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Abstract

The Fiat-Shamir heuristic transforms a public-coin interactive proof into a non-interactive
argument, by replacing the verifier with a cryptographic hash function that is applied to the
protocol’s transcript. Constructing hash functions for which this transformation is sound is
a central and long-standing open question in cryptography.

We show that solving the End-of-Metered-Line problem is no easier than breaking
the soundness of the Fiat-Shamir transformation when applied to the sumcheck protocol.
In particular, if the transformed protocol is sound, then any hard problem in #P gives rise
to a hard distribution in the class CLS, which is contained in PPAD.

Our main technical contribution is a stateful incrementally verifiable procedure that,
given a SAT instance over n variables, counts the number of satisfying assignments. This is
accomplished via an exponential sequence of small steps, each computable in time poly(n).
Incremental verifiability means that each intermediate state includes a sumcheck-based proof
of its correctness, and the proof can be updated and verified in time poly(n).

Combining our construction with a hash family proposed by Canetti et al. [STOC 2019]
gives rise to a distribution in the class CLS, which is provably hard under the assumption
that any one of a class of fully homomorphic encryption (FHE) schemes has almost-optimal
security against quasi-polynomial time adversaries, and under the additional worst-case
assumption that there is no polynomial time algorithm for counting the number of satisfying
assignments for formulas over a polylogarithmic number of variables.
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project 17-09142S of GA ČR, Charles University project UNCE/SCI/004, and Charles University project
PRIMUS/17/SCI/9. This work was done under financial support of the Neuron Fund for the support of sci-
ence.
‡IST Austria, Klosterneuburg, Austria. Email: ckamath@ist.ac.at. Supported by the European Research

Council, ERC consolidator grant (682815-TOCNeT).
§IST Austria, Klosterneuburg, Austria. Email: pietrzak@ist.ac.at. Supported by the European Research

Council, ERC consolidator grant (682815-TOCNeT).
¶Efi Arazi School of Computer Science, IDC Herzliya, Israel. Email: alon.rosen@idc.ac.il. supported by

ISF grant No. 1399/17 and via Project PROMETHEUS (Grant 780701).
‖Weizmann Institute of Science, Rehovot, Israel. Email: rothblum@alum.mit.edu. This project has received

funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 819702).

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 74 (2019)



Contents

1 Introduction 1
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Technical Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Search Problems 11
2.1 Total Search Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 The Sink-of-Verifiable-Line Problem . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The relaxed-Sink-of-Verifiable-Line Problem . . . . . . . . . . . . . . . . . 13

3 The Sumcheck Protocol 14
3.1 Proof Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Interactive Sumcheck Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Non-Interactive Sumcheck Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 The Reduction 23
4.1 The Recursive Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 The rSVL Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A Instantiating Fiat-Shamir 37
A.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.2 Fiat-Shamir for the Sumcheck Protocol . . . . . . . . . . . . . . . . . . . . . . . 40



1 Introduction

The complexity class PPAD, defined by Papadimitriou [47], consists of all total search problems
that are polynomial-time reducible to the End-of-Line problem: given a source in a directed
graph where every vertex has both in-degree and out-degree at most one, find a sink or another
source. The End-of-Line problem can be solved in linear time when the graph is given explic-
itly, but there is no known algorithm solving it in polynomial time when the input is an implicit
representation of the graph describing the successor and predecessor of every vertex.

The class PPAD became a subject of intensive study due to its relation to the problem Nash,
of finding a Nash equilibrium in bimatrix games. Papadimitriou showed that Nash is reducible
to End-of-Line, and thus belongs to PPAD. A reduction in the opposite direction was later
established in a sequence of works by Daskalakis, Goldberg and Papadimitriou [21], and Chen,
Deng and Teng [19].

Currently, no PPAD-complete problem is known to admit a sub-exponential-time worst-case
algorithm. This, together with the increasingly large number of reductions amongst PPAD
complete problems, supports the belief that they are not solvable in polynomial time.1 Still,
even if we do believe that no PPAD complete problem is solvable in polynomial time in the worst-
case, it is of great interest to understand whether these problems admit efficient heuristics that
perform well on the average, let alone in the worst-case.

A natural approach for arguing average-case PPAD hardness, which was already advocated
in Papadimitriou’s original paper [47], is to reduce from cryptographic problems. Bitansky,
Paneth and Rosen [6] were the first to do so (building on [1]), by demonstrating that the task
of breaking sub-exponentially secure indistinguishability obfuscation (iO) is reducible to solving
End-of-Line. This result was subsequently extended by Hubáček and Yogev [35] to hardness
in CLS, a subclass of PPAD, under the same assumptions.2

While recent advances in the study of obfuscation support our belief in its attainability,
the notion of iO still lies within the domain of speculation: many candidate schemes have
been broken, and surviving ones are yet to undergo extensive evaluation by the cryptographic
community. Moreover, existing iO schemes tend to be highly complex, hindering any possible
attempt to sample reasonably-sized candidate hard instances of Nash.

1.1 Our Results

We widen the basis upon which PPAD hardness can be based. To this end, we rely on the well
known Fiat-Shamir heuristic [25], which transforms a public-coin interactive proof into a non-
interactive argument, by replacing the verifier in the proof with a cryptographic hash function
that is applied to the protocol’s transcript.

The particular protocol to which we apply the Fiat-Shamir transformation is the sumcheck
protocol by Lund et al. [43], which is an n-round interactive proof for counting the number
of satisfying assignments to a given SAT instance over n variables. We show that solving the
End-of-Line problem is no easier than breaking the soundness of the non-interactive argument
obtained by applying the Fiat-Shamir transformation to the sumcheck protocol.

Theorem 1 (informal). Solving the End-of-Line problem is no easier than breaking the (adap-
tive) soundness of the Fiat-Shamir transformation, when applied to the sumcheck protocol.

We prove this theorem by constructing an efficiently sampleable distibution of End-of-Line
instances, where solving this distribution requires either breaking the soundness of the Fiat-
Shamir transformation, applied to the sumcheck protocol or solving a #P complete problem

1We do know of worst-case hard instances for a specific algorithm for finding a Nash equilibrium [52] or of
oracle-based worst-case hard instances of PPAD-complete problems [33, 3].

2The underlying assumptions were further weakened by Garg, Pandey and Srinivasan [27] and then by Ko-
margodski and Segev [41], though still to assumptions that appear to be closely related to iO (see §1.3).
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(and thus any problem in #P). Since breaking the soundness of Fiat-Shamir is reducible to
#SAT (in fact to SAT) it follows that efficiently solving the above distribution is no easier
than breaking Fiat-Shamir. We note that our theorem in fact constructs a distribution on
instances of End-of-Metered-Line, a problem that belongs to CLS and hence reduces to the
PPAD-complete problems End-of-Line and Nash [35].

On the soundness of Fiat-Shamir. The Fiat-Shamir heuristic is widely used in practice,
and constructing hash functions for which the transformation is sound is a central and long-
standing open question in cryptography. Empirical evidence in support of the soundness of
Fiat-Shamir is the fact that it has been successfully “field tested” for over three decades, though
it should be mentioned that the context in which the transformation was originally proposed
focused on constant-round protocols, whereas the sumcheck protocol has n rounds.

From a foundational perspective, Goldwasser and Kalai [31] demonstrated theoretical bar-
riers towards the instantiation of Fiat-Shamir in the case of certain computationally sound
protocols (a.k.a. “arguments”). Secure instantiations for information theoretically sound pro-
tocols (i.e. “proofs”), such as the sumcheck protocol, are an active area of recent research.
Several recent works have shown that, under strong cryptographic assumptions, the heuristic
is sound when it is applied to certain interactive proofs [38, 16, 14, 17, 48]. For our specific
purposes it is sufficient that there exists a specific hash family for which the transformation is
sound for the sumcheck protocol. Thus, the family can be “tailored” to the protocol. As far as
we know, the application of Fiat-Shamir to sumchecks has only been considered recently, most
notably in a “sumcheck style” protocol by Pietrzak [49] for proving y = x2i mod N and in very
recent work of Canetti et al. [14].

The Fiat-Shamir hash function can be instantiated with a random oracle, or with the recent
construction of Canetti et al. [14].

Random oracle instantiation. We give supporting evidence that the Fiat-Shamir trans-
formation may retain soundness of the sumcheck protocol by proving that this indeed is the
case when the hash function in the transformation is modeled as a Random Oracle. What we
show is in fact stronger, namely that the transformed protocol satisfies unambiguous soundness,
which is what our reduction actually requires (see §1.2 for further discussion). One important
consequence is the following.

Theorem 2. Relative to a random oracle, finding a Nash equilibrium is no easier than solving
#SAT (and in particular no easier than inverting any one-way function).

FHE-based instantiation. Canetti et al. [14] construct a hash family for which, under the
assumption that any one of a broad class of fully homomorphic encryption (FHE) schemes has
almost optimal security against polynomial-time adversaries, the Fiat-Shamir transformation is
sound when it is applied to (certain instantiations of) the sum-check protocol. Adapting their
results to our setting gives rise to a hard distribution in the class CLS.

Theorem 3 (Informal Statement, see Theorem 38). Assuming that any one of the LWE-based
fully homomorphic encryption schemes in the literature (such as [10, 9, 8, 28, 11]) has opti-
mal security against quasi-polynomial-size key-recovery attacks, and assuming further that the
#SAT problem over polylog variables is (worst-case) hard for polynomial time algorithms, there
exists an efficiently sampleable hard distribution of End-of-Line instances.

Here and below, by optimal security against quasi-polynomial-size attacks, we mean that
every quasi-polynomial-size circuit family breaks the assumption with probability at most
2polylogλ/2λ.

To obtain this result, we need a hash function for which the Fiat-Shamir transformation
is sound when it is applied to a sum-check protocol for a hard language. Specifically, we
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consider a sumcheck protocol counting the number of satisfying assignments for a formula
with polylogarithmically many variables. By the random self-reducability of #P [42, 30], the
assumption that the #SAT problem for formulas with polylog variables is (worst-case) hard for
polynomial time algorithms, gives rise to a hard #SAT distribution over such formulas.3

The results of Canetti et al. [14] do not immediately give a hash function as needed. This
is because they consider applying the Fiat-Shamir transformation to doubly-efficient interactive
proofs, where the honest prover runs in polynomial time.4 We, on the other hand, need to apply
the transformation to a sumcheck over a quasi-polynomial number of assignments, where the
honest prover runs in quasi-polynomial time. Adapting their results to our setting, we show that
assuming almost-optimal security of the FHE scheme for quasi-polynomial adversaries implies
that the transformation is sound for the sum-check protocol we consider. See Appendix A for
an exposition on this result and a formal statement of Theorem 3.

Sampling hard instances of Nash. By reducing appropriately chosen one-way functions to
#SAT, our result opens up the possibility of sampling hard instances of End-of-Line, whose
size is significantly smaller than the ones potentially obtained by reducing from iO and related
assumptions. First, the random oracle can be instantiated heuristically with a concrete practical
hash function (e.g., SHA). The reduction from #SAT is best instantiated with a small SAT
instance in which each variable appears in a small constant number of clauses. Hard distributions
of such SAT instances arise for example from Goldreich’s candidate one-way function [29]. This
opens up the possibility, given an efficient reduction from End-of-Line to Nash, of sampling
reasonably-sized distributions of games for which solving Nash is heuristically hard and against
which existing heuristics (such as the Lemke-Howson algorithm) can be tested.

Unambiguous soundness. An interactive proof system is unambiguously sound [50] if the
following holds. The proof system specifies a prescribed strategy for the honest prover to follow
on YES instances. If, given a YES instance, the prover first deviates from its prescribed strategy
in some round i, then no matter what strategy it follows in subsequent rounds, the verifier will
reject with high probability over its subsequent coin tosses. Note that this is a type of soundness
requirement for YES instances. Similarly, we say that a non-interactive argument system is
(adaptively) unambiguously sound if there is a prescribed proof for every YES instance, and no
PPTM cheating prover can come up with a pair (x, π̃) that is accepted by the verifier unless x
is a YES instance and π̃ is its prescribed proof.

The sumcheck protocol is known to be unambiguously sound [50]. For our results, we need to
assume that when the Fiat-Shamir transformation is applied to it, the resulting non-interactive
argument is adaptively unambiguously sound. We find the assumption that unambiguous sound-
ness is preserved by the Fiat-Shamir transformation to be a natural one. We present supporting
evidence for this assumption by demonstrating that it is true in the random oracle model, see
Lemma 19. We also show that for a particular instantiation of the Fiat-Shamir transforma-
tion (which suffices for PPAD-hardness), adaptive unambiguous soundness reduces to standard
adaptive soundness. See Claim 4.

Relationship to Valiant’s work on incremental computation. With a similar moti-
vation in mind, Valiant [55] constructed a general-purpose incrementally verifiable computa-
tion scheme, where any long (exponential) computation can be performed via a sequence of

3Specifically, there is a distribution over #SAT instances with polylog variables and a polynomial-time reduc-
tion from solving this distribution with non-negligible probability to solving the problem in the worst case (with
high probability). Such a result follows similarly to the worst-case to rare-case reductions in the recent work of
Goldreich and Rothblum [30].

4In fact, they need a stronger efficient sampleability property. A sum-check for a poly(n)-sized function over
m variables is sampleable in time poly(n, 2m).
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polynomial-time steps. In between consecutive steps, this process maintains an intermediate
state, and a proof of the intermediate state’s validity. The state and proof are both of poly-
nomial length. Our work is inspired by this approach. We note, however, that in Valiant’s
construction the proofs are not unambiguous, and thus it is not clear how to use his scheme
to obtain hard instances in PPAD.5 Putting aside the consequences to PPAD hardness, another
distinction between Valiant’s work and the direction we take in ours is in the strength of the
cryptographic assumptions made. The construction in [55] requires strong non-interactive CS
proofs of knowledge, with very efficient (e.g. linear-time) knowledge extractors. Constructing
such proof systems is a notoriously hard proposition, see for example the work of Bitansky et
al. [5]. Constructions usually rely on knowledge assumptions or are presented in the random
oracle model. We, on the other, only assume standard (adaptive) soundness of the concrete
and natural cryptographic protocol obtained by applying the Fiat-Shamir transformation to
the interactive sumcheck protocol. One consequence of this distinction is that we prove our
construction is sound in the random oracle model, whereas no such proof is known for Valiant’s
construction.6

1.2 Technical Overview

Our main technical contribution is a stateful incrementally verifiable procedure that, given a
SAT instance over n variables, counts the number of satisfying assignments. The counting is
performed via an exponential sequence of polynomial-time computation steps, where we main-
tain an intermediate state between consecutive steps. Incremental verifiability means that each
intermediate state includes proof of its correctness, and the proof can be updated and verified
in time poly(n). The proofs are based on a non-interactive sumcheck protocol obtained via
the Fiat-Shamir transformation. The main technical challenge is efficient incremental updates
to these proofs. We use this incrementally verifiable counting procedure to construct, given a
#SAT instance, an instance of the relaxed-Sink-of-Verifiable-Line (rSVL) problem (see
below), a promise problem which can be reduced to total search problems in the class CLS
(thus also in PPAD). We show that finding a solution to the rSVL instance requires either
breaking the unambiguous soundness of the non-interactive sumcheck, or solving the original
#SAT instance. We proceed with a high level overview.

Sums and sumcheck proofs. Our incrementally verifiable construction computes sums of
low-degree polynomials over exponential numbers of terms. Fix a finite field F and an n-variate
polynomial f : Fn → F over the field F, where f has degree at most d in each variable (think of
d as a constant). We are interested in computing sums of the form:∑

z∈{0,1}n
f(z).

We are also interested in sumcheck proofs, proving that y is the correct value of such a sum.
More generally, we consider the tasks of computing, proving and verifying sums where a prefix
of the variables are fixed to values β = (β1, . . . , βj) ∈ Fj . We refer to these as prefix sums, or
the sum with prefix β. A sumcheck proof can prove statements of the form:∑

z∈{0,1}n−j
f(β, z) = y,

which we refer to as a statement of size 2n−j .

5A key ingredient in Valiant’s construction is a CS proof [46] obtained via a Merkel Hash applied to a PCP.
This is not unambiguous because small changes to a correct PCP string will change the proof, but will only be
noticed by the verifier with small probability.

6The issue is that Valiant’s proof system cannot be composed to prove statements about a non-explicit oracle.
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Given a SAT formula Φ over n variables, a claim about the number of satisfying assignments
can be expressed as a sumcheck claim over an appropriately chosen field [43]. The polynomial
f is derived from Φ, and the individual degree can be as low as 4. For this, we first transform
Φ into a 3SAT-4 formula (a 3CNF where each variable appears in at most 4 clauses), using the
(Karp) reduction from counting satisfiable assignments of general CNFs to counting satisfying
assignments of 3SAT-4 formulae [54]. A standard arithmetization yields an appropriate poly-
nomial f over the field. In what follows, we use the numbers {0, 1, . . . , d} to refer to the “first”
(d+ 1) field elements.

Incrementally verifiable counting. Our incrementally verifiable counting procedure is
given as input the field F and an n-variate polynomial f over this field (described as an arith-
metic circuit of size poly(n) and degree d). We also consider giving the procedure, as part of
its input, a prefix β ∈ Fj . The goal of the procedure is computing the value y of the sum with
prefix β, and a sumcheck proof for this value.

This computation is performed in a sequence of incremental steps. Towards this, we specify
two poly(n)-time algorithms: S and V. The procedure S performs single steps, receiving as
input the current state, and computing the next state. The completeness requirement is that
applying S sequentially for T = T (n) steps, starting at a fixed known initial state s0, leads to
a final state sT comprised of the correct value y of the sum with prefix β, as well as a proof
π of y’s correctness. We use st to denote the t-th state along the path from s0 to sT . In our
construction, each intermediate state st includes its index t ∈ [T ]. Since we are computing
the value of an exponential sum, we expect the number of steps T to be exponential. We use
M = M(n) to denote a bound on the size of the state (the memory used by this process), and
P = P (n) to denote a bound on the size (and verification time) of the final proof π.

Soundness is guaranteed using the verification procedure V, which takes as input a state
and accepts or rejects. The unambiguous soundness requirement is that it should be intractable
for an adversary who is given the input to compute a state s′ with index t s.t. s′ 6= st but V
accepts s′. We note that this is a strong soundness requirement, and we use the strength of this
guarantee to reduce to the rSVL problem.

An incrementally verifiable counting procedure as described above directly gives rise to an
instance of the rSVL problem, where any solution either specifies the correct count, or describes
a state s′ 6= st that V accepts. We first overview the verifiable counter construction, and close
by elaborating on the rSVL problem and on the reduction to it.

A recursive construction. Suppose that (Sn−j ,Vn−j) can compute sums of size 2n−j in an
incrementally verifiable manner. Suppose further that this computation takes T steps, uses M
memory, and has a final proof of size P . We want to recursively construct an incrementally
verifiable procedure (Sn−j+1,Vn−j+1) for computing sums of size 2n−j+1, which takes O(T )
steps, uses M +O(P ) + poly(n) memory, and has a final proof of size P + poly(n). If we could
do so, then unwinding the recursion would give a procedure for computing sums of size 2n

with 2O(n) steps, poly(n) space and poly(n) proof size (at the base of the recursion, the trivial
procedure (S0,V0) for computing sums of size 1 takes a single step, uses poly(n) memory and
has an “empty” proof). In this overview we ignore the time needed to verify the proof, but we
note that it is closely tied to the size P of the final proof. We note that a similar recursive
structure underlies Valiant’s incrementally verifiable computation procedure [55].

To construct (Sn−j+1,Vn−j+1), given a prefix β ∈ Fj−1, the naive idea is to use Sn−j to
sequentially compute two sums of size 2n−j . We refer to the process of running Sn−j for T
steps to compute a prefix sum as a full execution of (Sn−j). In the naive approach, a full
execution of Sn−j+1 is comprised of two sequential full executions of Sn−j : a first execution
for computing the sum for prefix β0 = (β, 0) ∈ Fj , and a second execution computing the
sum for prefix β1 = (β, 1) ∈ Fj . The first full execution yields a sum y0 and a proof π0.
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These are carried through in the second full execution, which yields a sum y1 and a proof π1.
The final result is y = (y0 + y1), and a naive proof for this result is the concatenated proof
(y0, π0, y1, π1). We can construct (Sn−j+1,Vn−j+1) to implement and verify the above execution,
and it follows that if the base procedure was unambiguously sound, then the new procedure
will also be unambiguously sound. The number of steps and the memory grow exactly as we
would like them to: in particular, the space complexity of the new procedure is indeed roughly
M + P , since we only need to “remember” the proof and end result from the first execution
while performing the second execution. The main issue is that the proof length and verification
time have doubled. If we repeat this recursion many times, they will become super-polynomial.

A natural approach is to try and merge the proofs: given (y0, π0) and (y1, π1), to construct
a proof π for the total count y = (y0 + y1). Ideally, the merge would be performed in poly(n)
time, and π would be of similar length to π0 and π1. This was the approach used in [55], who
used strong extractability assumptions to achieve efficient proof merging (we recall that this
construction does not have unambiguous proofs, see above). Our approach is different: we use a
(long) incrementally verifiable proof merging procedure, which is constructed recursively (and is
unambiguously sound). Proof merging cannot be performed in poly(n) time, indeed it requires
O(T ) steps, but this is fine so long as the merge itself is incrementally verifiable and does not use
too much memory or proof size. To obtain an incrementally verifiable proof merging procedure,
we show that the proof system we use supports a reduction from proof merging to incrementally
verifiable counting. In particular, given the counts {yγ}dγ=0 for the (d + 1) prefix sums with

prefixes {βγ = (β, γ)}dγ=0 (sums of size 2n−j), computing a proof π for the count y = (y0 + y1)

of the sum with prefix β (a sum of size 2n−j+1) reduces to computing a single additional prefix
sum of size 2n−j . This merge procedure relies heavily on the structure of the non-interactive
sumcheck proof system, we give an overview below.

Given the merge procedure, we can detail the recursive construction of (Sn−j+1,Vn−j+1).
Given a prefix β ∈ Fj−1, a full execution of Sn−j+1 runs (d + 1) full executions of Sn−j ,
computing the prefix sums (and proofs) for sums with prefixes {βγ = (β, γ)}dγ=0 (these are

sums of size 2n−j). Let {(yγ , πγ)}dγ=0 be the (respective) prefix sums and proofs. We then run
a final full execution of Sn−j to compute a “merged” proof π for the sum with prefix β (a sum
of size 2n−j+1). Once the merged proof is completed we can “forget” the intermediate values
{(yγ , πγ)}dγ=0. We end the entire process with a proof that is not much larger than the proofs

for sums of size 2n−j . Computing the merged proof boils down to computing an additional
sum of size 2n−j with a prefix βσ = (β, σ) for a single field element σ ∈ F. Thus, the number
of steps for a full execution of Sn−j+1 is O(d · T ) (recall that d is constant), and the memory
used is M +O(d · P ). Unwinding the recursion, we obtain an incrementally verifiable counting
procedure which takes 2O(n) steps, with poly(n) memory and proof size.

We proceed to detail the proof system we use, and then describe the reduction from proof-
merging to incrementally verifiable counting.

The non-interactive sumcheck. In the interactive Sumcheck protocol, an untrusted (and
not necessarily efficient) prover wants to convince a verifier that:∑

z∈{0,1}n
f(z) = y.

The protocol proceeds in n rounds. In the first round, the prover sends a univariate polynomial
g̃1 obtained by leaving the first variable in f free, and summing over all 2n−1 assignments
to the remaining variables. Note this univariate polynomial is of degree d, and thus it can be
specified by sending its valuations over the first (d+1) field elements, and the prover sends these
valuations α1 = {α1,γ = g̃1(γ)}dγ=0 as its message. On receiving these valuations, the verifier
interpolates to recover g̃1, and checks that this polynomial is consistent with the prover’s past
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claims, i.e., that g̃1(0)+ g̃1(1) = y (otherwise the verifier rejects immediately). The verifier then
picks a random field element β1 and sends it to the prover.

More generally, the first i rounds fix polynomials g̃1, . . . , g̃i and a prefix of field elements
β1, . . . , βj . In the (i + 1)-th round the parties run the same two-message protocol described
above to verify the i-th claim:∑

z∈{0,1}n−i
f(β1, . . . , βj , zi+1, . . . , zn) = g̃i(βi).

Note that this i-th claim is about the sum with the prefix β = (β1, . . . , βj), which is of size 2n−i.
After n rounds, the verifier can simply verify the n-th claim on its own using a single evaluation
of f on the point (β1, . . . , βn). Soundness of the protocol follows from the fact that if the i-th
claim is false, then for any g̃i+1 sent by a cheating prover, w.h.p. over the choice of βi+1 the
(i+ 1)-th claim will also be false (because of the Schwartz-Zippel Lemma). Unambiguity means
that even if the i-th claim is true, then if a cheating prover sends any polynomial g̃i+1 that
is not equal to the “prescribed” polynomial gi+1(x) that would have been sent by the honest
prover, then w.h.p. over the choice of βi+1 the (i + 1)-th claim will be false (even though the
i-th claim was true!). More generally, we can use the same protocol to verify sums with a fixed
prefix β ∈ Fj for any j ∈ {0, . . . , n}. This requires only (n− j) rounds of interaction.

To make this protocol non-interactive, we use the Fiat-Shamir tranformation. Given a hash
function h, the prescribed proof for an instance (F, y, f) specifies the prescribed prover’s mes-
sages (α1, . . . , αn) in a particular execution of the sumcheck protocol. The particular execution
is specified by computing for each i the verfier’s challenge βi = h(F, y, f, α1, β1, . . . , βi−1, αi).
To verify such a proof, the verifier: (i) computes each βi (using the hash function, as above),
and (ii) checks that the sumcheck verifier would accept the input (F, y, f) given the transcript
(α1, β1, . . . , αn, βn). We assume that this non-interactive protocol is adaptively unambiguously
sound: given the hash function h, no polynomial-time prover can find a false statement (F, ỹ, f)
and an accepting proof for that statement. Nor can a cheating prover find a true statement
(F, y, f) and an accepting proof that differs from the prescribed one. Similarly to the interac-
tive sumcheck, we can also use the non-interactive sumcheck to verify sums with a fixed prefix
β ∈ Fj . In fact, if we define the language appropriately, adaptive soundness of this protocol
directly implies adaptive unambiguous soundness. We elaborate on this below, see Claim 4.

Merging proofs by computing a (small) sum. Recall our setting: for a fixed prefix
β ∈ Fj−1, we have computed the sums with prefixes {βγ = (β, γ) ∈ Fj}dγ=0, which have values

{yγ}dγ=0, together with corresponding proofs {πγ}dγ=0 for those values. We want now to compute
the proof π for the sum with prefix β. This proof corresponds to a larger sum, and so it should
contain an additional (collapsed) round of interaction. What should the prover’s first message
in the protocol for this statement be? The first message is comprised of the values of the
polynomial gj , where gj(γ) equals the sum with prefix βγ . Thus, the first message is simply the
values α1 = {yγ}dγ=0. Once we know the prover’s first message α1, we can compute the verifier’s
random challenge σ by applying the Fiat-Shamir hash function to the instance and to α1. To
complete a transcript for the non-interactive sumcheck protocol (and a proof for the sum with
prefix β), we now need a proof for the next claim, i.e., a proof that:∑

z∈{0,1}n−j
f(β, σ, z) = g1(σ).

In particular, all we need is to compute a sum of size 2n−j with prefix (β, σ), and a proof for
this sum. Once the value and proof for this larger sum are computed, we can “forget” the values
and proofs {yγ , πγ}dγ=0 that were computed for the prefixes. This completes the reduction from
incrementally verifiable proof merging to incrementally verifiable counting.
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More generally, we have shown that the sum and proof for a statement of size 2n−j+1 can
be obtained by computing (d+ 1) proofs for statements of size 2n−j (with a common prefix of
length 2j−1, followed by each one of the first (d + 1) field elements), and an additional proof
for a final statement of size 2n−j (with the same common prefix, but a different j-th element
that depends on the Fiat-Shamir hash function). Note that while sums with boolean prefixes
correspond to the counting the number of satisfying assignments in subcubes of the hypercube
{0, 1}n, the sums with prefixes that include elements outside {0, 1} have no such correspondence
and in particular the summands can be arbitrary field elements.

From soundness to unambiguous soundness. We show that adaptive soundness of the
non-interactive sum-check protocol applied to a particular language LSC implies adaptive un-
ambiguous soundness for the same language. Moreover, the protocol’s adaptive unambiguous
soundness for LSC suffices for (unambiguous) soundness of our incrementally verifiable compu-
tation scheme.

We begin by defining LSC. The language is defined over tuples that include an instance to the
sumcheck protocol, a fixed prefix β1, . . . , βj ∈ F, and a fixed partial transcript of the sumcheck
protocol. A tuple is of the form (F, y, f, β1, . . . , βj , α̃j+1, βj+1, . . . , α̃i+j), where i, j ∈ {0, . . . , n}
and their sum is at most n. The language is defined as follows:

• When i = j = 0, this is simply a standard input for the sumcheck protocol, and the tuple
is in the language if and only if indeed the sum of f over all 2n inputs equals y.

• For j ≥ 1 and i = 0, the tuple is in the language if and only if the sum over all 2n−i

assignments with prefix β1, . . . , βj equals y.

• For general j and i ≥ 1, the tuple is in the language if and only if the final prover message
α̃i+j is consistent with the prescribed (honest) prover’s message, given the fixed prefix
β1, . . . , βj and the verifier’s messages βi+1, . . . , βi+j−1 (there is no condition on y or on
the prior prover messages, only the last one matters).7

With this language in mind, we can view each round of the sumcheck as reducing from a claim
that a tuple is in LSC, to a claim that a longer tuple is in LSC. Soundness means that if the
initial claim is false, then w.h.p. the new claim is also false. Unambiguity means that even if the
initial instance was in the language, if the prover doesn’t follow the prescribed strategy, then
w.h.p. over the verifier’s choice of βi, the new instance is not in the language.

For our incrementally verifiable computation scheme, it suffices to assume that the non-
interactive sumcheck is an adaptively unambiguously sound non-interactive argument system
for the language LSC (see the full construction in Section 3). The following Claim shows that
in fact it suffices to assume adaptive soundness, which itself implies unambiguity.

Claim 4. If the sumcheck protocol is an adaptively sound argument system for the language
LSC, then it is also an adaptively unambiguously sound argument system for LSC.

Proof. Assume for contradiction that there exists an adversary A that, given a hash function
h, can find with noticeable probability an instance x ∈ LSC, whose prescribed proof is π, and
an accepting proof π̃ 6= π. Let

x = (F, y, f, β1, . . . , βj , αj+1, βj+1, . . . , αi+j),

and π̃ = (α̃i+j+1, . . . , α̃n). We can use A to break the adaptive soundness of the same argument
system, by picking a random index ` ∈ {i+ j + 1, n}, and computing the challenges:

{β̂k = h(x, β̂i+j , α̃i+j+1, β̂i+j+1, . . . , α̃k)}`−1
k=i+j .

7Here, when we refer to the prescribed prover, we are ignoring the fact that the actual claim being proved
(i.e. the value of y) might be false, as the prescribed prover in the sum check protocol does not need to use the
value y to compute its messages.
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The new instance is:
x′ = (x, β̂i+j , α̃i+j+1, β̂i+j+1, . . . , α̃`).

The proof for this new instance is π′ = (α̃`+1, . . . , α̃n). By construction, if π̃ is an accepting
proof for x, then also π′ will be an accepting proof for x′. We claim that with probability
at least 1/n, however, x′ is a NO instance of LSC. To see this, let the prescribed proof be
π = (αi+j+1, . . . , αn). Finally, let `∗ be the smallest index s.t. α̃i+`∗ 6= αi+`∗ (such a `∗ must

exist because π̃ 6= π). It follows that the instance x′ = (F, y, f, α1, β1, . . . , αi, β̂i, α̃i+1, . . . , α̃i+`∗)
is a NO instance for LSC. Thus, in the above reduction, when ` = `∗ the adversary finds an
accepting proof for a NO instance, and this happens with probability at least 1/n over the
choice of `.

From incrementally verifiable counting to a problem in CLS. Our ultimate goal is to
construct an average-case hard distribution in CLS (and thus in PPAD). To this end, we reduce
our incrementally verifiable counting procedure applied to any #SAT instance to a problem
in CLS. The blueprint for such a reduction comes from the work of Bitansky, Paneth and
Rosen [6], who (building on [1]) introduced the promise search problem Sink-of-Verifiable-
Line (SVL). This problem corresponds to an incrementally verifiable sequential computation
where S gives the next state and V allows to verify that si lies i steps from the initial state s0.
Given a T ∈ N, the goal is to find a state sT = ST (s0).

Hubáček and Yogev [35] showed that any S and V with perfect soundness (i.e., such that
V accepts a pair si and i if and only if si lies i consecutive steps of S from s0) can be reduced
to End-of-Metered-Line (EOML), a total search problem which lies in CLS. Our crucial
observation is that unambiguous soundness is sufficient for the correctness of their reduction.
Specifically, we show that an adaptively unambiguously sound non-interactive argument for the
sumcheck language gives rise to a hard-on-average distribution of EOML instances.

We define relaxed-Sink-of-Verifiable-Line (rSVL), a generalization of SVL that cap-
tures breaking unambiguous soundness and show that the reduction from [35] is robust enough
so that when applied to any rSVL instance, any solution for the resulting EOML instance
either corresponds to finding the target state sT or breaking the unambiguous soundness of
V. We give the formal definition of relaxed-Sink-of-Verifiable-Line and the reduction to
End-of-Metered-Line in §2.3.

1.3 Related Work

The systematic study of total search problems (i.e., with the guaranteed existence of a solution)
was initiated by Megiddo and Papadimitriou [45], who defined a corresponding complexity
class, called TFNP. They observed that unless NP = co-NP, a “semantic” class such as TFNP is
unlikely to have complete problems. Motivated by this observation, Papadimitriou [47] defined
“syntactic” subclasses of TFNP with the goal of clustering search problems based on the various
(non-constructive) existential theorems used to argue their totality (see Figure 1). Perhaps the
best known such class is PPAD [47] which captures the computational complexity of finding
Nash equilibria (Nash) in bimatrix games [21, 19], amongst other natural problems [39].

Other subclasses of TFNP include PPA [47], which captures computational problems re-
lated to the Borsuk-Ulam theorem (Borsuk-Ulam), Tucker’s lemma (Tucker) [24] or fair
division [26], the class PLS [37] that was defined to capture the computational complexity of
problems amenable to local search such as Local-Maxcut, and the class CLS [22], which
captures finding approximate local optima of continuous functions (CLO) or finding Banach’s
fixed points [23] and contains finding Nash equilibria in congestion games or solving the simple
stochastic games of Condon or Shapley. Finally, the classes PPP [47] and PWPP [36] are moti-
vated by the pigeonhole principle and contain important problems related to finding collisions
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Figure 1: The TFNP landscape.

in functions. Recently, Sotiraki, Zampetakis and Zirdelis [53] introduced a PPP-complete prob-
lem related to Blichfeldt’s theorem in the theory of lattices (Blichfeldt) and showed that a
constrained variant of the short integer solution problem (cSIS) is PPP-complete.

On the face of it, all TFNP problems could potentially be solvable in polynomial time without
defying our understanding of the broader landscape of complexity theory (e.g. no surprising
collapse of any important complexity classes seems to be implied by assuming TFNP ⊂ FP). In
light of this, it is natural to seek “extrinsic” evidence supporting TFNP hardness, for instance
based on computational problems originating in cryptography. This approach would also have
the added benefit of establishing average-case hardness, indicating resistance against general
heuristic algorithms.

The approach of basing average-case TFNP-hardness on relatively established cryptographic
assumptions has already been successfully applied in the context of complexity classes other than
PPAD. For instance, Papadimitriou [47] showed that one-way permutations imply average-case
hardness in PPP,8 and Jeřábek [36] showed that the undirected version of End-of-Line, which
is complete for the class PPA, is no easier than FACTORING. It is currently not known whether
any of these results can be extended to PPAD.

As mentioned in §1, Bitansky, Paneth and Rosen, building on [1], showed that the task of
breaking sub-exponentially secure indistinguishability obfuscation (iO) is reducible to solving
the End-of-Line problem [6]. The Bitansky et al. technique was extended by Hubáček and
Yogev [35], who established hardness in CLS, a subclass of PPAD, under the same assumptions.
Both results were subsequently strengthened. First, by Garg, Pandey and Srinivasan [27],
who showed that it is sufficient to assume the existence of iO with polynomial (instead of
sub-exponential) hardness (or alternatively compact public-key functional encryption) and one-

8It is also known (folklore) that any assumption that implies the existence of collision-resistant hashing (e.g.
hardness of Factoring, SIS or DLP) implies average-case hardness in PWPP.
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way permutations. Second, by Komargodski and Segev [41], who weakened the assumptions
to quasi-polynomially secure private-key functional encryption and sub-exponentially-secure
injective one-way functions.

Hubáček, Naor and Yogev [34] recently constructed hard TFNP problems from one-way func-
tions (in fact from any average-case hard NP language) under complexity theoretic assumptions
used in the context of derandomization. It is not known whether their distribution gives rise
to average-case hardness in any of the syntactic subclasses of TFNP. Komargodski, Naor and
Yogev [40] demonstrated a close connection between the Ramsey problem (Ramsey) and the
existence of collision-resistant hashing.

The relatively small progress on showing average-case hardness of total search problems from
weak general assumptions motivated a line of works focusing on limits for proving average-case
hardness. The implausibility of using worst-case NP hardness [37, 45] was later strengthened to
show that it is unlikely to base average-case TFNP hardness even on problems in the polynomial
hierarchy [12], and to show that any randomized reduction from a worst-case NP language to an
average-case TFNP problem would imply that SAT is checkable [44]. A recent result [51] applies
to the whole of TFNP and shows that any attempt to base average-case TFNP hardness on
(trapdoor) one-way functions in a black-box manner must result in instances with exponentially
many solutions. Previously to our work, all known constructions of average-case hard PPAD
problems resulted in instances with small numbers of solutions. In contrast, our construction
yields instances with exponentially many solutions (where all but one of the solutions correspond
to breaking unambiguous soundness).

Orthogonally to the above works, the smoothed complexity approach was recently used to
identify natural distributions of PLS-complete problems (such as the Local-Maxcut or the
problem of finding pure Nash equilibria in network coordination games) that admit polynomial
time algorithms [2, 7].

Prior to our work, arguably the most natural average-case hard distribution of structured
TFNP problems followed from the randomized reduction from Factoring to PPA developed in
the works of Buresh-Oppenheim and Jeřábek [13, 36].

2 Search Problems

In this section, we recall definitions for total search problems and promise search problems from
previous work. In §2.3, we define our relaxed version of Sink-of-Verifiable-Line.

2.1 Total Search Problems

An efficiently-verifiable search problem is described via a pair (L,R), where L ⊆ {0, 1}∗ is
an efficiently-recognizable set of instances, and R is an efficiently-computable binary relation.
Given v ∈ L, the task is to find a w such that R(v, w) — the class that contains all such search
problems is known as functional NP (FNP). An efficiently-verifiable search problem is total if
for every instance v ∈ L there exists a witness w of length poly(|v|) such that R(v, w) = 1. The
class total FNP (TFNP) consists of all efficiently-verifiable search problems that are total.

The class polynomial parity argument over directed graphs (PPAD) is a syntactical sub-class
of TFNP which consists of all problems that are polynomial-time reducible to the End-of-Line
problem (also known as the Source-or-Sink problem) [47].

Definition 5. An End-of-Line (EOL) instance (S,P) consists of a pair of circuits S,P :
{0, 1}M → {0, 1}M such that P(0M ) = 0M and S(0M ) 6= 0M . The goal is to find a vertex
v ∈ {0, 1}M such that P(S(v)) 6= v or S(P(v)) 6= v 6= 0M .

Intuitively, the circuits S and P can be viewed as implementing the successor and predecessor
functions of a directed graph over {0, 1}M , where for each pair of vertices v and u there exists
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an edge from v to u if and only if S(v) = u and P(u) = v (note that the in-degree and out-degree
of every vertex in this graph is at most one, and the in-degree of 0M is 0). The goal is to find
any vertex, other than 0M , with either no incoming edge or no outgoing edge. Such a vertex
must always exist by a parity argument.

The class continuous local search (CLS) lies in the intersection of PPAD and PLS and con-
sists of all problems that are polynomial-time reducible to the Continuous-Local-Optimum
problem (cf. [22] for the formal definition). Another problem that is known to lie in CLS (but
not known to be complete) is End-of-Metered-Line [35].

Definition 6. An End-of-Metered-Line (EOML) instance (S,P,M) consists of circuits
S,P : {0, 1}m → {0, 1}m and M : {0, 1}m → {0, . . . , 2m} such that P(0m) = 0m 6= S(0m) and
M(0m) = 1. The goal is to find a vertex v ∈ {0, 1}m satisfying one of the following:

(i) End of line: either P(S(v)) 6= v or S(P(v)) 6= v 6= 0m,

(ii) False source: v 6= 0m and M(v) = 1,

(iii) Miscount: either M(v) > 0 and M(S(v))−M(v) 6= 1 or M(v) > 1 and M(v)−M(P(v)) 6= 1.

The goal in EOML is the same as in EOL, but now the task is made easier as one is also
given an “odometer” circuit M. On input a vertex v, this circuit M outputs the number of steps
required to reach v from the source. Since the behaviour of M is not guaranteed syntactically,
any vertex that attests to deviation in the correct behaviour of M also acts as a solution (and
thus puts End-of-Metered-Line in TFNP).

2.2 The Sink-of-Verifiable-Line Problem

The Sink-of-Verifiable-Line problem is a promise search problem introduced by Abbot,
Kane and Valiant [1] and further developed in [6]. It is defined as follows:

Definition 7. A Sink-of-Verifiable-Line instance (S,V, T, v0) consists of T ∈ {1, . . . , 2M},
v0 ∈ {0, 1}M , and two circuits S : {0, 1}M → {0, 1}M and V : {0, 1}M × {1, . . . , T} → {0, 1}
with the guarantee that for every v ∈ {0, 1}M and i ∈ {1, . . . , T}, it holds that V(v, i) = 1 if
and only if v = Si(v0). The goal is to find a vertex v ∈ {0, 1}M such that V(v, T ) = 1 (i.e., the
sink).

Intuitively, the circuit S can be viewed as implementing the successor function of a directed
graph over {0, 1}M that consists of a single line starting at v0. The circuit V enables to efficiently
test whether a given vertex v is of distance i from v0 on the line, and the goal is to find the
vertex at distance T from v0. Note that not every tuple (S,V, T, v0) is a valid SVL instance
since V might not satisfy the promise about its behaviour. Moreover, there may not be an
efficient algorithm for verifying whether a given tuple (S,V, T, v0) is a valid instance, hence this
problem lies outside of TFNP.

Remark 8. The definition of SVL with an arbitrary source vertex v0, as above, is equivalent to
the definition in [6] where the source is 0M . First, any SVL instance (S,V, T ) where the source
is 0M can be trivially transformed to an instance (S,V, T, v0 = 0M ). Second, we can reduce
in the opposite direction by shifting the main line by v0 as follows. Given an SVL instance
(S,V, T, v0), define the new SVL instance as (S′,V′, T ) with source 0M , where S′(v) := S(v⊕v0)
and V′(v, i) := V(v⊕ v0, i), where ⊕ denotes the bitwise XOR operation. Note that this general
technique can be applied in the context of TFNP to any search problem where part of the
instance is some significant vertex (e.g. the trivial source at 0M in End-of-Line).
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2.3 The relaxed-Sink-of-Verifiable-Line Problem

In this section, we introduce a variant of the Sink-of-Verifiable-Line problem, which we call
relaxed-Sink-of-Verifiable-Line problem. The main difference from Definition 7 is that
the promise about the behaviour of the verifier circuit V is relaxed so that V can also accept
vertices off the line starting at the vertex v0. However, any vertex off the main line accepted
by V is an additional solution.

Definition 9. A relaxed-Sink-of-Verifiable-Line (rSVL) instance (S,V, T, v0) consists
of T ∈ {1, . . . , 2M}, v0 ∈ {0, 1}M , and circuits S : {0, 1}M → {0, 1}M and V : {0, 1}M ×
{1, . . . , T} → {0, 1} with the guarantee that for every (v, i) ∈ {0, 1}M × {1, . . . , T} such that
v = Si(v0), it holds that V(v, i) = 1. The goal is to find one of the following:

(i) The sink: a vertex v ∈ {0, 1}M such that V(v, T ) = 1; or

(ii) False positive: a pair (v, i) ∈ {0, 1}M ×{0, . . . 2M} such that v 6= Si(v0) and V(v, i) = 1.

We show in the following lemma that, despite the relaxed promise, rSVL reduces to EOML
and, thus, average-case hardness of rSVL is sufficient to imply average-case hardness of EOML.

Lemma 10. relaxed-Sink-of-Verifiable-Line is reducible to End-of-Metered-Line.

Proof. The proof of the lemma follows by inspection of the reduction from Sink-of-Verifiable-
Line to End-of-Metered-Line from [35] when applied to a relaxed-Sink-of-Verifiable-
Line instance. We start by giving an overview of the reduction and then argue that its correct-
ness is preserved even when applied to an rSVL instance.

Consider an SVL instance (S,V, T, 0m).9 In order to reduce it to an End-of-Metered-
Line instance, the main technical issue is implementing the predecessor circuit P′ and meter
circuit M′. Notice that it is easy to construct the predecessor circuit in an inefficient way. One
can simply modify the labels of the vertices to contain the entire history of the previous steps on
the SVL line. Given such labels, implementing the predecessor is easy: simply remove the last
element from the label. However, the obvious issue of this transformation is that the size of the
labels becomes eventually exponentially large which would render the resulting circuits S′,P′,M′

inefficient relative to the size of the SVL instance. In order to give an efficient reduction, it
was observed in [1, 6] that it is possible to reduce the size of the labels by utilizing techniques
used for implementing reversible computation [4], where only a small number of states is stored
in order to be able to revert previous steps in the computation. The general approach can be
explained via a simple pebbling game that we describe next.

There are ` pebbles that can be placed on positions indexed by positive integers. The rules
of the game are as follows: a pebble can be placed in or removed from position i if and only if
either there is a pebble in position i− 1 or i = 1. The goal of the game is to place a pebble in
position 2` − 1. As shown by Chung, Diaconis and Graham [20], the optimal efficient strategy
achieves the goal of the game in a recursive manner. Their main idea is to exploit the symmetry
of the rules for placing and removing pebbles. Specifically, that it is always possible to reverse
any sequence of moves. Suppose there is a way to get to 2`−1−1 using only `−1 pebbles. Then,
place an additional pebble at 2`−1. Next, free the first ` − 1 pebbles by reversing the original
sequence of moves performed in the first part. Finally, perform the same sequence starting from
2`−1. This strategy will end with a pebble at position 2` − 1 while using only ` pebbles.

The predecessor circuit in the reduction from SVL to EOML is implemented by simulat-
ing the optimal strategy in the above pebbling game. Each pair (v, i) such that V(v, i) = 1
corresponds to a position on which a pebble can be placed. Subsequently, a vertex in the
EOML instance has a label representing the states of the ` = log2(T ) pebbles, i.e., a tuple of
pairs ((v1, i1), . . . , (v`, i`)) where each pebble corresponds to a pair (v, i) such that V(v, i) = 1

9We can assume w.l.o.g. that the starting vertex for the SVL instance is v0 = 0m (see Remark 8).
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– tuples containing pairs that do not verify become self-loops. The efficient pebbling strategy
demonstrates that by storing only ` intermediate states we can implement S′ and P′ that tra-
verse the exponential SVL line from 0m to vT = ST (0m). For every valid configuration of the
pebbles (i.e., a vertex that is not a self-loop), the meter M′ simply outputs the number of steps
taken in the pebbling strategy so far plus one (which can be computed efficiently just from the
configuration itself) and the self-loops are given value 0. The resulting End-of-Metered-Line
instance (S′,P′,M′) corresponds to a graph with a single line traversing the sequence of all the
configurations visited by the optimal pebbling strategy. In particular, every vertex correspond-
ing to an intermediate state of the pebbling strategy is followed by the subsequent state, and
the final step of the pebbling strategy is a self-loop under S′. Any state describing an illegal
configuration of the pebbling game is defined to be a self loop both under S′ and P′. Therefore,
the resulting instance has a unique solution, a sink that identifies a solution to the original SVL
instance. For a formal description of the reduction see [35].

We now analyze the reduction when applied to a relaxed-Sink-of-Verifiable-Line in-
stance (S,V, T, 0m). The main issue is that due to the relaxed guarantee, we might have intro-
duced additional solutions besides the sink corresponding to vT = ST (0m). We claim that the
resulting EOML instance (S′,P′,M′) has the following main properties.

1. Every vertex is labeled by a tuple of ` = log2(T ) pairs of the form (v, i) ∈ {0, 1}M ×
{1, . . . , T}.

2. Every vertex u that is not a self-loop (i.e., with either S′(u) 6= u or P′(u) 6= u) contains
in its label only pairs (v, i) ∈ {0, 1}M × {1, . . . , T} such that V(v, i) = 1 and is given a
non-zero value by M′.

3. A vertex u lies on the main directed line starting at the trivial source corresponding to
the initial pebbling configuration if and only if it contains in its label only pairs (v, i) ∈
{0, 1}M × {1, . . . , T} such that v = Si(0m).

Items 1 and 2 are immediate from the description of the reduction. Items 3 follows since any
vertex u which is not a self-loop corresponds to a valid pebbling configuration. Thus, if the label
of u contains only pairs (v, i) ∈ {0, 1}M × {1, . . . , T} such that v = Si(0m) then the successor
(resp. predecessor) of u on the main directed EOML line is the successive (resp. preceding)
pebbling configuration. Note that the converse implication is straightforward.

Consider any vertex u that is a solution of the resulting EOML instance (of any type from
Definition 6). If the label of u contains a pair of the form (v, T ) then we have found a solution
to the relaxed SVL instance. By item 2, V(v, T ) = 1 and either v is the sink of the rSVL
instance (when v = ST (0m)) or (v, T ) is a false positive (when v 6= ST (0m)).

Otherwise, we show that the solution u must contain a false positive in its label. First,
notice that there are no other solutions on the main directed line besides the sink containing
(vT , T ) in its label (this sink falls into the previous case we already handled). Therefore, u lies
off the main path and, by items 2 and 3 above, its label must contain a pair (v, i) such that
V(v, i) = 1 but v 6= Si(0m), i.e., a false positive. Since there are log2(T ) such pairs in the label,
we can select the false positive (v, i) with a noticeable probability simply by picking one of the
pairs in the label uniformly at random.

3 The Sumcheck Protocol

The sumcheck protocol was introduced by Lund et al. [43] to show that #P is contained in
IP. In this section, we recall the original protocol (§3.2) and then describe the non-interactive
protocol that is obtained by applying the Fiat-Shamir transformation to the interactive protocol
(§3.3). But first, we give the necessary definitions pertaining to proof systems (§3.1).
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3.1 Proof Systems

Interactive protocols. An interactive protocol consists of a pair (P,V) of interactive Turing
machines that are run on a common input x. The first machine, which is deterministic, is
called the prover and is denoted by P, and the second machine, which is probabilistic, is called
the verifier and is denoted by V. In an `-round interactive protocol, in each round i ∈ [`],
first P sends a message αi ∈ Σa to V and then V sends a message βi ∈ Σb to P, where Σ is
a finite alphabet. At the end of the interaction, V runs a (deterministic) Turing machine on
input (x, (β1, . . . , β`), (α1, . . . , α`)). The interactive protocol is public-coin if βi is a uniformly
distributed random string in Σb. The communication complexity of an interactive protocol is
the total number of bits transmitted, namely, (` · (b+ a) · log2(|Σ|)).

Interactive proofs (IPs). The classical notion of an interactive proof for a language L is
due to Goldwasser, Micali and Rackoff [32].

Definition 11. An interactive protocol (P,V) is a δ-sound interactive proof (IP) for L if:

• Completeness: For every x ∈ L, if V interacts with P on common input x, then V
accepts with probability 1.

• Soundness: For every x /∈ L and every (computationally unbounded) cheating prover
strategy P̃, the verifier V accepts when interacting with P̃ with probability less than
δ(|x|), where δ = δ(n) is called the soundness error of the proof system.

Unambiguous IPs. Reingold, Rothblum and Rothblum [50] introduced a variant of interac-
tive proofs, called unambiguous interactive proofs, in which the honest prover strategy is defined
for every x (i.e., also for x /∈ L) and the verifier is required to reject when interacting with any
cheating prover that deviates from the prescribed honest prover strategy at any point of the
interaction.

More formally, if (P,V) is an interactive protocol, and P̃ is some arbitrary (cheating) strat-
egy, we say that P̃ deviates from the protocol at round i∗ if the message sent by P̃ in round i∗

differs from the message that P would have sent given the transcript of the protocol thus far. In
other words, if the verifier sent the messages β1, . . . , βi∗−1 in rounds 1, . . . , (i∗− 1) respectively,
we say that P̃ deviates from the protocol at round i∗ if

P̃ (x, i∗, (β1, . . . , βi−1)) 6= P (x, i∗, (β1, . . . , βi−1)) .

We consider a slightly different formulation, where the unambiguity is required to hold only
for x ∈ L. Therefore for x /∈ L, we need to reinstate the standard soundness condition.

Definition 12. An interactive protocol (P,V), in which we call P the prescribed prover, is a
(δ, ε)-unambiguosly sound (or simply δ-unambiguosly sound if ε = δ) IP for L if the following
three properties hold:

• Prescribed Completeness: For every x ∈ {0, 1}∗, if V interacts with P on common
input x, then V outputs L(x) with probability 1.

• Soundness: For every x /∈ L and every (computationally unbounded) cheating prover
strategy P̃, the verifier V accepts when interacting with P̃ with probability less than
δ(|x|), where δ = δ(n) is called the soundness error of the proof system.

• Unambiguity: For every x ∈ L, every (computationally unbounded) cheating prover
strategy P̃, every round i∗ ∈ [`], and for every β1, . . . , βi∗−1, if P̃ first deviates from the
protocol in round i∗ (given the messages β1, . . . , βi∗−1 in rounds 1, . . . , (i∗−1) respectively),
then at the end of the protocol V accepts with probability at most ε(|x|), where the
probability is over V’s coin tosses in rounds i∗, . . . , `.
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Non-interactive proof systems. A non-interactive proof system involves the prover sending
a single message to the verifier. To give this proof system additional power, we assume that both
prover and verifier have access to a common reference string (CRS). We focus on adaptive proof
systems where a cheating prover gets to see the CRS before forging a proof for a statement of
its choice. As for the case of interactive proofs, we consider unambiguous non-interactive proof
systems (instead of the standard “sound” non-interactive proof systems).

Definition 13. A pair of machines (P,V), where P is the prescribed prover, is a (δ, ε)-
unambiguosly sound (or, if ε = δ, simply δ-unambiguosly sound) adaptive non-interactive proof
system for a language L if V is probabilistic polynomial-time, and taking R to be a uniformly
random CRS, the following three properties hold:

• Prescribed Completeness: For every x ∈ {0, 1}∗,

Pr [V(x,P(x,R), R) = L(x)] = 1.

• Soundness: For every (computationally unbounded) cheating prover strategy P̃,

Pr
[
V(x, π̃, R) = 1|(x, π̃)← P̃(R), x /∈ L

]
≤ δ(|x|).

• Unambiguity: For every (computationally unbounded) cheating prover strategy P̃,

Pr

 V(x, π̃, R) = 1
(x, π̃)← P̃(R), π ← P(x,R)

π̃ 6= π, x ∈ L

 ≤ ε(|x|).
Remark 14. A non-interactive proof system is called an argument if the soundness and un-
ambiguity properties hold only against computationally-bounded (i.e., poly(n)) cheating prover
strategy P̃.

3.2 Interactive Sumcheck Protocol

Fix a finite field F and a subset H ⊆ F (usually H = {0, 1}). In the original sumcheck protocol,
a (not necessarily efficient) prover takes as input an n-variate polynomial f : Fn → F of degree
at most d in each variable (think of d as a constant significantly smaller than |F|). The prover’s
goal is to convince a verifier that ∑

z∈Hn
f(z) = y,

for some value y ∈ F. The verifier only has oracle access to f , and is given the constant y ∈ F.
The verifier is allowed a single oracle query to f , and runs in time poly(n, d, log2(|F|)). In
Figure 2, we review the standard sumcheck protocol from [43], denoted by(

PSC(y, f),VfSC(y)
)
.

PSC is an interactive Turing machine, and VSC is a probabilistic interactive Turing machine with
oracle access to f : Fn → F. The prover PSC(y, f) runs in time poly(|F|n).10 The verifier VgSC(y)
runs in time poly(n, log2(|F|), d) and queries the oracle f at a single point. The communication
complexity is poly(n, log2(|F|), d), and the total number of bits sent from the verifier to the
prover is O(n · log2|F|). Moreover, this protocol is public-coin; i.e., all the messages sent by the
verifier are truly random and consist of the verifier’s random coin tosses.

10Here we assume the prover’s input is a description of the function f , from which f can be computed (on any
input) in time poly(n).
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Interactive Sumcheck Protocol for
∑
z1,...,zn∈H f(z1, . . . , zn) = y

Parameters:

1. F (field), n (dimension), d (individual degree)

2. H ⊂ F

Protocol:

1. Set y0 = y

2. For i← 1, . . . , n:

(at the beginning of round i, both PSC and VSC know yi−1 and β1, . . . , βi−1 ∈ F)

(a) PSC computes the degree-d univariate polynomial

gi(x) :=
∑

zi+1,...,zn∈H
f(β1, . . . , βi−1, x, zi+1, . . . , zn),

PSC sends this polynomial to VSC by specifying its values on the first d + 1 field elements,
i.e. by sending {αi,γ = gi(γ)}dγ=0.

(b) VSC receives d+1 field elements {α̃i,γ}dγ=0, and interpolates the (unique) degree-d polynomial
g̃i s.t. ∀γ ∈ {0, . . . , d}, g̃i(γ) = α̃i,γ

VSC then checks that: ∑
x∈H

g̃i(x) = yi−1.

If not, then VSC rejects.

(c) VSC chooses a random element βi ∈R F, sets yi = g̃i(βi), and sends βi to PSC.

3. VSC uses a single oracle call to f to check that yn = f(β1, . . . , βn).

Figure 2: Sumcheck protocol (PSC(y, f),VfSC(y)) from [43]

Sumcheck protocol for LSC. Recall the definition of the language LSC from §1.2. Although
the sumcheck protocol described above works for “plain” LSC — i.e., LSC without a prefix and
partial transcript and hence i = j = 0, — it can be easily adapted for “full” LSC where i and
j can be both greater than zero, which is required for our application.11 As a first step, we
describe in Figure 3 the protocol for “prefixed” LSC — i.e., LSC with j > 0 but i = 0. We
show in Theorem 15 that this protocol is an unambiguously-sound interactive proof system (for
prefixed LSC). The sketch of the protocol and the corresponding theorem for full LSC then
follows Theorem 15. We remark that in both the protocols the verifier is given the polynomial
f , unlike oracle-access as in the original Sumcheck protocol in Figure 2. Thus, the verifier’s
run-time can be poly(n, d, log2(|F|), |f |), where |f | refers to the size of the polynomial f under
some appropriate representation (e.g., arithmetic circuits).

Theorem 15. Let f : Fn → F be an n-variate polynomial of degree at most d < |F| in each
variable. The sumcheck protocol described in Figure 3 is a (d(n− j)/|F|)-unambiguously sound
interactive proof system for prefixed LSC (i.e., with j > 0 and i = 0). That is, it satisfies the
following three properties.

11We remark that the language LSC in its most general form (i.e., with i, j > 0) is used only in Claim 4. In
the discussions that follow, the prefixed language suffices.
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Interactive β-Prefix Sumcheck Protocol for
∑
zj+1,...,zn∈H f(β, zj+1, . . . , zn) = y

Parameters:

1. F (field), n (dimension), d (individual degree)

2. H ⊂ F

Protocol:

1. Let β = (β1, . . . , βj) and set yj = y and

2. For i← j + 1, . . . , n:

(at the beginning of round i, both PSC and VSC know yi−1 and β1, . . . , βi−1 ∈ F)

(a) PSC computes the degree-d univariate polynomial

gi(x) :=
∑

zi+1,...,zn∈H
f(β1, . . . , βi−1, x, zi+1, . . . , zn),

PSC sends this polynomial to VSC by specifying its values on the first d + 1 field elements,
i.e. by sending {αi,γ = gi(γ)}dγ=0.

(b) VSC receives d+1 field elements {α̃i,γ}dγ=0, and interpolates the (unique) degree-d polynomial
g̃i s.t. ∀γ ∈ {0, . . . , d}, g̃i(γ) = α̃i,γ

VSC then checks that: ∑
x∈H

g̃i(x) = yi−1.

If not, then VSC rejects.

(c) VSC chooses a random element βi ∈R F, sets yi = g̃i(βi), and sends βi to PSC.

3. VSC checks that yn = f(β1, . . . , βn).

Figure 3: β-prefix Sumcheck protocol (PSC(y, f,β),VSC(y, f,β))

• Prescribed Completeness: For every y ∈ F and β ∈ Fj,

Pr [(PSC(y, f,β),VSC(y, f,β)) = LSC(y, f,β, ∅)] = 1.

• Soundness: If
∑

z∈Hn−j f(β, z) 6= y then for every (computationally unbounded) inter-

active Turing machine P̃,

Pr
[(
P̃(y, f,β),VSC(y, f,β)

)
= 1
]
≤ d(n− j)

|F|
.

• Unambiguity: If
∑

z∈Hn−j f(β, z) = y then for every (computationally unbounded) in-

teractive Turing machine P̃ that deviates from the protocol, VSC accepts with probability
at most d(n− j)/|F|.

Proof. We show below that completeness, soundness and unambiguity holds for j = 0 — the
argument when j > 0 follows similarly by fixing the prefix β.

Prescribed completeness follows from the protocol description. As for the soundness, let
f : Fn → F be a polynomial of degree at most d in each variable, such that

∑
z∈Hn f(z) 6= y.

Assume for the sake of contradiction that there exists a cheating prover P̃ for which

s := Pr
[(
P̃(y, f),VSC(y, f)

)
= 1
]
>
dn

|F|
.

18



Recall that in the sumcheck protocol the prover sends n univariate polynomials g1, . . . , gn, and
the verifier sends n − 1 random field elements β1, . . . , βn−1 ∈ F. For every i ∈ [1, n], let Ai
denote the event that

gi(x) =
∑

zi+1,...,zn∈H
f(β1, . . . , βi−1, x, zi+1, . . . , zn).

Let S denote the event that
(
P̃(y, f),VSC(y, f)

)
= 1. Notice that Pr[S|A1 ∧ . . . ∧An] = 0. We

will reach a contradiction by proving that

Pr[S|A1 ∧ . . . ∧An] ≥ s− dn

|F|
.

To this end, we prove by (reverse) induction that for every j ∈ [1, n],

Pr[S|Aj ∧ . . . ∧An] ≥ s− (n− j + 1)d

|F|
. (1)

For j = n,

s = Pr[S] ≤ Pr[S|¬(An)] + Pr[S|An] ≤ d

|F|
+ Pr[S|An],

where the latter inequality follows by the Schwartz-Zippel lemma, i.e. the fact that every two
distinct univariate polynomials of degree ≤ d over F agree in at most d points. Thus,

Pr[S|An] ≥ s− d

|F|
.

Assume that Equation (1) holds for j, and we will show that it holds for j − 1.

s− (n− j + 1)d

|F|
≤ Pr[S|Aj ∧ . . . ∧An]

≤ Pr[S|¬(Aj−1) ∧Aj ∧ . . . ∧An] + Pr[S|Aj−1 ∧Aj ∧ . . . ∧An]

≤ d

|F|
+ Pr[S|Aj−1 ∧ . . . ∧An],

which implies that

Pr[S|Aj−1 ∧ . . . ∧An] ≥ s− (n− (j − 1) + 1)d

|F|
,

as desired.
Finally, to prove unambiguity, we describe the proof in [50]. Let f : Fn → F be a polynomial

of degree at most d in each variable, such that
∑

z∈Hn f(z) = y, and let P̃ be a cheating prover.

Consider i∗ ∈ [n] and β1, . . . , βi∗−1 ∈ F be the first round that P̃ deviates from the prescribed
strategy. i.e. ∀i < i∗, gi ≡ g̃i and gi∗ 6≡ g̃i∗ , where gi ≡ g̃i denotes that two polynomials gi and
g̃i are equivalent. Here gi is the output of the prescribed prover PSC on input β1, . . . , βi−1 and
g̃i is the output of P̃ on the same input.

Claim 16. Let i ∈ {i∗, · · · , n − 1} and βi∗ , . . . , βi−1 ∈ F and suppose gi 6≡ g̃i. Then with

probability at least
(

1− d
|F|

)
over the choice of βi, either VSC rejects or gi+1 6≡ g̃i+1.

Proof. By the Schwartz-Zippel lemma, since gi and g̃i have degree at most d, gi(βi) 6= g̃i(βi)

with probability
(

1− d
|F|

)
over the choice of βi. Suppose this is the case, and yet gi+1 ≡ g̃i+1,

then ∑
x∈H

g̃i+1(x) =
∑
x∈H

gi+1(x) = gi(βi) 6= g̃i(βi) = yi.

Thus VSC would reject when it makes the check to see if
∑

x∈H g̃i+1(x) = yi.
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Applying union bound over all i ∈ {i∗, · · · , n − 1} for the above claim, we have that with

probability at least
(

1− (n− 1) · d|F|
)

over the choice of βi∗ , · · · , βn−1 either VSC rejects or

gn 6≡ g̃n.

If gn 6≡ g̃n, by the Schwartz-Zippel lemma, with probability
(

1− d
|F|

)
over the choice of βn,

g̃n(βn) 6= gn(βn) = f(β1, · · · , βn).

Thus when VSC makes the oracle call to check if yn = f(β1, · · · , βn), it will reject. Therefore, by

a further application of the union bound, with probability at least
(

1− nd
|F|

)
either VSC rejects

or yn = g̃n(βn) 6= gn(βn) = f(β1, · · · , βn).

The full Sumcheck protocol. When i = 0, the sumcheck protocol for full LSC works exactly
as described in Figure 3. Since i > 0 corresponds to the case where the sumcheck protocol has
been executed partially to the point where the prover sends the message α̃i+j , the full sumcheck
protocol just continues the protocol from that point onwards. Hence the first message in the
full sumcheck protocol is from the verifier to the prover, unlike the normal sumcheck protocol.
Let’s denote this protocol by

(PSC(y, f,β, τ ),VSC(y, f,β, τ )) ,

where τ = α̃j+1, βj+1, . . . , α̃j+i is the fixed partial transcript. In Theorem 17 below, we capture
the fact that the protocol just described is an unambiguously sound interactive proof for LSC

— the proof is similar to that of Theorem 15 and is omitted.

Theorem 17. Let f : Fn → F be an n-variate polynomial of degree at most d < |F| in each
variable. The sumcheck protocol (PSC(y, f,β, τ ),VSC(y, f,β, τ )) described above is a (d(n− i−
j)/|F|)-unambiguously sound interactive proof system for LSC.

3.3 Non-Interactive Sumcheck Protocol

We consider the non-interactive version of the sumcheck protocol obtained by applying the
Fiat-Shamir transformation to the protocols from Figure 3 and Theorem 17. To be exact,
the verifier’s “challenges” βi in the non-interactive protocol are obtained by applying a hash
function h : {0, 1}∗ → F to the transcript thus far, which is comprised of the instance and the
prover’s messages up to that round.

The non-interactive sumcheck protocol (PFS(y, f,β),VFS(y, f,β)) corresponding to Figure 3
is given in Figure 4. The algorithm PFS runs in time poly(|F|n). The verification algorithm VFS

runs in time poly(n, |f |) and space O(n · log2(|F|)). The size of the proof is O(n · log2(|F|)). The
non-interactive sumcheck protocol (PFS(y, f,β, τ ),VFS(y, f,β, τ )) corresponding to the protocol
from Theorem 17 works similar to the protocol in Figure 3 and hence incurs similar costs.

Assumption on Fiat-Shamir. The assumption that underlies our main theorem pertains
to the soundness of the collapsed protocol (PFS(y, f,β, τ ),VFS(y, f,β, τ )). In particular, we
assume that the Fiat-Shamir Transform is adaptively sound when applied to the interactive
sumcheck protocol and, as a result, that the collapsed protocol (PFS(y, f,β, τ ),VFS(y, f,β, τ ))
is an adaptively sound non-interactive proof system for the language LSC. By Claim 16, it follows
that the collapsed protocol is adaptively unambiguously sound as required for the application
in Section 4. In Lemma 19 below, we show that the assumption holds for the protocol described
in Figure 4 with respect to random oracles. This also holds for the protocol from Theorem 17 as
claimed in Lemma 20. In fact we directly show the stronger property of unambiguous soundness.
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Non-Interactive β-Prefix Sumcheck Protocol for
∑
zj+1,...,zn∈H f(β, zj+1, . . . , zn) = y

Parameters:

1. F (field), n (dimension), d (individual degree)

2. H ⊂ F

3. hash function h : {0, 1}∗ → F

PFS(y, f,β) :

1. Let β = (β1, . . . , βj) and set yj = y.

2. For i← j + 1, . . . , n:

(a) Compute the degree-d univariate polynomial

gi(x) :=
∑

zi+1,...,zn∈H
f(β, βj+1, . . . , βi−1, x, zi+1, . . . , zn).

Let {αi,γ = gi(γ)}dγ=0 be the values of gi on the first d+ 1 field elements.

(b) Compute
βi = h(F, y, f,β, {αj+1,γ}dγ=0, βj+1, . . . , βi−1, {αi,γ}dγ=0)

and set yi = gi(βi).

3. Output π = ({αj+1,γ}dγ=0, . . . , {αn,γ}dγ=0)

VFS((y, f,β), {α̃j+1,γ}dγ=0, . . . , {α̃n,γ}dγ=0) :

1. For β = (β1, . . . , βj), set yj = y.

2. For i← j + 1, . . . , n:

(a) Use the d+ 1 field elements {α̃i,γ}dγ=0 to interpolate the (unique) degree-d polynomial g̃i s.t.
∀γ ∈ {0, . . . , d}, g̃i(γ) = α̃i,γ .

Check that: ∑
x∈H

g̃i(x) = yi−1.

If not, then reject.

(b) Compute
βi = h(F, y, f,β, {α̃j+1,γ}dγ=0, βj+1, . . . , βi−1, {α̃i,γ}dγ=0)

and set yi = g̃i(βi).

3. If yn = f(β1, . . . , βn) then accept and otherwise reject.

Figure 4: Non-interactive version of the sumcheck protocol (PSC(y, f,β),VSC(y, f,β)) from
Figure 3.

Assumption 18. The Fiat-Shamir heuristic is unambiguously sound for the sumcheck protocol
from Theorem 17. In other words, there exists a family of hash functions H such that when
instantiated with (random) h : {0, 1}∗ → F from H, the non-interactive sumcheck protocol
(PFS(y, f,β, τ ),VFS(y, f,β, τ )) from Theorem 17 is (δ, ε)-unambiguously sound for the language
LSC for some δ and ε that are negligible in n.
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Lemma 19. Let f : Fn → F be an n-variate polynomial of degree at most d in each variable and
β = (β1, . . . , βj) ∈ Fj be any prefix. Let (PhFS(y, f,β),VhFS(y, f,β)) denote the non-interactive
sumcheck protocol obtained by instantiating the protocol described in Figure 4 with a random
oracle h. Then (PhFS,VhFS) is a (Qd/|F|)-unambiguously sound non-interactive proof system for
prefixed language LSC, where Q = Q(n) denotes the number of queries made to the random
oracle. That is, it satisfies the following three properties.

• Prescribed Completeness: For every y,

Pr
[
VhFS((y, f,β),PhFS(y, f,β)) = LSC(y, f,β, ∅)

]
= 1.

• Soundness: For every (computationally unbounded) cheating prover strategy P̃ that
makes at most Q queries to the random oracle,

Pr

 VhFS((y, f,β), π̃) = 1
((y, f,β), π̃)← P̃h∑

z∈Hn−j f(β, z) 6= y

 ≤ Qd

|F|
.

• Unambiguity: For every (computationally unbounded) cheating prover strategy P̃ that
makes at most Q queries to the random oracle,

Pr

 VhFS((y, f,β), π̃) = 1

((y, f,β), π̃)← P̃h

π ← PhFS(y, f,β)

π̃ 6= π,
∑

z∈Hn−j f(β, z) = y

 ≤
Qd

|F|
.

Lemma 20. Let f : Fn → F be an n-variate polynomial of degree at most d in each vari-
able, β = (β1, . . . , βj) ∈ Fj be any prefix, and τ = α̃j+1, βj+1, . . . , α̃j+i be any fixed partial
transcript. Let (PhFS(y, f,β, τ ),VhFS(y, f,β, τ )) denote the non-interactive sumcheck protocol
obtained by instantiating the protocol described in Theorem 17 with a random oracle h. Then
(PhFS(y, f,β, τ ),VhFS(y, f,β, τ )) is a (Qd/|F|)-unambiguously sound non-interactive proof sys-
tem for the language LSC, where Q = Q(n) denotes the number of queries made to the random
oracle.

Proof (of Lemma 19). A query is a tuple of the form

(F, y, f,β, α̃j+1, β̃j+1, . . . , β̃`−1, α̃`),

where f is a polynomial over the field F, y ∈ F, β = (β1, . . . , βj) is a prefix, and α̃k ∈ Fd+1 and

β̃k ∈ F for k ∈ [j + 1, `] where ` ∈ [n − j]. For a statement (y, f,β) (either in or not in the
language LSC), we consider the output αj+1, . . . , αn of the prescribed prover PFS when invoked
on (y, f,β) and the associated hash values βj+1, . . . , β`−1.

Let β` := h(F, y, f,β, αj+1, βj+1, . . . , β`−1, α`) and β̃` := h(F, y, f,β, α̃j+1, β̃j+1, . . . , α̃`)).
Also, let g`(x) (resp., g̃`(x)) denote the unique degree-d polynomial obtained by interpolating
the field elements in α` (resp., α̃`). We say that the query (y, f,β, α̃j+1, β̃j+1, . . . , β̃`−1, α̃`) is
“bad” if

1. α̃` 6= α` (which implies that the polynomial g`(x) 6= g̃`(x)) and

2. g̃`(β̃`) = g`(β`).
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Since β` and β̃` are outputs of a random oracle and the polynomials g`(x), g̃`(x) are different,
the probability of a particular query being bad is at most d/|F| by the Schwartz-Zippel lemma.
Therefore by a union bound over all the queries, the probability that the adversary made a bad
query during its execution is at most Qd/|F|.

Note that in the absence of bad queries, an adversary cannot break either soundness or un-
ambiguity of the non-interactive sumcheck protocol. It follows that the probability the adversary
breaks the soundness or unambiguity is also at most Qd/|F|. More formally, let “break” denote
the event that an adversary that makes at most Q queries to the random oracle finds a proof
that breaks either the soundness or unambiguity of the non-interactive such check protocol.
The probability of “break” can be bounded as follows:

Pr[break] = Pr[break ∧ (bad query ∨ ¬bad query)]

≤ Pr[break ∧ bad query] + Pr[break ∧ ¬bad query)]

= Pr[break|bad query] · Pr[bad query] ≤ Qd/|F|.

4 The Reduction

In this section, we present an rSVL instance constructed using the non-interactive sumcheck
protocol (PFS,VFS) for the language LSC from §3.3 as a building block. The proposed rSVL
instance counts — incrementally and verifiably — the number of satisfying assignments (i.e.,
the sum) of an n-variate polynomial f with individual degree at most d. To be specific, the
main line in the rSVL instance starts at a fixed initial state s0 (the source) and ends at a final
state sT (the sink) comprised of the sum

y =
∑

z∈{0,1}n
f(z),

as well as a proof π of y’s correctness. The i-th (intermediate) state along the path from s0 to
sT , which we denote by si, consists of appropriately-chosen prefix sums and associated proofs.
(To be precise, each state also includes an index t ∈ [d+ 1]≤n that is determined by its counter
i.) The successor S performs single steps, receiving as input the current state si, and computing
the next state si+1. The verification procedure V, which takes as input a state s and a counter
i and accepts if s is the i-th state.

Since the sink will contain the overall sum y with a proof, any adversary that attempts to
solve the rSVL instance by finding a type (i) solution (see, Definition 9) must compute the
sum for f , the correctness of which can be verified using the proof. On the other hand, it is
intractable for an adversary to find a type (ii) solution (i.e., a false positive (s′, i) such that
s′ 6= si but V accepts s′ as the i-th vertex on the rSVL line) because of the unambiguous
soundness of the non-interactive sumcheck proof system. The above is formally stated in the
following theorem.

Theorem 21. For a parameter n, fix a finite field F of sufficiently large size p (say O(2ω(n)).
Let f be an n-variate polynomial over F of individual degree at most d. Pick a hash function h
uniformly at random from a family H. Let

S := Sf,h : {0, 1}M → {0, 1}M and V := Vf,h : {0, 1}M × [T ]

be constructed as in Algorithm 3, with M = M(n, d, p) = (d + 1)n log2(p) and T = T (n, d) =∑
j∈[n](d+ 2)j. Given an adversary A that solves instances from the rSVL family

{(S,V, (f(0n), ∅), T )}n∈N (2)

in polynomial time TA = TA(n) and a non-negligible probability ε = ε(n), it is possible to either
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• count the number of satisfying assignments to f in time O(TA) with probability ε, or

• break the unambiguous soundness of the non-interactive sumcheck protocol (Assumption 18)
with probability at least ε/(d+ 1) · n.

The proof of Theorem 21 is given in §4.3. The main technical component of our reduction
are the successor circuit S and the verifier circuit V, described in §4.1 and §4.2. S an V, together,
implement the incrementally-verifiable counter for statements of size 2n. They are defined using
a sequence of circuits

(Sn,Vn), . . . , (S0,V0),

where (Sn−j+1,Vn−j+1) is an incrementally-verifiable counter for statements of size 2n−j+1 and
is implemented recursively using (Sn−j ,Vn−j). At the base of the recursion, (S0,V0) computes
sums of size 1 and is therefore trivial: it takes a single step, uses poly(n) memory and has an
“empty” proof. The circuits (S,V) simply invoke (Sn,Vn).

We implement these procedures using circuits and to ensure that the size of these circuits
does not blow up, we have to exploit the recursive structure of the sumcheck protocol. In our
construction, if (Sn−j ,Vn−j) takes T steps, uses M bits of memory, and generates a final proof
of size P bits, then (Sn−j+1,Vn−j+1) takes O(dT ) steps, uses M+O(dP )+poly(n) memory, and
has a final proof of size P + poly(n). On unwinding the recursion, it can be shown that (S,V)
runs for 2O(n) steps, uses poly(n) space and has proof size of poly(n). But most importantly S
and V are polynomial-sized circuits, and therefore each step can be carried out in poly(n) time.
In other words, we get an rSVL instance describing a directed graph with 2O(n) vertices each
with a label of size poly(n), where the successor and verifier functions have efficient descriptions.

4.1 The Recursive Construction

The circuits (Sn−j+1,Vn−j+1) in our incrementally-verifiable counting procedure have hardwired
into them

1. f , an n-variate polynomial over a field F of individual degree at most d (described as an
arithmetic circuit of size poly(n) and degree d), and

2. h, the description of a hash function from the family H.

It takes as its input a prefix β = (β1, . . . , βj−1) ∈ Fj−1 (and also the transcript trans as
explained below). The goal of the procedure is computing the value y of the sum with prefix
β, along with a sumcheck proof for this value.

In order to describe how (Sn−j+1,Vn−j+1) is implemented using (Sn−j ,Vn−j), we need to
take a closer look at the non-interactive sumcheck protocol given in Figure 4. Suppose that the
prover PFS has been invoked on the β = (β1, . . . , βj−1)-prefix sum∑

z∈{0,1}n−j+1

f(β, z) = yj−1, (3)

which is a statement of size 2n−j+1. At the end of the first iteration, PFS reduces this sumcheck
to checking a smaller (β, σ)-prefix sum yj = gj(σ) of size 2n−j , where gj(x) is the univariate
polynomial ∑

z∈{0,1}n−j
f(β, x,z)

specified by the field elements αj,0 = gj(0), . . . , αj,d = gj(d), and σ is the “challenge”, i.e., a
hash value depending on αj,0, . . . , αj,d.

Now, suppose we are given incrementally-verifiable procedures (Sn−j ,Vn−j) to compute
sums of size 2n−j , which takes T (n − j) steps, uses M(n − j) memory, and has a final proof
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of size P (n− j) bits. Our construction of (Sn−j+1,Vn−j+1) takes (d+ 2) · T (n− j) steps, uses
M(n− j) + (d + 1) · P (n− j) memory, and has a final proof of size P (n− j) + (d + 1) log2(p)
bits (where, if you recall, p denotes the size of the field F). On unwinding the above recursive
expressions for T , M and P , we conclude that (Sn,Vn) is procedure for computing sums of size
2n with 2O(n) steps and poly(n) space, and the final proof is of size poly(n).

To achieve this construction, we exploit the structure of the sumcheck protocol. Note that
the polynomial gj(x) can itself be recursively computed with proof. To be more precise, for
each γ ∈ [d], we sequentially run (Sn−j ,Vn−j) to compute the valuations αj+1,γ with a proof
certifying the sum ∑

z∈{0,1}n−j−1

f(β, γ, z) = αj+1,γ = gj(γ) (4)

Once we possess αj+1,0, . . . , αj+1,d after the (d+ 1) sequential applications of (Sn−j ,Vn−j), the
challenge σ can be computed and subsequently the prefix-sum∑

z∈{0,1}n−j−1

f(β, σ, z) = yj = gj(σ) (5)

for the next round can also be computed using (Sn−j ,Vn−j) in an incrementally-verifiable man-
ner. In other words, we have reduced computing the proof for the β-prefix sum given in eq.3
to (i) (d + 1) new sumchecks given in eq.4 concerning the computation of polynomial gj(x),
and (ii) the second iteration of the original sumcheck given in eq.5, which serves as an incre-
mentally verifiable proof-merging procedure. Moreover, all the (d+ 2) sumchecks above involve
work proportional to the computation of sumchecks of size 2n−j−1, and therefore they can be
computed using (Sn−j ,Vn−j).

The working of the procedure (Sn−j+1,Vn−j+1) on an input a prefix β = (β1, . . . , βj−1) can
therefore be described on a high level as follows.

1. Compute the polynomial gj(x), represented by the field elements {αj,γ = gj(γ)}dγ=0, in-
crementally and verifiably by invoking (Sn−j ,Vn−j) on (β, γ)

2. Compute the β-prefix sum by adding (β, 0)- and (β, 1)-prefix sums αj,0 and αj,1

3. Calculate the “challenge” σ and compute the partial proof for the original sumcheck:
compute the proof for the (β, σ)-prefix sum gj(σ) using (Sn−j ,Vn−j)

4. Obtain the “merged proof” for the β-prefix sum by appending {αj,γ}dγ=0 to the proof for
(β, σ)-prefix sum

5. Return the β-prefix sum with proof

Keeping the above recursive procedure in mind, we proceed to detail the recursive successor
and verifier circuits Sn−j+1 and Vn−j+1.

The recursive successor. Recall that (Sn−j+1,Vn−j+1), on input a prefix β = (β0, . . . , βj−1),
calls the procedure (Sn−j ,Vn−j) sequentially d + 2 times. This results in a sequence of states
s0, . . . , sT (n−j+1), where sT (n−j+1) is comprised of the sum

y =
∑

z∈{0,1}n−j+1

f(β, z)

as well as a proof π of y’s correctness. Since the invocations of (Sn−j ,Vn−j) are sequential,
an intermediate state si along the path from s0 to sT (n−j+1), is comprised of at most (d + 2)
“sub-states”, one for each invocation of (Sn−j ,Vn−j).
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In more details, each state si is associated with an index t ∈ [d + 1]≤(n−j+1) which is
determined by the counter i. Loosely speaking, the index t of the i-th state si is the i-th vertex
in the perfect (d+ 2)-dary tree that the standard depth-first search visits for the last time (see
the discussion in §4.2 for more details). If t = (t1, . . . , t`) (where ` ∈ [n− j+ 1]) then si consists
of t1 sub-states, where

• the first t1 − 1 are final, i.e., correspond to full executions of (Sn−j ,Vn−j), and therefore
consist of a single tuple of the form (y, π), and

• the t1-th sub-state is either final and consists of a single tuple (y, π) as in the previous
case or is itself intermediate (i.e., not corresponding to a full execution of (Sn−j ,Vn−j))
and therefore consists of a sequence of tuples of the form (y, π).

The successor circuit Sn−j+1, on input a prefix β and the current state s with index t, computes
the next state. Depending on the conditions of sub-states in s, it takes one of the following
actions:

• Case A: The state s consists of d + 2 final sub-states of (Sn−j ,Vn−j). Such sub-states
contain the information necessary to compute the sum for the prefix β and assemble its
proof (by merging). As a result, the next state is the final state of (Sn−j+1,Vn−j+1).

• Case B: The state s consists of t1 < d + 2 final sub-states of (Sn−j ,Vn−j). In this case,
Sn−j+1 initiates the next (i.e., t1 + 1-th) execution of (Sn−j ,Vn−j).

• Case C: The t1-th sub-state s′ is intermediate. Here, Sn−j+1 simply calls the successor
Sn−j to increment s′ — and as a result the state s — by one step.

The resulting construction of Sn−j+1 is formally described in Algorithm 1. There we have also
addressed a minor detail (which also applies to Vn−j+1) that we have up to now brushed under
the rug: in order to compute the challenges σ, the counters need some additional information.
To this end, Sn−j+1 receives as an auxiliary argument the protocol transcript that serves as the
input to h, denoted by trans. From the description of the non-interactive sumcheck protocol
in Figure 4, trans should contain the following information:

1. the original statement (F, f, y,β), left empty if the sum y has not been computed yet,
and

2. a partial proof π for β-prefix sum, which consists of all the values αi and βi that have
been computed up to the current iteration (as specified in the description of PFS).

The recursive verifier. Given as input the prefix β, the state s and an index t, the verifier
Vn−j+1 ensures that s equals the intermediate state si for (Sn−j+1,Vn−j+1), where i is the
counter that is associated with t.

If the state s is final for (Sn−j+1,Vn−j+1) then t = ε and s is a single tuple of the form
(y, π). This can be verified directly by invoking VFS.

Otherwise s consists of at most (d + 2) (final or intermediate) sub-states of (Sn−j ,Vn−j),
and Vn−j+1 verifies each of these sub-states by invoking Vn−j . To be precise, for each sub-state
s′ in s, Vn−j+1 first computes

1. the prefix β′ for s′, which is either (β, γ) for γ ∈ [d], or (β, σ) for a challenge σ, and

2. the index t′ for β′, which is either ε in case s′ is final for (Sn−j ,Vn−j), or (t2, . . . , t`)
otherwise.

Next, it checks the validity of the sub-state s′ recursively by invoking Vn−j .
The formal description of Vn−j+1 is given in Algorithm 2. Similarly to the successor Sn−j+1,

Vn−j+1 also receives the transcript as input to ensure that it possesses the necessary information
to compute the challenges.
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Recursive successor circuit Sn−j+1(β, t, s, trans)

Hardwired

1. an n-variate polynomial f of individual degree d over F
2. the description of a hash function h ∈ H

Input

1. a prefix β = (β1, . . . , βj−1) ∈ Fj−1

2. an index t = (t1, . . . , t`) ∈ [d+ 1]≤(n−j+1)

3. a state s ∈ F∗ parsed as a set of pairs of prefix sums and proofs {(y0, π0), (y1, π1), . . . , }
4. a transcript trans containing the statement and partial proofs

Output the next state
Base Case S0(β, ε, ∅, ∅): Return (f(β), ∅)
Recursion

1. If t = ε and s 6= ∅ return s (already in final state: self-loop)

2. If t = d+ 1 then return {yγ}dγ=0 appended to πd+1 (Case A: merge)

3. Compute sub-state s′ by truncating {(yγ , πγ)}t1−1
γ=0 from s

4. Set t′ := (t2, . . . , t`) as the index of the sub-state s′

5. If t = d or t1 = d+ 1: increment/initialise d+ 2-th sub-state

(a) If trans = ∅ then initialise with statement trans := (F, y0 + y1, f,β) (Case B)

(b) Compute updated transcript trans′ by appending {yγ}dγ=0 to trans (Case C)

(c) Compute the challenge σ := h(trans) and append σ to trans

(d) Increment/initialise d+ 2-th sub-state: s′ := Sn−j((β, σ), t′, s′, trans)

(e) Append {(yγ , πγ)}dγ=0 back to s′ to update s and return it

Else t 6= d and t1 6= d+ 1

(a) If t ∈ [d− 1]: initialise t1 + 1-th sub-state (Case B)

i. Return {(yγ , πγ)}t1γ=0 appended to Sn−j((β, t1 + 1), ε, ∅, ∅)
(b) Else: increment t1-th sub-state (Case C)

i. Return {(yγ , πγ)}t1−1
γ=0 appended to Sn−j((β, t1), t′, s′, ∅)

Algorithm 1: The recursive successor circuit Sn−j+1.
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Recursive verifier circuit Vn−j+1(β, t, s, trans)

Hardwired

1. an n-variate polynomial f of individual degree d over F
2. the description of a hash function h ∈ H

Input

1. a prefix β = (β1, . . . , βj−1) ∈ Fj−1

2. an index t = (t1, . . . , t`) ∈ [d+ 1]≤(n−j+1)

3. a state s ∈ F∗ parsed as a set of pairs of prefix sums and proofs {(y0, π0), (y1, π1), . . . , }
4. a transcript trans containing the statement and partial proofs

Output a bit indicating accept (1) or reject (0)
Base Case V0(β, ε, (y, ∅), ∅): Accept if y = f(β) and reject otherwise
Recursion

1. If t = ε return the bit b← VFS((yε, f,β), πε) (final state)

2. For γ ∈ [t1 − 1]: verify all final sub-states

Reject if Vn−j((β, γ), ε, (yγ , πγ), ∅) rejects

3. Compute t1-th sub-state s′ by truncating {(yγ , πγ)}t1−1
γ=0 from s

4. Set t′ := (t2, . . . , t`) as the index of the sub-state s′

5. If t1 = d+ 1

(a) If trans = ∅ then initialise with statement trans := (F, y0 + y1, f,β)

(b) Compute updated transcript trans′ by appending {yγ}dγ=0 to trans

(c) Compute the challenge σ := h(trans) and append σ to trans

(d) Reject if Vn−j((β, σ), t′, s′, trans′) rejects

Otherwise t1 < d+ 1

(a) Reject if Vn−j((β, t1), t′, s′, ∅) rejects

6. Accept

Algorithm 2: The recursive verifier circuit Vn−j+1.
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4.2 The rSVL Instance

The label of the i-th vertex vi in the proposed rSVL instance is a tuple (t, si), where si ∈ F∗ is
a state and t ∈ [d+ 1]≤n its index determined by the counter i. To be precise, t is the (address
of) i-th vertex in the perfect (d+ 2)-dary tree12 that the depth-first search leaves (i.e. visits for
the final time). To map a counter i ∈ [T ] to an index t ∈ [d + 1]≤n, we use a bijective map
DFS(·) (Note that this makes sense only if T = |[d+ 1]≤n|), which we show below.). Its inverse
is denoted by DFS−1(·). Thus, the main rSVL line consists of the sequence of labels

(0n, s1), (0n−11, s2), (0n−1, s3), . . . , (11, sT−2), (1, sT−1), (ε, sT ).

The successor and verifier circuits (S,V) for the rSVL instance can now be implemented
using (Sn,Vn) as shown in Algorithm 3. In short, on input a counter i and a label (t, s), the
verifier circuit V simply checks if t matches DFS(i) and then invokes the recursive verifier circuit
Vn on the state s and the index t. On the other hand, on input a label (t, s), the successor
S first ensures that s is indeed the i-th intermediate state by checking its correctness using V.
Then it increments the state by calling the recursive successor function Sn. It returns this new
state along with an incremented index as the next label.

Efficiency. We argue that S and V are both poly(n)-sized circuits. Observe that for Sn−j+1

at most one recursion Sn−j is active at any given point. The rest of the operations within
Sn−j+1 (viz., append, truncate, compute the hash etc.) are all efficient. Therefore |Sn−j+1| <
|Sn−j |+ poly(n) with |S0| = poly(n), and consequently |S| = poly(n). A similar argument holds
for the verifier circuit V, taking into account the fact that even though there are multiple active
recursive calls within Vn−j+1, all but one are of depth 1. This is true as the verification of the
final sub-states in Vn−j is carried out by a single call to VFS.

Parameters. Recall that T (n− j + 1), M(n− j + 1) and P (n− j + 1) denote the number of
steps, amount of memory and the final proof size for (Sn−j+1,Vn−j+1), respectively.

Since Sn−j+1 runs Sn−j (d + 2) times and then takes one step for merging, we have T (n −
j + 1) = (d+ 2)T (n− j) + 1. By unwinding the recursion with T (0) = 1, we get

T = T (n, d) =
∑
j∈[n]

(d+ 2)j = |[d+ 1]≤n|.

For simplicity, assume that t ∈ F≤n. From the description of (S0,V0), it is clear that
M(0) = P (0) = log2(p) (where p, if you recall, denotes the size of the finite field F). From
the description of (Sn−j+1,Vn−j+1), we have M(n − j + 1) ≤ M(n − j) + (d + 1) log2(p) and
P (n − j + 1) = P (n − j) + (d + 1) log2(p). On solving the recursion, we get M = M(n) ≤
(d+ 1)n log2(p) and P = P (n) ≤ (d+ 1)n log2(p).

4.3 Hardness

In this section we restate and prove Theorem 21.

Theorem 21. For a parameter n, fix a finite field F of sufficiently large size p (say O(2n)).
Let f be an n-variate polynomial over F of individual degree at most d. Pick a hash function h
uniformly at random from a family H. Let

S := Sf,h : {0, 1}M → {0, 1}M and V := Vf,h : {0, 1}M × [T ]

12A (d + 2)-ary tree is called perfect if all its interior nodes have (d + 2) children and all leaves have the same
depth.
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Verifier circuit Vf,h(v, i)

Hardwired

1. an n-variate polynomial f of individual degree d over F
2. the description of a hash function h ∈ H

Input

1. a label v parsed as (t, s) ∈ [d+ 1]≤n × F∗ where t is the index and s the state

2. a counter i ∈ [T ]

Output a bit indicating accept (1) or reject (0)
Procedure

1. Reject if t 6= DFS(i)

2. Return the bit b← Vn(ε, t, s, ∅)
Successor circuit Sf,h(v)

Hardwired see V
Input a label v parsed as (t, s) ∈ [d+ 1]≤n × F∗
Output the next label
Procedure

1. Set the index i := DFS−1(t)

2. Return v if V(v, i) rejects (self-loop)

3. Return (DFS(i+ 1),Sn(ε, t, s, ∅))

Algorithm 3: The verifier V and successor S for the rSVL instance.
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be constructed as in Algorithm 3 with M = M(n, d, p) = (d + 1)n log2(p) and T = T (n, d) =∑
j∈[n](d+ 2)j. Given an adversary A that solves instances from the rSVL family

{(S,V, (0n, f(0n), ∅), T )}n∈N (6)

in polynomial time TA = TA(n) and a non-negligible probability ε = ε(n), it is possible to either

• find the sum
∑

z∈{0,1}n f(z) in time O(TA) with probability ε, or

• break the unambiguous soundness of the non-interactive sumcheck protocol (Assumption 18)
with probability ε/(d+ 1) · n.

Corollary 22. Relative to a random oracle, #SAT reduces to End-of-Metered-Line.

Proof. Given a SAT formula Φ over n variables, a claim about the number of satisfying as-
signments can be expressed as a sumcheck claim over F. The polynomial f is derived from Φ,
and the individual degree can be as low as 4. For this, we first transform Φ into a 3SAT-4
formula, a 3CNF where each variable appears in at most 4 clauses. A standard arithmetization
yields an appropriate polynomial fΦ over the field. A reduction from #SAT to rSVL (rela-
tive to a random oracle) follows Theorem 21 with f = fΦ, and Lemma 19 with, for example,
p = |F| = O(2n) and Q ∈ poly(n). The reduction from rSVL to EOML given in Lemma 10
completes the corollary.

Proof (of Theorem 21). Recall that by Definition 9 the adversary A can solve an rSVL instance
in two ways: find either (i) the real sink or (ii) a false positive i.e., a pair (v, i) s.t. V(v, i) = 1
while Si((0n, f(0n), ∅)) 6= v.

Finding a type (i) solution is tantamount to solving the #SAT instance f since the sink of
the rSVL instance defined in eq.6 is (ε, sT = (yT , πT )) and contains the number of solutions to f
in the form of yT . In the discussion below we rule out solutions of type (ii) under Assumption 18.
Taken together, the theorem follows.

Let v be of the form (t, {(ỹ1, π̃1), . . . , (ỹ`, π̃`)} and let

vi = Si(0n, f(0n), ∅) = (t, {(y1, π1), . . . , (y`, π`)})

be the correctly computed vertex. Also, let {β̃1, . . . , β̃`} and {β1, . . . ,β`} denote the associated
prefixes. We first establish that there exists at least one index k∗ ∈ [1, `] such that the proof
π̃k∗ breaks the unambiguous soundness of the non-interactive sumcheck protocol.

Assume for contradiction that A violated neither soundness nor unambiguity in the process
of finding the type (ii) solution (v, i) s.t. V(v, i) = 1 but Si((0n, f(0n), ∅)) 6= v. We show that
(v, i) could not have been a type (ii) solution. To this end, we establish iteratively from k = 1
to k = ` that (ỹk, π̃k) = (yk, πk).

When Vn is invoked by V on (ε, t, s, ∅) it recurses until (ỹ1, π̃1) is a final sub-state for some
(Sn−j ,Vn−j). At this point the validity of (ỹ1, π̃1) is checked using a single call to VFS. Recall
that it is assumed that neither soundness nor unambiguity was broken. Since (ỹ1, π̃1) passes
verification and β̃1 = β1, it is guaranteed that the proofs (ỹ1, π̃1) (y1, π1) are for the same
statement. Therefore (ỹ1, π̃1) = (y1, π1) is the correct sub-state.

Assuming that the first k−1 sub-states in v are correct, we will infer that the k-th sub-state
is also correct. The first step is to show that βk is correctly computed, for which there are two
possibilities. If βk corresponds to a challenge then, since y1, . . . , yk−1 have been validated, βk is
also guaranteed to be computed by hashing the same arguments as in the protocol specification;
otherwise, βk is computed by a simple increment, which the verifier again checks for. Therefore,
by the same argument as for k = 1, we get π̃k = πk and ỹk = yk.

Consequently, all the labels in v are as prescribed by the successor circuit S, contradicting
the premise of the lemma that v 6= Si((0n, f(0n), ∅)). One therefore concludes that there exists
at least one index k∗ ∈ [1, `] such that either
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• VFS((ỹk∗ , f, β̃k∗), π̃k∗) = 1, and
∑

z∈{0,1}n−jk∗ f(β̃k∗ , z) 6= ỹk∗ ; or

• VFS((ỹk∗ , f, β̃k∗), π̃k∗) = 1, and π̃k∗ 6= PFS(ỹk∗ , f, β̃k∗) where PFS is the prescribed prover.

Here, the first case corresponds to the setting that there is an accepting proof for an incorrect
statement, while the second case corresponds to an accepting proof different from that output
by the prescribed prover.

Given an adversary A that finds such a vertex i with probability ε we can build an adversary
A′ that, depending on the case we’re in, breaks soundness or unambiguity. The strategy for A′

in either case is identical and is described below:

1. Run A on the rSVL instance (S,V, (0n, f(0n), ∅), T ).

2. Let the output returned by A be of the form (t, {(ỹ1, π̃1), . . . , (ỹ`, π̃`)}).

3. Sample a random index k∗
$← [1, `].

4. Return
((
f, β̃k∗ , ỹk∗

)
, π̃k∗

)
, where β̃k∗ is the prefix associated to (ỹk∗ , π̃k∗).

A′ runs for a time that is roughly the same as that of A (i.e., TA). The analysis for A′’s success
probability is simple and we describe it only for the first case (as the other case is identical).
Informally, since there exists an index k∗ that breaks soundness, A′ succeeds as long as it is able
to guess this index correctly. Formally,

Pr
[
A′ succeeds

]
≥ Pr [A succeeds] · Pr

[
k∗ is a correct guess|A′ succeeds

]
≥ ε · 1

(d+ 1) · n

The first inequality follows from the fact that if A succeeds, there is at least one index k∗

such that VFS((ỹk∗ , f, β̃k∗), π̃k∗) = 1, and
∑

z∈{0,1}n−jk∗ f(β̃k∗ , z) 6= ỹk∗ . The second inequality

follows from the fact that a label contains at most M(n) ≤ (d+1)·n tuples of the form (y, π).
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[36] Jeřábek, E. Integer factoring and modular square roots. J. Comput. Syst. Sci. 82, 2
(2016), 380–394. (Cited on pages 9, 10 and 11.)

[37] Johnson, D. S., Papadimitriou, C. H., and Yannakakis, M. How easy is local
search? Journal of Computer and System Sciences 37, 1 (1988), 79 – 100. (Cited on
pages 9 and 11.)

[38] Kalai, Y. T., Rothblum, G. N., and Rothblum, R. D. From obfuscation to the
security of fiat-shamir for proofs. In Advances in Cryptology - CRYPTO 2017 - 37th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part II (2017), pp. 224–251. (Cited on pages 2 and 37.)

[39] Kintali, S., Poplawski, L., Rajaraman, R., Sundaram, R., and Teng, S. Re-
ducibility among fractional stability problems. SIAM Journal on Computing 42, 6 (2013),
2063–2113. (Cited on page 9.)

[40] Komargodski, I., Naor, M., and Yogev, E. White-box vs. black-box complexity
of search problems: Ramsey and graph property testing. In 58th Annual Symposium on
Foundations of Computer Science (2017), IEEE Computer Society Press, pp. 622–632.
(Cited on page 11.)

[41] Komargodski, I., and Segev, G. From minicrypt to obfustopia via private-key func-
tional encryption. In Advances in Cryptology – EUROCRYPT 2017, Part I (Paris, France,
Apr. 30 – May 4, 2017), J. Coron and J. B. Nielsen, Eds., vol. 10210 of Lecture Notes
in Computer Science, Springer, Heidelberg, Germany, pp. 122–151. (Cited on pages 1
and 11.)

[42] Lipton, R. J. New directions in testing. In Distributed Computing And Cryptography,
Proceedings of a DIMACS Workshop, Princeton, New Jersey, USA, October 4-6, 1989
(1989), pp. 191–202. (Cited on page 3.)

[43] Lund, C., Fortnow, L., Karloff, H., and Nisan, N. Algebraic methods for inter-
active proof systems. J. ACM 39, 4 (Oct. 1992), 859–868. (Cited on pages 1, 5, 14, 16
and 17.)

35



[44] Mahmoody, M., and Xiao, D. On the power of randomized reductions and the checka-
bility of SAT. In 2010 IEEE 25th Annual Conference on Computational Complexity (June
2010), pp. 64–75. (Cited on page 11.)

[45] Megiddo, N., and Papadimitriou, C. H. On total functions, existence theorems and
computational complexity. Theor. Comput. Sci. 81, 2 (1991), 317–324. (Cited on pages 9
and 11.)

[46] Micali, S. Computationally sound proofs. SIAM Journal on Computing 30, 4 (2000),
1253–1298. Preliminary version appeared in FOCS ’94. (Cited on page 4.)

[47] Papadimitriou, C. H. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci. 48, 3 (1994), 498–532. (Cited on pages 1, 9, 10
and 11.)

[48] Peikert, C., and Shiehian, S. Noninteractive zero knowledge for np from (plain) learn-
ing with errors. Cryptology ePrint Archive, Report 2019/158, 2019. https://eprint.

iacr.org/2019/158. (Cited on pages 2 and 37.)

[49] Pietrzak, K. Simple Verifiable Delay Functions. In 10th Innovations in Theoretical
Computer Science Conference (ITCS 2019) (Dagstuhl, Germany, 2018), A. Blum, Ed.,
vol. 124 of Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, pp. 60:1–60:15. (Cited on page 2.)

[50] Reingold, O., Rothblum, G. N., and Rothblum, R. D. Constant-round interactive
proofs for delegating computation. In 48th Annual ACM Symposium on Theory of Com-
puting (Cambridge, MA, USA, June 18–21, 2016), D. Wichs and Y. Mansour, Eds., ACM
Press, pp. 49–62. (Cited on pages 3, 15 and 19.)

[51] Rosen, A., Segev, G., and Shahaf, I. Can PPAD hardness be based on standard
cryptographic assumptions? In TCC 2017: 15th Theory of Cryptography Conference,
Part II (Baltimore, MD, USA, Nov. 12–15, 2017), Y. Kalai and L. Reyzin, Eds., vol. 10678
of Lecture Notes in Computer Science, Springer, Heidelberg, Germany, pp. 747–776. (Cited
on page 11.)

[52] Savani, R., and von Stengel, B. Exponentially many steps for finding a Nash equilib-
rium in a bimatrix game. In 45th Annual Symposium on Foundations of Computer Science
(Rome, Italy, Oct. 17–19, 2004), IEEE Computer Society Press, pp. 258–267. (Cited on
page 1.)

[53] Sotiraki, K., Zampetakis, M., and Zirdelis, G. PPP-completeness with connections
to cryptography. Cryptology ePrint Archive, Report 2018/778, 2018. https://eprint.

iacr.org/2018/778. (Cited on page 10.)

[54] Tovey, C. A. A simplified NP-complete satisfiability problem. Discrete Applied Mathe-
matics 8, 1 (1984), 85–89. (Cited on page 5.)

[55] Valiant, P. Incrementally verifiable computation or proofs of knowledge imply time/space
efficiency. In TCC 2008: 5th Theory of Cryptography Conference (San Francisco, CA,
USA, Mar. 19–21, 2008), R. Canetti, Ed., vol. 4948 of Lecture Notes in Computer Science,
Springer, Heidelberg, Germany, pp. 1–18. (Cited on pages 3, 4, 5 and 6.)

36

https://eprint.iacr.org/2019/158
https://eprint.iacr.org/2019/158
https://eprint.iacr.org/2018/778
https://eprint.iacr.org/2018/778


A Instantiating Fiat-Shamir

There has been exciting recent progress on constructing hash functions for which the Fiat-
Shamir transformation (applied to certain protocols) is provably sound [15, 38, 16, 14, 16, 17, 48].
In this section, we discuss the applicability of these results to our setting. We observe that the
results in [14] can be extended to our setting, yielding a hash family for which, under quasi-
polynomial variants of the (strong) assumptions made in that work, the Fiat-Shamir transform
is sound when applied to the sumcheck protocol over polylog variables.

Our starting point is the application of the Fiat-Shamir transform in [14] to construct pub-
licly verifiable succinct arguments (pv-SNARGs). We note that while the assumptions required
when the Fiat-Shamir transform is used to construct Non-interactive Zero Knowledge (NIZK)
proofs are significantly more standard (plain LWE in very recent work [48]), these results hold
limited relevance to our setting. This is because the time required to evaluate those hash
functions is as large as the time needed to compute the (honest) prover’s messages in the inter-
active proof protocol. In our context, this means that evaluating the hash function would take
super-polynomial time.

The subsequent text is (to a large extent) adapted from [14], with several (important)
changes that are needed to obtain results in our setting. We highlight changes in the assumptions
and theorem statements. For a comprehensive discussion, we refer the reader to [14].

A.1 Definitions

We begin with definitions, starting with the notion of correlation intractability. We often refer
to quasi-polynomial functions, and by quasi-polynomial, we mean 2polylog(λ).

Definition 23 (Correlation Intractability). For a given relation ensemble R = {Rλ ⊆ Xλ × Yλ},
a hash family H = {hλ : Iλ ×Xλ → Yλ}λ∈Z+ is said to be R-correlation intractable against quasi-
polynomial adversaries if for every quasi-polynomial-size A = {Aλ}, there exists an ε

Pr [I ← Iλ, x← Aλ(I) : (x, hλ (I, x)) ∈ Rλ] ≤ ε

For the context of our work, we will need ε to be a negligible function.
We want to guarantee such a property in the standard model. But even in the random

oracle model, this only makes sense for relations R that are sparse, which we formalize below.

Definition 24 (Sparsity). For any relation ensemble R = {Rλ ⊆ Xλ × Yλ}, we say that R is
ρ(·)-sparse if for all λ ∈ Z+ and any x ∈ Xλ,

Pr [y ← Yλ : (x, y) ∈ Rλ] ≤ ρ(λ).

Remark 25. When we talk about correlation intractability with respect to quasi-polynomial
time adversaries, it is not sufficient for ρ to be negligible. We will in fact require ρ to be smaller
than any inverse quasi-polynomial function.

We will need the ability to sample from the relation R. In fact, it is sufficient to be able to
approximately sample from the relation. We begin by defining what it means for a distribution
to be approximated.

Definition 26. A distribution P multiplicatively ε-approximates a distribution Q if for all out-
comes ω, it holds that

Pr [x← P : x = w] ≥ ε · Pr [x← Q : x = w] .

We proceed to formalize the notion of approximately sampling from a relation R.
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Definition 27 (Approximate Sampleability of Relations). A relation ensembleR = {Rλ ⊆ Xλ × Yλ}
is non-uniformly ε-approximately sampleable if there is a circuit ensemble {Sampλ} such that for
every x ∈ Xλ, the distribution Sampλ(x) multiplicatively ε-approximates the uniform distribu-
tion on the (by assumption, non-empty) set {y′ ∈ Yλ : (x, y′) ∈ Rλ}.

We say that R is (non-uniformly) efficiently approximately sampleable if it is non-uniformly
ε-approximately sampleable for some ε ≥ 1

poly(λ) .

We will focus on relations where the sampling function Samp runs in quasi-polynomial time.
We conclude the definitional discussion of hash families by describing a specific construction

given in [16]. We refer to this as the CCRR hash family.

Definition 28 (CCRR Hash Family). Let E = {(Kλ,Encλ,Decλ)}λ be a secret key encryption
scheme with message space {0, 1}` for ` = `(λ). The CCRR hash family associated to this
encryption scheme, denoted HECCRR is

HECCRR =
{
hλ : Iλ ×Kλ → {0, 1}`

}
λ

where
hλ (C, x) := Decλ (x,C)

and the distribution Iλ is a random ciphertext C obtained by sampling K ← Kλ along with
M ← {0, 1}` and defining C := Encλ(K,M). That is, the hashing key is a ciphertext, messages
are interpreted as decryption keys, and hashing is performed by decrypting the hash key /
ciphertexts under the message / decryption key.

Turning our attention to encryption schemes, we first define what it means for an encryption
scheme to have universal ciphertexts.

Definition 29. A secret-key encryption scheme E = {(Kλ,Encλ,Decλ)}λ with message space
Mλ has universal ciphertexts if for any secret key k ∈ Kλ, the distribution Encλ(k,UMλ

) multi-
plicatively 1

poly(λ) -approximates the distribution Encλ(Kλ,UMλ
), where UMλ

denotes the uniform
distribution over Mλ.

Moving to security, we will define the security of certain primitives with respect to quasi-
polynomial adversaries, parameterized by a class of functions ∆quasi−poly. For every quasi-
polynomial adversary, there exists a function δ ∈ ∆quasi−poly such that the success probability
of the adversary is bounded by δ. In the context of our work, we will consider ∆quasi−poly to

contain functions of the form quasi−poly(κ)
2κ , where κ will denote the key length.

We now define Key-Dependent Message (KDM) security for a homomorphic encryption
scheme. The security definition for the regular encryption scheme follows in a similar manner,
with the evaluation key being empty.

Definition 30 (Key-Dependent Message (KDM)-security). Let E = {(Kλ,Encλ,Decλ,Evalλ)}λ
be a secret-key fully homomorphic bit-encryption scheme with message space Mλ, and let
f = {fλ : Kλ →Mλ} be a (potentially probabilistic) function. E is said to be ∆quasi−poly-
immune to key recovery by an f -KDM query against quasi-polynomial adversaries if for each quasi-
polynomial-sized A = {Aλ}, there exists a δ ∈ ∆quasi−poly such that:

Pr

 (K,E)← Kλ
(M1, · · · ,M`)← fλ(K)

{Ci ← Encλ(K,Mi)}i∈[`]

: Aλ (E,C1, · · · , C`) = K

 ≤ δ(λ)

Throughout this paper we will abbreviate the above by saying that E is f -KDM ∆quasi−poly-
secure against quasi-polynomial adversaries. If F is a set of functions then we say that E is
F-KDM ∆quasi−poly-secure against quasi-polynomial adversaries if E is f -KDM ∆quasi−poly-secure
against quasi-polynomial adversaries for all f ∈ F .
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This is a modification of the f -KDM security used in [14]. Here, an adversary is allowed
to run in quasi-polynomial time. Looking ahead, F will be the collection of all functions, with
`-bits of output, that can be computed in quasi-polynomial time.

The construction and its security hinge on the Regev encryption scheme, which we define
below.

Definition 31 (Secret-Key Regev Encryption). For any positive integer q = q(λ) ≤ 2poly(λ),
n′ = n′(λ) ≤ poly(λ), and any poly(λ)-time sampleable distribution ensembles χsec = {χsec(λ)}
and χerr = {χerr(λ)} over Zq(λ), we define Regevn′,q,χsec,χerr

to be the secret key encryption
scheme {(Kλ,Encλ,Decλ)} where:

• Kλ is the distribution χn
′

sec.

• Encλ : Zn′q ×{0, 1} → Zn′q ×Zq is defined so that Encλ(s,m) is obtained by sampling a uni-

formly random vector a← Zn′q , sampling e← χerr(λ), and outputting
(
a, st · a +m ·

⌈ q
2

⌋
+ e
)
.

• Decλ : Zn′q ×
(
Zn′q × Zq

)
→ {0, 1} is defined so that Decλ(s, (a, b)) is the bit m for which

b− st · a is closer to m ·
⌈ q

2

⌋
than to (1−m) ·

⌈ q
2

⌋
.

A pair (a, b) ∈ Zn′q × Zq is a Regev encryption of m ∈ {0, 1} under s ∈ Zn′q with B-bounded noise
if b− st · a−m ·

⌈ q
2

⌋
is in the interval [−B,B)

We now define a homomorphic encryption scheme that is sufficient for our application. In
some sense, these are FHE schemes that have implicit in them a (low-noise) secret-key Regev
ciphertext.

Definition 32 (Regev-Extractable Secret-Key Homomorphic Encryption). A secret-key fully
homomorphic bit-encryption scheme {(Kλ,Encλ,Decλ,Evalλ)} is Regevn′,q,χsec

-extractable with
B(λ)-bounded noise if it satisfies the following structural properties.

• The distribution of s when sampling (s, ek)← Kλ is χn
′

sec where χsec is a distribution over
Zq.

• There is a poly(λ)-time evaluable function Extract = {Extractλ} such that

– For any λ, any s ∈ χn′sec, and any m ∈ {0, 1}, it holds that Extractλ (Encλ(s,m)) is a
Regev encryption (a, b) of m under s with B-bounded noise, and where a is uniformly
random in Zn′q .

– For any m1, · · · ,mn′ ∈ {0, 1}, any circuit C : {0, 1}n′ → {0, 1}, and any (s, ek) ∈ Kλ,
it holds with probability 1 that

Extractλ (Evalλ (ek, C,Encλ(s,m1), · · · ,Encλ(s,mn′)))

is a Regev encryption (a, b) of C(m1, · · · ,mn′) under s with B-bounded noise.

For our applications, we require the Regev extractable schemes to have the following security
property.

Definition 33. Let E be a FHE scheme with key distributions {Kλ}. For (sk, ek) ∈ Kλ, let
bin(sk) denote the binary representation of sk, and let κ = κ(λ) denote the length of such a
representation. For any ` = `(λ), E is said to be [`-bit CPA + circular] ∆quasi−poly-optimally secure
with a κ-bit key against quasi-polynomial time adversaries (abbreviated quasi-poly (κ, `,∆quasi−poly)-
CCO secure) if for every ensemble of `-bit messages {mλ}, E is f -KDM ∆quasi−poly-secure against
quasi-polynomial adversaries for the “augmented bit-by-bit circular security function”

f =
{
fλ : Kλ → {0, 1}`+κ

}
fλ(k) = mλ ◦ bin(k) (◦ denotes concatenation)

We emphasize that we require security against quasi-polynomial time adversaries.
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A.2 Fiat-Shamir for the Sumcheck Protocol

Now that we have the relevant definitions, we show these help us achieve the desired result. As
indicated while defining the various primitives, we will need to work with adversaries that have
quasi-polynomial running time.

A central component of this construction is the following theorem from [14, 16] for the
construction of correlation intractable hash functions. We restate the theorem below, with
remarks regarding its differences for our setting.

Theorem 34 ([16]). Let E = {(Kλ,Encλ,Decλ)}λ be a secret key encryption scheme with univer-
sal ciphertexts, message space {0, 1}`, and key distribution Kλ equal to the uniform distribution
on {0, 1}κ for some κ = κ(λ). If E is F-KDM ∆quasi−poly-secure against quasi-polynomial adver-
saries and R is a ρ-sparse relation that is λ−O(1)-approximately F-sampleable, then for every
quasi-polynomial time adversary, there is a δ ∈ ∆quasi−poly such that HECCRR is R-correlation

intractable with ε := δ(λ)·ρ(λ)
2−κ · λO(1).

Remark 35. We have defined our underlying primitives to require both correlation intractabil-
ity, and KDM security, against adversaries running in quasi-polynomial time.

We omit the proof here, as it follows in an identical manner to the proof of the corresponding
theorem in [14].

To instantiate the above theorem, we’re going to have to require circular (CCO) security
against quasi-polynomial time adversaries for fully homomorphic encryption scheme, which is
different from the assumption stated in [14].

Assumption 36 (Quasi-poly Dream FHE). For some n′, q, χsec, there exists a quasi-poly (κ, `,∆quasi−poly)-
CCO secure secret key FHE scheme that is Regevn′,q,χsec

-extractable with B-bounded noise for

κ = λΘ(1), ` = λΩ(1), B ≤ q/Ω̃(λ) and χn
′

sec that is sampleable in Õ(n′) time using κ + O(log λ)
random bits.

The following claim states that if the assumption is true, then the Regev encryption scheme
has universal ciphertexts and satisfies KDM security. As stated earlier, another difference in our
assumption is that the class of function F ` contains all functions, with output size `, computable
in quasi-polynomial time.

Claim 37. If Assumption 36 is true, then there exist parameters n′ = n′(λ), q = q(λ), and
χsec = χsec(λ) such that for some ` = λΩ(1), Regevn′,q,χsec,χerr

is F `-KDM ∆quasi−poly-secure,

where F ` is the class of functions with ` output bits computable in 2polylog(λ) time, where χerr is
the uniform error distribution on [−q/4, q/4), and where κ is the length of the binary represen-
tation of an element of χn

′
sec.

Proof Sketch. Here we briefly sketch the main difference in the proof that necessitates the
different assumption from the underlying FHE scheme. For the proof details, we refer the
reader to the original proof in [14].

Let AKDM be the adversary that breaks the KDM security of the Regev encryption scheme.
We will use AKDM to build an adversary ACCO that breaks Assumption 36. ACCO is given as
input the challenge (ek, c1, · · · , c`+κ), where c`+1, · · · , c`+κ is the encryption of the secret key
sk.

On initialization, AKDM queries the challenger with a function f̂ ∈ F ` of its choice, and ex-
pects an encryption of f̂(sk). In order to facilitate this, ACCO uses the homomorphic evaluation

function Eval to homomorphically compute f̂(sk) as Eval
(
ek, f̂ , c`+1, · · · , c`+κ

)
. But given that

F ` consists of all functions computable in quasi-polynomial time, the above Eval computation
may take quasi-polynomial time. The rest of the reduction remains unchanged.

Therefore, the reduction requires ACCO to perform a quasi-polynomial computation, which
in turn necessitates that Assumption 36 be secure against quasi-polynomial adversaries.

40



We can now state the main theorem. Namely, under circular security assumptions against
quasi-polynomial time adversaries for the FHE scheme, the Fiat-Shamir transform when applied
to the Sumcheck protocol is an adaptively sound argument.

Theorem 38. If Assumption 36 is true, then the non-interactive sumcheck protocol in Figure
4, instantiated with the hash family HECCRR, is adaptively unambiguously sound for the language
LSC (see section 1.2), with formulas on polylog(λ) variables.

Remark 39. We note that the size of the field F, defined to be 2ω(n), is larger than any
quasi-polynomial in the parameter λ.

This follows from the fact that for correlation intractability to make sense against quasi-
polynomial adversaries, we require the relation to be sufficiently sparse. Setting the field size
to be quasi-polynomial is not sufficient since a quasi-polynomial time adversary can break
correlation intractability even when the hash function is modeled as a random oracle by trying
quasi-polynomially many different values of x.

Proof. We proceed in two stages, initially establishing that a correlation intractable hash func-
tion for the relevant relation implies that the Fiat-Shamir transformation is adaptively sound.
Next, we show that under suitable choices of parameters for the underlying primitives, we can
instantiate such a correlation intractable hash function.

Stage I: from correlation intractability to FS-soundness. For the first part, we restate
the following claim from [14], removing the efficiency requirements needed for their result, and
adapting it to the specific case of the sumcheck protocol.

The following relation specifies whether partial transcript is bad or good. For any i ∈
{j + 1, · · · , n}, an i-th round partial transcript consists of the statement (F, y, f, β1, · · · , βj),
and τi := {αj+1,γ}dγ=0, βj+1, · · · , {αi,γ}dγ=0, βi. Recall that {αi,γ}dγ=0 defines a unique degree d
polynomial gi. Formally the relation RSC is defined as,

RSC :=


((

F, y, f, β1, · · · , βj , τi, {αγ}dγ=0

)
, β

)
:

(
F, y, f, β1, · · · , βj , τi

)
∈ BAD

∧
(
F, y, f, β1, · · · , βj , τi, {αγ}dγ=0, β

)
∈ GOOD


for some i-th round partial transcript.

We say that a partial transcript
(
F, y, f, β1, · · · , βj , τi

)
∈ BAD if(

F, gi(βi), f, β1, · · · , βj , βj+1, · · · , βi
)
6∈ LSC

where βj+1, · · · , βi and gi are obtained from τi. Roughly, a partial transcript is bad if it leads
the verifier in the interactive protocol to reject with high probability. Correspondingly, we say

that a partial transcript
(
F, y, f, β1, · · · , βj , τi

)
∈ GOOD if(

F, gi(βi), f, β1, · · · , βj , βj+1, · · · , βi
)
∈ LSC,

again roughly translating to a partial transcript that leads the verifier to in the interactive
protocol to accept.

We now state the claim.

Claim 40. Let Π = (PSC,VSC) be the O(polylog(λ))-round public coin interactive protocol for
the language LSC with perfect completeness and adaptive soundness. If a hash family H is RSC

correlation intractable, and evaluable in time poly(λ), then the Fiat-Shamir Transform gives an
adaptively sound argument for LSC.
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Proof. This follows in a straightforward manner as in the proof in [14], and is included here for
completeness. The completeness of the protocol follows from the completeness of the underlying
protocol (P,V).

For the adaptive soundness, we prove this via contradiction. Suppose there exists a cheat-
ing prover P∗ that on input (1λ, h), where h is sampled from Hλ, that produces a string
(F, , y∗, f∗, β∗1 , · · · , β∗j ) /∈ LSC (i.e.

∑
z∈{0,1}n−j f

∗(β∗1 , · · · , β∗j , z) 6= y∗ ) and ({α∗j+1,γ}dγ=0, · · · , {α∗n,γ}dγ=0)
such that V accepts the transcript derived using h. We shall use this cheating prover P∗ to
create an adversary A = {Aλ} that breaks the RSC-correlation intractability of H.

On receiving h ∈ Hλ, Aλ does the following:

1. Run P∗ on input (1λ, h) to obtain (F, y∗, f∗, β∗1 , · · · , β∗j ) and ({α∗j+1,γ}dγ=0, · · · , {α∗n,γ}dγ=0).

2. Sample a random index i∗ ← {j + 1, · · · , n− 1}.

3. Return
(
F, y∗, f∗, β∗1 , · · · , β∗j , τi∗ , {α∗i∗+1,γ}dγ=0

)
, where

∀k ∈ [i], βk = h(F, y∗, f∗, β∗1 , · · · , β∗j , τk−1, {α∗k,γ}dγ=0).

From the sumcheck protocol, for every accepting transcript for (F, y∗, f∗, β∗1 , · · · , β∗j ) /∈
LSC, there must exist at least one round k such that (F, y∗, f∗, β∗1 , · · · , β∗j , τk) ∈ BAD, but(
F, y∗, f∗, β∗1 , · · · , β∗j , τk, {α∗k+1,γ}dγ=0, βk+1

)
∈ GOOD.

This follows from the fact that (F, f∗, y∗, β∗1 , · · · , β∗j ) /∈ LSC, and for V to accept, the com-
plete transcript must be GOOD. Thus with probability ε/(n− j−1), Aλ selects the appropriate
index k, and outputs the right partial transcript. This contradicts our assumption of correlation
intractability.

Stage II: Building the relevant correlation intractable function. It remains to show
that we can build a correlation intractable function for the relation RSC. Now, we need to
establish certain properties from the relation RSC in order to invoke Theorem 34. We start
with two simple claims regarding the relation RSC. For simplicity of exposition, let us denote
by gi+1 the prescribed polynomial (given prefix β) to be sent in round i+ 1, i.e.

gi+1(x) :=
∑

z∈{0,1}n−i−1

f(β, βj+1, · · · , βi, x,z).

Claim 41. RSC is a ρ = d
|F| -sparse relation.

Proof. Given
(
F, y, f, β1, · · · , βj , τi, {αγ}dγ=0

)
, we compute the fraction of β such that((

F, y, f,β, τi, {αγ}dγ=0

)
, β

)
∈ RSC.

For
(
F, y, f, β1, · · · , βj , τi, {αγ}dγ=0, β

)
∈ GOOD, we require β to be such that g̃(β) =

gi+1(β), where g̃(x) denotes the polynomial described by {αγ}dγ=0, and gi+1(x) is as defined
above. This follows from the definition of LSC.

The polynomial gi+1(x) − g̃(x) has degree at most d (g(x) has degree at most d), and is
non-zero (since g̃ is not the prescribed polynomial). Thus, from Schwartz-Zippel lemma, there
are at most d roots to the above polynomial, and thus d values β such that g̃(β) = gi+1(β).

Thus the fractions of such values are d
|F| . Since, we have set |F| to be of size 2ω(polylog(λ)), ρ

is negligible.

Claim 42. RSC is sampleable in 2polylog(λ)-time.
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Proof. The algorithm for sampling a β given
(

(F, y, f, β1, · · · , βj , τi, {αγ}dγ=0

)
works in the

following manner. As described above, it is sufficient to output a random root of gi+1(x)− g̃(x).
We note that from Remark 39, the size of field is larger than any quasi-polynomial, and thus

we do not know if we can do this determinisitcally in quasi-polynomial time.
The running time of the above sampling strategy derives from the fact that to compute the

polynomial gi+1, we need to compute an exponential sum over polylog(λ) variables.

Theorem 34 requires RSC to be sampled by a function in F . Thus, in our setting, F
represents the set of all functions computable in 2polylog(λ)-time.

We additionally make the following simple observations regarding the sumcheck protocol:

– The total number of rounds r in the protocol is polylog(λ). This follows from the structure
of the protocol wherein each round corresponds to reducing the claim by a single variable,
and we have set the number of variables to be polylog(λ)

– The length of each verifier message is |βi| = ω(polylog(λ)) by our choice of parameters.
This follows from the fact that each βi ∈ F.

– The size of the input to the hash function,
(
F, y, f, β1, · · · , βj , τr

)
, is poly(λ). This follows

from the fact that in addition to the description of the function f (of size poly(λ)), the
input consists of r rounds of prover, and verifier, messages. A prover message consists of
only O(d) elements from F. Given that the number of rounds are polylog(λ), this gives an
additive overhead of ω(polylog(λ)) to the description of f .

Finally,to instantiate Theorem 34, we need an appropriate encryption scheme with universal
ciphertexts, and KDM security for all quasi-polynomial computable functions. Specifically,
we require an encryption scheme SKE = (SKE.Gen,SKE.Enc,SKE.Dec) with keys of length
κ = κ(λ) ≥ λΩ(1) and universal ciphertexts that are ∆quasi−poly-KDM secure for arbitrary quasi-
polynomial computable functions, of output length `.

Assumption 36 implies that secret key Regev encryption satisfies these properties, with
secret distribution χsec that is uniform on [−B,B) for some B, and error distribution χerr

that is uniform on
[
− q

4 ,
q
4

)
. For the corresponding scheme n′ is set to be such that (2B +

1)n
′ ∈ {0, 1}|trans|, where |trans| is the size of the largest input to the hash function, and

` = ω(polylog(λ)) is the size of a single verifier message.
We now have all the requisite conditions for Theorem 34, and thus invoking the result,

the Fiat-Shamir transform gives us an adaptively sound argument system. From Claim 4, an
adaptively sound argument system is also an adaptively unambigiously sound argument system,
thus completing the proof.
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