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Abstract

Non-signaling strategies are a generalization of quantum strategies that have been studied
in physics for decades, and have recently found applications in theoretical computer science.
These applications motivate the study of local-to-global phenomena for non-signaling functions.

We prove that low-degree testing in the non-signaling setting is possible, assuming that
the locality of the non-signaling function exceeds a threshold. We additionally show that if
the locality is below the threshold then the test fails spectacularly, in that there exists a non-
signaling function which passes the test with probability 1 and yet is maximally far from being
low-degree.

Along the way, we present general results about the local testability of linear codes in the
non-signaling setting. These include formulating natural definitions that capture the condition
that a non-signaling function “belongs” to a given code, and characterizing the sets of local
constraints that imply membership in the code. We prove these results by formulating a logical
inference system for linear constraints on non-signaling functions that is complete and sound.
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1 Introduction

Locally testable codes (LTCs) are error correcting codes in which one can verify whether a given
string belongs to the code by reading only a few (randomly chosen) bits from the string. Goldre-
ich and Sudan [GS06] have described LTCs as the “combinatorial counterparts of the complexity
theoretic notion of PCPs”, motivating the standalone study of these objects.

In this work we study local testability for non-signaling strategies, which are a class of non-local
strategies that generalize quantum strategies, capturing the maximum amount of “non-local cor-
relation” that can occur under the assumption that spatially-isolated parties cannot communicate
instantaneously. Non-signaling strategies have been studied in physics for decades [Ras85; KT92;
PR94], in order to better understand quantum entanglement. Recently they have gained attention
in computer science due to their applications to hardness of approximation [KRR16] and delegation
of computation [KRR13; KRR14]. PCPs sound against non-signaling strategies (nsPCPs) underlie
these applications, which motivates the study of local testability in the non-signaling setting.

Given an integer n, a field F, and a locality parameter k ≤ n, the object that we study is a
k-non-signaling function F : [n]→ F, which extends the notion of a function f : [n]→ F as follows.1

Definition 1.1. A k-non-signaling function F : [n] → F is a collection {FS}S⊆[n]:|S|≤k where
each FS is a distribution over local functions g : S → F, and for any two subsets R ⊆ S ⊆ [n] with
|S| ≤ k it holds that the distribution FR and the marginal distribution FS |R are equal.2 (The set
of all such F are the solutions to the k-relaxation in the Sherali–Adams hierarchy [SA90].)

The evaluation of F on a set S is a single sample g : S → F from the distribution FS . Intu-
itively, a k-non-signaling function is like a quantum function: evaluation is probabilistic and only
happens once, just like quantum measurement; and F can only be evaluated on at most k points
simultaneously, which is similar to the uncertainty principle. As k approaches n, F behaves more
like a classical function and, when k = n, F is a distribution over functions f : [n]→ F.

Local testability of non-signaling functions may sound like an oxymoron, because non-signaling
functions, at least superficially, are collections of local distributions with no global structure that
we can talk about. Yet prior work has shown that local-to-global phenomena are possible.

For example, [CMS18] shows that any non-signaling function passing the linearity test [BLR93]
with high probability is well-approximated by a quasi-distribution supported on linear functions.
This result was later used in [CMS19] to show that the exponential-length constant-query PCP of
[Aro+98] is sound against non-signaling strategies.

The results obtained in [CMS18; CMS19] naturally raise the question of whether local testability
in the non-signaling setting is possible for other codes, like those based on low-degree polynomials.
After all, both linearity testing and low-degree testing do work in the quantum setting [NV18].

Recall that, in the classical setting, local testability plays a central role in PCP constructions,
many of which can be described as having two main components.

• Property testing: check with few queries whether or not the given proof π belongs to a code C.

1There are two distinct definitions of a non-signaling strategy, depending on whether the strategy is meant to
represent isolated parties or a function. The former is used for MIPs [KRR13; KRR14], while the latter is used for
PCPs and property testing [KRR13; KRR14; CMS18; CMS19]. We use the latter definition, although equivalent
statements of all our results will hold when adopting the former definition (see the appendix in [CMS18]).

2A common relaxation of this condition requires that these two distributions are only statistically (or computa-
tionally) close. While we consider the standard definition, we note that this is without loss of generality as [CMS18]
shows that every statistically (or computationally) non-signaling strategy is close to an (exact) non-signaling strategy.
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• Checking computation: given that π is a codeword in C (or at least is close to a codeword), check
with few queries whether or not π proves the desired statement.

This modular approach has enabled the study of local testability as a natural standalone goal,
which in turn has led to improved PCP constructions.

Inspired by this state of affairs, we initiate the study of locally testable codes in general in
the non-signaling setting, focusing specifically on the case of low-degree testing. We believe that,
similarly to the classical setting, understanding local testability against non-signaling strategies will
enable researchers to construct more efficient non-signaling PCPs.

1.1 Low-degree testing against non-signaling functions

We show that a simple low-degree test, the evenly-spaced points test, tests proximity to degree-d
non-signaling functions when k ≥ O(d2), and fails to test proximity when k ≤ O(d2).

The evenly-spaced points test. Let m, d ∈ N and p be a prime with p ≥ d+2. Given a function
f : Fmp → Fp, the degree-d evenly-spaced points test: (1) samples a random point x ∈ Fmp and slope

h ∈ Fmp \ {0m}, (2) checks that
∑d+1

i=0 cif(x + ih) = 0, where ci = (−1)i
(
d+1
i

)
. It is well-known

that if f passes the degree-d evenly-spaced points test with high probability, then f is close to (the
evaluation of) an m-variate polynomial of total degree at most d [RS96]. Below we ask whether
the test is also sound in the non-signaling setting.

Suppose that a k-non-signaling function F : Fmp → Fp passes the evenly-spaced points test with
high probability. Can we deduce any global low-degree structure about F?

In more detail, the probabilistic experiment that we consider is this: first we sample x and h
according to the distribution of the evenly-spaced points test, and let the query set S be {x+ ih :
i ∈ {0, . . . , d + 1}}; then we sample a local function g : S → Fp according to the distribution FS ;

and finally we check that
∑d+1

i=0 cig(x+ ih) = 0.
The answer to the above question will, in general, depend on the locality parameter k of F .

At minimum, we need k ≥ d + 2 for otherwise we cannot even run the evenly-spaced points test
(k is the maximum number of simultaneous queries to F). At the other extreme, when k has the
maximum value (k = pm) then we are back to the classical case because F is now a distribution
over functions f : Fmp → Fp; hence if F passes the test with high probability then (one can verify
that) with high probability a function f sampled according F is close to low-degree. In fact, even
when k ≥ O(dm), we are in a trivial case, as one can query F on an interpolating set, a “cube of
(d+ 1)m points”.

We are thus interested in whether or not the test works for non-trivial values of k, namely when
O(d) ≤ k < O(dm), and thus we will assume that m ≥ 2. In this regime, k is large enough to run
the test, and yet is small enough so that one cannot query an interpolating set. Our first result
shows that the test succeeds in the non-signaling setting when k ≥ O(d2). This is a non-signaling
analogue of the evenly-spaced points test, similar to how [CMS18] gives a non-signaling analogue
of the linearity test of [BLR93].

Theorem 1 (informal). Let F : Fmp → Fp be a k-non-signaling function that passes the degree-d
evenly-spaced points test with high probability, where k ≥ (d+ 2)2. Then F has a global individual
degree-d structure.
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One drawback of the above theorem is that the conclusion only asserts that F has an individual
degree-d structure, when one would like to conclude that F has a total degree-d structure. We
discuss the difficulty of extending the result to total degree-d in Remark 2.3.

Our second result shows that the test fails when k ≤ O(d2), and moreover it fails even when
the test passes with probability 1, namely, it fails in the worst possible sense.

Theorem 2 (informal). For every k with 2d + 2 ≤ k < 3
16(d + 2)2, there exists a k-non-signaling

function that passes the evenly-spaced points test with probability 1, and yet is (1− 1
p)-far from all

degree-d k-non-signaling functions.

Theorem 2 is surprising, as it reveals that in the non-signaling setting, there is a regime of k in
which the low-degree test fails. This stands in sharp contrast to the fact that for linearity testing,
there is no regime of k in which non-signaling linearity test fails. Our results thus suggest that
low-degree testing is a qualitatively different task, as it has a regime of k where a natural test fails.

Theorem 2 also shows that in the case of bivariate testing when m = 2, there is (up to constants)
no non-trivial value of k where the test succeeds. This is counterintuitive, as bivariate testing is
a natural test for which we would expect some guarantee to hold (regardless of how weak), at the
very least when the test passes with probability 1.

Other low-degree tests. We note that Theorem 2 generalizes to any low-degree test over an
arbitrary finite field F that (1) works by checking constraints that lie along a line, and (2) has perfect
completeness. Thus, Theorem 2 gives a strong negative result, as it proves that the requirement
that k ≥ O(d2) is necessary for a large class of natural tests.

Beyond low-degree testing. Our theorems on low-degree testing come from applying more
general results that we prove about the structure of local characterizations for any linear code, in
the non-signaling setting. We view our general results on local characterizations as a significant
technical contribution within this paper, and we now discuss them.

1.2 Local characterizations and linear proofs

Local characterizations are fundamental to the study of locally testable codes [RS96]. They express
membership in a given linear code via a set of low-weight constraints, and they naturally induce
a canonical tester: sample a random low-weight constraint and check if the given word satisfies it.
In order to prove the negative result in Theorem 2, we do not need to consider distributions on
constraints, but instead we only need to study how constraints express code membership, via exact
local characterizations [RS96]. Below we describe one of our main technical contributions, which
informally consists of establishing necessary and sufficient conditions for when a constraint set is a
local characterization for a code, in the non-signaling setting. We begin by recalling known facts
about local characterizations in the classical setting, and then proceed to the non-signaling setting.

The classical setting. A constraint set T ⊆ Fn for a linear code C ⊆ Fn is a subset of its dual
code C⊥. A constraint set T is a `-local characterization of C if every α ∈ T has at most ` non-zero
entries, and the condition “〈α, f〉 = 0 for every α ∈ T” implies that f ∈ C (and conversely).

For example, the set {ex + ey − ex+y : x, y ∈ {0, 1}n} where ex is the x-th standard basis vector
in {0, 1}{0,1}n is a 3-local characterization of the Hadamard code, because f(x)+f(y)−f(x+y) = 0
for every x, y ∈ {0, 1}n implies that f is a linear function, and conversely. As another example, the
Reed–Muller code containing all polynomials f : Fm → F in m variables of total degree at most d
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has a (d+ 2)-local characterization T , where T contains a constraint α for each subset S of Fm of
size d+ 2 that is contained in a line.

There is a simple condition that is both necessary and sufficient for a constraint set T to be
a local characterization for C: the span of T equals C⊥. In this work it is useful to view this
condition instead through the lens of mathematical logic, as follows. Given a constraint set T and
α ∈ Fn, we define the notion of a linear proof.

Definition 1.2 (Linear proof). We write T ` α (T proves α) if there exists a sequence (α0 :=
0n, α1, . . . , αr−1, αr := α) with each αi ∈ Fn such that, for every i ∈ [r], one of the following holds:
• ∃ j < i and b ∈ F such that αi = bαj,
• ∃ j < i and γ ∈ T such that αi = αj + γ,
• ∃ j1, j2 < i such that αi = αj1 + αj2.

As an example, suppose that α =
∑r

i=1 biγi with each bi ∈ F and γi ∈ T . Then the sequence
(0n, γ1, b1γ1, . . . , γr, brγr, α1, . . . , αr), where each αi is the partial sum b1γ1+ · · ·+biγi, gives a linear
proof that α ∈ span(T ).

One can immediately see that T ` α if and only if α ∈ span(T ). In particular, we have the
following lemma.

Lemma 1.3. Linear proofs are (i) complete: if 〈γ, f〉 = 0 for every γ ∈ T implies 〈α, f〉 = 0, then
T ` α; and (ii) sound: if 〈γ, f〉 = 0 for every γ ∈ T and T ` α, then 〈α, f〉 = 0. In particular, a
constraint set T is a local characterization of a linear code C if and only if T ` C⊥.

Our goal is to establish a non-signaling analogue of Lemma 1.3.

A motivating example. We illustrate via an example why a statement like Lemma 1.3 is non-
trivial in the non-signaling setting. Let n ∈ N be even, and let T = {1n − ei : i ∈ [n]} ⊆ {0, 1}n,
i.e. T contains every vector that is 1 in all but one of the coordinates, where it is 0. Classically,
one can check that T is a (n − 1)-local characterization of the code C = {0n}, as if f ∈ {0, 1}n
satisfies 〈α, f〉 = 0 for every α ∈ T (equivalently,

∑
`6=i f(`) = 0 for every i ∈ [n]), then we must

have f = 0n, since n is even. This is because T ` ei, and so f must satisfy f(i) = 〈ei, f〉 = 0.
However, there exist (n− 1)-non-signaling functions that satisfy every constraint in T and yet

are not identically 0; the non-signaling function which outputs uniformly random bits with parity
0 on every set of size exactly n − 1 is one such example. In particular, T is not a (n − 1)-local
characterization of C. To see why, let us examine where the classical argument that f(i) = 0
fails for (n− 1)-non-signaling functions. Recall that an (n− 1)-non-signaling function can only be
evaluated simultaneously at n− 1 points. Thus, while one can classically argue, for example, that
f(i) + f(j) = 0 via the argument that

∑
` 6=i f(`) = 0 and

∑
`6=j f(`) = 0 implies that f(i) + f(j) =∑

6̀=i f(`) +
∑
6̀=j f(`) = 0, this reasoning is no longer valid in the non-signaling setting because it

requires f to be simultaneously defined at every i ∈ [n], which is n > k = n−1 points. In particular,
any proof that 〈ei, f〉 = 0 from T requires f to be simultaneously defined on all n points, so this
logical reasoning is not valid in the non-signaling setting.

An equivalence for non-signaling functions. We prove an analogous equivalence in the non-
signaling setting, which informally states that a suitable notion of local characterization for any
linear code is equivalent to being able to prove all low weight elements of C⊥ using local proofs.
This equivalence is a strict generalization of Lemma 1.3. The example above can thus be viewed
as a case where a low weight element of C⊥ (namely, ei) has no local proof from a particular T .
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We begin by formulating a notion of local characterization that works for constraint sets ap-
plied to non-signaling functions rather than (classical) functions. There are two main qualitative
differences with the classical case. First, the definition depends on the locality parameter k be-
cause we need to specify the locality of the non-signaling functions that we consider. Second, the
requirement that a non-signaling function “belongs” to a code C is expressed via a property that
we call C-explainability, on which we comment after the definition.

Definition 1.4 (informal). A constraint set T ⊆ C⊥ is a `-local characterization for (C, k) if
every α ∈ T has at most ` non-zero entries, and the set of k-non-signaling functions that satisfy
every α ∈ T with probability 1 equals the set of k-non-signaling functions that are “C-explainable”.

The term “C-explainable” refers to the condition that the given non-signaling function is, with
probability 1, consistent with the restriction of some codeword in C. This condition is motivated
by non-trivial properties of the Fourier spectrum of non-signaling functions that we discuss later on
(see Section 2.5). For now, it suffices to say that if a non-signaling function F is C-explainable then
F satisfies natural global properties that extend code membership to the non-signaling setting.

We remark that Definition 1.4 reduces to the classical notion of local characterization when
setting k := n. We now introduce the notion of local linear proofs that we use in our equivalence.

Definition 1.5 (k-local linear proof). Given a constraint set T and α ∈ Fn, we write T `k α if
there exists a sequence (α0 := 0n, α1, . . . , αr−1, αr := α) with each αi ∈ Fn such that, for every
i ∈ [r], one of the following holds:
• ∃ j < i and b ∈ F such that αi = bαj
• ∃ j < i and γ ∈ T such that |supp(αj) ∪ supp(γ)| ≤ k and αi = αj + γ
• ∃ j1, j2 < i such that |supp(αj1) ∪ supp(αj2)| ≤ k and αi = αj1 + αj2.

Above, supp(α) denotes the set of indices i ∈ [n] where αi 6= 0, and wt(α) is the size of supp(α).
Notice that Definition 1.5 is nearly identical to Definition 1.2: the only change is the addition of
the restriction on the support size in the second and third bullets.

The motivation behind Definition 1.5 is the following fact: if T `k α then any k-non-signaling
function that satisfies every constraint in T must satisfy α as well. Definition 1.5 thus captures a
notion of constraint propagation for non-signaling functions. The restriction on the support size in
the second and third bullets is there because querying a k-non-signaling function on more than k
points simultaneously is undefined.

We now state our main technical contribution in this section, a non-signaling analogue of
Lemma 1.3.

Theorem 3 (informal). k-local linear proofs are complete and sound for k-non-signaling functions.
In particular, a constraint set T is a `-local characterization for (C, k) if and only if T `k α for
every α ∈ C⊥ with wt(α) ≤ k.

Proving that k-local linear proofs are sound is straightforward; the interesting component of
Theorem 3 is showing that k-local linear proofs are complete. We do this by showing that for every
T there exists a k-non-signaling function that satisfies every α where T `k α, and violates every α
where T 6`k α with probability 1− 1

|F| . This k-non-signaling function is very simple: the distribution

FS is the uniform distribution over all functions f : S → F such that 〈α, f〉 = 0 for every α where
T `k α and supp(α) ⊆ S.
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When k = n in Theorem 3 we recover the classical statement (Lemma 1.3). This is because
when k = n, T `k α if and only if T ` α. However, when k < n, the equivalence is qualitatively
different from its classical analogue. While Lemma 1.3 essentially captures a simple linear algebraic
statement (the constraints span the dual code), Theorem 3 is a non-trivial statement that does not
involve linear spaces. This is because the requirement T `k α depends on k in a way that breaks
linearity, as exhibited by our motivating example earlier.

Separating classical and non-signaling local characterizations. Theorem 2 is an application
of Theorem 3 that shows that there is a gap between classical and non-signaling local character-
izations. In Appendix A, we use Theorem 3 to prove the theorem below, showing a stronger gap
between classical and non-signaling local characterizations.

Theorem 4 (Informal). Let d ∈ N with d ≥ 2, and let n ∈ N such that 2n ≡ 0 mod d. There
exists a code C ⊆ {0, 1}n and a constraint set T such that:
• For classical functions, T is a d-local characterization of C, but
• For non-signaling functions, T is not a d-local characterization of (C, k), for all k ≤ O(n).

Theorem 4 shows a strong separation between classical and non-signaling local characterizations,
as T classically gives an O(1)-local characterization of C, but is not an O(1)-local characterization
of C for k-non-signaling functions, even when k is allowed be Ω(n), i.e. nearly maximally large.

On robust local characterizations. We have so far discussed exact local characterizations,
which suffice for Theorem 2 presented in Section 1.1. Can we make general statements about
robust local characterizations, which could be used to establish positive results such as Theorem 1?
In Appendix B, we show that a suitable non-signaling analogue of robust local characterizations is
related to the “proof length” of the k-local linear proof. An application of this result is that much
of the analysis of the linearity test in [CMS18] is tight up to constants.

1.3 Roadmap

In Section 2 we provide an overview of the proofs of our results. Then, in Section 3 and Section 4 we
formally define non-signaling functions, quasi-distributions, and discuss the relationship between
them using Fourier analysis. In Section 5 we discuss what it means for a non-signaling function to
“belong” to a given linear code. In Section 6 we prove that the non-signaling low-degree test works
(Theorem 1). In Section 7 we prove an equivalence between local characterizations for non-signaling
linear codes and local linear proofs (Theorem 3). We conclude in Section 8, by using Theorem 3 to
show that the non-signaling low-degree test fails for small locality (Theorem 2).
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2 Techniques

We outline the techniques used to prove our results. We begin by explaining the Fourier structure
of non-signaling functions in Section 2.1. This structure is fundamental to the proofs of our results.
We then outline the proof of Theorem 1 in Section 2.2. In Section 2.3 we outline our proof of
the relationship between local characterizations and local linear proofs. In Section 2.4 we use the
techniques and main theorem from Section 2.3 to show Theorem 2, that any low-degree lines test
fails for non-signaling functions when k ≤ O(d2). Finally, in Section 2.5 we justify our definition of
“C-explainability”.

Notation. A k-non-signaling function F is defined by local distributions FS for each S ⊆ [n] with
|S| ≤ k. Because of this, when studying non-signaling functions we naturally encounter situations
where we only consider subsets of a domain containing at most k elements, or vectors in Fn of
weight at most k. We introduce notation to make referring to these notions more convenient. For
a subset S ⊆ [n] we write S ⊆ [n]≤k if |S| ≤ k. For a vector α ∈ Fn, we let supp(α) = {i ∈ [n] :
αi 6= 0} and wt(α) = |supp(α)|. For a set of vectors R ⊆ Fn, we let R≤k ⊆ R denote the subset
{α ∈ R : wt(α) ≤ k}. In particular, Fn≤k denotes the set {α ∈ Fn : wt(α) ≤ k}. For a subset
S ⊆ [n], we use similar notation and let R⊆S = {α ∈ R : supp(α) ⊆ S}.

2.1 The Fourier structure of non-signaling functions

We make frequent use of Fourier analysis to state and establish properties of non-signaling functions.
Below we recall basic facts about Fourier analysis, explain their application to quasi-distributions,
and state an equivalence between non-signaling functions and quasi-distributions. This equivalence
motivates a definition for the Fourier spectrum of a non-signaling function.

Refresher on Fourier analysis. Let F be the finite field of size q with characteristic p, and Fp
the prime subfield of F. The inner product of F1, F2 : Fn → C is 〈F1, F2〉 := 1

qn
∑

f∈Fn F1(f)F2(f).

The character corresponding to α ∈ Fn is the function χα : Fn → C defined as χα(f) := ωTr(〈α,f〉)

where: Tr: F→ Fp is the trace map; 〈α, f〉 is the inner product
∑n

i=1 αifi; ω = e2πi/p is a primitive
complex p-th root of unity; and ωj is defined by thinking of j ∈ Fp as an integer in {0, 1, . . . , p−1}.
The characters {χα}α∈Fn form an orthonormal basis of the space of all functions F : Fn → C, so
every function F : Fn → C can be written as

F (·) =
∑
α∈Fn

F̂ (α)χα(·) , where F̂ (α) := 〈χα, F 〉 .

The values {F̂ (α)}α∈Fn are called the Fourier coefficients of F .

Quasi-distributions. A quasi-distribution Q over functions f : [n] → F is a distribution where
the probability weights are complex numbers that “add up” to real probabilities. More formally, a
quasi-distribution is a functionQ : Fn → C where

∑
f∈Fn Q(f) = 1. (We abuse notation and identify

a function f : [n]→ F with the vector in Fn corresponding to its evaluation table.) We say that Q
is k-local if the marginals Q|S for each S ⊆ [n]≤k are distributions, namely, if for each S ⊆ [n]≤k
and g : S → F it holds that

∑
f∈Fn:f |S=gQ(f) is a non-negative real number. We can decompose a

quasi-distribution Q according to the Fourier basis: we can write Q(f) =
∑

α∈Fn Q̂(α)χα(f), where

{χα}α∈Fn are the characters and {Q̂(α)}α∈Fn are the Fourier coefficients of Q.

Equivalence lemma. The following lemma shows that k-local quasi-distributions and k-non-
signaling functions are equivalent, and exposes the Fourier structure of non-signaling functions.
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Lemma 2.1. A quasi-distribution Q is equivalent to a k-non-signaling function F if and only if
for every α ∈ Fn≤k it holds that Q̂(α) = 1

qn
∑

j∈Fp ω
−j Pr[Tr(〈α,F〉) = j], where the random variable

〈α,F〉 has the probability distribution given by{
Pr[〈α,F〉 = b] := Pr

f←Fsupp(α)

[∑
i∈supp(α) αif(i) = b

]}
b∈F

.

The foregoing lemma motivates defining the Fourier coefficients of a k-non-signaling function
F as follows: for every α ∈ Fn with wt(α) ≤ k we define

F̂(α) :=
1

qn

∑
j∈Fp

ω−j Pr[Tr(〈α,F〉) = j] .

For more details on the above, including the proof of our Equivalence Lemma, see Section 4.

2.2 Low-degree testing

We outline the proof of Theorem 1. As a simple case, we first state and prove the theorem in the
zero error case (when test passes with probability 1), and then we briefly explain how to extend
the proof to the robust case (when the test passes with probability 1− ε).
The zero error case. Let C be the set of all m-variate polynomials of individual degree d.
Formally, we first show the following.

Theorem 2.1 (formal version of Theorem 1, zero error case). Let m, d ∈ N and p be a prime
with p ≥ d + 2. Let F : Fmp → Fp be a k-non-signaling function, and suppose that F passes the
degree-d evenly-spaced points test with probability 1. Then F (viewed as a bk/(d+ 2)c-non-signaling
function) is C-explainable.

In the language of Section 1.2, Theorem 2.1 shows that T , the set of linear constraints checked
by the degree-d evenly spaced points test, is a (d+ 2)-local characterization of C.

Theorem 2.1 is a non-signaling analogue of the following classical fact: if f : Fmp → Fp passes the
evenly-spaced points test with probability 1, then f is a polynomial of total degree d. (Note that in
Theorem 2.1 we only conclude that F has individual degree d. We remark on the difference after the
proof.) Our proof of Theorem 2.1 can be interpreted as taking a local proof of the aforementioned
classical fact, and lifting it to the non-signaling setting.

Concretely, let us consider the following simple classical statement.

Theorem 2.2 (folklore). Let f : Fmp → Fp be a function such that, for every line L, f agrees with
a univariate degree-d polynomial on L. Then for every S ⊆ Fmp , there exists a degree-d function g
such that g|S = f |S.

There are multiple known proofs of Theorem 2.2. To demonstrate the challenges in the non-
signaling setting, we first outline a standard classical proof of Theorem 2.2 that will not generalize
to the non-signaling setting. The proof uses the following lemma.

Lemma 2.2. Suppose that f : Fmp → Fp is a polynomial where deg(f) = d < p. Then there exists
a line L in Fmp such that f |L is a univariate polynomial of degree exactly d.
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The above lemma is shown by considering the function f(a+ tb) where a, b ∈ Fmp , and arguing

that the coefficient of td in f(a+ tb) is a non-zero polynomial in the variables a, b, and hence does
not vanish for all a, b ∈ Fmp . Thus, there exists a line L(t) = a+ tb for which the coefficient of td is
non-zero, and therefore f |L has degree exactly d.

With the above lemma, one can prove Theorem 2.2 as follows. Suppose that f is a polynomial
of degree d′ > d. Then by the lemma there exists a line L such that f |L has degree d′ > d,
contradicting the fact that f |L has degree at most d.3

The above proof is a good example of a proof that will not extend to the non-signaling setting.
This is because the proof of Lemma 2.2 is “global”, in the sense that arguing about the polynomial
coefficients of f requires “knowing” f(a) for Ω(dm) points a ∈ Fmp , as this is the minimum number of
evaluations of f needed for all polynomial coefficients of f to be fixed. As indicated by Section 1.2,
the types of classical proofs that will extend to the non-signaling setting are those with small
locality, i.e. ones that require looking at f(a) for only a small number of a at a time. This implies
that the above proof will not work for k-non-signaling functions when k ≤ O(dm), i.e., when k is a
non-trivial value.

We instead present the following local proof of Theorem 2.2 for individual degree. Since this
proof has small locality it will extend to the non-signaling setting, and thus imply Theorem 2.1.

Let S ⊆ Fmp . We wish to show that f |S = g|S for some g ∈ C. Let S0 = ∅, and for each
i ∈ [m] define Si ⊆ Fip to be the projection of S to the first i coordinates, so Si is the set of all
(a1, . . . , ai) ∈ Fip such that (a1, . . . , ai, bi+1, . . . , bm) ∈ S for some (bi+1, . . . , bm) ∈ Fm−ip . Note that
Sm = S.

We prove by induction that for every i ∈ [m] and every bi+1, . . . , bm ∈ Fp there exists an individ-
ual degree-d polynomial gi : Fip → Fp such that f |Si×{(bi+1,...,bm)} = gi|Si . This proves Theorem 2.2
for individual degree, as Sm = S. The base case (i = 1) holds since f looks degree-d on every line,
so in particular f is degree-d on the line Fp × {(b2, . . . , bm)}, which contains S1.

We now argue the induction step. Suppose that the induction hypothesis holds for i − 1 and
every bi, . . . , bm ∈ Fp. The induction hypothesis implies that for each j ∈ {0, . . . , d}, there exists

an individual degree-d polynomial g
(j)
i−1 : Fi−1p → Fp such that g

(j)
i−1|Si−1 = f |Si−1×{j}×{(bi+1,...,bm)}.

Let gi : Fip → Fp be defined by interpolating the g
(j)
i−1’s along the i-th axis, i.e. gi(x1, . . . , xi) :=∑d

j=0 δj(xi) ·g
(j)
i−1(x1, . . . , xi−1) where δj(y) is the unique degree-d univariate polynomial that is 1 if

y = j and 0 otherwise. We then argue that f agrees with gi on Si−1×Fp. This is because f agrees

with gi on Si−1 × {0, . . . , d} (since here gi = g
(j)
i−1 = f by the induction hypothesis), and therefore

agrees with gi on Si−1×Fp by polynomial interpolation, since f looks degree-d on any axis-parallel
line along the i-th axis.

The above proof can be adapted to an |S| (d+ 2)-local proof (as stated above, it is |S| p-local).
We thus conclude that if a k-non-signaling function F looks degree-d on every line L, then it also
looks individual degree-d on every S where |S| (d + 2) ≤ k, i.e., F (viewed as a bk/(d+ 2)c-non-
signaling function) is C-explainable.

In the aforementioned argument, we have crucially required that F looks low-degree along every
line, rather than merely on sets of evenly-spaced points, which are the only constraints checked
by the test. Thus, we must show that if F passes the degree-d evenly-spaced points test with
probability 1, then F looks degree-d on arbitrary subsets of any line. This last step can be viewed

3The argument as stated does not quite work, as the lemma only holds when d′ < p. Here, we ignore this
technicality to simplify the presentation of the argument.
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as the following. Let T be the set of constraints checked by the evenly-spaced test, and let T ′ be the
set of all low-weight line constraints (weight at most k − d− 2) satisfied by degree-d polynomials.
We show that T `k T ′, so F (by Theorem 3) must also satisfy all constraints in T ′, and thus looks
degree-d on arbitrary subsets of lines, which concludes the proof of Theorem 2.1.

Remark 2.3 (total degree vs. individual degree). Theorem 1 only concludes that F has an indi-
vidual degree-d structure, when one might expect to conclude that it has a total degree-d structure,
as it passes the evenly-spaced points test along random lines. Indeed, this is the conclusion in the
classical setting. The difficulty in establishing such a result comes from Lemma 2.2. The classical
analysis of the low-degree test proceeds by induction, initially concluding that f : Fm → F is a
polynomial that is degree-d in xm and total degree-d in all the other variables, and hence is a total
degree-2d polynomial. Then, by using Lemma 2.2 one concludes that in fact f has total degree-d,
not 2d. A non-signaling analogue of Lemma 2.2 would allow us to conclude a total degree-d struc-
ture. However, as explained earlier the classical proof of Lemma 2.2 is not local, so it does not lift
to a non-signaling one. Exploring whether or not the gap between total and individual degree is
necessary in the non-signaling setting is thus an intriguing open question.

The robust case. We now explain how to adapt the above proof to the robust case. Our goal now
is to show that F is close to a C-explainable non-signaling function, where the distance between
two k-non-signaling functions F and G is defined as

∆k(F ,G) = max
S⊆[n],|S|≤k

∆TV(FS ,GS) ,

where ∆TV is the total variation distance between distributions [CMS18]. As in the case of linearity
testing in [CMS18], this is impossible, as the definition of distance requires that F be close to C-
explainable on all sets S ⊆ Fmp with |S| ≤ k. In particular, if F looks low-degree on all lines
but one, then F will be very far from C-explainable. Following [CMS18], we instead show that
an appropriately defined self-correction of F , denoted by F̂ , is close to C-explainable. Informally,
F̂(x) is defined by querying F on a random evenly-spaced line L passing through x, and then
setting F̂(x) to be the value at x obtained by locally decoding F along L. F̂ is a k̂-non-signaling
function, where k̂ = k/(d+ 1).

We prove Theorem 1 via the following four steps:
1. Average to worst case reduction: we show that if F passes the evenly-spaced points test with

high probability, then F̂ looks low-degree on every set of evenly-spaced set of points contained
in a line L with high probability.

2. From evenly-spaced points to arbitrary subsets of a line: we show that if F̂ looks low-degree on
every set of evenly-spaced set of points contained in a line, then F̂ looks low-degree on every
subset of every line L.

3. Robust local characterization: we show that T , the set of constraints where the support of
the constraint is contained in some line L, is a robust local characterization of C, i.e. that if F̂
satisfies every α ∈ T with high probability, then F̂ satisfies every α ∈ C⊥≤k′ with high probability,

where k′ = k̂/(d+ 2).
4. Finishing the proof: we show that if F̂ satisfies every α ∈ C⊥≤k′ with high probability, then F̂ is

close to a C-explainable non-signaling function.
We have already discussed the proofs of the second and third steps in the zero error case. In the
robust case, the main difference is that we now pay some small error in union bounds every time
we use the fact that F̂ looks low-degree along an evenly-spaced line.
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The first step follows from our non-trivial definition of F̂ . Naively, one might define F̂ for each
x by locally decoding its value from F along a random evenly-spaced line containing x. This does
not work. Instead, we decode its value along the line Lx(t) = x+ iwx, where the slopes (the wx’s)
are correlated so that wx+y = wx +wy −w0n . These correlations, combined with the fact that L(t)
looks random for each x, allows us to show that F̂ looks low-degree on every evenly-spaced set of
points.

The final step follows abstractly from the more general statements we show for all linear codes,
and relies on our characterization of the Fourier spectrum of C-explainable non-signaling functions.

2.3 Local characterizations and linear proofs

We outline the proof of Theorem 3; we assume familiarity with the notions introduced in Section 1.2.
We begin by formally defining local characterizations.

Local characterizations. We say that a k-non-signaling function F is C-explainable if for every
S ⊆ [n]≤k, with probability 1 the function f : S → F sampled from FS is in C|S . (See Section 2.5
for a discussion of this definition.) Recall from Definition 1.4 that a subset T ⊆ C⊥ is an `-local
characterization of (C, k) if every α ∈ T has wt(α) ≤ ` and the set of k-non-signaling functions F
where Pr[〈α,F〉 = 0] = 1 for every α ∈ T equals the set of C-explainable k-non-signaling functions.

Outline of the proof. The proof of Theorem 3 has two directions: completeness and soundness.
For soundness, we show that if T `k α, then for any k-non-signaling function F where 〈γ,F〉 = 0
holds with probability 1 for every γ ∈ T , it also holds that 〈α,F〉 = 0 with probability 1. Intuitively,
this means that any k-non-signaling function satisfying every constraint in T must satisfy α as
well, and therefore shows that our definition of “proof” makes sense. The proof of this direction is
straightforward, and can be found in Section 7.1.

To show completeness, we explicitly construct a k-non-signaling function F that satisfies every
constraint α where T `k α with probability 1, and satisfies every other constraint α with probability
1
|F| . Our construction of F makes crucial use of the notion of a local subspace that we introduce.

Definition 2.4. A k-local subspace V is a subset of Fn≤k that looks like a subspace when restricted
to local views of size at most k, i.e., V⊆S is a linear subspace in Fn for every S ⊆ [n]≤k.

We show that for any k-local subspace V there is a k-non-signaling function F where Pr[〈α,F〉 =
0] = 1 for every α ∈ V and Pr[〈α,F〉 = 0] = 1

|F| otherwise. We then show that the set of α’s provable

from T , which is {α ∈ Fn≤k : T `k α}, is a k-local subspace. This latter step is straightforward, and
the proof is in Section 7.3. We now discuss the first step, which is non-trivial.

Non-signaling functions from local subspaces. Given a k-local subspace V, we argue that
there is a k-non-signaling function F where Pr[〈α,F〉 = 0] = 1 for every α ∈ V, and Pr[〈α,F〉 =
0] = 1

|F| for every α 6∈ V. We construct F = {FS}S⊆[n]:|S|≤k by specifying its local distributions FS .
A distribution over functions f : S → F is a function that maps each f to a non-negative real

number such that the total sum is 1. With this viewpoint, we first define FS as a function that
maps each f : S → F to a complex number. Then, we show that the total sum is 1 and that each
f is mapped to a non-negative real number, so that the function FS is indeed a distribution.

We define the function FS : FS → C by specifying its Fourier coefficients:

F̂S(α) :=

{
1
q|S|

if α ∈ V
0 if α 6∈ V

,
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These “local” Fourier coefficients should not be confused with the Fourier coefficients of F that are
defined in Section 2.1. In fact, at this point the non-signaling function F is not yet defined.

This completely specifies FS as a function FS → C. We show that since V is a k-local subspace,
FS is in fact a distribution. First,

∑
f∈FS FS(f) = 1 because F̂S(0S) = 1/q|S| since V is a k-local

subspace, and thus must contain 0n. Hence, it suffices to show that FS(f) ∈ R≥0 for each f ∈ FS .
For each f ∈ FS we have

FS(f) =
∑
α∈FS

F̂S(α)χα(f) =
∑

α∈V⊆S

F̂S(α)χα(f) ,

since we have defined FS in this way using its Fourier coefficients. There are two cases: either
〈α, f〉 = 0 for every α ∈ V⊆S , in which case the sum is |V⊆S |/q|S|, or 〈α, f〉 6= 0 for some α ∈ V⊆S .
In the latter case, we use the fact that V⊆S is a linear subspace to show that the sum is 0. In either
case, we conclude that FS(f) is a non-negative real number, and therefore that FS is a distribution.
We note that in particular, FS is the uniform distribution over all f : S → F where 〈α, f〉 = 0 for
all α ∈ V⊆S .

Next, we argue that the collection of local distributions {FS}S⊆[n]≤k is indeed non-signaling.
This follows from a lemma that we prove that shows that a collection of local distributions is
non-signaling if and only if the Fourier coefficients of the local distributions (after removing the
normalization factors) are the same. Thus the k-non-signaling function F is well-defined.

Finally, we show that F satisfies the desired properties. This follows from our definition of each
FS , as the construction implies that the Fourier coefficients of F satisfy:

F̂(α) :=

{
1
qn if α ∈ V
0 if α 6∈ V

.

This corresponds to having Pr[〈α,F〉 = 0] = 1 for every α ∈ V, and the random variable 〈α,F〉
having the uniform distribution when α /∈ V, which completes the proof.

2.4 Low-degree testing fails for small locality

We discuss how to prove Theorem 2. We let C denote the linear code of polynomials f : Fm → F
of total degree-d, and let T be the set of all α ∈ C⊥ whose support is contained in a line in Fm.
Note that for any low-degree test that only checks line constraints and has perfect completeness, if
we let T0 be the set of constraints checked by this test, we will have T0 ⊆ T .

The main combinatorial quantity that we use in our proof is the rank of an element α ∈ C⊥,
defined as

rankT (α) := min
T ′⊆T :α∈span(T ′)

∣∣T ′∣∣ .
Note that rankT (α) is a non-negative integer, as span(T ) = C⊥.

We now sketch the proof of Theorem 2 in three steps.

(1) Interval Cut Lemma. We show a generic lemma about the relationship between rank and
provability from T . Informally, we show that in order for T to prove α of rank at least r, T
must also prove some β of “intermediate” rank. Formally, we show that if there is an interval
[r/2, r) such that every β with rank in this interval is not provable from T , then every α of rank
at least r is also not provable from T . We prove this Interval Cut Lemma via the fact that rankT

14



is subadditive, that is, rankT (α + β) ≤ rankT (α) + rankT (β). Subadditivity implies that for every
interval [r/2, r), in order to prove a constraint of rank ≥ r from constraints of rank < r/2 there
must be an intermediate constraint β with rank in [r/2, r) bridging the gap.

(2) Two combinatorial facts. We prove two combinatorial facts about the dual code of C.

• There exists α∗ ∈ C⊥ where wt(α) = 2d + 2 and supp(α) ⊆ {(a, a2, 0m−2) : a ∈ F} ⊆ Fm, i.e.,
supp(α) is contained along the curve x21−x2 = 0 embedded on the plane x3 = x4 = · · · = xm = 0
of Fm.

Proof sketch. If f is anm-variate polynomial of total degree d then f(t, t2, 0, . . . , 0) is a polynomial
of degree ≤ 2d in t. Thus, there is an element α∗ ∈ C⊥ supported on this curve of weight 2d+ 2
that checks some linear constraint. This shows the existence of the desired α∗.

• For every β ∈ C⊥ with rankT (β) ∈ {(d+ 2)/4, . . . , (d+ 2)/2} it holds that wt(β) ≥ 3
16(d+ 2)2.

Proof sketch. Any β of rank r is the sum of exactly r line constraints, where each constraint is on
a distinct line. Each new constraint adds at least d+ 2 weight to β, ignoring the weight that is
removed by cancellation. The amount of cancellation is at most the number of intersection points,
which is not too large when r is in {(d+2)/4, . . . , (d+2)/2}, thus implying that wt(β) ≥ 3

16(d+2)2.

(3) Completing the proof. Theorem 2 follows from the Interval Cut Lemma, the two combina-
torial facts, and Theorem 3. Any β ∈ C⊥ with rank in [(d+2)/4, (d+2)/2) has weight ≥ 3

16(d+2)2,
and thus is not provable when k < 3

16(d+ 2)2. Since α∗ has weight 2d+ 2 and is supported only on
the diagonal, it has rank ≥ d+1, as each line constraint increases the number of points on the curve
by at most 2, by Bézout’s theorem. The Interval Cut Lemma implies that α∗ is also not provable.
The non-signaling function constructed in the proof of Theorem 3 thus passes the random lines
test with probability 1 yet satisfies α∗ with probability only 1/ |F|. But, α∗ must be satisfied with
probability 1 by any non-signaling function that is “locally low-degree”, which completes the proof.

2.5 Fourier spectrum of non-signaling linear codes

We have so far adopted the definition that a k-non-signaling function F is “in” a linear code C ⊆ Fn
if a function f : S → F sampled from FS is in C|S with probability 1 for every S ⊆ [n]≤k. Indeed,
we use this “C-explainability” to define the notion of a local characterization (see Definition 1.4).

We now provide thorough justification for this choice. We view the definitions and results below
as a conceptual contribution that sheds light on basic properties of non-signaling functions.

In the classical setting, a function f : [n] → F “looks like” a codeword of C if, well, it equals
some codeword in C. The issue at hand is that, in the non-signaling setting, it is not immediately
clear what it means for a non-signaling function F to be “in” C because F is a collection of local
distributions. Below are two natural ways to capture this notion.

Definition 2.5 (informal). Let F : [n]→ F be a k-non-signaling function.

• We say that F is C-supported if it is equivalent to a k-local quasi-distribution Q : Fn → C that
is supported on C, namely, Q(f) = 0 for all f /∈ C.4

• We say that F is C-explainable if, for all S ⊆ [n]≤k, the distribution FS is supported on C|S.
In other words, the output of F is always consistent with the restriction of some codeword in C.
4When C is the Hadamard code, this definition equals the notion of a linear non-signaling function from [CMS18].
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The first definition is motivated by our Equivalence Lemma (Lemma 2.1), and imposes a
“global” property on the non-signaling function. The second definition, implied by the first one,
instead takes a “local” approach, imposing consistency with relevant restrictions of the code.

In the following lemma, we quantify the difference between the notions of “C-supported” and
“C-explainable” by characterizing the Fourier spectrum in each case. For convenience, we denote
by C⊥≤k the set {α ∈ C⊥ : wt(α) ≤ k}, which are the constraints with at most k non-zero entries.

Lemma 2.6 (informal). Let F : [n]→ F be a k-non-signaling function.

• F is C-supported ↔ the Fourier coefficients {F̂(α)}α∈Fn≤k are constant on each coset of C⊥.

• F is C-explainable ↔ the Fourier coefficient F̂(α) equals 1
qn for every α ∈ C⊥≤k.

We additionally prove that the foregoing structure is robust to errors: F is close to being C-
supported if and only if its Fourier coefficients are almost constant on every coset of C⊥; moreover
F is close to being C-explainable if and only if F̂(α) is close to 1

qn for every α ∈ C⊥≤k.
One may interpret Lemma 2.6 as “bad news” because it shows that the notions of “C-supported”

and “C-explainable” are in fact distinct. Which one is the correct one to use? From the perspective
of local testability, we may regard “C-supported” as more desirable, because it requires a global
structure to hold. We prove that, fortunately, the two notions are equivalent up to a small change
in parameters, reinforcing our belief that we have identified the right notions.

Lemma 2.7 (informal). Let F : [n]→ F be a k-non-signaling function.

• If F is C-supported, then F is C-explainable.
• If F is C-explainable, then F (viewed as a k/2-non-signaling function) is C-supported.

In light of the above, it suffices to study non-signaling functions that are C-explainable. We
have used this notion in our results on local characterizations (see Definition 1.4), as it is more
natural in this setting: the set of C-explainable k-non-signaling functions are precisely those that
are consistent with the set of constraints C⊥≤k.

Detailed definitions and proofs can be found in Section 5. Below we provide proof sketches for
Lemmas 2.6 and 2.7. The Fourier structure of non-signaling functions, discussed in Section 2.1,
underlies all of these proofs.

2.5.1 Fourier spectrum of a C-supported function

We outline the proof of the first item of Lemma 2.6. A k-non-signaling function F that is C-
supported is by definition equivalent to a quasi-distribution Q supported on C. We explain why
all such non-signaling functions have Fourier coefficients that are constant on cosets of C⊥, that is,
F̂(α) = F̂(α′) for every α, α′ ∈ Fn≤k with α−α′ ∈ C⊥. We compare the following two affine spaces:

V1 =

Q : Fn → C s.t.
∑
f∈C
Q(f) = 1 and Q(f) = 0 ∀f /∈ C

 ,

V2 =

{
Q : Fn → C s.t. Q̂(0n) =

1

qn
and Q̂(α) = Q̂(α+ γ) ∀α ∈ Fn, γ ∈ C⊥

}
.

16



The affine space V1 corresponds to quasi-distributions that are supported on C, while V2 corresponds
to quasi-distributions whose Fourier coefficients satisfy the desired characterization. It suffices to
prove that V1 = V2. First we show that dim(V1) = dim(V2), and then that V1 ⊆ V2.

The dimension of V1 is |C|−1 because the |C| free terms are subject to a single linear constraint.
The dimension of V2 is qn/

∣∣C⊥∣∣−1 because the Fourier coefficients are constant on each coset of C⊥,
and on each coset they may have an arbitrary value; the one exception is the coset C⊥, where the
Fourier coefficients must be 1

qn . Recalling that qn = |C| ·
∣∣C⊥∣∣, we deduce that dim(V1) = dim(V2).

Next we show that V1 ⊆ V2. For any Q ∈ V1 and α ∈ Fn we have by definition

Q̂(α) :=
1

qn
·
∑
f∈Fn

Q(f) · ω−Tr(〈α,f〉) .

Since Q ∈ V1, any function f in the support of Q must be in C. Therefore, for any γ ∈ C⊥

have 〈γ, f〉 = 0, so that ωTr(〈γ,f〉) = ωTr(0) = 1. This implies that Q̂(α) = Q̂(α + γ). Intuitively,
when we shift α by γ the sum remains unchanged because each term in the sum is multiplied by
ω−Tr(〈γ,f〉) = 1. Thus V1 ⊆ V2. Since dim(V1) = dim(V2) and V1 ⊆ V2, we conclude that V1 = V2.

2.5.2 Fourier spectrum of a C-explainable function

We outline the proof of the second item of Lemma 2.6. The characterization of C-explainable
functions relies on the fact that the Fourier coefficient F̂(α) is related to the distribution of the
random variable 〈α,F〉, i.e., the distribution (Pr[〈α,F〉 = b])b∈F. This intuition can be quantified
via (a generalization of) the DFT matrix M ∈ Cq×q, which is the matrix defined as Ma,b := ω−Tr(ab)

(entries are indexed by F); M is invertible and 1√
qM is unitary.

Recall that the Fourier coefficients of F are defined as follows:

∀α ∈ Fn≤k F̂(α) :=
1

qn

∑
j∈Fp

ω−j Pr[Tr(〈α,F〉) = j] .

Letting v := (Pr[〈α,F〉 = b])b∈F, expanding the definitions shows that Mv = (qnF̂(aα))a∈F. The
linear transformation M thus quantifies the relation between the distribution (Pr[〈α,F〉 = b])b∈F
and the Fourier coefficients (qnF̂(aα))a∈F.

Now, given a k-non-signaling function F , we first show that F is C-explainable if and only if
Pr[〈α,F〉 = 0] = 1 for every α ∈ C⊥≤k. This follows from the fact that any local function g : S → F
that satisfies every α ∈ C⊥⊆S can be extended into a codeword f ∈ C. Using the matrix M , we

can relate the condition that F satisfies every α ∈ C⊥≤k with probability 1 to its Fourier spectrum.

Specifically, we have that Pr[〈α,F〉 = 0] = 1 if and only if (qnF̂(aα))a∈F = M(1, 0, . . . , 0)>. Since
M(1, 0, . . . , 0)> = (1, . . . , 1)>, we get that Pr[〈α,F〉 = 0] = 1 if and only if F̂(aα) = 1

qn for every
a ∈ F, completing the proof.

2.5.3 The relationship between C-supported and C-explainable

We outline the proof of Lemma 2.7. First note that Lemma 2.6 immediately implies that a C-
supported k-non-signaling function F is C-explainable, because if F is C-supported then F̂(α) =
F̂(0n) = 1

qn for every α ∈ C⊥≤k, implying that F is C-explainable.
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Conversely, if F is C-explainable, then for any α, α′ ∈ Fn≤k/2 with α− α′ ∈ C⊥ we get that for
any b ∈ F,

Pr[〈α,F〉 = b] = Pr[〈α′,F〉+ 〈α− α′,F〉 = b] = Pr[〈α′,F〉 = b] ,

since Pr[〈α− α′,F〉 = 0] = 1 as α− α′ ∈ C⊥ and F is C-explainable. This shows that the vectors
(Pr[〈α,F〉 = b])b∈F and (Pr[〈α′,F〉 = b])b∈F are equal, which implies that the Fourier coefficients
F̂(α) and F̂(α′) are equal. By Lemma 2.6, this completes the proof. Note that we crucially need
wt(α),wt(α′) ≤ k/2 so that wt(α− α′) ≤ k, as otherwise Pr[〈α− α′,F〉 = 0] is undefined.
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3 Preliminaries

Throughout this paper we let n ∈ N be an arbitrary positive integer, and k ∈ N a positive integer
that is at most n. We use F to denote the finite field of size q with characteristic p, and Fp
to denote the prime subfield of F. We often abuse notation and identify a function f : [n] → F
with its evaluation table in Fn. For a vector α ∈ Fn we let supp(α) := {i ∈ [n] : αi 6= 0},
and we let wt(α) := |supp(α)|. For a set of vectors R ⊆ Fn, we let R≤` ⊆ R denote the subset
{α ∈ R : wt(α) ≤ `}. In particular, Fn≤k contains all vectors α ∈ Fn of weight at most k. For a
subset S ⊆ [n], we let R⊆S = {α ∈ R : supp(α) ⊆ S}; we also write S ⊆ [n]≤` if |S| ≤ `.

3.1 Non-signaling functions

We define non-signaling functions and quasi-distributions, and introduce useful notation for them.
The definitions are almost identical to those in [CMS18], but extended to any finite field.

Definition 3.1. A k-non-signaling function F : [n]→ F is a collection F = {FS}S⊆[n]≤k where
(i) each FS is a distribution over functions f : S → F, and (ii) for every two subsets S and R each
of size at most k, the restrictions of FS and FR to S ∩R are equal as distributions.

Note that any function f : [n] → F induces a n-non-signaling function by setting FS to be the
distribution that outputs f |S with probability 1. More generally, any distribution D over functions
f : [n]→ F induces a corresponding n-non-signaling function by defining FS to be the distribution
that samples f ← D and outputs f |S .

Given a set S ⊆ [n]≤k and function g ∈ FS , we define

Pr [F(S) = g ] := Pr[ g ← FS ] .

The non-signaling property in this notation is the following: for every two subsets S,R ⊆ [n]≤k
and every string g ∈ FS∩T , Pr[F(S)|S∩T = g ] = Pr[F(T )|S∩T = g ], where the probability is over
the randomness of F .

We extend the above notation to every E ⊆ FS in the natural way by defining Pr [F(S) ∈ E ] :=
Prf←FS [ f ∈ E ]. We highlight the case when E is an “inner product event”, as we will encounter
this case frequently.

Definition 3.2. Let F : [n]→ F be a k-non-signaling function. For α ∈ Fn≤k and b ∈ F, we define

Pr[〈α,F〉 = b] := Pr
f←Fsupp(α)

 ∑
i∈supp(α)

αif(i) = b

 .

Similarly, we define Pr[Tr(〈α,F〉) = j] :=
∑

b∈F:Tr(b)=j Pr[〈α,F〉 = b] for every j ∈ Fp.

The probability above is well-defined since wt(α) ≤ k, and so we query F on at most k points.
Since F is non-signaling, Pr[〈α,F〉 = b] = Prf←FS [

∑
i∈S αif(i)] for any set S ⊇ supp(α). The

intuition behind the above definition is that the inner product 〈α, g〉 for any g : [n] → F can be
computed only given g|supp(α), namely, given g restricted to a set of size at most k.

19



3.2 Quasi-distributions

A quasi-distribution extends the notion of a probability distribution by allowing probabilities to be
complex, and is the main tool that we use to analyze non-signaling functions.

Definition 3.3.
• A quasi-distribution is a function Q : Fn → C where

∑
f∈Fn Q(f) = 1.

• For a set of functions R ⊆ Fn, we say that Q is supported on R if {f ∈ Fn : Q(f) 6= 0} ⊆ R.
• For a positive integer `, we say that Q is `-local if the marginals Q|S for each S ⊆ [n]≤` are

distributions (
∑

f∈Fn:f |S=gQ(f) is a non-negative real number for each S ⊆ [n]≤` and g : S → F).

If Q is `-local, then for every subset S ⊆ [n]≤`, we may view Q|S as a probability distribution
over FS . If Q is `-local then it is s-local for every s ∈ {0, 1, . . . , `}.

Definition 3.4. Given a quasi-distribution Q, a subset S ⊆ [n], and g ∈ FS, we define the quasi-
probability of the event “Q(S) = g” to be the following complex number

P̃r[Q(S) = g ] :=
∑

f∈Fn:f |S=g

Q(f) .

(The tilde above Pr denotes that quasi-probabilities are not necessarily non-negative real numbers.)

Given a subset E ⊆ FS , we similarly define P̃r[Q(S) ∈ E ] :=
∑

f∈Fn:f |S∈E Q(f).
As for non-signaling functions, we highlight the case when E is an inner product event.

Definition 3.5. Let Q : Fn → C be a quasi-distribution. For α ∈ Fn and b ∈ F, we define

P̃r[〈α,Q〉 = b] :=
∑

f∈Fn:〈α,f〉=b

Q(f) .

Similarly, we define P̃r[Tr(〈α,Q〉) = j] :=
∑

b∈F:Tr(b)=j P̃r[〈α,Q〉 = b] for every j ∈ Fp.

Definition 3.6 (statistical distance). Given a finite domain [n] and an integer ` ∈ {1, . . . , |D|},
the ∆`-distance between two quasi-distributions Q and Q′ is

∆`(Q,Q′) := max
S⊆[n]≤`

∆(Q|S ,Q′|S) ,

where ∆(Q|S ,Q′|S) := maxE⊆FS
∣∣∣P̃r[Q(S) ∈ E]− P̃r[Q′(S) ∈ E]

∣∣∣.
We say that Q and Q′ are ε-close in the ∆`-distance if ∆`(Q,Q′) ≤ ε; else, they are ε-far.

Remark 3.7 (distance for non-signaling functions). The definition of ∆`-distance naturally extends
to defining distances between k-non-signaling functions, as well as between quasi-distributions and
k-non-signaling functions, provided that ` ≤ k.

The notion above generalizes the standard notion of statistical (total variation) distance: if Q
and Q′ are distributions then their ∆n-distance equals their statistical distance. Also note that
if Q and Q′ are `-local quasi-distributions then their ∆`-distance equals the maximum statistical
distance, across all subsets S ⊆ [n] with |S| ≤ `, between the two distributions Q|S and Q′|S —
in particular this means that any experiment that queries exactly one set of size at most ` cannot
distinguish between the two quasi-distributions with probability greater than ∆`(Q,Q′).

We stress that ∆`(Q,Q′) = 0 does not necessarily mean that Q = Q′! In fact, it is possible
to have ∆`(Q,Q′) = 0 while

∑
f∈U |Q(f)−Q′(f)| is arbitrarily large. We also remark that the

∆`-distance is not necessarily upper bounded by 1, and is in general unbounded.
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Definition 3.8 (approximate locality). Given a finite domain [n], an integer ` ∈ {1, . . . , n}, and
a real number ε ≥ 0, a quasi-distribution Q over Un is (`, ε)-local if, for every subset S ⊆ [n]≤`
and every event E ⊆ {0, 1}S,

min
x∈[0,1]

{
∣∣∣P̃r[Q(S) ∈ E]− x

∣∣∣} ∈ [0, ε] .

Approximate locality generalizes the notion of (exact) locality as in Definition 3.3. Below, we
state a lemma that ifQ is (`, ε)-local and is supported over a linear code C, then there is an `-local
Q′ over C that is close to Q. The proof idea is similar to that of “smoothening” almost-feasible
solutions to Sherali–Adams relaxations into feasible ones [RS09].

Lemma 3.9. If Q is a (`, ε)-local quasi-distribution over C, then there is an `-local quasi-distribution
Q′ over C such that ∆`(Q,Q′) < q`ε.

We omit the proof of Lemma 3.9 as it is identical to the proof of lemma 7.8 in [CMS18], just
replacing the field F2 = {0, 1} with a general field F.
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4 Fourier analysis of non-signaling functions

We prove statements about the Fourier structure of non-signaling functions, and prove the Equiv-
alence Lemma. In Section 4.1 we recall basic facts about Fourier analysis of functions over finite
fields. In Section 4.2 we relate Fourier coefficients to probabilities and quasi-probabilities. In
Section 4.3 we prove that non-signaling functions and quasi-distributions are equivalent notions.

4.1 Fourier analysis of functions over finite fields

We consider functions of the type F : Fn → C. For two such functions F1 and F2, we define their
inner product as 〈F1, F2〉 := 1

qn
∑

x∈Fn F1(x)F2(x). For every α ∈ Fn, we define the character

χα : Fn → C as χα(x) := ωTr(〈α,x〉) where: (1) Tr: F → Fp is the trace map; (2) 〈α, x〉 is the inner
product

∑n
i=1 αixi; (3) ω = e2πi/p is a primitive complex p-th root of unity; and (4) ωj is defined

by thinking of j ∈ Fp as an integer in Z. The functions {χα}α∈Fn form an orthonormal basis of the
space of all functions f : Fn → C, so every function F : Fn → C can be written as

F (·) =
∑
α∈Fn

F̂ (α)χα(·) , where F̂ (α) := 〈χα, F 〉 .

The values {F̂ (α)}α∈Fn are the Fourier coefficients of F . We recall and prove a few useful identifies.

Parseval’s identity. For every two functions F,G : Fn → C,

〈F,G〉 =
1

qn

∑
x∈Fn

F (x)G(x) =
∑
α∈Fn

F̂ (α)Ĝ(α) .

Proof.

1

qn

∑
x∈Fn

F (x)G(x) =
1

qn

∑
x∈Fn

(∑
α∈Fn

F̂ (α)χα(x)

)∑
β∈Fn

Ĝ(β)χβ(x)


=
∑
α∈Fn

∑
β∈Fn

F̂ (α)Ĝ(β)〈χα, χβ〉 =
∑
α∈Fn

F̂ (α)Ĝ(α) ,

since {χα}α∈Fn are orthonormal.

Plancherel’s identity. As a corollary of the above,

1

qn

∑
x∈Fn

|F (x)|2 =
∑
α∈Fn

|F̂ (α)|2 .

The case of indicator functions. When analyzing non-signaling functions and quasi-distributions
we will apply the above identities in the case where F is an indicator function 1E for a set E ⊆ Fn.
In this case, by Plancherel’s identity we have that |E| /qn =

∑
α∈Fn |1̂E(α)|2. In particular, by the

Cauchy–Schwarz inequality, this implies that

‖1̂E‖1 =
∑
α∈Fn

|1̂E(α)| ≤
√∑
α∈Fn

|1̂E(α)|2 ·
√∑
α∈Fn

1 ≤
√
|E| /qn · qn/2 =

√
|E| .

If we let F (x) = 1E(x), then Parseval’s identity becomes the following lemma.
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Lemma 4.1. Let G : Fn → C be a function and E ⊆ Fn. Then

1

qn

∑
x∈E

G(x) =
1

qn

∑
α∈Fn

1̂E(α)
∑
x∈Fn

G(x)ω−Tr(〈α,x〉) =
∑
α∈Fn

1̂E(α)Ĝ(α) .

4.2 Relating the Fourier spectrum to the probabilities of events

A quasi-distribution Q is a function Q : Fn → C that maps a function f : [n] → F (identified with
the corresponding vector Fn) to Q(f). We can write Q(·) =

∑
α∈Fn Q̂(α)χα(·), where {χα}α∈Fn

are the characters and {Q̂(α)}α∈Fn are Q’s Fourier coefficients. For S ⊆ [n] and α ∈ FS , we abuse
notation and use Q̂(α) to refer to Q̂(β) where β ∈ Fn has βi = αi for all i ∈ S and 0 otherwise.

The lemma below relates the inner product quasi-probabilities defined in Definition 3.5 to the
Fourier coefficients of Q.

Lemma 4.2. Let Q : Fn → C be a quasi-distribution. For every α ∈ Fn,

Q̂(α) =
1

qn

∑
j∈Fp

ω−jP̃r[Tr(〈α,Q〉) = j] .

Proof of Lemma 4.2. By definition,

Q̂(α) = 〈χα,Q(·)〉 =
1

qn

∑
f

χα(f)Q(f) =
1

qn

∑
j∈Fp

ω−j
∑

f :χα(f)=ωj

Q(f)

=
1

qn

∑
j∈Fp

ω−j
∑

f :Tr(〈α,f〉)=j

Q(f) =
1

qn

∑
j∈Fp

ω−jP̃r[Tr(〈α,Q〉) = j] .

The above lemma implies that the Fourier coefficients (Q̂(aα))a∈F are determined by the quasi-
probabilities (Pr[〈α,Q〉 = b])b∈F, as the quasi-probabilities (Pr[〈α,Q〉 = b])b∈F determine the quasi-
probabilities (Pr[〈aα,Q〉 = b])b∈F for every a ∈ F. In fact, there is a linear transformation M that
maps (Pr[〈α,Q〉 = b])b∈F to (qnQ̂(aα))a∈F. Below, we state a well-known lemma about M .

Lemma 4.3. Let M ∈ Cq×q be the matrix defined as Ma,b := ω−Tr(ab) (entries are indexed by F).
Then M is invertible and 1√

qM is unitary (namely, M † ·M = qI). In particular, for every vector

(vb)b∈F with values in C, the map (vb)b∈F 7→ (
∑

b∈F ω
−Tr(ab)vb)a∈F is a bijection.

We additionally prove the following lemma, which relates the Fourier spectrum of the quasi-
distribution Q|S to the Fourier spectrum of Q.

Lemma 4.4. Let Q : Fn → C be a quasi-distribution. Let S ⊆ [n], and let Q|S denote the restriction
of Q to S, namely, Q|S is the quasi-distribution from FS to C where Q|S(g) :=

∑
f :f |S=gQ(f). Then

for every α ∈ FS it holds that q|S|Q̂|S(α) = qnQ̂(α).5

Proof of Lemma 4.4.

q|S|Q̂|S(α) =
∑
g∈FS

Q|S(g)ω−Tr(〈α,g〉) =
∑
f∈Fn

Q(f)ω−Tr(〈α,f〉) = qnQ̂(α) .

5The vector α in Q̂(α) is treated as a element in Fn with αj = 0 for all j /∈ S
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If F : [n] → F is a k-non-signaling function, then for any α ∈ Fn≤k and b ∈ F we have defined
Pr[〈α,F〉 = b] in Definition 3.2 to be Prf←Fsupp(α)

[〈α, f〉 = b]. Note that the probability is well-
defined since wt(α) ≤ k (so we query F on at most k points). Also note that Lemma 4.2 implies
that, for every α ∈ Fn≤k, we can define the Fourier coefficient F̂(α) of F as

F̂(α) :=
1

qn

∑
j∈Fp

ω−j Pr[Tr(〈α,F〉) = j] .

With the above definitions, we can prove the following two corollaries of Lemma 4.1. The first
is for non-signaling functions, and the second is for quasi-distributions.

Corollary 4.5. For any k-non-signaling function F : [n]→ F, set S ⊆ [n], and event E ⊆ FS,

Pr[F(S) ∈ E] =
∑
α∈FS

1̂E(α)
∑
j∈Fp

ω−j Pr[Tr(〈α,F〉) = j] = qn
∑
α∈FS

1̂E(α)F̂(α) .

Proof. Apply Lemma 4.1 with G : FS → C defined as G(x) := Pr[FS(i) = xi ∀i ∈ S].

Corollary 4.6. For any quasi-distribution Q : Fn → C, set S ⊆ [n], and event E ⊆ FS,

P̃r[Q(S) ∈ E] =
∑

f : f(S)∈E

Q(f) =
∑
α∈FS

1̂E(α)
∑
j∈Fp

ω−jP̃r[Tr(〈α,Q〉) = j] = qn
∑
α∈FS

1̂E(α)Q̂(α) .

Proof. Apply Lemma 4.1 to the function G : FS → C that is the quasi-distribution Q|S . Then
observe that for every α ∈ FS , q|S|Q̂|S(α) = qnQ̂(α) by Lemma 4.4.

The above two lemmas allow us to bound the distance between a k-non-signaling function F
and a quasi-distribution Q in terms of their Fourier spectra.

Lemma 4.7. Let F : [n] → F be a k-non-signaling function and Q : Fn → C a quasi-distribution.
For any set S ⊆ [n]≤k and event E ⊆ FS,∣∣∣Pr[F(S) ∈ E]− P̃r[Q(S) ∈ E]

∣∣∣ ≤ qn ∑
α∈FS

∣∣∣1̂E(α)
∣∣∣ ∣∣∣F̂(α)− Q̂(α)

∣∣∣ .
In particular, ∆k(Q,F) ≤ qn+k/2 maxα∈Fn≤k |F̂(α)− Q̂(α)|.

Corollary 4.8. Let F : [n]→ F be a k-non-signaling function and Q : Fn → C a quasi-distribution.
Then ∆k(Q,F) = 0 if and only if F̂(α) = Q̂(α) for every α ∈ Fn≤k.

Proof of Lemma 4.7. The first equation follows immediately from Corollary 4.5 and Corollary 4.6.
For the second part of the lemma,

∆k(Q,F) ≤ max
S⊆[n]≤k

max
E⊆FS

qn
∑
α∈FS

∣∣∣1̂E(α)
∣∣∣ ∣∣∣F̂(α)− Q̂(α)

∣∣∣
≤ qn max

S⊆[n]≤k

max
E⊆FS

∑
α∈FS

∣∣∣1̂E(α)
∣∣∣
max

α∈FS

∣∣∣F̂(α)− Q̂(α)
∣∣∣


≤ qn
(

max
S⊆[n]≤k

q|S|/2
)

max
α∈Fn≤k

∣∣∣F̂(α)− Q̂(α)
∣∣∣

≤ qn+k/2 max
α∈Fn≤k

∣∣∣F̂(α)− Q̂(α)
∣∣∣ .
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Proof of Corollary 4.8. If F̂(α) = Q̂(α) for every α ∈ Fn≤k, then by Lemma 4.7 it follows that
∆k(Q,F) = 0. Conversely, if ∆k(Q,F) = 0, then for every α ∈ Fn≤k and j ∈ Fp it holds that

P̃r[Tr(〈α,Q〉) = j] = Pr[Tr(〈α,F〉) = j], as these are both events. This implies that qnQ̂(α) =∑
j∈Fp ω

−jP̃r[Tr(〈α,Q〉) = j] =
∑

j∈Fp ω
−j Pr[Tr(〈α,F〉) = j] = qnF̂(α).

Suppose that we are given a collection of local distributions (FS)S⊆[n]≤k , namely, FS is a
distribution over functions f : S → F. We can think of each local distribution FS as a function
FS : FS → C, and in this way define for each local distribution FS the Fourier coefficients F̂S(α)
for each α ∈ Fn⊆S . In the following lemma, we characterize when (FS)S⊆[n]≤k is k-non-signaling in
terms of the Fourier spectra of the local distributions.

Lemma 4.9. Let (FS)S⊆[n]≤k be a collection of local distributions. Then (FS)S⊆[n]≤k is a k-non-

signaling function if and only if q|S|F̂S(α) = q|R|F̂R(α) for every S ⊆ [n]≤k, R ⊆ S, and α ∈ Fn⊆R.

Proof. Suppose (FS)S⊆[n]≤k is a k-non-signaling function. Fix S ⊆ [n]≤k, R ⊆ S, and α ∈ Fn⊆R.
Since the collection of local distributions is k-non-signaling we have that FS |R = FR. Therefore by

Lemma 4.4 we have that q|S|F̂S(α) = q|R|F̂R(α).
Now, fix S ⊆ [n]≤k and R ⊆ S. Applying Corollary 4.6 to the distributions FS and FR, we

see that if q|S|F̂S(α) = q|R|F̂R(α) for every α ∈ Fn⊆R, then FS |R ≡ FR. Hence, (FS)S⊆[n]≤k is
k-non-signaling.

4.3 Equivalence between non-signaling functions and quasi-distributions

We show that k-non-signaling functions and k-local quasi-distributions are equivalent. Every k-local
quasi-distribution Q induces a k-non-signaling function F (Proposition 4.10). Conversely, every
k-non-signaling function F can be described by a k-local quasi-distribution Q (Proposition 4.11).
In fact, the set of such quasi-distributions is an affine subspace of co-dimension

∑k
i=0

(
n
i

)
·(q−1)i in

Cqn . The first direction of the equivalence is elementary; the other direction is the interesting one.
The aforementioned result is a special case of a result of Abramsky and Brandenburger [AB11]

that establishes an equivalence between non-signaling empirical models (a general notion of non-
signaling experiments in the language of sheaf theory) and quasi-distributions over global sections.
Our result strengthens this equivalence by giving an explicit characterization of the affine subspace
of quasi-distributions describing a non-signaling function, by leveraging Fourier-analytic tools. This
also extends to any finite field F the equivalence lemma for F2 presented in [CMS18].6

Proposition 4.10. For every k-local quasi-distribution Q over functions f : [n]→ F there exists a
k-non-signaling function F : [n]→ F such that ∆k(Q,F) = 0.

Proof. For every subset S ⊆ [n]≤k, define FS to be the distribution over functions f : S → F
where Pr[FS outputs f ] := P̃r[Q(S) = f(S)], namely, such that FS ≡ Q|S . Note that FS is a
distribution because Q is k-local, so the relevant probabilities are in [0, 1] and sum to 1. The

definition immediately implies that Pr[F(S) = g] = P̃r[Q(S) = g] for every string g ∈ FS , and
so ∆k(Q,F) = 0. We are left to argue that F = {FS}S⊆[n]≤k is k-non-signaling. Let S ⊆ [n]≤k,

6The characterization further extends to functions taking values in any finite alphabet Σ (not necessarily a field)
by adding an abelian group structure to Σ (for example, by identifying Σ with Z/ |Σ|Z), and then using analogous
tools from Fourier analysis over finite abelian groups.
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and let R ⊆ S. By definition of F and Lemma 4.4 we have that for every α ∈ FR, q|S|F̂S(α) =

q|S|Q̂|S(α) = q|R|Q̂|R(α) = q|R|F̂R(α). By Lemma 4.9, it follows that F is k-non-signaling.

Proposition 4.11. For every k-non-signaling function F : [n] → F, there exists a k-local quasi-
distribution Q over functions f : [n] → F such that ∆k(F ,Q) = 0. Moreover, the set of such Q’s
(viewed as vectors in Cqn) is the affine subspace of co-dimension

∑k
i=0

(
n
i

)
· (q − 1)i in Cqn given

by Q0 + span{χα : α ∈ Fn,wt(α) > k}, where Q0 is any solution.

Proof. Let Q be a quasi-distribution over functions f : [n] → F. By Corollary 4.8, it holds that
∆k(Q,F) = 0 if and only if F̂(α) = Q̂(α) for all α ∈ Fn≤k.

Let Q0 be the quasi-distribution with Fourier coefficients Q̂(α) := F̂(α) for all α of weight at
most k and Q̂(α) := 0 otherwise. Consider the affine subspace Q0 + span{χα : α ∈ Fn,wt(α) > k}.
By Corollary 4.8, every quasi-distribution Q in the affine subspace satisfies ∆k(Q,F) = 0. We note
that this affine subspace has dimension

∑k
i=0

(
n
i

)
· (q − 1)i.

Conversely, suppose that Q satisfies ∆k(Q,F) = 0. Then by Corollary 4.8 it holds that Q̂(α) =
F̂(α) for all α ∈ Fn≤k, which implies that Q is in the aforementioned affine subspace. Hence, the
affine subspace contains all Q such that ∆k(Q,F) = 0.
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5 Non-signaling linear codes

We wish to define what it means for a non-signaling function F : [n] → F to be “in” a linear
code C ⊆ Fn. We introduce two natural definitions for the above goal. The first definition is
motivated by the equivalence between non-signaling functions and quasi-distributions established
in Section 4.3. The second definition is motivated by a notion of local consistency.

For each of the two definitions, we characterize the Fourier spectrum of non-signaling strategies
that satisfy the definition, in the exact and in the robust case. Also, we prove a strong relationship
between the two definitions, showing that they are equivalent (up to a small loss in parameters).
The compelling structure that we uncover supports our choice of definitions.

For this section, we remind the reader that a linear code C over F with block length n is a
linear subspace of Fn. We equivalently also view C as a linear subspace of the set of all functions
f : [n]→ F. The dual code of C is the linear subspace C⊥ := {α : 〈α, f〉 = 0 ∀f ∈ C} ⊆ Fn.

5.1 Quasi-distributions supported on linear codes

The equivalence between non-signaling functions and quasi-distributions in Section 4.3 suggests a
natural way to capture when a non-signaling function is “in” a given linear code.

Definition 5.1. Given a k-non-signaling strategy F : [n]→ F, code C ⊆ Fn and parameter k′ ≤ k,
we say that F is (C, k′)-supported if there exists a k′-local quasi-distribution Q : Fn → C supported
on C such that ∆k′(Q,F) = 0.

In light of the characterization of the Fourier spectra of quasi-distributions equivalent to a
given non-signaling function in Section 4.3, it is natural to ask if the Fourier spectrum of a quasi-
distribution supported on C has a special structure. In the following lemma, we characterize the
Fourier spectrum of quasi-distributions supported on a given linear code C. Informally, we show
that the condition “Fourier coefficients are constants on cosets of C⊥” is necessary and sufficient.

Lemma 5.2. Let C ⊆ Fn be a linear code. A quasi-distribution Q : Fn → C is supported on C if
and only if Q̂(α) = Q̂(α′) for all α, α′ ∈ Fn such that α− α′ ∈ C⊥.

The foregoing statement immediately gives us a corollary about non-signaling functions.

Corollary 5.3. A k-non-signaling strategy F : [n] → F is (C, k′)-supported if and only if for all
α, α′ ∈ Fn≤k such that α− α′ ∈ C⊥ it holds that F̂(α) = F̂(α′).

Next, we wish to study the Fourier spectrum of a quasi-distribution Q that is merely close to
being supported on C. For this case, we give the following “robust” version of Lemma 5.2.

Lemma 5.4. Let C ⊆ Fn be a linear code, and let Q be a quasi-distribution.

• Suppose that there exists a quasi-distribution Q′ supported on C such that ∆k(Q,Q′) ≤ δ. Then

for all α, α′ ∈ Fn≤k and α− α′ ∈ C⊥ it holds that
∣∣∣Q̂(α)− Q̂(α′)

∣∣∣ ≤ 2δ
qn .

• Conversely, suppose that for all α, α′ ∈ Fn≤k and α− α′ ∈ C⊥ it holds that
∣∣∣Q̂(α)− Q̂(α′)

∣∣∣ ≤ 2δ
qn .

Then there exists a quasi-distribution Q′ supported on C such that ∆k(Q,Q′) ≤ qk/2 · 2δ.

We note that in Lemma 5.4, neither quasi-distribution is required to be local.
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5.1.1 Proof of Lemma 5.2

Define the affine spaces

V1 =

Q : Fn → C s.t.
∑
f∈C
Q(f) = 1 and Q(f) = 0 ∀f /∈ C

 ,

V2 =

{
Q : Fn → C s.t. Q̂(0n) =

1

qn
and Q̂(α) = Q̂(α+ γ) ∀α ∈ Fn, γ ∈ C⊥

}
.

It suffices to prove that V1 = V2. First we show that dim(V1) = dim(V2). The dimension of V1
is |C| − 1 because the |C| free terms are subject to a single linear constraint. The dimension of
V2 is qn/

∣∣C⊥∣∣ − 1 because the Fourier coefficients are constant on each coset of C⊥, and on each
coset they can take on an arbitrary value; the one exception is the coset C⊥, on which the Fourier
coefficients must be 1

qn . Recalling that qn = |C| · |C⊥|, we deduce that dim(V1) = dim(V2).

Next we show that V1 ⊆ V2. Fix Q ∈ V1. Since
∑

f Q(f) = 1, we have Q̂(0n) = 1
qn
∑

f Q(f) ·
ω0 = 1

qn . Moreover, for any α ∈ Fn and γ ∈ C⊥,

Q̂(α+ γ) =
1

qn
·
∑
f

Q(f) · ω−Tr(〈α+γf〉) =
1

qn
·
∑
f

Q(f) · ω−Tr(〈α,f〉) · ω−Tr(〈γ,f〉) .

Since Q ∈ V1, if Q(f) 6= 0 then f ∈ C and hence ωTr(〈γ,f〉) = ωTr(0) = 1. Therefore,

Q̂(α+ γ) =
1

qn
·
∑
f

Q(f) · ω−Tr(〈α,f〉) = Q̂(α) .

Thus V1 ⊆ V2. Since dim(V1) = dim(V2) and V1 ⊆ V2, we conclude that V1 = V2.

5.1.2 Proof of Lemma 5.4

Suppose Q : Fn → C is a quasi-distribution such that there exists a quasi-distribution Q′ supported
on C with ∆k(Q,Q′) ≤ δ. Fix α ∈ Fn≤k, so that S = supp(α) has |S| ≤ k. Since ∆k(Q,Q′) ≤ δ, we

have that
∑

g∈FS
∣∣∣P̃r[Q(S) = g]− P̃r[Q′(S) = g]

∣∣∣ ≤ δ. Therefore,∣∣∣Q̂(α)− Q̂′(α)
∣∣∣ ≤ 1

qn

∑
j∈Fp

∣∣ω−j∣∣ ∣∣∣P̃r[Tr(〈α,Q〉) = j]− P̃r[Tr(〈α,Q′〉) = j]
∣∣∣

=
1

qn

∑
j∈Fp

∑
g∈FS :Tr(〈α,g〉)=j

∣∣∣P̃r[Q(S) = g]− P̃r[Q′(S) = g]
∣∣∣

≤ 1

qn

∑
g∈FS

∣∣∣P̃r[Q(S) = g]− P̃r[Q′(S) = g]
∣∣∣ ≤ δ

qn
.

By Lemma 5.2, we know that for every α, α′ ∈ Fn such that α−α′ ∈ C⊥ it holds that
∣∣∣Q̂′(α)− Q̂′(α′)

∣∣∣ = 0.

Hence, for every α, α′ ∈ Fn≤k such that α− α′ ∈ C⊥ it holds that∣∣∣Q̂(α)− Q̂(α′)
∣∣∣ ≤ ∣∣∣Q̂(α)− Q̂′(α)

∣∣∣+
∣∣∣Q̂′(α)− Q̂′(α′)

∣∣∣+
∣∣∣Q̂′(α′)− Q̂(α′)

∣∣∣
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≤ δ

qn
+ 0 +

δ

qn
=

2δ

qn
.

Now, suppose that Q is a quasi-distribution such that
∣∣∣Q̂(α)− Q̂(α′)

∣∣∣ ≤ 2δ
qn for all α, α′ ∈ Fn≤k

such that α − α′ ∈ C⊥. For each α ∈ Fn, let γα be an element of the coset α + C⊥ of minimal
weight (ties are broken arbitrarily). Define Q′ to be the quasi-distribution where Q̂′(α) := Q̂(γα)
if wt(γα) ≤ k and 0 otherwise. By construction, for any α, α′ ∈ Fn such that α− α′ ∈ C⊥ it holds
that Q̂′(α) = Q̂′(α′), so Q′ is supported on C by Lemma 5.2. Let α ∈ Fn≤k. By construction, we

know that
∣∣∣Q̂(α)− Q̂′(α)

∣∣∣ ≤ ∣∣∣Q̂(α)− Q̂(γα)
∣∣∣+
∣∣∣Q̂(γα)− Q̂′(α)

∣∣∣ ≤ 2δ
qn + 0 = 2δ

qn , since α− γα ∈ C⊥

and wt(γα) ≤ wt(α) ≤ k. Therefore, by Lemma 4.7 we have that ∆k(Q,Q′) ≤ qk/2 · 2δ.

5.2 Locally-explainable non-signaling functions

We introduce another natural definition that captures when a non-signaling function F is “in” a
given linear code C ⊆ Fn. This time we take the perspective of local consistency, namely, we shall
require that the output of F is always consistent with a codeword in C.

Definition 5.5. Given a k-non-signaling strategy F : [n]→ F, code C ⊆ Fn, and parameter k′ ≤ k,
we say that F is (C, k′)-explainable if for every set S ⊆ [n]≤k′ it holds that Pr[F(S) ∈ C|S ] = 1.

Note that F is (C, k′)-explainable if and only if Pr[〈α,F〉 = 0] = 1 for every α ∈ C⊥≤k′ . The
non-trivial direction of the equivalence is implied by the following lemma.

Lemma 5.6. Let C ⊆ Fn be a linear code, S ⊆ [n]≤k, and g : S → F. If 〈α, g〉 = 0 for every
α ∈ C⊥⊆S, then there is a codeword f ∈ C such that f |S = g.

Proof. Since C ⊆ Fn is a linear code, there is a pivotal set P ⊆ [n] of size |P | = dim(C) such that
for all y : P → F there is a unique codeword f ∈ C satisfying f |P = y. Such P need not be unique.

Let P ∗ ⊆ [n] be a pivotal set such that |P ∗ ∩ S| is maximal, and let PS := P ∗ ∩ S. Define
f ′ : P ∗ → F by letting f ′(i) = g(i) for all i ∈ PS , and letting f ′(j) be arbitrary for all j ∈ P ∗ \ PS .
Since P ∗ is a pivotal set, there exists a unique f ∈ C such that f |P ∗ = f ′.

It remains to show that f |S = g. Let i ∈ S. If i ∈ PS , then f(i) = f ′(i) = g(i), as required.
Suppose that i /∈ PS . Since P ∗ is maximal, there exists α ∈ C⊥ such that αi = 1 and supp(α) ⊆
PS ∪ {i} ⊆ S. Indeed, if no such α exists then for any codeword h ∈ C, h(i) is not determined by
{h(j) : j ∈ PS}. Hence, the set PS ∪{i} can be extended into a pivotal set for C, which contradicts
the maximality of P ∗. Therefore, such an α exists. Since 〈α, f〉 = 0 and 〈α, g〉 = 0, we get that
0 = 〈α, f〉 − 〈α, g〉 = f(i) +

∑
j∈PS αjf(j) − g(i) −

∑
j∈PS αjg(j) = f(i) +

∑
j∈PS αjg(j) − g(i) −∑

j∈PS αjg(j) = f(i)− g(i), and therefore f(i) = g(i). We conclude that f |S = g, as required.

We provide a characterization of the Fourier spectrum of C-explainable non-signaling functions,
both in the exact and in the robust cases, as captured by the respective lemmas below. Both lemmas
make crucial use of Lemma 4.3.

Lemma 5.7. Let F : [n] → F be a k-non-signaling function. Then F is (C, k′)-explainable if and
only if F̂(α) = 1

qn for every α ∈ C⊥≤k′.
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Proof. We know that F is (C, k′)-explainable if and only if for every α ∈ C⊥≤k′ it holds that

Pr[〈α,F〉 = 0] = 1. By Lemma 4.3, we know that Pr[〈α,F〉 = 0] = 1 if and only if F̂(aα) = 1
qn for

every a ∈ F, as M is invertible and maps the distribution Pr[〈α,F〉 = 0] = 1 and Pr[〈α,F〉 = b] = 0
for all other b to the vector 1q. We conclude the proof by noting that if α ∈ C⊥≤k′ then aα ∈ C⊥≤k′
for any a ∈ F.

Lemma 5.8. Let F : [n]→ F be a k-non-signaling function, and let α ∈ Fn≤k.

• If Pr[〈α,F〉 = 0] ≥ 1− ε, then |F̂(aα)− 1
qn | ≤

2ε
qn for every a ∈ F.

• If |F̂(aα)− 1
qn | ≤

ε
qn for every a ∈ F, then Pr[〈α,F〉 = 0] ≥ 1− ε.

Proof. Suppose that Pr[〈α,F〉 = 0] ≥ 1 − ε. This immediately implies that, for every a ∈ F,
Pr[〈aα,F〉 = 0] ≥ 1− ε. Therefore,

∣∣∣qnF̂(aα)− 1
∣∣∣ =

∣∣∣∣∣−1 +
∑
b∈F

ω−Tr(ab) Pr[〈aα,F〉 = b]

∣∣∣∣∣
≤ |−1 + Pr[〈aα,F〉 = 0]|+

∑
b 6=0

|ω−Tr(ab)| |Pr[〈aα,F〉 = b]|

≤ ε+
∑
b6=0

Pr[〈aα,F〉 = b]

= ε+ (1− Pr[〈aα,F〉 = 0]) ≤ 2ε .

This proves the first direction.
For the second direction, let v ∈ Cq be the vector where vb = Pr[〈α,F〉 = b] and let w ∈ Cq

be the vector where wa = qnF̂(aα). Note that Mv = w, where M is the matrix from Lemma 4.3.
Suppose that |F̂(aα) − 1

qn | ≤
ε
qn for every a ∈ F, so that |wa − 1| ≤ ε for every a ∈ F. Then, we

have that ‖w − 1q‖2`2 ≤ qε2, so that ‖w − 1q‖`2 ≤ ε
√
q. Let u ∈ Cq be the vector where u0 = 1

and ub = 0 for all other b ∈ F. Observe that Mu = 1q. Since 1√
qM is unitary, we have that

‖ 1√
qM(v − u)‖`2 = ‖ 1√

q (w − 1q)‖`2 ≤ 1√
q · ε
√
q = ε. Therefore, |vb − ub| ≤ ε for all b ∈ F. In

particular, |v0 − 1| ≤ ε, so that Pr[〈α,F〉 = 0] ≥ 1− ε.

5.3 The relationship between the two definitions

We have given two natural definitions of what it means for a non-signaling function to be in a
linear code. Which of the two definitions is more “correct”? Lemma 5.2 and Lemma 5.7 show
that Definition 5.1 implies Definition 5.5, in the sense that if F is (C, k′)-supported then F is
(C, k′)-explainable. We prove that, conversely, Definition 5.5 implies Definition 5.1 up to a factor
of 2 in the locality k′. We conclude that the two definitions are essentially equivalent.

Lemma 5.9. Let C ⊆ Fn be a linear code, and let F : [n]→ F be a k-non-signaling function.
• If F is (C, k′)-supported then F is (C, k′)-explainable.
• If F is (C, k′)-explainable then F is (C, k′/2)-supported.

Remark 5.10. For specific choices of C one can achieve stronger versions of the above lemma.
For example, when C is the Hadamard code (all linear functions), one can prove the lemma with
k′− 1 in place of k′/2. Also, some gap in locality is necessary: taking again C to be the Hadamard
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code, there exists a non-signaling function F that is (C, k)-explainable and (C, k − 1)-supported
but not (C, k)-supported. (The foregoing statements are shown implicitly in [CMS18].)

Proof. Lemma 5.2 and Lemma 5.7 imply the first direction, as any (C, k′)-supported k-non-signaling
function F satisfies F̂(α) = F̂(0n) = 1

qn for every α ∈ C⊥≤k′ , implying that F is (C, k′)-explainable.

We now prove the second direction. Fix α ∈ C⊥≤k′ , and let S := {i ∈ [n] : αi 6= 0}. Note
that |S| ≤ k′ since |S| = wt(α). We first show that Pr[〈α,F〉 = 0] = 1. Indeed, since F is
(C, k′)-explainable, we have that

Pr[〈α,F〉 = 0] ≥ Pr[〈α,F〉 = 0 ∧ ∃ f ∈ C s.t. F(S) = f |S ]

= Pr[〈α, f〉 = 0 ∧ ∃ f ∈ C s.t. F(S) = f |S ]

= Pr[∃ f ∈ C s.t. F(S) = f |S ] = 1 ,

and so Pr[〈α,F〉 = 0] = 1.
Now, for any α, α′ ∈ Fn≤k′/2 with α− α′ ∈ C⊥ we get that for any b ∈ F,

Pr[〈α,F〉 = b] = Pr[〈α′,F〉+ 〈α− α′,F〉 = b] = Pr[〈α′,F〉 = b] ,

since Pr[〈α − α′,F〉 = 0] = 1 as α − α′ ∈ C⊥ with wt(α − α′) ≤ k′. This shows that the vectors
(Pr[〈α,F〉 = b])b∈F and (Pr[〈α′,F〉 = b])b∈F are the same. Thus, F̂(α) = F̂(α′), by the definition
of F ’s Fourier coefficients. By Lemma 5.2, it follows that F is (C, k′/2)-supported.
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6 Low-degree testing

In this section, we prove Theorem 1. Throughout this section, we let m, d, k ∈ N be parameters,
and p be a prime where p ≥ d+ 2. Let RS⊗m[Fp, d] denote the code of polynomials from Fmp to Fp
of individual degree at most d in each variable. We let F : Fmp → Fp be a k-non-signaling function.

For a subset S ⊆ Fp and a ∈ S, we let δa,S(x) =
∏
a′∈S\{a}(x−a′)∏
a′∈S\{a}(a−a′)

be the degree |S| − 1 polynomial

satisfying δa(x) =

{
1 if x = a ,

0 if x ∈ S \ {a} .
.

We begin by recalling the degree-d evenly-spaced points test.

Definition 6.1 (Evenly-spaced points test). Given a function f : Fmp → Fp, the degree-d evenly-
spaced points test:

1. samples a random point x ∈ Fmp and slope h ∈ Fmp \ {0m},

2. checks that
∑d+1

i=0 cif(x+ ih) = 0, where ci = (−1)i
(
d+1
i

)
.

Definition 6.2 (Evenly-spaced self-correction). The evenly-spaced self-correction of F , denoted F̂ ,
is a bk/(d+ 1)c-non-signaling function defined as follows. Let w0, w1, . . . , wm ∈ Fmp be independent
uniformly random vectors in Fmp , and for each x ∈ Fmp let wx = w0 +

∑m
i=1 xiwi. For an input set

S and g : S → Fp, the distribution of F̂(S) correction is defined as

Pr[F̂(S) = g] = Pr
w0,...,wm,F

[−
d+1∑
j=1

cjF(x+ jwx) = g(x) ∀x ∈ S] .

Our main theorem is the following.

Theorem 6.1 (Formal version of Theorem 1). Let p be a prime, and let m, d ∈ N with p ≥ d+ 2.
Let F : Fmp → Fp be a k-non-signaling function. Suppose that F passes the degree-d evenly-spaced
points test with probability 1− ε. Then there exists a k′-non-signaling function G : Fmp → Fp that is

(RS⊗m[Fp, d], k′)-supported such that ∆k′(F̂ ,G) ≤ O(p3k
′/2(d+ 1)mε), where k′ = b k

2(d+1)(d+2)c− 3.

When ε = 0, the theorem can be simplified considerably to the statement below.

Theorem 6.2 (Formal version of Theorem 1, zero error case). Let p be a prime, and let m, d ∈ N
with p ≥ d+ 2. Let F : Fmp → Fp be a k-non-signaling function. Suppose that F passes the degree-d
evenly-spaced points test with probability 1. Then F is (RS⊗m[Fp, d], bk/(d+ 2)c − 1)-supported.

We prove Theorem 6.1 via the following statements, each proved in one of the following sections.

Lemma 6.3 (Average to worst case). Suppose that F passes the degree-d evenly-spaced points test
with probability 1−ε, i.e. that Prh6=0m,x,F [

∑d+1
i=0 ciF(x+ ih) = 0] ≥ 1−ε. Then for every x, h ∈ Fmp

with h 6= 0m it holds that PrF̂ [
∑d+1

i=0 ciF̂(x+ ih) = 0] ≥ 1− (d+ 1)ε.

Lemma 6.4 (Evenly-spaced points to axis-parallel lines). Let F̂ : Fmp → Fp be a k̂-non-signaling

function, with k̂ ≥ 2d+3. Suppose that for every x, h ∈ Fmp with h 6= 0m it holds that PrF̂ [
∑d+1

i=0 ciF̂(x+
ih) = 0] ≥ 1− ε. Then for every b1, . . . , bm ∈ Fp, i ∈ [m], and S ⊆ Fp \ {bi} of size |S| = d+ 1 ≤
k̂ − d− 2 it holds that

Pr
F̂

[F̂(b1, . . . , bm) =
∑
a∈S

δa,S(bi) · F̂(b1, . . . , bi−1, a, bi+1, . . . , bm)] ≥ 1− pε .
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Lemma 6.5 (Robust local characterization). Let F̂ : Fmp → Fp be a k̂-non-signaling function, and
suppose that for every i ∈ [m], b1, . . . , bm ∈ Fp, and S′ ⊆ Fp \ {bi} of size |S′| = d+ 1 it holds that

Pr
F̂

[F̂(b1, . . . , bm) =
∑
a∈S′

δa,S′(bi) · F̂(b1, . . . , bi−1, a, bi+1, . . . , bm)] ≥ 1− ε .

Then for every S ⊆ Fmp with |S| ≤ bk̂/(d+ 2)c it holds that Pr[F̂(S) ∈ RS⊗m[Fp, d]
∣∣
S

] ≥ 1− 2 |S| ·
(d+ 1)m−1ε.

Lemma 6.6. Let F̂ : Fmp → Fp be a k̂-non-signaling function, and let k′ ≤ k̂. Suppose that for every

S ⊆ Fmp with |S| ≤ k′ it holds that Pr[F̂(S) ∈ RS⊗m[Fp, d]
∣∣
S

] ≥ 1−ε. Then there exists a k′/2-non-

signaling function G that is (RS⊗m[Fp, d], k′/2)-supported and ∆k′/2(F ,G) ≤ (pk
′/2 + 1) · pk′/4 · 2ε.

6.1 Step 1: Average to worst case reduction

We prove Lemma 6.3. Fix x, h ∈ Fmp with h 6= 0m. Observe that wx+ih = wx + i(wh − w0).
Therefore

Pr
F̂

[
d+1∑
i=0

ciF̂(x+ ih) = 0] = Pr
w0,...,wm,F

[

d+1∑
i=0

ci

d+1∑
j=1

−cjF(x+ ih+ jwx+ih) = 0]

Pr
w0,...,wm,F

[

d+1∑
j=1

−cj
d+1∑
i=0

ciF(x+ ih+ jwx + ij(wh − w0)) = 0]

≥ Pr
w0,...,wm,F

[

d+1∑
i=0

ciF(x+ jwx + i(h+ j(wh − w0))) = 0 ∀j ∈ [d+ 1]]

≥ 1− (d+ 1)ε ,

where last inequality is by union bound, using the fact that for j 6= 0 the vectors x + jwx and
h + j(wh − w0) are independent and uniformly random vectors in Fmp . Indeed, for h 6= 0m the
vector h+ j(wh − w0) is equal to h+

∑m
i=1 jhiwi, and hence is uniformly random, and x+ jwx is

equal to x+ jw0 +
∑m

i=1 jxiwi, which is also uniformly random and independent of h+ j(wh−w0)
because the term w0 is independent of all other wi’s.

6.2 Step 2: From evenly-spaced points to axis-parallel lines

We prove Lemma 6.4. Note that by the assumption for every x ∈ Fmp and h = ei it holds that

PrF̂ [
∑d+1

`=0 c`F̂(x+ `ei) = 0] ≥ 1− ε. Fix i ∈ [m], b1, . . . , bi−1, bi+1, . . . bm ∈ Fp, and S ⊆ Fp of size
|S| = d+ 2. We claim that

Pr[∃ g ∈ RS[Fp, d] s.t. F̂(b1, . . . , bi−1, s, bi+1, . . . bm) ≡ g(s) ∀s ∈ S] ≥ 1− pε . (1)

This clearly implies Lemma 6.4.
In order to prove Eq. (1), let us order the elements of S as s1 ≤ s2 ≤ · · · ≤ sd+2 by treating si’s

as integers in {0, 1, 2, . . . , p−1} ⊆ N. For each j ∈ Fp define the interval Ij = {j, j+1, j+2, . . . , j+
d + 1}, and denote Qj = {s ∈ S : s ≤ j + d + 2} ∪ Ij . We claim that with high probability F̂ on
the points corresponding to Qj agrees with some univariate polynomial. Specifically, we prove the
following claim.
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Claim 6.7. For each j = 0, 1 . . . , p− 1 it holds that

Pr[∃ g ∈ RS[Fp, d] s.t. F̂(b1, . . . , bi−1, `, bi+1, . . . bm) ≡ g(`) ∀` ∈ Qj ] ≥ 1− (j + 1)ε .

It is clear that the statement of Claim 6.7 for j = p − 1 implies Eq. (1), and hence proves
Lemma 6.4.

Proof of Claim 6.7. The proof is by induction in j. For the base case of j = 0 we query F̂ on the
set I0. By the assumption of the lemma we have

Pr
F̂

[∃ g ∈ RS[Fp, d] s.t. F̂(b1, . . . , bi−1, `, bi+1, . . . bm) = ` ∀` ∈ I0] ≥ 1− ε ,

and the claim hold since for j = 0 we have Q0 = I0.
For the induction step suppose that the statement of the claim holds for j − 1, i.e., with

probability 1 − jε there exists a univariate polynomial g of degree d that agrees with F̂ on Qj−1.
Note that the set Q′j−1 = Qj−1 \ {j − 1} contains the d+ 1 consecutive points {j, j + 1, . . . , j + d},
and these points uniquely define the polynomial g of degree d. Therefore

Pr[∃ g ∈ RS[Fp, d] s.t. F̂(b1, . . . , bi−1, `, bi+1, . . . bm) ≡ g(`) ∀` ∈ Q′j−1] ≥ 1− jε .

On the other hand, by the assumption that F̂ satisfies evenly-spaced constraints with probability
≥ 1− ε we have

Pr[∃ g′ ∈ RS[Fp, d] s.t. F̂(b1, . . . , bi−1, `, bi+1, . . . bm) ≡ g′(`) ∀` ∈ Ij ] ≥ 1− ε .

Note that the above statement requires that p ≥ d + 2, as passing the evenly-spaced points test
along a line corresponds to being a univariate polynomial only when p ≥ d+ 2.

Query F̂ on the set Q′j−1 ∪ Ij . By union bound, the above events both hold with probability

≥ 1−(j+1)ε, so that there exists g, g′ ∈ RS[Fp, d] such that F̂(b1, . . . , bi−1, `, bi+1, . . . bm) = g(`) for
all ` ∈ Q′j−1 and F̂(b1, . . . , bi−1, `, bi+1, . . . bm) = g′(`) for all ` ∈ Ij . However, since Q′j−1 intersects

Ij on d+1 points it must be the case that g = g′. Hence, F̂(b1, . . . , bi−1, `, bi+1, . . . bm) = g(`) for all

` ∈ Q′j−1 ∪ Ij . Since Qj ⊆ Q′j−1 ∪ Ij , this proves the induction step. Since
∣∣∣Q′j−1 ∪ Ij∣∣∣ ≤ |S|+ d+ 2

and |Qj | ≤ |S|+ d+ 2, it follows that this is valid for all S with |S| ≤ k̂ − d− 2, which completes
the proof of Claim 6.7.

6.3 Step 3: A robust local characterization of low-degree polynomials

We prove Lemma 6.5. We begin by introducing some notation. For each i ∈ [m] define Si ⊆ Fip to
be the projection of S to the first i coordinates, i.e. that

Si := {(a1, . . . , ai) ∈ Fip : ∃ bi+1, . . . bm ∈ Fp s.t. (a1, . . . , ai, bi+1, . . . , bm) ∈ S} .

Note that Sm = S. For any set R ⊆ Fip and bi+1, . . . , bm ∈ Fp, we define the extension of R as

R(bi+1,...,bm) := R× {(bi+1, . . . , bm)} .

We prove by induction that for every i ∈ [m] and every bi+1, . . . , bm ∈ Fp it holds that

Pr[∃ gi ∈ RS⊗i[Fp, d] s.t. F̂(a1, . . . , ai, bi+1, . . . , bm) = gi(a1, . . . , ai) ∀(a1, . . . , ai) ∈ Si] ≥ 1− εi ,
(2)
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where εi = |S|
∑i

j=1(d+ 1)j−1ε. Note that the above probability is well-defined since we query F̂
on the set S

(bi+1,...,bm)
i , which contains at most |S| ≤ k′ ≤ k points. Eq. (2) proves Lemma 6.5, as

Sm = S and εm ≤ |S| · (
∑m

j=1(d+ 1)j−1) · ε ≤ (d+1)m−1
d · |S| ε ≤ 2(d+ 1)m−1 |S| ε.

We first show the base case: i = 1. Let R ⊆ S1 be a subset of size min(d + 1, |S1|). Query

F̂ on S
(b2,...,bm)
1 , and let g1 ∈ RS⊗1[Fp, d] be the univariate polynomial g1(x) =

∑
a∈R δa,R(x) ·

F̂(a, b2, . . . , bm). Then,

Pr[∃ g1 ∈ RS⊗1[Fp, d] s.t. F̂(a1, b2, . . . , bm) = g1(a1) for all a1 ∈ S1] ≥ 1− |S1| ε = 1− ε1 .

This is because if a1 ∈ R, then F̂(a, b2, . . . , bm) = g1(a) is trivially true by definition of g1, and if
a1 ∈ S1 \R then this is true because

F̂(a1, b2, . . . , bm) =
∑
a∈R

δa,R(a1) · F̂(a, b2, . . . , bm) = g1(a1) ,

with probability 1− ε, by the assumption on F̂ .
We now show the induction step. Suppose that Eq. (2) holds for i−1 and every bi, . . . , bm ∈ Fp.

Let Ri = Si ∪ (Si−1 × {0, . . . , d}). Fix bi+1, . . . , bm ∈ Fp, and query F̂ on R
(bi+1,...,bm)
i . Note that

this is well-defined since
∣∣∣R(bi+1,...,bm)

i

∣∣∣ ≤ |Si|+ (d+ 1) |Si−1| ≤ (d+ 2) |S| ≤ (d+ 2)k′ ≤ k.

We have that Si−1 × {0, . . . , d} ⊆ Ri, and so for every j ∈ {0, . . . , d}, the induction hypothesis

implies (by setting bi = j) that with probability at least 1− εi−1 there exists g
(j)
i−1 ∈ RS⊗i−1[Fp, d]

such that F̂(a1, . . . , ai−1, j, bi+1, . . . , bm) = g
(j)
i−1(a1, . . . , ai−1) for every (a1, . . . , ai−1) ∈ Si−1.

For j ∈ {0, . . . , d}, let δj(x) := δj,{0,...,d}(x). Let gi ∈ RS⊗i[Fp, d] be defined as gi(x1, . . . , xi) =∑d
j=0 δj(xi) · g

(j)
i−1(x1, . . . , xi−1). We show that

Pr[F̂(a1, . . . , ai, bi+1, . . . , bm) = gi(a1, . . . , ai) for all (a1, . . . , ai) ∈ Si] ≥ 1− εi .

Indeed, note that for any (a1, . . . , ai) ∈ Si we have (a1, . . . , ai−1) ∈ Si−1, and so with probability

1− (d+ 1)εi−1 all the g
(j)
i−1’s exist, and so we have that for all (a1, . . . , ai) ∈ Si it holds that

gi(a1, . . . , ai) =
d∑
j=0

δj(ai) · g(j)i−1(a1, . . . , ai−1) =
d∑
j=0

δj(ai) · F̂(a1, . . . , ai−1, j, bi+1, . . . , bm)

By the assumption on F̂ , we have

Pr[
d∑
j=0

δj(ai)·F̂(a1, . . . , ai−1, j, bi+1, . . . , bm) = F̂(a1, . . . , ai, bi+1, . . . , bm) ∀(a1, . . . , ai) ∈ Si] ≥ 1−|Si| ε .

Combining the two equations shows that gi(a1, . . . , ai) = F̂(a1, . . . , ai, bi+1, . . . , bm) with probability
1− (d+ 1)εi−1 − |Si| ε ≥ 1− (d+ 1)εi−1 − |S| ε = 1− εi, as required, completing the proof.

6.4 Step 4: Completing the proof

The following generic lemma immediately implies Lemma 6.6.
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Lemma 6.8. Let C ⊆ Fn be a linear code, and let F be a k-non-signaling function. Suppose that
Pr[〈α,F〉 = 0] ≥ 1 − ε for every α ∈ C⊥≤k. Then there exists a k/2-non-signaling function G that

is (C, k/2)-supported such that ∆k/2(F ,G) ≤ (qk/2 + 1) · qk/4 · 2ε.

Proof. Let α, α′ ∈ Fn≤k/2 such that α− α′ ∈ C⊥. Then

∣∣∣F̂(α)− F̂(α′)
∣∣∣ =

∣∣∣∣∣∣ 1

qn

∑
j∈Fp

ω−j(Pr[Tr(〈α,F〉) = j]− Pr[Tr(〈α′,F〉) = j])

∣∣∣∣∣∣
≤ 1

qn

∑
j∈Fp

∣∣ω−j∣∣ ∣∣Pr[Tr(〈α,F〉) = j]− Pr[Tr(〈α′,F〉) = j]
∣∣

≤ 1

qn

∑
j∈Fp

∣∣Pr[Tr(〈α,F〉) = j ∧ 〈α− α′,F〉 6= 0]− Pr[Tr(〈α′,F〉) = j ∧ 〈α− α′,F〉 6= 0]
∣∣

≤ 1

qn

∑
j∈Fp

(∣∣Pr[Tr(〈α,F〉) = j ∧ 〈α− α′,F〉 6= 0]
∣∣+
∣∣Pr[Tr(〈α′,F〉) = j ∧ 〈α− α′,F〉 6= 0]

∣∣)
≤ 2

qn
· Pr[〈α− α′,F〉 6= 0] ≤ 2ε

qn
,

since α − α′ ∈ C⊥ and wt(α − α′) ≤ k. By Lemma 5.4, there exists a quasi-distribution Q
supported on C such that ∆k/2(F ,Q) ≤ qk/4 · 2ε. By Lemma 3.9, there exists a quasi-distribution

Q′ supported on C such that ∆k/2(Q,Q′) ≤ qk/2 · qk/4 · 2ε. Letting G be the k/2-non-signaling
function corresponding to Q′ completes the proof.
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7 Local characterizations and linear proofs

We prove Theorem 3 in this section. For this section, we let k′ ≤ k be an integer. We let C ⊆ Fn
be a linear code, and T ⊆ Fn be a set of constraints. Given a k-non-signaling function F , we say
that F satisfies a constraint α ∈ Fn≤k if Pr[〈α,F〉 = 0] = 1.

Definition 7.1. We let Consistent(T, k) denote the set of k-non-signaling functions F where
Pr[〈α,F〉 = 0] = 1 for every α ∈ T . That is, Consistent(T, k) is the set of k-non-signaling functions
that are consistent with T .

We note that by Lemma 5.7, Consistent(C⊥≤k′ , k) is the set of k-non-signaling functions that are
(C, k′)-explainable.

With the above definition, the definition of local characterization can be rephrased as follows.

Definition 7.2. For ` ≤ k′ ≤ k, a set of constraints T ⊆ C⊥≤` is a `-local characterization of
(C, k′, k) if Consistent(T, k) equals the set of k-non-signaling functions that are (C, k′)-explainable,
i.e. that Consistent(T, k) = Consistent(C⊥≤k′ , k).

In this language, [CMS18] shows that T = {ex + ey − ex+y : x, y ∈ {0, 1}n} is a 3-local
characterization of (C, k − 1, k), where C is the Hadamard code.

We briefly recall the definition of a k-local linear proof introduced in Section 1.2.

Definition 7.3 (k-local linear proof). Given a constraint set T and α ∈ Fn, we write T `k α if
there exists a sequence (α0 := 0n, α1, . . . , αr−1, αr := α) with each αi ∈ Fn such that, for every
i ∈ [r], one of the following holds:
• ∃ j < i and b ∈ F such that αi = bαj
• ∃ j < i and γ ∈ T such that |supp(αj) ∪ supp(γ)| ≤ k and αi = αj + γ
• ∃ j1, j2 < i such that |supp(αj1) ∪ supp(αj2)| ≤ k and αi = αj1 + αj2.

Theorem 3 is stated formally as the theorem below.

Theorem 7.1 (Formal version of Theorem 3). k-local linear proofs are complete and sound for
k-non-signaling functions. In particular, for ` ≤ k′ ≤ k, a set of constraints T ⊆ C⊥≤` is a `-local

characterization of (C, k′, k) if and only if T `k C⊥≤k′.

The proof of Theorem 7.1 relies on the notion of a k-local subspace, which we define below.

Definition 7.4. A k-local subspace V is a subset of Fn≤k where V⊆S ⊆ Fn is a linear subspace for
every S ⊆ [n]≤k.

We prove Theorem 7.1 by showing the following three lemmas.

Lemma 7.5 (Soundness). If T `k α, then Consistent(T, k) = Consistent(T ∪ {α}, k).

Lemma 7.6. For every k-local subspace V ⊆ Fn≤k, there exists a k-non-signaling function F such

that Pr[〈α,F〉 = 0] = 1 for every α ∈ V, and Pr[〈α,F〉 = 0] = 1
|F| otherwise.

Lemma 7.7. {α ∈ Fn : T `k α} ⊆ Fn≤k is a k-local subspace.

The following corollary follows immediately from Lemma 7.6 and Lemma 7.7.
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Corollary 7.8 (Strong completeness). There exists a k-non-signaling function such that Pr[〈α,F〉 =
0] = 1 for every α where T `k α, and Pr[〈α,F〉 = 0] = 1

|F| otherwise.

Proof of Theorem 7.1. Completeness and soundness are shown in Corollary 7.8 and Lemma 7.5. It
remains to show the equivalence for local characterizations.

Suppose that T `k C⊥≤k′ . Then by Lemma 7.5 we have that Consistent(T, k) = Consistent(T ∪C⊥≤k′ , k).

Since T ⊆ C⊥≤` and ` ≤ k′, we get that T ⊆ C⊥≤k′ . Hence, Consistent(T, k) = Consistent(T ∪C⊥≤k′ , k) =

Consistent(C⊥≤k′ , k), as required.
Conversely, suppose that T is an `-local characterization of (C, k′, k). By Lemma 7.6 and

Lemma 7.7, there exists a k-non-signaling function F such that Pr[〈α,F〉 = 0] = 1 for every
α ∈ Fn≤k such that T `k α, and Pr[〈α,F〉 = 0] = 1

|F| otherwise. Since T `k α for every α ∈ T ,

it follows that F ∈ Consistent(T, k), which implies that F ∈ Consistent(C⊥≤k′ , k) as T is an `-local

characterization of (C, k′, k). This implies that T `k α for all α ∈ C⊥≤k′ , since for all such α it holds

that Pr[〈α,F〉 = 0] = 1, and thus T `k α. Hence, T `k C⊥≤k′ , as required.

7.1 Proof of Lemma 7.5

It is clear that from the definition that Consistent(T, k) ⊇ Consistent(T ∪ {α}, k) for all α ∈ Fn.
Below we prove the containment in the other direction. Suppose that T `k α, and let (α0 =
0n, α1, . . . , αr = α) be a k-local proof of α from T . Let F ∈ Consistent(T, k), that is, F is a k-non-
signaling function such that ∀γ ∈ T , Pr[〈γ,F〉 = 0] = 1. We prove by induction that for i ∈ [r] it
holds that Pr[〈αi,F〉 = 0] = 1.

For the base case of i = 0 it must be the case that α0 = 0n. Therefore, Pr[〈α0,F〉 = 0] = 1.
For the induction step let i ≥ 1, and consider the following three cases.

1. There exists j < i and b ∈ F \ {0n} such that αi = bαj . Then,

Pr[〈αi,F〉 = 0] = Pr[b〈αj ,F〉 = 0] = Pr[〈αj ,F〉 = 0] = 1 ,

where the last equality uses the induction hypothesis.

2. There exist j < i and γ ∈ T such that αi = αj + γ with |supp(αj) ∪ supp(γ)| ≤ k. Since
F ∈ Consistent(T, k) we have that Pr[〈γ,F〉 = 0] = 1, as γ ∈ T . Therefore,

Pr[〈αi,F〉 = 0] = Pr[〈αj ,F〉+ 〈γ,F〉 = 0] ≥ Pr[〈αj ,F〉 = 0 ∧ 〈γ,F〉 = 0] = 1 ,

as required. Note that Pr[〈αj ,F〉 = 0∧〈γ,F〉 = 0] is well-defined since |supp(αj1) ∪ supp(γ)| ≤ k.

3. There exist j1, j2 < i such that αi = αj1 +αj2 and |supp(αj1) ∪ supp(αj2)| ≤ k. By the induction
hypothesis we know that Pr[〈αj1 ,F〉 = 0] = 1 and Pr[〈αj2 ,F〉 = 0] = 1. Thus,

Pr[〈αi,F〉 = 0] = Pr[〈αj1 ,F〉+ 〈αj2 ,F〉 = 0] ≥ Pr[〈αj1 ,F〉 = 0 ∧ 〈αj2 ,F〉 = 0] = 1 ,

and therefore Pr[〈αi,F〉 = 0] = 1. Again, we require |supp(αj1) ∪ supp(αj2)| ≤ k in order for
the last probability to be well-defined.

In particular, this implies that Pr[〈α,F〉 = 0] = Pr[〈αr,F〉 = 0] = 1, and hence F ∈
Consistent(T ∪ {α}, k). Therefore Consistent(T, k) ⊆ Consistent(T ∪ {α}, k), which completes the
proof of Lemma 7.5.
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7.2 Proof of Lemma 7.6

We define F specifying its local distributions FS for each S ⊆ [n]≤k. We define the function
FS : FS → C by specifying its (local) Fourier coefficients as follows. We set the Fourier coefficient

F̂S(α) to be 1
q|S|

if α ∈ V, and 0 otherwise.

We now show that each FS is a distribution. For any f : S → F we have

FS(f) =
∑
α∈FS

F̂S(α)χα(f) =
∑

α∈V⊆S

1

q|S|
χα(f) =

1

q|S|

∑
α∈V⊆S

ωTr(〈α,f〉) .

For each b ∈ F, let Vb ⊆ V⊆S be the set of α ∈ V⊆S where 〈α, f〉 = b. Let π : V⊆S → F be the
map where π(α) = 〈α, f〉. Since V⊆S is a subspace, π is a homomorphism. It follows that either
V0 = V⊆S or |Vb| = |V0| for every b ∈ F. In the first case,

∑
α∈V⊆S ω

Tr(〈α,f〉) = |V⊆S | ≥ 0. In the
second case, ∑

α∈V⊆S

ωTr(〈α,f〉) =
∑
b∈F

∑
α∈Vb

ωTr(b) =
∑
b∈F
|Vb|ωTr(b) = |V0|

∑
b∈F

ωTr(b) = 0 .

This implies that in either case, FS(f) ≥ 0, and so FS is a distribution.
We now show that the collection of local distributions {FS}S⊆[n]≤k is indeed non-signaling.

This follows from Lemma 4.9. If α ∈ V then we have that q|S|F̂S(α) = 1 = q|R|F̂R(α) for every

S,R ∈ [n]≤k such that supp(α) ⊆ S ∩R, and otherwise we have q|S|F̂S(α) = 0 = q|R|F̂R(α). Thus,
the collection of local distributions is a k-non-signaling function F .

It remains to show that F satisfies the desired property. Observe that for every α, qnF̂(α) =
q|supp(α)|F̂supp(α)(α) = 1 if α ∈ V, and otherwise F̂(α) = 0. By Lemma 4.3 it follows that F has
the desired properties.

7.3 Proof of Lemma 7.7

Let V = {α ∈ Fn : T `k α}. We show that V is a k-local subspace. Let S ⊆ [n]≤k. We need to
show that V⊆S is a linear subspace of Fn. We first observe that 0n is always in the set, as T `k 0n

always.
Let α ∈ V⊆S and let b ∈ F \ {0}. Then we have that T `k α which implies that T `k bα. Since

supp(bα) = supp(α) ⊆ S, it follows that bα ∈ V⊆S .
Let α, β ∈ V⊆S . Then, since |supp(α) ∪ supp(β)| ≤ |S| ≤ k we have that (α, β, α + β) is a

hyperedge in Γk. Thus, since T `k {α, β} it follows that T `k α + β. Since supp(α + β) ⊆
supp(α) ∪ supp(β) ⊆ S, it follows that α+ β ∈ V⊆S .

We have thus shown that V⊆S is a linear subspace of Fn, which completes the proof.
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8 Low-degree testing fails for small locality

In this section, we prove Theorem 2. The proof relies heavily on Theorem 3.
We let C be the linear code of m-variate polynomials P : Fm → F of total degree at most d,

with m ≥ 2, and let T be the set of α’s in C⊥ where the supp(α) is contained in exactly one line.
We define the rank of an element in C⊥ to be

rankT (α) := min
T ′⊆T :α∈span(T ′)

∣∣T ′∣∣ .
Note that since span(T ) = C⊥, the rank of α is well-defined for all α ∈ C⊥.

We let T0 denote the subset of T that only contains elements whose support is evenly-spaced
along a line and has weight d+ 2. With this notation, the non-signaling evenly-spaced test (i) sam-
ples α← T0 uniformly at random, and (ii) checks that 〈α,F〉 = 0.

The main theorem we prove is stated below, and is the formal statement of Theorem 2.

Theorem 8.1 (Formal version of Theorem 2). For every k with 2d+2 ≤ k < 3
16(d+2)2, there exists

a k-non-signaling function such that Pr[〈α,F〉 = 0] = 1 for every α ∈ T≤k, and yet ∆2d+2(F ,F ′) ≥
(1− 1

|F|) for every (2d+ 2)-non-signaling function F ′ that is (C, 2d+ 2)-explainable.

We begin the proof of Theorem 8.1 by showing the following lemma. This lemma follows from
earlier statements, and outlines a sufficient condition to prove Theorem 8.1

Lemma 8.1. Suppose that there exists α∗ ∈ C⊥ with wt(α∗) = 2d + 2 such that for every
k < 3

16(d+ 2)2 it holds that T 6`k α∗. Then for every k with 2d + 2 ≤ k < 3
16(d + 2)2 there

exists a k-non-signaling function F such that Pr[〈α,F〉 = 0] = 1 for every α ∈ T≤k, and yet
∆2d+2(F ,F ′) ≥ 1− 1

|F| for every (2d+ 2)-non-signaling function F ′ that is (C, 2d+ 2)-explainable.

Proof. Applying Corollary 7.8, for every k with 2d+2 ≤ k < 3
16(d+2)2, we get that there exists a k-

non-signaling function F such that Pr[〈α,F〉 = 0] = 1 for every α ∈ T≤k and Pr[〈α∗,F〉 = 0] = 1
|F| .

Let F ′ be a (2d+ 2)-non-signaling function that is (C, 2d+ 2)-explainable. Since for every S ⊆ Fm
with |S| ≤ 2d+2 we have that Pr[F ′(S) ∈ C|S ] = 1 and α∗ ∈ C⊥ has wt(α∗) = 2d+2, it follows that
Pr[〈α∗,F ′〉 = 0] = 1. Therefore, ∆2d+2(F ,F ′) ≥ |Pr[〈α∗,F〉 = 0]− Pr[〈α∗,F ′〉 = 0]| = 1− 1

|F| .

By Lemma 8.1 it suffices to find such an α∗. We let α∗ ∈ C⊥ be any constraint where supp(α) has
size 2d+2 and is contained on the curve x21−x2 = 0 embedded on the plane x3 = x4 = · · · = xm = 0
in Fm. We note that α∗ is one of the constraints that checks that P (t, t2, 0, . . . , 0) is a univariate
polynomial of degree at most 2d in t.

We show that α∗ satisfies the desired properties in two main lemmas. We first show the following
generic lemma, which gives us a way to prove that T 6`k α∗.

Lemma 8.2 (Interval cut Lemma). Fix α ∈ C⊥. Suppose that there exists r ∈ R with 2 ≤ r ≤
rankT (α) such that for every β ∈ C⊥ with rankT (β) ∈ [r/2, r) it holds that T 6`k β. Then T 6`k α.

We then show that every β ∈ C⊥ of rank in [(d + 2)/4, (d + 2)/2) must have large weight,
implying that they are not provable from T when k is small.

Lemma 8.3. For every β ∈ C⊥ with rankT (β) ∈ [(d + 2)/4, (d + 2)/2) it holds that wt(β) ≥
3
16(d+ 2)2. In particular, if k < 3

16(d+ 2)2 then T 6`k β.
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With the above two lemmas, we now finish the proof of Theorem 8.1.

Proof of Theorem 8.1. Let k < 3
16(d+ 2)2. We first show that rankT (α∗) ≥ d+ 1. Since the curve

x21 − x2 = 0 is irreducible in F[x1, x2, . . . , xm], any line L intersects the curve on at most 2 distinct
points. It follows that rankT (α∗) ≥ (2d + 2)/2 = d + 1, as any constraint β ∈ T can only have at
most 2 points on the curve x21 − x2 = 0.

Since k < 3
16(d + 2)2, Lemma 8.3 implies that T 6`k β for every β with rankT (β) ∈ [(d +

2)/4, (d+ 2)/2). Thus, by Lemma 8.2 it follows that T 6`k α∗. Hence, α∗ satisfies the assumptions
of Lemma 8.1, and so applying Lemma 8.1 completes the proof of Theorem 8.1.

Next we turn to the proofs of Lemma 8.2 and Lemma 8.3.

Proof of Lemma 8.2. First, observe that by definition of rank, rankT (α1 + α2) ≤ rankT (α1) +
rankT (α2). By the assumption of the lemma, there exists r ∈ R with 2 ≤ r ≤ rankT (α) such
that for every β ∈ C⊥ with rankT (β) ∈ [r/2, r) it holds that T 6`k β. We need to show that T 6`k α.

Suppose toward a contradiction that T `k α. Then there exists a path (α1, . . . , αt = α) in
Γk(C

⊥, T ) from 0n to α. Let S1 be the set of αi’s such that rankT (αi) < r/2, and let S2 be the set
of αi’s such that rankT (αi) ≥ r. Note that S1 ∪ S2 = {α1, . . . , αt}, as otherwise there would exist
some i such that αi has rank in [r/2, r), which would contradict the assumption that T `k αi for
all i ∈ [t].

Since rankT (α) ≥ r it follows that α ∈ S2, and hence S2 6= ∅. Let ` be the smallest index
such that α` ∈ S2. We have that α` 6= 0n since α` ∈ S2, and there does not exist i < ` and
b ∈ F \ {0} such that α` = bαi, as then rankT (αi) = rankT (α`) ≥ r, thus contradicting the
minimality of `. Suppose that there exists i < ` and γ ∈ T such that α` = αi + γ. By the
minimality of `, we must have that αi ∈ S1, and hence r ≤ rankT (α`) ≤ rankT (αi) + rankT (γ) <
r/2 + 1 ≤ r/2 + r/2 = r, which is also a contradiction. Therefore, there must either exist j1, j2 < `
such that α` = αj1 + αj2 . By the minimality of `, we must have that αj1 , αj2 ∈ S1, and hence
r ≤ rankT (α`) ≤ rankT (αj1) + rankT (αj1) < r/2 + r/2 = r, which is, again, a contradiction. In all
cases we have reached a contradiction to the assumption that T `k α, which completes the proof
of Lemma 8.2.

Remark 8.4. We note that in the foregoing proof we only required that rankT is subadditive, i.e.,
that rankT (α1 + α2) ≤ rankT (α1) + rankT (α2), rankT (α) = 1 for every α ∈ T , and rankT (0n) = 0.
Thus, the Interval Cut Lemma holds for any such subadditive function.

Proof of Lemma 8.3. Let β ∈ C⊥ be such that rankT (β) = r ∈ [(d + 2)/4, (d + 2)/2). Then there
exist lines L1, . . . , Lr such that β =

∑r
i=1 βi where supp(βi) ⊆ Li. The Li’s must be distinct,

as otherwise we could add two constraints contained in the same line and we would then get
rankT (β) < r. We have that wt(βi) ≥ d+ 2 for each i. Hence, wt(β) ≥ r(d+ 2)− 2

(
r
2

)
, since each

βi contributes at least d + 2 to the weight, and there are at most
(
r
2

)
intersection points as each

of the r lines is distinct. The function f(r) = r(d + 2) − r2 for r ∈ [d+2
4 , d+2

2 ) is minimized when

r = d+2
4 , and hence wt(β) ≥ r(d+ 2)− r2 ≥ 3

16(d+ 2)2, which completes the proof.
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A Separating classical and non-signaling local characterizations

In this section we prove Theorem 4.

Theorem A.1 (Formal version of Theorem 4). Fix d ∈ N with d ≥ 2, and let n ∈ N such that
2n ≡ 0 mod d. There exists a code C ⊆ Fn2 and a constraint set T such that

• For classical functions, T is a d-local characterization of C,

• For non-signaling functions, T is not a d-local characterization of (C, 2d, k) for every k ≤ n−d
6 .

Theorem A.1 follows from the lemma below.

Lemma A.1. Fix d ∈ N with d ≥ 2, and let n ∈ N such that 2n ≡ 0 mod d. There exists a
collection T ⊆ Fn2 of 2n/d− 2 linearly independent vectors such that:

1. wt(v) = d for all v ∈ T .

2. wt(
∑

v∈T v) = 2d.

3. For all S ⊆ T of size |S| ≤ n/2 it holds that wt(
∑

v∈S v) ≥ d|S|
3 .

A lemma of similar flavor is used in [BHR05] to prove that a random LDPC code is not locally
testable, as well as in the proof of lower bounds for SoS algorithms used to solve the MAX-3-XOR
problem [Gri01; Sch08]. We now prove Theorem A.1 assuming Lemma A.1.

Proof of Theorem A.1. Let T ⊆ Fn2 be the set of vectors from Lemma A.1, and let C = span(T )⊥.
By construction, T is a classical d-local characterization of C.

Fix k < n−d
6 , and let α =

∑
v∈T v. Note that α ∈ span(T ) and that by Lemma A.1, wt(α) = 2d.

By Theorem 7.1, to show that T is not a d-local characterization of (C, 2d, k), it suffices to show
that T 6`k α.

We have that rankT (α) = |T | = 2n/d − 2. Suppose that T `k α. Then by Lemma 8.2,
there exists β ∈ span(T ) such that rankT (β) ∈ [(n/d − 1)/2, n/d − 1) and T `k β. Since T is
a linearly independent set of vectors, we must have that β =

∑
v∈S v for some S ⊆ T and that

rankT (β) = |S|. Therefore, |S| ∈ [(n/d − 1)/2, n/d − 1), and in particular |S| ≤ n/d − 1 ≤ n/2.

By Item 3 of Lemma A.1, we get that wt(β) ≥ d|S|
3 ≥ n−d

6 . This implies that T 6`k β, since

k < n−d
6 ≤ wt(β), a contradiction. Thus, T 6`k α, which completes the proof.

Proof of Lemma A.1. Let G = (V,E) be a d-regular (|V | /2, d/3)-edge expander with |V | = 2n/d
vertices and |E| = n edges, and denote the edges by e1, . . . , en. For each vertex u ∈ V let vu ∈ Fn2
be defined as

(vu)i =

{
1, if ei is adjacent to v

0, otherwise .

Let T ′ = {vu : u ∈ V } be the collection of all vectors corresponding to the vertices of V .

We claim that for all S ⊆ T ′ of size |S| ≤ n/d it holds that wt(
∑

v∈S v) ≥ |S|·d
3 . Indeed, let

VS ⊆ V be the subset of vertices corresponding to the vectors in S. Observe that wt(
∑

v∈S v) =
|E(VS , V \ VS)|, and hence, since G is an (n/d, d/3)-expander graph, it follows that wt(

∑
v∈S v) =

|E(VS , V \ VS)| ≥ d|VS |
3 = d|S|

3 . Also, observe that T ′ is not linearly independent. However, the
following claim shows that removing any vector from T ′ produces a linearly independent set of
vectors.
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Claim A.2. Suppose that
∑n

i=1 aivi = 0 for some ai ∈ F2. Then either ai = 0 for all i ∈ [n] or
ai = 1 for all i ∈ [n].

Proof. Let VS ⊆ V be the set of vertices corresponding to ai’s, i.e, S = {i : ai = 1}. Then∑n
i=1 aivi = |E(VS , V \ VS)|. By edge expansion the graph G is connected, and hence VS is either

∅ or V , and the claim follows.

Finally, we define the set T by removing two arbitrary vectors with disjoint support from T ′.
By Claim A.2 the vectors in T are linearly independent. Since wt(

∑
v∈T ′ v) = 0 and the two vectors

removed have disjoint support, we see that wt(
∑

v∈T v) = 2d. We also have that wt(
∑

v∈S v) ≥ |S|·d3
for all S ⊆ T of size at most |S| ≤ n/d, as this property held for T ′, and T ⊆ T ′.
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B On robust local characterizations

In this section, we prove a robust analogue of Theorem 3. We consider the case where a non-signaling
function F satisfies every constraint α in T with high probability (as opposed to probability 1, as
in the exact case). This is different from the classical case where we assume that a function f
satisfies a random constraint α in T (sampled from a distribution over T ) with high probability.
In the non-signaling setting, the assumption that F satisfies every constraint with high probability
is typical, as for natural codes (e.g., Hadamard and Reed–Muller codes), F satisfying a random
constraint α with high probability implies that its self-correction satisfies every constraint α ∈ T
with high probability.

Informally, we let nsrankT (α) denote the length of the shortest k-local linear proof of α from T .
We then show the following robust analogue of Theorem 3.

Theorem 5. Let T ⊆ C⊥ be set of constraints each of weight at most k.

1. Suppose that a k-non-signaling function F satisfies every α ∈ T with probability at least 1 − ε.
Then F satisfies every α where T `k α with probability at least 1− nsrankT (α)ε.

2. Conversely, there exists a k-non-signaling function F that satisfies every α where T `k α with
probability exactly 1− wt(α)ε, and every other α with probability 1

|F| .

We additionally show that nsrankT (α) ≥ wt(α)/wt(T ) where wt(T ) = maxγ∈T wt(γ). We then
show that if C = {(b, . . . , b) : b ∈ F2} is the repetition code and T = {ei + ej : i, j ∈ [n]} is the
natural 2-local test, then nsrankT (α) = wt(α)/2, showing that Theorem 5 is tight for some choice
of C (by replacing ε with ε/2 in the second bullet). Finally, if C is the Hadamard code, then
wt(α)/3 ≤ nsrankT (α) ≤ wt(α), implying that Theorem 5 is tight up to a constant factor in this
case.

In Appendix B.1 we prove part 1 of Theorem 5, and in Appendix B.2 we prove part 2. Finally,
in Appendix B.3 we show that Theorem 5 is tight for the repetition code and is tight up to a
constant factor for the Hadamard code.

B.1 Part 1 of Theorem 5

We prove part 1 of Theorem 5. In order to do this, we must first formally define nsrankT . We define

nsrankT (α) := min
P

costP (α) ,

where the minimum is taken over all k-local linear proofs P of α from T , and costP (α) is defined
according to the following definition:

Definition B.1. Let P = (α0, . . . , αr) be a proof of α from T as in Definition 1.5. For each
i ∈ {0, . . . , r}, we define costP (αi) recursively as follows.

1. (Base case) costP (α0) = costP (0n) = 0.

2. (Case 1) if there exists j < i and b ∈ F such that αi = bαj, then costP (αi) = costP (αj).

3. (Case 2) if there exists j < i and γ ∈ T such that |supp(αj) ∪ supp(γ)| ≤ k and αi = αj + γ,
then costP (αi) = costP (αj) + 1.
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4. (Case 3) if there exists j1, j2 < i such that |supp(αj1) ∪ supp(αj2)| ≤ k and αi = αj1 +αj2, then
costP (αi) = costP (αj1) + costP (αj2).

If more than one of the above cases hold for a particular αi, then costP (αi) is defined to be the
minimum over all possible cases.

We note that nsrankT (α) implicitly depends on k. In fact, when k = n we have that nsrankT (α) =
rankT (α), which motivates nsrank as a non-signaling analogue of rank.

Using the definition above, we prove part 1 of Theorem 5. Suppose that F is a k-non-signaling
function such that Pr[〈α,F〉 = 0] ≥ 1− ε for every α ∈ T . Let α ∈ Fn≤k be such that T `k α. We
show that Pr[〈α,F〉 = 0] ≥ 1− nsrankT (α)ε.

Let P = (α0, . . . , αr) be a proof of α from T such that costP (α) is minimal, i.e., such that
nsrankT (α) = minP costP (α). Let costP (αi) be the non-negative integers assigned to each αi ∈ P .
We prove that for all i ∈ {0, . . . , r} it holds that Pr[〈αi,F〉 = 0] ≥ 1− costP (αi)ε. The proof is by
induction on i.

For the base case of i = 0 indeed holds Pr[〈α0,F〉 = 0] = 1 = 1− costP (α0)ε. For the induction
step let i ≥ 1, and consider the following three cases.

1. Case 1: Suppose there exists j < i and b ∈ F such that αi = bαj . By the induction hypothesis
Pr[〈αj ,F〉 = 0] ≥ 1− costP (αj)ε, and hence

Pr[〈αi,F〉 = 0] = Pr[〈bαj ,F〉 = 0] = Pr[〈αj ,F〉 = 0] ≥ 1− costP (αj)ε = 1− costP (αi)ε .

2. Case 2: Suppose there exists j < i and γ ∈ T such that |supp(αj) ∪ supp(γ)| ≤ k and αi = αj+γ.
Then by the induction hypothesis Pr[〈αj ,F〉 = 0] ≥ 1− costP (αj)ε, and hence

Pr[〈αi,F〉 = 0] = Pr[〈αj+γ,F〉 = 0] ≥ Pr[〈αj ,F〉 = 0∧〈γ,F〉 = 0] ≥ 1−costP (αj)ε−ε = 1−costP (αi)ε ,

by union bound. Therefore, also in this case Pr[〈αi,F〉 = 0] ≥ 1− costP (αi)ε.

3. Case 3: Otherwise, there exists j1, j2 < i such that |supp(αj1) ∪ supp(αj2)| ≤ k and αi =
αj1 + αj2 . Then,

Pr[〈αi,F〉 = 0] = Pr[〈αj1+αj2 ,F〉 = 0] ≥ Pr[〈αj1 ,F〉 = 0∧〈αj2 ,F〉 = 0] ≥ 1−costP (αj1)ε−costP (αj2)ε ,

by the induction hypothesis and union bound. Since costP (αi) = costP (αj1) + costP (αj2), it
follows that Pr[〈αi,F〉 = 0] ≥ 1− costP (αi)ε, as required.

By induction, we conclude that Pr[〈α,F〉 = 0] ≥ 1−costP (αr)ε = 1−nsrankT (α)ε, which completes
the proof.

B.2 Part 2 of Theorem 5

We prove part 2 of Theorem 5 by showing the following lemma.

Lemma B.2. Let cost : Fn → Z≥0 be a function such that for every α ∈ Fn, if α =
∑n

i=1 αiei,
then cost(α) =

∑
i:αi 6=0 cost(ei). Let M : Fn → Fn be a linear transformation. Let W be a k-local

subspace, and let ε ≥ 0 be such that 1 − q
q−1cost(Mα)ε ≥ 0 for every α ∈ W. Then there exists

a k-non-signaling function F such that Pr[〈α,F〉 = 0] = 1 − cost(Mα)ε for every α ∈ W, and
Pr[〈α,F〉 = 0] = 1

|F| otherwise.
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Part 2 of Theorem 5 follows from Lemma B.2 by setting cost(ei) = 1 for each i ∈ [n], and letting
M be the identity matrix.

Note that the assumptions on cost in Lemma B.2 imply that cost(0n) = 0, and for every α ∈ Fn
and b ∈ F\{0}, we have that cost(α) = cost(bα). In addition, if we let πi : Fn → F be the projection
map α 7→ αi, and let hi : Fn → Z be the map which sends α 7→ 1 if αi 6= 0 and α 7→ 0 otherwise,
then cost(α) =

∑n
i=1 hi(α)cost(ei).

The following lemma will be used in the proof. We delay the proof of the lemma until after the
proof of Lemma B.2.

Lemma B.3. Let V ⊆ Fn be a linear subspace. Then for every subspace V0 ⊆ V of co-dimension
1 it holds that 1

q−1
∑

α∈V\V0 cost(α)−
∑

α∈V0 cost(α) ≥ 0.

Proof of Lemma B.2. As in the proof of Lemma 7.6, we define each FS first as a function FS → C
by specifying its Fourier coefficients. In particular, we set F̂S = 1

q|S|
· (1− q

q−1cost(Mα)ε) if α ∈ W,

and 0 otherwise.
We now finish the proof assuming that each FS is in fact a distribution. By Lemma 4.9, it follows

that the collection of local distributions F = {FS}S⊆[n]≤k is k-non-signaling, and by Lemma 4.3 it
follows that F has the desired properties, completing the proof.

It remains to show that each FS is a distribution. Since cost(0n) = 0, we have that F̂S(0S) =
1
q|S|

, and hence
∑

f∈FS FS(f) = 1. So, it remains to show that FS(f) ≥ 0 for each f ∈ FS .

Let V =W⊆S . Note that by definition of FS we have that

FS(f) =
∑
α∈FS

F̂S(α)χα(f) =
∑
α∈V

(
1− q

q − 1
cost(Mα)ε

)
· 1

q|S|
ω−Tr(〈α,f〉) ,

since F̂S(α) = 0 when α /∈ V. For any α ∈ V, if 〈α, f〉 = 0 then
∑

b∈F\{0} ω
−Tr(〈bα,f〉) = q − 1.

Otherwise,
∑

b∈F\{0} ω
−Tr(〈bα,f〉) = −1.

Let V0 ⊆ V be the subspace containing all α ∈ V such that 〈α, f〉 = 0. Since cost(Mα) =
cost(M(bα)) for all b ∈ F \ {0}, the above computation shows that

q|S|FS(f) =
∑
α∈V0

(
1− q

q − 1
cost(Mα)ε

)
+
−1

q − 1
·
∑

α∈V\V0

(
1− q

q − 1
cost(Mα)ε

)
.

There are two cases. If V0 = V, then q|S|FS(f) =
∑

α∈V0

(
1− q

q−1cost(Mα)ε
)
≥ 0 by assumption.

If V0 ( V, then V0 is a subspace of co-dimension 1, as it is specified by one linear constraint. Let
γ ∈ V \ V0. Then

q|S|FS(f) =
∑
α∈V0

1− q

q − 1
cost(Mα)ε+

−1

q − 1
·
∑

b∈F\{0}

1− q

q − 1
cost(M(α+ bγ))ε


=

q

q − 1
ε ·
∑
α∈V0

−cost(Mα) +
1

q − 1
·
∑

b∈F\{0}

cost(M(α+ bγ))

 .

If Mγ = 0n, then we have that cost(Mα) = cost(M(α+ bγ)) for every b ∈ F, which implies that
the above sum is 0. Hence, FS(f) ≥ 0 in this case. If Mγ 6= 0n, then MV0 ( MV is a subspace
of co-dimension 1. The remainder of the proof follows from Lemma B.3 applied to the subspaces
MV0 ⊆MV.
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We now prove Lemma B.3

Proof of Lemma B.3. Let V0 ⊆ V be a subspace of co-dimension 1. Since V0 6= V, there exists an
element γ ∈ V \ V0. We have that

1

q − 1

∑
α∈V\V0

cost(α)−
∑
α∈V0

cost(α) =
∑
α∈V0

−cost(α) +
1

q − 1

∑
b 6=0

cost(α+ bγ)


=

n∑
i=1

cost(ei)
∑
α∈V0

−hi(α) +
1

q − 1

∑
b 6=0

hi(α+ bγ)

 .

Let i ∈ [n]. Observe that if γi = 0, then −hi(α) + 1
q−1

∑
b6=0 hi(α + bγ) = 0 for every α ∈ V0.

Let i ∈ [n] such that γi 6= 0. Observe that if hi(α) = 0, then −hi(α) + 1
q−1

∑
b 6=0 hi(α + bγ) =

1, as hi(α + bγ) = 1 for every b ∈ F \ {0} as γi 6= 0, and hi(α) = 0. If hi(α) = 1, then
−hi(α) + 1

q−1
∑

b 6=0 hi(α + bγ) = − 1
q−1 , as then there exists a unique b∗ ∈ F \ {0} such that

hi(α+ b∗γ) = 0 and hi(α+ bγ) = 1 for all other b.
Now, either hi(α) = 0 for every α ∈ V0, or hi(α) = 1 for some α ∈ V0. In the first case,

we have that
∑

α∈V0

(
−hi(α) + 1

q−1
∑

b 6=0 hi(α+ bγ)
)

= |V0| ≥ 0, as each term in the sum is

1. The second case is more complicated. If hi(α) = 1 for some α ∈ V0, then we have that∑
α∈V0

(
−hi(α) + 1

q−1
∑

b 6=0 hi(α+ bγ)
)

= |{α ∈ V0 : hi(α) = 0}| − 1
q−1 |{α ∈ V0 : hi(α) = 1}|. In

this case, the linear homomorphism πi : V0 → F has πi(α) 6= 0 for some α ∈ V0, which implies that
|{α ∈ V0 : π(α) = 0}| = |{α ∈ V0 : π(α) = b}| for every b ∈ F. In particular, |{α ∈ V0 : hi(α) = 0}| =
1
q−1 |{α ∈ V0 : hi(α) = 1}|. This implies that

∑
α∈V0

(
−hi(α) + 1

q−1
∑

b 6=0 hi(α+ bγ)
)

= 0. Hence,

1

q − 1

∑
α∈V\V0

cost(α)−
∑
α∈V0

cost(α) =
n∑
i=1

cost(ei)
∑
α∈V0

−hi(α) +
1

q − 1

∑
b6=0

hi(α+ bγ)

 ≥ 0 ,

as
∑

α∈V0

(
−hi(α) + 1

q−1
∑

b 6=0 hi(α+ bγ)
)
≥ 0 for each i ∈ n.

B.3 On the tightness of Theorem 5

We now show that Theorem 5 is tight when C is the repetition code and is tight up to a factor of
3 when C is the Hadamard code. We begin by stating the following proposition.

Proposition B.4. Let T be a set of local constraints, and let k ≥ 0. Then,

• nsrankT (α) ≥ rankT (α).

• nsrankT ≥ wt(α)/`, where ` = maxα∈T wt(α).

The first statement follows immediately from the fact that any k-local proof of length r can be
mapped to a proof of length ≤ r as in Definition 1.2. The second statement follows immediately
from the first one and the fact that if rankT (α) = r then wt(α) ≤ r`.
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Let C be the Hadamard code and T = {ex + ey − ex+y : x, y ∈ Fn}. In [CMS18] it is shown
implicitly that nsrankT (α) ≤ wt(α)− 2. The above shows that nsrankT (α) ≥ wt(α)/3. This implies
that for the Hadamard code, Theorem 5 is tight up to a factor of 3.

We now show the following lemma, which implies that Theorem 5 is tight for the repetition
code.

Lemma B.5. If C = {0n, 1n} ⊆ {0, 1}n is the repetition code and T = {ei + ej : i, j ∈ [n]} is the
canonical test, then nsrankT (α) = wt(α)/2.

Proof. Observe that C⊥ = {α ∈ {0, 1}n :
∑n

i=1 αi = 0}. Note that in particular, wt(α) is even for
every α ∈ C⊥. Let α ∈ C⊥, and let i1, . . . , i` be the set of indices in [n] such that αij 6= 0. Then
α = (ei1 + ei2) + (ei3 + ei4) + · · · + (ei`−1

+ ei`) = α1 + · · · + α`/2. Observe that if T `k α, then
wt(α) ≤ k. Hence, the above gives a k-local proof of α of length `/2, and so nsrankT (α) ≤ `/2.
The earlier proposition implies that nsrankT (α) = `/2, completing the proof.
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