
Relations and Equivalences Between Circuit Lower Bounds
and Karp-Lipton Theorems*

Lijie Chen
MIT

Dylan M. McKay
MIT

Cody D. Murray† R. Ryan Williams
MIT

Abstract

A frontier open problem in circuit complexity is to prove PNP 6⊂ SIZE[nk] for all k; this is a neces-
sary intermediate step towards NP 6⊂ P/poly. Previously, for several classes containing PNP, including
NPNP, ZPPNP, and S2P, such lower bounds have been proved via Karp-Lipton-style Theorems: to prove
C 6⊂ SIZE[nk] for all k, we show that C ⊂ P/poly implies a “collapse” D = C for some larger class D,
where we already know D 6⊂ SIZE[nk] for all k.

It seems obvious that one could take a different approach to prove circuit lower bounds for PNP that
does not require proving any Karp-Lipton-style theorems along the way. We show this intuition is wrong:
(weak) Karp-Lipton-style theorems for PNP are equivalent to fixed-polynomial size circuit lower
bounds for PNP. That is, PNP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly implies PH ⊂ i.o.-PNP

/n).
Next, we present new consequences of the assumption NP ⊂ P/poly, towards proving similar re-

sults for NP circuit lower bounds. We show that under the assumption, fixed-polynomial circuit lower
bounds for NP, nondeterministic polynomial-time derandomizations, and various fixed-polynomial time
simulations of NP are all equivalent. Applying this equivalence, we show that circuit lower bounds
for NP imply better Karp-Lipton collapses. That is, if NP 6⊂ SIZE[nk] for all k, then for all
C ∈ {⊕P,PP,PSPACE,EXP}, C ⊂ P/poly implies C ⊂ i.o.-NP/nε for all ε > 0. Note that un-
conditionally, the collapses are only to MA and not NP.

We also explore consequences of circuit lower bounds for a sparse language in NP. Among other
results, we show if a polynomially-sparse NP language does not have n1+ε-size circuits, then MA ⊂
i.o.-NP/O(logn), MA ⊂ i.o.-PNP[O(logn)], and NEXP 6⊂ SIZE[2o(m)]. Finally, we observe connections
between these results and the “hardness magnification” phenomena described in recent works.

1 Introduction

Let C be a complexity class containing NP. A longstanding method for proving fixed-polynomial circuit
lower bounds for functions in C, first observed by Kannan [Kan82], applies versions of the classical Karp-
Lipton Theorem in a particular way:

1. If NP 6⊂ P/poly, then SAT ∈ NP ⊂ C does not have polynomial-size circuits.

2. If NP ⊂ P/poly, then by a “collapse” theorem, we have PH ⊆ C. But for every k, there is an f ∈ PH
that does not have nk-size circuits, so we are also done.

Such collapse theorems are called Karp-Lipton Theorems, as they were first discovered by Karp and
Lipton [KL82] in their pioneering work on complexity classes with advice. The general theme of such
theorems is a connection between non-uniform and uniform complexity:

*Supported by NSF CCF-1741615 (CAREER: Common Links in Algorithms and Complexity).
†Work done while the author was a PhD student at MIT.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 75 (2019)

“C has (non-uniform) polynomial-size circuits implies a collapse of (uniform) complexity classes.”

Over the years, Karp-Lipton Theorems have been applied to prove circuit lower bounds for the complex-
ity classes NPNP [Kan82], ZPPNP [BCG+96, KW98], S2P [Cai07, CCHO05], PP [Vin05, Aar06]1, and
Promise-MA and MA/1 [San09].2 Other literature on Karp-Lipton Theorems include [Yap83, CR06, CR11].

When one first encounters such a lower bound argument, the non-constructivity of the result (the two
uncertain cases) and the use of a Karp-Lipton Theorem looks strange.3 It appears obvious that one ought to
be able to prove circuit lower bounds in a fundamentally different way, without worrying over any collapses
of the polynomial hierarchy. It is easy to imagine the possibility of a sophisticated combinatorial argument
establishing a lower bound for PNP functions (one natural next step in such lower bounds) which has nothing
to do with simulating PH more efficiently, and has no implications for it.

PNP Circuit Lower Bounds are Equivalent to Karp-Lipton Collapses to PNP. We show that, in a sense,
the above intuition is false: any fixed-polynomial-size circuit lower bound for PNP would imply a Karp-
Lipton Theorem collapsing PH all the way to PNP. (There are some technicalities: the PNP simulation uses
small advice and only works infinitely often, but we believe these conditions can potentially be removed,
and they do not change the moral of our story.) We find this result surprising; it shows that in order to prove
a circuit lower bound for PNP, one cannot avoid proving a Karp-Lipton Theorem for PNP in the process. A
Karp-Lipton Theorem is both necessary and sufficient for such lower bounds.

Theorem 1.1 (PNP Circuit Lower Bounds are Equivalent to a Karp-Lipton Collapse to PNP).
PNP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly =⇒ PH ⊂ i.o.-PNP

/n).

One direction of Theorem 1.1 follows immediately from the classical lower bound paradigm described
above. In particular, assuming PNP ⊂ SIZE[nk] for some k and assuming NP ⊂ P/poly =⇒ PH ⊂
i.o.-PNP

/n we have

PH ⊂ i.o.-PNP
/n ⊆ i.o.-SIZE[O(n)k],

which contradicts known fixed-polynomial lower bounds for PH. The interesting direction is the converse,
showing that proving lower bounds against PNP implies proving a Karp-Lipton collapse to PNP that is
sufficient for the lower bound.

NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses. After observing Theorem 1.1, a nat-
ural question is whether such a theorem holds for NP circuit lower bounds as well:

Does NP 6⊂ SIZE[nk] for all k imply a Karp-Lipton Collapse to NP?

While we have not yet been able to prove this under the hypothesis NP ⊂ P/ poly as above, we can
show it for stronger hypotheses. Another class of Karp-Lipton Theorems (used in circuit lower bounds for
PP [Vin05, Aar06] and Promise-MA [San09]) give stronger collapses under hypotheses like PSPACE ⊂
P/ poly: for any class C which is one of NEXP [IKW02], EXPNP ([BH92] and [BFLS91]), EXP and
PSPACE [BFLS91], PP [LFKN92] and ⊕P [IKV18], we have:

If C ⊂ P/ poly then C ⊆ MA.

1Both Vinodchandran and Aaronson’s proofs of PP 6⊂ SIZE[nk] use the Karp-Lipton-style theorem “PP ⊂ P/poly then
PP = MA”, which follows from [LFKN92]. Aaronson shows further that “PP ⊂ P/poly then PPP = MA”. From there, one can
directly construct a function in PPP without nk-size circuits.

2Santhanam used the Karp-Lipton-style theorem “PSPACE ⊂ P/poly implies PSPACE = MA” to prove lower bounds against
Promise-MA and MA with one bit of advice.

3Note Cai and Watanabe [CW04] found a constructive proof for NPNP.

2

We show how NP circuit lower bounds can be used to derandomize MA. In fact, under the hypothesis
NP ⊂ P/poly, we prove an equivalence between NP circuit lower bounds, fast Arthur-Merlin simulations
of NP, and nondeterministic derandomization of Arthur-Merlin protocols.

To state our results, we first define a variation of the “robust simulation” which was originally introduced
in [FS17]. For a complexity class C and a language L, we say L is in c-r.o.-C for a constant c, if there is a
language L′ ∈ C such that there are infinitely many m’s such that for all n ∈ [m,mc], L′ agrees with L on
inputs of length n.4 (See Section 2.1 for formal definitions.)

Theorem 1.2. Assuming NP ⊂ P/poly, the following are equivalent:

1. NP is not in SIZE[nk] for all k.

2. AM/1 is in c-r.o.-NP/nε for all ε > 0 and integers c.
That is, Arthur-Merlin games with O(1) rounds and small advice can be simulated “c-robustly often”
in NP with modest advice, for all constants c.5

3. NP does not have nk-size witnesses for all k.
That is, for all k, there is a language L ∈ NP, a poly-time verifier V for L, and infinitely many xn ∈ L
such that V (xn, ·) has no witness of circuit complexity at most nk.

4. For all k and d, there is a polynomial-time nondeterministic PRG with seed-length O(log n) and n
bits of advice against nk-size circuits d-robustly often.6

5. NP is not in AMTIME(nk) for all k.

6. (NP ∩ coNP)/nε is not in SIZE[nk] for all k and all ε > 0.

7. (AM ∩ coAM)/1 is in c-r.o.-(NP ∩ coNP)/nε for all ε > 0 and all integers c.

That is, under NP ⊂ P/poly, the tasks of fixed-polynomial lower bounds for NP, lower bounds for
(NP ∩ coNP)/nε, uniform lower bounds on simulating NP within AM, and derandomizing AM in NP are
all equivalent.

We recall another type of Karp-Lipton collapse was shown by [AKSS95]: NP ⊂ P/poly implies AM =
MA. An intriguing corollary of Theorem 1.2 is that fixed-polynomial lower bounds for NP would improve
this collapse, from MA to r.o.-c-NP/nε for all c:

Corollary 1.3 (NP Circuit Lower Bounds Equivalent to a Karp-Lipton Collapse of AM to NP). NP 6⊂
SIZE[nk] for all k if and only if (NP ⊂ P/poly =⇒ AM is in r.o.-c-NP/nε for all c).

Another consequence of Theorem 1.2 is that NP circuit lower bounds imply better Karp-Lipton collapses
from MA down to NP:

Theorem 1.4 (NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses). Let C ∈ {⊕P,PSPACE,PP,
EXP}. Suppose NP 6⊂ SIZE[nk] for all k. Then for all ε > 0, (C ⊂ P/poly =⇒ C ⊂ i.o.-NP/nε). In
particular, polynomial-size circuits for any C-complete language L can be constructed in NP infinitely often,
with nε advice.

Remark 1.5. By “circuits for L can be constructed in NP infinitely often”, we mean that there is a nonde-
terministic poly-time algorithm A such that, for infinitely many n, A on input 1n outputs a circuit Cn for Ln
on at least one computation path, and on all paths where such a Cn is not output, A outputs reject.

4The original definition of L ⊆ r.o.-C requires that there is a single language L′ ∈ C such that for all c there are infinitely many
m’s such that for all n ∈ [m,mc], L′ agrees with L on inputs of length n.

5See the Preliminaries for a definition of “c-robustly often”. Intutively, it is a mild strengthening of “infinitely often”.
6See the Preliminaries for formal definitions.

3

Consequences of Weak Circuit Lower Bounds for Sparse Languages in NP. Theorem 1.2 shows that
assuming NP ⊂ P/poly, fixed-polynomial lower bounds for NP imply AM = MA ⊆ i.o.-NP/nε . This is also
the reason that we can only show collapses to i.o.-NP/nε in Theorem 1.4. It is interesting to ask whether the
nε advice in the simulation can be eliminated or reduced. In the following, we show that an n1.00001-size
circuit lower bound for a polynomially-sparse language in NP would imply an advice reduction, along with
other interesting consequences.

Theorem 1.6 (Consequences of Weak Circuit Lower Bounds for Polynomially-Sparse NP Languages).
Suppose there is an ε > 0, a c ≥ 1, and an nc-sparse L ∈ NP without n1+ε-size circuits. Then MA ⊂
i.o.-NP/O(logn), MA ⊆ i.o.-PNP[O(logn)], and NE 6⊂ SIZE[2δ·n] for some δ > 0 (which implies NP 6⊂
SIZE[nk] for all k).

One step in the proof of Theorem 1.6 is a form of hardness condensation (as termed by Impagli-
azzo [Imp18]) for sparse NP languages. The goal of hardness condensation [BS06, IJKW10] is that, given
a function f on n input bits with complexity S, we want to construct a function f̃ on ` � n input bits
that still has complexity roughly S. We show how a hard S(n)-sparse language in NTIME[T (n)] can be
“condensed” in a generic way, based on the sparsity S(n). We can efficiently build a PRG from the harder
condensed function.

Theorem 1.6 shows how a very weak lower bound (n1+ε) for a sparse language L ∈ NP would imply
an exponential-size lower bound for NE (note, the converse is easy to show). This is reminiscent of a recent
line of work [OS18, OPS19, MMW19] on “hardness magnification” phenomena, showing that seemingly
weak circuit lower bounds for certain problems can in fact imply strong circuit lower bounds which are out
of reach of current proof techniques.

At a high level, the hardness magnification results in the above-cited papers show how weak lower
bounds on “compression problems” can imply strong complexity class separations. These compression
problems have the form: given a string, does it have a small efficient representation? As an example, in the
Minimum Circuit Size Problem for size S(m) � 2m, denoted as MCSP[S(m)], we are given a truth table
of length N = 2m and want to know if the function has a circuit of size at most S(m). As an example of
hardness magnification, McKay, Murray, and Williams [MMW19] show that, if there is an ε > 0 such that
MCSP[2m/ log?m] is not in SIZE[N1+ε], then NP 6⊂ P/poly. Thus a very weak circuit size lower bound for
MCSP[2m/ log?m] would imply a super-polynomial lower bound for SAT!

Sparsity Alone Implies a Weak Hardness Magnification. We identify a simple property of all efficient
compression problems which alone implies a (weak) form of hardness magnification: the sparsity of the
underlying language. For any compression problem on length-N strings where we ask for a length-`(N)
representation (think of `(N) ≤ no(1)), there are at most 2`(N) strings in the language. Scaling up the spar-
sity of Theorem 1.6, we show that non-trivial circuit lower bounds for any NP problem with subexponential
sparsity already implies longstanding circuit lower bounds. In fact, we have an equivalence:

Theorem 1.7. NEXP 6⊂ P/poly if and only if there exists an ε > 0 such that for every sufficiently small
β > 0, there is a 2n

β
-sparse language L ∈ NTIME[2n

β
] without n1+ε-size circuits.

It follows that an n1+ε-size circuit lower bound for MCSP[2m/ log?m] implies NEXP 6⊂ P/poly. We re-
mark while the lower bound consequence here is much weaker than the consequences of prior work [OS18,
OPS19, MMW19] (only NEXP 6⊂ P/poly, instead of NP 6⊂ P/poly), the hypothesis has much more flex-

ibility: Theorem 1.7 allows for any sparse language in NTIME[2n
o(1)

], while the MCSP problem is in
NTIME[n1+o(1)].7

7We remark that these results are not directly related to hardness magnification for NC1-complete problems [AK10, CT19], as
the problems studied in these works are clearly not sparse.

4

Finally, we observe that Theorem 1.7 is similar in spirit to the Hartmanis-Immerman-Sewelson theo-
rem [HIS85] which states that there is a polynomially-sparse language in NP \ P if and only if NE 6= E.
Theorem 1.7 can be interpreted as a certain optimized, non-uniform analogue of Hartmanis-Immerman-
Sewelson theorem, in a different regime of sparsity.

Organization of the Paper. In Section 2, we introduce the necessary preliminaries for this paper. In
Section 3, we prove that fixed-polynomial circuit lower bounds for PNP is equivalent to a (weak) Karp-
Lipton theorem for P. In Section 4, we prove our equivalence theorem for NP circuit lower bounds, fast
simulations of NP, and nondeterministic polynomial-time derandomization, under the hypothesis NP ⊂
P/ poly. In Section 5, we show how our equivalence theorem implies that fixed polynomial circuit lower
bounds for NP implies better Karp-Lipton theorems for higher complexity classes. In Section 6, we prove
the consequences of weak circuit lower bounds for sparse NP languages. Finally, in Section 7, we discuss
some interesting open questions stemming from this work.

2 Preliminaries

We assume basic knowledge of complexity theory (see e.g. [AB09, Gol08] for excellent references). Here
we review some notation and concepts that are of particular interest for this paper.

Notation. All languages considered are over {0, 1}. For a language L, we define Ln := {0, 1}n ∩ L. For
s : N → N, SIZE[s(n)] is the class of languages decided by an infinite circuit family where the nth circuit
in the family has size at most s(n). ⊕P is the closure under polynomial-time reductions of the decision
problem Parity-SAT: Given a Boolean formula, is the number of its satisfying assignments odd?

For a deterministic or nondeterministic class C and function a(n), C/a(n) is the class of languages L
such that there is an L′ ∈ C and function f : N → {0, 1}? with |f(n)| ≤ a(n) for all x, such that
L = {x | (x, f(|x|)) ∈ L′}. That is, the advice string f(n) can be used to solve all n-bit instances within
class C. For “promise” classes C such as MA and AM, C/a(n) is defined similarly, except that the promise
of the class is only required to hold when the correct advice f(n) is provided.

2.1 Infinitely Often and Robust Simulations

In this section, let C be a class of languages. Here we recall infinitely often and robust simulations, the latter
of which was first defined and studied in [FS17]. Robust simulations expand on the notion of “infinitely
often” simulations. A language L ∈ i.o.-C (infinitely often C), if there is a language L′ in C such that there
are infinitely many n such that Ln = L′n. A language L ∈ r.o.-C (robustly often C), if there is a language
L′ in C such that for all k ≥ 1, there are infinitely many n such that Lm = L′m for all m ∈ [n, nk]. In this
case, we say L′ r.o.-computes L.

c-Robust Simulations. We consider a parameterized version of the robust simulation concept which is
useful for stating our results. Let c ≥ 1 be an integer constant. We say a language L ∈ c-r.o.-C (c-robustly
often C) if there is an L′ ∈ C and infinitely many n such that Lm = L′m for all m ∈ [n, nc]. In this case,
we say L′ c-r.o.-computes L. Note that L ∈ r.o.-C implies L ∈ c-r.o.-C for all c, but the converse is not
necessarily true.

More generally, a property P (n) holds c-robustly often (c-r.o.-) if for all integers k, there are infinitely
many m’s such that P (n) holds for all n ∈ [m,mc].

5

2.2 Non-deterministic Pseudo-Random Generators

Let w(n), s(n) : N → N, and let C be a class of functions. We say a function family G, specified by
Gn : {0, 1}w(n) × {0, 1}s(n) → {0, 1}∗ ∩ {⊥}, is a nondeterministic PRG against C if for all sufficiently
large n and all C ∈ C , the following hold:

• For all y ∈ {0, 1}w(n), either Gn(y, z) 6= ⊥ for all z’s (such a y is called good), or Gn(y, z) = ⊥ for
all z’s (a bad y).

• There is at least one good y ∈ {0, 1}w(n).
• Suppose y ∈ {0, 1}w(n) is good, C has m input bits, and |Gn(y, z)| ≥ m for all z. Then∣∣∣∣ Pr

z∈{0,1}s(n)
[C(Gn(y, z)) = 1]− Pr

z∈{0,1}m
[C(z) = 1]

∣∣∣∣ < 1/n.

As usual, if C takes less than |Gn(y, z)| inputs, C(Gn(y, z)) corresponds to feeding C with the first
m bits of Gn(y, z).

Usually we are only interested in the seed length parameter s(n) and the running time T (n) of the PRG
Gn as a function of n. To be concise, we say G is a T (n)-time NPRG of seed length s(n) against C .

We say G is a i.o.-NPRG or r.o.-NPRG, if it only fools functions in C infinite often or robustly often.

2.3 Circuit Complexity of Strings and Pseudorandom Generators

For a circuit C on ` inputs, we define the truth-table of C, denoted tt(C) ∈ {0, 1}2` , to be the evaluation of
C on all possible inputs sorted in lexicographical order. For every string y, let 2` be the smallest power of 2
such that 2` > |y|. We define the circuit complexity of y, denoted as CC(y), to be the circuit complexity of
the `-input function defined by the truth-table y102`−|y|−1. We will use the following strong construction of
pseudorandom generators from hard functions:

Theorem 2.1 (Umans [Uma03]). There is a constant g and a functionG : {0, 1}∗×{0, 1}∗ → {0, 1}∗ such
that, for all s and Y satisfying CC(Y) ≥ sg, and for all circuits C of size s,∣∣∣∣ Pr

x∈{0,1}g log |Y |
[C(G(Y, x)) = 1]− Pr

x∈{0,1}s
[C(x) = 1]

∣∣∣∣ < 1/s.

Furthermore, G is computable in poly(|Y |) time.

Fortnow-Santhanam-Williams [FSW09]. A work related to this paper is that of Fortnow, Santhanam,
and Williams, who proved the equivalences NP 6⊂ SIZE[nk] for all k ⇐⇒ PNP[nk] 6⊂ SIZE[nc] for all k, c
and AM 6⊂ SIZE[nk] for all k ⇐⇒ MA 6⊂ SIZE[nk] for all k. We use intermediate results of theirs in our
equivalence theorems (see the citations).

3 PNP Circuit Lower Bounds Equivalent to Karp-Lipton Collapses to PNP

In this section we prove Theorem 1.1 (restated below).

Reminder of Theorem 1.1. PNP 6⊂ SIZE[nk] for all k if and only if (NP ⊂ P/poly =⇒ PH ⊂ i.o.-PNP
/n).

6

We begin with a lemma on the simulation of poly-time functions with an NP oracle. Essentially it says
that if functions with an NP oracle always output strings of low circuit complexity, then we can simulate
PNP extremely efficiently in the polynomial hierarchy. This is similar in spirit to Fortnow, Santhanam,
and Williams’ result that PNP ⊂ SIZE[nk] implies NP ⊆ MATIME(nO(k)) [FSW09]; our result is more
complex in that we simulate all of PNP.

Lemma 3.1. Suppose there is a k such that for all FPNP functions f , the circuit complexity of f(x) is at
most |x|k for all but finite many x. Then PNP ⊆ Σ3TIME[nO(k)].

Proof. Let L ∈ PNP be a language which can be computed by a 3-SAT oracle machine M in nc time, for a
constant c. Without loss of generality, we may assume M is a single-tape machine.

The FPNP Function fsol. Consider the following FPNP function fsol:

FPNP function fsol for printing assignments to all satisfiable oracle queries

• Given an input x, simulate the 3-SAT oracle machine M running on the input x.

• On the i-th step, if M makes an oracle query ψ (ψ is a 3-SAT instance) and ψ is satisfiable, call
the NP oracle multiple times to construct a satisfying assignment for ψ, and print it. Letting m
be the length of the assignment (note that m ≤ nc), we print nc + 1−m additional ones.

• Otherwise, print nc + 1 zeros on the i-th step.

In the following we always assume n is sufficiently large. For all x with |x| = n, by assumption
we know the string fsol(x) has an nk size circuit. Let ψ be a 3-SAT query made on i-th step which is
satisfiable; ψ has a satisfying assignment corresponding to a sub-string of fsol(x) starting from the position
(i − 1) · (nc + 1) + 1, and therefore has circuit complexity at most O(nk) ≤ nk+1. In particular, we can
define a circuit Ei(j) := fsol(x)((i− 1) · (nc + 1) + j) whose truth table encodes a SAT assignment to ψ.

The FPNP Function fhistory. Next, we define a function FPNP function fhistory, which prints the compu-
tation history of M . More precisely, we can interpret fhistory(x) as a matrix cell(x) ∈ Σnc×nc , such that
cell(i, j) represents the state of the j-th cell of the working tape before the i-th step, and Σ is a constant-size
alphabet which represents all possible states of a cell. From our assumption, for an x with |x| = n, we know
that fhistory(x) has an nk-size circuit.

The Algorithm. Now we are ready to describe a Σ3 algorithm for L running in nO(k) time. At a high
level, the algorithm first guesses two circuits Chistory and Csol, whose truth-tables are supposed to represent
fhistory(x) and fsol(x), it tries to verify that these circuits correspond to a correct accepting computation of
M on x. The whole verification can be done in Π2TIME[nO(k)], utilizing the fact that M is making 3-SAT
queries. The formal description of the algorithm is given below.

A Σ3TIME[nO(k)] algorithm for L

(1) Given an input x, guess two nk-size circuits Chistory and Csol where the truth-table of Chistory is
intended to be fhistory(x)), and the truth-table of Csol is intended to be fsol(x). Let cell ∈ Σnc×nc

be the matrix (tableau) corresponding to the truth-table of Chistory.

7

(2) We check that Chistory is consistent and accepting, assuming its claimed answers to oracle queries
are correct. In particular, we universally check over all (i, j) ∈ [nc] × [nc] that cell(i, j) is
consistent with the contents of cell(i− 1, j− 1), cell(i− 1, j), cell(i, j+ 1) when i > 1, whether
it agrees with the initial configuration when i = 1, and whether M is in an accept state when
i = nc.

(3) We check that the claimed answers to oracle queries in Chistory are correct. For convenience, we
assume the query string always starts at the leftmost position on the tape. We universally check
over all step i ∈ [nc]:

If there is no query at the i-th step, we accept.

(A) Let ψ be the 3-SAT query. If the claimed answer in Chistory for ψ is yes, we examine the
corresponding sub-string of tt(Csol), and check universally over all clauses in ψ that it is
satisfied by the corresponding assignment in tt(Csol) (accepting if the check passes and
rejecting if it fails).

(B) If the claimed answer in Chistory for ψ is no, we universally check over all nk+1-size circuits
D that tt(D) is not an assignment to ψ, by existentially checking that there is a clause in ψ
which is not satisfied by tt(D).

Running Time. It is straightforward to see that the above is a Σ3TIME[nO(k)] algorithm.

Correctness. When x ∈ L, there areCsol andChistory such that tt(Csol) and (Chistory) correspond to fsol(x)
and fhistory(x), so all of the checks pass and the above algorithm accepts x.

Let x /∈ L. We want to show that all possible nk-size circuits for Chistory and Csol will be rejected.
Assume for contradiction that there are circuits Chistory and Csol that can pass the whole verification. By
our checks in step (2) of the algorithm, Chistory is consistent and ends in accept state; therefore, at least one
answer to its oracle queries is not correct. Suppose the first incorrect answer occurs on the i-th step. Since
Chistory is consistent and all queries made before the i-th are correctly answered, the i-th query ψ is actually
the correct i-th query made by machine M on the input x.

Therefore, if the correct answer to ψ is yes butChistory claims it is no, case (B) will not be passed, as there
is always a satisfying assignment that can be represented by the truth-table of an nk+1-size circuit. Similarly,
if Chistory incorrectly claims the answer is yes, then case (A) cannot be passed, as ψ is unsatisfiable.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose (1) PNP does not have SIZE[nk] circuits for any fixed k and (2) NP ⊂
P/poly. By assumption (2), we have that for every c, Σ3TIME[nc] ⊂ SIZE[nO(c)]. Therefore, applying (1),
PNP 6⊆ Σ3TIME[nc] for every c. By the contrapositive of Lemma 3.1, for every k there is a PNP function
B that for infinitely many x of length n, the circuit complexity of B(x) is greater than nk. In other words,
B(x) outputs the truth tables of hard functions on infinitely many x.

Assumption (2) also implies a collapse of the polynomial hierarchy to ZPPNP [KW98]. By (2), we also
have ZPPNP ⊂ P/poly, so every ZPPNP algorithm A has polynomial-size circuits, and thus by standard
hardness-to-PRG constructions (e.g., Theorem 2.1) there is a fixed k such that a string of circuit complexity
at least nk can be used to construct a PRG that fools algorithm A on inputs of length n. As shown above,
there is a function B in PNP that can produce such strings on infinitely many inputs x. If the inputs x that
make B produce high complexity strings are given as advice, then the ZPPNP algorithm A can be simulated

8

in PNP
/n : first, call B on the advice x to generate a hard function, produce a PRG of seed length O(log n)

with the hard function, then simulateA on the input and the pseudorandom strings output by the PRG, using
the NP oracle to simulate the NP oracle of A. Thus we have ZPPNP ⊂ i.o.-PNP/n.

Finally, we note that the n bits of advice can be reduced to nε bits for any desired ε > 0. For every
k > 0, we can find an FPNP function that outputs a string of circuit complexity greater than nk. Setting
k′ = k/ε, we can use an nε-length input as advice, and still get a function that is hard enough to derandomize
((nε)k

′
= (nε)k/ε = nk).

4 An Equivalence Theorem Under NP ⊂ P/poly

In this section we prove Theorem 1.2 together with several applications.
First, we need a strong size lower bound for a language in (MA ∩ coMA)/1. The proof is based on a

similar lemma in a recent work [Che19] (which further builds on [MW18, San09]). We present a proof in
Appendix A for completeness.

Lemma 4.1 (Implicit in [Che19]). For all constants k, there is an integer c, and a language L ∈ (MA ∩
coMA)/1, such that for all sufficiently large τ ∈ N and n = 2τ , either

• SIZE(Ln) > nk, or

• SIZE(Lm) > mk, for an m ∈ (nc, 2 · nc) ∩ N.

We also need the following two simple lemmas.

Lemma 4.2. NP is not in SIZE[nk] for all k iff NP/n is not in SIZE[nk] for all k.

Proof. The⇒ direction is trivial. For the⇐ direction, suppose NP is in SIZE[nk] for an integer k. Let L ∈
NP/n, and M and {αn}n∈N be its corresponding nondeterministic Turing machine and advice sequence.
Let p(n) be a polynomial running time upper bound of M on inputs of length n.

Now, we define a language L′ such that a pair (x, α) ∈ L′ if and only if |x| = |α| and M accepts x with
advice bits set to α in p(|x|) steps. Clearly, L′ ∈ NP from the definition, so it has an nk-size circuit family.
Fixing the advice bits to the actual αn’s in the circuit family, we have an nO(k)-size circuit family for L as
well. This completes the proof.

Lemma 4.3 (Theorem 14 [FSW09]). Let k be an integer. If NP ⊂ P/poly and all NP verifiers have nk-size
witnesses, then NP ⊆ MATIME[nO(k)] ⊂ SIZE[nO(k)].

Proof. Assume all NP verifiers have nk-size witnesses. By guessing circuits for the witnesses to PCP
verifiers, it follows that NP ⊆ MATIME[nO(k)] [FSW09]. Furthermore, we have MATIME[nO(k)] ⊂
NTIME[nO(k)]/nO(k) ⊂ SIZE[nO(k)]. The last step follows from the assumption that NP ⊂ P/poly (and
therefore SAT ∈ SIZE[nc] for a constant c).

Now, we are ready to prove our equivalence theorem (restated below).

Reminder of Theorem 1.2. Assuming NP ⊂ P/poly, the following are equivalent:

1. NP is not in SIZE[nk] for all k.

2. AM/1 is in c-r.o.-NP/nε for all ε > 0 and integers c.

3. NP does not have nk-size witnesses for all k.8

8See the statement of Theorem 1.2 in the introduction for the definition of nk-size witnesses.

9

4. For all k and d, there is a poly-time nondeterministic PRG with n bits of advice against nk-size
circuits d-robustly often.9

5. NP is not in AMTIME(nk) for all k.

6. (NP ∩ coNP)/nε is not in SIZE[nk] for all k and all ε > 0.

7. (AM ∩ coAM)/1 is in c-r.o.-(NP ∩ coNP)/nε for all ε > 0 and all integers c.

Proof. We prove the following directions to show equivalence.

(2)⇒ (1). Suppose (2) holds. For all k, let L and c be the MA/1 language and the corresponding constant
c guaranteed by Lemma 4.1. By (2) and the fact that MA/1 ⊆ AM/1, there is an NP/n language L′ such that
for infinitely many n’s, L′ agrees with L on inputs with length in [n, n2c].

Let τ = dlog(n)e. By the condition of Lemma 4.1, we know that for at least one ` ∈ [n, n2c], we have
SIZE(L′`) ≥ `k. Since there are infinitely many such n, we conclude that L′ is not in SIZE[nk]. Since k can
be an arbitrary integer, it further implies that NP/n is not in SIZE[nk] for all k, and hence also NP is not in
SIZE[nk] for all k by Lemma 4.2.

(1) ⇒ (3). We prove the contrapositive. Suppose NP has nk-size witnesses for an integer k. Then, by
Lemma 4.3, NP ⊂ SIZE[nO(k)].

(3) ⇒ (4). This more-or-less follows directly from standard hardness-to-pseudorandomness construc-
tions [Uma03]. More specifically, for all integers k and d and ε > 0, there is a language L ∈ NP without
ngkd/ε-size witnesses. Equivalently, there is a poly-time verifier V for L, such that there are infinitely many
x ∈ L such that for all y with V (x, y) = 1, it follows CC(y) ≥ |x|gkd/ε.

For such an x ∈ L with |x| = m, we can guess a y such that V (x, y) = 1 and apply Theorem 2.1
to construct a poly-time nondeterministic PRG with seed length O(logm), which works for input length
n ∈ [m1/ε,md/ε] and against nk-size circuits. Note that advice length is |x| = m ≤ nε.

(4)⇒ (2). First, under the assumption that NP ⊂ P/poly, we have the collapse AM/1 = MA/1 [AKSS95].
So it suffices to show that MA/1 ⊂ c-r.o.-NP/nε for all ε > 0 and integers d.

Let L ∈ MA/1. That is, for a constant k, there is an nk-time algorithm A(x, y, z, α) with one bit of
advice αn, such that

• x ∈ L⇒ there is a y of |x|k length such that Prz[A(x, y, z, αn) = 1] ≥ 2/3.
• x /∈ L⇒ for all y of |x|k length, Prz[A(x, y, z, αn) = 1] ≤ 1/3.
Fixing the x, y, αn, we can construct a circuit Cx,y,αn(z) := A(x, y, z, αn) of size n2k in n2k time.
Now, by (4), for all d, there is a poly-time NPRG G with seed length O(log n) and advice length nε

such that there are infinitely many m’s such that for all n ∈ [m,md], Gn fools n2k-size circuits.
Applying Gn to fool Cx,y,αn directly, we have a language L′ ∈ NP/nε such that there are infinitely

many m such that L′ agrees with L on all input lengths in [m,md]. This completes the proof since d can be
made arbitrarily large.

(5)⇒ (3). We prove the contrapositive. Suppose NP has nk-size witnesses for an integer k. By Lemma 4.3,
it follows that NP ⊆ MATIME[nO(k)] ⊆ AMTIME[nO(k)].

(1)⇒ (5). Again, we prove the contrapositive. We have NP ⊆ AMTIME[nO(k)] ⊂ NTIME[nO(k)]/nO(k) ⊂
SIZE[nO(k)]. The last step follows from the assumption that NP ⊆ P/poly (and therefore SAT ∈ SIZE[nc]
for a constant c).

9See the Preliminaries for a full definition of nondeterministic PRG and d-robustly often.

10

(6)⇒ (1). (NP ∩ coNP)/nε is not in SIZE[nk] for all k and ε > 0 implies NP/n is not in SIZE[nk] for
all k, which in turn implies NP is not in SIZE[nk] for all k by Lemma 4.2.

(4)⇒ (7). This follows similarly as the direction from (4) to (2).

(7)⇒ (6). This follows similarly as the direction from (2) to (1). Note that [AKSS95] also implies (MA∩
coMA)/1 = (AM ∩ coAM)/1 under the assumption NP ⊂ P/poly.

5 NP Circuit Lower Bounds Imply Better Karp-Lipton Collapses

Now we show a corollary of Theorem 1.2 that NP circuit lower bounds imply better Karp-Lipton collapses.

Reminder of Theorem 1.4. Let C ∈ {⊕P,PSPACE,PP,EXP}. Suppose NP 6⊂ SIZE[nk] for all k. Then
for all ε > 0, (C ⊂ P/poly =⇒ C ⊂ i.o.-NP/nε). In particular, polynomial-size circuits for any C-complete
language can be constructed in NP on infinitely many input lengths with nε advice.

Proof of Theorem 1.4. We first prove it for ⊕P. Suppose for all k, NP 6⊂ SIZE[nk] and ⊕P ⊂ P/poly.
First, note that BPP⊕P ⊂ P/poly, implying PH ⊂ P/poly by Toda’s theorem [Tod91]. Therefore, by

Theorem 1.2 together with our assumption, we have MA ⊂ c-r.o.-NP/nε for all ε > 0 and integers c. In
particular, MA ⊂ i.o.-NP/nε for all ε > 0. Now it suffices to show that ⊕P ⊂ P/poly =⇒ ⊕P ⊆ MA.

Let Π be the random self-reducible and downward self-reducible ⊕P-complete language in [IKV18].
By our assumption that ⊕P ⊂ P/poly, Π has a poly-size circuit family.

Then we can guess-and-verify these circuits in MA. We first existentially guess a circuit Ck for Π on
every input length k = 1, . . . , n. C1 can be verified in constant time, and each successive circuit can be
verified via random downward self-reducibility: given a circuit of length m that computes Πm exactly, a
circuit of length m + 1 can be checked on random inputs to verify (with high probability) its consistency
with Πm+1 (which is computable using the downward self-reducibility and the circuit for Πm). Then we can
apply the random self-reducibility to construct an exact circuit for Πm+1 from Cm+1 with high probability,
as we already know Cm+1 approximates Πm+1 very well. Therefore, with high probability, we can guess-
and-verify a circuit for Πn via a poly-time MA computation. This puts ⊕P ⊆ MA. Combining that with
MA ⊂ i.o.-NP/nε for all ε > 0, we can conclude that ⊕P ⊂ i.o.-NP/nε for all ε > 0.

To construct a circuit for Πn in i.o.-NP/nε , note that by Theorem 1.6, for all k, we have an i.o.-NPRG
fooling nk-size circuits. We can pick k to be a sufficiently large integer, and use the i.o.-NPRG to deran-
domize the above process. This turns out to be more subtle than one might expect.

Construction of poly-size circuits of Πn in i.o.-NP/nε . Let d be a sufficiently large constant. Since we
only aim for an i.o.-construction, we can assume that our i.o.-NPRG works for the parameter n, and fools
all nd-size circuits. Also, suppose we have SIZE(Πn) ≤ nc for all n and a constant c.

We say a circuit C γ-approximates a function f , if C(x) = f(x) for at least a γ fraction of the inputs.
Again, suppose we already constructed the circuits C1, C2, . . . , Ck for Π1,Π2, . . . ,Πk. This time we

cannot guarantee Ci exactly computes Πi. Instead, we relax the condition a bit and ensure that Ci (1−4/n)-
approximates Πi for all i ∈ [k]. Clearly, we can check C1 ≡ Π1 directly so this can be satisfied when k = 1.

We now show how to construct an approximate circuit for Πk+1. First, using the random self-reducibility
of Π and the circuitCk approximating Πk, there is an oracle circuitE of size poly(n), which takes two inputs
x with |x| = k and r with |r| = poly(n), such that for all x,

Pr
r

[
ECk(x, r) = Πk(x)

]
≥ 1− 1/2n.

11

Also, by the downward self-reducibility of Π, there is an oracle machine D of poly(k) size, such that
DΠk(z) = Πk+1(z) for all z.

Now, consider the following circuit G(x, r) for computing Πk+1: the circuit simulates DΠk , while
answering all queries w to Πk using ECk(w, r). For each input x ∈ {0, 1}k+1, let w1, w2, . . . , wpoly(n) be
all queries to Πk made by running D on the input x assuming all answers are correct, we can see that if
ECk(wj , r) = Πk(wj) for all these wj’s, then G(x, r) = Πk+1(x). Therefore, we have

Pr
r

[G(x, r) = Πk+1(x)] ≥ 1− poly(n)/2n,

for all x ∈ {0, 1}k+1.
Now, we guess a circuit Ck+1 of size (k + 1)c which is supposed to compute Πk+1. By an enumeration

of all possible seeds to our NPRG, we can estimate the probability

pgood := Pr
x∈{0,1}k+1

Pr
r

[G(x, r) = Ck+1(x)].

within 1/n in poly(n) time, as the expression [G(x, r) = Ck+1(x)] has a poly(n) size circuit with inputs
being x and r. Let our estimation be pest. We have |pgood − pest| ≤ 1/n.

Putting the above together, we have∣∣∣∣ Pr
x∈{0,1}k+1

[Πk+1(x) = Ck+1(x)]− pgood
∣∣∣∣ ≤ poly(n)/2n.

We reject immediately if our estimation pest < 1 − 2/n (note that if Ck+1 is the correct circuit, pgood
would be larger than 1−poly(n)/2n > 1− 1/n, and therefore pest > 1− 2/n). So after that, we can safely
assume that Ck+1 (1− 4/n)-approximates Πk+1.

Therefore, at the end we have an nc-size circuit Cn which (1 − 4/n)-approximates Πn, and we try to
recover an exact circuit for Πn from Cn by exploiting the random self-reducibility of Πn again. Note that
there is an oracle circuit E(x, r), which takes two inputs x with |x| = n and r with |r| = poly(n) such that
for all x,

Pr
r

[ECn(x, r) = Πn(x)] ≥ 2/3.

Now, we generate ` = nO(1) strings r1, r2, . . . , r` by enumerating all seeds to the NPRG. We construct
our final circuit C to be the majority of ECn(x, rj) for all j ∈ [`]. It is not hard to see that C computes Πn

exactly, as our inputs {rj}j∈[`] fool the expression
[
ECn(x, r) = Πn(x)

]
for all x ∈ {0, 1}n.

For the case of PP and PSPACE, one can implement the above procedure in the same way, using the
corresponding random self-reducible and downward self-reducible PP-complete and PSPACE-complete
languages (Permanent and the PSPACE-complete language in [TV07]).

For the case of EXP, note that EXP ⊂ P/poly =⇒ EXP = PSPACE, so we can proceed the same
way as for PSPACE (since EXP = PSPACE, PSPACE-complete languages are also EXP-complete).

6 Consequence of Weak Circuit Lower Bounds for Sparse Languages in NP

Now, we are ready to prove the consequences of weak circuit lower bounds for sparse NP languages. We
first need the following lemma.

Lemma 6.1 (Hardness Verification from Circuit Lower Bounds for Sparse NTIME[T (n)] Languages). Let
Sckt(n), Ssparse(n), T (n) : N → N be time constructible functions. Suppose there is an Ssparse(n)-sparse
language L ∈ NTIME[T (n)] without (n · Sckt(n))-size circuits. Then there is a procedure V such that:

12

• V takes a string z of length n · Ssparse(n) as input and an integer ` ≤ Ssparse(n) as advice.

• V runs in O(Ssparse(n) · T (n)) nondeterministic time.

• For infinitely many n, there is an integer `n ≤ Ssparse(n) such that V (z, `n) accepts exactly one string
z, and z has circuit complexity Ω(Sckt(n)/ logSsparse(n)).

Proof. Let L be the NTIME[T (n)] language in the assumption. Let N = n · Ssparse(n). We define a string
ListLn ∈ {0, 1}N as the concatenation of all x ∈ Ln in lexicographical order, together with additional zeros
at the end to make the string have length exactly N .

Now define a function fn on m = logdN + 1e bits, with truth-table ListLn102m−N .
We claim that SIZE(Ln) ≤ O(SIZE(fn) · n · log(Ssparse(n))). To determine whether x ∈ Ln, it would

suffice to perform a binary search on the list ListLn . We construct a circuit for Ln which performs binary
search using fn. First, we hard-wire the length of the list ` := |Ln| ≤ Ssparse(n) into our circuit for Ln so
that the binary search can begin with the correct range. A binary search on List(Ln) takes O(logSsparse(n))
comparisons, and each comparison requires O(n) calls to fn (to print the appropriate string). It is easy to
see that the circuit size required for the binary search is dominated by the total cost of the comparisons; this
proves the claim.

From the assumption, we know that for infinitely many n, Ln has no circuit of size n · Sckt(n). By
our upper bound on the circuit size of Ln, it follows that on the same set of n, the function fn has circuit
complexity at least Ω(Sckt(n)/ logSsparse(n)).

Now, we construct an algorithm V that only accepts the string fn = ListLn102m−N . We first need
the integer ` = |Ln| as the advice. Given a string Y of length N , we check that Y contains exactly `
distinct inputs in {0, 1}n in lexicographical order with the correct format, and we guess an O(T (n))-length
witness for each input to verify they are indeed all in L. It is easy to see that V runs in O(Ssparse(n) · T (n))
nondeterministic time, which completes the proof.

Remark 6.2. Note that the advice integer ` can be calculated directly with an NP oracle by doing a binary
search for `, which takes O(logSsparse(n)) NP-oracle calls. That is, one can also use a PNP[O(logSsparse(n))]

verifier without advice bits in the statement of Lemma 6.1.

Remark 6.3. As mentioned in the introduction, the above proof can be seen as a type of hardness conden-
sation for all sparse NTIME[T (n)] languages. The goal of hardness condensation [BS06, IJKW10] is that,
given a hard function f on n input bits with complexity S, we want to construct a function f̃ on `� n input
bits that still has complexity roughly S. The above proof shows any hard sparse language in NTIME[T (n)]
can be “condensed” into a function representing its sorted yes-instances.

Combing Lemma 6.1 with Theorem 2.1, we obtain a construction of an i.o.-NPRG.

Corollary 6.4 (NPRG from lower bounds against sparse NTIME[T (n)] languages). Under the circuit lower
bound assumption of Lemma 6.1, there is an i.o.-NPRG G with the properties:

• G has O(logSsparse(n) + log n) seed length.

• G takes O(logSsparse(n)) bits of advice.

• G runs in Ssparse(n) · T (n) + poly(n · Ssparse(n)) time.

• G fools circuits of size at most (Sckt(n)/ logSsparse(n))Ω(1).

Now we are ready to prove Theorem 1.6.

13

Reminder of Theorem 1.6. Suppose there is an ε > 0, a c ≥ 1, and an nc-sparse L ∈ NP without n1+ε-
size circuits. Then MA ⊂ i.o.-NP/O(logn), MA ⊆ i.o.-PNP[O(logn)], and NE 6⊂ SIZE[2δ·n] for some δ > 0

(which implies NP 6⊂ SIZE[nk] for all k).

Proof. First, by Corollary 6.4 and setting Sckt(n) = nε, Ssparse(n) = nc and T (n) = poly(n), there is an
i.o.-NPRG with seed length O(log n) which takes O(log n) bits of advice, runs in poly(n) time, and fools
circuits of size nΩ(ε) = nΩ(1). Note that we can simply scale it up to make it fool circuits of size nk for
any k, with only a constant factor blowup on seed length and advice bits and a polynomial blowup on the
running time.

Applying the i.o.-NPRG to arbitrary Merlin-Arthur computations, we conclude MA ⊂ i.o.-NP/O(logn).
Similarly, MA ⊆ i.o.-PNP[O(logn)] follows from Remark 6.2.

Now we show NE 6⊂ SIZE[2δ·n] for some δ > 0. By Lemma 6.1, there is a nondeterministic algorithm
running in poly(n) time, given αn = c log n bits of advice, guess and verify a string of length nc+1 which
has circuit complexity at least nε/2, for infinitely many n. We say these infinitely many n are good n.

Next, we define the following language L ∈ NE: Given an input of lengthm. It treats the first ` = m/4c
bits a binary encoded integer n ≤ 2`. Then it treats the next c log n input bits a as the advice, and tries
to guess-and-verify a string z which passes the verification procedure in Lemma 6.1 with advice a and
parameter n, and then it treats the next (c+ 1) · log n input bits as an integer i ∈ [nc+1], and accepts if and
only zi = 1.

First, it is easy to verify L ∈ NE, as the algorithm runs in poly(n) = 2O(`) = 2O(m) nondeterministic
time. For the circuit complexity of L, we know that for the good n, on inputs of length ofm = 4 ·c · dlog ne,
if we fix the first m/4c bits to represent the integer n, and next c log n bit to the actual advice αn, L would
compute the hard string of length nc+1 on the next (c+ 1) · log n bits. Therefore, SIZE(Lm) ≥ nε ≥ 2Ω(m)

for infinitely many m’s, which completes the proof.

Finally, we prove Theorem 1.7.

Reminder of Theorem 1.7. NEXP 6⊂ P/poly if and only if there is an ε > 0 such that for all sufficiently
small β > 0, there is a 2n

β
-sparse language L ∈ NTIME[2n

β
] without n1+ε-size circuits.

Proof. (⇒) This direction is easy to prove using standard methods. Suppose NEXP 6⊂ P/poly; this also
implies NE 6⊂ P/poly. Therefore, there is a language L ∈ NTIME[2n] that does not have n2/β-size circuits.

Define a padded language L′ = {x10|x|
1/β−1|x ∈ L}. It is easy to see that L′ ∈ NTIME[2m

β
], by running

the NE algorithm for L on its first n = O(mβ) input bits. From the circuit lower bound on L, it follows that
L′ does not have n2/β = m2-size circuits.

(⇐) First, by Impagliazzo-Kabanets-Wigderson [IKW02], if for every ε and integer k, there is an
i.o.-NPRG with seed length nε, nε advice bits, and 2n

ε
running time that fools nk-size circuits, then

NEXP 6⊂ P/poly.
Setting Sckt(n) = nε, Ssparse(n) = 2n

β
and T (n) = 2n

β
in Corollary 6.4, there is an i.o.-NPRG with

seed length O(nβ), takes O(nβ) bits of advice, and runs in 2O(nβ) time that fools circuits of size nΩ(ε/β) =
nε
′

for ε′ > 0. By setting m = nε
′/k, we obtain an i.o.-NPRG with seed/advice length O(mβ·k/ε′) and

running time 2O(mβ·k/ε
′
), which fools circuits of size mk. Therefore, by [IKW02], it follows that NEXP 6⊂

P/poly.

7 Open Problems

We conclude with three interesting open questions stemming from this work.

14

1. Are fixed-polynomial circuit lower bounds for NP equivalent to a Karp-Lipton collapse of PH to NP?

Formally, is NP 6⊂ SIZE[nk] for all k equivalent to (NP ⊂ P/poly =⇒ PH ⊂ i.o.-NP/n)? Recall we
showed that similar Karp-Lipton-style collapses do occur, assuming NP circuit lower bounds (e.g.,
(PSPACE ⊂ P/poly =⇒ PSPACE ⊂ i.o.-NP/n)), and we showed that NP 6⊂ SIZE[nk] implies a
type of collapse of AM into NP.

2. It is also a prominent open problem to prove that ZPPNP
tt 6⊂ SIZE[nk] for some constant k [DPV18]

(that is, prove lower bounds for ZPP with nonadaptive queries to an NP oracle). Is this lower bound
equivalent to a Karp-Lipton collapse of PH?

The difficulty is that, assuming ZPPNP
tt 6⊂ SIZE[nk], it appears that we may obtain a good simulation

of BPPNP
tt , but we presently have no Karp-Lipton Theorem collapsing PH to BPPNP

tt (indeed, lower
bounds for this class are also open). Furthermore, [DPV18] observe that NP ⊂ P/poly does imply
the (small) collapse BPPNP

tt = ZPPNP
tt ; it is unclear how a circuit lower bound against ZPPNP

tt would
aid a further collapse.

3. In light of our Theorem 1.7, is it possible to show interesting hardness magnification results for non-
sparse versions of MCSP (say, MCSP[2m/m2])?

Currently, we only know hardness magnification results when the circuit size parameter is 2o(m) [OS18,
OPS19, MMW19].

References

[Aar06] Scott Aaronson. Oracles are subtle but not malicious. In 21st Annual IEEE Conference on
Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech Republic, pages 340–
354, 2006.

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge
University Press, 2009.

[AK10] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility. J.
ACM, 57(3):14:1–14:36, 2010.

[AKSS95] Vikraman Arvind, Johannes Köbler, Uwe Schöning, and Rainer Schuler. If NP has polynomial-
size circuits, then ma=am. Theor. Comput. Sci., 137(2):279–282, 1995.

[BCG+96] Nader H. Bshouty, Richard Cleve, Ricard Gavaldà, Sampath Kannan, and Christino Tamon.
Oracles and queries that are sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–433,
1996.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computations
in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 21–31, 1991.

[BH92] Harry Buhrman and Steven Homer. Superpolynomial circuits, almost sparse oracles and the ex-
ponential hierarchy. In Foundations of Software Technology and Theoretical Computer Science,
12th Conference, New Delhi, India, December 18-20, 1992, Proceedings, pages 116–127, 1992.

[BS06] Joshua Buresh-Oppenheim and Rahul Santhanam. Making hard problems harder. In 21st Annual
IEEE Conference on Computational Complexity (CCC 2006), 16-20 July 2006, Prague, Czech
Republic, pages 73–87, 2006.

15

[Cai07] Jin-yi Cai. Sp
2 is subset of ZPPnp. J. Comput. Syst. Sci., 73(1):25–35, 2007.

[CCHO05] Jin-yi Cai, Venkatesan T. Chakaravarthy, Lane A. Hemaspaandra, and Mitsunori Ogihara. Com-
peting provers yield improved karp-lipton collapse results. Inf. Comput., 198(1):1–23, 2005.

[Che19] Lijie Chen. Non-deterministic quasi-polynomial time is average-case hard for ACC circuits.
Electronic Colloquium on Computational Complexity (ECCC), 26:31, 2019.

[CR06] Venkatesan T Chakaravarthy and Sambuddha Roy. Oblivious symmetric alternation. In Annual
Symposium on Theoretical Aspects of Computer Science, pages 230–241. Springer, 2006.

[CR11] Venkatesan T. Chakaravarthy and Sambuddha Roy. Arthur and merlin as oracles. Computational
Complexity, 20(3):505–558, 2011.

[CT19] Lijie Chen and Roei Tell. Bootstrapping results for threshold circuits ”just beyond” known
lower bounds. 2019. To appear in STOC.

[CW04] Jin-yi Cai and Osamu Watanabe. On proving circuit lower bounds against the polynomial-time
hierarchy. SIAM J. Comput., 33(4):984–1009, 2004.

[DPV18] Peter Dixon, Aduri Pavan, and N. V. Vinodchandran. On pseudodeterministic approximation al-
gorithms. In 43rd International Symposium on Mathematical Foundations of Computer Science,
MFCS 2018, August 27-31, 2018, Liverpool, UK, pages 61:1–61:11, 2018.

[FS17] Lance Fortnow and Rahul Santhanam. Robust simulations and significant separations. Inf.
Comput., 256:149–159, 2017.

[FSW09] Lance Fortnow, Rahul Santhanam, and Ryan Williams. Fixed-polynomial size circuit bounds.
In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009,
Paris, France, 15-18 July 2009, pages 19–26, 2009.

[Gol08] Oded Goldreich. Computational complexity - a conceptual perspective. Cambridge University
Press, 2008.

[HIS85] Juris Hartmanis, Neil Immerman, and Vivian Sewelson. Sparse sets in NP-P: EXPTIME versus
NEXPTIME. Information and Control, 65(2/3):158–181, 1985.

[IJKW10] Russell Impagliazzo, Ragesh Jaiswal, Valentine Kabanets, and Avi Wigderson. Uniform direct
product theorems: Simplified, optimized, and derandomized. SIAM J. Comput., 39(4):1637–
1665, 2010.

[IKV18] Russell Impagliazzo, Valentine Kabanets, and Ilya Volkovich. The power of natural properties
as oracles. In 33rd Computational Complexity Conference, CCC 2018, June 22-24, 2018, San
Diego, CA, USA, pages 7:1–7:20, 2018.

[IKW02] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.

[Imp18] Russell Impagliazzo. Personal Communication, 2018.

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1-3):40–56, 1982.

16

[KL82] Richard Karp and Richard Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28(2):191–209, 1982.

[KW98] Johannes Köbler and Osamu Watanabe. New collapse consequences of NP having small circuits.
SIAM J. Comput., 28(1):311–324, 1998.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Algebraic methods for
interactive proof systems. J. ACM, 39(4):859–868, 1992.

[MMW19] Dylan McKay, Cody Murray, and Ryan Williams. Weak lower bounds on resource-bounded
compression imply strong separations of complexity classes. 2019. To appear in STOC 2019.

[MW18] Cody Murray and R. Ryan Williams. Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for NP and NQP. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 890–901, 2018.

[OPS19] Igor Carboni Oliveira, Ján Pich, and Rahul Santhanam. Hardness magnification near state-of-
the-art lower bounds. 2019. To appear in CCC 2019.

[OS18] Igor Carboni Oliveira and Rahul Santhanam. Hardness magnification for natural problems. In
59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France,
October 7-9, 2018, pages 65–76, 2018.

[San09] Rahul Santhanam. Circuit lower bounds for Merlin–Arthur classes. SIAM J. Comput.,
39(3):1038–1061, 2009.

[Tod91] Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991.

[TV07] Luca Trevisan and Salil P. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. Computational Complexity, 16(4):331–364, 2007.

[Uma03] Christopher Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci.,
67(2):419–440, 2003.

[Vin05] N. V. Vinodchandran. A note on the circuit complexity of PP. Theor. Comput. Sci., 347(1-
2):415–418, 2005.

[Yap83] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes. Theor.
Comput. Sci., 26:287–300, 1983.

A Almost Almost-everywhere (MA ∩ coMA)/1 Circuit Lower Bounds

Here we provide a proof for Lemma 4.1 for completeness. The proof is based on a similar lemma from [Che19].

A.1 Preliminaries

A crucial ingredient of the proof is a PSPACE-complete language [TV07] satisfying strong reducibility
properties, which is also used in the fixed-polynomial lower bounds for MA/1 and promiseMA [San09],
and the recent new witness lemmas for NQP and NP [MW18].

We first define these reducibility properties.

17

Definition A.1. Let L : {0, 1}∗ → {0, 1} be a language, we define the following properties:

• L is downward self-reducible if there is a constant c such that for all sufficiently large n, there is an
nc size uniform oracle circuit A such that for all x ∈ {0, 1}n, ALn−1(x) = Ln(x).

• L is paddable, if there is a polynomial time computable projection Pad (that is, each output bit is
either a constant or only depends on 1 input bit), such that for all integers 1 ≤ n < m and x ∈ {0, 1}n,
we have x ∈ L if and only if Pad(x, 1m) ∈ L, where Pad(x, 1m) always has length m.

• L is same-length checkable if there is a probabilistic polynomial-time oracle Turing machine M with
output in {0, 1, ?}, such that, for any input x,

– M asks its oracle queries only of length |x|.
– If M is given L as an oracle, then M outputs L(x) with probability 1.
– M outputs 1− L(x) with probability at most 1/3 no matter which oracle is given to it.

We call M an instance checker for L.

Remark A.2. Note that the paddable property implies that SIZE(Ln) is non-decreasing.

The following PSPACE-complete language is given by [San09] (modifying a construction of Trevisan
and Vadhan [TV07]).

Theorem A.3 ([San09, TV07]). There is a PSPACE-complete languageLPSPACE which is paddable, down-
ward self-reducible, and same-length checkable.

We also need the following folklore theorem which is proved by a direct diagonalization against all
small circuits.

Theorem A.4. Let n ≤ s(n) ≤ 2o(n) be space-constructible. There is a universal constant c and a language
L ∈ SPACE[s(n)c] that SIZE(Ln) > s(n) for all sufficiently large n.

A.2 Definitions

We need the following convenient definition of an MA∩coMA algorithm, which simplifies the presentation.

Definition A.5. A language L is in MA ∩ coMA, if there is a deterministic algorithm A(x, y, z) (which is
called the predicate) such that:

• A takes three inputs x, y, z such that |x| = n, |y| = |z| = poly(n) (y is the witness while z is the
collection of random bits), runs in O(T (n)) time, and outputs an element from {0, 1, ?}.

• (Completeness) There exists a y such that

Pr
z

[A(x, y, z) = L(x)] ≥ 2/3.

• (Soundness) For all y,
Pr
z

[A(x, y, z) = 1− L(x)] ≤ 1/3.

Remark A.6. (MA ∩ coMA) languages with advice are defined similarly, with A being an algorithm with
the corresponding advice.

Note that by above definition, the semantic of (MA ∩ coMA)/1 is different from MA/1 ∩ coMA/1. A
language in (MA ∩ coMA)/1 has both an MA/1 algorithm and a coMA/1 algorithm, and their advice bits
are the same. While a language in MA/1 ∩ coMA/1 can have an MA/1 algorithm and a coMA/1 algorithm
with different advice sequences.

18

A.3 Proof for Lemma 4.1

Now we are ready to prove Lemma 4.1 (restated below).

Reminder of Lemma 4.1. For all constants k, there is an integer c, and a language L ∈ (MA ∩ coMA)/1,
such that for all sufficiently large τ ∈ N and n = 2τ , either

• SIZE(Ln) > nk, or

• SIZE(Lm) > mk, for an m ∈ (nc, 2 · nc) ∩ N.

Proof. Let LPSPACE be the language specified by Theorem A.3. By Theorem A.4, there is an integer c1 and
a language Ldiag in SPACE(nc1), such that SIZE(Ldiag

n) ≥ nk for all sufficiently large n. By the fact that
LPSPACE is PSPACE-complete, there is a constant c2 such that Ldiag

n can be reduced to LPSPACE on input
length nc2 in nc2 time. We set c = c2.

The Algorithm. Let τ ∈ N be sufficiently large. We also let b to be a constant to be specified later. Given
an input x of length n = 2τ and let m = nc, we first provide an informal description of the (MA∩ coMA)/1
algorithm which computes the language L. There are two cases:

1. When SIZE(LPSPACE
m) ≤ nb. That is, when LPSPACE

m is easy. In this case, on inputs of length n, we
guess-and-verify a circuit for LPSPACE

m of size nb and use that to compute Ldiag
n .

2. Otherwise, we know LPSPACE
m is hard. Let ` be the largest integer such that SIZE(LPSPACE

`) ≤ nb.
On inputs of length m1 = m + `, we guess-and-verify a circuit for LPSPACE

` and compute it (that is,
compute LPSPACE

` on the first ` input bits while ignoring the rest).

Intuitively, the above algorithm computes a hard function because either it computes the hard language
Ldiag
n on inputs of length n, or it computes the hard language LPSPACE

` on inputs of length m1. A formal
description of the algorithm is given in Algorithm 1, while an algorithm for setting the advice sequence is
given in Algorithm 2. It is not hard to see that a yn can only be set once in Algorithm 2.

The Algorithm Satisfies the MA∩coMA Promise. We first show the algorithm satisfies the MA∩coMA
promise (Definition A.5). The intuition is that it only tries to guess-and-verify a circuit for LPSPACE when
it exists, and the properties of the instance checker (Definition A.1) ensure that in this case the algorithm
satisfies the MA ∩ coMA promise. Let y = yn, there are three cases:

1. y = 0. In this case, the algorithm computes the all zero function, and clearly satisfies the MA∩coMA
promise.

2. y = 1 and n is a power of 2. In this case, from Algorithm 2, we know that SIZE(LPSPACE
m) ≤ nb

for m = nc. Therefore, at least one guess of the circuit is the correct circuit for LPSPACE
m , and on that

guess, the algorithm outputs Ldiag
n (x) = LPSPACE

m (z) with probability at least 2/3, by the property of
the instance checker (Definition A.1).

Again by the property of the instance checker, on all possible guesses, the algorithm outputs 1 −
Ldiag
n (x) = 1 − LPSPACE

m (z) with probability at most 1/3. Hence, the algorithm correctly computes
Ldiag
n on inputs of length n, with respect to Definition A.5.

3. y = 1 and n is not a power of 2. In this case, from Algorithm 2, we know that SIZE(LPSPACE
`) ≤ nb0.

Therefore, at least one guess of the circuit is the correct circuit for LPSPACE
` , and on that guess, the

algorithm outputs LPSPACE
` (z) (z = z(x) is the first ` bits of x) with probability at least 2/3, by the

property of the instance checker (Definition A.1).

19

Algorithm 1: The MA ∩ coMA algorithm

1 Given an input x with input length n = |x|;
2 Given an advice bit y = yn ∈ {0, 1};
3 Let m = nc;
4 Let n0 = n0(n) be the largest integer such that nc0 ≤ n;
5 Let m0 = nc0;
6 Let ` = n−m0;
7 if y = 0 then
8 Output 0 and terminate

9 if n is a power of 2 then
10 (We are in the case that SIZE(LPSPACE

m) ≤ nb.);
11 Compute z in nc time such that Ldiag

n (x) = LPSPACE
m (z);

12 Guess a circuit C of size at most nb;
13 Let M be the instance checker for LPSPACE

m ;
14 Flip an appropriate number of random coins, let them be r;
15 Output MC(z, r);
16 else
17 (We are in the case that SIZE(LPSPACE

m0
) > nb0 and ` is the largest integer such that

SIZE(LPSPACE
`) ≤ nb0.);

18 Let z be the first ` bits of x;
19 Guess a circuit C of size at most nb0;
20 Let M be the instance checker for LPSPACE

` ;
21 Flip an appropriate number of random coins, let them be r;
22 Output MC(z, r);

Algorithm 2: The algorithm for setting advice bits

1 All yn’s are set to 0 by default;
2 for τ = 1→∞ do
3 Let n = 2τ ;
4 Let m = nc;
5 if SIZE(LPSPACE

m) ≤ nb then
6 Set yn = 1;
7 else
8 Let ` = max{` : SIZE(LPSPACE

`) ≤ nb};
9 Set ym+` = 1;

20

Again by the property of the instance checker, on all possible guesses, the algorithm outputs 1 −
LPSPACE
` (z) with probability at most 1/3. Hence, the algorithm correctly computes LPSPACE

` (z(x))
on inputs of length n, with respect to Definition A.5.

The Algorithm Computes a Hard Language. Next we show that the algorithm indeed computes a hard
language as stated. Let τ be a sufficiently large integer, n = 2τ , and m = nc. According to Algorithm 2,
there are two cases:

• SIZE(LPSPACE
m) ≤ nb. In this case, Algorithm 2 sets yn = 1. And by previous analyses, we know

that Ln computes the hard language Ldiag
n , and therefore SIZE(Ln) > nk.

• SIZE(LPSPACE
m) > nb. Let ` be the largest integer such that SIZE(LPSPACE

`) ≤ nb. By Remark A.2,
we have 0 < ` < m.

Note that SIZE(LPSPACE
`+1) ≤ (`+ 1)d · SIZE(LPSPACE

`) for a universal constant d, because LPSPACE

is downward self-reducible. Therefore,

SIZE(LPSPACE
`) ≥ SIZE(LPSPACE

`+1)/(`+ 1)d ≥ nb/md ≥ nb−c·d.

Now, on inputs of length m1 = m+ `, we have ym1 = 1 by Algorithm 2 (note that m1 ∈ (m, 2m) as
` ∈ (0,m)). Therefore, Lm1 computes LPSPACE

` , and

SIZE(Lm1) = SIZE(LPSPACE
`) ≥ nb−c·d.

We set b such that nb−cḋ ≥ (2m)k ≥ mk
1 (we can set b = cd+ 3 · ck), which completes the proof.

21
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

