see Definition 3.2).

For the second result, suppose the resolution is Γ. The answering strategy is similarly

to force the process to any clause P with similar tension as above, due to which: 1. The

limitation of a-irregularity emerges; 2. There is a restriction, say ρ, under which the

related induced sub-graph is still “quasi-random”. This gives an almost “self-reduction”

of the instance, and with Γ|ρ (under P ) regular, we can finish by a slightly modified

proof for regular case ([2]).

One curious aspect of proofs here is that, the answering strategy itself is appar-

ently computationally hard (Remark 4.5). Previous ones used in the literature (for the

pigeonhole principle ([23]), and for k-Clique in regular case) are, on the contrary, com-

putationally simple. We have no idea whether such hardness is necessary (for proving

lower bounds).

Another aspect worth mentioning is, since proof of the first bound uses the classical

bottleneck counting, it appears possible that it can be translated into restriction-based

language (in the sense of [5]). For example, one might define some “width” (computed

from Definition 3.2), prove a “width” lower bound (from Lemma 3.3), and apply ran-

dom restrictions (defined from distribution (3.3)) to remove “large-width” clauses, etc..

We do not work in detail of this, with an excuse that the adopted top-down argument

consistently works for the second result2.

Future problems. 1. A highlighted one is to get average lower bound of type nΩ(k),

for general resolution. This improvement (from 2k to nk) is especially meaningful for

small values of k, say, O(log n) or constant, and it would match many current state-of-

the-art algorithms up to a constant factor in the exponent. As a remark, there is some

2It is less clear how, to translate even the proof for regular case into the restriction-based language.
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belief in such lower bound for any algorithm, whether or not it is based on resolution.

E.g. in parametrized complexity, k-Clique is so-called W [1]-complete [11, 13].

2. Regarding models. In defining the new model we propose the concept block-width

(Definition 4.2), which can be defined for any CNF. The following question might be

of interest: can one extend the well-known size-width relation ([6]) to block-width in

some way, in hope to find a unified way to study CNFs of large width (by making it

of small block-width)? Also, to better understand short resolution proofs, it might be

interesting to consider other “structurally irregular” models. For example, in branching

programs there is so-called s-regular model ([18]), whose direct analogue in resolution

is similar to, but different from (and apparently incomparable) the a-irregular model

here. Can one prove nΩ(k)-type lower bound on it?

3. The problem of extending the average 2k-type to stronger systems. For example,

the system Res(k) (e.g., [26]), and algebraic systems like cutting-plane ([10]), which

have similar top-down characterizations ([28, 12]).

The paper is organized as follows. Section 2 are preliminaries. Section 3 is for the

first lower bound, Theorem 3.1, where subsection 3.1 is graph properties, 3.2 is the

proof. Section 4 is for the second result Theorem 4.1, where subsection 4.1 defines the

model of a-irregular resolution, 4.2 is (more) graph properties and 4.3 is the proof.

2. Preliminaries

Graphs. In this paper, a graph G = (V,E) is always undirected, simple (with no

self-loops or multiple edges). For v ∈ V , N(v) = {u | u ∈ V and (u, v) ∈ E} is the set

of neighbors of v in G. For a subsets A,B ⊂ V , N̂A(B) = A ∩ (∩v∈B N(v)) is the set

of common neighbors of B in A. In case A = V , it simplifies to N̂(B).

Erdos-Renyi random graph G(n, p), 0 < p < 1, is the random variable which place

and edge between {u, v} with probability p independently for all pairs u 6= v in a fixed n-

element set V . Throughout this paper G denotes this random graph (when n, p is fixed).

A k-clique in G is a subset C of V with size k such that ∀u, v ∈ C, u 6= v ⇒ {u, v} ∈ E.

For positive integers 1 < k < n, it is well-known that there exists the so-called threshold

probability, n−
2

k−1 , such that: G(n, p) contains a k-clique (or not) with overwhelming

probability as n → ∞, when p > n−(1−O(1)) 2
k−1 (or p < n−(1+O(1)) 2

k−1 ). To see one

direction (which is we need), note edges in G are i.i.d. Bernoulli random variables with

probability p of being 1, by taking the union bound, the probability that G contains

a k-clique is < n−Ω(k) whenever p ≤ n
−2ξ
k−1 for constant ξ > 1. We will take ξ > 1 as a
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constant throughout the paper. A p-biased coin is the Bernoulli random variable which

takes value 1 with probability p, and 0 with probability 1− p.
Resolution, the k-Clique CNF. A literal l over a Boolean variable x is either x (positive

literal) or its negation ¬x (negative literal). x is called the variable of l. A clause

C = l1 ∨ ... ∨ lt is a disjunction of literals among which there is no appearance of

x,¬x together for any variable x (otherwise the clause is simply 1). t is the width

of C, denoted as w(C). 0 is the empty clause. A CNF formula τ = C1 ∧ .... ∧ Cm
is a conjunction of clauses. A resolution proof from CNF τ is an ordered sequences

Γ = (D1, ..., DL) where for all i ∈ [L], either Di is a clause in τ (which is called an

axiom) or it is derived from Dj , Dk where j, k < i, by the resolution rule:

A ∨ x B ∨ ¬x
A ∨B

Cj = A ∨ x,Ck = B ∨ ¬x,Ci = A ∨ B. x is the resolved variable. The size of Γ is L,

denoted as |Γ|. Γ is a resolution refutation if DL = 0.

Equivalently, a resolution refutation is a DAG (directed acyclic graph) with a single

source node on top (the root), and each non-leaf node has out degree 2 and is attached

a clause. The root is attached the 0-clause; a leaf is attached an axiom. Directed edges

(a, b), (a, c) mean a resolution step from clauses of b, c to that of a. We say the resolved

variable is queried at a. A resolution is tree-like if its DAG is a tree, and is regular if

along any path from the root, no variable is queried more than once.

We now introduce two k-Clique CNFs from literature (e.g., [2]). The most direct one,

Click(G, k), is the propositional encoding of “G contains a k-clique”. It has variables

xi,v (i ∈ [k], v ∈ V ), and consists of the following groups of clauses:∨
v∈V

xi,v ∀i ∈ [k];(2.1)

¬xi,u ∨ ¬xj,v ∀i, j ∈ [k], u, v ∈ V s.t. i 6= j, {u, v} /∈ E;(2.2)

¬xi,u ∨ ¬xi,v ∀i ∈ [k], u, v ∈ V s.t. u 6= v.(2.3)

The other, Clickblcok(G, k), is the encoding of “G contains a k-clique, one vertex per

block”, fixing any a balanced vertex-decomposition:

V = V1

∐
...
∐

Vk, |Vi| − |Vj | ∈ {0,±1} for any i, j ∈ [k].

∨
v∈Vi

xi,v ∀i ∈ [k];(2.4)

¬xi,u ∨ ¬xj,v ∀i, j ∈ [k], u ∈ Vu, v ∈ Vj s.t. {u, v} /∈ E;(2.5)

¬xi,u ∨ ¬xi,v ∀i ∈ [k], u, v ∈ Vi s.t. u 6= v.(2.6)
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In both encoding, the first group of axioms is called the clique axioms, the second

group the edge axioms, and the third group the functionality axioms. Clearly, the block

encoding claims something stronger (hence easier to prove false), so whose lower bound

is stronger—which formally can be seen from an easy restriction.

First of all, for the weak encoding, we have the following observation3.

Theorem 2.1. For any graph G that contains an Ω(k)-clique, the exp(Ω(k)) size

lower bound holds for Clique(G, k) on resolution. In particular, the bound holds for

the random graph G(n, 2ξ
k−1) (ξ > 1 constant) w.h.p..

Proof. Use a direct reduction to the functional pigeonhole principle, FPHP (e.g., see

[25]). More precisely, if G contains a clique C, take the restriction ρ which sets xi,v to

0 for all i ∈ [k], v /∈ C. Any resolution proof of Clique(G, k) restricted by ρ becomes

a shorter one, which exactly refutes FPHP k|C|—with k pigeons and |C| holes. But

an exp(|C|) lower bound for the latter is known ([25]). Finally, notice that a random

graph from G(n, 2ξ
k−1) (ξ > 1 constant) contains Ω(k)-cliques with high probability

(e.g., [9]). �

Remark 2.1. Theorem 2.1 says the weak encoding “borrows hardness” from FPHP kΩ(k),

while telling little about the hardness from the underlying graph. It is, however, un-

clear how to make a similar reduction for Cliqueblock(G, k) on random graphs4 , which

by definition just prohibits permutations of pigeons and emphasizes more on the graph.

This is the reason we think Cliqueblock(G, k) is the “right” encoding of the problem.

Therefore, in the rest of the paper, we solely concentrate on the CNF Cliqueblock(G, k).

The following notion is for the “appropriate” cliques in G.

Definition 2.1. Assume B ⊂ V = V1
∐
...
∐
Vk. A clique C is a B-block-clique if

C ⊂ B, and ∀l ∈ [k], |C ∩ Vl ∩ B| ≤ 1. A block-clique is an V -block-clique (in

particular, C = φ is a block-clique).

Query-answer language (cf. [23]) As we have mentioned, a resolution proof Γ of CNF

τ can be regarded as a top-down DAG, querying a variable at each non-leaf node. We

further specify some notations for convenience. A record is the negation of a clause in

Γ, treated as a partial assignment. At a round (=a node/clause of Γ; the first round

is the top 0), the query is “Is variable x = 1?”, and an answer chooses Yes or No.

The repeated such process thus forms a downward path that stops when arriving at

3For complete (k − 1)-partite graphs, a similar reduction has been observed by Alexander Razborov
earlier (personal communication). See the example in Remark 3.2.
4For some specially structured G’s, see Remark 3.2.
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an axiom in τ . This language naturally applies also to regular resolution and the later

a-irregular model (Section 4.1). To show size lower bound under this view, one way is

to design answering sequences that can find many different records in Γ. We call this

an Adversary strategy (against the “Prover”, Γ).

For the k-Clique problem, for convenience, denote queries as (l,v)?, and answers as

(l, v)yes or (l, v)no, l ∈ [k], v ∈ V . An l ∈ [k] is called a pigeon, v ∈ V is called a vertex.

So the semantics of Cliqueblock(G, k) is: “assign a vertex to each pigeon so that they

form a k-block-clique.”

Definition 2.2. (some notions for the k-Clique) On a record P , let P1 := {(l, v) |
(l, v)yes ∈ P}, corresponding to the negative literals in the clause; and let P0 := {(l, v) |
(l, v)no ∈ P}, corresponding to positive literals in the clause. Intuitively, P1, P0 are

the pigeon-vertex assignments and rejections in P , respectively. Use dom(P1), dom(P0)

to denote the projection to [k] from P1, P0, respectively. For each pigeon l ∈ [k], its

assignment(s) and rejections in P form the following sets:

P1(l) : = { v ∈ Vl | (l, v)yes ∈ P},(2.7)

P0(l) : = { v ∈ Vl | (l, v)no ∈ P}.(2.8)

Note P1(l) ∩ P0(l) = φ (by definition of a clause), and P1 =
⋃
l∈[k]{l} × P1(l), P0 =⋃

l∈[k]{l} × P0(l). The non-rejected (“live”) vertices for l (in P ) is defined by:

PLive(l) : = Vl\P0(l), and PLive :=
⋃
l∈[k]

PLive(l).(2.9)

Finally, a live-clique in P is defined as a PLive-block-clique (Definition 2.1). A function

f : [k]→ V is a live-clique assignment in P if f is injective and the image is a live-clique

in P . For convenience, identify [n] with the vertex set V when there is no confusion.

3. 2k-type lower bound for resolution

Parameter regime. Throughout Section 3, we use the following parameter regime.

(3.1)

c0 ∈ (0, 1/2) constant, k = nc0 , ξ > 1 constant.

0 < ε << 1 any small constant.

N > max{ 1

1− 3c0
,

1

εc0
}, t =

18ξ ·N
1/3− c0

large constants.

r =
k

t
, q =

1

2
n1−c0−2δr, where δ :=

2ξ

k − 1
.



8 LARGE CLIQUE IS HARD ON AVERAGE FOR RESOLUTION

(Notice 2δr < 1/3−c0
2N .)

3.1. Graph properties. We define the combinatorial property which G ∼ G(n, n−δ)

satisfies w.h.p.. It will also be used in Section 4 (but with drastically different param-

eters).

In a fixed graph G = (V,E), recall N̂A(B) is the set of common neighbors to B in

A, where A,B ⊂ V . We always fix a balanced partition of V as V = V1
∐
...
∐
Vk. GGG

will abbreviate GGG ∼ G(n, nδ) with parameters (3.1).

Definition 3.1. In G, A ⊂ V is called (r, q)-neighbor-dense ([2]) if for any C ⊂ V with

size ≤ r, it holds that |N̂A(C)| ≥ q. G is called (r, q)block-neighbor-dense if for every

j ∈ [k], Vj is (r, q)-neighbor-dense.

Remark 3.1. If a set of vertices is (r, q)-neighbor-dense, then a priori it has size ≥ q.

Lemma 3.1. (“flip” of neighbor-denseness) For any integers a1, a2, b1, b2 and fixed G,

if A ⊂ V is (a1 +a2, b1 + b2)-neighbor-dense and A1 ⊂ A is not (a1, b1)-neighbor-dense,

then A\A1 is (a2, b2)-neighbor-dense.

Proof. Take a witness W1 of size a1 for A1 such that |N̂A1(W1)| < b1. For any W ⊂ V
of size ≤ a2, we have

|N̂A\A1
(W )| ≥ |N̂A1\A1

(W1 ∪W )|

= |N̂A(W1 ∪W )| − |N̂A1(W1 ∪W )|

≥ (b1 + b2)− |N̂A1(W1)|

≥ b2

where the third line uses the assumption that |W1∪W | ≤ a1 +a2 and A is (a1 +a2, b1 +

b2)-neighbor-dense. �

Lemma 3.2. W.h.p., GGG is (2r, q)block-neighbor-dense, with parameters (3.1).

Proof. Use the Chernoff bound and union bound, as follows. Note for any fixed j ∈ [k],

any R ⊂ V with |R| = 2r,

E[ |N̂Vj (R)| ] ≥ (n/k − |R|) · n−δr > 2

3
n1−c0−2δr > q.

So

(3.2)
Pr[ |N̂Vj (R)| < 1

2
q ] ≤ exp(−n

1−c0−2δr

48
)

< exp(−n2c0+δr) since 3δr < 1− 3c0 by (3.1).
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where the first “≤” is by Chernoff bound since all different edges are independent.

Now take the union bound over all such R’s, whose total number of different choices is

≤ n2r < exp(n2c0 log n). �

For convenience, we call a graph G good if it is (2r, q)block-neighbor-dense. By Lemma

3.2, G ∼ G(n, n−δ) is good with high probability.

Remark 3.2. Some particularly structured graphs are also good, though being far

from “quasi-random”. For example, consider a graph G = (V,E) that contains a

complete k1-partite sub-graph, where 2r < k1 < k (r, k as in (3.1)), with “transversal”

partition V = W1
∐
...
∐
Wk1 ; i.e., |Wi ∩ Vj | ≈ n

k1k
for all i ∈ [k1], j ∈ [k]. G is

good by straightforward verification. But for Cliqueblock(G, k), there already exists

reduction to FPHP (the functional pigeonhole principle, as in Theorem 2.1), by the

variable substitution: xi,v ∈ Vi ∩Wj 7→ yi,j where yi,j are the variables of FPHP. The

reduction clearly preserves resolution proofs. While as is mentioned, 2Ω(k)-type lower

bound for such FPHP is known. As a side remark, on complete (k− 1)-partite graphs,

the 2Ω(k) lower bound is actually tight, since there is the natural 2kn2k2 size resolution

(and which is regular); e.g., see Prop. 3.1 in [2].

3.2. Size lower bound.

Theorem 3.1. For c0 ∈ (0, 1/3), k = nc0 and any ε > 0, any resolution refutation of

Cliqueblock(G, k) on a good graph G must have size ≥ exp(Ω(k1−ε)). Here “good” is

with respect to the parameters (3.1).

An immediate corollary of this and section 3.1 is the following.

Corollary 3.1. Within the same parameters as in Theorem 3.1, Cliqueblock(G, k) is

sub-exponentially hard for G(n, n−δ) on average, where δ = 2ξ
k−1 , ξ > 1 constant.

The rest of Section 3 is for the proof of Theorem 3.1.

Fix any a resolution proof Γ of Cliqueblock(G, k). We first describe the Adversary

strategy (recall this is just the answering strategy), and then do bottleneck counting.

3.2.1. The Adversary strategy. Random part. At the beginning of the query-answer

process, choose r
2 different pigeons from [k] uniformly from the

(
k
r/2

)
such choices.

After this, further choose an α, a block-clique (Definition 2.1) assignment to the chosen
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pigeons, randomly according to the following distribution:

(3.3)

Suppose the pigeons chosen are l1, ..., l r
2
∈ [k]. Choose α(l1) uniformly

from V , then choose α(l2) uniformly from N̂Vl2
({α(l1)}), and then α(l3)

uniformly from N̂Vl3
({α(l1), α(l2)}) and so on till α(l r

2
) is chosen.

Denote this distribution of ααα by D. Note when G is (2r, q)block-neighbor-dense, the

above α(lj) always has non-zero support, for all j ∈ [ r2 ].

After choosing α, the strategy will be deterministic.

Deterministic part. Fix a sample α as defined above.

Definition 3.2. (narrow pigeons) Given a record P , suppose α and P1 are compatible

as functions from [k] to [n]. Pigeon l ∈ [k] is called narrow in P if:

P0(l) is (r,
1

2
q)-neighbor-dense.

The set of useful pigeons for P is defined to be dom(P1) ∪ {narrow pigeons in P}.

The invariance the strategy will keep is the following: as long as the number of useful

pigeons on the record is < r/2,

(∗) :

1. α and P1 are compatible functions; and

2. There exists function β defined all narrow pigeons in P , such that α ∪ P1 ∪ β

is injective and has image a live-clique for P (Definition 2.2).

Note in the beginning (top node), (∗) trivially holds because P = φ and α 1-1 maps

to a block-clique.

Claim 3.1. If for a record P the above (∗) holds, then P is not an axiom (i.e., the

process does not stop unless is halted).

Proof. Direct check. The domain and range condition on β assures that P does not

falsify the clique axioms, the well-definedness of P1 assures that P does not falsify the

functionality axioms. Finally from (∗), P1 is injective with Im(P1) a block-clique, which

assures that P does not falsify the edge axioms. �

We continue the construction of the strategy. Suppose at some round, the invariance

(∗) has been kept for the current record P , and the query is (l, v)?. Answer according

to the following:
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(3.4)

(1) If |useful pigeons in P | ≥ r/2, then halt. Otherwise,

(2) (2a) If l ∈ dom(α ∪ P1 ∪ β), answer honestly according to α ∪ P1 ∪ β;

(2b) Otherwise, say “No”.

Lemma 3.3. Suppose the the current record P satisfies (∗). Then either we halt, or

after the round we still keep (∗).

Proof. For item 1 in (∗), it holds for the new record because of (2a) of the above

strategy. Next we prove item 2. Suppose the current record is P . If P has ≥ r/2 many

narrow pigeons, then we will halt by (1) in the strategy. Otherwise, by assumption

there is β for P0 as in (∗). We prove that for the “intermediate” record

Q := P ∪ {the new answer}

still satisfies (∗). Note Q always subsumes the record at the next node, and so the new

record will satisfy (∗) because (∗) is anti-monotone in the amount of information on

the record.

Assume the new query is (l, v)?. In case (2a), the same β for P suffices for Q, trivially

from inductive hypothesis. In case (2b), there are two possibilities: either P0(l) ∪ {v}
is (r, 1

2q)-neighbor-dense in G, or it isn’t. In the latter case, the pigeon l is still not

narrow in Q, and thus (∗) holds for Q.

In the former case, let R := Im(α ∪ β ∪ P1). By assumption,

(3.5)

|R| ≤ |α|+ |β ∪ P1|

=
r

2
+ |{useful pegions}|

<
r

2
+
r

2
= r.

Moreover, P0(l) ∪ {v} is not (r, 1
2q + 1)-neighbor-dense by the case assumption. So by

Lemma 3.1, where we take A := Vl, A1 := P0(l) ∪ {v}, and a1 = a2 = 1
2q, we get that

Vl\(P0(l) ∪ {v}) = Vl\Q0(l) = QLive(l) is (r, 1
2q − 1)-neighbor-dense. In particular, as

1
q >> 1, we can choose a w ∈ N̂QLive(l)(R). Extend β to β ∪ {β(l) = w} will keep (∗)
for Q. �

Now the Adversary strategy can be completed: as long as not halted, we additionally

extend β to keep (∗) in any deterministic way.

Remark 3.3. Before bottleneck counting, here is a remark regarding Definition 3.2

(the reader can safely skip this to continue the proof). In Section 4 we will encounter
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again the notion of narrow pigeons, but with very different parameter regime (Definition

4.5, equation (4.4)). We will not attempt to unify the parameters in the two sections,

so we can preserve the lighter parameter regime (3.1) and the cleaner argument.

3.2.2. Bottleneck counting. Since Γ is a correct proof, the query process must stop. By

Claim 3.1, it could only be halted in Case (1) of (3.4). Let T be the set of all such

halting records (over all α) in the Γ.

Definition 3.3. We say a r
2 -block-clique assignment α leads to record P (in T ) if when

chosen α in the beginning, the Adversary strategy halts at P .

Lemma 3.4. Given the distribution ααα ∼ D (3.3), for any fixed P ∈ T

(3.6) Pr[ ααα leads to P ] ≤ exp(−Ω(k1−ε))

where the parameters are as in (3.1).

Proof. Let P ∈ T be such a record. Recall (Definition 3.2) useful pigeons are those in

P1∪{narrow pigeons}. By definition of T and Lemma 3.3, for P we have |{useful pigeons}| ≥
r/2.

First, recall r = k/t ((3.1)) and let ε′ = ( 1
100

r
k )2 = ( 1

100t)
2 which is a small constant.

By the first part of ααα, we have:

Pr[ |dom(ααα) ∩ {useful pigeons}| < ε′r ](3.7)

≤
∑
a<ε′r

( r
2

a

)
·
(
k − r

2
1
2r − a

)
/

(
k
r
2

)
(3.8)

≤ε′r ·
( e

2ε′
)ε′r · ( e(k − r

2)

(1
2 − ε′)r

)r/2−ε′r · (e(kr
2

− 1

2
)
)−r/2

(3.9)

=ε′r · exp(rε′ ln
e

2ε′
) · (

t− 1
2

(2t− 1
2)(1

2 − ε′)
)
r
2
−ε′r(3.10)

≤ε′r · exp(r · 2
√
ε′) · (1− 1

10t
)r/3(3.11)

<ε′r · exp(−r/75t) = exp(−Ω(k))(3.12)

where (3.9) is by the monotonicity in a (a ≤ ε′r) and binomial coefficient approximation(
e(
n

b
− 1

2
)
)b ≤ (n

b

)√
2πb ≤ (

en

b
)b, when n >> b;

(3.11) is because ε′ ln 1
ε′ <

√
ε′ when ε′ is small enough, and

t− 1
2

(2t− 1
2

)( 1
2
−ε′) < 1 − 1

10t

noticing ε′ < 1
20t ; the last “=” uses r = Ω(k) and t is constant.
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Therefore,

Pr[ ααα leads to P ] ≤ exp(−Ω(k))+

Pr[ ααα leads to P and |dom(ααα) ∩ {useful pigeons}| ≥ ε′r ](3.13)

Below we bound the probability in (3.13). There are two cases:

|dom(ααα) ∩ dom(P1)| ≥ ε′r

2
, Or(3.14)

|dom(ααα) ∩ ({narrow pigeons}\dom(P1))| ≥ ε′r

2
.(3.15)

Here as usual, dom(ααα) denotes the domain of ααα (a subset of [k]).

Recall ε
′r
2 = Ω(k), and both |dom(P1)| and |narrow pigeons| are subsets of [k] that are

decided by P (independently of ααα). Suppose α′ is an arbitrary choice of ααα that satisfies

the condition in (3.13). Below we bound the probability (3.14), (3.15) separately.

1. In the first case, (3.14), α′ has to assign exactly the same vertices as P1 to pigeons

in dom(P1) ∩ dom(α′). Since G is (2r, q)block-neighbor-dense where q = 1
2n

1−2δr, so by

Remark 3.1(a) there are ≥ 1
2n

1−c0−2δr many choices of vertices for each such pigeon.

By definition (3.3), ααα chooses among them uniformly. Thus

Pr[ ααα leads to P and |dom(ααα) ∩ dom(P1)}| ≥ ε′r/2 ](3.16)

≤
∑

S⊂[k], |S|≥ε′r/2

Pr[dom(ααα) ∩ dom(P1) = S ∧ for all i ∈ S, ααα(i) = P1(i)](3.17)

=
∑

S⊂[k], |S|≥ε′r/2

Pr[dom(ααα) ∩ dom(P1) = S ] · Pr[ for all i ∈ S, ααα(i) = P1(i)](3.18)

≤
∑

S⊂[k], |S|≥ε′r/2

Pr[ dom(ααα) ∩ dom(P1) = S ] · (1

2
n1−c0−2δr)ε

′r/2 ≤ 1 · n−Ω(k)(3.19)

where (3.17) is from the independence between the choosing dom(ααα) and choosing

their images in the definition of ααα, and (3.18) is from the uniform choice of each image

independently, and the discussion above (3.16); the last inequality is from parameter

choice (3.1) and that ε′ is a constant.

2. In the latter case, (3.15), let B denote {narrow pigeons (in P )}\dom(P1). Note

in the process of choosing vertices to pigeons in

i ∈ dom(α′) ∩B

to define α′(i), vertices in P0(i) cannot be chosen. This is because of (2a) of (3.4) in

the strategy. On the other hand, for any such pigeon i, by assumption it is narrow in
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P so P0(i) is (r, 1
2q)-neighbor-dense. Hence by Remark 3.1, we have

(3.20)
N̂P0(i)(Im(α′|dom(α′\{i}))) ≥

1

2
q

=
1

4
n1−c0−2δr.

So for such i, by definition of D and |Vi| = n1−c0 ,

(3.21)
Pr[ ααα(i) /∈ P0(i) | i ∈ dom(ααα) ] ≤ 1− n1−c0−2δr

4n1−c0

= 1− 1

4
n−2δr.

Now we can bound the overall probability that this case happens, by

(3.22)
∑

S⊂B, |S|≥ε′r/2

Pr[ dom(ααα) ∩B = S and ααα(i) /∈ P0(i) for all i ∈ S ]

By the independence of the two stages in the distribution D, similar to the estimation

to (3.16), we have from (3.21) that

(3.22) ≤ (1− 1

4
n−2δr)ε

′r/2 = (1− 1

4
n−2δr)Ω(k) ≤ exp(−Ω(k1−ε)),(3.23)

where the last “≤” is from the fact that 2δr < εc0 in (3.1). �

Since any choice of ααα must halt in some record in T (the first paragraph of section

3.2.2), Lemma 3.4 implies |T | ≥ exp(Ω(k1−ε)) = exp(Ω(n(1−ε)c0)). In particular, there

are at least this many different records in Γ. Theorem 3.1 is proved.

4. nk-type lower bounds for a-irregular resolutions

4.1. a-irregular resolution. Recall a resolution proof Γ is viewed as a top-down DAG.

We say a variable x is irregularly queried on P, where P is a directed path in Γ, if x is

queried more than once on P (the query at the end of P, if exists, doesn’t count).

We are going to introduce the model of a-irregular resolution. Its main version,

Definition 4.2, assumes a variable partition in input. Let’s start with a lighter one,

subsumed by the main.

Definition 4.1. Let 0 ≤ a ≤ 1. A resolution proof Γ on m variables is a-irregular, if

for any clause C ∈ Γ with width ≥ am, there is a set irrC of size ≤ am, that contains

all irregularly-queried variables after C. In other words,

(4.1)
if w(C) ≥ am, then ∃irrC ⊂ [m], |irrC | ≤ am, such that on any path

starting from C, its irregularly queried variables belong to irrC .
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So regular resolution is 0-irregular, and general resolution is 1-irregular.

We continue to the main version, starting with some additional motivation. For

many CNFs of interests, which express tautologies or principles, there are “naturally”

associated partitions of variables (by their semantical meanings, etc.). On the other

hand, for general satisfiability problem or random CNFs where there is no natural

candidate partition, any variable partition can be added as additional input, to pose

structural control on the proof or algorithm. (An analogue is, for example, the ordered

resolution, where a variable order is added as structural limitation.) The model of

a-irregular resolution for κ takes this into consideration.

(Main model) Given m variables and κ : [m] � [k] a partition of variables into k

blocks (1 ≤ k ≤ m), we say x belongs to S ⊂ [k] if κ(x) ∈ S. The block-width of clause

C is

(4.2) wb(C) := |{ i ∈ [k] | κ−1(i) ∩ V ar(C) 6= φ}|.

Definition 4.2. (main model) For a ≤ 1, κ as above, a resolution proof Γ on m

variables is a-irregular for κ if for any clause C ∈ Γ,

(4.3)
If wb(C) ≥ am, then ∃irrC ⊂ [k] of size ≤ ak s.t. along any path

starting from C, its irregularly queried variables belong to irrC .

As a reminder, both definitions 4.1, 4.2 have no limitation on the number of irregular

queries on any variable, nor queries before encountering a clause like C. Note by

definition, the blocked a-irregular model subsumes the unblocked ak
m -irregular one, for

any κ : [m] � [k].

We give some evidence of the usefulness of the model, via three remarks below. As a

beforehand reminder, all short proofs mentioned below actually fall in the model with

extremely small parameter a as m−Ω(1); our lower bound in Theorem 4.1, on the other

hand, holds for constant a (for any k).

Remark 4.1. Let us see by example that (unblocked) a-irregular resolution (Definition

4.1) is exponentially stronger than regular, even a is merely m−Ω(1). We can take the

Stone-formula in [1], which has m = Θ(n2) variables. For G with large pebbling number,

these formulas are exponentially hard for regular resolution (see [1] for detail), while

the short resolution (their Theorem 4.1) is m−
1
2 -irregular. Actually, the set of all

irregularly queried variables are only the “stone variables”, whose size is O(n).

Remark 4.2. The situation is even more clear in the main model, Definition 4.2. To

the best of the author’s knowledge, known exponential separations between the regular
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and general resolution are the two classes from [1]. And they are, as we will see, all

separations between regular and the a-irregular model for some κ, where a is only

m−Ω(1) and κ is naturally associated with the CNF.

We examine these examples below. They are the Stone Formulas, which is already

mentioned in Remark 4.1, and a variation of the Ordering Principle, denoted as GT ′n.

For the Stone-formula, the variables are naturally partitioned into k = n + 1 blocks

according to vertices of G. Axioms have block-width 4. Using the notation in [1],

κ = { {Pi,u}a∈S (i ∈ G), {Rt}t∈S }. The short resolution in [1] is 5
k -irregular for κ,

since every clause in that resolution has block-width ≤ 4.

For the variation of the Ordering Principle, GT ′n, under the notation in [1], it has

m = n(n− 1) variables xi,j , i 6= j ∈ [n], with the intended semantical meaning xi,j ⇔
element i is greater than element j. They are naturally partitioned according to the

second subscript j, into k = n blocks. Denote this partition by κ. Axioms will again

have constant block-width. The short resolution (Corollary 3.4 in [1]) first resolves

xi1,i2 ∨xi2,i3 ∨xi3,i1 ∨ ρ(i1, i2, i3) with xi1,i2 ∨xi2,i3 ∨xi3,i1 ∨¬ρ(i1, i2, i3) for all i1, i2, i3,

where all clauses have block-width ≤ 4; and then uses a resolution from [29], in which

all clauses are Cm(j)’s (in notation of [29]) or axioms, and so all have block-width ≤ 4.

So in particular, it is 4/k-irregular for κ.

Remark 4.3. Finally, we give some remarks about the additional input—a variable

partition κ. Full freedom in choosing κ seems hard to control, yet we provide some

suggestion on “reasonable” ones. All examples in above remarks have somewhat natural

choice of κ, from the semantics of the CNF (and we will explain below, why some other

plausible partitions are not chosen). This “natural choice” is certainly not guaranteed

for general CNFs, but in that case we can consider the following.

First, recall CNFs with small width are well-studied for resolution in a unified way

via the width-size relation ([6]). This naturally stimulates the hope to extend this

relation to some variation of width, as there are CNFs of interests that have large

width. If consider this in our model, then it highlights a plausible “principle”:

Choose κ under which, axioms have small block-width.

Second, to be useful to help understand short proofs, the limited model should be

strong enough to contain short proofs. The above “principle” has a merit: clauses with

large block-width are “nontrivial” (or “far from axioms”), so at least apparently, the

structural requirement (4.3) seems not to make this system oversimple.

As the reader might have noticed, choices of κ in examples of Remark 4.1, 4.2 followed

this principle, and somehow witnessed the mentioned merit. It is now also clear why



LARGE CLIQUE IS HARD ON AVERAGE FOR RESOLUTION 17

we omit some other choices: in GT ′n, for example, κ′ that partitions variables according

to the first subscript also seems natural at the first sight, but axioms already have

linear block-width. In the Stone formula, the partition by stones similarly causes large

block-width in axioms. Under this angle, for our target Cliqueblock(G, k) the choice

κ : xl,v 7→ l is appropriate, as axioms have block-width ≤ 2 (while having large width).

From now on, by “a-irregular resolution” we insist to the model by Definition 4.2.

The main theorem of this section is the following.

Theorem 4.1. Let τ := Cliqueblock(G, k), κ : xi,v → i ∈ [k]. For ξ > 1 constant, if

logn k ≤ 1
3 − 200ε for some constant ε > 0, then for GGG ∼ G(n, n−2ξ/(k−1)), w.h.p. any

ε
ξ -irregular resolution proof for (τ, κ) requires size nΩ(k), where Ω depends on ξ, ε.

In particular, the same bound holds for (unblocked) εk
ξn(=O( kn))-irregular resolution.

4.2. More graph properties. Recall the neighbor-denseness (Definition 3.1). Here

is a relativzation of it.

Definition 4.3. Given a graph G, a, b ∈ N+. For A,B ⊂ V , B is called (a, b)A-

neighbor-dense if for any Q ⊂ A, |Q| ≤ a it holds that |N̂B(Q)| ≥ b. When A = V , we

omit the upper index and simply say B is (a, b)-neighbor-dense.

Remark 4.4. (inheritability of neighbor-denseness) IfA′ ⊂ A andB is (a, b)A-neighbor-

dense, then B is (a, b)A
′
-neighbor-dense. In particular, an (a, b)-neighbor-dense set is

(a, b)A-neighbor-denseness for any A.

Recall the “flip” property of neighbor-denseness (Lemma 3.1). For convenience we

recast it here as:

Lemma 4.1. (“flip” of neighbor-denseness) For any integers a1, a2, b1, b2 and fixed G,

if A ⊂ V is (a1 +a2, b1 + b2)-neighbor-dense and A1 ⊂ A is not (a1, b1)-neighbor-dense,

then A\A1 is (a2, b2)-neighbor-dense.

Another “quasi-random” property of G which plays an important rule in the proof of

regular case is the following. It says for any (r, q)-neighbor-dense set in G, all witness

sets of its non-(tr, q′)-neighbor-denseness (if exist) are non-trivially concentrated (for

suitable suitable parameters r, q, q′).

Definition 4.4. W ⊂ V is called (tr, r, q′, s)-mostly-dense in G ([2]), if ∃S ⊂ V of size

≤ s, such that ∀Q ⊂ V of size ≤ tr, |N̂W (Q)| < q′ implies |Q∩ S| ≥ r. We say G itself

is (tr, r, q′, s)-mostly-dense if every (r, q)-neighbor-dense set is (tr, r, q′, s)-mostly-dense.
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The following simple proposition says mostly-denseness is also inheritable (with re-

spect to the concentrating set S).

Proposition 4.1. Suppose A ⊂ V , and W is (tr, r, q′, s)-mostly-dense. Then ∃S1 ⊂ A
of size ≤ s such that, for any Q ⊂ A, |Q| ≤ tr, if |N̂W (Q)| < q′ then |Q ∩ S1| ≥ r.

Proof. Simply take S1 to be S ∩A, where S is as in the definition of mostly-denseness

of W . �

As usual, denote 2ξ
k−1 by δ. The main result of [2] is the following.

Theorem 4.2. Suppose ξ > 1, k < n
1
4
−ε, ε ∈ (0, 1

2). Then:

(1) (their Theorem 6.1) W.h.p.,GGG ∼ G(n, n−δ) is (tr, tq)-neighbor-dense and (tr, r, q′, s)-

mostly dense, with t = 64ξ
ε , r = 4k

t2
, q = n1−δtr

4t , s = (nξ )1/2 and q′ = 3εs1+ε log s.

(2) IfG satisfies the two properties in (1), then any regular refutation of Cliqueblock(G, k)

requires size nΩ(k/ξ2).

Below we fix the parameter regime for the rest of the paper; then state a form of

Theorem 4.2(1) (as Theorem 4.3) that will be of use.

Parameter regime. In the rest of Section 4, we set parameters as:

(4.4)

ξ > 1 constant, 0 < ε < 1/15 constant, δ =
2ξ

k − 1
;

t =
40ξ

ε
,

3t2

ε
< k < n

1
3
−5ε;

r =
k

t2
, q =

1

8tk
n1−8δtr, q′ =

1

4
qn−δtr;

s = k2n9δtr+ε, p = n−(9δtr+2ε)/k.

In below, recall the (·, ·)block-neighbor-denseness in Definition 3.1.

Theorem 4.3. With parameter regime (4.4), w.h.p. GGG ∼ G(n, n−δ) is

(4.5)
(8tr, 4tq)block-neighbor-dense; and

(tr, r, q′, s)-mostly-dense.

Proof. The proof of first part is identical to that of Lemma 3.2. For the second part, the

original technical proof of Theorem 4.2(1) applies directly; we only point out parameters

(4.4) make nε/2+1 < qn−δtrs/tr, making their argument go through smoothly. �

Therefore, to prove Theorem 4.1 it suffices to prove the following.

Theorem 4.4. Suppose G satisfies (4.5) with parameters (4.4). τ := Cliqueblock(G, k),

κ : xl,v 7→ i ∈ [k]. For large n, any 1
t -irregular resolution for (τ, κ) requires size nεk/6t

2
.

The rest of this section is for proving Theorem 4.4.
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4.3. Lower bound proof. The following notion, as mentioned in Remark 3.3, is the

same to Definition 3.2 but with different parameters. For compatibility we still use the

name “narrow”. Without confusion, in this Section 4 we always insist to this version.

Definition 4.5. (narrow pigeons) Suppose P ∈ Γ is a record. A pigeon l ∈ [k] is called

narrow in P if

P0(l) is (4tr, 2tq)-neighbor-dense, where recall 2tq =
1

4
n1−8tδr/k.

Let narrowP denote the set of narrow pigeons in P .

4.3.1. Proof outline. The proof will combine the idea in Section 3 and Theorem 4.2,

via a restriction. As usual, given a proof Γ we design an Adversary strategy. This

time it is two-stage. In stage I, the strategy is similar to that of section 3.2 but even

simpler: now we do not need random coin α at all, and the goal of this stage is to find

any clause, say P ∗, that satisfies:

• has block-width ≥ k
t ; and

• living vertices in P ∗ (Definition 2.2) for “many” pigeons are “many”.

The two conditions will be balanced via Definition 4.5 (“narrow”). Then, stage II starts

at P ∗. In a 1
t -irregular proof, by choice of P ∗, there is a small set of blocks containing all

irregularly-queried variables after P ∗. We will be able to find a block-clique assignment

β̃ (equation (4.11)) which sets these variables, and concentrate on Γ|
β̃

which is regular.

The second condition for P ∗ insures that the instance almost has a self-reduction via this

restriction: more precisely, the induced sub-graph keeps being (tr, tq)-neighbor-dense,

and has a similar property to (tr, r, q′, s′)-mostly-denseness (Section 4.3.3). Therefore,

we can use Theorem 4.2(2) to finish the proof. The only subtlety of the last part is that

mostly-denseness is not completely inherited, but we find a relative version (Remark

4.6) that suffices.

Definition 4.6. (Notation) Recall in a resolution, a record is identified with a node/clause.

Suppose the query process has continued to record P , then P denotes the path traveled

from the root to P . We call the query-process so far as being along P. P+ denotes the

next node according to the strategy, with Q the intermediate record P ∪{new answer}.

4.3.2. Adversary strategy.

Stage I.

The starting node 0 is in this stage; the strategy will be similar to that in Section 3.

During this stage, we always keep a live-clique assignment βP (Definition 2.2) for the
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current record P , which is empty at the starting node, such that

(4.6) βP ⊃ P1, dom(βP ) = dom(P1) ∪ narrowP .

In particular, P1 will be a well-defined function. Suppose the process continues to P

along P within this stage, and the query at P is:

(4.7) (l1, v1)?

Answer by:

• If

(4.8) |narrowP ∪ dom(P1)| ≥ tr,

go to Stage II;

• Otherwise, to query (4.7),

– if l1 ∈ dom(P1) ∪ narrowP , answer according to βP ;

– otherwise, answer No.

If haven’t transited to Stage II, we need to maintain (4.6) for the new node. Update

for βP to βQ as follows. Notice |dom(βQ)| ≤ |dom(βP )| + 1 ≤ tr, and “+1” is needed

if and only if l1 ∈ narrowQ\narrowP .

Claim 4.1. IfG is (8δtr, 4tq)block-neighbor-dense, l /∈ narrowP , then PLive(l) is (4δtr, 2tq)-

dense.

Proof. Apply Lemma 4.1 to A← Vl, A1 ← P0(l) and a1 = a2 = 4δtr, b1 = b2 = 2tq. �

Claim 4.1 implies that if l1 ∈ narrowQ\narrowP then

|N̂PLive(l1)(Im(βP ))| ≥ 2tq > 1.

Therefore, ∃v ∈ N̂PLive(l1)(Im(βP ))\{v1}, and βQ extends βP by sending l1 to v. This

settles Q for maintaining (4.6); as for P+, take

(4.9) βP+ = βQ|narrowP+∪dom(P+
1 )

where narrowP+ ⊂ narrowQ and P+
1 ⊂ Q1 (a sub-function). This completes Stage I.

Claim 4.2. The query-answer process must transit to Stage II at some node P .

Proof. Similar to Claim 3.1. If P does not satisfy (4.8) then there is no violated axiom.

Indeed, the functionality axioms and edge axioms are preserved by existence of βP in

(4.6). The clique axioms are preserved by βP and the fact that, if PLive(l) = φ then a

priori l is narrow, but this means β(l) ∈ PLive(l) which is impossible in Stage I. �
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Stage II.

Suppose the process transits to this stage at node P ∗ of Γ. Our goal is to find a

new, regular protocol Γ∗ by restricting Γ (under P ∗), then use the result for regular

resolution. This can be accomplished only if the instance after the restriction is still a

Clique-CNF on a “quasi-random” graph, which is a bit too much to obtain. We find

a weaker “quasi-randomness” instead, from a deterministic restriction. The analysis

would require some detail of the strategy for regular case, so we also present it in

“Strategy on Γ∗” in below.

Find the restriction. As |P1 ∪ narrowP | at most increases size by 1 per round in

Stage I (while it might decrease), P ∗ must satisfy:

(4.10) |narrowP ∗ ∪ dom((P ∗)1)| = tr.

If Γ is 1
t -irregular (w.r.t. κ), there is a subset of [k] with size tr, denoted as irrP ∗ , that

contains blocks (i.e., pigeons) of all possible irregularly-queried variables after P ∗.

Claim 4.3. There exists a live-clique assignment for P ∗, β̃, such that

(4.11) β̃ extends βP ∗ , dom(β̃) = dom(βP ∗) ∪ irrP ∗ .

Proof. We extend function βP ∗ on irrP ∗\dom(βP ∗) ⊂ irrP ∗\narrowP ∗ one by one. In

each step, the function to be extended has image size ≤ (|dom((P ∗)1)|+ |narrowP ∗ |) +

|irrP ∗ | ≤ 2tr, so it is possible to find their common neighborhood in PLive(l) for any

l /∈ narrowP ∗ , by Claim 4.1. �

Get new instance G̃ and Γ∗. Fix a β̃ as in Claim 4.3. Let

(4.12) G̃ := G [
⋃

l∈[k]\dom(β̃)

Ṽl], where Ṽl := N̂P ∗Live(l)(Im(β̃)), l ∈ [k]\dom(β̃).

Further restrict appropriate variables to 0, so that the k-Clique CNF on G becomes the

(k − |dom(β̃)|)-Clique CNF on G̃. Moreover, by definition of irrP ∗ , if Γ is 1
t -irregular

then the resulting restricted proof, denoted as Γ∗, is regular.

Strategy on Γ∗. Finally, we show the query process on Γ∗. Still use P ∗ to denote top

node of Γ∗ (a 0 clause now). Suppose the current node is P ∈ Γ∗, the query is (4.7),

l1 ∈ [k]\dom(β̃), v1 ∈ Ṽl1 , and P is the path from P ∗ to P so far traveled. Answer by:

(1) If ∃v ∈ Ṽl1 s.t. (l1, v) was answered Yes along P, answer No;

(2) Otherwise, if v1 /∈ N̂(Im(P1)), answer No;

(3) Otherwise, flip a p-biased coin (p in (4.4)), and answer Yes iff the coin is 1.

The No’s in (1), (2) are called a forgotten-forced answer (to l1) and a edge-forced answer,

respectively. Answer in (3) is called random. Note item (1) depends on P.
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This completes Stage II, hence the whole Adversary strategy.

Remark 4.5. The above Strategy on Γ∗, as mentioned, is borrowed from the regular

case ([2]), with minor adjustments (to make it simpler; see the end of the remark). It

is defined regardless of regularity of Γ∗; and as we will see, some of its useful property,

though not all, holds for general resolution (Lemma 4.5). As a side remark, compared

to the “hard” strategies used in Theorem 3.1 and Stage I5, here given G and the current

query-path, an answer is easy to compute (i.e., the deterministic part can be done in

time O(|Γ∗|)) even if not knowing the whole Γ∗.

4.3.3. Analysis.

Properties of G̃. Recall G̃ is the induced subgraph (4.12).

Lemma 4.2. Assume G is (8tr, 4tq)block-neighbor-dense (t, q as in (4.4)). Then ∀l ∈
[k]\dom(β̃), Ṽl is (2tr, 2tq)V -neighbor-dense in G.

In particular, G̃ itself is (2tr, 2tq)block-neighbor-dense, by the inheritability (Remark

4.4) and the fact that it is induced.

Proof. Fix such an l. First, as in the proof of Claim 4.1, apply Lemma 4.1 to A ← Vl

and A1 ← (P ∗)0(l) with a1 = a2 = 4δtr, b1 = b2 = 2tq, where we notice that l /∈
dom(Im(β̃)) ⊃ dom(narrowP ∗). As a result we have

(4.13) P ∗Live(l) is (4δtr, 2tq)-neighbor-dense.

Now for any R ⊂ V of size ≤ 2tr, |Im(β̃) ∪R| ≤ 2tr + 2tr = 4tr, so by (4.13),

|N̂
Ṽl

(R)| = |N̂
N̂P∗

Live
(l)(Im(β̃))

(R)|

= |N̂P ∗Live(l)(Im(β̃) ∪R)|

≥ 2tq.

The lemma is proved. �

Lemma 4.3. Assume G is (tr, r, q′, s)-mostly-dense. Then: for all (r, q)V -neighbor-

dense set W ⊂ Ṽ , ∃S ⊂ Ṽ of size ≤ s such that, for any Q ⊂ Ṽ of size tr, |N̂W (Q)| < q′

implies |S ∩Q| ≥ r.

Proof. SinceG is (tr, r, q′, s)-mostly-dense andW is (r, q)V -neighbor-dense, W is (tr, r, q′, s)-

mostly-dense. In Proposition 4.1, take A ← Ṽ and W ← W ; as a result, there exists

S1 ⊂ A = Ṽ that satisfies the condition in the lemma. �

5where to efficiently check neighbor-denseness, one apparently needs an NP oracle
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Remark 4.6. The content after “Then” in Lemma 4.3 is a relative property between

G and G̃. For G̃, this is weaker than (tr, r, q′, s)-mostly-denseness itself, because of the

obvious inclusion

{(r, q)V -neighbor-dense sets in Ṽ } ⊂ {(r, q)Ṽ -neighbor-dense sets in Ṽ }.

As we will see, this weaker “quasi-randomness” suffices for the proof (in Lemma 4.6).

Bottleneck counting. Since Γ is a correct proof, the process must stop in Stage II by

Claim 4.2. Without loss of generality, assume

dom(β̃) = [k̃ + 1, k], where k − k̃ = |dom(β̃)| < 2tr (=
2k

t
).

We will not care much about |Ṽ |; as will be seen, the lower bound actually depends

on the “quasi-random” parameters of G̃ from Lemma 4.2, 4.3. Denote by PPP the random

path from P ∗ to axioms (defined by the strategy on Γ∗). To any path P′, “P′ ⊂ PPP”

denotes the event “PPP travels through P′”. By eligible paths we refer to paths in Γ∗ (not

necessarily from P ∗ to axioms) that can be traveled through with nonzero probability.

For any eligible path P in Γ∗, define

P1 = { (l, v) | (l, v)yes is answered along P }, and similarly P0;(4.14)

random(P) = { (l, v) | (l, v)? is answered randomly along P }.(4.15)

As usual, P0(l) = { v | (l, v) ∈ P0 } for l ∈ [ k̃ ]. Note random(P) is well-defined.

Definition 4.7. Suppose W ⊂ { (l, v) | (l, v) ∈ [ k̃ ] × Ṽl }. A path P in Γ∗ is

W yes-compatible if W ∩ P0 = φ, and is Wno-compatible if W ∩ P1 = φ.

A related important fact is: if Γ∗ is regular then P1 ∩ P0 = φ, meaning that P is P
yes
1 -

and Pno0 -compatible, for any path P in Γ∗.

Now we prove lower bounds on |Γ∗|. First it is easy to verify: functionality and edge

axioms are never falsified by a record in Stage II. So any eligible path P that is down

to axioms must end in a clique axiom

(4.16) Cl :=
∨
v∈Vl

xl,v l ∈ [ k̃ ].

In below, we only need to upper bound the probability Pr[ PPP ends in Cl ], ∀l ∈ [k̃].

Lemma 4.4. If P is an eligible path to axiom Cl in (4.16), then along P there is no

forgotten-forced answer to l. In particular, P is Wno-compatible for W := l × Ṽl.

Proof. By regularity. �
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The next lemma does not need regularity of Γ∗. In below, P(Z) denotes the sub-path

from node Z if Z ∈ P; a subset W of { (l, v) | (l, v) ∈ [k̃ ]× Ṽl } is called a query set.

Lemma 4.5. For any query set W , node Z and eligible path R from P ∗ to Z,

Pr[PPP(Z) is W θ-compatible, |random(PPP(Z))∩W | ≥ a | R ⊂ PPP] ≤

p
a, if θ = yes;

(1− p)a, if θ = no.

Proof. We prove for θ = no; the other is the same. Suppose P is in the support of the

event in the Lemma. On P(Z), any query (l, v)? with (l, v) ∈W must be answered No

by compatibility. Let PrR,Z,a denote the probability in the lemma (with W fixed).

We pass the probability PrR,Z,a to the two or one possible successor(s) of Z. Suppose

the query at Z is (l1, v1)?. If (l1, v1) /∈ W or the answer is forced-No (which can be

decided given R, Z), then the probability passes to the successor(s) with a unchanged.

Otherwise the answer must be a random-No, and so PrR,Z,a = (1−p) ·PrR′,Z′,a−1, with

R′ extending R by Z → Z ′, where Z ′ is the unique possible successor. Induction on Z

(from below) completes the proof. �

We continue to bound probability of paths. As it turns out, if PPP has a node P with

large |P1|, then it can be handled by Lemma 4.5 (type-1 in the proof of Theorem 4.4).

The other case is harder; we need a technical lemma, which follows the analysis in [2].

Lemma 4.6. Suppose n is large enough. Then ∀l ∈ [ k̃ ],

(4.17) Pr[ PPP ends in Cl, ∀P on PPP |P1| < r/2 ] < |Γ∗|2 · n−εk/3t2−1.

Proof. Due to item (1) in Stage II’s strategy, there are at most k̃ Yes-answers along

any support of PPP. Given such a P, divide it into consecutive segments P1 ∪ ...P2t, such

that |(Pi)1| ≤ d k̃2te ≤ tr/2, ∀i ∈ [2t]. Here recall (Pi)1 is defined by (4.14). Below we

consider (Pi)0(l); note by choice of l,
⋃
i∈[2t](P

i)0(l) = Ṽl.

By Lemma 4.2, Ṽl is (2tr, 2tq)V -neighbor-dense. We claim that, one of (P i)0(l), say

(Pi
∗
)0(l), is (r, q)V -neighbor-dense. This can be seen by contradiction: otherwise, we

can collect a union of 2t many sets all of which have size r, and together has < q · 2t
many common neighbors in Ṽl—contradicting the (2tr, 2tq)V -neighbor-denseness.

Fix such an i∗ for P. Let Z,Z ′ be the start and end nodes of Pi
∗
, decided by P in

some fixed way. For simplicity, let sel(P) := (Z,Z ′), A := Im(Z1) ∪ Im((Pi∗)1), and

(4.18) PPP<:= “PPP ends in Cl, ∀P on PPP, |P1| < r/2” (=the event in the lemma).

As P ends in Cl, by regularity of Γ∗, (Pi∗)0(l) = Z ′0(l)\Z0(l). Thus,

LHS of (4.17) = Pr[ PPP<, |N̂Z′Z′Z′0\ZZZ0
(AAA)| ≥ q′ ] + Pr[ PPP<, |N̂Z′Z′Z′0\ZZZ0

(AAA)| < q′ ](4.19)
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≤
∑

Z,Z′∈Γ

Pr[ PPP<, sel(PPP) = (Z,Z ′), |N̂Z′0\Z0
(AAA)| ≥ q′ ] + Pr[ PPP<, sel(PPP) = (Z,Z ′), |N̂Z′0\Z0

(AAA)| < q′ ]

(4.20)

For fixed Z,Z ′ ∈ Γ, we only need to bound the two terms of (4.20).

first term. By Lemma 4.4, any No-answer in (Pi)0(l) is random or edge-forced. By

definition of A, the ≥ q′ many No-answers to N̂Z′0\Z0
(AAA) along PPP0,i∗(l) are all random.

Also, by Lemma 4.4, any path to Cl is Wno-compatible, with W := {l} × Ṽ . So the

event of this term implies event

E := “PPP is Wno-compatible, random(PPP) ∩W | ≥ q′.”

By Lemma 4.5 (with Z ← P ∗), Pr[E] ≤ (1− p)q′ < exp(−n2εk/32t) < n−εk by (4.4).

second term. By choice of i∗, Z ′0\Z0 is (r, q)V -neighbor-dense. Now |AAA| ≤ r/2 +

tr/2 < tr. By (tr, r, q′, s)-mostly-denseness of G and Lemma 4.3, ∃S ⊂ Ṽ of size ≤ s

s.t. |AAA∩S| ≥ r. As |Im(ZZZ1)| ≤ r/2 from the event PPP<, if let SSS1 := Im((PPPi
∗
)1)∩S then

PPP< ⇒ |SSS1| ≥ r/2. Therefore, as every Yes-answer is random, this term is bounded by:

(4.21)
∑

S1⊂S, |S1|=r/2

Pr[ {l1} × S1 ⊂ PPP(Z)1 ∩ random(PPP(Z)) ]

For fixed S1, the probability is < pr/2 by Lemma 4.5 (W ← {l1}×S1, weighted-summed

over all paths R from P ∗ to Z; compatibility is from the fact after Definition 4.7). Now(
s
r
2

)
pr/2 < (2et2n−ε)k/(2t

2) < n−εk/3t
2−10, by choice of s, p in (4.4).

The Lemma follows by a union bound over Z,Z ′ ∈ Γ∗ in (4.20). �

Now we can prove Theorem 4.4.

Proof. (of Theorem 4.4) Let G be (8tr, 4tq)block-neighbor-dense and (tr, r, q′, s)-mostly-

dense. Suppose Γ is 1
t -irregular resolution w.r.t. κ, the canonical variable partition.

By Claim 4.2, the query-answer process on Γ must stop in Stage II at an axiom like

(4.16). We only need to bound |Γ∗|(≤ |Γ|). Consider any path P in the support of PPP

in Stage II. If ∃P ∈ P with |P1| ≥ r/2, we call it type-1; otherwise it is type-2.

For any type-1 P and such P , note (P ∗)1 = φ, and P1 ⊂ P1. So if take W := P1, then

P is W yes-compatible (from the fact after Definition 4.7), |W | ≥ r
2 . All Yes answers

are random in Stage II, so by Lemma 4.5 with Z ← P ∗, the probability of type-1 path

to appear, taken over all possible such node P ∈ Γ∗, is ≤ |Γ∗| · p
r
2 < n−εk/t

2
.

For type-2 path P, we can apply Lemma 4.6. As a result, the probability is ≤
k · |Γ∗|2 · n−εk/3t2−1, taken union over l ∈ [k].

Together type-1, type-2 appear with probability 1, so |Γ∗| ≥ nεk/6t2 . �
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