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Abstract

We prove that there is a constant K such that Tseitin formulas for an undirected graph G requires

proofs of size 2twpGqΩp1{dq in depth-d Frege systems for d ă K logn
log logn

, where twpGq is the treewidth of
G. This extends H̊astad recent lower bound for the grid graph to any graph. Furthermore, we prove
tightness of our bound up to a multiplicative constant in the top exponent. Namely, we show that if a
Tseitin formula for a graph G has size s, then for all large enough d, it has a depth-d Frege proof of size

2twpGqOp1{dqpolypsq. Through this result we settle the question posed by M. Alekhnovich and A. Razborov
of showing that the class of Tseitin formulas is quasi-automatizable for resolution.

1 Introduction

Propositional proof complexity is motivated by the result of Cook and Reckhow [13] saying that if there is a
propositional proof system in which any unsatisfiable formula F has a short proof of unsatisfiability (of size
polynomial in the size of F ), then NP “ coNP. In the last 30 years the complexity of proofs was investigated
for several proof systems with the aim of finding concrete evidence, and eventually a proof, that for all proof
systems there is a propositional formula which is not efficiently provable, i.e. requires super-polynomial proof
size. The approach followed to prove such lower bounds was essentially borrowed from circuit complexity.
Lines in a proof are Boolean formulas and we can define different proof system according to the circuit
complexity of such formulas. For example resolution, a well-known refutational system for CNFs, corresponds
to a system where formulas are of depth 1. In circuit complexity we keep on trying to strength lower bounds
to computationally more powerful class of circuits. In proof complexity we follow the analogous approach: to
strength lower bounds to systems working on formulas computationally more powerful. The hope is that
techniques used to prove lower bounds for classes of Boolean circuits could be lifted to work with proof
systems operating with formulas in the same circuit class. At present however we are far from such ideal
situation and in fact, in terms of circuit classes, lower bounds for proof systems are well below those for
Boolean circuits.

The complexity of proofs in resolution is largely studied. The first lower bound for (a restriction of)
resolution was given by Tseitin in [35]. To obtain his result Tseitin introduced a class of formulas (nowadays
known as Tseitin formulas) encoding a generalisation of the principle that the sum of the degrees of all
vertices in a graph is an even number. A Tseitin formula TpG, fq is defined for every undirected graph
GpV,Eq and a charging function f : V Ñ t0, 1u. We introduce a propositional variable for every edge of
G so that TpG, fq is a CNF representation of a linear system over the field GFp2q that for every vertex
v P V states that the sum of all edges incident to v equals fpvq. Tseitin formulas, usually defined on graphs
with good expansion properties, are among the main examples we could prove lower bounds for in different
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proof systems. For unrestricted resolution it was Urquhart in [36] and later Ben-Sasson and Wigderson [9]
who proved exponential lower bounds for Tseitin formulas over constant-degree expander graphs. Another
example of an important principle largely studied in proof complexity is the Pigeonhole principle, PHPn.
Haken [19], Beame and Pitassi [5] and Ben-Sasson Wigderson [9] were proving exponential resolution lower
bounds for CNF encoding of the negation of PHPn, which were later generalized and improved in several
other works [10,14,24,30,32,33].

Bounded-depth Frege extends resolution since the formulas in the line of proofs are computable by
AC0 circuits, i.e. constant-depth circuits with unbounded fan-in gates. The importance of understanding
the complexity of proofs in bounded-depth-Frege systems was due at least to two reasons: (1) for general
Frege systems, where formulas have no restrictions, i.e. are of depth Oplog nq, Buss in [11] proved that
the Pigeonhole principle can be proved in polynomial size, hence obtaining an exponential separation with
resolution. (2) Lower bounds for AC0-circuits were known [16, 21] and hence we could hope for applying
lower bound techniques for AC0 to lower bounds to bounded-depth Frege. Studying the complexity of proofs
in bounded-depth Frege is of the utmost importance since it is a frontier proof system, i.e. is the strongest
propositional proof system with known significant lower bounds at the moment. Any advance is then a step
towards proving lower bounds for AC0

r2s-Frege, i.e. a bounded-depth Frege admitting also formulas with
parity gates, which are unknown at the moment, though we know since a long time exponential lower bounds
for AC0

r2s circuits [25,31,34]. In this work we contribute to the complexity of proofs in bounded-depth Frege
proving new lower bounds for Tseitin formulas.

Ajtai in [1] was the first to prove a lower bound in bounded-depth Frege. He showed that a proof of PHPn
must have super-polynomial size. His result was later followed by several results simplifying his technique [6]
and improving the lower bound [26,27] showing that any polynomial-size Frege proof of PHPn must have
depth Ωplog log nq. The proof complexity of Tseitin formulas in bounded-depth Frege was first considered by
Urquhart and Fu in [37], a work where they simplified and adapted the lower bound for the PHPn to the case
of Tseitin formulas over a complete graph. Ben-Sasson in [8], proved exponential lower bounds for the Tseitin
formulas over constant-degree expander graphs using a new reduction from the pigeonhole principle [37]. All
these lower bounds are adaptation of the technique of [26,27], hence vanish when the depth of formulas in
the proof is more than log log n. In a very recent major breakthrough [28] showed that Tseitin formulas over
a 3-expander graph of n nodes requires super-polynomial bounded-depth Frege proofs at depth Op

?
log nq.

Their result was later improved to depth up to C logn
log logn by H̊astad in [22] but for Tseitin formulas defined

only on the 2-dimensional grid, where C is a positive constant.
Proofs of TpG, fq were studied in terms of the treewidth of G, twpGq, for resolution [2,17] and for OBDD

proof systems [18]. We use H̊astad result to prove tight bounds on the complexity of proofs in bounded-depth
Frege of TpG, fq over any graph G in terms of the treewidth of G. Our main result is the following theorem:

Theorem 1. There is a constant K such that for any graph G over n nodes and for all d ď K logn
log logn , every

depth-d Frege proof of  TpG, fq has size at least 2twpGqΩp1{dq . Furthermore, for all large enough d there exist

depth-d Frege proofs of  TpG, fq of size 2twpGqOp1{dqpolyp|TpG, fq|q.

A class of unsatisfiable CNF Fn is (quasi-)automatizable in a proof systems S, if there exists a deterministic
algorithm that, given F in Fn returns a proof in S in time which is (quasi-)polynomial in |F |`|τF |, where |τF |
is the size of shortest proof of F in S. Theorem 1, together with the results from [2, 3, 17, 20] implies that for
any graph G, the class of Tseitin formulas is quasi-automatizable in all systems between treelike resolution and
constant-depth Frege. This answers the problem of [2] of extending to all graphs the quasi-automazibablity
of TpG, fq in resolution, known only for graphs with bounded cyclicity [2] (see Section 5).

Using a result in [3, 23] we can also prove that the size of proofs of TpG, fq in proof systems between
tree-like resolution and bounded-depth Frege are quasi-polynomially correlated, i.e. if TpG, fq has a proof
of size S in bounded-depth Frege, then it has a proof of size at most 2polyplogSq in treelike resolution and
vice versa (see Corollary 34). This result provides evidence to the conjecture of Alasdair Urquhart that the
shortest resolution proofs of TpG, fq are regular. Finally other consequences of Theorem 1 are: (1) It gives
polynomial size Frege proofs of TpG, fq of depth logptwpGqq. (2) It improves the lower bounds of [8, 28] since

expanders have treewidth Ωpnq and on such graphs our lower bound is 2n
Ωp1{dq

, which works for larger d than
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[8, 28]; (3) Induces a strict depth-hierarchy for the proof complexities of Tseitin formulas over an infinite
sequence of graphs Gn.

Overview of the proof technique. In Theorem 18 we prove the lower bound from Theorem 1. The proof
is based on the improvement of the Excluded Grid Theorem by Robertson and Seymour recently obtained
by Chuzhoy [12]: the arbitrary graph G contains as a minor a r ˆ r grid, where r “ Ω

`

twpGq1{37
˘

. More
precisely we use the corollary of this result (see Corollary 9) stating that any graph G has a wall of size r as
a topological minor (i.e. can be obtained from G by several removing of vertices, edges and suppressions,
see Fig. 1 and Fig. 3). Our proof consists of two parts: at first, we show that if H is a topological minor
of G, then any bounded-depth Frege proof of a Tseitin formula TpG, fq can be transformed to a proof of a
TpH, f 1q, with constant increase in depth and polynomial increase in size. And then we prove a lower bound
on the size of depth-d Frege proof of Tseitin formulas based on walls. In this proof we use the lower bound
for grid graphs proved by H̊astad [22].

In Theorem 19 we prove the upper bound from Theorem 1. We consider the compact representation
of linear functions Fn2 Ñ F2 from variables x1, x2, . . . , xn by propositional formulas of depth d and of size

2n
Op1{dq

. We show that for linear functions f and g if the equations fpxq “ a and gpxq “ b are given in our

representation, then there is a derivation of ph` gqpxq “ a` b of depth d and of size 2n
Op1{dq

. We also show
that if a linear equation represented in CNF, then it is possible to infer its compact representation with depth

d and size 2n
Op1{dq

. Since a Tseitin formula is an unsatisfiable system of linear equations written in CNF,

hence it is possible to prove a Tseitin formula in size 2m
Op1{dq

and depth d, where m is the number of edges
in G. However we wish to have the treewidth of G instead of m. We consider a tree-partition of a graph G,
the vertices of G are split into bags and there exists a tree such that bags are nodes of this tree and if two
vertices of G are connected, then they are either in one bag or in adjacent bags. It is known that there is a
tree partition where the size of bags are at most OptwpGq∆pGqq [38]. Since the number of edges touching a
given bag is OptwpGq∆pGq2q we can use the compact representation to take care of the equations involving
the parity of sum of adjacent bags with proofs growing in terms of the treewidth of G.

Organization. The paper is divided into four sections. After the Preliminary section, we have Section 3 for
the lower bound (Theorem 18), Section 4 for the upper bound (Theorem 19) and a final Section 5 for the
consequences of our result.

2 Preliminaries

Formulas and restrictions. We consider propositional formulas over binary _ and ^, unary  and Boolean
constants 0,1. We represent formulas as rooted trees such that internal vertices are labeled with connectives
and leaves are labeled with propositional variables or Boolean constants. The depth of a formula is the
maximal number of alternations of types of connectives over all the paths from the root to a leaf plus one.

We assume that disjunctions with unbounded fanin are represented via binary disjunctions. By default
we mean that

Žn
i“1 xi is right-associative, i.e. it denotes p. . . px1 _ x2q _ . . . q _ xn´1q _ xn; we also assume

the same for
Ź

.
We denote by varspF q the set of variables of a formula F . A partial assignment α for a formula F is

mapping from varspF q Ñ t0, 1, ˚u, where αpxq “ ˚ if x is unassigned. We denote by dompαq “ α´1pt0, 1uq be
the set of variables in F which α assigns a Boolean value.

Pudlák-Buss games. We use the game interpretation of Frege proofs introduced by Pudlák and Buss
[29]. Let us define a game with two players Pavel and Sam. The game starts with initial conditions of
the form ϕ1 “ a1, . . . , ϕk “ ak, where ϕ1, ϕ2, . . . , ϕk are propositional formulas and a1, a2, . . . , ak P t0, 1u

such that
Źk
i“1pϕi “ aiq is identically false. Sam claims that he knows an assignment of variables that

satisfies
Źk
i“1pϕi “ aiq, the goal of Pavel is to convict Sam. At each his move Pavel asks Sam the value of a

propositional formula and Sam gives an answer. The game stops when Pavel convict Sam, namely Pavel
finds an immediate contradiction among initial conditions and Sam’s answers. An immediate contradiction
with a Boolean connective ˝ of arity t is a set of pt` 1q formulas α1, . . . , αt and ˝pα1, . . . , αtq with claimed
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values a1, . . . , at and b such that ˝pa1, . . . , akq ‰ b. In particular, 0 with claimed value 1 is an immediate
contradiction.

A strategy of Pavel is a function that maps initial conditions and the history of a game to a propositional
formula (request). A winning strategy is a strategy that allows Pavel to convict Sam for any behaviour of
Sam. A winning strategy of Pavel can be represented as a binary tree whose nodes are labeled with Pavel’s
requests and edges correspond to Sam’s answers. A leaf of the tree corresponds to a immediate contradiction
among initial conditions and equalities corresponding to the path from the root to this leaf.

A derivation of a formula ψ from formulas ϕ1, ϕ2, . . . , ϕs is a tree of a Pavel’s winning strategy in a game
with initial conditions ϕ1 “ 1, ϕ2 “ 1, . . . , ϕs “ 1, ψ “ 0. We are interested in the two complexity parameters
of derivations: 1) the size of a derivation S that equals the total size of formula ψ and all formulas that are
used as labels of nodes; 4) the depth of a derivation d is the maximum depth of ψ and formulas that are used
as labels of nodes. We use the notation ϕ1, . . . , ϕs $d ψ for a derivation of ψ from ϕ1, ϕ2, . . . , ϕs of depth at
most d. A derivation of ϕ is a derivation of ϕ from the empty set of formulas.

Lemma 2. Assume that there is a derivation ϕ1, . . . , ϕk $d1
ψ1 of size S1 and also there is a derivation

ϕ1, . . . , ϕk, ψ1 $d2
ψ2 of size S2, then there is a derivation ϕ1, . . . , ϕk $maxtd1,d2u ψ2 with size S1 ` S2.

Proof. Let us create the new tree with the root labelled with ψ1 such that edge form the root labelled with 0
goes to the root of the first derivation and edge labelled with 1 goes to the root of the second derivation.

Lemma 3. 1. If a formula ϕ has a Frege derivation of size S and depth d, then ϕ has a Pudlák-Buss game
derivation with number of size OpS2q and depth d. 2. If ϕ has a Pudlák-Buss game derivation of size S and
depth d, then ϕ a Frege derivation of size OpS3q and depth d`Op1q.

Proof. For proof see Appendix A.

Lemma 4. Let ψ1 and ψ2 be two formulas of depth at most d such that | varspψ1q Y varspψ2q| “ k and ψ1

semantically implies ψ2. Then there exists a derivation ψ1 $d ψ2 of size at most 2k
`

|ψ1|
2 ` |ψ2|

2
˘

.

Proof. Consider a game with initial conditions ψ1 “ 1, ψ2 “ 0.
Let | varspψ1q Y varspψ2q| “ tx1, . . . , xku. In the first k rounds of the game Pavel asks Sam x1, . . . , xk.

There are 2k possible combinations of Sam’s answers. For each combination Pavel asks Sam all subformulas of
ψ1 (the value of ψ1 is 1 from initial conditions) starting with the deeper ones and then asks all subformulas of
ψ2 starting with the deeper ones (the value of ψ2 is 0 from initial conditions). Since all variables are known,
one of possible answers to each of these questions yields an immediate contradiction. The total size of all
subformulas of ψ1 and ψ2 is at most |ψ1|

2` |ψ2|
2. Consider the branch of the game tree, where we still no get

an immediate contradiction. In that case Sam ψ1 “ 1 and ψ2 “ 0 are consistent with the values of x1, . . . , xk,
but it is impossible since ψ1 semantically implies ψ2. Hence, there should be an immediate contradiction.

Corollary 5. let ψ1 and ψ2 be two formulas of depth d1 such that varspψ1q Y varspψ2q “ tx1, x2, . . . , xku and
ψ2 is semantically implied by ψ1. Let ϕ1, . . . , ϕk be formulas of depth d2. Let ψirx1 Ð ϕ1, . . . , xk Ð ϕks for
i P t1, 2u be the formula obtained by substitution ϕ1, . . . , ϕk instead of the variables of x1, x2, . . . , xk. Then
there exists a derivation

ψ1rx1 Ð ϕ1, . . . , xk Ð ϕks $d1`d2
ψ2rx1 Ð ϕ1, . . . , xk Ð ϕks

of size at most 2kp|ψ1|
2 ` |ψ2|

2q

´

řk
i“1 |ϕi|

¯

Proof. Use Lemma 4 for ψ1 and ψ2 and then substitute ϕ1, . . . , ϕk instead of the variables x1, . . . , xk.

A shortcut contradiction for the disjunction is a situation where Pavel asks Sam formulas
Žk
i“1 αi and αj

for j P rks and gets the answers 0 and 1 respectively. Similarly a shortcut contradiction for the conjunction is

a situation where Pavel asks Sam formulas
Źk
i“1 αi and αj for j P rks and gets the answers 1 and 0.
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Lemma 6. Consider a derivation with of size S and of depth d that uses shortcut contradictions in leaves.
Then there is an ordinary derivation of size at most S3 and of depth d.

Proof. We transform a tree with shortcut contradictions to a tree without them. Let us consider a leaf with
a shortcut contradiction for the disjunction (case of conjunction is similar), which means that on the path

from root to that leaf Pavel has asked Sam formulas
Žk
i“1 αi and αj for j P rks and got the answers 0 and 1

respectively.
Žk
i“1 αi is represented as

Žq
i“1 αi _

Žk
i“q`1 αi for some index q, where _ is binary disjunction.

Pavel asks Sam formulas
Žq
i“1 αi and

Žk
i“q`1 αi.

1. If one of Sam’s answers is 1, we get an immediate contradiction.

2. If both Sam’s answers are 0, then if j ď q, we continue this process with formula
Žq
i“1 αi otherwise

with formula
Žk
i“q`1 αi.

In the end of that process we get an immediate contradiction. We repeat this for all leaves with shortcut
contradictions, the size of the resulting tree is at most S3 since there are at most S leaves and the size of
added formulas is at most S2 for each leaf.

Tseitin Formulas. Let GpV,Eq be an undirected graph and v P V . We denote by Epvq the set of edges in
E incident with v and by Npvq the set of neighbours u P V of v, i.e. the u such that pu, vq P Epvq.

A vertex-charging for GpV,Eq is a mapping f : V ÝÑ t0, 1u. We say that f is an odd-charging of G
if
ř

vPV fpvq ” 1 mod 2. The Tseitin formulas defined on G using variables xe, e P E are the formulas:
TpG, fq :“

Ź

vPV Parpvq, where Parpvq is a CNF formula representing
À

ePEpvq xe “ fpvq.

Lemma 7 ([36]). TpG, fq is unsatisfiable if and only if there is a connected component U of G such that the
restriction of f on U is odd-charging.

In this work we will work with the tautological form of Tseitin formulas in the form of  TpG, fq.

Grids, Walls, Minors, Topological Minors and Treewidth. We consider 4 structural operations on
undirected graphs G “ pV,Eq possibly with parallel edges, but without loops. We follow [7,15].
• edge removal of e P E. It produces the graph rGzes “ pV,Ezteu).
• vertex removal of v P V . It produces the graph rGzvs “ pV ztvu, EzEpvq), where Epvq is the set of

edges in E incident with v P V .
• edge contraction of e “ puvq P E. Is the replacement of u and v with a single vertex such that edges

incident to the new vertex are the edges other than e that were incident with u or v. The resulting
graph G‹e has one edge less than G.

• vertex suppression of a vertex v in G of degree 2. Let u and w be v’s neighbours in G. The suppression
of v is obtained by deleting the two edges puvq and pwvq and adding a new edge pwuq (possibly parallel
to an existing one). The resulting graph rGzsvs has one vertex less than G. See Figure 1.

w v u

w u

Figure 1: Suppression of
v from G

Figure 2: The grid
H5,5

Figure 3: The wall
W5

A graph H is a minor of G if H can be obtained from G by a sequences of edge and vertex removals and
edge contractions. A graph H is a topological minor of G if H can be obtained from G by a sequence of edge
removals, vertex removals and by vertex suppressions [7, 15].
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The grid Hm,n is the graph of the cellular rectangle mˆ n; it has pm` 1qpn` 1q vertices and npm` 1q `
mpn` 1q edges, among them npm` 1q horizontal and mpn` 1q vertical edges. See fig. 2.

The wall Wn is a subgraph of Hn,n that is obtained by the removing of several vertical edges. Vertical
edges of Hn,n are in n rows and we enumerate them in every row from the left to the right. In the odd
rows we remove all vertical edges with even numbers and in even rows we remove all vertical edges with odd
numbers. See fig. 3.

A tree decomposition of an undirected graph GpV,Eq is a tree T “ pVT , ET q such that every vertex u P VT
corresponds to a set Xu Ď V and it satisfies the following properties: 1. The union of Xu for u P VT equals
V . 2. For every edge pa, bq P E there exists u P VT such that a, b P Xu. 3. If a vertex a P V is in the sets Xu

and Xv for some u, v P VT , then it is also in Xw for all w on the path between u and v in T .
The width of a tree decomposition is the maximum |Xu| for u P VT minus one. A treewidth of a graph G

is the minimal value of the width among all tree decompositions of the graph G.
Recall the following Theorem proved in [12].

Theorem 8 ([12]). If G has treewidth t, then it has the grid Hr as a minor, where r “ Ωpt1{37q.

The following Corollary was mentioned in [7].

Corollary 9. If G has treewidth t, then it has the wall Wr as a topological minor, where r “ Ωpt1{37q.

Proof. Since Wr is a minor of Hr, Wr is a minor of G. Consider a transformation T from G to Wr made
by (1) edge removals, (2) vertex removals and (3) edge contractions that has the minimal number of edge
contractions. Since operations (1), (2) and (3) commute, we may assume that in T no removal follows an
edge contraction (i.e. we remove everything at first, and then contact edges). Now it is easy to understand
that all edge contractions should be actually suppressions. Indeed, assume that we contract pu, vq and both u
and v has degrees at least 3, then we will get a vertex puvq with degree at least 4 and this is a contradiction
since Wr does have degrees at most 3 and edge contractions can decrease degree only in one case when we
contract pu, vq and v has degree 1, but in this case we may just remove v and it decreases the number of edge
contractions.

3 Lower bound

3.1 Topological Minor Theorem on Tseitin Formulas

Le ϕ be a formula and let α be a partial assignment to variables of ϕ. Define ϕrαs to be the formula obtained
from ϕ substituting each variable x in the domain of α, with the constant assigned to x by α. Notice that ϕ
and ϕrαs have the same size and depth.

Lemma 10. Let Φa and Φ1a for a P A be propositional formulas of depth at most d such that | varspΦaq Y

varspΦ1aq| ď k. Assume that for all a P A, Φa is semantically equivalent to Φ1a. Then  
Ź

aPA Φ1a $d`Op1q
 
Ź

aPA1 Φa of size at most 2kpoly p
ř

aPA p|Φa| ` |Φ
1
a|qq, where A1 “ ta P A | Φa is not identically trueu.

Proof. At first Pavel asks
Ź

aPA Φ1a. The answer 1 leads to an immediate contradiction. Then Pavel proceeds
to ask Φ1a for each a P A. If all the answers are 1, Pavel asks all subformulas of the big conjunction

Ź

aPA Φ1a
starting with the deeper ones and at each step one of Sam’s answers leads to an immediate contradiction.

If Sam claim that Φ1a0
“ 0 for some a0 P A, we use Lemma 4 to construct a derivation  Φ1a0

$d  Φa0

of size at most 2k
`

|Φ1a0
|2 ` |Φa0

|2
˘

. If a0 R A
1, then Φa0

is identically true, thus, by Lemma 4, there is a
derivation 1 $d Φa0

of size at most 2kp|Φa0
|2 ` 1q, using it we get an immediate contradiction.

If a0 P A1, then Pavel asks
Ź

aPA1 Φa. If Sam’s answer is 0, we get a shortcut contradiction with
Φa0 and proceed with Lemma 6, otherwise we get an immediate contradiction with the initial condition
 
Ź

aPA1 Φa “ 0.

Lemma 11 ([18]). Let GpV,Eq be a connected graph and HpV 1, E1q be a connected subgraph of G with
E1 ‰ H that is obtained from G by the deletion of some vertices and edges. For every unsatisfiable Tseitin
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formula TpG, fq there exists a partial assignment α on variables xe for e P EzE1 such that α does not falsify
any clause of TpG, fq.

Lemma 12. Let GpV,Eq be a connected graph and HpV 1, E1q be a connected subgraph of G. Assume that
there is a derivation $d  TpG, fq of size S. Then for some f 1 there is a derivation $d`Op1q  TpH, f 1q of
size S ` polyp|TpG, fq|q.

Proof. Let T be the game tree of $d  TpG, fq. Let α be given by Lemma 11 that is defined on all variables
xe for e P EzE1 and does not falsify any clause of TpG, fq. T rαs be the tree obtained form T applying the
substitution α to all the queried formulas. Size and depth do not change, hence T rαs defines a derivation
$d  TpG, fqrαs of size S.  TpG, fq has the form  

Ź

vPV Parpvq, where Parpvq is a parity condition of the
vertex v. Hence,  TpG, fqrαs is of the form  

Ź

i Parpvqrαs. If v R V 1, then α assigns values to all variables
from Parpvq, since α does not falsify Parpvq, α satisfies Parpvq, hence Parpvqrαs is identically true. If v P V 1,
then Parpvqrαs is a parity statement depending on variables xe, where e P E1 is incident to v. Hence, for
v P V 1, Parpvqrαs is semantically equivalent to a parity condition of a Tseitin formula TpH,ϕ1q for some
charging ϕ1. Let ∆ be the maximal degree of G. Then every parity condition of TpH,ϕ1q or TpG,ϕq depends
on at most ∆ variables. Notice that since we represent parities in CNF, |TpG, fq| ě 2∆. By Lemma 10,
there is a derivation  TpG, fqrαs $Op1q  TpH, f 1q of size polyp|TpG, fq|q. The claim follows using the size
S, depth d derivation of  TpG, fqrαs together with Lemma 2.

A 1-substitution for a formula ϕ is a partial function mapping variables of ϕ into its literals. After applying
a 1-substitution σ to ϕ, the depth of the new formula ϕrσs can increase by one. However 1-substitutions are
closed under composition: if σ1 maps ry ÞÑ  zs and σ2 maps rx ÞÑ  ys, then σ “ σ1 ˝σ2 is the 1-substitution
rx ÞÑ z, y ÞÑ  zs. We use 1-substitutions to handle in TpG, fq the operation of vertex suppression on the
graph G. Let G “ pV,Eq be a graph and v P V be a node and let TpG, fq a Tseitin formula on G. Let v be a
degree-2 vertex v in G with neighbours u and v. Consider the following 1-substitution σv and the charge
function fv for rGzsvs:

σv “

"

rxvw ÞÑ xwu, xvu ÞÑ xwus fpvq “ 0
rxvw ÞÑ xwu, xvu ÞÑ  xwus fpvq “ 1

fvpzq “

"

fpzq z P V ztu, vu
fpuq ` fpvq z “ u

Let GpV,Eq be a graph and f : V Ñ t0, 1u be a charging. Let A be a finite set. We say that a formula Ψ
is a pseudo Tseitin formula based on G and f with fake vertices in A, and we write Ψ is T˚ApG, fq, if Ψ has
the form

Ź

vPVYA ψv, where
1. for all v P V , ψv is a propositional formula depending on variables xe for all edges e incident to v. And
ψv is semantically equivalent to parity condition Parpvq of TpG, fq.

2. for all v P A, ψv is a tautology.

Lemma 13. Let GpV,Eq be a connected constant-degree graph over n vertices. Let rGzsvs be the graph
obtained after the suppression of the degree-2 vertex v in G. If Ψ is T˚ApG, fq, then Ψrσvs is T˚AYtvuprGzsvs, fvq.

Proof. Assume that v is linked to the two vertices w and u in G. Let A be the set of fake vertices of Ψ so Ψ
has the form

Ź

xPVYA ψx, hence Ψrσvs is
Ź

xPVYA ψxrσvs. For x P A, ψpxq is a tautology, hence ψxrσvs is
also a tautology. By the definition of σv, ψvrσvs is a tautology. It is not hard to verify that for x P V ztvu,
ψxrσvs is equivalent to parity condition of TprGzsvs, fvq. Hence, Ψrσvs is T˚AYtvuprGzsvs, fvq

Lemma 14. Let GpV,Eq be a graph and f : V Ñ t0, 1u and W “ tv1, . . . , vku be degree 2 nodes in
V suppressed in that order from G and rGzsW s be the resulting graph. Let σi be the corresponding 1-
substitutions and let σ “ σk ˝ . . . ˝ σ1. There is a charging fk of G such that if Ψ is T˚ApG, fq, then Ψrσs is
T˚AYW prGzsW s, fkq.

Proof. By induction on k ě 0 and using Lemma 13 we prove that Ψrσ1s . . . rσks is T˚AYW prGzsW s, fkq, for fk
given by repeated applications of Lemma 13.

Since the composition of 1-substitutions removes double negations, then the only difference between
Ψrσ1s . . . rσks and Ψrσs can be only in the number of negations in front of the same occurrence of a variable,
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though the parity of the number of negations is preserved. Hence for all v P V the semantical equivalence of
the ψv’s in Ψrσ1s . . . rσks and Ψrσs is preserved. Then Ψrσs too is T˚AYW prGzsW s, fkq.

Lemma 15. Let G be a connected graph on n vertices and maximal degree at most 3. Let H be obtained
from G by several suppressions. Assume that there is a derivation of  TpG, fq of size S and depth d. Then
for some charging fk there is a derivation of  TpH, fkq of size OpSq ` polypnq and depth d`Op1q.

Proof. Assume that, in order, to get H from G we have to apply suppressions for vertices W “ tv1, . . . , vku.
Let σi be the 1-substitutions corresponding to the suppression of vi, and let σ “ σk ˝ ¨ ¨ ¨ ˝ σ1. TpG, fq is
T˚HpG, fq. Let fk be the charging given by Lemma 14 applied to TpG, fq and rGzsW s “ H. Then TpG, fqrσs

is T˚W pH, fkq. We apply the 1-substitution σ to the given derivation of  TpG, fq and we get a derivation of
 TpG, fqrσs of size OpSq and depth at most d` 1. By Lemma 10, applied on TpG, fqrσs and TpH, fkq, there
is a derivation  TpG, fqrσs $d`Op1q  TpH, fkq of size polypnq. Combining the two derivations together by
Lemma 2 we obtain a derivation $d`Op1q TpH, fkq of size Opsq ` polypnq.

3.2 From Walls To Grids

Lemma 16. If there exists a derivation $d  TpWn, fq of size S, then there exists a derivation $d`Op1q
 TpMn, f

1q of size OpSq ` polypnq, where Mn is a connected constant-degree graph that contains Hn,tn´1
2 u

as a subgraph.

Proof. Consider a set I of all the horizontal edges of Wn that belong to odd columns (on fig. 4 and 5 edges
from I are red). I is a matching, i.e. no two edges from I are incident to the same vertex. If we contract all
edges from I, we get the graph Mn that for odd n coincides with Hn,n´1

2
and for even n coincides with a

graph that is obtained from Hn,tn2 u by the removal of several edges from the last vertical (see fig. 4 and 5).
For every e P I we denote its left vertex by ue and the right vertex by ve. Let Eue be the set of edges of Wn

incident to ue except e. Let τe denote a CNF formula encoding
À

fPEue
xf “ fpueq.

Consider a game tree T for the derivation of the Tseitin tautology  TpWn, fq of size S and depth d. To
every formula used in this tree we apply the substitution that replaces every occurrence of xe with τe. We
denote the resulting tree by T 1.

Notice that T 1 is a correct game tree of a derivation $d`Op1q  F , where F is obtained from TpWn, fq
by the same substitution. The depth of this derivation is increased by at most a constant since in several
leaves we hang a formula of constant depth; here we also use that I is a matching and thus we do not add
new occurrences of variables corresponding edges from I. The size of τe is Op1q, hence any formula from the
derivation is increased in at most a constant factor, thus the size of the derivation defined by the tree T 1 is
OpSq.

We define a function f 1 on vertices of Mn as follows. If a vertex w of the graph Mn is obtained by merging
the vertices w1, w2 of the graph Wn, then f 1pwq “ pfpw1q ` fpw2qq mod 2. If the vertex w of Hn,tn{2u is
obtained from the vertex w of Wn, then f 1pwq “ fpwq.

Now we show how to derive  TpMn, f
1q from  F . TpWn, fq is a Tseitin formula and it has the following

structure:
Ź

vPV ψv, where V is the set of vertices ofWn and ψv is a CNF formula encoding a parity condition
for the vertex v. F differs from TpWn, fq only in conditions corresponding to vertices that are incident to an
edge from I (if n is even, then there are vertices in Wn that are not incident to any edge from I). Notice
that F has the form

Ź

vPV ψ
1
v where ψ1v is obtained by substitution from ψv. Let w “ ue for some e P I, then

the formula ψ1w is identically true. If w “ ve, then the condition ψ1w is equivalent to the parity condition of
the merged vertex tue, veu in the Tseitin formula TpMn, f

1q, but ψ1w is not written in canonical form.
Since all degrees in Mn are at most 4, then by Lemma 10 there exists a derivation  F $d`Op1q  TpMn, f

1q

of size polypnq. The claim follows by Lemma 2.
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Figure 4: W6 is contracted to M6.
Figure 5: W5 is contracted to M5.

3.3 Putting it all together

We use H̊astad’s Theorem from [22].

Theorem 17 ([22]). There is a constant K ą 0 such that for d ď K logn
log logn any depth d derivation of

 TpHn, fqq has size at least 2n
Ωp1{dq

.

Theorem 18. There exist constants K ą 0 and C ą 0 such that for every connected graph G of treewidth t

for every d ď K logn
log logn ´ C, any depth d derivation of  TpG, fqq has size at least 2t

Ωp1{dq

.

Proof. Suppose that  TpG, fq have a derivation of size S and depth d. By Corollary 9 we know that
G contains the wall Wr as a topological minor, where r “ Ωpt1{37q. Consider a sequence of operations
(edge/vertex removals and suppressions) that transform G to Wr. Assume that removals do not follow
suppressions. And let G1 be a subgraph of G that is obtained from G by application of all removals (hence,
Wr can be obtained from G1 by application of several suppressions).

By Lemma 12, for some f 1 there is a derivation of  TpG1, f 1q of size polyp|TpG, fq|q`S and depth d`Op1q.
Since Wr can be obtained from G1 by application of several suppressions, G1 is connected. suppressions
can not increase the degrees, hence all degrees in G1 are at most 3. By Lemma 15, for some ϕ2 there is a
derivation of  TpWr, f

2q of size polyp|TpG, fq|q ` S and depth d`Op1q. By Lemma 16, for some ϕ3 there
is a derivation of  TpMr, f

3q of size polyp|TpG, fq|q `OpSq and depth d `Op1q, where Mr is connected
constant-degree graph containing Htpr´1q{2u as a subgraph. And finally by Lemma 12, for some f4 there
is a Frege derivation of TpHtpr´1q{2u, f

4q of size polyp|TpG, fq|q `OpSq and depth d`Op1q. Notice that S
is the size of a derivation of  TpG, fq, hence S ě |TpG, fq|. Thus, for some constants C and c there is a
derivation of  TpHtpr´1q{2u, f

4q of size Sc and depth d` C.

By Theorem 17, there is a constant K such that if d` C ď K logn
log logn , then Sc ě 2tpr´1q{2u

Ωp1{pd`Cqq

. Hence

S ě 2r
Ωp1{dq

and, thus, S ě 2t
Ωp1{dq

.

4 Upper bound

In this section we prove the following Theorem:

Theorem 19. Let GpV,Eq be a connected undirected graph and TpG, fq be an unsatisfiable Tseitin
formula. Then for all large enough d the formula  TpG, fq has a derivation of depth d and size

2twpGqOp1{dqpolyp|TpG, fq|q.

In order to prove Theorem 19 we define a compact representation of parity by depth-d formulas, then
we show that we can efficiently derive the sum of F2-linear equations using the compact representation of
parities. And then we prove Theorem 19 using a tree-partition of the graph G.

4.1 A compact representation of parity

Let t1, t2, . . . , td be natural numbers, where d is a non-negative integer. Let U0, U1, . . . , Ud be partitions of
a finite set F . We say that a list of partitions U “ pU0, U1, . . . , Udq is a pt1, . . . , tdq-refinement of F if the
following conditions hold:
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1. U0 consists of the only element U0,1 “ F .
2. For every i, Ui`1 is a subpartition of Ui such that every element of Ui is split into ti`1 parts. Hence,
Ui split F into mi parts: Ui,1, Ui,2, . . . , Ui,mi , where mi “

śi
j“1 tj .

3. All elements of Ud have cardinality at most 1.
Let U be a pt1, . . . , tdq-refinement of a set F and let Ui,j be one of the blocks of this refinement. Then U

induces on each of the blocks Uij a pti`1, . . . , tdq-refinement U 1 which is obtained by restricting Ui, . . . , Ud to
the set Uij . U

1 is called a sub-refinement of Uij in U .

Lemma 20. Let F be a set of size n and d ě 0 be an integer. Let t1, . . . , td be integers such that t1¨t2¨. . .¨td ě n.
Then there exists a pt1, . . . , tdq-refinement U of F .

Proof. We define Ud as n singletons each containing one element of F and t1 ¨ . . . ¨ td ´ n empty sets. For
each i ă d we construct Ui from Ui`1 as follows. We split the ti`1 ¨ . . . ¨ td blocks of the partition Ui`1 into
groups of size ti`1 and define Ui,1 as the union of the elements of the first group, Ui,2 as the union of the
elements of the second group and etc.

For a P t0, 1u and natural number n we define a Boolean function PARITYa
n : t0, 1un Ñ t0, 1un such that

PARITYa
npx1, . . . , xnq “ 1 iff

Àn
i“1 xi “ a for all x1, . . . , xn P t0, 1u.

Lemma 21. Let n and d be positive integers and U be a pt1, t2, . . . , tdq-refinement of rns. Then there exists

a formula representing PARITYb
n of depth at most 3d` 1 and of size

śd
i“1 2ti`1ti.

Proof. Let us prove by backward induction on i from d to 0 that for every j P r
śi
k“1 tks, there is a formula

representing
À

kPUi,j
xk of depth 3pd ´ iq and of size

śd
q“i`1 2tq`1tq. If i “ d, then |Ud,j | ď 1, hence

À

kPUi,j
xk is either 0 or a variable xk and thus has size 1 and depth 0.

Assume that i ă d. Let `1, `2, . . . , `ti`1
be such that Ui,j “ Ui`1,`1 \ Ui`1,`2 \ ¨ ¨ ¨ \ Ui`1,`ti`1

. Let

for r P rti1s, βr be a representation of
À

kPUi`1,`r
xk of size

śd
q“i`2 2tq`1tq and depth 3pd ´ i ´ 1q that

exists by the induction hypothesis. Consider a CNF-representation of β1 ‘ . . . ‘ βti`1
:
À

kPUi,j
xk “

Ź

SĎt1,...,ti`1u

|S| mod 2“0

´

Ž

sPS  βs _
Ž

sRS βs

¯

. After the substitution of the representations of β1, . . . , βti`1
we obtain

a formula of size at most 2ti`1ti`1 ¨
śd
q“i`2 2tq`1tq`2ti`1ti`1 ď

śq
q“i`1 2tq`1tq and of depth 3pd´i´1q`3 “

3pd´ iq.
Therefore we have constructed a representation of PARITY1

n of the needed size and depth. The represen-
tation of PARITY0

n could be constructed as  ϕ where ϕ is the obtained representation of PARITY1
n.

We call the representation of PARITYa
n obtained by Lemma 21 the compact representation of PARITYa

n

with respect to a pt1, . . . , tdq-refinement U .
Let us define for S Ď rns and for a P t0, 1u, PARITYa

n,Spx1, . . . , xnq “ a‘
À

iPS xi. We define a compact
representation of PARITYa

n,S with respect to a pt1, . . . , tdq-refinement U as the result of substitutions xj :“ 0
for all j R S to the compact representation of PARITYa

n with respect to U . We denote the compact
representation of PARITYa

n,Spx1, x2, . . . , xnq w.r.t. U by ΦapS,Uq.

Lemma 22. Let U be a pt1, . . . , tdq-refinement of rns and U 1 be a sub-refinement of Uij in U . Then for
every S Ď Uij there exists a derivation ΦapS,U 1q $3d`Op1q ΦapS,Uq of size at most 4|ΦapS,Uq|3.

Proof. Let ψ1 :“ x and ψ2 be the formula obtained from ΦapS,Uq by replacement of all subformulas ΦapU 1q
with x. Clearly ψ1 and ψ2 are semantically equivalent. Then let us apply Corollary 5 to ψ1, ψ2, k “ 1 and
ϕ1 “ ΦapS,U 1q. Then there exists a derivation of ψ1rx Ð ΦapS,U 1qs $3d`Op1q ψ2rx Ð ΦapS,U 1qs of size
21p|ψ1|

2 ` |ψ2|
2q|ϕ1| “ 2p1` |ΦapS,Uq|2q|ΦapS,U 1q| ď 4|ΦapS,Uq|3.
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4.2 Summation of linear equations

Let S4T be the symmetric difference of sets S and T i.e. S4T “ pS Y T qzpS X T q.

Proposition 23. Let U be a pt1, . . . , tdq-refinement of rns. For any S Ď rns there exists a derivation
 ΦapS,Uq $3d`Op1q Φ1‘apS,Uq of size at most 2p|Φ1pS,Uq| ` |Φ0pS,Uq|q.

Proof. If a “ 1 then the premise equals the conclusion, so empty derivation is sufficient. If a “ 0 we need to
remove double negation so Pavel asks Φ0pS,Uq. If the answer is 1 then it is an immediate contradiction with
the premise and if the answer is 0 it is an immediate contradiction with the conclusion.

Lemma 24. Let U be a pt1, . . . , tdq-refinement of rns. Then there exist a constant c and a derivation

ΦapS,Uq,ΦbpT,Uq $3d`Op1q Φa‘bpS4T,Uq

of size at most c ¨ |Φ1p∅, Uq|6. We write ∅ here to stress that the size of ΦapS,Uq does not depend on S.

Proof. Let us prove this Lemma by induction on d. The base case: d “ 0. Since U0 is the last layer of
refinement, it contains only singletons on the other hand by the definition U0 “ trnsu, thus, n “ 1 and
ΦapS,Uq, ΦbpT,Uq and Φa‘bpS4T,Uq all depend on one variable x1. Thus by Lemma 4, there exists a
derivation ΦapS,Uq ^ ΦbpT,Uq $2 Φa‘bpS4T,Uq of constant size. Clearly ΦapS,Uq ^ ΦbpT,Uq is derivable
from ΦapS,Uq ΦbpT,Uq by a derivation of constant depth and size.

If d ą 0, let V 1, . . . , V t1 be the sub-refinements of U1,1, . . . , U1,t1 in U respectively where rns “ U1,1 \

. . .\ U1,t1 . Recall that by definition

Φ1pX,Uq “
ľ

RĎrt1s
|R| mod 2“0

˜

ł

iPR

 Φ1pX X U1,i, V
iq _

ł

iRR

Φ1pX X U1,i, V
iq

¸

.

We view this representation as CNF in variables Φ1pX X U1,i, V
iq for i P rt1s. Recall that by definition

Φ0pX,Uq “  Φ1pS,Uq.
Let us describe a strategy of Pavel in the game with initial conditions ΦapS,Uq “ 1, ΦbpT,Uq “ 1 and

Φa‘bpS4T,Uq “ 0.
Pavel asks Sam the values of the following 3t1 formulas: Φ1pS X U1,i, V

iq, Φ1pT X U1,i, V
iq, Φ1ppS4T q X

U1,i, V
iq for i P rt1s. There are 23t1 possible combinations of Sam’s answers. The total size of the formulas

is at most 2 ¨ 23t1 ¨ |Φ1p∅, V 1q|. Let us show how Pavel wins in each of them. Let αi, βi, γi denote Sam’s
answers to Φ1pS X U1,i, V

iq, Φ1pT X U1,i, V
iq, Φ1ppS4T q X U1,i, V

iq respectively for i P rt1s.
If

À

iPrt1s
αi ‰ a, then we can get a contradiction with ΦapS,Uq. Indeed consider a formula ψ :“

Źt1
i“1 ΦαipS X U1,i, V

iq ^ ΦapS,Uq and let L be the size of ψ if we consider it as a formula in variables
Φ1pS X U1,i, V

iq. Clearly L ď 2t1`1 ¨ t1. By Corollary 5, there is a derivation of 0 from ψ of size at most

2t1L2
´

řt1
i“1 |Φ

1p∅, V iq|
¯

ď 23t1`4t31|Φ
1p∅, V 1q|. Pavel asks Sam the value of ψ and in both cases gets a

contradiction. If the answer is 0 then it is a contradiction with the conjuncts so Pavel proceeds to ask all
subformulas of ψ starting with the deeper ones until he gets an immediate contradiction. If the answer is 1
we get a contradiction by Corollary 5. The total size of all such derivation for all possible combinations of
Sam’s answers is at most 23t1 ¨max

 

|ψ|2, 23t1`4t31|Φ
1p∅, V 1q|

(

ď 26t1`4t31|Φ
1p∅, V 1q|. Adding the size of the

3t1 preliminary questions we get 26t1`4t31|Φ
1p∅, V 1q| ` 2 ¨ 23t1 ¨ |Φ1p∅, V 1q| ă 20 ¨ 26pt1`1qt61|Φ

1p∅, V 1q|6 ď

20|Φ1p∅, Uq|6. The cases when
À

iPrt1s
βi ‰ b or

À

iPrt1s
γi ‰ a‘ b are similar.

Let us consider the case where
À

iPrt1s
αi “ a,

À

iPrt1s
βi “ b and

À

iPrt1s
γi “ 1‘ a‘ b. In this case there

exists i0 P rt1s such that αi0`βi0 ‰ γi0 . We derive a contradiction using Sam’s answers Φ1pSXU1,i0 , V
i0q “ αi,

Φ1pT X U1,i0 , V
i0q “ βi and Φ1ppS4T q X U1,i0 , V

i0q “ γi. By Proposition 23 we may assume that Sam’s
answers are Φαi0 pS X U1,i0 , V

i0q “ 1, Φβi0 pT X U1,i0 , V
i0q “ 1 and Φγi0 ppS4T q X U1,i0 , V

i0q “ 1. By the
induction hypothesis there exists a derivation

Φαi0 pS X U1,i0 , V
i0q,Φβi0 pT X U1,i0 , V

i0q $3d`Op1q Φ1‘γi0 ppS4T q X U1,i0 , V
i0q
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of size at most c|Φ1p∅, V 1q| so we get an immediate contradiction with Φγi0 ppS4T q X U1,i0 , V
i0q. The total

size of the derivation is at most

23t1

number of possible values of α,β,γ

¨ c|Φ1p∅, V 1q|6

induction hypothesis

` 20|Φ1p∅, Uq|6

local contradictions

.

Since |Φ1p∅, Uq| “ 2t1`1t1 ¨ |Φ
1p∅, V 1q|, for a large enough c the size of derivation does not exceed

c|Φ1p∅, Uq|6.

Lemma 25. Let U be a pt1, . . . , tdq-refinement of rns. Let S1, S2, . . . , Sk Ď rns and a1, . . . , ak P t0, 1u. Then
there exists a constant c such that:

1. There exists a derivation Φa1pS1, Uq,Φ
a2pS2, Uq, . . . ,Φ

akpSk, Uq $3d`Op1q Φa1‘...‘akpS14 . . .4Sk, Uq
of size at most c ¨ k ¨ |Φ1p∅, Uq|6.

2. If
Ź

iPrks

´

À

jPSi
xj “ ai

¯

is unsatisfiable then there exists a derivation

Φa1pS1, Uq,Φ
a2pS2, Uq, . . . ,Φ

akpSk, Uq $3d`Op1q 0 of size at most c ¨ k ¨ |Φ1p∅, Uq|6.

Proof. The proof of (1) is simply pk ´ 1q consecutive applications of Lemma 24 using Lemma 2. The proof
of (2) is based on a well-known fact: a system of linear equations is unsatisfiable iff the contradiction
0 “ 1 can be obtained as a linear combination of the equations. In our case it means that there is a set
R :“ tr1, . . . , rmu Ď rks such that Sr14Sr24 . . .4Srm “ ∅ and

À

iPR ai “ 1.
Φar1‘...arm pSr14 . . .4Srmq “ Φ1p∅, Uq. Φ1p∅, Uq is identically false, hence by Lemma 4 there is a

derivation Φ1p∅, Uq $3d`1 0 of size at most 4|Φ1p∅, Uq|2.
Let us construct Pavel’s strategy in the game with initial conditions Φar1 pSr1 , Uq “ 1, . . . ,Φarm pSrm , Uq “

1 and Φ1p∅, Uq “ 0. Pavel asks Sam the value of Φ1p∅q. If Sam answers 0 Pavel uses the strategy
corresponding to Φar1 pSr1q,Φ

ar2 pSr2q, . . . ,Φ
ark pSrkq $3d`Op1q Φar1‘ar2‘...‘ark pSr14Sr24 . . .4Srkq from

(1). If Sam answers 1 Pavel uses the strategy corresponding to the derivation Φ1p∅, Uq $3d`1 0.

4.3 Tree-partition-width

Let GpV,Eq be an undirected graph and S1, . . . , Sm be a partition of V . S1, . . . , Sm is a tree-partition of G if
there exists a tree T prms, ET q such that every edge e of G connects either two vertices from the same part Si
or connects a vertex from Si and a vertex from Sj , where i and j are adjacent in T , i.e. pi, jq P ET . A width
of a tree-partition S1, S2, . . . , Sm is the size of the largest set Si for i P rms. A tree-partition width of a graph
G is the smallest width among all tree-partitions of G. We denote tree-partition width of G by tpwpGq.

If we add a new vertex in the middle of every edge pi, jq of the tree T and put the set Si Y Sj on it, we
will get a tree decomposition of G, hence twpGq ď 2tpwpGq ´ 1.

The following theorem shows an inequality in the other direction:

Theorem 26 ([38]). If twpGq ě 1, then tpwpGq ď 10∆pGqtwpGq, where ∆pGq is the maximum degree of G.

So, twpGq and tpwpGq coincide up to a multiplicative constants for constant degree graphs.

Theorem 27. Let GpV,Eq be a connected graph and let a Tseitin formula TpG, fq be unsatisfiable. Then

there exists a derivation $3d`Op1q TpG, fq of size at most polyp|TpG, fq|q ¨ 2ptpwpGq∆pGqqOp1{dq , where ∆pGq is
the maximum degree of G.

Proof. Let S1, . . . , Sm be a tree-partition of G with width tpwpGq and let T prms, ET q be the corresponding
tree. W.l.o.g. we assume that T is a rooted tree with root m; for all i P rm ´ 1s, ppiq denotes its parent
and for all i P rms, spiq denotes the set of direct successors of i . W.l.o.g. we assume that ppiq ą i for all
i P rm´ 1s.

Since TpG, fq is unsatisfiable and G is connected,
À

vPV fpvq “
À

iPrms

À

vPSi
fpvq “ 1. We consider the

sum
À

iPrms

À

ePEpSi,V zSiq
xe. Since each xe occurs in the sum exactly twice, the sum (modulo 2) is 0 for all
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values of xe. Then for each assignment of txeuePE there exists i0 such that
À

vPSi0
fpvq ‰

À

ePEpSi0 ,V zSi0 q
xe.

The first part of Pavel’s strategy is to find such i0.
Pavel will request parity of the sum of all edges between Si and Sj for all pi, jq P ET . In order to represent

these formulas in a compact way we now define m different pt1, . . . , tdq-refinements W 1, . . . ,Wm; for every i,

W i is a refinement of the set E
´

Si,
Ť

jPspiq Sj

¯

of all edges connecting a vertex from Si with a vertex from
Ť

jPspiq Sj . We construct appropriate refinements W i later.

Pavel asks Sam the values of
À

ePEpSi,Sppiqq
xe represented as Φ1

`

E
`

Si, Sppiq
˘

,W ppiq
˘

for i P rm´ 1s in

the increasing order until he finds i0 such that
À

ePEpSi0 ,V zSi0 q
xe ‰

À

vPSi0
fpvq.

At the moment when Sam has answered the value of Φ1
`

E
`

Si, Sppiq
˘

,W ppiq
˘

the values of
À

ePEpSi,Sjq
xe

for each j such that pi, jq P ET are all determined, thus, the value of
À

ePEpSi,V zSiq
xe is determined. If

À

ePEpSi,V zSiq
xe ‰

À

vPSi
fpvq Pavel proceeds to the next part of his strategy. Otherwise he continues to

ask Sam similar questions corresponding to the vertices with larger indices.
Now we describe the strategy of Pavel in case if he finds i0. We are going to describe this case in

terms of derivation using Lemma 2 multiple times. Consider a linear system that consists of the equation
À

ePEpSi0 ,V zSi0 q
xe “ 1‘

À

vPSi0
fpvq and all parity conditions of TpG, fq of the vertices from Si0 . This linear

system is unsatisfiable. We are going to use Lemma 25. In order to do it we need to derive the representations
of these linear equations w.r.t. some refinement Q of a superset of EpSi0 , V q.

Let for i P rms, U i be a pt1, t2, . . . , tdq-refinement of the set EpSiq of all edges connecting two vertices
from Si (we construct these refinements in the end of the proof together with the refinements W i). Let
us define a p3, t1, . . . , tdq-refinement Q as a union of pt1, . . . , tdq-refinements W i0 ,W ppi0q and U i0 such that
Q1 “ tEpSi0 ,

Ť

jPspi0q
Sjq, EpSppi0q,

Ť

jPspppi0qq
Sjq, EpSi0qu and for every j P t2, 3, . . . , d` 1u, Qj is the union

of W i0
j´1,W

ppi0q
j´1 and U i0j´1.

Let aj be Sam’s answer to the question
À

ePEpSi0 ,Sjq
xe for each j that is a neighbour of i0 in T , hence we

may assume that Φaj pEpSi0 , Sjq,W
i0q for j P spi0q and Φappi0qpEpSi0 , Eppi0qq,W

ppi0qq are already derived. By
Lemma 22, we derive Φaj pEpSi0 , Sjq, Qq from Φaj pEpSi0 , Sjq,W

i0q for j P spi0q and Φappi0qpEpSi0 , Sppi0qq, Qq

from Φappi0qpEpSi0 , Sppi0qq,W
ppi0qq, where aj are Sam’s answers to the corresponding questions.

By the first part of Lemma 25 we derive Φ
1‘

ˆ

À

vPSi0
fpvq

˙

pEpSi0 , V zSi0q, Qq from the set of formulas
tΦaj pEpSi0 , Sjq, Qq | pi0, jq P ET u. We assume that the parity conditions of the vertices of G in TpG, fq
represented as CNF are asked at the beginning of the game i.e. for each v P V we know that the CNF
representation of

À

u:pu,vqPE xe is true (if any clause of TpG, fq is false Pavel queries all subformulas of

TpG, fq except subformulas of the clauses and gets an immediate contradiction, if any of the parity conditions
is false it yields an immediate contradiction with the corresponding subset of clauses). Thus, by Lemma 4 we
derive the representations of parity conditions of the vertices from Si0 w.r.t. Q. Since the corresponding
linear system is unsatisfiable, using the second part of Lemma 25 we get a contradiction.

Claim 28. The size of the described game tree is at most m ¨ 23∆pGq∆2pGqtpwpGq2Op
řd
i“1 tiq.

Proof. The game tree consists of m subtrees corresponding to each possible value of i0, m ´ 1 nodes
corresponding to the questions Φ1

`

E
`

Si, Sppiq
˘

,W ppiq
˘

for i P rm´1s and Op|V |q nodes corresponding to the
initial questions about parity conditions of the vertices of G in CNF. The total size of formulas in these Op|V |q
nodes is polyp|TpG, fq|q. Each of the m´ 1 formulas corresponding to the questions Φ1

`

E
`

Si, Sppiq
˘

,W ppiq
˘

has size
śd
i“1 2ti`1ti. Let us estimate the size of each of the m subtrees. It is the sum of the following values:

• The derivation of the formulas Φ1 pEpSi0 , Sjq, Qq for j P tppi0qu Y spi0q. By Lemma 22 size of each of

these derivations is O
´

śd
i“1 23tit3i

¯

.

• The derivation of the representations of parity conditions w.r.t. Q. By Lemma 4 size of each of these

derivations is O
´

2∆pGqp2∆pGq∆pGq `
śd
i“1 2titiq

2
¯
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• The derivation of Φ
1‘

ˆ

À

vPSi0
fpvq

˙

pEpSi0 , V zSi0q, Qq. By the first part of Lemma 25 the size of this

derivation is ∆pGqtpwpGq2Op
řd
i“1 tiq.

• The derivation of contradiction by the second part of Lemma 25 has size p∆pGq ` 1qtpwpGq2Op
řd
i“1 tiq.

Each of these four summands is 23∆pGq∆2pGqtpwpGq2Op
řd
i“1 tiq.

Let us choose ti “ p∆pGqtpwpGqq2{d for all i P rds. Since |Si| ď tpwpGq, |EpSiq| `
ˇ

ˇ

ˇ
E
´

Si,
Ť

jPspiq Sj

¯
ˇ

ˇ

ˇ
ď

∆pGqtpwpGq. Hence, the condition
śd
i“1 ti ě ∆pGqtpwpGq ě |EpSiq| `

ˇ

ˇ

ˇ
E
´

Si,
Ť

jPspiq Sj

¯
ˇ

ˇ

ˇ
holds and, thus,

for all i P rms the refinements U i,W i exist by Lemma 20. If we substitute choosen values in the bound from

Clam 28, we get the upper bound m ¨ 2Op3∆pGq`dp∆pGqtpwpGqq2{dq “ polyp|TpG, fq|q ¨ 2p∆pGqtpwpGqqOp1{dq .

Now we are ready to prove Theorem 19.

Proof of Theorem 19. Theorem 27 and Theorem 26 imply that there exists a constant c and a derivation

$3d`Op1q  TpG, fq of size at most polyp|TpG, fq|q2p10∆2
pGqtwpGqqc{d . If twpGq ą ∆pGq then we can rewrite our

upper bound on the size as polyp|TpG, fq|q2p10twpGqq3c{d . If twpGq ą 1 then it is polyp|TpG, fq|q2ptwpGqq
Op1{dq

.
If twpGq “ 1 then it is simply polyp|TpG, fq|q. Otherwise if twpGq ď ∆pGq we can rewrite the upper

bound as polyp|TpG, fq|q¨ 2p10∆pGqq3c{d “ polyp|TpG, fq|q if 3c{d ď 1. Thus, for d ě 3c the upper bound is

polyp|TpG, fq|q¨ 2twpGq3c{d . Therefore, for the both cases we have the needed upper bound.

5 Consequences of the Main Theorem

The width of a clause is the number of literals in it; the width of a resolution refutation is the maximal
width of a clause appearing in it. With wpF $q we denote the minimal width to refute F in resolution. By
SpF $q we denote the minimal size to refute F in resolution. We abbreviate wpTpG, fq $q with wpGq and
SpTpG, fq $q with SpGq.

Alekhnovich and Razborov in [2] gave the following definition.

Definition 29 ([2]). A class of unsatisfiable CNF formulas F is smooth (respectively quasi-smoooth) if for
all F P F , wpF $q ď logSpF $q (resp. there is a constant C such that wpF $q ď logC SpF $q).

Smoothness and quasi-smothness are important properties for a class of formulas since, together with
width-automatizability imply automatizabilty (quasi-automotizabilty) in resolution of that class of formulas
(see [2]).

Definition 30. A class of unsatisfiable CNF formulas F is (quasi-)automatizable with respect to a proof
system Π if there exists a deterministic automatizing algorithm that, given an unsatisfiable formula F P F ,
returns its proof in the proof system S in time which is (quasi-)polynomial in |F | ` SΠpF $q, where SΠpF $q
denotes the size of the shortest Π-refutaion of F .

Beame, Karp, Pitassi and Saks [4] showed that the class of all unsatisfiable CNF formulas is quasi-
automatizable with respect to treelike Resolution.

Definition 31. ([2]) A class F of unsatisfiable CNFs is width-automatizable if there exists a deterministic
algorithm that, given F P F , returns its resolution refutation of width OpwpF $qq in time which is polynomial
in |F | ` 2wpF$q

It is known that Tseitin formulas are width-automatizable (see [2]) and that

Theorem 32. (Fact 2.7 [2]) If a class of unsatisfibale CNFs is both width-automatizable and (quasi-)smooth,
then it is (quasi-)automatizable with respect to resolution.
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In [2] they proved that a subclass of Tseitin formulas is quasi-smooth, namely the class defined over graph
with constant cyclicity `, that is those graphs for which the edges of G can be covered by cycles such a way
that every cycle has length at most ` and every edge belongs to at most ` cycles.

Here, as a consequence of Theorem 1, we show that for all graphs the class of Tseitin formulas TpG, fq is
quasi-smooth, hence quasi-automatizable with respect to resolution.

Corollary 33. For any graph G, TpG, fq are quasi-smoooth, i.e. there is a constant C such that wpGq ď
logC SpGq. Hence the class of Tseitn formulas is quasi-automatizable.

Proof. In [2,17] it was established that wpGq “ maxt∆pGq, twpLpGqqu´1, where LpGq is the line graph (graph
on edges) of G. It is known that maxt∆pGq, 1

2 ptwpGq ` 1qu ´ 1 ď twpLpGqq ď ptwpGq ` 1q∆pGq ´ 1, (see, for

example, [20]). By Theorem 1 and the fact that TpG, fq is a CNF, we have that SpGq ě maxt2∆pGq, 2twpGqεu,

for some 0 ă ε ă 1 given by Theorem 1. Then SpGq ě 2ptwpGq
ε
`∆pGqq{2 ě 2ptwpGq∆pGqq

ε{2

ě 2wpGq
ε{4

.

By a result in [3,23] there are tree-like resolution refutations of TpG, fq of size nOpwpGqq “ 2OptwpGq∆pGq lognq.
Since TpG, fq is a CNF, then by Theorem 1 SpGq ě maxt2∆pGq, 2twpGqεu. Putting the two inequalities together
it is not difficult to see that there are Bounded-depth Frege proofs of TpG, fq of size 2polyplogSpGqq.

Corollary 34. If TpG, fq have proofs of size S in Bounded-depth Frege, then have proofs of size at most
2polyplogSq in tree-like Resolution.

It follows that the size of proofs of TpG, fq in all the proof systems between tree-like resolution and
constant-depth Frege are quasi-polynomially correlated. i.e. if TpG, fq has a derivation of size S in one of
them of size S then it has a proof of size at most 2polyplogSq in the other.

This observation

1. implies that for all graph G, the regular Resolution proof-search algorithm BWBATP of [2] on input
TpG, fq runs in time 2polyplogSpGqq. [2] proved this last result only for TpG, fq on graphs with a set of
edges that can be covered by cycles of constant length;

2. provides positive evidence (i.e. showing it for quasi-polynomial size) to the conjecture of Alasdair
Urquhart that the shortest resolution refutations of TpG, fq are regular;

3. the class of TpG, fq is quasi-automatizable with respect to all proof systems between treelike resolution
and constant-depth Frege.

Acknowledgements. The authors thank Navid Talebanfard for discussions on the lower bound. Nicola also
thanks Paul Wollan for introducing him to the tree-cutwidth. Dmitry is a Young Russian Mathematics award
winner and would like to thank sponsors and jury of the contest.

The research was supported by Russian Science Foundation (project 16-11-10123).

References

[1] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14(4):417–433, 1994. URL:
https://doi.org/10.1007/BF01302964, doi:10.1007/BF01302964.

[2] Michael Alekhnovich and Alexander A. Razborov. Satisfiability, branch-width and tseitin tau-
tologies. Computational Complexity, 20(4):649–678, 2011. URL: https://doi.org/10.1007/

s00037-011-0033-1, doi:10.1007/s00037-011-0033-1.

[3] Paul Beame, Chris Beck, and Russell Impagliazzo. Time-space trade-offs in resolution: Superpolynomial
lower bounds for superlinear space. SIAM J. Comput., 45(4):1612–1645, 2016. URL: https://doi.org/
10.1137/130914085, doi:10.1137/130914085.

15

https://doi.org/10.1007/BF01302964
http://dx.doi.org/10.1007/BF01302964
https://doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1007/s00037-011-0033-1
http://dx.doi.org/10.1007/s00037-011-0033-1
https://doi.org/10.1137/130914085
https://doi.org/10.1137/130914085
http://dx.doi.org/10.1137/130914085


[4] Paul Beame, Richard M. Karp, Toniann Pitassi, and Michael E. Saks. The efficiency of resolution and
davis–putnam procedures. SIAM J. Comput., 31(4):1048–1075, 2002. URL: https://doi.org/10.1137/
S0097539700369156, doi:10.1137/S0097539700369156.

[5] Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In 37th Annual
Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October,
1996, pages 274–282. IEEE Computer Society, 1996. URL: https://doi.org/10.1109/SFCS.1996.
548486, doi:10.1109/SFCS.1996.548486.

[6] Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. Approximation and small-depth frege
proofs. SIAM J. Comput., 21(6):1161–1179, 1992. URL: https://doi.org/10.1137/0221068, doi:
10.1137/0221068.
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A Frege vs Pudlák-Buss games

A set of formulas Γ semantically implies a formula ψ if every assignment that satisfies all formulas from Γ
also satisfies ψ.

Every particular Frege system is defined by a finite set of derivation rules. A derivation rule has form
ϕ1,...,ϕk

ϕ , where k ě 0, ϕ1, . . . , ϕk and ϕ are propositional formulas. It is required that every rule is sound, i.e.

tϕ1, . . . , ϕku semantically implies ϕ.
Let Γ be a list of propositional formulas. We say that ϕ can be derived from Γ if there exists a sequence

of formulas ψ1, ψ2, . . . , ψs such that ψs “ ϕ and each ψi is either an element of Γ or can be derived from the
formulas with smaller numbers by a derivation rule. It is allowed to substitute propositional formulas instead
of variables into a derivation rule. A formula τ is derivable if it can be derived from an empty list of formulas.

A system of derivation rules is a Frege system if it is implicationally complete: if some set of formulas Γ
semantically implies a formula ϕ, then ϕ must be derivable from Γ.

A depth of a derivation is the maximum depth of a formula that occurs in the derivation. A size of a
derivation is the sum of sizes of all formulas from the derivation.

Lemma 3. 1. If a formula ϕ has a Frege derivation of size S and depth d, then ϕ has a Pudlák-Buss game
derivation with number of size OpS2q and depth d. 2. If ϕ has a Pudlák-Buss game derivation of size S and
depth d, then ϕ a Frege derivation of size OpS3q and depth d`Op1q.

Proof. 1. Let ϕ1, ϕ2, . . . , ϕs be a Frege derivation of ϕ of size S. We construct a strategy for Pavel. Pavel
asks Sam values of the formulas ϕ1, ϕ2, . . . until he gets the answer 0. ϕs “ ϕ, so at least for ϕs the
answer is 0. Assume that Sam has answered 1 for the formulas ϕ1, ϕ2, . . . , ϕk and 0 for ϕk`1 where
0 ď k ď s ´ 1. ϕk`1 is derived from ϕ1, ϕ2, . . . , ϕk using one of the rules in Frege system. Let us
consider all subformulas of this rule (there is a constant number of such subformulas). Pavel asks Sam
values of the formulas corresponding to such subformulas in the application of the rule where ϕk`1 is
derived. Due to correctness of the rules, we get an immediate contradiction. Number of vertices for
constructed tree is OpSq. In every vertex Pavel has asked only subformulas of formulas in the Frege
derivation, so size of every asked formula does not exceed S and depth does not exceed d. The total
size of the game is OpS2q
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2. Let T be a tree for Pudlák-Buss game with the initial condition ϕ “ 0. Every vertex in the tree
corresponds to a sequence of questions and answers on the path from the root to this vertex. For the
sequence ϕ1 “ a1, ϕ2 “ a2, . . . , ϕj “ aj we write a formula  p ϕ^ ϕa1

1 ^ . . . ϕ
aj
j q, where ψ0 denotes

 ψ, and ψ1 denotes ψ.

We assume that Frege system includes the rule  px^yq, px^ yq
 x (it can be simulated with derivation of

constant size and depth due to implicationally completeness of the system). With that rule, formulas
corresponding to the inner vertices of the tree can be derived from the formulas corresponding to their
descendants.

We also need to derive formulas in the leaves. Let h be the depth of T . We construct the derivation for
a leaf using Ophq formulas, because in every leaf we have an immediate contradiction. There exist only
a constant number of ways to get an immediate contradiction, so we assume that all these axioms are
present in our Frege system. In order to use these axioms we need to rearrange the formulas in the big
conjunction and place the formulas needed for immediate contradiction first.

For example, if the immediate contradiction is A “ 0, B “ 1, A ^ B “ 1, we need to add an axiom

 p A^B^pA^Bq^Xq .

If the tree T has N vertices then the constructed derivation has OpNhq formulas, and every formula
has size OpS ` hq. Given that N ď S and h ď S, we get a derivation with total size OpS3q
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