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Abstract

Non-signaling strategies are a generalization of quantum strategies that have been studied
in physics for decades, and have recently found applications in theoretical computer science.
These applications motivate the study of local-to-global phenomena for non-signaling functions.

We present general results about the local testability of linear codes in the non-signaling
setting. Our contributions include formulating natural definitions that capture the condition
that a non-signaling function “belongs” to a given code, and characterizing the sets of local
constraints that imply membership in the code. We prove these results by relating the Fourier
spectrum of non-signaling functions to Cayley hypergraphs induced by local constraints.

We apply the above results to show a separation between locally testable codes in the classical
and non-signaling setting by proving that bivariate low-degree testing fails spectacularly in the
non-signaling setting. Specifically, we show that there exist non-signaling functions that pass
bivariate low-degree tests with probability 1, and yet are maximally far from low-degree.
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1 Introduction

Locally testable codes (LTCs) are error correcting codes in which one can verify whether a given
string belongs to the code by reading only a few (randomly chosen) bits from the string. Goldre-
ich and Sudan [GS06] have described LTCs as the “combinatorial counterparts of the complexity
theoretic notion of PCPs”, motivating the standalone study of these objects.

In this work we study local testability for non-signaling strategies, which are a class of non-local
strategies that generalize quantum strategies, capturing the maximum amount of “non-local cor-
relation” that can occur under the assumption that spatially-isolated parties cannot communicate
instantaneously. Non-signaling strategies have been studied in physics for decades [Ras85; KT92;
PR94], in order to better understand quantum entanglement. Recently they have gained attention
in computer science due to their applications to hardness of approximation [KRR16] and delegation
of computation [KRR13; KRR14]. PCPs sound against non-signaling strategies (nsPCPs) underlie
these applications, which motivates the study of local testability in the non-signaling setting.

Given an integer n, a field F, and a locality parameter k ≤ n, the object that we study is a
k-non-signaling function F : [n]→ F, which extends the notion of a function f : [n]→ F as follows.1

Definition 1.1. A k-non-signaling function F : [n] → F is a collection {FS}S⊆[n]:|S|≤k where
each FS is a distribution over local functions g : S → F, and for any two subsets R ⊆ S ⊆ [n] with
|S| ≤ k it holds that the distribution FR and the marginal distribution FS |R are equal.2 (The set
of all such F are the solutions to the k-relaxation in the Sherali–Adams hierarchy [SA90].)

The evaluation of F on a set S is a single sample g : S → F from the distribution FS . Intu-
itively, a k-non-signaling function is like a quantum function: evaluation is probabilistic and only
happens once, just like quantum measurement; and F can only be evaluated on at most k points
simultaneously, which is similar to the uncertainty principle. As k approaches n, F behaves more
like a classical function and, when k = n, F is a distribution over functions f : [n]→ F.

Local testability of non-signaling functions may sound like an oxymoron, because non-signaling
functions, at least superficially, are collections of local distributions with no global structure that
we can talk about. Yet prior work has shown that local-to-global phenomena are possible.

For example, [CMS18] shows that any non-signaling function passing the linearity test [BLR93]
with high probability is well-approximated by a quasi-distribution supported on linear functions.
This result was later used in [CMS19] to show that the exponential-length constant-query PCP of
[ALMSS98] is sound against non-signaling strategies.

The results obtained in [CMS18; CMS19] naturally raise the question of whether local testability
in the non-signaling setting is possible for other codes, like those based on low-degree polynomials.
After all, both linearity testing and low-degree testing do work in the quantum setting [NV18].

Recall that, in the classical setting, local testability plays a central role in PCP constructions,
many of which can be described as having two main components.

• Property testing: check with few queries whether or not the given proof π belongs to a code C.

1There are two distinct definitions of a non-signaling strategy, depending on whether the strategy is meant to
represent isolated parties or a function. The former is used for MIPs [KRR13; KRR14], while the latter is used for
PCPs and property testing [KRR13; KRR14; CMS18; CMS19]. We use the latter definition, although equivalent
statements of all our results will hold when adopting the former definition (see the appendix in [CMS18]).

2A common relaxation of this condition requires that these two distributions are only statistically (or computa-
tionally) close. While we consider the standard definition, we note that this is without loss of generality as [CMS18]
shows that every statistically (or computationally) non-signaling strategy is close to an (exact) non-signaling strategy.
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• Checking computation: given that π is a codeword in C (or at least is close to a codeword), check
with few queries whether or not π proves the desired statement.

This modular approach has enabled the study of local testability as a natural standalone goal,
which in turn has led to improved PCP constructions.

Inspired by this state of affairs, we initiate the study of locally testable codes in the non-signaling
setting. We believe that, similarly to the classical setting, understanding local testability against
non-signaling strategies will enable researchers to construct more efficient non-signaling PCPs.

1.1 The curious case of bivariate testing

We study two simple bivariate low-degree tests: the row/column test and the random lines test.
We prove that both of these tests fail to test proximity to low-degree non-signaling functions.

The row/column test. We first discuss the case of the row/column test. Given a function
f : F2 → F, this test: (1) samples a random axis-parallel line L from the set of all rows and columns
in F2; (2) samples a random subset S ⊆ L of size d+2; (3) checks that f |S is a univariate polynomial
of degree d. It is well-known that if f passes the row/column test with high probability, then f
is close to (the evaluation of) a bivariate polynomial of degree at most d in each variable [PS94].
Below we ask whether the row/column test is also sound in the non-signaling setting.

Suppose that a k-non-signaling function F : F2 → F passes the row/column test with high
probability. Can we deduce any global low-degree structure about F?

In more detail, the probabilistic experiment that we consider is this: first we sample a query set
S according to the distribution of the row/column test; then we sample a local g : S → F according
to the distribution FS ; and finally we check that g is a univariate polynomial of degree d.

The answer to the above question will, in general, depend on the locality parameter k of F .
At minimum, we need k ≥ d + 2 for otherwise we cannot even run the row/column test (k is the
maximum number of simultaneous queries to F). At the other extreme, when k has the maximum
value (k = |F|2) then we are back to the classical case because F is now a distribution over functions
f : F2 → F; hence if F passes the test with high probability then (one can verify that) with high
probability a function f sampled according F is close to low-degree. In fact, even when k ≥ (d+1)2,
we are in a trivial case, as one can query F on an interpolating set, a “square of (d+ 1)2 points”.

We are thus interested in whether or not the test works for non-trivial values of k, namely when
d+ 2 ≤ k < (d+ 1)2. In this regime, k is large enough to run the test, and yet is small enough so
that one cannot query an interpolating set. We show, surprisingly, that the row/column test fails
in the non-signaling setting for non-trivial values of k. In fact, we show that it fails even when the
test passes with probability 1, namely, it fails in the worst possible sense.

Theorem 1 (informal). For every k with 2d + 2 ≤ k < 7
32(d + 2)2, there exists a k-non-signaling

function that passes the row/column test with probability 1, and yet is (1− 1
|F|)-far from all bivariate

k-non-signaling functions of individual degree d.

Theorem 1 is surprising. The row/column test is a natural test for which we would expect some
guarantee to hold (regardless of how weak), at the very least when the test passes with probability 1.
We note that although Theorem 1 does not cover all possible non-trivial values of k, it does capture
an interval that is within a constant factor of the trivial regime on either side.
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The random lines test. It is tempting to argue that the failure of the row/column test uncovered
in Theorem 1 is due to the fact that the test only examines axis-parallel lines. This is not the case;
our analysis can be modified to also show a strong negative result for the random lines test (which
tests total degree d, rather than individual degree d).

Theorem 2 (informal). For every k with 2d + 2 ≤ k < 3
16(d + 2)2, there exists a k-non-signaling

function that passes the random lines test with probability 1, and yet is (1− 1
|F|)-far from all bivariate

k-non-signaling functions of total degree d.

The random lines test is arguably the most canonical bivariate low-degree test, and so Theorem 2
appears to give strong evidence that bivariate low-degree testing is not possible in the non-signaling
setting, for non-trivial values of k. Formally ruling out all tests remains an intriguing open question.

Beyond bivariate test. The above theorems stand in sharp contrast to the fact that there
is no regime of k where the linearity test fails [CMS18]. Our results thus suggest that bivariate
low-degree testing is a qualitatively different task, as it has a regime of k where natural tests fail.

Our theorems on low-degree testing are in fact a direct application of more general results that
we prove about the structure of local characterizations for any linear code, in the non-signaling
setting. We view our general results on local characterizations as the main technical contribution
of this paper, and we now discuss them.

1.2 Local characterizations and Cayley hypergraphs

Local characterizations are fundamental to the study of locally testable codes [RS96]. They express
membership in a given linear code via a set of low-weight constraints, and they naturally induce
a canonical tester: sample a random low-weight constraint and check if the given word satisfies it.
In order to prove the negative results presented above, we do not need to consider distributions
on constraints, but instead we only need to study how constraints express code membership, via
exact local characterizations [RS96]. Below we describe our main technical contribution, which
informally consists of establishing necessary and sufficient conditions for when a constraint set is a
local characterization for a code, in the non-signaling setting. We begin by recalling known facts
about local characterizations in the classical setting, and then proceed to the non-signaling setting.

The classical setting. A constraint set T ⊆ Fn for a linear code C ⊆ Fn is a subset of its dual
code C⊥. A constraint set T is a `-local characterization of C if every α ∈ T has at most ` non-zero
entries, and the condition “〈α, f〉 = 0 for every α ∈ T” implies that f ∈ C (and conversely).

For example, the set {ex + ey − ex+y : x, y ∈ {0, 1}n} where ex is the x-th standard basis vector
in {0, 1}{0,1}n is a 3-local characterization of the Hadamard code, because f(x)+f(y)−f(x+y) = 0
for every x, y ∈ {0, 1}n implies that f is a linear function, and conversely. The Reed–Muller code
containing all polynomials f : Fm → F in m variables of total degree at most d has a (d+ 2)-local
characterization T , where T contains a constraint α for each subset S of Fm of size d + 2 that is
contained in a line.

There is a simple condition that is both necessary and sufficient for a constraint set T to be a
local characterization for C: the span of T equals C⊥. In this work it is useful to recall another
equivalent condition, which may at first appear mysterious, that involves the connectivity of a
Cayley graph. Namely, let G(C⊥, T ) be the Cayley graph with vertices V := C⊥ and edges E
generated by T , i.e., E := {(α, α+ γ) : γ ∈ T} ∪ {(α, bα) : b ∈ F \ {0}}. Then the following holds:
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Lemma 1.2 ([GVZ14]). A constraint set T is a local characterization of a linear code C if and
only if the vertex 0n has a path to every other vertex in the Cayley graph G(C⊥, T ).

This elegant equivalence is an implication of a close relationship between locally testable codes
and Cayley graphs with certain properties [GVZ14].

An equivalence for non-signaling functions. We prove an analogous equivalence in the non-
signaling setting, which informally states that a suitable notion of local characterization for any
linear code is equivalent to a connectivity property of a Cayley hypergraph. In fact, the equivalence
that we prove is a strict generalization of Lemma 1.2, as explained below.

We begin by formulating a notion of local characterization that works for constraint sets ap-
plied to non-signaling functions rather than (classical) functions. There are two main qualitative
differences with the classical case. First, the definition depends on the locality parameter k be-
cause we need to specify the locality of the non-signaling functions that we consider. Second, the
requirement that a non-signaling function “belongs” to a code C is expressed via a property that
we call C-explainability, on which we comment after the definition.

Definition 1.3 (informal). A constraint set T ⊆ C⊥ is a `-local characterization for (C, k) if
every α ∈ T has at most ` non-zero entries, and the set of k-non-signaling functions that satisfy
every α ∈ T with probability 1 equals the set of k-non-signaling functions that are “C-explainable”.

The term “C-explainable” refers to the condition that the given non-signaling function is, with
probability 1, consistent with the restriction of some codeword in C. This condition is motivated
by non-trivial properties of the Fourier spectrum of non-signaling functions that we discuss later on
(see Section 2.4). For now, it suffices to say that if a non-signaling function F is C-explainable then
F satisfies natural global properties that extend code membership to the non-signaling setting.

We remark that Definition 1.3 reduces to the classical notion of local characterization when
setting k := n. We now define the Cayley hypergraph that will be used in our equivalence below.

Definition 1.4. Given a set T ⊆ C⊥, the Cayley hypergraph Γk(C
⊥, T ) has

• vertices V = {α ∈ C⊥ : wt(α) ≤ k},
• edges E = {(α, α+ γ) : γ ∈ T, |supp(α) ∪ supp(γ)| ≤ k} ∪ {(α, bα) : b ∈ F \ {0}}, and
• hyperedges H = {(α, β, α+ β) : |supp(α) ∪ supp(β)| ≤ k}.

Above, supp(α) denotes the set of indices i ∈ [n] where αi 6= 0, and wt(α) is the size of supp(α).
The Cayley hypergraph is like the “weight restriction” of a Cayley graph (only low-weight elements
of C⊥ are vertices), augmented with hyperedges that express certain linear relations among vertices.

The motivation behind the definition of Cayley hypergraphs is the following fact: if there is a
path from 0n to α in Γk(C

⊥, T ), then any k-non-signaling function that satisfies every constraint
in T must satisfy α as well. Cayley hypergraphs thus capture a notion of constraint propagation.

We now state our main technical contribution, a non-signaling analogue of Lemma 1.2:

Theorem 3 (informal). A constraint set T is a `-local characterization for (C, k) if and only if
the vertex 0n has a path to every other vertex in the Cayley hypergraph Γk(C

⊥, T ).

When k = n we recover the classical statement (Lemma 1.2). This is because when k = n, if α
is reachable from 0n in Γk(C

⊥, T ) then α is reachable without using any hyperedges. In particular,
when k = n we can viewG(C⊥, T ) as a degenerate case of Γk(C

⊥, T ), as if we remove the hyperedges
from the latter hypergraph we obtain the former graph and reachability from 0n is unaffected.
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However, when k < n, the equivalence is qualitatively different from its classical analogue.
While Lemma 1.2 captures a simple linear algebraic statement (the constraints span the dual
code), Theorem 3 is a non-trivial statement that does not involve linear spaces. This is because
reachability in the Cayley hypergraph depends on the parameter k in a way that breaks linearity.

To emphasize the difference between the classical and the non-signaling settings, consider a
subset {γ1, . . . , γr} ⊆ T of size r, and let α =

∑r
i=1 γi. In the classical setting G(C⊥, T ) has a path

(α0 = 0n, α1, . . . , αr = α) from 0n to α of length r, where αi is γ1 + · · ·+ γi. In the non-signaling
setting the situation may be different, because even if wt(α) ≤ k (which means that α is a vertex
in Γk(C

⊥, T )), it may be the case that the foregoing path has wt(αi) > k for some 0 < i < r, so
that αi is not a vertex in Γk(C

⊥, T ), and thus the path does not exist in Γk(C
⊥, T ).

1.3 On robust local characterizations

We have so far discussed exact local characterizations, which suffice for the negative results about
bivariate low-degree testing presented in Section 1.1. Can we say anything about robust local char-
acterizations? In the classical setting, these are related to spectral properties of the Cayley graph
G(C⊥, T ) [GVZ14]. In this work we show that a suitable non-signaling analogue of robust local
characterizations is related to shortest paths in the Cayley hypergraph Γk(C

⊥, T ). An application
of this result is that much of the analysis of the linearity test in [CMS18] is tight up to constants.

Robust local characterizations. We consider the case where a non-signaling function F satisfies
every constraint α in T with high probability (as opposed to probability 1, as in the exact case). This
is different from the classical case where we assume that a function f satisfies a random constraint
α in T (sampled from a distribution over T ) with high probability. In the non-signaling setting, the
assumption that F satisfies every constraint with high probability is typical, as for natural codes
(e.g., Hadamard and Reed–Muller codes), F satisfying a random constraint α with high probability
implies that its local correction satisfies every constraint α ∈ T with high probability.

A relation to shortest paths. We relate the local testability of C in the non-signaling setting
to the (properly defined) length of shortest paths in the Cayley hypergraph Γk(C

⊥, T ). Informally,
we let nsrankT (α) denote the length of the shortest path from 0n to α in the Cayley hypergraph
Γk(C

⊥, T ). We then show the following theorem, which is a robust analogue of Theorem 3.

Theorem 4 (informal). Let T ⊆ C⊥ be set of constraints each of weight at most k.

1. Suppose that a k-non-signaling function F satisfies every α ∈ T with probability at least 1 − ε.
Then F satisfies every α reachable from 0n in Γk(C

⊥, T ) with probability at least 1−nsrankT (α)ε.

2. Conversely, there exists a k-non-signaling function F that satisfies every α reachable from 0n in
Γk(C

⊥, T ) with probability exactly 1− wt(α)ε, and every other α with probability 1
|F| .

We additionally show that nsrankT (α) ≥ wt(α)/wt(T ) where wt(T ) = maxγ∈T wt(γ), which
shows that for any T the first statement is tight up to a factor of wt(T ). In fact, we also show
that if C = {(b, . . . , b) : b ∈ F2} is the repetition code and T = {ei + ej : i, j ∈ [n]} is the natural
2-local test, then nsrankT (α) = wt(α)/2, showing that first statement is tight for some choice of C.
Finally, if C is the Hadamard code, then wt(α)/3 ≤ nsrankT (α) ≤ wt(α), implying that the first
statement is tight up to a constant factor.

5



1.4 Roadmap

In Section 2 we provide an overview of the proofs of our results. Then, in Section 3 and Section 4 we
formally define non-signaling functions, quasi-distributions, and discuss the relationship between
them using Fourier analysis. In Section 5 and Section 6 we discuss what it means for a non-signaling
function to “belong” to a given linear code, and characterize local characterizations for non-signaling
linear codes using Cayley hypergraphs. In Section 7, we prove Theorem 1 as an application of
Theorem 3. We finish the paper in Section 8 by discussing robust local characterizations of non-
signaling functions and proving Theorem 4.
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2 Techniques

We outline the techniques used to prove our results. We begin by explaining the Fourier structure
of non-signaling functions in Section 2.1. This structure is fundamental to the proofs of our results.
In Section 2.2 we outline our proof of the relationship between local characterizations and Cayley
hypergraphs. In Section 2.3 we use the techniques and main theorem from Section 2.2 to show
that the row/column test and the random lines test fail for non-signaling functions. Finally, in
Section 2.4 we justify our definition of “C-explainability”.

Notation. A k-non-signaling function F is defined by local distributions FS for each S ⊆ [n] with
|S| ≤ k. Because of this, when studying non-signaling functions we naturally encounter situations
where we only consider subsets of a domain containing at most k elements, or vectors in Fn of
weight at most k. We introduce notation to make referring to these notions more convenient. For
a subset S ⊆ [n] we write S ⊆ [n]≤k if |S| ≤ k. For a vector α ∈ Fn, we let supp(α) = {i ∈ [n] :
αi 6= 0} and wt(α) = |supp(α)|. For a set of vectors R ⊆ Fn, we let R≤k ⊆ R denote the subset
{α ∈ R : wt(α) ≤ k}. In particular, Fn≤k denotes the set {α ∈ Fn : wt(α) ≤ k}. For a subset
S ⊆ [n], we use similar notation and let R⊆S = {α ∈ R : supp(α) ⊆ S}.

2.1 The Fourier structure of non-signaling functions

We make frequent use of Fourier analysis to state and establish properties of non-signaling functions.
Below we recall basic facts about Fourier analysis, explain their application to quasi-distributions,
and state an equivalence between non-signaling functions and quasi-distributions. This equivalence
motivates a definition for the Fourier spectrum of a non-signaling function.

Refresher on Fourier analysis. Let F be the finite field of size q with characteristic p, and Fp
the prime subfield of F. The inner product of F1, F2 : Fn → C is 〈F1, F2〉 := 1

qn
∑

f∈Fn F1(f)F2(f).

The character corresponding to α ∈ Fn is the function χα : Fn → C defined as χα(f) := ωTr(〈α,f〉)

where: Tr: F→ Fp is the trace map; 〈α, f〉 is the inner product
∑n

i=1 αifi; ω = e2πi/p is a primitive
complex p-th root of unity; and ωj is defined by thinking of j ∈ Fp as an integer in {0, 1, . . . , p−1}.
The characters {χα}α∈Fn form an orthonormal basis of the space of all functions F : Fn → C, so
every function F : Fn → C can be written as

F (·) =
∑
α∈Fn

F̂ (α)χα(·) , where F̂ (α) := 〈χα, F 〉 .

The values {F̂ (α)}α∈Fn are called the Fourier coefficients of F .

Quasi-distributions. A quasi-distribution Q over functions f : [n] → F is a distribution where
the probability weights are complex numbers that “add up” to real probabilities. More formally, a
quasi-distribution is a functionQ : Fn → C where

∑
f∈Fn Q(f) = 1. (We abuse notation and identify

a function f : [n]→ F with the vector in Fn corresponding to its evaluation table.) We say that Q
is k-local if the marginals Q|S for each S ⊆ [n]≤k are distributions, namely, if for each S ⊆ [n]≤k
and g : S → F it holds that

∑
f∈Fn:f |S=gQ(f) is a non-negative real number. We can decompose a

quasi-distribution Q according to the Fourier basis: we can write Q(f) =
∑

α∈Fn Q̂(α)χα(f), where

{χα}α∈Fn are the characters and {Q̂(α)}α∈Fn are the Fourier coefficients of Q.

Equivalence lemma. The following lemma shows that k-local quasi-distributions and k-non-
signaling functions are equivalent, and exposes the Fourier structure of non-signaling functions.
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Lemma 2.1. A quasi-distribution Q is equivalent to a k-non-signaling function F if and only if
for every α ∈ Fn≤k it holds that Q̂(α) = 1

qn
∑

j∈Fp ω
−j Pr[Tr(〈α,F〉) = j], where the random variable

〈α,F〉 has the probability distribution given by{
Pr[〈α,F〉 = b] := Pr

f←Fsupp(α)

[∑
i∈supp(α) αif(i) = b

]}
b∈F

.

The foregoing lemma motivates defining the Fourier coefficients of a k-non-signaling function
F as follows: for every α ∈ Fn with wt(α) ≤ k we define

F̂(α) :=
1

qn

∑
j∈Fp

ω−j Pr[Tr(〈α,F〉) = j] .

For more details on the above, including the proof of our Equivalence Lemma, see Section 4.

2.2 Local characterizations and Cayley hypergraphs

We outline the proof of Theorem 3; we assume familiarity with the notions introduced in Section 1.2.
We begin by formally defining local characterizations and reachability in the Cayley hypergraph.

Local characterizations. We say that a k-non-signaling function F is C-explainable if for every
S ⊆ [n]≤k, with probability 1 the function f : S → F sampled from FS is in C|S . (See Section 2.4
for a discussion of this definition.) Recall from Definition 1.3 that a subset T ⊆ C⊥ is an `-local
characterization of (C, k) if every α ∈ T has wt(α) ≤ ` and the set of k-non-signaling functions F
where Pr[〈α,F〉 = 0] = 1 for every α ∈ T equals the set of C-explainable k-non-signaling functions.

Reachability in Cayley hypergraph. In the Cayley hypergraph Γk(C
⊥, T ) we write T `k α

(using the symbol “`” from mathematical logic) if α is reachable from 0n in Γk(C
⊥, T ). Reachability

is defined recursively as follows:
1. (Base case) T `k 0n.
2. (Edges) If (α, β) is an edge and T `k α then T `k β.
3. (Hyperedges) If (α, β, α+ β) is an edge and T `k {α, β}, then T `k α+ β.

Outline of the proof. The proof of Theorem 3 has two directions. In one direction, we show
that if T `k α, then for any k-non-signaling function F where 〈γ,F〉 = 0 holds with probability 1
for every γ ∈ T , it also holds that 〈α,F〉 = 0 with probability 1. Intuitively, this means that any
k-non-signaling function satisfying every constraint in T must satisfy α as well. This step justifies
Cayley hypergraphs as a way of capturing constraint propagation, and shows that our definition
makes sense. The proof of this direction is straightforward, and can be found in Section 6.1.

In the other direction, we explicitly construct a k-non-signaling function F that satisfies every
constraint α where T `k α with probability 1, and satisfies every other constraint α with probability
1
|F| . Our construction of F makes crucial use of the notion of a local subspace that we introduce.

Definition 2.2. A k-local subspace V is a subset of Fn≤k that looks like a subspace when restricted
to local views of size at most k, i.e., V⊆S is a linear subspace in Fn for every S ⊆ [n]≤k.

We show that for any k-local subspace V there is a k-non-signaling function F where Pr[〈α,F〉 =
0] = 1 for every α ∈ V and Pr[〈α,F〉 = 0] = 1

|F| otherwise. We then show that the set vertices

reachable from 0n, which is {α ∈ Fn≤k : T `k α}, is a k-local subspace. This latter step is
straightforward, and its proof is in Section 6.3. We now discuss the first step, which is non-trivial.
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Non-signaling functions from local subspaces. Given a k-local subspace V, we argue that
there is a k-non-signaling function F where Pr[〈α,F〉 = 0] = 1 for every α ∈ V, and Pr[〈α,F〉 =
0] = 1

|F| for every α 6∈ V. We construct F = {FS}S⊆[n]:|S|≤k by specifying its local distributions FS .
A distribution over functions f : S → F is a function that maps each f to a non-negative real

number such that the total sum is 1. With this viewpoint, we first define FS as a function that
maps each f : S → F to a complex number. Then, we show that the total sum is 1 and that each
f is mapped to a non-negative real number, so that the function FS is indeed a distribution.

We define the function FS : FS → C by specifying its Fourier coefficients:

F̂S(α) :=

{
1
q|S|

if α ∈ V
0 if α 6∈ V

,

These “local” Fourier coefficients should not be confused with the Fourier coefficients of F that are
defined in Section 2.1. In fact, at this point the non-signaling function F is not yet defined.

This completely specifies FS as a function FS → C. We show that since V is a k-local subspace,
FS is in fact a distribution. First,

∑
f∈FS FS(f) = 1 because F̂S(0S) = 1/q|S| since V is a k-local

subspace, and thus must contain 0n. Hence, it suffices to show that FS(f) ∈ R≥0 for each f ∈ FS .
For each f ∈ FS we have

FS(f) =
∑
α∈FS

F̂S(α)χα(f) =
∑

α∈V⊆S

F̂S(α)χα(f) ,

since we have defined FS in this way using its Fourier coefficients. There are two cases: either
〈α, f〉 = 0 for every α ∈ V⊆S , in which case the sum is |V⊆S |/q|S|, or 〈α, f〉 6= 0 for some α ∈ V⊆S .
In the latter case, we use the fact that V⊆S is a linear subspace to show that the sum is 0. In either
case, we conclude that FS(f) is a non-negative real number, and therefore that FS is a distribution.

Next, we argue that the collection of local distributions {FS}S⊆[n]≤k is indeed non-signaling.
This follows from a lemma that we prove that shows that a collection of local distributions is
non-signaling if and only if the Fourier coefficients of the local distributions (after removing the
normalization factors) are the same. Thus the k-non-signaling function F is well-defined.

Finally, we show that F satisfies the desired properties. This follows from our definition of each
FS , as the construction implies that the Fourier coefficients of F satisfy:

F̂(α) :=

{
1
qn if α ∈ V
0 if α 6∈ V

.

This corresponds to having Pr[〈α,F〉 = 0] = 1 for every α ∈ V, and the random variable 〈α,F〉
having the uniform distribution when α /∈ V, which completes the proof.

On robust local characterizations. We discuss the proof of Theorem 4 only briefly, because
it builds on the above ideas for (exact) local characterizations.

The first part of Theorem 4 is straightforward and follows from the definition of nsrankT (α),
which is the length of the shortest path from 0n to α in the Cayley hypergraph Γk(C

⊥, T ). This
connection motivates nsrank as a non-signaling analogue of rank, as rankT (α) is the length of the
shortest path from 0n to α in the Cayley graph G(C⊥, T ). (We discuss rank more in Section 2.3.)

The second part of Theorem 4 is more complicated, but informally follows a similar outline to
how we construct a non-signaling function F in the above proof. The step showing that FS(f) ≥ 0
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for every f ∈ FS is now more challenging as the Fourier coefficients are no longer either 1
q|S|

or 0,

but this can still be done under the conditions of the theorem statement.
The proof of Theorem 4 can be found in Section 8.

2.3 Non-testability of bivariate polynomials

We discuss how to derive the negative results on bivariate low-degree testing discussed in Section 1.1.
First we focus on the case of the row/column test (for individual degree d), and then we explain
how to modify the proof to work for the random lines test (for total degree d).

We let C denote the linear code of bivariate functions f : F2 → F of degree at most d in each
variable, and let T be the constraints of the row/column test (it consists of α ∈ C⊥ whose support
is contained in exactly one row or column). The main combinatorial quantity that we use in our
proof is the rank of an element α ∈ C⊥, defined as

rankT (α) := min
T ′⊆T :α∈span(T ′)

∣∣T ′∣∣ .
Note that rankT (α) is a non-negative integer, as span(T ) = C⊥.

We now sketch the proof of Theorem 1 in three steps.

(1) Interval Cut Lemma. We show a generic lemma about the relationship between rank and
reachability in the Cayley hypergraph Γk(C

⊥, T ). Informally, we show that in order to reach some
α of rank at least r from 0n, one must first reach some β of “intermediate” rank. Formally, we show
that if there is an interval [r/2, r) such that every β with rank in this interval is not reachable from
0n, then every α of rank at least r is also not reachable from 0n. We prove this Interval Cut Lemma
via the fact that rankT is subadditive, that is, rankT (α+ β) ≤ rankT (α) + rankT (β). Subadditivity
implies that for every interval [r/2, r), in order to reach a vertex of rank ≥ r from vertices of rank
< r/2 there must be an intermediate vertex β with rank in [r/2, r) bridging the gap.

(2) Two combinatorial facts. We prove two combinatorial facts about the dual code of C.

• There exists α∗ ∈ C⊥ where wt(α) = 2d+ 2 and supp(α) ⊆ {(a, a) : a ∈ F} ⊆ Fn×n, i.e., supp(α)
is contained in the diagonal of Fn×n.

Proof sketch. Any bivariate polynomial of individual degree d is a polynomial of degree ≤ 2d on
the diagonal. Thus, there is an element α∗ ∈ C⊥ supported on the diagonal of weight 2d+2 that
checks this constraint. This shows the existence of the desired α∗.

• For every β ∈ C⊥ with rankT (β) ∈ {(d+ 2)/4, . . . , (d+ 2)/2} it holds that wt(β) ≥ 7
32(d+ 2)2.

Proof sketch. Any β of rank r is the sum of exactly r row/column constraints, where each
constraint is on a distinct row/column. Each new constraint adds at least d + 2 weight to β,
ignoring the weight that is removed by cancellation. The amount of cancellation is at most the
number of intersection points, which is not too large when r is in {(d+ 2)/4, . . . , (d+ 2)/2}, thus
implying that wt(β) ≥ 7

32(d+ 2)2.

(3) Completing the proof. Theorem 1 follows from the Interval Cut Lemma, the two combina-
torial facts, and Theorem 3. Any β ∈ C⊥ with rank in [(d+2)/4, (d+2)/2) has weight ≥ 7

32(d+2)2,
and thus is not reachable when k < 7

32(d+2)2. Since α∗ has weight 2d+2 and is supported only on
the diagonal, it has rank ≥ 2d + 2, as each row/column constraint increases the number of points
on the diagonal by at most 1. The Interval Cut Lemma implies that α∗ is also not reachable. The
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non-signaling function constructed in the proof of Theorem 3 thus passes the row/column test with
probability 1 yet satisfies α∗ with probability only 1/ |F|. But, α∗ must be satisfied with probability
1 by any non-signaling function that is “locally low-degree”, which completes the proof.

The case of the random lines test. In order to prove Theorem 2, which is the analogous state-
ment for the random lines test, it suffices to show that analogues of the combinatorial statements
stated for bivariate polynomials of individual degree d hold for bivariate polynomials of total degree
d. Rather than choosing α∗ to be a constraint on the diagonal (which is now easily reachable when
T contains all lines), we show that there is a constraint α∗ of weight 2d+ 2 that is supported on an
irreducible quadratic curve in F2. This constraint has rank ≥ d+1 as any line intersects the curve in
at most 2 distinct points. The proof that every β ∈ C⊥ with rankT (β) ∈ {(d+ 2)/4, . . . , (d+ 2)/2}
has large weight is almost identical in this setting, and this completes the proof.

2.4 Fourier spectrum of non-signaling linear codes

We have so far adopted the definition that a k-non-signaling function F is “in” a linear code C ⊆ Fn
if a function f : S → F sampled from FS is in C|S with probability 1 for every S ⊆ [n]≤k. Indeed,
we use this “C-explainability” to define the notion of a local characterization (see Definition 1.3).

We now provide thorough justification for this choice. We view the definitions and results below
as a conceptual contribution that sheds light on basic properties of non-signaling functions.

In the classical setting, a function f : [n] → F “looks like” a codeword of C if, well, it equals
some codeword in C. The issue at hand is that, in the non-signaling setting, it is not immediately
clear what it means for a non-signaling function F to be “in” C because F is a collection of local
distributions. Below are two natural ways to capture this notion.

Definition 2.3 (informal). Let F : [n]→ F be a k-non-signaling function.

• We say that F is C-supported if it is equivalent to a k-local quasi-distribution Q : Fn → C that
is supported on C, namely, Q(f) = 0 for all f /∈ C.3

• We say that F is C-explainable if, for all S ⊆ [n]≤k, the distribution FS is supported on C|S.
In other words, the output of F is always consistent with the restriction of some codeword in C.

The first definition is motivated by our Equivalence Lemma (Lemma 2.1), and imposes a
“global” property on the non-signaling function. The second definition, implied by the first one,
instead takes a “local” approach, imposing consistency with relevant restrictions of the code.

In the following lemma, we quantify the difference between the notions of “C-supported” and
“C-explainable” by characterizing the Fourier spectrum in each case. For convenience, we denote
by C⊥≤k the set {α ∈ C⊥ : wt(α) ≤ k}, which are the constraints with at most k non-zero entries.

Lemma 2.4 (informal). Let F : [n]→ F be a k-non-signaling function.

• F is C-supported ↔ the Fourier coefficients {F̂(α)}α∈Fn≤k are constant on each coset of C⊥.

• F is C-explainable ↔ the Fourier coefficient F̂(α) equals 1
qn for every α ∈ C⊥≤k.

We additionally prove that the foregoing structure is robust to errors: F is close to being C-
supported if and only if its Fourier coefficients are almost constant on every coset of C⊥; moreover
F is close to being C-explainable if and only if F̂(α) is close to 1

qn for every α ∈ C⊥≤k.

3When C is the Hadamard code, this definition equals the notion of a linear non-signaling function from [CMS18].

11



One may interpret Lemma 2.4 as “bad news” because it shows that the notions of “C-supported”
and “C-explainable” are in fact distinct. Which one is the correct one to use? From the perspective
of local testability, we may regard “C-supported” as more desirable, because it requires a global
structure to hold. We prove that, fortunately, the two notions are equivalent up to a small change
in parameters, reinforcing our belief that we have identified the right notions.

Lemma 2.5 (informal). Let F : [n]→ F be a k-non-signaling function.

• If F is C-supported, then F is C-explainable.
• If F is C-explainable, then F (viewed as a k/2-non-signaling function) is C-supported.

In light of the above, it suffices to study non-signaling functions that are C-explainable. We
have used this notion in our results on local characterizations (see Definition 1.3), as it is more
natural in this setting: the set of C-explainable k-non-signaling functions are precisely those that
are consistent with the set of constraints C⊥≤k.

Detailed definitions and proofs can be found in Section 5. Below we provide proof sketches for
Lemmas 2.4 and 2.5. The Fourier structure of non-signaling functions, discussed in Section 2.1,
underlies all of these proofs.

2.4.1 Fourier spectrum of a C-supported function

We outline the proof of the first item of Lemma 2.4. A k-non-signaling function F that is C-
supported is by definition equivalent to a quasi-distribution Q supported on C. We explain why
all such non-signaling functions have Fourier coefficients that are constant on cosets of C⊥, that is,
F̂(α) = F̂(α′) for every α, α′ ∈ Fn≤k with α−α′ ∈ C⊥. We compare the following two affine spaces:

V1 =

Q : Fn → C s.t.
∑
f∈C
Q(f) = 1 and Q(f) = 0 ∀f /∈ C

 ,

V2 =

{
Q : Fn → C s.t. Q̂(0n) =

1

qn
and Q̂(α) = Q̂(α+ γ) ∀α ∈ Fn, γ ∈ C⊥

}
.

The affine space V1 corresponds to quasi-distributions that are supported on C, while V2 corresponds
to quasi-distributions whose Fourier coefficients satisfy the desired characterization. It suffices to
prove that V1 = V2. First we show that dim(V1) = dim(V2), and then that V1 ⊆ V2.

The dimension of V1 is |C|−1 because the |C| free terms are subject to a single linear constraint.
The dimension of V2 is qn/

∣∣C⊥∣∣−1 because the Fourier coefficients are constant on each coset of C⊥,
and on each coset they may have an arbitrary value; the one exception is the coset C⊥, where the
Fourier coefficients must be 1

qn . Recalling that qn = |C| ·
∣∣C⊥∣∣, we deduce that dim(V1) = dim(V2).

Next we show that V1 ⊆ V2. For any Q ∈ V1 and α ∈ Fn we have by definition

Q̂(α) :=
1

qn
·
∑
f∈Fn

Q(f) · ω−Tr(〈α,f〉) .

Since Q ∈ V1, any function f in the support of Q must be in C. Therefore, for any γ ∈ C⊥

have 〈γ, f〉 = 0, so that ωTr(〈γ,f〉) = ωTr(0) = 1. This implies that Q̂(α) = Q̂(α + γ). Intuitively,
when we shift α by γ the sum remains unchanged because each term in the sum is multiplied by
ω−Tr(〈γ,f〉) = 1. Thus V1 ⊆ V2. Since dim(V1) = dim(V2) and V1 ⊆ V2, we conclude that V1 = V2.
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2.4.2 Fourier spectrum of a C-explainable function

We outline the proof of the second item of Lemma 2.4. The characterization of C-explainable
functions relies on the fact that the Fourier coefficient F̂(α) is related to the distribution of the
random variable 〈α,F〉, i.e., the distribution (Pr[〈α,F〉 = b])b∈F. This intuition can be quantified
via (a generalization of) the DFT matrix M ∈ Cq×q, which is the matrix defined as Ma,b := ω−Tr(ab)

(entries are indexed by F); M is invertible and 1√
qM is unitary.

Recall that the Fourier coefficients of F are defined as follows:

∀α ∈ Fn≤k F̂(α) :=
1

qn

∑
j∈Fp

ω−j Pr[Tr(〈α,F〉) = j] .

Letting v := (Pr[〈α,F〉 = b])b∈F, expanding the definitions shows that Mv = (qnF̂(aα))a∈F. The
linear transformation M thus quantifies the relation between the distribution (Pr[〈α,F〉 = b])b∈F
and the Fourier coefficients (qnF̂(aα))a∈F.

Now, given a k-non-signaling function F , we first show that F is C-explainable if and only if
Pr[〈α,F〉 = 0] = 1 for every α ∈ C⊥≤k. This follows from the fact that any local function g : S → F
that satisfies every α ∈ C⊥⊆S can be extended into a codeword f ∈ C. Using the matrix M , we

can relate the condition that F satisfies every α ∈ C⊥≤k with probability 1 to its Fourier spectrum.

Specifically, we have that Pr[〈α,F〉 = 0] = 1 if and only if (qnF̂(aα))a∈F = M(1, 0, . . . , 0)>. Since
M(1, 0, . . . , 0)> = (1, . . . , 1)>, we get that Pr[〈α,F〉 = 0] = 1 if and only if F̂(aα) = 1

qn for every
a ∈ F, completing the proof.

2.4.3 The relationship between C-supported and C-explainable

We outline the proof of Lemma 2.5. First note that Lemma 2.4 immediately implies that a C-
supported k-non-signaling function F is C-explainable, because if F is C-supported then F̂(α) =
F̂(0n) = 1

qn for every α ∈ C⊥≤k, implying that F is C-explainable.

Conversely, if F is C-explainable, then for any α, α′ ∈ Fn≤k/2 with α− α′ ∈ C⊥ we get that for
any b ∈ F,

Pr[〈α,F〉 = b] = Pr[〈α′,F〉+ 〈α− α′,F〉 = b] = Pr[〈α′,F〉 = b] ,

since Pr[〈α− α′,F〉 = 0] = 1 as α− α′ ∈ C⊥ and F is C-explainable. This shows that the vectors
(Pr[〈α,F〉 = b])b∈F and (Pr[〈α′,F〉 = b])b∈F are equal, which implies that the Fourier coefficients
F̂(α) and F̂(α′) are equal. By Lemma 2.4, this completes the proof. Note that we crucially need
wt(α),wt(α′) ≤ k/2 so that wt(α− α′) ≤ k, as otherwise Pr[〈α− α′,F〉 = 0] is undefined.

13



3 Preliminaries

Throughout this paper we let n ∈ N be an arbitrary positive integer, and k ∈ N a positive integer
that is at most n. We use F to denote the finite field of size q with characteristic p, and Fp
to denote the prime subfield of F. We often abuse notation and identify a function f : [n] → F
with its evaluation table in Fn. For a vector α ∈ Fn we let supp(α) := {i ∈ [n] : αi 6= 0},
and we let wt(α) := |supp(α)|. For a set of vectors R ⊆ Fn, we let R≤` ⊆ R denote the subset
{α ∈ R : wt(α) ≤ `}. In particular, Fn≤k contains all vectors α ∈ Fn of weight at most k. For a
subset S ⊆ [n], we let R⊆S = {α ∈ R : supp(α) ⊆ S}; we also write S ⊆ [n]≤` if |S| ≤ `.

3.1 Non-signaling functions

We define non-signaling functions and quasi-distributions, and introduce useful notation for them.
The definitions are almost identical to those in [CMS18], but extended to any finite field.

Definition 3.1. A k-non-signaling function F : [n]→ F is a collection F = {FS}S⊆[n]≤k where
(i) each FS is a distribution over functions f : S → F, and (ii) for every two subsets S and R each
of size at most k, the restrictions of FS and FR to S ∩R are equal as distributions. (If S = ∅ then
FS always outputs the empty string.)

Note that any function f : [n] → F induces a n-non-signaling function by setting FS to be the
distribution that outputs f |S with probability 1. More generally, any distribution D over functions
f : [n]→ F induces a corresponding n-non-signaling function by defining FS to be the distribution
that samples f ← D and outputs f |S .

Given a set S ⊆ [n]≤k and function g ∈ FS , we define

Pr [F(S) = g ] := Pr[ g ← FS ] .

The non-signaling property in this notation is the following: for every two subsets S,R ⊆ [n]≤k
and every string g ∈ FS∩T , Pr[F(S)|S∩T = g ] = Pr[F(T )|S∩T = g ], where the probability is over
the randomness of F .

We extend the above notation to every E ⊆ FS in the natural way by defining Pr [F(S) ∈ E ] :=
Prf←FS [ f ∈ E ]. We highlight the case when E is an “inner product event”, as we will encounter
this case frequently.

Definition 3.2. Let F : [n]→ F be a k-non-signaling function. For α ∈ Fn≤k and b ∈ F, we define

Pr[〈α,F〉 = b] := Pr
f←Fsupp(α)

 ∑
i∈supp(α)

αif(i) = b

 .

Similarly, we define Pr[Tr(〈α,F〉) = j] :=
∑

b∈F:Tr(b)=j Pr[〈α,F〉 = b] for every j ∈ Fp.

The probability above is well-defined since wt(α) ≤ k, and so we query F on at most k points.
Since F is non-signaling, Pr[〈α,F〉 = b] = Prf←FS [

∑
i∈S αif(i)] for any set S ⊇ supp(α). The

intuition behind the above definition is that the inner product 〈α, g〉 for any g : [n] → F can be
computed only given g|supp(α), namely, given g restricted to a set of size at most k.
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3.2 Quasi-distributions

A quasi-distribution extends the notion of a probability distribution by allowing probabilities to be
complex, and is the main tool that we use to analyze non-signaling functions.

Definition 3.3.
• A quasi-distribution is a function Q : Fn → C where

∑
f∈Fn Q(f) = 1.

• For a set of functions R ⊆ Fn, we say that Q is supported on R if {f ∈ Fn : Q(f) 6= 0} ⊆ R.
• For a positive integer `, we say that Q is `-local if the marginals Q|S for each S ⊆ [n]≤` are

distributions (
∑

f∈Fn:f |S=gQ(f) is a non-negative real number for each S ⊆ [n]≤` and g : S → F).

If Q is `-local, then for every subset S ⊆ [n]≤`, we may view Q|S as a probability distribution
over FS . If Q is `-local then it is s-local for every s ∈ {0, 1, . . . , `}.
Definition 3.4. Given a quasi-distribution Q, a subset S ⊆ [n], and g ∈ FS, we define the quasi-
probability of the event “Q(S) = g” to be the following complex number

P̃r[Q(S) = g ] :=
∑

f∈Fn:f |S=g

Q(f) .

(The tilde above Pr denotes that quasi-probabilities are not necessarily non-negative real numbers.)

Given a subset E ⊆ FS , we similarly define P̃r[Q(S) ∈ E ] :=
∑

f∈Fn:f |S∈E Q(f).
As for non-signaling functions, we highlight the case when E is an inner product event.

Definition 3.5. Let Q : Fn → C be a quasi-distribution. For α ∈ Fn and b ∈ F, we define

P̃r[〈α,Q〉 = b] :=
∑

f∈Fn:〈α,f〉=b

Q(f) .

Similarly, we define P̃r[Tr(〈α,Q〉) = j] :=
∑

b∈F:Tr(b)=j P̃r[〈α,Q〉 = b] for every j ∈ Fp.

Definition 3.6 (statistical distance). Given a finite domain [n] and an integer ` ∈ {1, . . . , |D|},
the ∆`-distance between two quasi-distributions Q and Q′ is

∆`(Q,Q′) := max
S⊆[n]≤`

∆(Q|S ,Q′|S) ,

where ∆(Q|S ,Q′|S) := maxE⊆FS
∣∣∣P̃r[Q(S) ∈ E]− P̃r[Q′(S) ∈ E]

∣∣∣.
We say that Q and Q′ are ε-close in the ∆`-distance if ∆`(Q,Q′) ≤ ε; else, they are ε-far.

Remark 3.7 (distance for non-signaling functions). The definition of ∆`-distance naturally extends
to defining distances between k-non-signaling functions, as well as between quasi-distributions and
k-non-signaling functions, provided that ` ≤ k.

The notion above generalizes the standard notion of statistical (total variation) distance: if Q
and Q′ are distributions then their ∆n-distance equals their statistical distance. Also note that
if Q and Q′ are `-local quasi-distributions then their ∆`-distance equals the maximum statistical
distance, across all subsets S ⊆ [n] with |S| ≤ `, between the two distributions Q|S and Q′|S —
in particular this means that any experiment that queries exactly one set of size at most ` cannot
distinguish between the two quasi-distributions with probability greater than ∆`(Q,Q′).

We stress that ∆`(Q,Q′) = 0 does not necessarily mean that Q = Q′! In fact, it is possible
to have ∆`(Q,Q′) = 0 while

∑
f∈U |Q(f)−Q′(f)| is arbitrarily large. We also remark that the

∆`-distance is not necessarily upper bounded by 1, and is in general unbounded.
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4 Fourier analysis of non-signaling functions

We prove statements about the Fourier structure of non-signaling functions, and prove the Equiv-
alence Lemma. In Section 4.1 we recall basic facts about Fourier analysis of functions over finite
fields. In Section 4.2 we relate Fourier coefficients to probabilities and quasi-probabilities. In
Section 4.3 we prove that non-signaling functions and quasi-distributions are equivalent notions.

4.1 Fourier analysis of functions over finite fields

We consider functions of the type F : Fn → C. For two such functions F1 and F2, we define their
inner product as 〈F1, F2〉 := 1

qn
∑

x∈Fn F1(x)F2(x). For every α ∈ Fn, we define the character

χα : Fn → C as χα(x) := ωTr(〈α,x〉) where: (1) Tr: F → Fp is the trace map; (2) 〈α, x〉 is the inner
product

∑n
i=1 αixi; (3) ω = e2πi/p is a primitive complex p-th root of unity; and (4) ωj is defined

by thinking of j ∈ Fp as an integer in Z. The functions {χα}α∈Fn form an orthonormal basis of the
space of all functions f : Fn → C, so every function F : Fn → C can be written as

F (·) =
∑
α∈Fn

F̂ (α)χα(·) , where F̂ (α) := 〈χα, F 〉 .

The values {F̂ (α)}α∈Fn are the Fourier coefficients of F . We recall and prove a few useful identifies.

Parseval’s identity. For every two functions F,G : Fn → C,

〈F,G〉 =
1

qn

∑
x∈Fn

F (x)G(x) =
∑
α∈Fn

F̂ (α)Ĝ(α) .

Proof.

1

qn

∑
x∈Fn

F (x)G(x) =
1

qn

∑
x∈Fn

(∑
α∈Fn

F̂ (α)χα(x)

)∑
β∈Fn

Ĝ(β)χβ(x)


=
∑
α∈Fn

∑
β∈Fn

F̂ (α)Ĝ(β)〈χα, χβ〉 =
∑
α∈Fn

F̂ (α)Ĝ(α) ,

since {χα}α∈Fn are orthonormal.

Plancherel’s identity. As a corollary of the above,

1

qn

∑
x∈Fn

|F (x)|2 =
∑
α∈Fn

|F̂ (α)|2 .

The case of indicator functions. When analyzing non-signaling functions and quasi-distributions
we will apply the above identities in the case where F is an indicator function 1E for a set E ⊆ Fn.
In this case, by Plancherel’s identity we have that |E| /qn =

∑
α∈Fn |1̂E(α)|2. In particular, by the

Cauchy–Schwarz inequality, this implies that

‖1̂E‖1 =
∑
α∈Fn

|1̂E(α)| ≤
√∑
α∈Fn

|1̂E(α)|2 ·
√∑
α∈Fn

1 ≤
√
|E| /qn · qn/2 =

√
|E| .

If we let F (x) = 1E(x), then Parseval’s identity becomes the following lemma.
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Lemma 4.1. Let G : Fn → C be a function and E ⊆ Fn. Then

1

qn

∑
x∈E

G(x) =
1

qn

∑
α∈Fn

1̂E(α)
∑
x∈Fn

G(x)ω−Tr(〈α,x〉) =
∑
α∈Fn

1̂E(α)Ĝ(α) .

4.2 Relating the Fourier spectrum to the probabilities of events

A quasi-distribution Q is a function Q : Fn → C that maps a function f : [n] → F (identified with
the corresponding vector Fn) to Q(f). We can write Q(·) =

∑
α∈Fn Q̂(α)χα(·), where {χα}α∈Fn

are the characters and {Q̂(α)}α∈Fn are Q’s Fourier coefficients. For S ⊆ [n] and α ∈ FS , we abuse
notation and use Q̂(α) to refer to Q̂(β) where β ∈ Fn has βi = αi for all i ∈ S and 0 otherwise.

The lemma below relates the inner product quasi-probabilities defined in Definition 3.5 to the
Fourier coefficients of Q.

Lemma 4.2. Let Q : Fn → C be a quasi-distribution. For every α ∈ Fn,

Q̂(α) =
1

qn

∑
j∈Fp

ω−jP̃r[Tr(〈α,Q〉) = j] .

Proof of Lemma 4.2. By definition,

Q̂(α) = 〈χα,Q(·)〉 =
1

qn

∑
f

χα(f)Q(f) =
1

qn

∑
j∈Fp

ω−j
∑

f :χα(f)=ωj

Q(f)

=
1

qn

∑
j∈Fp

ω−j
∑

f :Tr(〈α,f〉)=j

Q(f) =
1

qn

∑
j∈Fp

ω−jP̃r[Tr(〈α,Q〉) = j] .

The above lemma implies that the Fourier coefficients (Q̂(aα))a∈F are determined by the quasi-
probabilities (Pr[〈α,Q〉 = b])b∈F, as the quasi-probabilities (Pr[〈α,Q〉 = b])b∈F determine the quasi-
probabilities (Pr[〈aα,Q〉 = b])b∈F for every a ∈ F. In fact, there is a linear transformation M that
maps (Pr[〈α,Q〉 = b])b∈F to (qnQ̂(aα))a∈F. Below, we state a well-known lemma about M .

Lemma 4.3. Let M ∈ Cq×q be the matrix defined as Ma,b := ω−Tr(ab) (entries are indexed by F).
Then M is invertible and 1√

qM is unitary (namely, M † ·M = qI). In particular, for every vector

(vb)b∈F with values in C, the map (vb)b∈F 7→ (
∑

b∈F ω
−Tr(ab)vb)a∈F is a bijection.

We additionally prove the following lemma, which relates the Fourier spectrum of the quasi-
distribution Q|S to the Fourier spectrum of Q.

Lemma 4.4. Let Q : Fn → C be a quasi-distribution. Let S ⊆ [n], and let Q|S denote the restriction
of Q to S, namely, Q|S is the quasi-distribution from FS to C where Q|S(g) :=

∑
f :f |S=gQ(f). Then

for every α ∈ FS it holds that q|S|Q̂|S(α) = qnQ̂(α).4

Proof of Lemma 4.4.

q|S|Q̂|S(α) =
∑
g∈FS

Q|S(g)ω−Tr(〈α,g〉) =
∑
f∈Fn

Q(f)ω−Tr(〈α,f〉) = qnQ̂(α) .

4The vector α in Q̂(α) is treated as a element in Fn with αj = 0 for all j /∈ S
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If F : [n] → F is a k-non-signaling function, then for any α ∈ Fn≤k and b ∈ F we have defined
Pr[〈α,F〉 = b] in Definition 3.2 to be Prf←Fsupp(α)

[〈α, f〉 = b]. Note that the probability is well-
defined since wt(α) ≤ k (so we query F on at most k points). Also note that Lemma 4.2 implies
that, for every α ∈ Fn≤k, we can define the Fourier coefficient F̂(α) of F as

F̂(α) :=
1

qn

∑
j∈Fp

ω−j Pr[Tr(〈α,F〉) = j] .

With the above definitions, we can prove the following two corollaries of Lemma 4.1. The first
is for non-signaling functions, and the second is for quasi-distributions.

Corollary 4.5. For any k-non-signaling function F : [n]→ F, set S ⊆ [n], and event E ⊆ FS,

Pr[F(S) ∈ E] =
∑
α∈FS

1̂E(α)
∑
j∈Fp

ω−j Pr[Tr(〈α,F〉) = j] = qn
∑
α∈FS

1̂E(α)F̂(α) .

Proof. Apply Lemma 4.1 with G : FS → C defined as G(x) := Pr[FS(i) = xi ∀i ∈ S].

Corollary 4.6. For any quasi-distribution Q : Fn → C, set S ⊆ [n], and event E ⊆ FS,

P̃r[Q(S) ∈ E] =
∑

f : f(S)∈E

Q(f) =
∑
α∈FS

1̂E(α)
∑
j∈Fp

ω−jP̃r[Tr(〈α,Q〉) = j] = qn
∑
α∈FS

1̂E(α)Q̂(α) .

Proof. Apply Lemma 4.1 to the function G : FS → C that is the quasi-distribution Q|S . Then
observe that for every α ∈ FS , q|S|Q̂|S(α) = qnQ̂(α) by Lemma 4.4.

The above two lemmas allow us to bound the distance between a k-non-signaling function F
and a quasi-distribution Q in terms of their Fourier spectra.

Lemma 4.7. Let F : [n] → F be a k-non-signaling function and Q : Fn → C a quasi-distribution.
For any set S ⊆ [n]≤k and event E ⊆ FS,∣∣∣Pr[F(S) ∈ E]− P̃r[Q(S) ∈ E]

∣∣∣ ≤ qn ∑
α∈FS

∣∣∣1̂E(α)
∣∣∣ ∣∣∣F̂(α)− Q̂(α)

∣∣∣ .
In particular, ∆k(Q,F) ≤ qn+k/2 maxα∈Fn≤k |F̂(α)− Q̂(α)|.

Corollary 4.8. Let F : [n]→ F be a k-non-signaling function and Q : Fn → C a quasi-distribution.
Then ∆k(Q,F) = 0 if and only if F̂(α) = Q̂(α) for every α ∈ Fn≤k.

Proof of Lemma 4.7. The first equation follows immediately from Corollary 4.5 and Corollary 4.6.
For the second part of the lemma,

∆k(Q,F) ≤ max
S⊆[n]≤k

max
E⊆FS

qn
∑
α∈FS

∣∣∣1̂E(α)
∣∣∣ ∣∣∣F̂(α)− Q̂(α)

∣∣∣
≤ qn max

S⊆[n]≤k

max
E⊆FS

∑
α∈FS

∣∣∣1̂E(α)
∣∣∣
max

α∈FS

∣∣∣F̂(α)− Q̂(α)
∣∣∣


≤ qn
(

max
S⊆[n]≤k

q|S|/2
)

max
α∈Fn≤k

∣∣∣F̂(α)− Q̂(α)
∣∣∣

≤ qn+k/2 max
α∈Fn≤k

∣∣∣F̂(α)− Q̂(α)
∣∣∣ .
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Proof of Corollary 4.8. If F̂(α) = Q̂(α) for every α ∈ Fn≤k, then by Lemma 4.7 it follows that
∆k(Q,F) = 0. Conversely, if ∆k(Q,F) = 0, then for every α ∈ Fn≤k and j ∈ Fp it holds that

P̃r[Tr(〈α,Q〉) = j] = Pr[Tr(〈α,F〉) = j], as these are both events. This implies that qnQ̂(α) =∑
j∈Fp ω

−jP̃r[Tr(〈α,Q〉) = j] =
∑

j∈Fp ω
−j Pr[Tr(〈α,F〉) = j] = qnF̂(α).

Suppose that we are given a collection of local distributions (FS)S⊆[n]≤k , namely, FS is a
distribution over functions f : S → F. We can think of each local distribution FS as a function
FS : FS → C, and in this way define for each local distribution FS the Fourier coefficients F̂S(α)
for each α ∈ Fn⊆S . In the following lemma, we characterize when (FS)S⊆[n]≤k is k-non-signaling in
terms of the Fourier spectra of the local distributions.

Lemma 4.9. Let (FS)S⊆[n]≤k be a collection of local distributions. Then (FS)S⊆[n]≤k is a k-non-

signaling function if and only if q|S|F̂S(α) = q|R|F̂R(α) for every S ⊆ [n]≤k, R ⊆ S, and α ∈ Fn⊆R.

Proof. Suppose (FS)S⊆[n]≤k is a k-non-signaling function. Fix S ⊆ [n]≤k, R ⊆ S, and α ∈ Fn⊆R.
Since the collection of local distributions is k-non-signaling we have that FS |R = FR. Therefore by

Lemma 4.4 we have that q|S|F̂S(α) = q|R|F̂R(α).
Now, fix S ⊆ [n]≤k and R ⊆ S. Applying Corollary 4.6 to the distributions FS and FR, we

see that if q|S|F̂S(α) = q|R|F̂R(α) for every α ∈ Fn⊆R, then FS |R ≡ FR. Hence, (FS)S⊆[n]≤k is
k-non-signaling.

4.3 Equivalence between non-signaling functions and quasi-distributions

We show that k-non-signaling functions and k-local quasi-distributions are equivalent. Every k-local
quasi-distribution Q induces a k-non-signaling function F (Proposition 4.10). Conversely, every
k-non-signaling function F can be described by a k-local quasi-distribution Q (Proposition 4.11).
In fact, the set of such quasi-distributions is an affine subspace of co-dimension

∑k
i=0

(
n
i

)
·(q−1)i in

Cqn . The first direction of the equivalence is elementary; the other direction is the interesting one.
The aforementioned result is a special case of a result of Abramsky and Brandenburger [AB11]

that establishes an equivalence between non-signaling empirical models (a general notion of non-
signaling experiments in the language of sheaf theory) and quasi-distributions over global sections.
Our result strengthens this equivalence by giving an explicit characterization of the affine subspace
of quasi-distributions describing a non-signaling function, by leveraging Fourier-analytic tools. This
also extends to any finite field F the equivalence lemma for F2 presented in [CMS18].5

Proposition 4.10. For every k-local quasi-distribution Q over functions f : [n]→ F there exists a
k-non-signaling function F : [n]→ F such that ∆k(Q,F) = 0.

Proof. For every subset S ⊆ [n]≤k, define FS to be the distribution over functions f : S → F
where Pr[FS outputs f ] := P̃r[Q(S) = f(S)], namely, such that FS ≡ Q|S . Note that FS is a
distribution because Q is k-local, so the relevant probabilities are in [0, 1] and sum to 1. The

definition immediately implies that Pr[F(S) = g] = P̃r[Q(S) = g] for every string g ∈ FS , and
so ∆k(Q,F) = 0. We are left to argue that F = {FS}S⊆[n]≤k is k-non-signaling. Let S ⊆ [n]≤k,

5The characterization further extends to functions taking values in any finite alphabet Σ (not necessarily a field)
by adding an abelian group structure to Σ (for example, by identifying Σ with Z/ |Σ|Z), and then using analogous
tools from Fourier analysis over finite abelian groups.

19



and let R ⊆ S. By definition of F and Lemma 4.4 we have that for every α ∈ FR, q|S|F̂S(α) =

q|S|Q̂|S(α) = q|R|Q̂|R(α) = q|R|F̂R(α). By Lemma 4.9, it follows that F is k-non-signaling.

Proposition 4.11. For every k-non-signaling function F : [n] → F, there exists a k-local quasi-
distribution Q over functions f : [n] → F such that ∆k(F ,Q) = 0. Moreover, the set of such Q’s
(viewed as vectors in Cqn) is the affine subspace of co-dimension

∑k
i=0

(
n
i

)
· (q − 1)i in Cqn given

by Q0 + span{χα : α ∈ Fn,wt(α) > k}, where Q0 is any solution.

Proof. Let Q be a quasi-distribution over functions f : [n] → F. By Corollary 4.8, it holds that
∆k(Q,F) = 0 if and only if F̂(α) = Q̂(α) for all α ∈ Fn≤k.

Let Q0 be the quasi-distribution with Fourier coefficients Q̂(α) := F̂(α) for all α of weight at
most k and Q̂(α) := 0 otherwise. Consider the affine subspace Q0 + span{χα : α ∈ Fn,wt(α) > k}.
By Corollary 4.8, every quasi-distribution Q in the affine subspace satisfies ∆k(Q,F) = 0. We note
that this affine subspace has dimension

∑k
i=0

(
n
i

)
· (q − 1)i.

Conversely, suppose that Q satisfies ∆k(Q,F) = 0. Then by Corollary 4.8 it holds that Q̂(α) =
F̂(α) for all α ∈ Fn≤k, which implies that Q is in the aforementioned affine subspace. Hence, the
affine subspace contains all Q such that ∆k(Q,F) = 0.
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5 Non-signaling linear codes

We wish to define what it means for a non-signaling function F : [n] → F to be “in” a linear
code C ⊆ Fn. We introduce two natural definitions for the above goal. The first definition is
motivated by the equivalence between non-signaling functions and quasi-distributions established
in Section 4.3. The second definition is motivated by a notion of local consistency.

For each of the two definitions, we characterize the Fourier spectrum of non-signaling strategies
that satisfy the definition, in the exact and in the robust case. Also, we prove a strong relationship
between the two definitions, showing that they are equivalent (up to a small loss in parameters).
The compelling structure that we uncover supports our choice of definitions.

For this section, we remind the reader that a linear code C over F with block length n is a
linear subspace of Fn. We equivalently also view C as a linear subspace of the set of all functions
f : [n]→ F. The dual code of C is the linear subspace C⊥ := {α : 〈α, f〉 = 0 ∀f ∈ C} ⊆ Fn.

5.1 Quasi-distributions supported on linear codes

The equivalence between non-signaling functions and quasi-distributions in Section 4.3 suggests a
natural way to capture when a non-signaling function is “in” a given linear code.

Definition 5.1. Given a k-non-signaling strategy F : [n]→ F, code C ⊆ Fn and parameter k′ ≤ k,
we say that F is (C, k′)-supported if there exists a k′-local quasi-distribution Q : Fn → C supported
on C such that ∆k′(Q,F) = 0.

In light of the characterization of the Fourier spectra of quasi-distributions equivalent to a
given non-signaling function in Section 4.3, it is natural to ask if the Fourier spectrum of a quasi-
distribution supported on C has a special structure. In the following lemma, we characterize the
Fourier spectrum of quasi-distributions supported on a given linear code C. Informally, we show
that the condition “Fourier coefficients are constants on cosets of C⊥” is necessary and sufficient.

Lemma 5.2. Let C ⊆ Fn be a linear code. A quasi-distribution Q : Fn → C is supported on C if
and only if Q̂(α) = Q̂(α′) for all α, α′ ∈ Fn such that α− α′ ∈ C⊥.

The foregoing statement immediately gives us a corollary about non-signaling functions.

Corollary 5.3. A k-non-signaling strategy F : [n] → F is (C, k′)-supported if and only if for all
α, α′ ∈ Fn≤k such that α− α′ ∈ C⊥ it holds that F̂(α) = F̂(α′).

Next, we wish to study the Fourier spectrum of a quasi-distribution Q that is merely close to
being supported on C. For this case, we give the following “robust” version of Lemma 5.2.

Lemma 5.4. Let C ⊆ Fn be a linear code, and let Q be a quasi-distribution.

• Suppose that there exists a quasi-distribution Q′ supported on C such that ∆k(Q,Q′) ≤ δ. Then

for all α, α′ ∈ Fn≤k and α− α′ ∈ C⊥ it holds that
∣∣∣Q̂(α)− Q̂(α′)

∣∣∣ ≤ 2δ
qn .

• Conversely, suppose that for all α, α′ ∈ Fn≤k and α− α′ ∈ C⊥ it holds that
∣∣∣Q̂(α)− Q̂(α′)

∣∣∣ ≤ 2δ
qn .

Then there exists a quasi-distribution Q′ supported on C such that ∆k(Q,Q′) ≤ qk/2 · 2δ.

We note that in Lemma 5.4, neither quasi-distribution is required to be local.
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5.1.1 Proof of Lemma 5.2

Define the affine spaces

V1 =

Q : Fn → C s.t.
∑
f∈C
Q(f) = 1 and Q(f) = 0 ∀f /∈ C

 ,

V2 =

{
Q : Fn → C s.t. Q̂(0n) =

1

qn
and Q̂(α) = Q̂(α+ γ) ∀α ∈ Fn, γ ∈ C⊥

}
.

It suffices to prove that V1 = V2. First we show that dim(V1) = dim(V2). The dimension of V1
is |C| − 1 because the |C| free terms are subject to a single linear constraint. The dimension of
V2 is qn/

∣∣C⊥∣∣ − 1 because the Fourier coefficients are constant on each coset of C⊥, and on each
coset they can take on an arbitrary value; the one exception is the coset C⊥, on which the Fourier
coefficients must be 1

qn . Recalling that qn = |C| · |C⊥|, we deduce that dim(V1) = dim(V2).

Next we show that V1 ⊆ V2. Fix Q ∈ V1. Since
∑

f Q(f) = 1, we have Q̂(0n) = 1
qn
∑

f Q(f) ·
ω0 = 1

qn . Moreover, for any α ∈ Fn and γ ∈ C⊥,

Q̂(α+ γ) =
1

qn
·
∑
f

Q(f) · ω−Tr(〈α+γf〉) =
1

qn
·
∑
f

Q(f) · ω−Tr(〈α,f〉) · ω−Tr(〈γ,f〉) .

Since Q ∈ V1, if Q(f) 6= 0 then f ∈ C and hence ωTr(〈γ,f〉) = ωTr(0) = 1. Therefore,

Q̂(α+ γ) =
1

qn
·
∑
f

Q(f) · ω−Tr(〈α,f〉) = Q̂(α) .

Thus V1 ⊆ V2. Since dim(V1) = dim(V2) and V1 ⊆ V2, we conclude that V1 = V2.

5.1.2 Proof of Lemma 5.4

Suppose Q : Fn → C is a quasi-distribution such that there exists a quasi-distribution Q′ supported
on C with ∆k(Q,Q′) ≤ δ. Fix α ∈ Fn≤k, so that S = supp(α) has |S| ≤ k. Since ∆k(Q,Q′) ≤ δ, we

have that
∑

g∈FS
∣∣∣P̃r[Q(S) = g]− P̃r[Q′(S) = g]

∣∣∣ ≤ δ. Therefore,∣∣∣Q̂(α)− Q̂′(α)
∣∣∣ ≤ 1

qn

∑
j∈Fp

∣∣ω−j∣∣ ∣∣∣P̃r[Tr(〈α,Q〉) = j]− P̃r[Tr(〈α,Q′〉) = j]
∣∣∣

=
1

qn

∑
j∈Fp

∑
g∈FS :Tr(〈α,g〉)=j

∣∣∣P̃r[Q(S) = g]− P̃r[Q′(S) = g]
∣∣∣

≤ 1

qn

∑
g∈FS

∣∣∣P̃r[Q(S) = g]− P̃r[Q′(S) = g]
∣∣∣ ≤ δ

qn
.

By Lemma 5.2, we know that for every α, α′ ∈ Fn such that α−α′ ∈ C⊥ it holds that
∣∣∣Q̂′(α)− Q̂′(α′)

∣∣∣ = 0.

Hence, for every α, α′ ∈ Fn≤k such that α− α′ ∈ C⊥ it holds that∣∣∣Q̂(α)− Q̂(α′)
∣∣∣ ≤ ∣∣∣Q̂(α)− Q̂′(α)

∣∣∣+
∣∣∣Q̂′(α)− Q̂′(α′)

∣∣∣+
∣∣∣Q̂′(α′)− Q̂(α′)

∣∣∣
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≤ δ

qn
+ 0 +

δ

qn
=

2δ

qn
.

Now, suppose that Q is a quasi-distribution such that
∣∣∣Q̂(α)− Q̂(α′)

∣∣∣ ≤ 2δ
qn for all α, α′ ∈ Fn≤k

such that α − α′ ∈ C⊥. For each α ∈ Fn, let γα be an element of the coset α + C⊥ of minimal
weight (ties are broken arbitrarily). Define Q′ to be the quasi-distribution where Q̂′(α) := Q̂(γα)
if wt(γα) ≤ k and 0 otherwise. By construction, for any α, α′ ∈ Fn such that α− α′ ∈ C⊥ it holds
that Q̂′(α) = Q̂′(α′), so Q′ is supported on C by Lemma 5.2. Let α ∈ Fn≤k. By construction, we

know that
∣∣∣Q̂(α)− Q̂′(α)

∣∣∣ ≤ ∣∣∣Q̂(α)− Q̂(γα)
∣∣∣+
∣∣∣Q̂(γα)− Q̂′(α)

∣∣∣ ≤ 2δ
qn + 0 = 2δ

qn , since α− γα ∈ C⊥

and wt(γα) ≤ wt(α) ≤ k. Therefore, by Lemma 4.7 we have that ∆k(Q,Q′) ≤ qk/2 · 2δ.

5.2 Locally-explainable non-signaling functions

We introduce another natural definition that captures when a non-signaling function F is “in” a
given linear code C ⊆ Fn. This time we take the perspective of local consistency, namely, we shall
require that the output of F is always consistent with a codeword in C.

Definition 5.5. Given a k-non-signaling strategy F : [n]→ F, code C ⊆ Fn, and parameter k′ ≤ k,
we say that F is (C, k′)-explainable if for every set S ⊆ [n]≤k′ it holds that Pr[F(S) ∈ C|S ] = 1.

Note that F is (C, k′)-explainable if and only if Pr[〈α,F〉 = 0] = 1 for every α ∈ C⊥≤k′ . The
non-trivial direction of the equivalence is implied by the following lemma.

Lemma 5.6. Let C ⊆ Fn be a linear code, S ⊆ [n]≤k, and g : S → F. If 〈α, g〉 = 0 for every
α ∈ C⊥⊆S, then there is a codeword f ∈ C such that f |S = g.

Proof. Since C ⊆ Fn is a linear code, there is a pivotal set P ⊆ [n] of size |P | = dim(C) such that
for all y : P → F there is a unique codeword f ∈ C satisfying f |P = y. Such P need not be unique.

Let P ∗ ⊆ [n] be a pivotal set such that |P ∗ ∩ S| is maximal, and let PS := P ∗ ∩ S. Define
f ′ : P ∗ → F by letting f ′(i) = g(i) for all i ∈ PS , and letting f ′(j) be arbitrary for all j ∈ P ∗ \ PS .
Since P ∗ is a pivotal set, there exists a unique f ∈ C such that f |P ∗ = f ′.

It remains to show that f |S = g. Let i ∈ S. If i ∈ PS , then f(i) = f ′(i) = g(i), as required.
Suppose that i /∈ PS . Since P ∗ is maximal, there exists α ∈ C⊥ such that αi = 1 and supp(α) ⊆
PS ∪ {i} ⊆ S. Indeed, if no such α exists then for any codeword h ∈ C, h(i) is not determined by
{h(j) : j ∈ PS}. Hence, the set PS ∪{i} can be extended into a pivotal set for C, which contradicts
the maximality of P ∗. Therefore, such an α exists. Since 〈α, f〉 = 0 and 〈α, g〉 = 0, we get that
0 = 〈α, f〉 − 〈α, g〉 = f(i) +

∑
j∈PS αjf(j) − g(i) −

∑
j∈PS αjg(j) = f(i) +

∑
j∈PS αjg(j) − g(i) −∑

j∈PS αjg(j) = f(i)− g(i), and therefore f(i) = g(i). We conclude that f |S = g, as required.

We provide a characterization of the Fourier spectrum of C-explainable non-signaling functions,
both in the exact and in the robust cases, as captured by the respective lemmas below. Both lemmas
make crucial use of Lemma 4.3.

Lemma 5.7. Let F : [n] → F be a k-non-signaling function. Then F is (C, k′)-explainable if and
only if F̂(α) = 1

qn for every α ∈ C⊥≤k′.
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Proof. We know that F is (C, k′)-explainable if and only if for every α ∈ C⊥≤k′ it holds that

Pr[〈α,F〉 = 0] = 1. By Lemma 4.3, we know that Pr[〈α,F〉 = 0] = 1 if and only if F̂(aα) = 1
qn for

every a ∈ F, as M is invertible and maps the distribution Pr[〈α,F〉 = 0] = 1 and Pr[〈α,F〉 = b] = 0
for all other b to the vector 1q. We conclude the proof by noting that if α ∈ C⊥≤k′ then aα ∈ C⊥≤k′
for any a ∈ F.

Lemma 5.8. Let F : [n]→ F be a k-non-signaling function, and let α ∈ Fn≤k.

• If Pr[〈α,F〉 = 0] ≥ 1− ε, then |F̂(aα)− 1
qn | ≤

2ε
qn for every a ∈ F.

• If |F̂(aα)− 1
qn | ≤

ε
qn for every a ∈ F, then Pr[〈α,F〉 = 0] ≥ 1− ε.

Proof. Suppose that Pr[〈α,F〉 = 0] ≥ 1 − ε. This immediately implies that, for every a ∈ F,
Pr[〈aα,F〉 = 0] ≥ 1− ε. Therefore,

∣∣∣qnF̂(aα)− 1
∣∣∣ =

∣∣∣∣∣−1 +
∑
b∈F

ω−Tr(ab) Pr[〈aα,F〉 = b]

∣∣∣∣∣
≤ |−1 + Pr[〈aα,F〉 = 0]|+

∑
b 6=0

|ω−Tr(ab)| |Pr[〈aα,F〉 = b]|

≤ ε+
∑
b6=0

Pr[〈aα,F〉 = b]

= ε+ (1− Pr[〈aα,F〉 = 0]) ≤ 2ε .

This proves the first direction.
For the second direction, let v ∈ Cq be the vector where vb = Pr[〈α,F〉 = b] and let w ∈ Cq

be the vector where wa = qnF̂(aα). Note that Mv = w, where M is the matrix from Lemma 4.3.
Suppose that |F̂(aα) − 1

qn | ≤
ε
qn for every a ∈ F, so that |wa − 1| ≤ ε for every a ∈ F. Then, we

have that ‖w − 1q‖2`2 ≤ qε2, so that ‖w − 1q‖`2 ≤ ε
√
q. Let u ∈ Cq be the vector where u0 = 1

and ub = 0 for all other b ∈ F. Observe that Mu = 1q. Since 1√
qM is unitary, we have that

‖ 1√
qM(v − u)‖`2 = ‖ 1√

q (w − 1q)‖`2 ≤ 1√
q · ε
√
q = ε. Therefore, |vb − ub| ≤ ε for all b ∈ F. In

particular, |v0 − 1| ≤ ε, so that Pr[〈α,F〉 = 0] ≥ 1− ε.

5.3 The relationship between the two definitions

We have given two natural definitions of what it means for a non-signaling function to be in a
linear code. Which of the two definitions is more “correct”? Lemma 5.2 and Lemma 5.7 show
that Definition 5.1 implies Definition 5.5, in the sense that if F is (C, k′)-supported then F is
(C, k′)-explainable. We prove that, conversely, Definition 5.5 implies Definition 5.1 up to a factor
of 2 in the locality k′. We conclude that the two definitions are essentially equivalent.

Lemma 5.9. Let C ⊆ Fn be a linear code, and let F : [n]→ F be a k-non-signaling function.
• If F is (C, k′)-supported then F is (C, k′)-explainable.
• If F is (C, k′)-explainable then F is (C, k′/2)-supported.

Remark 5.10. For specific choices of C one can achieve stronger versions of the above lemma.
For example, when C is the Hadamard code (all linear functions), one can prove the lemma with
k′− 1 in place of k′/2. Also, some gap in locality is necessary: taking again C to be the Hadamard
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code, there exists a non-signaling function F that is (C, k)-explainable and (C, k − 1)-supported
but not (C, k)-supported. (The foregoing statements are shown implicitly in [CMS18].)

Proof. Lemma 5.2 and Lemma 5.7 imply the first direction, as any (C, k′)-supported k-non-signaling
function F satisfies F̂(α) = F̂(0n) = 1

qn for every α ∈ C⊥≤k′ , implying that F is (C, k′)-explainable.

We now prove the second direction. Fix α ∈ C⊥≤k′ , and let S := {i ∈ [n] : αi 6= 0}. Note
that |S| ≤ k′ since |S| = wt(α). We first show that Pr[〈α,F〉 = 0] = 1. Indeed, since F is
(C, k′)-explainable, we have that

Pr[〈α,F〉 = 0] ≥ Pr[〈α,F〉 = 0 ∧ ∃f ∈ C s.t. F(S) = f |S ]

= Pr[〈α, f〉 = 0 ∧ ∃f ∈ C s.t. F(S) = f |S ]

= Pr[∃f ∈ C s.t. F(S) = f |S ] = 1 ,

and so Pr[〈α,F〉 = 0] = 1.
Now, for any α, α′ ∈ Fn≤k′/2 with α− α′ ∈ C⊥ we get that for any b ∈ F,

Pr[〈α,F〉 = b] = Pr[〈α′,F〉+ 〈α− α′,F〉 = b] = Pr[〈α′,F〉 = b] ,

since Pr[〈α − α′,F〉 = 0] = 1 as α − α′ ∈ C⊥ with wt(α − α′) ≤ k′. This shows that the vectors
(Pr[〈α,F〉 = b])b∈F and (Pr[〈α′,F〉 = b])b∈F are the same. Thus, F̂(α) = F̂(α′), by the definition
of F ’s Fourier coefficients. By Lemma 5.2, it follows that F is (C, k′/2)-supported.
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6 Local characterizations and Cayley hypergraphs

We prove Theorem 3 in this section. For this section, we let k′ ≤ k be an integer. We let C ⊆ Fn
be a linear code, and T ⊆ Fn be a set of constraints. Given a k-non-signaling function F , we say
that F satisfies a constraint α ∈ Fn≤k if Pr[〈α,F〉 = 0] = 1.

Definition 6.1. We let Consistent(T, k) denote the set of k-non-signaling functions F where
Pr[〈α,F〉 = 0] = 1 for every α ∈ T . That is, Consistent(T, k) is the set of k-non-signaling functions
that are consistent with T .

We note that by Lemma 5.7, Consistent(C⊥≤k′ , k) is the set of k-non-signaling functions that are
(C, k′)-explainable.

With the above definition, the definition of local characterization can be rephrased as follows.

Definition 6.2. For ` ≤ k′ ≤ k, a set of constraints T ⊆ C⊥≤` is a `-local characterization of
(C, k′, k) if Consistent(T, k) equals the set of k-non-signaling functions that are (C, k′)-explainable,
i.e. that Consistent(T, k) = Consistent(C⊥≤k′ , k).

In this language, [CMS18] shows that T = {ex + ey − ex+y : x, y ∈ {0, 1}n} is a 3-local
characterization of (C, k − 1, k), where C is the Hadamard code.

We briefly recall the definition of a Cayley hypergraph introduced in Section 1.2

Definition 6.3. Given a set T ⊆ C⊥, the Cayley hypergraph Γk(C
⊥, T ) is the hypergraph with

vertices V = {α ∈ C⊥ : wt(α) ≤ k}, edges E = {(α, α + γ) : α ∈ V, γ ∈ T, |supp(α) ∪ supp(γ)| ≤
k} ∪ {(α, bα) : b ∈ F \ {0}}, and hyperedges H = {(α, β, α+ β) : |supp(α) ∪ supp(β)| ≤ k}.

Definition 6.4 (Path in Cayley hypergraph). Let α ∈ Fn. A path from 0n to α in Γk(C
⊥, T ) is a

sequence (α1, . . . , αr) of vertices such that α1 = 0n, αr = α, and for each i > 1 one of the following
three cases holds: 1. (edges) there exists j < i such that (αj , αi) is an edge, or 2. (hyperedges) there
exists j1, j2 < i such that (αj1 , αj2 , αi) is a hyperedge.

We write T `k α (using the symbol ` from mathematical logic) if there is a path from 0n to α
in Γk(C

⊥, T ). The notation is motivated by the fact that a path in Γk(C
⊥, T ) can be equivalently

viewed as a logical deduction of α from T . We note that if T `k α, then it must be the case that
α ∈ span(T ), but the converse is not necessarily the case (in fact, Theorem 1 is simply an example
where this fails).

Theorem 3 is stated formally as the theorem below.

Theorem 5. For ` ≤ k′ ≤ k, a set of constraints T ⊆ C⊥≤` is a `-local characterization of (C, k′, k)

if and only if T `k C⊥≤k′.

The proof of Theorem 5 relies on the notion of a k-local subspace, which we define below.

Definition 6.5. A k-local subspace V is a subset of Fn≤k where V⊆S ⊆ Fn is a linear subspace for
every S ⊆ [n]≤k.

We prove Theorem 5 by showing the following three lemmas.

Lemma 6.6. If T `k α, then Consistent(T, k) = Consistent(T ∪ {α}, k).
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Lemma 6.7. For every k-local subspace V ⊆ Fn≤k, there exists a k-non-signaling function F such

that Pr[〈α,F〉 = 0] = 1 for every α ∈ V, and Pr[〈α,F〉 = 0] = 1
|F| otherwise.

Lemma 6.8. {α ∈ Fn : T `k α} ⊆ Fn≤k is a k-local subspace.

Proof of Theorem 5. Suppose that T `k C⊥≤k′ . Then by Lemma 6.6 we have that Consistent(T, k) =

Consistent(T ∪C⊥≤k′ , k). Since T ⊆ C⊥≤` and ` ≤ k′, we get that T ⊆ C⊥≤k′ . Hence, Consistent(T, k) =

Consistent(T ∪C⊥≤k′ , k) = Consistent(C⊥≤k′ , k), as required.
Conversely, suppose that T is an `-local characterization of (C, k′, k). By Lemma 6.7 and

Lemma 6.8, there exists a k-non-signaling function F such that Pr[〈α,F〉 = 0] = 1 for every
α ∈ Fn≤k such that T `k α, and Pr[〈α,F〉 = 0] = 1

|F| otherwise. Since T `k α for every α ∈ T ,

it follows that F ∈ Consistent(T, k), which implies that F ∈ Consistent(C⊥≤k′ , k) as T is an `-local

characterization of (C, k′, k). This implies that T `k α for all α ∈ C⊥≤k′ , since for all such α it holds

that Pr[〈α,F〉 = 0] = 1, and thus T `k α. T `k C⊥≤k′ , as required.

6.1 Proof of Lemma 6.6

It is clear that from the definition that Consistent(T, k) ⊇ Consistent(T ∪ {α}, k) for all α ∈ Fn.
Below we prove the containment in the other direction. Suppose that T `k α, and let (α1 =
0n, α2, . . . , αr = α) be a path from 0n to α in Γk(C

⊥, T ). Let F ∈ Consistent(T, k), that is, F is
a k-non-signaling function such that ∀γ ∈ T , Pr[〈γ,F〉 = 0] = 1. We prove by induction that for
i ∈ [r] it holds that Pr[〈αi,F〉 = 0] = 1.

For the base case of i = 1 it must be the case that α1 = 0n. Therefore, Pr[〈α1,F〉 = 0] = 1.
For the induction step let i > 1, and consider the following three cases.

1. There exists j < i and b ∈ F \ {0n} such that αi = bαj . Then,

Pr[〈αi,F〉 = 0] = Pr[b〈αj ,F〉 = 0] = Pr[〈αj ,F〉 = 0] = 1 ,

where the last equality uses the induction hypothesis.

2. There exist j < i and γ ∈ T such that αi = αj + γ with |supp(αj) ∪ supp(γ)| ≤ k. Since
F ∈ Consistent(T, k) we have that Pr[〈γ,F〉 = 0] = 1, as γ ∈ T . Therefore,

Pr[〈αi,F〉 = 0] = Pr[〈αj ,F〉+ 〈γ,F〉 = 0] ≥ Pr[〈αj ,F〉 = 0 ∧ 〈γ,F〉 = 0] = 1 ,

as required. Note that Pr[〈αj ,F〉 = 0∧〈γ,F〉 = 0] is well-defined since |supp(αj1) ∪ supp(γ)| ≤ k.

3. There exist j1, j2 < i such that αi = αj1 +αj2 and |supp(αj1) ∪ supp(αj2)| ≤ k. By the induction
hypothesis we know that Pr[〈αj1 ,F〉 = 0] = 1 and Pr[〈αj2 ,F〉 = 0] = 1. Thus,

Pr[〈αi,F〉 = 0] = Pr[〈αj1 ,F〉+ 〈αj2 ,F〉 = 0] ≥ Pr[〈αj1 ,F〉 = 0 ∧ 〈αj2 ,F〉 = 0] = 1 ,

and therefore Pr[〈αi,F〉 = 0] = 1. Again, we require |supp(αj1) ∪ supp(αj2)| ≤ k in order for
the last probability to be well-defined.

In particular, this implies that Pr[〈α,F〉 = 0] = Pr[〈αr,F〉 = 0] = 1, and hence F ∈
Consistent(T ∪ {α}, k). Therefore Consistent(T, k) ⊆ Consistent(T ∪ {α}, k), which completes the
proof of Lemma 6.6.
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6.2 Proof of Lemma 6.7

We define F specifying its local distributions FS for each S ⊆ [n]≤k. We define the function
FS : FS → C by specifying its (local) Fourier coefficients as follows. We set the Fourier coefficient

F̂S(α) to be 1
q|S|

if α ∈ V, and 0 otherwise.

We now show that each FS is a distribution. For any f : S → F we have

FS(f) =
∑
α∈FS

F̂S(α)χα(f) =
∑

α∈V⊆S

1

q|S|
χα(f) =

1

q|S|

∑
α∈V⊆S

ωTr(〈α,f〉) .

For each b ∈ F, let Vb ⊆ V⊆S be the set of α ∈ V⊆S where 〈α, f〉 = b. Let π : V⊆S → F be the
map where π(α) = 〈α, f〉. Since V⊆S is a subspace, π is a homomorphism. It follows that either
V0 = V⊆S or |Vb| = |V0| for every b ∈ F. In the first case,

∑
α∈V⊆S ω

Tr(〈α,f〉) = |V⊆S | ≥ 0. In the
second case, ∑

α∈V⊆S

ωTr(〈α,f〉) =
∑
b∈F

∑
α∈Vb

ωTr(b) =
∑
b∈F
|Vb|ωTr(b) = |V0|

∑
b∈F

ωTr(b) = 0 .

This implies that in either case, FS(f) ≥ 0, and so FS is a distribution.
We now show that the collection of local distributions {FS}S⊆[n]≤k is indeed non-signaling.

This follows from Lemma 4.9. If α ∈ V then we have that q|S|F̂S(α) = 1 = q|R|F̂R(α) for every

S,R ∈ [n]≤k such that supp(α) ⊆ S ∩R, and otherwise we have q|S|F̂S(α) = 0 = q|R|F̂R(α). Thus,
the collection of local distributions is a k-non-signaling function F .

It remains to show that F satisfies the desired property. Observe that for every α, qnF̂(α) =
q|supp(α)|F̂supp(α)(α) = 1 if α ∈ V, and otherwise F̂(α) = 0. By Lemma 4.3 it follows that F has
the desired properties.

6.3 Proof of Lemma 6.8

Let V = {α ∈ Fn : T `k α}. We show that V is a k-local subspace. Let S ⊆ [n]≤k. We need to
show that V⊆S is a linear subspace of Fn. We first observe that 0n is always in the set, as T `k 0n

always.
Let α ∈ V⊆S and let b ∈ F \ {0}. Then we have that T `k α which implies that T `k bα. Since

supp(bα) = supp(α) ⊆ S, it follows that bα ∈ V⊆S .
Let α, β ∈ V⊆S . Then, since |supp(α) ∪ supp(β)| ≤ |S| ≤ k we have that (α, β, α + β) is a

hyperedge in Γk. Thus, since T `k {α, β} it follows that T `k α + β. Since supp(α + β) ⊆
supp(α) ∪ supp(β) ⊆ S, it follows that α+ β ∈ V⊆S .

We have thus shown that V⊆S is a linear subspace of Fn, which completes the proof.
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7 Non-testability of bivariate polynomials

In this section, we prove Theorem 1 and Theorem 2. The proof strategies for both theorems are
nearly identical, and rely on Theorem 3.

7.1 The case of the row/column test

We let C be the linear code of bivariate polynomials P : F2 → F of degree at most d in each variable,
and let T be the set of α’s in C⊥ where the support of α is contained in exactly one row or column.

We define the rank of an element in C⊥ to be

rankT (α) := min
T ′⊆T :α∈span(T ′)

∣∣T ′∣∣ .
Note that since span(T ) = C⊥, the rank of α is well-defined for all α ∈ C⊥.

We let T0 = T≤d+2 denote the subset of T that only contains elements whose support is contained
in exactly one row or column, and of weight d+2. With this notation, the non-signaling row/column
bivariate low-degree test (i) samples α← T0 uniformly at random, and (ii) checks that 〈α,F〉 = 0.

The main theorem we prove is stated below, and is the formal statement of Theorem 1.

Theorem 6. For every k with 2d + 2 ≤ k < 7
32(d + 2)2, there exists a k-non-signaling function

such that Pr[〈α,F〉 = 0] = 1 for every α ∈ T0, and yet ∆2d+2(F ,F ′) ≥ (1− 1
|F|) for every (2d+ 2)-

non-signaling function F ′ that is (C, 2d+ 2)-explainable.

We begin the proof of Theorem 6 by showing the following lemma. This lemma follows from
earlier statements, and outlines a sufficient condition to prove Theorem 6

Lemma 7.1. Suppose that there exists α∗ ∈ C⊥ with wt(α∗) = 2d + 2 such that for every
k < 7

32(d+ 2)2 it holds that T 6`k α∗. Then for every k with 2d + 2 ≤ k < 7
32(d + 2)2 there

exists a k-non-signaling function F such that Pr[〈α,F〉 = 0] = 1 for every α ∈ T0, and yet
∆2d+2(F ,F ′) ≥ 1− 1

|F| for every (2d+ 2)-non-signaling function F ′ that is (C, 2d+ 2)-explainable.

Proof. Applying Lemma 6.7 and Lemma 6.8, for every k with 2d + 2 ≤ k < 7
32(d + 2)2, we

get that there exists a k-non-signaling function F such that Pr[〈α,F〉 = 0] = 1 for every α ∈
T0 and Pr[〈α∗,F〉 = 0] = 1

|F| . Let F ′ be a (2d + 2)-non-signaling function that is (C, 2d + 2)-

explainable. Since for every S ⊆ F2 with |S| ≤ 2d + 2 we have that Pr[F ′(S) ∈ C|S ] = 1 and
α∗ ∈ C⊥ has wt(α∗) = 2d + 2, it follows that Pr[〈α∗,F ′〉 = 0] = 1. Therefore, ∆2d+2(F ,F ′) ≥
|Pr[〈α∗,F〉 = 0]− Pr[〈α∗,F ′〉 = 0]| = 1− 1

|F| .

Therefore, by Lemma 7.1 it suffices to find such an α∗. We let α∗ ∈ C⊥ be any constraint where
supp(α) has size 2d+ 2 and is contained on the diagonal of Fn×n, i.e. {(a, a) : a ∈ F} ⊆ Fn×n. We
note that α∗ is one of the constraints that checks that P (t, t) is a univariate polynomial of degree
at most 2d in t.

We show that α∗ satisfies the desired properties in two main lemmas. We first show the following
generic lemma, which gives us a way to prove that T 6`k α∗.

Lemma 7.2 (Interval cut Lemma). Fix α ∈ C⊥. Suppose that there exists r ∈ R with 2 ≤ r ≤
rankT (α) such that for every β ∈ C⊥ with rankT (β) ∈ [r/2, r) it holds that T 6`k β. Then T 6`k α.

29



We then show that every α ∈ C⊥ of rank in [(d + 2)/4, (d + 2)/2] must have large weight,
implying that they are not reachable from 0n in Γk(C

⊥, T ) when k is small.

Lemma 7.3. For every β ∈ C⊥ with rankT (β) ∈ [(d + 2)/4, (d + 2)/2] it holds that wt(β) ≥
7
32(d+ 2)2. In particular, if k < 7

32(d+ 2)2 then T 6`k β.

With the above two lemmas, we now finish the proof of Theorem 6.

Proof of Theorem 6. Let k < 7
32(d+2)2. We first observe that rankT (α∗) ≥ 2d+2, as every element

of T contains at most one non-zero point on the diagonal. Since k < 7
32(d+ 2)2, Lemma 7.3 implies

that T 6`k β for every β with rankT (β) ∈ [(d+ 2)/4, (d+ 2)/2]. Thus, by Lemma 7.2 it follows that
T 6`k α∗. Hence, α∗ satisfies the assumptions of Lemma 7.1, and so applying Lemma 7.1 completes
the proof of Theorem 6.

Next we turn to the proofs of Lemma 7.2 and Lemma 7.3.

Proof of Lemma 7.2. First, observe that by definition of rank, rankT (α1 + α2) ≤ rankT (α1) +
rankT (α2). By the assumption of the lemma, there exists r ∈ R with 2 ≤ r ≤ rankT (α) such
that for every β ∈ C⊥ with rankT (β) ∈ [r/2, r) it holds that T 6`k β. We need to show that T 6`k α.

Suppose toward a contradiction that T `k α. Then there exists a path (α1, . . . , αt = α) in
Γk(C

⊥, T ) from 0n to α. Let S1 be the set of αi’s such that rankT (αi) < r/2, and let S2 be the set
of αi’s such that rankT (αi) ≥ r. Note that S1 ∪ S2 = {α1, . . . , αt}, as otherwise there would exist
some i such that αi has rank in [r/2, r), which would contradict the assumption that T `k αi for
all i ∈ [t].

Since rankT (α) ≥ r it follows that α ∈ S2, and hence S2 6= ∅. Let ` be the smallest index
such that α` ∈ S2. We have that α` 6= 0n since α` ∈ S2, and there does not exist i < ` and
b ∈ F \ {0} such that α` = bαi, as then rankT (αi) = rankT (α`) ≥ r, thus contradicting the
minimality of `. Suppose that there exists i < ` and γ ∈ T such that α` = αi + γ. By the
minimality of `, we must have that αi ∈ S1, and hence r ≤ rankT (α`) ≤ rankT (αi) + rankT (γ) <
r/2 + 1 ≤ r/2 + r/2 = r, which is also a contradiction. Therefore, there must either exist j1, j2 < `
such that α` = αj1 + αj2 . By the minimality of `, we must have that αj1 , αj2 ∈ S1, and hence
r ≤ rankT (α`) ≤ rankT (αj1) + rankT (αj1) < r/2 + r/2 = r, which is, again, a contradiction. In all
cases we have reached a contradiction to the assumption that T `k α, which completes the proof
of Lemma 7.2.

Remark 7.4. We note that in the foregoing proof we only required that rankT is subadditive, i.e.,
that rankT (α1 + α2) ≤ rankT (α1) + rankT (α2), rankT (α) = 1 for every α ∈ T , and rankT (0n) = 0.
Thus, the Interval Cut Lemma holds for any such subadditive function.

Proof of Lemma 7.3. Let β ∈ C⊥ be such that rankT (β) = r ∈ [d+2
4 , d+2

2 ]. We show that wt(β) ≥
7
32(d + 2)2. Since β ∈ span(T ), we can write β =

∑s
i=1 βi +

∑t
i′=1 β

′
i′ with s + t = r, where each

βi ∈ T is a constraint whose support is contained in exactly one row, and each β′i′ ∈ T is a constraint
whose support is contained in exactly one column. Note that there are no i 6= j ∈ [s] such that
supp(βi) and supp(βj) are contained in the same row, as otherwise we could use βi,j = βi + βj
instead of the two terms, which contradicts the assumption that rankT (β) = r. Similarly, there are
no i′ 6= j′ ∈ [t] such that supp(β′i′) and supp(β′j′) are contained in the same column.

Observe that for any i ∈ [s], i′ ∈ [t] it holds that
∣∣supp(βi) ∩ supp(β′i′)

∣∣ ≤ 1. Therefore, wt(β) =

wt(
∑s

i=1 βi +
∑t

i′=1 β
′
i′) ≥

∑s
i=1 wt(βi) +

∑t
i=1 wt(β′i′) − 2st. The term −2st comes from the fact
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that if
∣∣supp(βi) ∩ supp(β′i′)

∣∣ = 1, then the two constraints may cancel each other on the intersection
point, and we have counted this point twice: once in wt(βi) and once in wt(β′i′). Therefore, using
that fact that s+ t = r and that wt(βi),wt(β′i′) are at least d+ 2 for every i ∈ [s], i′ ∈ [t] we get

wt(β) ≥
s∑
i=1

wt(βi) +

t∑
i=1

wt(β′i′)− 2st ≥ (s+ t)(d+ 2)− 2st ≥ r(d+ 2)− r2/2 ,

where the last inequality uses the fact that st = s(r − s) is maximized when s = t = r/2. Finally,
the function f(r) = r(d+ 2)− r2/2 for r ∈ [d+2

4 , d+2
2 ] is minimized when r = d+2

4 , and hence

wt(β) ≥ r(d+ 2)− r2/2 ≥ (d+ 2)2

4
− (d+ 2)2

32
=

7

32
(d+ 2)2 ,

as required.

7.2 The case of the random lines test

We now prove Theorem 2. The random lines test for total degree d works as follows. Given
a function f : F2 → F, the test: (1) samples a random line L from the set of all lines in F2;
(2) samples a random subset S ⊆ L of size d+ 2; (3) checks that f |S is a univariate polynomial of
degree d. Similar to before, we let C be the set of bivariate polynomials of total degree d and let
T be the subset of C⊥ containing all α’s where supp(α) is contained on a line. We let T0 = T≤d+2.
The random lines test is equivalent to sampling a random α ∈ T0 and checking that 〈α, f〉 = 0.

Formally, we prove the following theorem, which is the analogue of Theorem 1 for the random
lines test.

Theorem 7. For every k with 2d + 2 ≤ k < 3
16(d + 2)2, there exists a k-non-signaling function

such that Pr[〈α,F〉 = 0] = 1 for every α ∈ T0, and yet ∆2d+2(F ,F ′) ≥ (1− 1
|F|) for every (2d+ 2)-

non-signaling function F ′ that is (C, 2d+ 2)-explainable.

The proof of Theorem 1 for the row/column test implies that in order to show Theorem 7, it
suffices to show the following lemma.

Lemma 7.5. There exists α∗ ∈ C⊥ where wt(α∗) = 2d + 2 and rankT (α∗) ≥ (d + 2)/2, and for
every α ∈ C⊥ with rankT (α) ∈ [(d+ 2)/4, (d+ 2)/2) it holds that wt(α) ≥ 3

16(d+ 2)2.

Proof. For any bivariate polynomial P (x, y) of degree d, the polynomial P (t, t2) has degree ≤ 2d.
Therefore, there exists at least one α∗ ∈ C⊥ that checks that P (t, t2) has degree ≤ 2d. In particular,
this α∗ has wt(α∗) = 2d + 2 and has support contained on the curve x2 − y = 0. Since the curve
x2 − y = 0 is irreducible in F[x, y], any line L intersects the curve on at most 2 distinct points.
It follows that rankT (α∗) ≥ (2d + 2)/2 = d + 1, as any constraint β ∈ T can only have at most 2
points on the curve x2 − y = 0.

Let β ∈ C⊥ be such that rankT (β) = r ∈ [(d+2)/4, (d+2)/2]. Then there exist lines L1, . . . , Lr
such that β =

∑r
i=1 βi where supp(βi) ⊆ Li. The Li’s must be distinct, as otherwise we could add

two constraints contained in the same line and we would then get rankT (β) < r. We have that
wt(βi) ≥ d+ 2 for each i. Hence, wt(β) ≥ r(d+ 2)− 2

(
r
2

)
, since each βi contributes at least d+ 2 to

the weight, and there are at most
(
r
2

)
intersection points as each of the r lines is distinct. It follows

that wt(β) ≥ r(d+ 2)− r2 ≥ 3
16(d+ 2)2 as r ∈ [(d+ 2)/4, (d+ 2)/2], which completes the proof.
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8 On robust local characterizations

In this section we prove Theorem 4. In Section 8.1 we prove part 1 of the theorem, and in Section 8.2
we prove part 2. Finally, in Section 8.3 we show that Theorem 4 is tight for the repetition code
and is tight up to a constant factor for the Hadamard code.

8.1 Part 1 of Theorem 4

We prove part 1 of Theorem 4. In order to do this, we must first formally define nsrankT . We define

nsrankT (α) := min
P

costP (α) ,

where the minimum is taken over all paths P from 0n to α in Γk(C
⊥, T ), and costP (α) is defined

according to the following definition:

Definition 8.1. Let P = (α1, . . . , αr) be a path from 0n to α in Γk(C
⊥, T ) as in Definition 6.4.

For each i ∈ [r], we define costP (αi) recursively as follows.

1. (Base case) costP (α1) = costP (0n) = 0.

2. (Edge type 1) if there exists j < i with (αj , αi) ∈ E such that αi = bαj for some b ∈ F \ {0},
then costP (αi) = costP (αj).

3. (Edge type 2) if there exists j < i with (αj , αi) ∈ E such that αi = αj + γ for some γ ∈ T , then
costP (αi) = costP (αj) + 1.

4. (Hyperedge) if there exists j1, j2 < i with (αj1 , αj2 , αi) ∈ H, then costP (αi) = costP (αj1) +
costP (αj2).

If more than one of the above cases hold for a particular αi, then costP (αi) is defined to be the
minimum over all possible cases.

Intuitively, the function costP (·) is counting the number of edges of the form (α, α + γ) with
γ ∈ T that are used in the path P , only one can use hyperedges and they cost more. The cost of
taking a hyperedge (α, β, α+ β) is equal to the cost to reach α plus the cost to reach β.

We note that nsrankT (α) implicitly depends on k. In fact, when k = n we have that nsrankT (α) =
rankT (α), which motivates nsrank as a non-signaling analogue of rank.

Using the definition above, we prove part 1 of Theorem 4. Suppose that F is a k-non-signaling
function such that Pr[〈α,F〉 = 0] ≥ 1− ε for every α ∈ T . Let α ∈ Fn≤k be such that T `k α. We
show that Pr[〈α,F〉 = 0] ≥ 1− nsrankT (α)ε.

Let P = (α1, . . . , αr) be a path from 0n to α in Γk(C
⊥, T ) such that costP (α) is minimal, i.e.,

such that nsrankT (α) = minP costP (α). Let costP (αi) be the non-negative integers assigned to each
αi ∈ P . We prove that for all i ∈ [r] it holds that Pr[〈αi,F〉 = 0] ≥ 1 − costP (αi)ε. The proof is
by induction on i.

For the base case of i = 1 indeed holds Pr[〈α1,F〉 = 0] = 1 = 1− costP (α1)ε. For the induction
step let i > 1, and consider the following three cases.

1. If αi is reached using an edge of the form (αj , αi = bαj) for some b ∈ F \ {0} and j < i, then
costP (αi) = costP (αj). By the induction hypothesis Pr[〈αj ,F〉 = 0] ≥ 1−costP (αj)ε, and hence

Pr[〈αi,F〉 = 0] = Pr[〈bαj ,F〉 = 0] = Pr[〈αj ,F〉 = 0] ≥ 1− costP (αj)ε = 1− costP (αi)ε .
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2. If αi is reached using an edge of the form (αj , αi = αj + γ) for some γ ∈ T and j < i, then by
the induction hypothesis Pr[〈αj ,F〉 = 0] ≥ 1− costP (αj)ε, and hence

Pr[〈αi,F〉 = 0] = Pr[〈αj+γ,F〉 = 0] ≥ Pr[〈αj ,F〉 = 0∧〈γ,F〉 = 0] ≥ 1−costP (αj)ε−ε = 1−costP (αi)ε ,

by union bound. Therefore, also in this case Pr[〈αi,F〉 = 0] ≥ 1− costP (αi)ε.

3. Otherwise, αi is reached using a hyperedge (αj1 , αj2 , αi = αj1 + αj2), then

Pr[〈αi,F〉 = 0] = Pr[〈αj1+αj2 ,F〉 = 0] ≥ Pr[〈αj1 ,F〉 = 0∧〈αj2 ,F〉 = 0] ≥ 1−costP (αj1)ε−costP (αj2)ε ,

by the induction hypothesis and union bound. Since costP (αi) = costP (αj1) + costP (αj2), it
follows that Pr[〈αi,F〉 = 0] ≥ 1− costP (αi)ε, as required.

By induction, we conclude that Pr[〈α,F〉 = 0] ≥ 1−costP (αr)ε = 1−nsrankT (α)ε, which completes
the proof.

8.2 Part 2 of Theorem 4

We prove part 2 of Theorem 4 by showing the following lemma.

Lemma 8.2. Let cost : Fn → Z≥0 be a function such that for every α ∈ Fn, if α =
∑n

i=1 αiei,
then cost(α) =

∑
i:αi 6=0 cost(ei). Let M : Fn → Fn be a linear transformation. Let W be a k-local

subspace, and let ε ≥ 0 be such that 1 − q
q−1cost(Mα)ε ≥ 0 for every α ∈ W. Then there exists

a k-non-signaling function F such that Pr[〈α,F〉 = 0] = 1 − cost(Mα)ε for every α ∈ W, and
Pr[〈α,F〉 = 0] = 1

|F| otherwise.

Part 2 of Theorem 4 follows from Lemma 8.2 by setting cost(ei) = 1 for each i ∈ [n], and letting
M be the identity matrix.

Note that the assumptions on cost in Lemma 8.2 imply that cost(0n) = 0, and for every α ∈ Fn
and b ∈ F\{0}, we have that cost(α) = cost(bα). In addition, if we let πi : Fn → F be the projection
map α 7→ αi, and let hi : Fn → Z be the map which sends α 7→ 1 if αi 6= 0 and α 7→ 0 otherwise,
then cost(α) =

∑n
i=1 hi(α)cost(ei).

The following lemma will be used in the proof. We delay the proof of the lemma until after the
proof of Lemma 8.2.

Lemma 8.3. Let V ⊆ Fn be a linear subspace. Then for every subspace V0 ⊆ V of co-dimension 1
it holds that 1

q−1
∑

α∈V\V0 cost(α)−
∑

α∈V0 cost(α) ≥ 0.

Proof of Lemma 8.2. As in the proof of Lemma 6.7, we define each FS first as a function FS → C
by specifying its Fourier coefficients. In particular, we set F̂S = 1

q|S|
· (1− q

q−1cost(Mα)ε) if α ∈ W,

and 0 otherwise.
We now finish the proof assuming that each FS is in fact a distribution. By Lemma 4.9, it follows

that the collection of local distributions F = {FS}S⊆[n]≤k is k-non-signaling, and by Lemma 4.3 it
follows that F has the desired properties, completing the proof.

It remains to show that each FS is a distribution. Since cost(0n) = 0, we have that F̂S(0S) =
1
q|S|

, and hence
∑

f∈FS FS(f) = 1. So, it remains to show that FS(f) ≥ 0 for each f ∈ FS .
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Let V =W⊆S . Note that by definition of FS we have that

FS(f) =
∑
α∈FS

F̂S(α)χα(f) =
∑
α∈V

(
1− q

q − 1
cost(Mα)ε

)
· 1

q|S|
ω−Tr(〈α,f〉) ,

since F̂S(α) = 0 when α /∈ V. For any α ∈ V, if 〈α, f〉 = 0 then
∑

b∈F\{0} ω
−Tr(〈bα,f〉) = q − 1.

Otherwise,
∑

b∈F\{0} ω
−Tr(〈bα,f〉) = −1.

Let V0 ⊆ V be the subspace containing all α ∈ V such that 〈α, f〉 = 0. Since cost(Mα) =
cost(M(bα)) for all b ∈ F \ {0}, the above computation shows that

q|S|FS(f) =
∑
α∈V0

(
1− q

q − 1
cost(Mα)ε

)
+
−1

q − 1
·
∑

α∈V\V0

(
1− q

q − 1
cost(Mα)ε

)
.

There are two cases. If V0 = V, then q|S|FS(f) =
∑

α∈V0

(
1− q

q−1cost(Mα)ε
)
≥ 0 by assumption.

If V0 ( V, then V0 is a subspace of co-dimension 1, as it is specified by one linear constraint. Let
γ ∈ V \ V0. Then

q|S|FS(f) =
∑
α∈V0

1− q

q − 1
cost(Mα)ε+

−1

q − 1
·
∑

b∈F\{0}

1− q

q − 1
cost(M(α+ bγ))ε


=

q

q − 1
ε ·
∑
α∈V0

−cost(Mα) +
1

q − 1
·
∑

b∈F\{0}

cost(M(α+ bγ))

 .

If Mγ = 0n, then we have that cost(Mα) = cost(M(α+ bγ)) for every b ∈ F, which implies that
the above sum is 0. Hence, FS(f) ≥ 0 in this case. If Mγ 6= 0n, then MV0 ( MV is a subspace
of co-dimension 1. The remainder of the proof follows from Lemma 8.3 applied to the subspaces
MV0 ⊆MV.

We now prove Lemma 8.3

Proof of Lemma 8.3. Let V0 ⊆ V be a subspace of co-dimension 1. Since V0 6= V, there exists an
element γ ∈ V \ V0. We have that

1

q − 1

∑
α∈V\V0

cost(α)−
∑
α∈V0

cost(α) =
∑
α∈V0

−cost(α) +
1

q − 1

∑
b 6=0

cost(α+ bγ)


=

n∑
i=1

cost(ei)
∑
α∈V0

−hi(α) +
1

q − 1

∑
b 6=0

hi(α+ bγ)

 .

Let i ∈ [n]. Observe that if γi = 0, then −hi(α) + 1
q−1

∑
b6=0 hi(α + bγ) = 0 for every α ∈ V0.

Let i ∈ [n] such that γi 6= 0. Observe that if hi(α) = 0, then −hi(α) + 1
q−1

∑
b 6=0 hi(α + bγ) =

1, as hi(α + bγ) = 1 for every b ∈ F \ {0} as γi 6= 0, and hi(α) = 0. If hi(α) = 1, then
−hi(α) + 1

q−1
∑

b 6=0 hi(α + bγ) = − 1
q−1 , as then there exists a unique b∗ ∈ F \ {0} such that

hi(α+ b∗γ) = 0 and hi(α+ bγ) = 1 for all other b.
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Now, either hi(α) = 0 for every α ∈ V0, or hi(α) = 1 for some α ∈ V0. In the first case,

we have that
∑

α∈V0

(
−hi(α) + 1

q−1
∑

b 6=0 hi(α+ bγ)
)

= |V0| ≥ 0, as each term in the sum is

1. The second case is more complicated. If hi(α) = 1 for some α ∈ V0, then we have that∑
α∈V0

(
−hi(α) + 1

q−1
∑

b 6=0 hi(α+ bγ)
)

= |{α ∈ V0 : hi(α) = 0}| − 1
q−1 |{α ∈ V0 : hi(α) = 1}|. In

this case, the linear homomorphism πi : V0 → F has πi(α) 6= 0 for some α ∈ V0, which implies that
|{α ∈ V0 : π(α) = 0}| = |{α ∈ V0 : π(α) = b}| for every b ∈ F. In particular, |{α ∈ V0 : hi(α) = 0}| =
1
q−1 |{α ∈ V0 : hi(α) = 1}|. This implies that

∑
α∈V0

(
−hi(α) + 1

q−1
∑

b 6=0 hi(α+ bγ)
)

= 0. Hence,

1

q − 1

∑
α∈V\V0

cost(α)−
∑
α∈V0

cost(α) =

n∑
i=1

cost(ei)
∑
α∈V0

−hi(α) +
1

q − 1

∑
b6=0

hi(α+ bγ)

 ≥ 0 ,

as
∑

α∈V0

(
−hi(α) + 1

q−1
∑

b 6=0 hi(α+ bγ)
)
≥ 0 for each i ∈ n.

8.3 On the tightness of Theorem 4

We now show that Theorem 4 is tight when C is the repetition code and is tight up to a factor of
3 when C is the Hadamard code. We begin by stating the following proposition.

Proposition 8.4. Let T be a set of local constraints, and let k ≥ 0. Then,

• nsrankT (α) ≥ rankT (α).

• nsrankT ≥ wt(α)/`, where ` = maxα∈T wt(α).

The first statement follows immediately from the fact that any path of length r in the Cayley
hypergraph can be mapped to a path of length ≤ r in the Cayley graph. The second statement
follows immediately from the first one and the fact that if rankT (α) = r then wt(α) ≤ r`.

Let C be the Hadamard code and T = {ex + ey − ex+y : x, y ∈ Fn}. In [CMS18] it is shown
implicitly that nsrankT (α) ≤ wt(α)− 2. The above shows that nsrankT (α) ≥ wt(α)/3. This implies
that for the Hadamard code, Theorem 4 is tight up to a factor of 3.

We now show the following lemma, which implies that Theorem 4 is tight for the repetition
code.

Lemma 8.5. If C = {0n, 1n} ⊆ {0, 1}n is the repetition code and T = {ei + ej : i, j ∈ [n]} is the
canonical test, then nsrankT (α) = wt(α)/2.

Proof. Observe that C⊥ = {α ∈ {0, 1}n :
∑n

i=1 αi = 0}. Note that in particular, wt(α) is even for
every α ∈ C⊥. Let α ∈ C⊥, and let i1, . . . , i` be the set of indices in [n] such that αij 6= 0. Then
α = (ei1 + ei2) + (ei3 + ei4) + · · · + (ei`−1

+ ei`) = α1 + · · · + α`/2. Observe that if T `k α, then
wt(α) ≤ k. Hence, the above gives a path in the Cayley hypergraph to α of length `/2, and so
nsrankT (α) ≤ `/2. The earlier proposition implies that nsrankT (α) = `/2, completing the proof.
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