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Abstract

A line of recent works showed that for a large class of learning problems, any learning
algorithm requires either super-linear memory size or a super-polynomial number of
samples [R16, KRT17, R17, MM18, BOGY18, GRT18]. For example, any algorithm
for learning parities of size n requires either a memory of size Ω(n2) or an exponential
number of samples [R16].

All these works modeled the learner as a one-pass branching program, allowing
only one pass over the stream of samples. In this work, we prove the first memory-
samples lower bounds (with a super-linear lower bound on the memory size and super-
polynomial lower bound on the number of samples) when the learner is allowed two
passes over the stream of samples. For example, we prove that any two-pass algorithm
for learning parities of size n requires either a memory of size Ω(n1.5) or at least 2Ω(

√
n)

samples.
More generally, a matrix M : A×X → {−1, 1} corresponds to the following learning

problem: An unknown element x ∈ X is chosen uniformly at random. A learner tries
to learn x from a stream of samples, (a1, b1), (a2, b2) . . ., where for every i, ai ∈ A is
chosen uniformly at random and bi = M(ai, x).

Assume that k, `, r are such that any submatrix of M of at least 2−k ·|A| rows and at
least 2−` · |X| columns, has a bias of at most 2−r. We show that any two-pass learning
algorithm for the learning problem corresponding to M requires either a memory of

size at least Ω
(
k ·min{k,

√
`}
)

, or at least 2Ω(min{k,
√
`,r}) samples.
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1 Introduction

A large number of recent works studied the problem of proving memory-samples lower bounds
for learning [S14, SVW16, R16, VV16, KRT17, MM17, R17, MM18, MT17, BOGY18,
GRT18, DS18], a study that was initiated by the beautiful papers of Shamir [S14] and
Steinhardt, Valiant and Wager [SVW16]. The motivation for studying this question comes
from learning theory, computational complexity and cryptography (see for example the
discussion and references in [S14, SVW16, R16, VV16, KRT17, MT17]).

Steinhardt, Valiant and Wager conjectured that any algorithm for learning parities of
size n requires either a memory of size Ω(n2) or an exponential number of samples. This
conjecture was proven in [R16], followed by a line of works that showed that for a large
number of learning problems, any learning algorithm requires either super-linear memory
size or a super-polynomial number of samples [KRT17, R17, MM18, BOGY18, GRT18].
For example, such bounds were established for learning sparse parities, linear-size DNF
Formulas, linear-size Decision Trees and logarithmic-size Juntas [KRT17]; learning low-
degree polynomials [BOGY18, GRT18]; learning from sparse linear equations and low-degree
polynomial equations [GRT18]; learning codewords from random coordinates [R17, MM18,
GRT18]; etc.

All previous memory-samples lower bounds (in the regime where the lower bound on
the memory size is super-linear and the lower bound on the number of samples is super-
polynomial) modeled the learning algorithm by a one-pass branching program, allowing only
one pass over the stream of samples.

In this work, we prove the first such results when two passes over the stream of samples
are allowed. (We remark that we leave open the question of handling more than two passes.
While some parts of the current proof naturally extend to more than two passes, others are
more delicate.)

Our Results

As in [R17, BOGY18, KRT17], we represent a learning problem by a matrix. Let X, A
be two finite sets of size larger than 1 (where X represents the concept-class that we are
trying to learn and A represents the set of possible samples). Let M : A×X → {−1, 1} be
a matrix. The matrix M represents the following learning problem: An unknown element
x ∈ X was chosen uniformly at random. A learner tries to learn x from a stream of samples,
(a1, b1), (a2, b2) . . ., where for every i, ai ∈ A is chosen uniformly at random and bi = M(ai, x).

We model the learner for the learning problem that corresponds to the matrix M , by a
two-pass ordered branching program (Definition 2.2). Such a program reads the entire stream
of samples twice, in the exact same order. Roughly speaking, the model allows a learner
with infinite computational power, and bounds only the memory size of the learner and the
number of samples used.

As in [GRT18], our result is stated in terms of the properties of the matrix M as a
two-source extractor. Two-source extractors, first studied by Santha and Vazirani [SV84]
and Chor and Goldreich [CG88], are central objects in the study of randomness and
derandomization. As in [GRT18], our results hold whenever the matrix M has (even
relatively weak) two-source extractor properties.
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Roughly speaking, our main result can be stated as follows: Assume that k, `, r are such
that any submatrix of M of at least 2−k · |A| rows and at least 2−` · |X| columns, has a bias of
at most 2−r. Then, any two-pass learning algorithm for the learning problem corresponding

to M requires either a memory of size at least Ω
(
k ·min{k,

√
`}
)

, or at least 2Ω(min{k,
√
`,r})

samples.
Formally, our result is stated in Theorem 1 in terms of the properties of M as an L2-

Extractor (Definition 2.1), a notion that was defined in [GRT18] and (as formally proved
in [GRT18]) is closely related to the notion of two-source extractor. (The two notions are
equivalent up to small changes in the parameters.)

As in [GRT18], our main result can be used to prove (two-pass) memory-samples lower
bounds for many of the problems that were previously studied in this context. For example,
for learning parities, sparse parities, DNFs, decision trees, random matrices, error correcting
codes, etc. For example, our main result implies that any two-pass algorithm for learning
parities of size n requires either a memory of size Ω(n1.5) or at least 2Ω(

√
n) samples.

Related Work

To the best of our knowledge, the only previous work that proved memory-samples lower
bounds for more than one pass over the stream of samples, is the intriguing recent work of
Dagan and Shamir [DS18]. We note however that their results apply for a very different
setting and regime of parameters, where the obtained lower bound on the number of samples
is at most polynomial in the dimension of the problem. (Their result is proved in a very
different setting, where the samples may be noisy, and the lower bound obtained on the
number of samples is at most the product of the length of one sample times one over the
information given by each sample).

Motivation and Discussion

Many previous works studied the resources needed for learning, under certain information,
communication or memory constraints (see in particular [S14, SVW16, R16, VV16, KRT17,
MM17, R17, MM18, MT17, BOGY18, GRT18, DS18] and the many references given there).
A main message of some of these works is that for some learning problems, access to a
relatively large memory is crucial. In other words, in some cases, learning is infeasible, due
to memory constraints.

From the point of view of human learning, such results may help to explain the importance
of memory in cognitive processes. From the point of view of machine learning, these results
imply that a large class of learning algorithms cannot learn certain concept classes. In
addition, these works are related to computational complexity and have applications in
bounded-storage cryptography.

Most of these works apply to bounded-memory learning algorithms that consider the
samples one by one, with only one pass over the samples. In many practical situations,
however, more than one pass over the samples is used, so it’s desirable to extend these
results to more than one pass over the samples.

From the point of view of computational complexity, the problem of extending these
works to more than one pass over the samples is fascinating and challenging. It’s a common
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practice in streaming-complexity to consider more than one pass over the inputs, and in
computational complexity read-k-times branching programs have attracted a lot of attention.

We note that by Barrington’s celebrated result, any function in NC can be computed by
a polynomial-length branching program of width 5 [B89]. Hence, proving super-polynomial
lower bounds on the time needed for computing a function, by a branching program of
width 5, with polynomially many passes over the input, would imply super-polynomial lower
bounds for formula size, and is hence a very challenging problem.

Finally, let us mention that technically, allowing more than one pass over the samples is
very challenging, as all previous techniques are heavily based on the fact that in the one-pass
case all the samples are independent and hence at each time step, the learning algorithm
has no information about the next sample that it is going to see.

Techniques

Our proof builds on the works of [R17, GRT18] that gave a general technique for proving
memory-samples lower bounds for learning problems. However, these works (as well as all
other previous works that prove memory-samples lower bounds in this regime of parameters)
are heavily based on the fact that in the one-pass case all the samples are independent and
hence at each time step, the learning algorithm has no information about the next sample
that it is going to see. Roughly speaking, the proofs of [R17, GRT18] bound the L2-norm of
the distribution of x, conditioned on reaching a given vertex v of the branching program, but
they rely on the fact that the next sample is independent of x. Once one allows more than
one pass over the stream of samples, the assumption that the next sample is independent of
x doesn’t hold, as in the second pass the vertex may remember a lot of information about
the joint distribution of x and a1, . . . , am.

Roughly speaking, [R17, GRT18] considered the computation-path of the branching
program and defined “stopping-rules”. Intuitively, the computation stops if certain “bad”
events occur. The proofs show that each stopping rule is only applied with negligible
probability and that conditioned on the event that the computation didn’t stop, the L2-
norm of the distribution of x, conditioned on reaching a vertex v of the branching program,
is small (which implies that the program didn’t learn x).

When more than one pass over the samples is allowed, there is a serious problem with
this approach. After one pass, a vertex of the branching program has joint information on x
and a1, . . . , am. If we only keep track of the distribution of x conditioned on that vertex, it
could be the case that the next sample completely reveals x. One conceptual problem seems
to be that the second part of the program (that is, the part that is doing the second pass)
is not aware of what the first part did. An idea that turned out to be very important in
our proof is to take the second part to be the product of the first and second part, so that,
in some sense, the second part of the computation runs its own copy of the first part. In
addition, we have each vertex in the second part remembering the vertex reached at the end
of the first part.

As in [R17, GRT18], we define stopping rules for the computation-path and we prove that
the probability that the computation stops is small. We then analyze each part separately,
as a read once program. For each part separately, we prove that conditioned on the event
that the program didn’t stop, the L2-norm of the distribution of x, conditioned on reaching
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a vertex v, is small. It turns out that since the second part of the program runs its own copy
of the first part, the analysis of each part separately is sufficient.

We note, however, that the entire proof is completely different than [R17, GRT18]. The
stopping rules are different and are defined differently for each part. The proof that the
computation stops with low probability is much more delicate and complicated. The main
challenge is that when analyzing the probability to stop on the second part, we cannot ignore
the first part and we need to prove that we stop with low probability on the second part,
when starting from the start vertex of the first part (that is, the start vertex of the entire
program). This turns out to be very challenging and, in particular, requires a use of the
results for one-pass branching programs.

A proof outline is given in Section 4.

2 Preliminaries

Denote by log the logarithm to base 2. For a random variable Z and an event E, we denote
by PZ the distribution of the random variables Z, and we denote by PZ|E the distribution of
the random variable Z conditioned on the event E.

We will sometimes take probabilities and expectations, conditioned on events E that may
be empty. We think of these probabilities and expectations as 0, when the event E is empty.

2.1 Learning Problem

We represent a learning problem by a matrix. Let X, A be two finite sets of size larger than 1
(where X represents the concept-class that we are trying to learn and A represents the set
of possible samples). Let M : A×X → {−1, 1} be a matrix. The matrix M represents the
following learning problem: An unknown element x ∈ X was chosen uniformly at random.
A learner tries to learn x from a stream of samples, (a1, b1), (a2, b2) . . ., where for every i,
ai ∈ A is chosen uniformly at random and bi = M(ai, x).

Let n = log |X| and n′ = log |A|.

2.2 Norms and Inner Products

Let p ≥ 1. For a function f : X → R, denote by ‖f‖p the Lp norm of f , with respect to the
uniform distribution over X, that is:

‖f‖p =

(
E

x∈RX
[|f(x)|p]

)1/p

.

For two functions f, g : X → R, define their inner product with respect to the uniform
distribution over X as

〈f, g〉 = E
x∈RX

[f(x) · g(x)].

For a matrix M : A × X → R and a row a ∈ A, we denote by Ma : X → R the
function corresponding to the a-th row of M . Note that for a function f : X → R, we have
〈Ma, f〉 = (M ·f)a

|X| .
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2.3 L2-Extractors

Definition 2.1. L2-Extractor: Let X,A be two finite sets. A matrix M : A×X → {−1, 1}
is a (k, `)-L2-Extractor with error 2−r, if for every non-negative f : X → R with

‖f‖2
‖f‖1
≤ 2`

there are at most 2−k · |A| rows a in A with

|〈Ma, f〉|
‖f‖1

≥ 2−r .

2.4 Computational Model

In the following definition, we model the learner for the learning problem that corresponds
to the matrix M , by a branching program. We consider a q-pass ordered branching program.
Such a program reads the entire input q times, in the exact same order. That is, the program
has q parts (that are sequential in time). Each part reads the same stream in the exact same
order. Our main result is proved for two-pass ordered branching programs, that is, for the
case q = 2.

Definition 2.2. q-Pass Branching Program for a Learning Problem: A q-pass
(ordered) branching program of length q ·m and width d, for learning, is a directed (multi)
graph with vertices arranged in qm + 1 layers containing at most d vertices each. In the
first layer, that we think of as layer 0, there is only one vertex, called the start vertex. A
vertex of outdegree 0 is called a leaf. All vertices in the last layer are leaves (but there may
be additional leaves). Every non-leaf vertex in the program has 2|A| outgoing edges, labeled
by elements (a, b) ∈ A × {−1, 1}, with exactly one edge labeled by each such (a, b), and all
these edges going into vertices in the next layer. Each leaf v in the program is labeled by an
element x̃(v) ∈ X, that we think of as the output of the program on that leaf.

Computation-Path: The samples (a1, b1), . . . , (am, bm) ∈ A × {−1, 1} that are given
as input define a computation-path in the branching program, by starting from the start
vertex and following at step (j − 1) · m + i the edge labeled by (ai, bi) (where j ∈ [q] and
i ∈ [m]), until reaching a leaf. The program outputs the label x̃(v) of the leaf v reached by
the computation-path.

Success Probability: The success probability of the program is the probability that x̃ =
x, where x̃ is the element that the program outputs, and the probability is over x, a1, . . . , am
(where x is uniformly distributed over X and a1, . . . , am are uniformly distributed over A,
and for every i, bi = M(ai, x)).

Remark: We will sometimes consider branching programs in which the leaves are not
labeled, and hence the program doesn’t return any value. It will be convenient to refer to
such objects also as branching programs. In particular, we will view a part of the branching
program (e.g., the first few layers of a program) also as a branching program.

We think of the program as composed of q parts, where for every j ∈ [q], part-j contains
layers {(j − 1) ·m+ i}i∈[m].

For convenience, we think of each vertex u of the branching program as having a small
memory Su that contains some information about the path that led to the vertex, that
the vertex “remembers” (or “records”). Formally, this means that in the actual branching
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program the vertex u is split into distinct vertices u1, . . . , ud(u), according to the content
of the memory Su. Adding information to Su means that the vertex u is further split into
distinct vertices, according to the content of the information that was added. Thus, when
we refer to a vertex u of a program, we mean, a vertex u plus content of the memory Su.

In this paper, we will have the property that whenever we add some information to the
memory of a vertex u, that information is never removed/forgotten. That is, information
that was added to the memory of u, remains in the memory of all the vertices that can be
reached from u.

As mentioned above, in this paper we focus on the case q = 2. We denote by v0 the
start vertex of the program and by v1 the vertex reached at the end of the first part, that
is, layer-m. Note that v1 is a random variable that depends on x, a1, . . . , am.

2.5 Product of Programs

Intuitively, the product of two branching programs is a branching program that runs both
programs in parallel.

Definition 2.3. Product of One-Pass Branching Programs: Let B,B′ be two one-
pass branching programs for learning, of length m and widths d, d′, respectively. The product
B×B′ is a (one-pass) branching program of length m and width d · d′, as follows: For every
i ∈ {0, . . . ,m} and vertices v in layer-i of B and v′ in layer-i of B′, we have a vertex (v, v′)
in layer-i of B×B′. For every two edges: (u, v) from layer-(i−1) to layer-i of B and (u′, v′)
from layer-(i− 1) to layer-i of B′, both labeled by the same (a, b), we have in B×B′ an edge
((u, u′), (v, v′)) labeled by (a, b).

The label of a leaf (v, v′) is the label given by the second program B′. The content of the
memory S(v,v′) of a vertex (v, v′) is the concatenation of the content of Sv and the content of
Sv′.

Remark: We will use this definition also in cases where the leaves of B and/or B′ are not
labeled (that is, where B and/or B′ do not output any value; see a remark in Definition 2.2).

3 Main Result

Fix k, `, r ∈ N, such that r
k
, r
`

are smaller than a sufficiently small constant and k < n′,
` < n. Let ε > 0 be a sufficiently small constant. In particular, we assume that ε is
sufficiently smaller than all other constants that we discuss, say, ε < 1

1010
. We assume that

n, n′ are sufficiently large. Let
˜̀= min

{
k,
√
`
}
.

Let
r̃ = min

{
r

100
,

˜̀

100

}
. (1)

We assume that
r̃ > 100 ·max {log n, log n′} . (2)

We assume that M is a (10k, 10`)-L2-extractor with error 2−10r.
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Theorem 1. Let X, A be two finite sets. Let n = log2 |X| and n′ = log2 |A|. Fix k, `, r ∈ N,
such that, r

k
, r
`
< 1

100
, and k < n′, ` < n. Let ε > 0 be a sufficiently small constant, say,

ε < 1
1010

. Assume that n, n′ are sufficiently large. Let

˜̀= min
{
k,
√
`
}
.

Let
r̃ = min

{
r

100
,

˜̀

100

}
.

Assume that
r̃ > 100 ·max {log n, log n′} .

Let M : A×X → {−1, 1} be a matrix which is a (10k, 10`)-L2-extractor with error 2−10r.
Let B be a two-pass ordered branching program of length 2 ·m, where m is at most 2εr̃, and
width at most d = 2εk

˜̀/10, for the learning problem that corresponds to the matrix M . Then,
the success probability of B is at most 1

100
+ o(1).

4 Overview of the Proof

One-Pass Learners

We will start with giving a short outline of the proof of [R17, GRT18] for one-pass learners.
Assume that M is a (10k, 10`)-L2-extractor with error 2−10r, where r < k, `. Let B be a
one-pass branching program for the learning problem that corresponds to the matrix M .
Assume for a contradiction that B is of length m = 2εr and width d = 2εk`, where ε is a
small constant.

We define the truncated-path, T , to be the same as the computation-path of B, except
that it sometimes stops before reaching a leaf. Roughly speaking, T stops before reaching
a leaf if certain “bad” events occur. Nevertheless, we show that the probability that T
stops before reaching a leaf is negligible, so we can think of T as almost identical to the
computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. We denote
by Pr(v) = Pr(Ev) the probability for Ev (where the probability is over x, a1, . . . , am), and
we denote by Px|v = Px|Ev the distribution of the random variable x conditioned on the
event Ev. Similarly, for an edge e of the branching program B, let Ee be the event that T
traverses the edge e. Denote, Pr(e) = Pr(Ee), and Px|e = Px|Ee .

A vertex v of B is called significant if∥∥Px|v∥∥2
> 2` · 2−n.

Roughly speaking, this means that conditioning on the event that T reaches the vertex v,
a non-negligible amount of information is known about x. In order to guess x with a non-
negligible success probability, T must reach a significant vertex. We show that the probability
that T reaches any significant vertex is negligible, and thus the main result follows.

To prove this, we show that for every fixed significant vertex s, the probability that T
reaches s is at most 2−Ω(k`) (which is smaller than one over the number of vertices in B).
Hence, we can use a union bound to prove the bound.
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The proof that the probability that T reaches s is extremely small is the main part of
the proof. To that end, we use the following functions to measure the progress made by the
branching program towards reaching s.

Let Li be the set of vertices v in layer-i of B, such that Pr(v) > 0. Let Γi be the set of
edges e from layer-(i− 1) of B to layer-i of B, such that Pr(e) > 0. Let

Zi =
∑
v∈Li

Pr(v) · 〈Px|v,Px|s〉k,

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉k.

We think of Zi,Z ′i as measuring the progress made by the branching program, towards
reaching a state with distribution similar to Px|s.

We show that each Zi may only be negligibly larger than Zi−1. Hence, since it’s easy to
calculate that Z0 = 2−2nk, it follows that Zi is close to 2−2nk, for every i. On the other hand,
if s is in layer-i then Zi is at least Pr(s) · 〈Px|s,Px|s〉k. Thus, Pr(s) · 〈Px|s,Px|s〉k cannot be
much larger than 2−2nk. Since s is significant, 〈Px|s,Px|s〉k > 2`k · 2−2nk and hence Pr(s) is at
most 2−Ω(k`).

The proof that Zi may only be negligibly larger than Zi−1 is done in two steps. We show
by a simple convexity argument that Zi ≤ Z ′i. The hard part is to prove that Z ′i may only
be negligibly larger than Zi−1.

For this proof, we define for every vertex v, the set of edges Γout(v) that are going out
of v, such that Pr(e) > 0 and show that for every vertex v,∑

e∈Γout(v)

Pr(e) · 〈Px|e,Px|s〉k

may only be negligibly higher than

Pr(v) · 〈Px|v,Px|s〉k.

For this proof, we consider the function Px|v · Px|s. We first show how to bound∥∥Px|v · Px|s∥∥2
. We then consider two cases: If

∥∥Px|v · Px|s∥∥1
is negligible, then 〈Px|v,Px|s〉k is

negligible and doesn’t contribute much, and we show that for every e ∈ Γout(v), 〈Px|e,Px|s〉k
is also negligible and doesn’t contribute much. If

∥∥Px|v · Px|s∥∥1
is non-negligible, we use

the bound on
∥∥Px|v · Px|s∥∥2

and the assumption that M is a (10k, 10`)-L2-extractor to show

that for almost all edges e ∈ Γout(v), we have that 〈Px|e,Px|s〉k is very close to 〈Px|v,Px|s〉k.
Only an exponentially small (2−k) fraction of edges are “bad” and give a significantly larger
〈Px|e,Px|s〉k.

The reason that in the definitions of Zi and Z ′i we raised 〈Px|v,Px|s〉 and 〈Px|e,Px|s〉 to
the power of k is that this is the largest power for which the contribution of the “bad” edges
is still small (as their fraction is 2−k).

This outline oversimplifies many details. Let us briefly mention two of them. First, it is
not so easy to bound

∥∥Px|v · Px|s∥∥2
. We do that by bounding

∥∥Px|s∥∥2
and

∥∥Px|v∥∥∞. In order

to bound
∥∥Px|s∥∥2

, we force T to stop whenever it reaches a significant vertex (and thus we

are able to bound
∥∥Px|v∥∥2

for every vertex reached by T ). In order to bound
∥∥Px|v∥∥∞, we
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force T to stop whenever Px|v(x) is large, which allows us to consider only the “bounded”
part of Px|v. (This is related to the technique of flattening a distribution that was used
in [KR13]). Second, some edges are so “bad” that their contribution to Z ′i is huge so they
cannot be ignored. We force T to stop before traversing any such edge. (This is related to
an idea that was used in [KRT17] of analyzing separately paths that traverse “bad” edges).
We show that the total probability that T stops before reaching a leaf is negligible.

Thus, in [R17, GRT18] there are three stopping rules: We stop if we reach a significant
vertex. We stop if we have a bad edge and we stop if x is a significant-value of Px|v,
that is, if Px|v(x) is too large.

Two-Pass Learners

Let us now give a short outline of the additional ideas in the proof for two-pass learners. Let
B be a two-pass branching program for the learning problem that corresponds to the matrix
M . We denote by v0 the starting vertex of the program and by v1 the vertex reached at the
end of the first part. We assume without loss of generality that the answers are given in the
last layer of the program.

We update the second part so that every vertex v in the second part “remembers” v1.
This information is stored in the memory Sv. Formally, this means that starting from every
possible v1, we have a separate copy of the entire second part of the program. We then
change the second part so that it is now the product (see definition 2.2) of the first part
and the second part. Intuitively, this means that the second part runs a copy of the first
part of the computation, in parallel to its own computation.

As in [R17, GRT18], we define the truncated-path, T , to be the same as the computation-
path of the new branching program, except that it sometimes stops before reaching a leaf.
Roughly speaking, T stops before reaching a leaf if certain “bad” events occur. Nevertheless,
we show that the probability that T stops before reaching a leaf is small, so we can think of
T as essentially identical to the computation-path. The decision of whether or not T stops
on a given vertex v in layer-i of part-j will depend on v, Sv, x, ai+1. For that reason, we are
able to consider the path T , starting from any vertex v (without knowing the history of the
path that led to v, except for the information stored in Sv).

Let v be a vertex in the second part of the program (where an answer should be given).
The vertex v remembers (in Sv) the vertex v1. We denote by v1 → v the event that the path
T that starts from v1 reaches v (where v1 is the vertex at the end of the first part of the
program that v remembers, and the event is over x, a1, . . . , am). We denote by v0 → v the
event that the path T that starts from the start vertex v0 reaches v. More generally, for two
vertices w1, w2 in the program, we denote by w1 → w2 the event (over x, a1, . . . , am) that
the path T that starts from w1 reaches w2.

Let v be a vertex in the last layer of the program, such that Pr(v0 → v) > 0. Since
v remembers v1, the event v0 → v is equivalent to v0 → v1 → v (where v1 is the vertex
remembered by v). Since the second part of the program runs a copy of the first part and
since v is in the last layer, the event v1 → v implies the event v0 → v1. Thus, the event
v0 → v is equivalent to v1 → v.

Moreover, this is true when conditioning on x, and hence,

Px|v0→v = Px|v1→v

9



and
Pr[v0 → v] = Pr[v1 → v].

This is a crucial point as it means that∥∥Px|v0→v∥∥2
=
∥∥Px|v1→v∥∥2

,

that is, if we bound
∥∥Px|v1→v∥∥2

we also get a bound on
∥∥Px|v0→v∥∥2

.

The bound on
∥∥Px|v0→v∥∥2

is what we really need because if this is small then the program

cannot answer correctly. On the other hand, the bound on
∥∥Px|v1→v∥∥2

is easier to obtain as

it is a bound for a one-pass branching program. Thus, all we need is a bound on
∥∥Px|v1→v∥∥2

,
which is a bound for a one-pass branching program, and we already know how to obtain
bounds on the conditional distribution for one-pass programs.

Things, however, are not so simple, as we need to prove that T stops with small
probability, when starting from v0, rather than v1. The main problem with using the previous
stopping rules (in the second part of the program) is that it’s impossible to prove that we
stop on a bad edge with negligible probability (as demonstrated next). Roughly speaking,
we say that an edge e = (u, v) is “bad” if the equation on it splits the distribution Px|u in
a biased way. That is, a good edge is one where roughly half the probability mass of Px|u
satisfies the equation on the edge e. If the program stores in memory the i-th sample from
the first pass, then in the i-th step of the second pass, an edge e = (u, v) will definitely be
bad, since it will not split the distribution Px|u evenly.

For that reason, we change the bad-edges stopping rule. We say that an edge (v, u),
labelled by (a, b), is of high probability if the probability to sample a, conditioning on reaching
v from v0 (that is, reaching v from the starting vertex of the entire program) is large. The
third stopping rule is changed so that T doesn’t stop on a bad edge if it is of high probability.
Instead, if T traverses such an edge, we “remember” the time step in which T traversed that
edge, in all the future. That is, we enter the index i to Su (and remember it in all the future,
until the end of the program). In addition, we add a stopping rule that stops if the edge is
“very-bad” and a stopping rule that stops if the number of indices in Sv is too large, that is,
if the number of high-probability edges that were already traversed is too large (intuitively,
Sv won’t be too large because of the bounded memory size).

We analyze separately the probability to stop because of each stopping rule. The main
challenge is that we need to analyze these probabilities when starting from v0, that is, when
running a two-pass program. These proofs are technically hard, but the main reason that
we manage to analyze these probabilities is the following:

Recall that the second part of the program runs a copy of the first part of the program.
Thus, a vertex v in layer-i of the second part has a corresponding vertex v′ in layer-i of the
first part, such that, if the path T reached v it previously reached v′. Recall also that v
remembers v1, so if the path T reached v it previously reached v1. Thus, the event v0 → v
is equivalent to v0 → v′ → v1 → v, that is, the event

(v0 → v′) ∧ (v′ → v1) ∧ (v1 → v).

Since the second part of the program runs a copy of the first part, the event v1 → v implies
the event v0 → v′. Hence, the event v0 → v is equivalent to the event

(v′ → v1) ∧ (v1 → v).

10



Note that v′ is in layer-i of the first part and v is in layer-i of the second part, and from
layer-i of the first part to layer-i of the second part, the program is a one-pass program and
is hence easier to analyze.

5 Proof of Theorem 1

Assume that we have a two-pass ordered branching program, B, for the learning problem
that corresponds to the matrix M . We assume without loss of generality that the output
is given in the last layer. Assume that the length of the program is 2 · m, where m is at
most 2εr̃ and the width of the program is at most d = 2εk

˜̀/10. We will show that the success
probability of B is at most 1

100
+ o(1).

Let
`1 =

˜̀

100

and
`2 = `.

5.1 The Truncated Path

Below, we will make some changes in the branching program B. We will denote by B̂ the
resulting branching program. Let v0 be the start vertex of B̂. We will denote by v1 the
vertex reached at the end of the first part of B̂. Note that v1 is a random variable, that
depends on x, a1, . . . , am.

In the resulting branching program B̂, we will have the property that the vertex v1

reached at the end of the first part of the program is remembered by every future vertex v.
That is, every vertex v, in the second part of the program, remembers which vertex the path
that led to v reached, at the end of the first part of the program. Formally, this information
is stored in Sv.

Below, we will define the truncated-path, T , to be the same as the computation-path of
the new branching program, except that it sometimes stops before reaching a leaf. Roughly
speaking, T stops before reaching a leaf if certain “bad” events occur. Nevertheless, we show
that the probability that T stops before reaching a leaf is small, so we can think of T as
essentially identical to the computation-path. The decision of whether or not T stops on a
given vertex v in layer-i of part-j will depend on v, Sv, x, ai+1. For that reason, we are able
to consider the path T , starting from any vertex v (without knowing the history of the path
that led to v, except for the information stored in Sv).

Let v be a vertex in the second part of the program. The vertex v remembers (in Sv)
the vertex v1. We denote by v1 → v the event that the path T that starts from v1 reaches v
(where v1 is the vertex at the end of the first part of the program that v remembers, and
the event is over x, a1, . . . , am).

More generally, for two vertices w1, w2 in the program, we denote by w1 → w2 the event
(over x, a1, . . . , am) that the path T that starts from w1 reaches w2. In particular, v0 → v is
the event that the path T that starts from the start vertex v0 reaches v.

We change the original branching program B as follows:

11



First Part:

We define stopping rules for the first part as defined in [R17, GRT18] for one-pass programs,
as if the first part were the entire program. Next, we describe these rules formally.

Significant Vertices

We say that a vertex v in layer-i of the first part of the program is significant if∥∥Px|v0→v∥∥2
> 2`1 · 2−n.

Significant Values

Even if v is not significant, Px|v0→v may have relatively large values. For a vertex v in layer-i
of the first part of the program, denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v0→v(x′) > 24` · 2−n.

Bad Edges

For a vertex v in layer-i of the first part of the program, denote by Bad(v) the set of all
a ∈ A, such that, ∣∣(M · Px|v0→v)(a)

∣∣ ≥ 2−2r.

The Truncated-Path T on the First Part

We define T on the first part, by induction on the layers. Assume that we already defined
T until it reaches a vertex v in layer-i of the first part. The path T stops on v if (at least)
one of the following occurs:

1. v is significant.

2. x ∈ Sig(v).

3. ai+1 ∈ Bad(v).

Otherwise, (unless i = m) T proceeds by following the edge labeled by (ai+1, bi+1) (same as
the computational-path).

Second Part:

We denote by v1 the vertex in layer-m (that is, the last layer of the first part of the program)
that is reached by T . Note that v1 is a random variable that depends on x, a1, . . . , am. We
denote by d1 the number of vertices in layer-m. We assume without loss of generality that
each vertex in layer-m is reached with probability of at least 2−10r̃ · d−1

1 , as vertices reached
with negligible probability can be ignored. Formally, if we reach a vertex in layer-m, such
that, the probability to reach that vertex is smaller than 2−10r̃ · d−1

1 , the path T stops.
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We update the second part so that every vertex v in the second part “remembers” v1.
This information is stored in the memory Sv. Formally, this means that starting from every
possible v1, we have a separate copy of the entire second part of the program.

We then change the second part so that it is now the product (see definition 2.2) of the
first part (after it was changed as described above) and the second part. Intuitively, this
means that the second part runs a copy of the first part of the computation, in parallel to
its own computation.

Next, we define stopping rules for the second part, by induction over the layers, and
at the same time (by the same induction), we also define for each vertex v, a list Lv of
indices i1, . . . , id(v) ∈ [m] that the vertex v remembers (that is, the list Lv is stored in the
memory Sv). Once an index was added to Lv, it is remembered in all the future, that is, for
every vertex u reached from v (in the second part of the program), we have Lv ⊆ Lu. Note
that the stopping rules are defined for the updated second part (as described above).

The stopping rules for the second part extend the stopping rules in the case of one-pass
programs, as defined in [R17, GRT18], as if the second part were the entire program, with
starting vertex v1. However, the third stopping rule (bad edges) is now different. We say
that an edge (v, u), labelled by (a, b), is of high probability if the probability to sample a,
conditioning on reaching v from v0 (that is, reaching v from the starting vertex of the entire
program) is larger than 2k · 2−n′ . That is, if v is in layer-i of the second part, (v, u) is of high
probability if Pr[ai+1 = a | v0 → v] ≥ 2k · 2−n′ . The third stopping rule is changed so that T
doesn’t stop on a bad edge if it is of high probability. Instead, if T traverses such an edge,
we “remember” the time step in which T traversed that edge, in all the future. That is, we
enter the index i to Lu (and remember it in all the future, until the end of the program). In
addition, we add a stopping rule that stops if the edge is “very-bad” and a stopping rule that
stops if the number of indices in Lv is too large, that is, if the number of high-probability
edges that were already traversed is too large.

Next, we describe these rules formally. We initiate Lv1 = ∅.

Significant Vertices

We say that a vertex v in layer-i of the second part of the program is significant if∥∥Px|v1→v∥∥2
> 2`2 · 2−n.

Significant Values

For a vertex v in layer-i of the second part of the program, denote by Sig(v) the set of all
x′ ∈ X, such that,

Px|v1→v(x′) > 24` · 2−n.

Bad Edges

For a vertex v in layer-i of the second part of the program, denote by Bad(v) the set of all
a ∈ A, such that, ∣∣(M · Px|v1→v)(a)

∣∣ ≥ 2−2r.
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Very-Bad Edges

For a vertex v in layer-i of the second part of the program, denote by VeryBad(v) the set of
all (a, b) ∈ A× {−1, 1}, such that,

Pr
x

[M(a, x) = b | v1 → v] ≤ 2−4˜̀
.

High-Probability Edges

For a vertex v in layer-i of the second part of the program, denote by High(v) the set of all
a ∈ A, such that,

Pr[ai+1 = a | v0 → v] ≥ 2k · 2−n′ .

The Truncated-Path T on the Second Part

We define T on the second part, by induction on the layers. Assume that we already defined
T until it reaches a vertex v in layer-i of the second part (and we already defined Lv). The
path T stops on v if (at least) one of the following occurs:

1. v is significant.

2. x ∈ Sig(v).

3. ai+1 ∈ Bad(v) \ High(v).

4. (ai+1, bi+1) ∈ VeryBad(v).

5. |Lv| ≥ 200ε˜̀.

6. Recall that we changed the second part of the program so that it is the product of
the first part and the (original) second part. This means that the second part of the
program runs its own copy of the first part of the program. If the path T , that was
defined for the first part, stops on the copy of the first part that the second part runs,
the path T stops on the vertex v too.

Remark 5.1. We note that if T stopped on the first part, it couldn’t have reached v1

in the first place. Thus, conditioned on the event v0 → v1, the path T didn’t stop on
the first part. Therefore, conditioned on the event v0 → v1, the path T never stops
because of stopping rule 6. Thus, this stopping rule is not necessary. Nevertheless, we
add this stopping rule for completeness, so that it would be possible to consider the path
T starting from any vertex (even in the middle of the program), without conditioning
on the event of reaching that vertex.

Otherwise, unless T already reached the end of the second part, T proceeds by following the
edge labeled by (ai+1, bi+1) (same as the computational-path). Let (v, u) be the edge labeled
by (ai+1, bi+1). It remains to define the list Lu.
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Updating Lu

Let (v, u) be the traversed edge, labeled by (ai+1, bi+1). If the traversed edge (v, u) is not a
high-probability edge, that is, if ai+1 6∈ High(v), we define Lu = Lv.

If the traversed edge (v, u) is a high-probability edge, that is, if ai+1 ∈ High(v), we define
Lu = Lv ∪ {i+ 1}, and hence, by induction, Lu is the list of all indices corresponding to the
high-probability edges that T traversed, in the second part of the program, until reaching u.

5.2 Bounding the Width of the Branching Program B̂

From now on, we will only consider the final branching program, B̂.
The final branching program, B̂, has a larger width than the original one. The main

contributions to the larger width is that we changed the second part to be the product of the
first and second parts of the original program and that each vertex in the second part of B̂
remembers the vertex v1 (reached at the end of the first part). This multiplies the memory
needed (that is, the logarithm of the width of the program) by a factor of at most 3. In
addition, each vertex v has to remember Lv, but by Equation (1) and since T stops when

|Lv| ≥ 200ε˜̀, this adds memory of at most ε˜̀r
100

. Thus, the final width of B̂ is at most 2εk
˜̀/2.

5.3 The Probability that T Stops is Small

We will now prove that the probability that T stops before reaching a leaf is at most 1
100

+o(1).

Lemma 5.2. The probability that T stops before reaching a leaf is at most 1
100

+ o(1).

Proof. First, recall that if T reaches a vertex in layer-m, such that, the probability to reach
that vertex is smaller than 2−10r̃ · d−1

1 , then T stops. By the union bound, the probability
that T stops because of this rule is at most 2−10r̃ = o(1).

We will now bound the probability that T stops because of each of the other stopping
rules.

Recall that for two vertices w1, w2 in the program, we denote by w1 → w2 the event (over
x, a1, . . . , am) that the path T that starts from w1 reaches w2.

5.3.1 Stopping Rule 1: Significant-Vertices

Lemma 5.3. The probability that T reaches a significant vertex is at most o(1).

Lemma 5.3 is proved in Section 6.
Next, we will bound the probability that T stops because of each of the other stopping

rules. By Lemma 5.3, it’s sufficient to bound these probabilities, under the assumption
that T doesn’t reach any significant vertex (as otherwise, T would have stopped because of
stopping rule 1).

5.3.2 Stopping Rule 2: Significant-Values

We will now bound the probability that T stops because of stopping rule 2. We will first
prove the following claim.
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Claim 5.4. If v is a non-significant vertex in layer-i of part-j (where j ∈ {1, 2}), then

Pr
x

[x ∈ Sig(v) | vj−1 → v] ≤ 2−2`.

Proof. Since v is not significant,

E
x′∼Px|vj−1→v

[
Px|vj−1→v(x

′)
]

=
∑
x′∈X

[
Px|vj−1→v(x

′)2
]

= 2n · E
x′∈RX

[
Px|vj−1→v(x

′)2
]
≤ 22`j · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|vj−1→v

[
Px|vj−1→v(x

′) > 24` · 2−n
]
≤ 22`j−4` ≤ 2−2`.

Since conditioned on the event vj−1 → v, the distribution of x is Px|vj−1→v, we obtain

Pr
x

[
x ∈ Sig(v)

∣∣ vj−1 → v
]

= Pr
x

[(
Px|vj−1→v(x) > 24` · 2−n

) ∣∣ vj−1 → v
]
≤ 2−2`.

By Claim 5.4, if v is a non-significant vertex in layer-i of part-j then

Pr
x

[x ∈ Sig(v) | vj−1 → v] ≤ 2−2` ≤ 2−4˜̀
. (3)

We need to bound from above

E
v

[
Pr
x

[x ∈ Sig(v) | v0 → v]
]
, (4)

where the expectation is over the non-significant vertices v in layer-i of part-j, reached by
the path T . (If T stops before reaching layer-i of part-j, or if it reaches a significant vertex,
we think of v as undefined and think of the inner probability as 0). If j = 1, we are done by
Claim 5.4. We will proceed with the case j = 2. Recall that `2 = `.

We will use the following lemma, whose proof is deferred to the next subsection. We
shall instantiate the lemma by setting Sv = Sig(v).

Lemma 5.5. Assume that for every non-significant vertex v in layer-i of part-2, we have
some subset of values Sv ⊆ X that depends only on v. Assume that for every such v (with
positive probability for the event v1 → v, where v1 is the vertex recorded by v), we have

Pr
x

[x ∈ Sv | v1 → v] ≤ 2−4˜̀
.

Then,

E
v

[Pr
x

[x ∈ Sv | v0 → v]] < 2−Ω(˜̀) (5)

where the expectation is over the non-significant vertices v in layer-i of part-2, reached by
the path T . (If T stops before reaching layer-i of part-2, or if it reaches a significant vertex,
we think of v as undefined and think of the inner probability as 0).

By Expression (3), the assumption of the lemma is satisfied by the choice Sv = Sig(v).
Thus, the conclusion of the lemma implies that

E
v

[
Pr
x

[x ∈ Sig(v) | v0 → v]
]
≤ 2−Ω(˜̀).

Thus, the probability that T stops because of stopping rule 2 is at most 2−Ω(˜̀), in each
step, and taking a union bound over the length of the program, the probability that T stops
because of stopping rule 2 is at most 2−Ω(˜̀).
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5.3.3 Proof of Lemma 5.5

Proof. We could also write Ev[Prx[x ∈ Sv | v0 → v]] as∑
v∈Li,2

Pr[v0 → v] · Pr
x

[x ∈ Sv | v0 → v] =
∑
v∈Li,2

Pr[(x ∈ Sv) ∧ (v0 → v)]

where Li,2 denotes the non-significant vertices v in layer-i of part-2, that are reachable
(with probability larger than 0) from the start vertex.

Later on, we will define for every v ∈ Li,2, an event Gv that will occur with high
probability. We will denote by Ḡv, the complement of Gv. We will bound∑

v∈Li,2

Pr[(x ∈ Sv) ∧ (v0 → v)],

by bounding separately ∑
v∈Li,2

Pr[Gv ∧ (x ∈ Sv) ∧ (v0 → v)] (6)

and ∑
v∈Li,2

Pr[Ḡv ∧ (x ∈ Sv) ∧ (v0 → v)] (7)

The second expression will be bounded by∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v)], (8)

that will be at most 2−Ω(˜̀) (see Claim 5.6). Thus, we will focus first on bounding
Expression (6), which is equal to∑

v∈Li,2

∑
x′∈Sv

Pr[Gv ∧ (x = x′) ∧ (v0 → v)] (9)

=
∑
v∈Li,2

∑
x′∈Sv

Pr[Gv ∧ (v0 → v) | (x = x′)] · Pr[x = x′]. (10)

Recall that for two vertices w1, w2 in the program, we denote by w1 → w2 the event (over
x, a1, . . . , am) that the path T that starts from w1 reaches w2.

Recall that by the construction of the branching-program B̂, part-2 runs a copy of part-1
of the computation. Thus, the vertex v has a corresponding vertex v′ in layer-i of part-1,
such that, if the path T reached v it previously reached v′. Recall also that v remembers v1,
so if the path T reached v it previously reached v1.

Thus, the event v0 → v is equivalent to v0 → v′ → v1 → v, that is, the event

(v0 → v′) ∧ (v′ → v1) ∧ (v1 → v).

Since the second part of the program runs a copy of the first part, the event v1 → v implies
the event v0 → v′. Hence, the event v0 → v is equivalent to the event

(v′ → v1) ∧ (v1 → v).
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Note also that if we fix x, that is, if we condition on x = x′, and we fix v (which also fixes
v′, v1) the events (v′ → v1) and (v1 → v) are independent (as the first one depends only on
ai+1, . . . , am and the second depends only on a1, . . . , ai). We will also have the property that
the event Gv is a function of v′ rather than v, and hence will also be denoted by Gv′ = Gv

(recall that v determines v′). Moreover, if we fix x and v′, we will have the property that
the event Gv′ depends only on ai+1, . . . , am, and hence the events Gv′ and (v′ → v1) are
independent of (v1 → v).

Thus, for a fixed v (which also fixes v′, v1) and any x′ ∈ X,

Pr[Gv ∧ (v0 → v) | x = x′]

= Pr[Gv′ ∧ (v′ → v1) ∧ (v1 → v) | x = x′]

= Pr[Gv′ ∧ (v′ → v1) | x = x′] · Pr[v1 → v | x = x′].

We introduce the event (v′ →̃ v1) to indicate that the computational path from v′ reached v1

(as opposed to the usual notation that denotes the truncated path). Since (v′ → v1) implies
(v′ →̃ v1) we have

Pr[Gv′ ∧ (v′ → v1) | x = x′] · Pr[v1 → v | x = x′]

≤ Pr[Gv′ ∧ (v′ →̃ v1) | x = x′] · Pr[v1 → v | x = x′].

By Bayes’ rule, the last expression is at most

Pr[x = x′ | Gv′ ∧ (v′ →̃ v1)] · Pr[x = x′ | v1 → v] · Pr[v′ →̃ v1] · Pr[v1 → v]

Pr[x = x′]2

= Px|Gv′∧(v′ →̃ v1)(x
′) · Px|v1→v(x′) ·

Pr[v′ →̃ v1] · Pr[v1 → v]

Pr[x = x′]2
.

Thus, Expression (10) is at most∑
v∈Li,2

(
Pr[v′ →̃ v1] · Pr[v1 → v] ·

∑
x′∈Sv

Px|Gv′∧(v′ →̃ v1)(x
′)

Pr[x = x′]
· Px|v1→v(x′)

)
. (11)

Note that from layer-i of part-1 to layer-m of part-1, the branching program is one-pass.
Denote by Rv′ the one-pass branching program, from layer-i of part-1 to layer-m of part-1,
with starting vertex v′. Thus, we can use what we already know about one-pass branching
programs. We will apply a slight modification of the main theorem of [GRT18] (Proposition
7.1 from Appendix), for one-pass branching programs, with parameters k′ = k, `′ = ˜̀, r′ =
r̃/4.

As m ≤ 2εr̃ and Rv′ has width at most 2εk
˜̀/2 ≤ 2k

′·`′/100 (ε is small enough), by
Proposition 7.1, we know that for any fixed v′, there exists an event Gv′ that depends
only on x, ai+1, . . . , am, such that, Pr(Gv′) ≥ 1 − 2−

˜̀/8 (˜̀≤ k), and for every x′ ∈ X, and
every v1 such that Pr[Gv′ ∧ (v′ →̃ v1)] > 0 it holds that

Px|Gv′∧(v′ →̃ v1)(x
′) ≤ 22˜̀ · 2−n.

Namely, the event Gv′ is the event G from Proposition 7.1 corresponding to the branching
program Rv′ (that is, the event Gv′ is the event that the truncated-path as defined for one-
pass branching programs in [GRT18] with slight modification, didn’t stop because of one
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of the stopping rules, until the last layer, and didn’t violate the significant vertices and
significant values stopping rules in the last layer, that is, layer-m of part-1).

Substituting this in Expression (11), we get that the expression is at most

22˜̀ ·
∑
v∈Li,2

(
Pr[v′ →̃ v1] · Pr[v1 → v] ·

∑
x′∈Sv

Px|v1→v(x′)

)
. (12)

By the assumption of the lemma, for any v ∈ Li,2 we have
∑

x′∈Sv Px|v1→v(x
′) ≤ 2−4˜̀

, thus
Expression (12) is at most

2−2˜̀ ·
∑
v∈Li,2

Pr[v′ →̃ v1] · Pr[v1 → v].

Recall that Li,2 denotes only the vertices v in layer-i of part-2, that are reachable (with
probability larger than 0) from the start vertex, v0. Recall that the event (v1 → v) is
equivalent to the event (v0 → v′) ∧ (v1 → v).

Thus,∑
v∈Li,2

Pr[v′ →̃ v1] · Pr[v1 → v] ≤
∑
v′,v1,v

Pr [v′ →̃ v1] · Pr [(v0 → v′) ∧ (v1 → v)]

=
∑
v′,v1

Pr [v′ →̃ v1] ·
(∑

v

Pr [(v0 → v′) ∧ (v1 → v)]

)
≤
∑
v′,v1

Pr [v′ →̃ v1] · Pr [v0 → v′]

=
∑
v′

Pr [v0 → v′] ·
(∑

v1

Pr [v′ →̃ v1]

)
≤
∑
v′

Pr [v0 → v′] ≤ 1

(where the possible inequality in the first line is because the first sum is on all the paths
v0 → v′ → v1 → v, obtained with positive probabilities, whereas the second sum is on all
possible vertices v0, v

′, v1, v in the corresponding layers of the branching program).

Thus, we conclude that Expression (6) is at most 2−2˜̀
. It remains to bound

Expression (8).

Claim 5.6. ∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v)] ≤ 2−Ω(˜̀).

Proof. ∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v)] =
∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v′) ∧ (v′ → v1) ∧ (v1 → v)]

≤
∑
v′,v1,v

Pr[Ḡv ∧ (v0 → v′) ∧ (v′ → v1) ∧ (v1 → v)]
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=
∑
v′,v1,v

Pr[Ḡv′ ∧ (v0 → v′) ∧ (v′ → v1) ∧ (v1 → v)]

=
∑
v′∈Li,1

Pr[Ḡv′ ∧ (v0 → v′)] ·
∑
v1,v

Pr[(v′ → v1) ∧ (v1 → v)|Ḡv′ ∧ (v0 → v′)]

≤
∑
v′∈Li,1

Pr[Ḡv′ ∧ (v0 → v′)]. (13)

For every non-significant v′ ∈ Li,1, denote by

Xv′ = {x′ : Px|v0→v′(x′) ≥ 2
˜̀/16 · 2−n},

and split the expression Pr[Ḡv′ ∧ (v0 → v′)] according to whether or not (x ∈ Xv′).

Pr[Ḡv′ ∧ (v0 → v′)]

≤ Pr[(v0 → v′) ∧ (x ∈ Xv′)] + Pr[Ḡv′ ∧ (v0 → v′) ∧ (x /∈ Xv′)] (14)

We begin by bounding the first summand in Expression (14):

Pr[(v0 → v′) ∧ (x ∈ Xv′)] = Pr(v0 → v′) · Pr[(x ∈ Xv′)|v0 → v′]

We bound Pr[x ∈ Xv′|v0 → v′] very similarly to the proof of Claim 5.4, but with a different
threshold. Since v′ is not significant,

E
x′∼Px|v0→v′

[
Px|v0→v′(x′)

]
=
∑
x′∈X

[
Px|v0→v′(x′)2

]
= 2n · E

x′∈RX

[
Px|v0→v′(x′)2

]
≤ 22`1 · 2−n.

Hence, by Markov’s inequality,

Pr[x ∈ Xv′ |v0 → v′] = Pr
x′∼Px|v0→v′

[
Px|v0→v′(x′) ≥ 2

˜̀/16 · 2−n
]
≤ 22`1−˜̀/16 ≤ 2−

˜̀/32

(recall that `1 = ˜̀/100). Overall, we bounded the first summand in Expression (14) by

Pr(v0 → v′) · 2−˜̀/32.
Next, we bound the second summand in Expression (14).

Pr
[
Ḡv′ ∧ (v0 → v′) ∧ (x /∈ Xv′)

]
=

∑
x′∈X\Xv′

Pr(x = x′) · Pr
[
Ḡv′ ∧ (v0 → v′) | x = x′

]
.

Since if we fix x and v′, the event Gv′ depends only on ai+1, . . . , am and hence is independent
of (v0 → v′), we have ∑

x′∈X\Xv′

Pr(x = x′) · Pr
[
Ḡv′ ∧ (v0 → v′) | x = x′

]
=

∑
x′∈X\Xv′

Pr(x = x′) · Pr
[
Ḡv′ | x = x′

]
· Pr

[
v0 → v′ | x = x′

]
= Pr

(
v0 → v′

)
·
∑

x′∈X\Xv′

Pr
[
Ḡv′ | x = x′

]
· Pr

[
x = x′ | v0 → v′

]
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(by Bayes’ rule)

= Pr
(
v0 → v′

)
·
∑

x′∈X\Xv′

Pr
[
Ḡv′ | x = x′

]
· Px|v0→v′(x′)

≤ Pr
(
v0 → v′

)
·
∑

x′∈X\Xv′

Pr
[
Ḡv′ | x = x′

]
· 2˜̀/16 · 2−n

(by the definition of Xv′)
≤ Pr

(
v0 → v′

)
· Pr

(
Ḡv′
)
· 2˜̀/16

≤ Pr
(
v0 → v′

)
· 2−˜̀/8 · 2˜̀/16

≤ Pr
(
v0 → v′

)
· 2−˜̀/16.

Substituting in Expression (14), we have

Pr[Ḡv′ ∧ (v0 → v′)] ≤ Pr
(
v0 → v′

)
· 2−˜̀/32 + Pr

(
v0 → v′

)
· 2−˜̀/16.

Substituting in Expression (13), we have∑
v∈Li,2

Pr[Ḡv ∧ (v0 → v)] ≤ (2−
˜̀/32 + 2−

˜̀/16) ·
∑
v′∈Li,1

Pr
(
v0 → v′

)
≤ 2 · 2−˜̀/32.

This finishes the proof of Lemma 5.5.

5.3.4 Stopping Rule 3: Bad-Edges

We will now bound the probability that T stops because of stopping rule 3. We will first
prove the following claim.

Claim 5.7. If v is a non-significant vertex in layer-i of part-j (where j ∈ {1, 2}), then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−4k.

Proof. Since v is not significant,
∥∥Px|vj−1→v

∥∥
2
≤ 2`j · 2−n ≤ 2` · 2−n. Since Px|vj−1→v is a

distribution,
∥∥Px|vj−1→v

∥∥
1

= 2−n. Thus,∥∥Px|vj−1→v
∥∥

2∥∥Px|vj−1→v
∥∥

1

≤ 2`.

Since M is a (10k, 10`)-L2-extractor with error 2−10r, there are at most 2−10k · |A| elements
a ∈ A with ∣∣〈Ma,Px|vj−1→v〉

∣∣ ≥ 2−10r ·
∥∥Px|vj−1→v

∥∥
1

= 2−10r · 2−n

The claim follows since ai+1 is uniformly distributed over A.
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By Claim 5.7, if v is a non-significant vertex then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−4k.

We need to bound
Pr
ai+1

[ai+1 ∈ Bad(v) \ High(v) | v0 → v].

We bound

Pr
ai+1

[ai+1 ∈ Bad(v) \ High(v) | v0 → v] =
∑

a∈Bad(v)\High(v)

Pr[ai+1 = a | v0 → v]

≤
∑

a∈Bad(v)\High(v)

2k · 2−n′ ≤ 2k ·
∑

a∈Bad(v)

Pr[ai+1 = a]

= 2k · Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2k · 2−4k = 2−3k.

Thus, the probability that T stops because of stopping rule 3 is at most 2−3k, in each
step, and taking a union bound over the length of the program, the probability that T stops
because of stopping rule 3 is at most 2−2k.

5.3.5 Stopping Rule 4: Very-Bad Edges

We will now bound the probability that T stops because of stopping rule 4.
Recall that for a vertex v in layer-i of part-2 of the program, VeryBad(v) is the set of all

(a, b) ∈ A× {−1, 1}, such that,

Pr
x

[M(a, x) = b | v1 → v] ≤ 2−4˜̀
.

Note that for every a ∈ A, there is at most one b ∈ {−1, 1}, denoted bv(a), such that

Pr
x

[M(a, x) = b | v1 → v] ≤ 2−4˜̀
.

If such a b doesn’t exist we let bv(a) = ∗, and think of it as undefined. Thus, for every v,
and every (a, b) ∈ A× {−1, 1},(

(a, b) ∈ VeryBad(v)
)
⇐⇒

(
b = bv(a)

)
, (15)

and
Pr
x

[M(a, x) = bv(a) | v1 → v] ≤ 2−4˜̀
. (16)

Let av ∈ A be an a ∈ A, such that Prx[M(a, x) = bv(a) | v0 → v] is maximal and let
bv = bv(av). We need to bound from above

E
v

[
Pr[(ai+1, bi+1) ∈ VeryBad(v) | v0 → v]

]
, (17)

where the expectation is over the vertex v in layer-i of part-2, reached by the path T . (If
T stops before reaching layer-i of part-2, we think of v as undefined and think of the inner
probability as 0). That is, we could also write Expression (17) as∑

v∈Li,2

Pr[v0 → v] · Pr[(ai+1, bi+1) ∈ VeryBad(v) | v0 → v],
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where Li,2 denotes the vertices v in layer-i of part-2, that are reachable (with probability
larger than 0) from the start vertex. By Equation (15), Expression (17) is equal to

E
v

[
Pr[bi+1 = bv(ai+1) | v0 → v]

]
,

which, by the definition of bi+1, is equal to

E
v

[
Pr[M(ai+1, x) = bv(ai+1) | v0 → v]

]
,

which, by the definitions of av, bv, is at most

E
v

[
Pr[M(av, x) = bv | v0 → v]

]
. (18)

In what follows, we assume for simplicity and without loss of generality that for every v,
bv ∈ {−1, 1} is defined (as otherwise Pr[M(av, x) = bv | v0 → v] = 0 and can be omitted
from the expectation).

For any fixed v, denote by Sv = {x : M(av, x) = bv}. We can apply Lemma 5.5, since
from Expression (16) for any non-significant v

Pr[x ∈ Sv | v1 → v] ≤ 2−4˜̀
.

Thus, we get

E
v

[Pr[x ∈ Sv | v0 → v]] ≤ 2−Ω(˜̀) ,

and since (x ∈ Sv) ⇐⇒ (M(av, x) = bv), we have

E
v

[Pr[M(av, x) = bv | v0 → v]] ≤ 2−Ω(˜̀) .

Finally, by the definitions of av and bv we have

E
v

[Pr[(ai+1, bi+1) ∈ VeryBad(v) | v0 → v]] ≤ E
v

[Pr[M(av, x) = bv | v0 → v]] ≤ 2−Ω(˜̀) .

Thus, the probability that T stops because of stopping rule 4 is at most 2−Ω(˜̀), in each
step, and taking a union bound over the length of the program, the probability that T stops
because of stopping rule 4 is at most 2−Ω(˜̀).

5.3.6 Stopping Rule 5: Large Lv

Recall that for two vertices w1, w2 in the program, we denote by w1 → w2 the event (over
x, a1, . . . , am) that the path T that starts from w1 reaches w2.

Recall that v1 is the vertex reached by the path at the end of part-1. Fix v1 and denote
by E the event v0 → v1. Let u0, u1, . . . , um be the vertices reached by the path in part-2,
where u0 = v1. (If the path stops before reaching layer-i of part-2, we define ui to be a special
stop vertex in that layer). Note that conditioned on the event E, the random variable ui is
a function of x, a1, . . . , ai and for i ≥ 1 it can also be viewed as a function of x, ui−1, ai.

Denote by T the number of high-probability edges that the path traverses in part-2. For
every i ∈ [m], let Ti ∈ {0, 1} be an indicator random variable that indicates whether the
path traverses a high-probability edge at step-i of part-2. Thus,

T =
m∑
i=1

Ti.
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For every i ∈ [m], we have that Ti = 1 only if ai ∈ High(ui−1), that is, only if
Pr(ai|ui−1, E) ≥ 2k · 2−n′ , or equivalently

log
(
2n
′ · Pr(ai|ui−1, E)

)
k

≥ 1.

Claim 5.8. Let Z ∈ {0, 1}n′ be any random variable. Let k ≥ 4. Let T (Z) ∈ {0, 1} be an
indicator random variable for the event Pr(Z) ≥ 2k · 2−n′. Then,

2 · E
Z

[
log
(
2n
′ · Pr(Z)

)
k

]
≥ E

Z
[T (Z)].

Proof. Let α = PrZ(T (Z) = 1). That is, we have Pr(Z) ≥ 2k ·2−n′ with probability α. Thus,

E
Z

[
log
(
2n
′ · Pr(Z)

)
k

]
=

α · E
Z

[
log
(
2n
′ · Pr(Z)

)
k

∣∣∣∣∣ T (Z) = 1

]
+ (1− α) · E

Z

[
log
(
2n
′ · Pr(Z)

)
k

∣∣∣∣∣ T (Z) = 0

]
.

By the monotonicity of the logarithm function, we have,

α · E
Z

[
log
(
2n
′ · Pr(Z)

)
k

∣∣∣∣∣ T (Z) = 1

]
≥

α · E
Z

[
log
(
2n
′ · 2k · 2−n′

)
k

∣∣∣∣∣ T (Z) = 1

]
= α

By the monotonicity of the logarithm function and the concavity of the entropy function,
we have,

(1− α) · E
Z

[
log
(
2n
′ · Pr(Z)

)
k

∣∣∣∣∣ T (Z) = 0

]
≥

(1− α) · E
Z

[
log
(
2n
′ · (1− α) · 2−n′

)
k

∣∣∣∣∣ T (Z) = 0

]
=

(1− α) log(1− α)

k

(as, by the concavity of the entropy function, the expression is minimized when the random
variable Z|(T (Z) = 0) is uniformly distributed).

Thus, the left hand side of the claim is at least

2α +
2(1− α) log(1− α)

k
≥ 2α− 4α

k
≥ 2α− 4α

4
= α.

The claim follows Since EZ [T (Z)] = α.
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By Claim 5.8,

E
x,a1,...,am

[T |E] =
m∑
i=1

E
x,a1,...,am

[Ti|E] ≤ 2 ·
m∑
i=1

E
x,a1,...,am

[
log
(
2n
′ · Pr(ai|ui−1, E)

)
k

]

=
2

k
·

(
mn′ −

m∑
i=1

H(ai|ui−1, E)

)
,

where H denotes the entropy function. Since conditioning may only decrease the entropy,
the last expression is at most

≤ 2

k
·

(
mn′ −

m∑
i=1

H(ai|x, ui−1, E)

)
.

Since, conditioned on E, the random variable ui−1 is a function of x, a1, . . . , ai−1, by the
data-processing inequality, H(ai|x, ui−1, E) ≥ H(ai|x, a1, . . . , ai−1, E), and hence the last
expression is at most

≤ 2

k
·

(
mn′ −

m∑
i=1

H(ai|x, a1, . . . , ai−1, E)

)
.

By the chain rule, the last expression is equal to

=
2

k
·
(
mn′ −H(a1, . . . , am|x,E)

)
=

2

k
·
(
mn′ −H(x, a1, . . . , am|E) + H(x|E)

)
≤ 2

k
·
(
mn′ + n−H(x, a1, . . . , am|E)

)
≤ 2

k
· log

(
1

Pr(E)

)
.

Thus,

E
x,a1,...,am

[T |E] ≤ 2

k
· log

(
1

Pr(E)

)
.

By Markov inequality

Pr
x,a1,...,am

[
T ≥ 200

k
· log

(
1

Pr(E)

) ∣∣∣∣∣E
]
≤ 1

100
.

Since we assumed that Pr(E) ≥ 2−10r̃ · d−1
1 and since the width of B̂ is at most 2εk

˜̀/2

and since by Equation (1) and Equation (2), r̃ is negligible compared to εk ˜̀/2, we have that

log
(

1
Pr(E)

)
≤ εk ˜̀. Hence,

Pr
x,a1,...,am

[
T ≥ 200ε˜̀

∣∣∣∣ E] ≤ 1

100
.

Thus, the probability to stop on part-2 because of stopping rule 5 is at most 1
100

.
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5.3.7 Stopping Rule 6: Consistency-Stop

We will now show that the probability that T stops on a vertex v, in layer-i of part-2, because
of stopping rule 6, conditioned on the event v0 → v, is 0.

Recall that by the construction of the branching-program B̂, part-2 runs a copy of part-1
of the computation. Thus, the vertex v has a corresponding vertex v′ in layer-i of part-1,
such that, if the path T reached v it previously reached v′.

If T needs to stop on v, because of stopping rule 6, because T stopped on the vertex v′, it
couldn’t have reached v in the first place (as it would have stopped on v′). Thus, conditioned
on the event v0 → v, the path T didn’t stop on v′ and doesn’t need to stop on v because of
stopping rule 6.

Thus, the probability that T stops because of stopping rule 6 is 0.
This completes the proof of Lemma 5.2.

5.4 The Final Success Probability is Small

Let v be a vertex in the last layer of the program. Assume that the probability for the event
v0 → v is larger than 0. Since v is in the last layer, the event v0 → v is equivalent to v1 → v
(since the second part of the program runs a copy of the first part). Hence,

Px|v0→v = Px|v1→v

and
Pr[v0 → v] = Pr[v1 → v].

In particular, if v is not significant, Px|v0→v has small L2-norm.

E
x′∈RX

[
Px|v0→v(x′)2

]
≤ 22` · 2−2n.

Hence, for every x′ ∈ X,

Pr[x = x′ | v0 → v] = Px|v0→v(x′) ≤ 2` · 2−n/2 ≤ 2−n/4

In particular,
Pr[x̃(v) = x | v0 → v] ≤ 2−n/4.

Thus, either the computation path stops before reaching v which happens with probability
at most 1

100
+ o(1) or it reaches a non-significant vertex where the probability of guessing

correctly is o(1). Thus, the final success probability is bounded by 1
100

+o(1). This completes
the proof of Theorem 1.

6 Proof of Lemma 5.3

Proof Overview. Let s be a significant vertex in part-j (that remembers the vertices
visited at the end of parts 1, . . . , j−1, denoted by s1, . . . , sj−1). Assume that the probability
for the event v0 → s is larger than 0. We need to bound from above the probability for the
event v0 → s. Since the event v0 → s is equivalent to (v0 → sj−1) ∧ (sj−1 → s), it suffices
to bound from above the probability for (sj−1 → s). Note that to analyze this probability
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we can ignore all parts of the program, except for part-j, which is a one-pass branching
program.

We would like to reprove Lemma 4.1 of [GRT18], with the updated stopping rules. In
the definition of the progress function Zi, we will take the sum only on vertices u ∈ Li,j,
such that s can be reached from u (and in the same way for edges in the definition of Z ′i).
In particular, this implies that every index in Lu is contained in Ls (as otherwise s cannot
be reached from u).

The progress function is still small at the beginning and large at the end, so as before the
main thing to do is to prove that it grows slowly. This was done in Claim 4.10 of [GRT18].

The main difference here is that the progress function doesn’t grow slowly for every edge,
as some edges are now bad, and we have to take the bad edges into account. We separate to
time steps that are in Ls and time steps that are not in Ls. For time steps that are not in
Ls, we don’t need to count the bad edges at all, as they are not recorded by Ls and hence s
is not reachable from these edges.

As for steps in Ls, we know that the edges are not very-bad, and we show that the
progress function may increase by a factor of at most 25˜̀k. Since |Ls| ≤ 200ε˜̀ (as otherwise
T would have stopped by stopping rule 5), the total effect of the bad edges on the progress

function is a factor of at most 25˜̀k·200ε˜̀≤ 21000εk`, which we can afford.

6.1 Proof of Lemma 5.3

Proof. We need to prove that the probability that T reaches any significant vertex is o(1).
Let s be a significant vertex in part-j. Assume that the probability that T reaches s is
larger than 0. We will bound from above the probability that T reaches s, and then use
a union bound over all significant vertices of B̂. Since the event v0 → s is equivalent to
(v0 → sj−1) ∧ (sj−1 → s), it suffices to bound from above the probability for (sj−1 → s).
Note that to analyze this probability we can ignore all parts other than j of the program,
which leaves us with a one-pass branching program. Furthermore, since s determines sj−1,
we can only consider the subprogram that starts at sj−1 and analyze the probability that

the restriction of T to this subprogram reaches s. We denote by B′ the subprogram of B̂
restricted to the j-part with sj−1 as the starting node.

The Distributions Px|v and Px|e

For a vertex v in B′, we denote by Ev the event that T starting from sj−1 reaches the vertex
v. For simplicity, we denote by Pr(v) = Pr(Ev) the probability for Ev (where the probability
is over x, a1, . . . , am), and we denote by Px|v = Px|Ev the distribution of the random variable
x conditioned on the event Ev.

Similarly, for an edge e of the branching program B′, let Ee be the event that T starting
from sj−1 traverses the edge e. Denote, Pr(e) = Pr(Ee) (where the probability is over
x, a1, . . . , am), and Px|e = Px|Ee .

Notation: B′ inherits the definitions of significant vertices, Sig(v), Bad(v), VeryBad(v)
and High(v) from B̂. Note that significant vertices, Sig(v), Bad(v) and VeryBad(v) are
defined conditioned on the event vj−1 → v, which is equivalent to the event Ev. Recall
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that the walk T does not stop on an edge (v, u) marked (a, b) if a ∈ High(v), as long as
(a, b) /∈ VeryBad(v). We will use the following fact on T : if i /∈ Ls and T takes a bad-edge
(v, u) on the i-th step, then Lu 6⊆ Ls and s is not reachable from u.

For i ∈ {0, . . . ,m}, let L′i be the set of vertices v in layer-i of B′ such that Pr(v) > 0
and it is possible to reach s from v (in particular, the set of high-probability equations
stored in v is also stored in s). For i ∈ {1, . . . ,m}, let Γi be the set of edges e from L′i−1 to
L′i of B′, such that Pr(e) > 0.

Recall that by the construction of the branching-program B̂, part-j runs a copy of all
previous parts of the computation. Thus, a vertex v in B′ or equivalently a vertex v in part-j
of B̂ has corresponding vertices v′1, . . . , v

′
j−1 in layer-i of parts 1, . . . , j− 1, respectively, such

that, if the path T reached v it previously reached v′1, . . . , v
′
j−1. We denote by v′j = v. We

denote by

S̃ig(v) ,
j⋃

j′=1

Sig(v′j′).

Recall that by stopping rules 2 and 6, the path T stops if x ∈ S̃ig(v).
The next claim bounds the probability of stopping on a vertex v in part-2 due to stopping

rule 2 of part-1 on the vertex v′ that v remembers.

Claim 6.1. If v is a non-significant vertex in layer-i of part-2 that remembers v′, and v′ is
a non-significant vertex in layer-i of part-1, then

Pr
x

[x ∈ Sig(v′) | v1 → v] ≤ 2−2`.

Proof. Since v is not significant,

E
x′∼Px|v1→v

[
Px|v0→v′(x′)

]
=
∑
x′∈X

[
Px|v0→v′(x′) · Px|v1→v(x′)

]
(using Cauchy-Schwarz)

≤
√∑

x′∈X

Px|v0→v′(x′)2 ·
∑
x′∈X

Px|v1→v(x′)2

= 2n ·
√

E
x′∈RX

[
Px|v0→v′(x′)2

]
E

x′∈RX

[
Px|v1→v(x′)2

]
(since both v′ and v are non-significant)

≤ 2`1+`2 · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v1→v

[
Px|v0→v′(x′) > 24` · 2−n

]
≤ 2`1+`2−4` ≤ 2−2`.

Since conditioned on the event v1 → v, the distribution of x is Px|v1→v, we obtain

Pr
x

[
x ∈ Sig(v′)

∣∣ v1 → v
]

= Pr
x

[(
Px|v0→v(x) > 24` · 2−n

) ∣∣ v1 → v
]
≤ 2−2`.
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Claim 6.2. Let i ∈ {1, . . . ,m}. For any edge e = (v, u) ∈ Γi, labeled by (a, b), such that
Pr(e) > 0, for any x′ ∈ X,

Px|e(x′) =

{
0 if x′ ∈ S̃ig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ S̃ig(v) and M(a, x′) = b

where ce is a normalization factor that satisfies

• ce ≥ 1
2
− 2 · 2−2r, if i /∈ Ls.

• ce ≥ 2−4˜̀− 2 · 2−2` ≥ 2−5˜̀
, if i ∈ Ls.

Proof. Let v′1, . . . , v
′
j be the vertices in the branching program B̂ that v remembers. Let

e = (v, u) be an edge of B′, labeled by (a, b), and such that Pr(e) > 0. Since Pr(e) > 0, the
vertices v′1, . . . , v

′
j are not significant (as otherwise T always stops on v and hence Pr(e) = 0).

Also, since Pr(e) > 0, we know that (a, b) is not very-bad (as otherwise T never traverses e
and hence Pr(e) = 0).

If T reaches v, it traverses the edge e if and only if: x 6∈ S̃ig(v) (as otherwise T stops
on v) and M(a, x) = b and ai+1 = a. Therefore, for any x′ ∈ X,

Px|e(x′) =

{
0 if x′ ∈ S̃ig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ S̃ig(v) and M(a, x′) = b

where ce is a normalization factor, given by

ce =
∑

{x′ : x′ 6∈S̃ig(v) ∧M(a,x′)=b}
Px|v(x′) = Pr

x
[(x 6∈ S̃ig(v)) ∧ (M(a, x) = b) | Ev].

Since v′1, . . . , v
′
j are not significant, by Claim 5.4 and Claim 6.1:

Pr
x

[x ∈ S̃ig(v) | Ev] ≤
j∑

j′=1

2−2` ≤ 2 · 2−2` ≤ 2−2r.

If i /∈ Ls, then a /∈ Bad(v), as otherwise Lu 6⊆ Ls and s is not reachable from u. Thus∣∣∣Pr
x

[M(a, x) = 1 | Ev]− Pr
x

[M(a, x) = −1 | Ev]
∣∣∣ =

∣∣(M · Px|v)(a)
∣∣ ≤ 2−2r,

and hence
Pr
x

[M(a, x) 6= b | Ev] ≤ 1
2

+ 2−2r.

Hence, by the union bound,

ce = Pr
x

[(x 6∈ S̃ig(v)) ∧ (M(a, x) = b) | Ev] ≥ 1
2
− 2 · 2−2r.

If i ∈ Ls, then (a, b) /∈ VeryBad(v), and we have Prx[M(a, x) = b | Ev] ≥ 2−4˜̀
. Thus,

ce = Pr
x

[(x 6∈ S̃ig(v)) ∧ (M(a, x) = b) | Ev] ≥ 2−4˜̀− 2 · 2−2` .
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Bounding the Norm of Px|s

We will show that
∥∥Px|s∥∥2

cannot be too large. Towards this, we will first prove that for
every edge e of B′ that is traversed by T starting from sj−1 with probability larger than
zero,

∥∥Px|e∥∥2
cannot be too large.

Claim 6.3. For any edge e of B′, such that Pr(e) > 0,∥∥Px|e∥∥2
≤ 25˜̀ · 2`j · 2−n.

Proof. Let e = (v, u) be an edge of B′, labeled by (a, b), and such that Pr(e) > 0. Since
Pr(e) > 0, the vertex v is not significant (as otherwise T always stops on v and hence
Pr(e) = 0). Thus, ∥∥Px|v∥∥2

≤ 2`j · 2−n.
By Claim 6.2, for any x′ ∈ X,

Px|e(x′) =

{
0 if x′ ∈ S̃ig(v) or M(a, x′) 6= b

Px|v(x′) · c−1
e if x′ 6∈ S̃ig(v) and M(a, x′) = b

where ce satisfies ce ≥ 2−5˜̀
. Thus,∥∥Px|e∥∥2

≤ c−1
e ·

∥∥Px|v∥∥2
≤ 25˜̀ · 2`j · 2−n

Claim 6.4. ∥∥Px|s∥∥2
≤ 25˜̀ · 2`j · 2−n.

Proof. Let Γin(s) be the set of all edges e of B′, that are going into s, such that Pr(e) > 0.
Note that ∑

e∈Γin(s)

Pr(e) = Pr(s).

By the law of total probability, for every x′ ∈ X,

Px|s(x′) =
∑

e∈Γin(s)

Pr(e)
Pr(s)
· Px|e(x′),

and hence by Jensen’s inequality,

Px|s(x′)2 ≤
∑

e∈Γin(s)

Pr(e)
Pr(s)
· Px|e(x′)2.

Summing over x′ ∈ X, we obtain,∥∥Px|s∥∥2

2
≤

∑
e∈Γin(s)

Pr(e)
Pr(s)
·
∥∥Px|e∥∥2

2
.

By Claim 6.3, for any e ∈ Γin(s),∥∥Px|e∥∥2

2
≤
(

25˜̀ · 2`j · 2−n
)2

.

Hence, ∥∥Px|s∥∥2

2
≤
(

25˜̀ · 2`j · 2−n
)2

.
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Similarity to a Target Distribution

Recall that for two functions f, g : X → R+, we defined

〈f, g〉 = E
z∈RX

[f(z) · g(z)].

We think of 〈f, g〉 as a measure for the similarity between a function f and a target function g.
Typically f, g will be distributions.

Claim 6.5.
〈Px|s,Px|s〉 > 22`j · 2−2n.

Proof. Since s is significant,

〈Px|s,Px|s〉 =
∥∥Px|s∥∥2

2
> 22`j · 2−2n.

Claim 6.6.
〈UX ,Px|s〉 = 2−2n,

where UX is the uniform distribution over X.

Proof. Since Px|s is a distribution,

〈UX ,Px|s〉 = 2−2n ·
∑
z∈X

Px|s(z) = 2−2n.

Measuring the Progress

For i ∈ {0, . . . ,m}, let

Zi =
∑
v∈L′i

Pr(v) · 〈Px|v,Px|s〉k.

For i ∈ {1, . . . ,m}, let

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉k.

We think of Zi,Z ′i as measuring the progress made by the branching program, towards
reaching a state with distribution similar to Px|s.

For a vertex v ∈ L′i of B′, let Γout(v) be the set of all edges e of B′, that are going out of
v to L′i+1, such that Pr(e) > 0. Note that∑

e∈Γout(v)

Pr(e) ≤ Pr(v).

(We don’t always have an equality here, since sometimes T stops on v, or goes to a vertex
from which s is not reachable).

Recall that Ls stores a (not too long) list of indices to layers on which the path might
choose to go over bad edges. The next four claims show that the progress made by the
branching program is slow on every layer i /∈ Ls. On layers i ∈ Ls the progress might be
significant but we will still have meaningful bounds on it.

31



Claim 6.7. For every vertex v ∈ L′i−1, such that Pr(v) > 0,∑
e∈Γout(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉k ≤ 〈Px|v,Px|s〉k · cki + 2−2nk+k · cki ,

where ci is defined as

• ci = 1 + 2−r, if i /∈ Ls.

• ci = 25˜̀
, if i ∈ Ls.

Proof. If v is significant or v is a leaf, then T always stops on v and hence Γout(v) is empty
and thus the left hand side is equal to zero and the right hand side is positive, so the claim
follows trivially. Thus, we can assume that v is not significant and is not a leaf.

Define P : X → R+ as follows. For any x′ ∈ X,

P (x′) =

{
0 if x′ ∈ S̃ig(v)

Px|v(x′) if x′ 6∈ S̃ig(v)

Note that by the definition of Sig(v) and since Sig(v) ⊆ S̃ig(v), for any x′ ∈ X,

P (x′) ≤ 24` · 2−n. (19)

Define f : X → R+ as follows. For any x′ ∈ X,

f(x′) = P (x′) · Px|s(x′).

By Claim 6.4 and Equation (19),

‖f‖2 ≤ 24` · 2−n ·
∥∥Px|s∥∥2

≤ 24` · 2−n · 25˜̀ · 2`j · 2−n ≤ 210` · 2−2n. (20)

By Claim 6.2, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) =

{
0 if M(a, x′) 6= b

P (x′) · c−1
e if M(a, x′) = b

where ce satisfies ce ≥ 1
2
− 2 · 2−2r if i /∈ Ls and ce ≥ 2−5˜̀

if i ∈ Ls. Denote by cv the minimal

value that ce can get for e ∈ Γout(v). By the above, cv ≥ 2−5˜̀
and cv ≥ 1

2
− 2 · 2−2r if i /∈ Ls.

Note that c−1
v ≤ 2ci in both cases (recall that ci = 25˜̀

for i ∈ Ls and ci = 1 + 2−r if i /∈ Ls).
Therefore, for any edge e ∈ Γout(v), labeled by (a, b), for any x′ ∈ X,

Px|e(x′) · Px|s(x′) =

{
0 if M(a, x′) 6= b

f(x′) · c−1
e if M(a, x′) = b

and hence, we have

〈Px|e,Px|s〉 = E
x′∈RX

[Px|e(x′) · Px|s(x′)] = E
x′∈RX

[f(x′) · c−1
e · 1{x′∈X : M(a,x′)=b}]

= E
x′∈RX

[
f(x′) · c−1

e ·
(1+b·M(a,x′))

2

]
≤ (‖f‖1 + b · 〈Ma, f〉) · (2cv)−1. (21)

We will now consider two cases:
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Case I: ‖f‖1 < 2−2n

In this case, we bound |〈Ma, f〉| ≤ ‖f‖1 (since f is non-negative and the entries of M are
in {−1, 1}) and obtain for any edge e ∈ Γout(v),

〈Px|e,Px|s〉 < c−1
v · 2−2n ≤ 2ci · 2−2n.

Since
∑

e∈Γout(v)
Pr(e)
Pr(v)

≤ 1, Claim 6.7 follows, as the left hand side of the claim is smaller than
the second term on the right hand side.

Case II: ‖f‖1 ≥ 2−2n

For every a ∈ A, define

t(a) =
|〈Ma, f〉|
‖f‖1

.

By Equation (21),
〈Px|e,Px|s〉k < ‖f‖k1 · (1 + t(a))k · (2cv)−k (22)

Note that by the definitions of P and f ,

‖f‖1 = E
x′∈RX

[f(x′)] = 〈P,Px|s〉 ≤ 〈Px|v,Px|s〉.

Note also that for every a ∈ A, there is at most one edge e(a,1) ∈ Γout(v), labeled by (a, 1),
and at most one edge e(a,−1) ∈ Γout(v), labeled by (a,−1), and we have

Pr(e(a,1))

Pr(v)
+

Pr(e(a,−1))

Pr(v)
≤ 1
|A| ,

since 1
|A| is the probability that the next sample read by the program is a. Thus, summing

over all e ∈ Γout(v), by Equation (22),∑
e∈Γout(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉k < 〈Px|v,Px|s〉k · E

a∈RA

[
(1 + t(a))k

]
· (2cv)−k. (23)

It remains to bound
E

a∈RA

[
(1 + t(a))k

]
, (24)

using the properties of the matrix M and the bounds on the L2 versus L1 norms of f .
By Equation (20) and the assumption that ‖f‖1 ≥ 2−2n we get

‖f‖2

‖f‖1

≤ 210` .

Since M is a (10k, 10`)-L2-extractor with error 2−10r, there are at most 2−10k · |A| rows a ∈ A
with t(a) = |〈Ma,f〉|

‖f‖1
≥ 2−10r. We bound the expectation in Equation (24), by splitting the

expectation into two sums

E
a∈RA

[
(1 + t(a))k

]
= 1
|A| ·

∑
a : t(a)≤2−10r

(1 + t(a))k + 1
|A| ·

∑
a : t(a)>2−10r

(1 + t(a))k . (25)
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We bound the first sum in Equation (25) by (1 + 2−10r)k. As for the second sum in
Equation (25), we know that it is a sum of at most 2−10k · |A| elements, and since for every
a ∈ A, we have t(a) ≤ 1, we have

1
|A| ·

∑
a : t(a)>2−10r

(1 + t(a))k ≤ 2−10k · 2k ≤ 2−2r

(where in the last inequality we used the fact that r ≤ k). Overall, we get

E
a∈RA

[
(1 + t(a))k

]
≤ (1 + 2−10r)k + 2−2r ≤ (1 + 2−2r)k+1. (26)

Substituting Equation (26) into Equation (23), we obtain∑
e∈Γout(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉k < 〈Px|v,Px|s〉k ·

(
1 + 2−2r

)k+1 · (2cv)−k.

If i /∈ Ls, then (2cv)
−1 ≤ (1 + 2−2r+3) and thus (1 + 2−2r)

k+1 · (2cv)−k ≤ (1 + 2−r)k (where
the inequality uses the assumption that r is sufficiently large).

If i ∈ Ls, then (2cv)
−1 ≤ 1

2
· 25˜̀

and thus (1 + 2−2r)
k+1 · (2cv)−k ≤ 25˜̀k. This completes

the proof of Claim 6.7.

Claim 6.8. Recall the definition of ci from Claim 6.7. For every i ∈ {1, . . . ,m},

Z ′i ≤ (Zi−1 + 2−2nk+k) · cki

Proof. By Claim 6.7,

Z ′i =
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉k =
∑

v∈L′i−1

Pr(v) ·
∑

e∈Γout(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉k

≤
∑

v∈L′i−1

Pr(v) ·
(
〈Px|v,Px|s〉k + 2−2nk+k

)
· cki

= cki ·
(
Zi−1 +

∑
v∈L′i−1

Pr(v) · 2−2nk+k
)

≤ cki ·
(
Zi−1 + 2−2nk+k

)
Claim 6.9. For every i ∈ {1, . . . ,m},

Zi ≤ Z ′i.

Proof. For any v ∈ L′i, let Γin(v) be the set of all edges e ∈ Γi, that are going into v. Note
that ∑

e∈Γin(v)

Pr(e) = Pr(v).

By the law of total probability, for every v ∈ L′i and every x′ ∈ X,

Px|v(x′) =
∑

e∈Γin(v)

Pr(e)
Pr(v)
· Px|e(x′),
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and hence
〈Px|v,Px|s〉 =

∑
e∈Γin(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉.

Thus, by Jensen’s inequality,

〈Px|v,Px|s〉k ≤
∑

e∈Γin(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉k.

Summing over all v ∈ L′i, we get

Zi =
∑
v∈L′i

Pr(v) · 〈Px|v,Px|s〉k ≤
∑
v∈L′i

Pr(v) ·
∑

e∈Γin(v)

Pr(e)
Pr(v)
· 〈Px|e,Px|s〉k

=
∑
e∈Γi

Pr(e) · 〈Px|e,Px|s〉k = Z ′i.

Claim 6.10. For every i ∈ {1, . . . ,m},

Zi ≤ 2r+3k+5˜̀k·|Ls| · 2−2k·n.

Proof. By Claim 6.8 and Claim 6.9, for every i ∈ {1, . . . ,m},

Zi ≤ (Zi−1 + 2−2nk+k) · cki

where ci = (1 + 2−r) if i /∈ Ls and ci = 25˜̀
if i ∈ Ls. Thus, we can show by induction on

i ∈ {1, . . . ,m} that

Zi ≤ 2−2nk+k · (i+ 1) ·
i∏

i′=1

cki′

Hence, for any i ∈ {1, . . . ,m} it holds that

Zi ≤ 2−2nk+k · (m+ 1) · (1 + 2−r)mk · 25˜̀k|Ls|.

Since m ≤ 2εr̃ ≤ 2r − 1,

Zi ≤ 2−2k·n+k · 2r · ek · 25˜̀k|Ls|.

Proof of Lemma 5.3

We can now complete the proof of Lemma 5.3. Assume that s is in layer-i of B′. By
Claim 6.5,

Zi ≥ Pr(s) · 〈Px|s,Px|s〉k > Pr(s) ·
(
22`j · 2−2n

)k
= Pr(s) · 22`j ·k · 2−2k·n.

On the other hand, by Claim 6.10,

Zi ≤ 2r+3k+5˜̀k·|Ls| · 2−2k·n.

Thus, we get

Pr(s) ≤ 2r+3k+5˜̀k·|Ls| · 2−2`j ·k
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We treat differently the case j = 1 and j = 2 as follows. For j = 1, the set Ls is empty, and
we have

Pr(s) ≤ 2r+3k · 2−2`1·k ≤ 2−`1·k.

For j = 2 we have

Pr(s) ≤ 2r+3k+5˜̀k·|Ls| · 2−2`·k

≤ 2r+3k+1000ε˜̀2k · 2−2`·k (|Ls| ≤ 200ε˜̀)

≤ 24k+1000ε`k · 2−2`·k (r ≤ k, ˜̀≤
√
`)

≤ 2−`k ≤ 2−`1·k . (ε < 1/1010)

Thus, in both cases we showed Pr(s) ≤ 2−`1k.

Recall that we showed that the width of B̂ is at most 2εk
˜̀/2, and note that the length of

B̂ is at most 2 · 2εr̃. Taking a union bound over at most 2εk
˜̀/2 · 2 · 2εr̃ ≤ 2k`1/2 significant

vertices of B̂, we conclude that the probability that T reaches any significant vertex is at
most 2−k`1/2 = o(1).
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7 Appendix

We first state the main theorem of [GRT18] and then the modified proposition used in the
proof of Lemma 5.5.

Theorem 2 (Theorem 1, [GRT18]). Let 1
100

< c < 2
3
. Fix γ to be such that 3c

2
< γ2 < 1.

Let X, A be two finite sets. Let n = log2 |X|. Let M : A×X → {−1, 1} be a matrix which
is a (k′, `′)-L2-extractor with error 2−r

′
, for sufficiently large1 k′, `′ and r′, where `′ ≤ n. Let

r := min
{
r′

2
, (1−γ)k′

2
, (1−γ)`′

2
− 1
}
.

Let B be a branching program of length at most 2r and width at most 2c·k
′·`′ for the learning

problem that corresponds to the matrix M . Then, the success probability of B is at most
O(2−r).

The authors prove the above theorem by first defining a truncated path that stops on
a significant vertex, a significant value or a bad edge, such that, if the path doesn’t stop
before reaching a leaf, then the probability of guessing the correct x is small (at most O(2−r)
to be precise). Then, the authors prove that the probability that the truncated path stops
is at most O(2−r). Through slight modifications to the proof of the above theorem (with
weaker bounds on the memory and length of B, in terms of constants), we can prove that
the probability that a slightly modified truncated path stops is at most 2−Ω(min{k′,`′}). As
the modified proof is very similar to that of Theorem 2 and the original proof is lengthy, we
just highlight the changes to the proof to get the following proposition.

1k′, `′, r′ are larger than some constant that depends on γ.
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Proposition 7.1. Let X, A be two finite sets. Let n = log2 |X|. Let M : A×X → {−1, 1}
be a matrix which is a (k′, `′)-L2-extractor with error 2−r

′
, for sufficiently large k′, `′ and r′,

where `′ ≤ n. Let

r :=
min {r′, k′, `′}

100
.

Let B be a branching program of length at most 2r and width at most 2
k′·`′
100 for the learning

problem that corresponds to the matrix M . Then, there exists an event G such that

Pr[G] ≥ 1− 2−
min{k′,`′}

8

and for every x′ ∈ X and every leaf z of the branching program B (with starting vertex z0),

Pr [x = x′ | G ∧ (z0→̃z)] ≤ 22`′ · 2−n,

whenever the event G ∧ (z0→̃z) is non-empty, where z0→̃z denotes the event that the
computational path (as opposed to the truncated path) from z0 reaches z.

Proof. The proof of Theorem 1 of [GRT18] defines the truncated-path, T , to be the same as
the computation-path of B, except that it sometimes stops before reaching a leaf. Roughly
speaking, T stops before reaching a leaf if certain “bad” events occur. Nevertheless, the
proof shows that the probability that T stops before reaching a leaf is negligible, so we can
think of T as almost identical to the computation-path.

For a vertex v of B, we denote by Ev the event that T reaches the vertex v. We denote
by Pr(v) = Pr(Ev) the probability for Ev, and we denote by Px|v = Px|Ev the distribution of
the random variable x conditioned on the event Ev.

We first look at the definition of the truncated-path from the proof of Theorem 1
of [GRT18]. We modify the stopping rules for a path as follows:

Let l̂ = `′

6
.

Significant Vertices: A vertex v in layer-i of B is significant if∥∥Px|v∥∥2
> 2l̂ · 2−n.

Significant Values: Even if v is not significant, Px|v may have relatively large values. For
a vertex v in layer-i of B, denote by Sig(v) the set of all x′ ∈ X, such that,

Px|v(x′) > 23l̂ · 2−n.

Bad Edges: For a vertex v in layer-i of B, denote by Bad(v) the set of all α ∈ A, such that,∣∣(M · Px|v)(α)
∣∣ ≥ 2−r

′
.

Recall, that the truncated path is defined by induction on the layers of the branching
program B:

The Truncated-Path T

Assume that we already defined T until it reaches a vertex v in layer-i of B. The path T
stops on v if (at least) one of the following occurs:
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1. v is significant.

2. x ∈ Sig(v).

3. ai+1 ∈ Bad(v).

4. v is a leaf.

Otherwise, T proceeds by following the edge labeled by (ai+1, bi+1) (same as the
computational-path).

The Event G

We define G to be the event that the truncated-path T didn’t stop because of one of the
first three stopping rules: That is, T didn’t stop before reaching a leaf and didn’t violate
the significant vertices and significant values stopping rules (that is, the first two stopping
rules) on the leaf that it reached.

We can upper bound the probability for Ḡ similarly to the way that it’s done in [GRT18].

Lemma 7.2. The probability that T reaches a significant vertex is at most 2−k
′
.

The proof of the above lemma is very similar to the analogous lemma in the proof of
Theorem 2. The only change is in the definition of significant value - we define the significant
values to be the set of all x′ ∈ X, such that, Px|v(x′) > 23l̂ · 2−n instead of the set of all

x′ ∈ X, such that, Px|v(x′) > 22l̂+2r · 2−n. With the above (worse in terms of constants)
bounds on the memory and the length of the branching program, the proof works in the
same way.

Lemma 7.2 shows that the probability that T stops on a vertex, because of the first
reason (i.e., that the vertex is significant), is small. The next two claims imply that the
probabilities that T stops on a vertex, because of the second and third reasons, are also
small.

Claim 7.3. If v is a non-significant vertex of B then

Pr
x

[x ∈ Sig(v) | Ev] ≤ 2−l̂.

Proof. Since v is not significant,

E
x′∼Px|v

[
Px|v(x′)

]
=
∑
x′∈X

[
Px|v(x′)2

]
= 2n · E

x′∈RX

[
Px|v(x′)2

]
≤ 22l̂ · 2−n.

Hence, by Markov’s inequality,

Pr
x′∼Px|v

[
Px|v(x′) > 2l̂ · 22l̂ · 2−n

]
≤ 2−l̂.

Since conditioned on Ev, the distribution of x is Px|v, we obtain

Pr
x

[
x ∈ Sig(v)

∣∣ Ev] = Pr
x

[(
Px|v(x) > 2l̂ · 22l̂ · 2−n

) ∣∣ Ev ] ≤ 2−l̂.
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Claim 7.4. If v is a non-significant vertex of B then

Pr
ai+1

[ai+1 ∈ Bad(v)] ≤ 2−k
′
.

Proof. Since v is not significant,
∥∥Px|v∥∥2

≤ 2l̂ ·2−n. Since Px|v is a distribution,
∥∥Px|v∥∥1

= 2−n.
Thus, ∥∥Px|v∥∥2∥∥Px|v∥∥1

≤ 2l̂ ≤ 2`
′
.

Since M is a (k′, `′)-L2-extractor with error 2−r
′
, there are at most 2−k

′ · |A| elements α ∈ A
with ∣∣〈Mα,Px|v〉

∣∣ ≥ 2−r
′ ·
∥∥Px|v∥∥1

= 2−r
′ · 2−n.

The claim follows since ai+1 is uniformly distributed over A.

We can now use Lemma 7.2, Claim 7.3 and Claim 7.4 to prove that the probability

that T stops because of the first three stopping rules is at most 2−
min{k′,`′}

8 . Lemma 7.2
shows that the probability that T reaches a significant vertex and hence stops because of the
first stopping rule, is at most 2−k

′
. Assuming that T doesn’t reach any significant vertex (in

which case it would have stopped because of the first stopping rule), Claim 7.3 shows that in

each step, the probability that T stops because of the second stopping rule, is at most 2−
`′
6 .

Taking a union bound over the 2r steps, the total probability that T stops because of the

second stopping rule, is at most 2−
`′
7 (for sufficiently large `′). In the same way, assuming

that T doesn’t reach any significant vertex (in which case it would have stopped because
of the first stopping rule), Claim 7.4 shows that in each step, the probability that T stops
because of the third stopping rule, is at most 2−k

′
. Again, taking a union bound over the

2r steps, the total probability that T stops because of the third stopping rule, is at most

2−
k′
7 . Thus, the total probability that T stops (for any reason) before reaching a leaf (or

violated the significant vertices or significant values stopping rules (that is, the first two

stopping rules) on the leaf that it reached) is at most 2−
min{k′,`′}

8 . (Summing over the three
probabilities and using the fact that k′, `′ are sufficiently large).

Thus, Pr[Ḡ] ≤ 2−
min{k′,`′}

8 , as required.

Bounding Pr [x = x′ | G ∧ (z0→̃z)]:

It remains to prove that for every x′ ∈ X and every leaf z of the branching program B (with
starting vertex z0),

Pr [x = x′ | G ∧ (z0→̃z)] ≤ 22`′ · 2−n,

whenever the event G ∧ (z0→̃z) is non-empty, where z0→̃z denotes the event that the
computational path (as opposed to the truncated path) from z0 reaches z.

Recall that Ez is the event that T reaches the vertex z.

Claim 7.5. The event G∧ (z0→̃z) is equivalent to Ez ∧ (z is not significant)∧ (x 6∈ Sig(z)).
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Proof. If G ∧ (z0→̃z) occurs then the truncated-path T didn’t stop before reaching a leaf
(since G occurs) and the computational path from z0 reaches z (since (z0→̃z) occurs). Thus,
Ez occurs. Also, since the first stopping rule is not violated on z, we have that z is not
significant and since the second stopping rule is not violated on z, we have x 6∈ Sig(z).

On the other direction, if Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z)) occurs, then (z0→̃z)
occurs (since Ez occurs), the truncated-path T didn’t stop before reaching a leaf (since Ez
occurs) and none of the first two stopping rules are violated on z, since z is not significant
and x 6∈ Sig(z).

By Claim 7.5, it remains to prove that for every leaf z and every x′ ∈ X, if the event
Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z)) is non-empty then

Pr [x = x′ | Ez ∧ (z is not significant) ∧ (x 6∈ Sig(z))] ≤ 22`′ · 2−n.

Equivalently, we need to prove that for every non-significant leaf z and every x′ ∈ X, if the
event Ez ∧ (x 6∈ Sig(z)) is non-empty then

Px|Ez∧(x 6∈Sig(z))(x
′) = Pr [x = x′ | Ez ∧ (x 6∈ Sig(z))] ≤ 22`′ · 2−n.

By the definition of conditional distribution,

Px|Ez∧(x 6∈Sig(z))(x
′) =

{
0 if x′ ∈ Sig(z)

Px|Ez(x
′) · c−1 if x′ 6∈ Sig(z)

where c =
∑

x′ /∈Sig(z) Px|Ez(x
′) is the normalization factor. As z is not significant, by

Claim 7.3,

Pr
x

[x ∈ Sig(z) | Ez] ≤ 2−l̂.

Therefore, c ≥ 1 − 2−l̂. Since by the definition of Sig(z), for x′ 6∈ Sig(z), we have

Px|z(x′) ≤ 23l̂ · 2−n, we can bound

Px|Ez∧(x 6∈Sig(z))(x
′) ≤ 23l̂ · 2−n · c−1 ≤ 23l̂+1 · 2−n ≤ 22`′ · 2−n.
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