
The Equivalences of Refutational QRAT

Leroy Chew and Judith Clymo

School of Computing, University of Leeds, UK

Abstract. The solving of Quantified Boolean Formulas (QBF) has been
advanced considerably in the last two decades. In response to this, several
proof systems have been put forward to universally verify QBF solvers.
QRAT by Heule et al. is one such example of this and builds on technol-
ogy from DRAT, a checking format used in propositional logic. Recent
advances have shown conditional optimality results for QBF systems
that use extension variables. Since QRAT can simulate Extended Q-
Resolution, we know it is strong, but we do not know if QRAT has the
strategy extraction property as Extended Q-Resolution does. In this pa-
per, we partially answer this question by showing that QRAT with a
restricted reduction rule has strategy extraction (and consequentially is
equivalent to Extended Q-Resolution modulo NP). We also extend equiv-
alence to another system, as we show an augmented version of QRAT
known as QRAT+, developed by Lonsing and Egly, is in fact equivalent
to the basic QRAT. We achieve this by constructing a line-wise simula-
tion of QRAT+ using only steps valid in QRAT.

Keywords: QBF · QRAT · Proof Complexity · Herbrand functions ·
Certificate

1 Introduction

Quantified Boolean Formulas (QBFs) extend propositional logic with Boolean
quantifiers. The languages of true and, symmetrically, of false QBFs are PSPACE-
complete, meaning they can capture any problem within the class PSPACE, and
that they may allow for more succinct problem representations than proposi-
tional logic.

Modern algorithms for solving propositional satisfiability (SAT) problems
and deciding the truth of QBFs are able to solve large industrial problems,
and may also provide verification by outputting a proof. It is desirable that this
“certificate” should be in a standard format, which can be achieved by designing
a proof system that is powerful enough to simulate all of the proof systems used
in various solving algorithms. A proof can then be easily converted from a solver
output into the universal format.

In propositional logic, there is a successful proof checking format known as
DRAT [15] that has since been used as a basis for a QBF proof checking format
known as QRAT [7]. A further extension of QRAT, QRAT+ [13] has also recently
been developed.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 76 (2019)

2 L. Chew, J. Clymo

These proof systems are designed to capture practical QBF solving and in-
volve some complex sub-procedures between the lines. In contrast, proof systems
developed for theory tend to be based on simple ideas. Some theoretical results
about QRAT and QRAT+ are known: firstly, they were shown to simulate known
QBF techniques such as pre-processing [7] and long distance resolution [9] in
QBFs; secondly, Skolem functions that certify true QBFs are known to be ex-
tractable from QRAT [6] and QRAT+ [13]. However Herbrand functions that
certify false QBFs have not been shown to have efficient extraction.

One possible way to get a better handle on these systems from a theoretical
point of view is to show that they are equivalent to some simpler system. For
propositional logic, DRAT was recently shown to be equivalent to Extended
Resolution [10] so there is some hope that QRAT is equivalent to some QBF
analogue of Extended Resolution.

In Section 4 we demonstrate such an equivalence partially. If we simplify one
of the rules in QRAT in a natural way we get that Herbrand functions can be
extracted efficiently. Using a relaxed framework of simulation by Beyersdorff et
al. [2] we can say that Extended Q-Resolution (a QBF analogue of extended
resolution [8]) simulates, and thus is equivalent in this model to, this restricted
version of QRAT.

We also prove an unconditional equivalence between QRAT and QRAT+ for
false QBFs which we show in Section 5.

2 Preliminaries

2.1 Proof Complexity.

Formally, a proof system [4] for a language L over alphabet Γ is a polynomial-
time computable partial function f : Γ? ⇁ Γ? with rng(f) = L, where rng
denotes the range. A proof system maps proofs to theorems. A refutation system
is a proof system where the language L is of contradictions.

The partial function f actually gives a proof checking function. Soundness is
given by rng(f) ⊆ L and completeness is given by rng(f) ⊇ L. The polynomial-
time computability is an indication of feasibility, relying on the complexity notion
that an algorithm that runs in polynomial-time is considered feasible.

Proof size is given by the number of characters appearing in a proof. A proof
system f is polynomially bounded if there is a polynomial p such that every
theorem of size n has a proof in f of size at most p(n).

Proof systems are compared by simulations. We say that a proof system f
simulates a proof system g (g ≤ f) if there exists a polynomial p such that for
every g-proof πg there is an f -proof πf with f(πf) = g(πg) and |πf | ≤ p(|πg|).
If in addition πf can be constructed from πg in polynomial-time, then we say
that f p-simulates g (g ≤p f). Two proof systems f and g are (p-)equivalent
(g ≡(p) f) if they mutually (p-)simulate each other.

In propositional logic a literal is a variable (x) or its negation (¬x), a clause
is a disjunction of literals and a formula in conjunctive normal form (CNF) is

The Equivalences of Refutational QRAT 3

a conjunction of clauses. For a literal l, if l = x then l̄ = ¬x, and if l = ¬x
then l̄ = x. An assignment τ for formula A over n variables is a partial function
from the variables of A to {0, 1}n. For clause C, τ(C) is the result of evaluating
C under assignment τ . For formula (or circuit) A, we define A[b/x] so that all
instances of variable x in A are replaced with b ∈ {0, 1}.

Several kinds of inferences can be made on formulas in conjunctive normal
form. Unit propagation simplifies a formula Φ in conjunctive normal form by
building a partial assignment and applying it to Φ. It builds the assignment by
satisfying any literal that appears in a singleton (unit) clause. Doing so may
negate opposite literals in other clauses and result in them effectively being
removed from that clause. In this way, unit propagation can create more unit
clauses and can keep on propagating until no more unit clauses are left.

Algorithm 1 Formal definition of unit propagation on CNF φ.

Unit(φ)
for each clause C ∈ φ do

if literal 1 occurs in C then
delete C from φ

end if
delete every literal 0 in C

end for
if there is an empty clause in φ then

return ⊥
else if there is a clause C ∈ φ with exactly one literal c then

return Unit(φ[1/c])
else

return φ
end if

The advantage of unit propagation is that it reaches fix-point in time that is
polynomial in the number of clauses, however unit propagation is not a complete
procedure and so is not a refutational proof system for propositional logic.

An example of a proof system, and also in fact a refutation system, is Reso-
lution (Res). It works on formulas in CNF. Two clauses (C ∨ x) and (D ∨ ¬x)
can be merged removing the pivot variable x to get (C ∨D). An enhanced ver-
sion of Resolution known as Extended Resolution allows new variables known
as extension variables to be introduced. Extension variables represent functions
of existing variables, these variables are introduced alongside clauses, known as
extension clauses, that define this function. In Figure 1 we define these systems
in the more general logic of QBF (to understand Figure 1 in the context of SAT
treat all quantifiers as existential).

4 L. Chew, J. Clymo

2.2 Quantified Boolean Formulas

Quantified Boolean Formulas (QBF) extend propositional logic with quantifiers
∀,∃ that work on propositional atoms [11]. The standard QBF semantics is that
∀xΨ is satisfied by the same truth assignments as Ψ [0/x] ∧ Ψ [1/x] and ∃xΨ is
satisfied by the same truth assignments as Ψ [0/x] ∨ Ψ [1/x].

A prenex QBF is a QBF where all quantification is done outside of the
propositional connectives. A prenex QBF Ψ therefore consists of a propositional
part Φ called the matrix and a prefix of quantifiers Π and can be written as Ψ =
ΠΦ. Starting from left to right we give each bound variable x a numerical level,
denoted lv(x), starting from 1 and increasing by one each time the quantifier
changes (it stays the same whenever the quantifier is not changed). For literal
l, var(l) = x if l = x or l = ¬x and lv(l) = lv(x). We write lv(x) <Π lv(y) to
indicate that x appears in an earlier quantifier level than y in Π (though the
subscript can be omitted if the context is clear). When the propositional matrix
of a prenex QBF is in conjunctive normal form then we have a PCNF. A QBF
of arbitrary structure can be transformed in polynomial time in to a PCNF. If
no variables appear in the QBF without quantification then the QBF is closed.

It is natural to understand a PCNF as a set of clauses, and a clause as a set
of literals. As such we will use notation C ∈ Φ to indicate that QBF Ψ = ΠΦ
has the clause C in its matrix. Similarly l ∈ C indicates that clause C contains
literal l.

Set notation is also used to define sub-clauses and sub-formulas, for example
we can define the sub-clause of C containing only literals bound at level i or
earlier by {l ∈ C | lv(l) ≤ i}.

A closed prenex QBF may be thought of as a game between two players. One
player is responsible for assigning values to the existentially quantified variables,
and the other responsible for the universally quantified variables. The existential
player wins the game if the formula evaluates to true once all assignments have
been made, the universal player wins if the formula evaluates to false. The players
take turns to make assignments according to the quantifier prefix, so the levels of
the prefix correspond to turns in the game. A strategy for the universal player on
QBF ΠΦ is a method for choosing assignments for each universal u that depends
only on variables earlier than u in Π. If this strategy ensures the universal player
always wins games on ΠΦ (however the existential player makes assignments),
then we say the universal player has a winning strategy. A QBF is false if and
only if the universal player has a winning strategy. Strategies for the existential
player are defined analogously and the QBF is true if and only if the existential
player has a winning strategy.

For a universal variable u in QBF ΠΦ, a function σu that acts on assignments
to the existential variables prior to u in Π and has Boolean output, is called a
Herbrand function. The collection of σu for all universal variables u is a strategy
for ΠΦ and is denoted σ. Given τ∃, an assignment to the existentially quantified
variables prior to u, and Herbrand function σu, we can extend this assignment
to u by evaluating σu(τ∃). We say this is an extension of the partial assignment
τ∃ that is consistent with σu.

The Equivalences of Refutational QRAT 5

A proof system is said to admit strategy extraction if and only if it is possible
to efficiently (i.e. in polynomial time in the size of the proof) construct a circuit
representing a winning strategy for the universal player from a refutation of a
QBF.

An example of a QBF proof system which admits strategy extraction is the
refutation system Q-Resolution (Q-Res) by Kleine-Büning et al. [12]. It combines
the Resolution rule with a QBF rule known as universal reduction (∀red). Uni-
versal reduction allows you to locally set the value of a universal literal within a
clause, but only under the condition that no other literal in that clause appears
to the right of it in the prefix. In a clause, only one choice of value does not
satisfy the clause. By assumption universal reduction set the value so that it
does not satisfy the clause.

Like Resolution, Q-Resolution can be augmented with extension variables to
get Extended Q-Resolution. In Figure 1 we detail each proof system based on
which rules we have. Note that for propositional proof systems Resolution and
Extended Resolution that we assume the prefix is purely existential as this is
equivalent to the propositional setting.

(Ax)
C

(Ext)
(¬x ∨ ¬y ∨ ¬v), (x ∨ v), (y ∨ v)

Ax : C is a clause in the propositional matrix.
Ext : x, y are variables already in the formula, v is a fresh variable, v is inserted
into prefix as existentially quantified, after x and y in the prefix.

C ∨ x D ∨ ¬x (Res)
C ∨D

C ∨ l (∀red)
C

Res: variable x is existential.
∀red : literal l has variable u, which is universal, and all other existential variables
x ∈ C are left of u in the quantifier prefix. Literal l̄ does not appear in C.

Fig. 1. Rules of our resolution systems in the language of QBF, Resolution is
given by (Ax)+(Res), Extended Resolution is given by (Ax)+(Ext)+(Res), Q-
Resolution is given by (Ax)+(Res)+(∀red) and Extended Q-Resolution is given by
(Ax)+(Ext)+(Res)+(∀red) [12].

This propositional case is important for QBFs. Any logical propositional
implication is also valid in QBF (provided it is model preserving) and we can
use this to make important steps in QBF inference. For a QBF ΠΦ, a full
abstraction Abs(Π) returns an identical prefix with all variables of Π, except
that every variable is quantified existentially. We will use a more general version
of abstraction in Section 5.

Definition 1 (NP Oracle derivations [2]). For QBF refutational system g,
a gNP proof of a QBF Ψ is a derivation of the empty clause by any of the g rules
or an NP-derivation rule:

6 L. Chew, J. Clymo

C1, . . . , Cl
(NP-derivation)

D

For any l, where Abs(Π)
∧l
i=1 Ci � Abs(Π)(

∧l
i=1 Ci) ∧D. C1, . . . , Cl and D

must be permitted in the system g.

An NP-derivation rule can infer ΠD from Π
∧l
i=1 Ci whenever

∧l
i=1 Ci � D.

When we add D we do not change the prefix Π. Hence gNP augments QBF proof
system g with all propositional inferences.

Notice that gNP is not a proof system unless we can check the NP-derivation
in polynomial-time. This cannot be done unless P = NP.

Definition 2. Let P,Q be QBF proof systems, then we write f ≡NP g whenever
fNP and gNP mutually p-simulate each other.

In [3] Extended Q-Res with an NP derivation rule (Extended Q-ResNP) was
investigated. In the NP-derivation rule the input arguments C1, . . . , Cl and the
output argument D are all clauses as Extended Q-Res works on clauses. D is
added to the CNF. QRATNP is defined in the same way, adding clauses logically
implied by existing clauses.

We can combine our understanding of NP-oracle derivations and strategy
extraction to show a weak optimality result for Extended Q-Res.

Theorem 1 (Chew 18 [3]). If a refutational QBF proof system has strategy
extraction it can be simulated by Extended Q-ResNP.

As we can see, Extended Q-Res is very strong and so it simulates most of the
known QBF proof systems. It is therefore important to understand its relation
to other strong systems such as the systems QRAT and QRAT+ which we will
study in this paper.

3 QRAT

QRAT was introduced as a universal proof checking format for QBF. It simulates
many QBF preprocessing techniques and proof systems. QRAT is based on the
propositional DRAT format which is an advancement of blocked clause addition.
Blocked literals generalise extension variables and so DRAT simulates extended
resolution, likewise QRAT p-simulates Extended Q-Res.

QRAT works by having a PCNF QBF ΠΦ that is edited throughout the
proof by a number of satisfiability preserving rules. In contrast to line-based
systems like Extended Resolution, QRAT does not just accumulate lines based
on other lines. New conjuncts can be added and clauses can be altered or even
deleted and rules are usually based globally around the current status of ΠΦ.

In [7] six rules were listed for QRAT. These were named ATA, ATE, QRATA,
QRATE, QRATU and EUR. However QRAT has two modes that make it a proof
system: refutation and satisfaction. In this work we focus only on refutation,
which uses only ATA, QRATA, QRATU, EUR, and a general deletion rule. We

The Equivalences of Refutational QRAT 7

will state each of these rules. Their correctness is proved in [7], but the strategy
extraction arguments we make in Section 4 double as arguments for correctness.

If C is a clause, then C̄ is the conjunction of the negation of the literals in
C. We denote that the clause D can be derived by unit propagation applied
to ΠΦ by ΠΦ `1 D. Unit propagation is used because it is a polynomial-time
procedure.

Definition 3 (Asymmetric Tautology Addition (ATA)). Let ΠΦ be a
closed PCNF with prefix Π and CNF matrix Φ. Let C be a clause not in Φ.
Let Π ′ be a prefix including the variables of C and Φ, Π is a sub-prefix of Π ′

containing the variables of Φ only.

Suppose Π ′Φ ∧ C̄ `1 ⊥. Then we can make the following inference

ΠΦ (ATA)
Π ′Φ ∧ C

Notice that in the way that we define QRAT, Π ′Φ ∧ C replaces ΠΦ.

Definition 4 (Outer Clause, Outer Resolvent). Let ΠΦ be a PCNF with
closed prefix Π and CNF matrix Φ. Let C be a clause not in Φ. Let Π ′ be a
prefix including the variables of C and Φ, Π is a sub-prefix of Π ′ containing the
variables of Φ only.

Suppose C contains a literal l. Consider all clauses D in Φ with l̄ ∈ D. The
outer clause OD of D is {k ∈ D | lv(k) ≤Π lv(l), k 6= l̄}. The outer resolvent
R(C,D,Π, l) is defined as C ∨OD.1

Definition 5 (Quantified Resolution Asymmetric Tautology Addition
(QRATA)). Let ΠΦ be a PCNF with closed prefix Π and CNF matrix Φ. Let
C be a clause not in Φ. Let Π ′ be a prefix including the variables of C and Φ,
Π is a sub-prefix of Π ′ containing the variables of Φ only.

If C contains an existential literal l such that for every D ∈ Φ with l̄ ∈ D,
ΠΦ∧ C̄∧ ŌD `1 ⊥ (or equivalently ΠΦ∧R̄(C,D,Π, l) `1 ⊥) then we can derive

ΠΦ (QRATA w.r.t. l)
Π ′Φ ∧ C

Definition 6 (Quantified Resolution Asymmetric Tautology Universal
(QRATU)). Let ΠΦ be a PCNF with closed prefix Π and CNF matrix Φ. Let
C ∨ l be a clause with universal literal l.

If for every D ∈ Φ with l̄ ∈ D, ΠΦ ∧ C̄ ∧ ŌD `1 ⊥ then we can derive

ΠΦ ∧ (C ∨ l)
(QRATU w.r.t. l)

ΠΦ ∧ C
1 Other authors have made two separate definitions of outer resolvents based on exis-

tential or universal l. In order to simplify, we only use the existential definition here
and factor in the necessary changes in the description of our rules.

8 L. Chew, J. Clymo

Definition 7 (Extended Universal Reduction (EUR)). Given a clause
C ∨ u with universal literal u, consider extending C by

C := C ∪ {k ∈ D | lv(k) >Π lv(u) or k = ū} ,
where D ∈ Φ is any clause with some p : lv(p) >Π lv(u), p ∈ C and p̄ ∈ D,
until we reach a fixed point denoted ε. If ū /∈ ε then we can perform the

following rule.

ΠΦ ∧ (C ∨ u)
(EUR)

Π ′Φ ∧ C
EUR encompasses the important reduction rule used in Q-Resolution. Along

with the other rules, this allows us to simulate Extended Q-Res and thus we
have refutational completeness. EUR is strictly stronger than the standard uni-
versal reduction (UR), because it uses a dependency scheme from [14]. While
refutational QRAT works perfectly fine with a standard universal reduction rule,
extended universal reduction was used because it allows QRAT to easily sim-
ulate expansion steps used in QBF preprocessing. Note that this was the only
preprocessing rule that required the extended universal reduction rule. In theory
QRAT could be augmented with any sound dependency scheme and that is used
as the basis of its reduction rule.

Definition 8 (Clause Deletion). In refutational QRAT clauses may be arbi-
trarily deleted without checking if they conform to a rule, note this is not the
case in satisfaction QRAT.

ΠΦ ∧ C
ΠΦ

It is important to note that because some of the rules work by looking at
every clause contained in Φ, clause deletion may not be superficial. A clause may
need to be deleted in order for EUR to be performed. The situation is true also
for QRATA and QRATU with respect to l where our property needs to check
all other clauses that have the complimentary literal l̄.

4 Strategy Extraction and Simulations

In [6] it was shown that satisfaction QRAT has strategy extraction. The equiva-
lent, however, was not proved for refutational QRAT. The problem is the asym-
metry of the two systems as EUR is not needed in satisfaction QRAT. EUR
causes particular problems which we were not able to get around. It reduces a
universal variable u in a clause C even when there are variables in C to the right
of u in the prefix. Now this is also true for QRATU however in that case we
have the QRAT framework to work with, which is not similar to the dependency
framework of EUR.

We have avoided this issue by removing EUR altogether. EUR is not essential
to the underlying techniques of QRAT and QRAT can still simulate the main
preprocessing techniques except ∀-Expansion. In addition EUR is not required

The Equivalences of Refutational QRAT 9

to simulate Extended Q-Resolution as this can be done with a simpler reduction
rule, as extension clauses can be added with QRATA wrt the extension variable,
Resolution uses ATA and reduction can be performed with simple universal
reduction.

Let QRAT(X) be QRAT with the EUR rule replaced with reduction rule X.
This means that the standard QRAT is given by QRAT(EUR). An alternative
would be to use the ∀-reduction rule from Q-Res, which allows

ΠΦ ∧ (C ∨ u)

ΠΦ ∧ C
whenever lv(u) is greater than lv(x) for all existentially quantified x in C.

We call this simplest version QRAT(UR).
In order to show that QRAT(UR) has polynomial-time strategy extraction

on false QBFs we will inductively compute a winning universal strategy for
formulas at each step of the QRAT proof. For the inductive step we need to
construct a winning strategy σ for the formula prior to some proof step, from a
known winning strategy σ′ for the formula after that proof step. We prove that
this is possible for each derivation rule in refutational QRAT. The strategy σ is
composed of Herbrand functions σu for each universal variable u.

Lemma 1. If Π ′Φ∧C is derived from ΠΦ by ATA, and σ′ is a winning universal
strategy for Π ′Φ∧C, then we can can construct a winning universal strategy for
ΠΦ.

Proof. If clause C is added by ATA then Φ ∧ C̄ `1 ⊥ and we derive:

ΠΦ (ATA)
Π ′Φ ∧ C

Because Φ∧C̄ `1 ⊥, any assignment that falsifies C also falsifies Φ. Therefore
if σ′ is a strategy that falsifies Π ′Φ ∧ C, σ′ must falsify Φ. Let σ = σ′ except
that if Π 6= Π ′ then any existential input variable that does not appear in Φ
can be restricted in σ to 0 or 1 arbitrarily (there is a winning strategy for either
assignment, so we just pick one). If a universal variable is in Π ′ but not Π we
do not need a strategy for it as it will have no effect on the outcome of the game
for ΠΦ. ut

Lemma 2. If Π ′Φ ∧ C is derived from ΠΦ by QRATA, and σ′ is a winning
universal strategy for Π ′Φ ∧ C, then we can can construct a winning universal
strategy for ΠΦ.

Proof. C contains some existential literal l such that for every D ∈ Φ with
l̄ ∈ D and outer clause OD, Π ′Φ∧ C̄ ∧ ŌD `1 ⊥. For notational convenience, let
A = {k ∈ C | k 6= l, lv(k) ≤Π lv(l)}, and B = {k ∈ C | lv(k) >Π lv(l)} so that
C = (A ∨ l ∨B) and Π ′Φ ∧ Ā ∧ l̄ ∧ B̄ ∧ ŌD `1 ⊥. We derive:

ΠΦ (QRATA wrt. l)
Π ′Φ ∧ (A ∨ l ∨B)

10 L. Chew, J. Clymo

Initially we assume Π = Π ′. Let u be a universal variable in Π ′. If lv(u) <Π′

lv(l) then σ′
u = σu. If lv(u) >Π′ lv(l), we proceed by a case distinction. Let τ∃

be an assignment to the existential variables x with lv(x) <Π′ lv(u), and τ its
extension consistent with the Herbrand functions of universal variables y with
lv(y) <Π′ lv(u).

σu(τ∃) =



σ′
u(τ ′∃) τ(A ∨ l) = ⊥, but for every clause D with l̄ ∈ D

if O is the outer clause of D then τ(O) = >
where τ ′∃ differs from τ∃ only on variable l

such that l is satisfied in τ ′∃,

σ′
u(τ∃) otherwise.

We have to show that σ actually falsifies ΠΦ. Assume we reach an assignment
τ by playing according to σ.

Suppose τ satisfies A then τ(A ∨ l) = > so for all u, σu(τ∃) = σ′
u(τ∃). τ is

consistent with σ′ so falsifies Π ′Φ ∧ (A ∨ l ∨B). It cannot falsify (A ∨ l ∨B) so
τ falsifies ΠΦ.

Suppose τ falsifies A but satisfies the outer clauses of every D with l̄ ∈ D.
If τ∃ were modified so l is true then σ′ yields τ ′ which satisfies (A ∨ l ∨ B) so
must falsify Φ. Changing l to be false in τ ′ cannot satisfy any additional clauses
since the outer clauses of all D with l̄ ∈ D are already satisfied (by construction
τ and τ ′ are identical prior to l). Under σ all universal variables right of l are
played according to σ′ as if l were made true, this will falsify some clause in Φ
regardless of how l is actually set.

If τ falsifies A but also falsifies the outer clause O of some clause D with
l̄ ∈ D then we know that the responses from σ here are defined to be consistent
with the original σ′. This means that either τ falsifies Φ or τ falsifies A ∨ l ∨B.
We know that Π ′Φ ∧ Ā ∧ l̄ ∧ B̄ ∧ ŌD `1 ⊥. If τ falsifies A ∨ l ∨ B then also
τ(OD ∨A ∨ l ∨B) = ⊥, and so Φ is also falsified by τ .

If in fact Π 6= Π ′ then Π ′ contains more variables than Π. First construct
the strategies as above, assuming prefix Π ′, then fix these as in Lemma 1 to not
include the variables missing from Π. Universal variables not in Π simply have
their strategies removed from σ. Existential variables not in Π are restricted in
σ to 0 or 1 arbitrarily. ut

Example 1. Consider clause (a ∨ l ∨ x ∨ ¬y) and QBF ∃ablx∀yφ where

φ = (a ∨ b ∨ ¬y) ∧ (¬b ∨ y) ∧ (b ∨ l ∨ y) ∧ (b ∨ ¬l ∨ y).

The only clause that contains ¬l in φ is (b∨¬l ∨ y), so the only outer clause
we need to consider is (b). ∃ablx∀yφ ∧ ¬b ∧ ¬a ∧ ¬l ∧ ¬x ∧ y `1 ⊥ so QRATA is
possible with respect to l.

A winning strategy for the universal player after the new clause is added is
to play y to 1 if and only if a, l and x are all 0. In our strategy extraction we
derive the strategy prior to when QRATA is used.

If any of a, l, x are 1, we can continue to set y to 0 and falsify some clause in
φ not containing ¬y.

The Equivalences of Refutational QRAT 11

If a, b, l, x are all 0, we falsify the only outer clause (b) thus we know via unit
propagation some other clause (here (a∨ b∨¬y)) will be falsified if we continue
to falsify (a ∨ l ∨ x ∨ ¬y) only. We keep playing the old strategy for this reason.

If a, l, x are all 0 and b is 1, setting y to 1 no longer works as it only falsifies
the added clause, we instead see what happens when l is flipped to 1, and set y
to 0 according to the strategy, falsifying clause (¬b ∨ y).

Lemma 3. If Π ′Φ ∧ C is derived from ΠΦ ∧ (C ∨ l) by QRATU, and σ′ is a
winning universal strategy for Π ′Φ∧C, then we can construct a winning universal
strategy for ΠΦ ∧ (C ∨ l).

Proof. The rule QRATU reduces universal l from C ∨ l. As before, it is useful
to have notation for subclauses of C having variables to the left or right of l in
the prefix. Let A = {k ∈ C | k 6= l, lv(k) ≤Π lv(l)}, and B = {k ∈ C | lv(k) >Π
lv(l)} so that (C ∨ l) = (A ∨ l ∨B).

For every clause D ∈ Φ with l̄ ∈ D and outer clause OD, Π ′Φ∧Ā∧B̄∧ŌD `1
⊥.

ΠΦ ∧ (A ∨ l ∨B)
(QRATU wrt. l)

Π ′Φ ∧ (A ∨B)

Let u be a universal variable in Π. If var(l) 6= u then σu = σ′
u. If u = var(l)

does not appear in Π ′ then σu = c where c ∈ {0, 1} falsifies l.
Otherwise, if var(l) = u, we define σu by

σu(τ∃) =


c τ(A) = ⊥, but for every clause D with l̄ ∈ D

if O is the outer clause of D then τ(O) = >
where c ∈ {0, 1} is such that setting u to c falsifies l,

σ′
u(τ∃) otherwise.

We have to show that σ actually falsifies ΠΦ ∧ (A ∨ l ∨ B). Let assignment
τ be consistent with σ. If τ satisfies A then τ is also consistent with the original
σ′ so it must falsify Φ ∧ (A ∨B), but since it satisfies A there is some clause in
Φ that τ falsifies.

If τ falsifies A but satisfies the outer clauses of all D with l̄ in D then it may
be that τ is not consistent with σ′. We observe that there is another assignment
τ ′ consistent with σ′ which is identical to τ except possibly on the variable of l
where τ sets literal l to 0. Therefore τ ′ satisfies all the outer clauses and modifying
τ ′ so l is false (i.e. to τ) cannot satisfy any additional clauses in Π ′Φ∧ (A∨B).
τ ′ falsifies Π ′Φ ∧ (A ∨ B). If τ ′ falsifies a clause in Φ then τ falsifies the same
clause. If τ ′ falsifies (A ∨B) then τ falsifies (A ∨ l ∨B).

If τ falsifies A and some outer clause O of D with l̄ ∈ D then τ is consistent
with σ′, so it falsifies either Φ or (A ∨ B). If τ falsifies (A ∨ B) then τ falsifies
O ∨ (A ∨B) so it must also falsify Φ since Π ′Φ ∧ Ā ∧ B̄ ∧ Ō `1 ⊥. ut

Lemma 4 (Balabanov, Jiang [1]). If Π ′Φ ∧ C is derived from ΠΦ ∧ (C ∨ l)
by UR, and σ′ is a winning universal strategy for Π ′Φ ∧ C, then we can can
construct a winning universal strategy for ΠΦ ∧ (C ∨ l).

12 L. Chew, J. Clymo

Proof. The reduction rule UR removes l from clause C ∨ l where lv(k) ≤Π lv(l)
for every literal k ∈ C.

ΠΦ ∧ (C ∨ l)
(∀-red)

Π ′Φ ∧ C
Let σu = σ′

u when var(l) 6= u. If u = var(l) does not appear in Π ′ then σu = c
where c ∈ {0, 1} falsifies l. Otherwise, if var(l) = u then, given an assignment τ∃
to all existential variables left of u, τ its extension consistent with the Herbrand
functions for universal variables y with lv(y) ≤Π lv(u).

σu(τ∃) =


c τ(C) = ⊥

where c ∈ {0, 1} is such that setting u to c falsifies l,

σ′
u(τ∃) otherwise

This deviates from σ′ exactly when C is falsified and always falsifies C ∨ l in
that case. So Φ ∧ (C ∨ l) is always falsified under σ. ut

Lemma 5. If Π ′Φ is derived from ΠΦ ∧C by clause deletion, and σ′ is a win-
ning universal strategy for Π ′Φ, then we can can construct a winning universal
strategy for ΠΦ ∧ C.

Proof. Clause deletion allows to derive

ΠΦ ∧ C
Π ′Φ

We simply let σ′
u = σu. Since σ′ always falsifies a clause from Φ then also σ′

will falsify a clause from Φ. ut

Theorem 2. QRAT(UR) has polynomial-time strategy extraction on false QBFs.

Proof. We inductively show that we can compute a winning strategy σ on the
current formula ΠΦ during our steps of QRAT. σ can be constructed as a circuit
with polynomial size in the length of the QRAT proof of ΠΦ and consists of
Herbrand functions σu for each of the universal variables u in the formula, based
on existential variables of lower level.

We work backwards in the proof. Initially (i.e. at the end of the proof) we
have the empty clause so in the base case our universal strategy is to set all u
to 0.

For the inductive steps we construct a new strategy σ for ΠΦ based on σ′

for Π ′Φ′, which is possible by the Lemmas above. The circuits σu constructed
for ATA and clause deletion steps are no larger than σ′

u. For UR we have one
copy of σ′

u and a circuit to check whether C is satisfied. For QRATU we need
a circuit to determine if A and each of the outer clauses are satisfied, and this
result with the output of σ′

u determines the final value for u. QRATA is the least
obvious case when transforming into a polynomial size circuit. A new circuit is
added to decide whether (A ∨ l) and the outer clauses are satisfied. The output

The Equivalences of Refutational QRAT 13

of this is used to possibly change the input to σ′
u, which can be achieved with a

small sub-circuit. Crucially, only one copy of σ′
u is needed.

Eventually we get to our first line and thus provide a strategy for the initial
formula which can be constructed as a polynomial circuit, giving us strategy
extraction. ut

5 Equivalence with QRAT+

In [13] Lonsing and Egly took the QRAT framework and improved on it by relax-
ing the properties required to add or delete a clause. In QRAT (and the original
DRAT) we used the fact that Φ∧C̄ is a contradiction that can be checked by unit
propagation in order to add C, this is known as Reverse Unit Propagation (RUP)
[5]. This works nicely because unit propagation is a polynomial-time procedure
and it is done in practice between the main inference steps in a propositional
solver. In fact in Conflict-Driven Clause Learning (CDCL) solving it is used
exactly in this way, to confirm a conflict whose negation is added as a clause.

However, in the QBF CDCL setting universal reduction is also done in be-
tween steps. So Lonsing’s and Egly’s definition of QRAT+ changed `1 to `1∀,
where `1∀ is an inference using unit propagation and universal reduction.

In order to make this sound for all the QRAT rules, only certain ∀-reduction
steps are allowed. To achieve this, an abstraction of the quantifier prefix Π is
taken.

Definition 9. Let i be the maximum level of all variables in clause C. Then
Abs(Π ′, C) is the quantifier prefix obtained from Π ′ by setting all quantifiers
with level ≤Π′ i to existential.

C is a Quantified Asymmetric Tautology (QAT) in QBF ΠΦ when Abs(Π ′, C)Φ∧
C̄ `1∀ ⊥. We use Π ′ instead of Π because C could contain variables not in Π.

The asymmetric tautology property used for ATA is replaced by QAT. The
property QRAT used for QRATA and QRATU is similarly updated to QRAT+.
Recall clause C has QRAT with respect to literal l in QBF ΠΦ if and only if for
all D ∈ Φ with l̄ ∈ D

Φ ∧ C̄ ∧ ŌD `1 ⊥

where OD is the outer clause of D with respect to l.
Clause C has QRAT+ with respect to literal l in QBF ΠΦ if and only if for

all D ∈ Φ with l̄ ∈ D

Abs(Π ′, C ∨ l)Φ ∧ C̄ ∧ ŌD `1∀ ⊥

QATA allows C to be added to QBF ΠΦ when C is a Quantified Asymmetric
Tautology in ΠΦ. QRATA+ allows addition of C to ΠΦ given there is an exis-
tential literal l ∈ C such that C has QRAT+ with respect to l in ΠΦ. QRATU+
allows removal of l from C ∨ l if C has QRAT+ with respect to l in ΠΦ. The
extended universal reduction rule is not changed in QRAT+.

14 L. Chew, J. Clymo

Lonsing and Egly do not differentiate between a refutational and satisfac-
tion QRAT+. Here we focus on the refutational case where arbitrary clauses
can be deleted. Refutational QRAT+ therefore consists of QATA, QRATA+,
QRATU+, EUR and clause deletion.

Proposition 1. Refutationally, QRAT is p-equivalent to QRAT+.

The key here is that in QRAT we derive the some of the intermediate steps
used in QRAT+, in particular the clauses that are to be ∀-reduced in the `1∀
derivation. From there we can use the universal reduction rule in QRAT to
reduce it and continue to use it to get our desired clause using only the rules in
QRAT.

Example 2. We use an example from [13] to give a simple illustration of how

this method works. Let Φ = ∀u1, u2∃x1, x2∀u3∃x3
∧7
i=0 Ci where

C0 = (¬u2 ∨ ¬x1 ∨ ¬x2)

C1 = (¬u1 ∨ ¬x1 ∨ x2)

C2 = (u1 ∨ x1 ∨ ¬x2)

C3 = (u2 ∨ x1 ∨ x2)

C4 = (¬x1 ∨ ¬x2 ∨ x3)

C5 = (u3 ∨ ¬x3)

C6 = (¬x1 ∨ x2 ∨ ¬x3)

C7 = (¬u3 ∨ x3)

Both u1 and u2 can be removed by QRATU+ but not by QRATU. In Φ,
C0 has QRAT+ with respect to ¬u2. The only clause containing u2 is C3. Unit
propagation of x1 and x2 allows us to derive x3 (from C4) then we use this
to derive u3 (from C5) which is then removed by ∀-reduction. Therefore we
can replace C0 by C0\{¬u2}. This is not possible by QRATU, however it is
possible to derive C = ¬x1 ∨ ¬x2 ∨ u3 by ATA since Φ ∧ C̄ `1 ⊥. We have unit
propagation on x1 and x2 as before, then use x3 to derive u3 which does not
need to be removed by ∀-reduction because we can use unit propagation with
¬u3 instead to derive the empty clause. Once C is derived we can safely remove
u3 by ∀-reduction to reach the target clause.

Lemma 6. The QATA step is p-simulated by steps in refutational QRAT(UR).

Proof. Let Φ be a CNF and let C be a clause not in Φ. Let Π ′ be a prefix
including the variables of C and Φ, and Π a sub-prefix of Π ′ containing the
variables of Φ.

ΠΦ
Π ′Φ ∧ C

is possible whenever C has QAT on ΠΦ. This means Abs(Π ′, C)Φ∧ C̄ `1∀ ⊥,
where i is the maximum level of literals in C. However it may not be the case that
Π ′Φ∧ C̄ `1 ⊥ because we may have used a universal reduction step (potentially
multiple times).

The idea is that we break the single QAT step into several steps based on
what can be done with unit propagation versus what uses ∀-reduction. We deal
with unit propagation by using ATA steps and then use UR or EUR to do the
reduction steps.

The Equivalences of Refutational QRAT 15

We single out the clauses that we perform reduction on during the QAT
procedure and label them Li with the literal pi being reduced (in order, so the
first one derived is L1). So Π ′Φ∧ C̄ `1 L1, and for i > 1, Π ′Φ∧

∧
j<i Lj\{pj} ∧

C̄ `1 Li. The condition on reduction is that pj must be the greatest level literal
in Lj , but it must also be at a greater level than any literal in C because we
are using the modified prefix so that every variable at a lower level than any
variable in C is existentially quantified.

Induction Hypothesis: We can learn C ∨ Li\{pi} in a short proof using
only ATA and ∀-reduction steps.

Base Case: We need to add C ∨ L1 via ATA, we know Π ′Φ ∧ C̄ `1 L1 so
Π ′Φ ∧ C̄ ∧ L̄1 `1 ⊥

Inductive Step: From assuming our induction hypothesis we have Π ′Φ ∧∧
j<i(C ∨ Lj\{pj}) now we need to add C ∨ Li via ATA. For each j < i, (C ∨

Lj\{pj})∧C̄ `1 Lj\{pj}, and Φ∧
∧
j<i Lj\{pj}∧C̄ `1 Li so we can join these unit

propagation inferences together to get that ΠΦ∧
∧
j<i(C∨Lj\{pj})∧C̄∧L̄i `1 ⊥.

We learn C ∨ Li but we now need to remove pi, which we can do via reduction.
Note that per the rules of QRAT+, lv(pi) ≥Π′ lv(x) for any literal x ∈ Li and
any x in C. Thus we can reduce pi.

So we learn all the clauses C ∨Li\{pi}. These new clauses allow us to derive
C via ATA without using reduction since those steps are now available.

From ΠΦ ∧
∧
j(C ∨ Lj\{pj}) ∧ C̄ we can derive each Lj\{pj} which gives

us every reduced clause we need to derive ⊥ from Φ ∧ C̄. Hence ΠΦ ∧
∧
j(C ∨

Lj\{pj}) ∧ C̄ `1 ⊥. Thus we can add C via ATA. ut

We can take this framework and use it to simulate other rules in the QRAT+
refutation system. We prove this essential lemma about the property QRAT+.

Lemma 7. If C has QRAT+ in ΠΦ with respect to l then for every clause
D ∈ Φ with l̄ ∈ D, the outer resolvent C ∪ {k ∈ D | lv(k) ≤Π lv(l), k 6= l̄}
can be added to ΠΦ via a sequence of polynomial size iterations of ATA and
∀-reduction.

Proof. Let RD denote C ∪ {k ∈ D | lv(k) ≤Π lv(l), k 6= l̄}. The property of
QRAT+ can be stated as Abs(Π ′, C)Φ ∧ R̄D `1∀ ⊥ for every D ∈ Φ with l̄ ∈ D.

Let us fix some D and prove we can derive RD via ATA and ∀-reduction steps.
Since D is now fixed we drop the subscript for convenience and let R = RD.

As we did to simulate QATA, we label the clauses that we perform reduction
on during the `1∀ procedure as Li with the literal pi being reduced (in order, so
the first one derived is L1), we perform induction on this index i.

Induction Hypothesis: We can learn R ∨ Li\{pi} in a short proof using
only ATA and ∀-reduction steps.

Base Case: We need to add R ∨ L1 via ATA, we know Φ ∧ R̄ `1 L1 so
Π ′Φ ∧ R̄ ∧ L̄1 `1 ⊥. Thus we add R ∨ L1. We now reduce p1 which can be done
because lv(pi) ≥Π′ lv(x) for any literal x ∈ Li and any x in C, and since R only
adds outer clause literals it works for any x ∈ R as well.

16 L. Chew, J. Clymo

Inductive Step: From assuming our induction hypothesis we have Π ′Φ ∧∧
j<i(R ∨ Lj\{pj}) now we need to add R ∨ Li via ATA.

For each j < i, (R ∨ Lj\{pj}) ∧ R̄ `1 Lj\{pj}, and Φ ∧
∧
j<i Lj\{pj} ∧

R̄ `1 Li so we can join these unit propagation inferences together to get that
Π ′Φ ∧

∧
j<i(R ∨ Lj\{pj}) ∧ R̄ ∧ L̄i `1 ⊥. We learn R ∨ Li but we now need to

remove pi, which we can do via reduction. Note that per the rules of QRAT+,
lv(pi) ≥Π′ lv(x) for any literal x ∈ Li and any x in C, and since R only adds
outer clause literal it works for any x ∈ R as well. Thus we can reduce pi.

Putting this proof together we get all the (R ∨ Lj\{pj}) clauses we need.
Π ′Φ ∧

∧
j<i(R ∨ Lj\{pj}) ∧ R̄ `1 Li for every i, thus we also get Π ′Φ ∧

∧
j(R ∨

Lj\{pj}) ∧ R̄ `1 ⊥ and can add R via ATA.

We can then remove the intermediate clauses R ∨ Lj\{pj} if necessary. ut

Lemma 8. The QRATA+ step is p-simulated by steps in refutational QRAT(UR).

Proof. Let Φ be a CNF and let C be a clause not in Φ. Let Π be a prefix including
the variables of Φ and Π ′ be a prefix including the variables of C and Φ. Π is a
sub-prefix of Π ′. The QRATA+ step is given as

ΠΦ
Π ′Φ ∧ C

is possible whenever C has QRAT+ with respect to l on ΠΦ.

Let Ω = {OD | OD is the outer clause of some clause D ∈ Φ with l̄ ∈ D}.
The aim here is to add each C∨OD via a short proof using ATA and UR rules.

This can be done directly via Lemma 7 since C ∨ OD is an outer resolvent and
we have QRATA+. Note that we are allowed to continue adding outer resolvents
by this method to Φ even after one or more has already been added. The rules
ATA and UR that we use in Lemma 7 are not prohibited by the presence of
additional clauses.

Now that we have all C ∨ O for every O ∈ Ω, we need to derive C. We can
do this via QRATA with respect to l. This is simple, we need to show for each
OD that ΠΦ∧

∧
O∈Ω(C ∨O)∧ C̄ ∧ ŌD `1 ⊥. We know this is true since we can

directly refute the clause C ∨OD using C̄ ∧ ŌD in each case.

Once we have derived C we can freely delete all clauses from
∧
O∈Ω(C∨O) if

we require to. Note that refutational QRAT does not require you to use QRATE
to remove clauses (see Section 6.2 in [7]). ut

Lemma 9. The QRATU+ step is p-simulated in refutational QRAT(UR).

Proof. Let Φ be a CNF and let C ∨ l be a clause not in Φ. Let Π be a prefix
including the variables of C ∨ l and Φ. The QRATU+ step is given as

ΠΦ ∧ (C ∨ l)
ΠΦ ∧ C

The Equivalences of Refutational QRAT 17

whenever C has QRAT+ with respect to universal literal l on ΠΦ.
Let Ω = {OD | OD be the outer clause of some clause D ∈ Φ with l̄ ∈ K}.
The aim is to add O ∪ C for every O ∈ Ω and we can do that directly using

Lemma 7 as O∪C is the outer resolvent R(C ∨ l,D,Π, l) for some clause D and
we have QRAT+.

Now we have to show ΠΦ ∧ (
∧
O∈Ω C ∨ O) ∧ C̄ ∧ ŌD ` ⊥. This is straight-

forward, as in each case a C ∨ O clause is refuted directly from all the units.
This means we can perform QRATU to replace ΠΦ ∧

∧
(C ∨ O) ∧ C ∨ l with

ΠΦ ∧
∧

(C ∨ O) ∧ C. We can then freely delete all clauses from
∧
C ∨ O if we

require to. ut

Proposition 1 Refutationally, QRAT is p-equivalent to QRAT+.

Proof. A QRAT+ proof is a sequence of QATA, QRATA+, QRATU+, EUR
and deletion rules. We claim this can be simulated by a QRAT proof, in other
words a sequence of ATA, QRATA, QRATU, EUR and deletion steps. EUR and
deletion rules remain the same in both systems. In Lemma 6 we showed that
QATA steps are simulated by ATA and UR steps, in Lemma 8 we showed that
QRATA+ steps are simulated by ATA, QRATA and UR steps and in Lemma 9
we showed that QRATU+ steps are simulated by ATA, QRATU and UR steps.
We can simulate UR steps by EUR so we can do all this in refutational QRAT.

QRAT is simulated by QRAT+ also, so they are equivalent. ut

Theorem 3. Extended Q-Res, refutational QRAT(UR) and refutational
QRAT(UR)+ are all equivalent QBF proof systems (modulo NP).

Proof. Refutational QRAT(UR) simulates refutational QRAT+(UR). This can
be seen by putting Lemmas 6, 8 and 9 together to simulate the rules QATA,
QRATA+ and QRATU+ using ATA, QRATA, QRATU and UR. Clause deletion
and UR are present in both systems.

Extended Q-Res is equivalent QRAT(UR) when both systems have the assis-
tance of an NP oracle. Hence all these systems are equivalent modulo NP. ut

Note that the “modulo NP” here is important because we do not know
whether Extended Resolution can easily prove the reflection principle of QRAT(UR).
If it can (as argued in [3]) then they are indeed all equivalent unconditionally.
This would seem likely as Extended Resolution was shown to simulate DRAT in
[10].

6 Conclusion

We have collapsed QRAT and QRAT+ into the same refutation system. We
have also examined the relationships of these systems to Extended Q-Resolution
under the framework of an NP oracle and restricting the reduction rule in QRAT.

The NP oracle probably does not make a difference here as Extended Reso-
lution is very powerful and is likely to provide the propositional implications we
need anyway, especially when it already simulates DRAT.

18 L. Chew, J. Clymo

Dealing with EUR, in its full power, may prove more tricky, as it will deal with
understanding the relationship between strategy extraction and the dependency
scheme of [14]. In addition, EUR is used in QRAT to simulate universal expansion
and the relationship between strategy extraction and expansion is also opaque
at the moment.

We also wish to note that despite the equivalences we show here, it is still our
estimation that the QRAT and QRAT+ formats provide practical advantages
in QBF solving not covered by complexity theory, just as DRAT continues to
be used despite its equivalence to Extended Resolution. It should also be noted
that we say nothing on the equivalence of satisfiability proofs for these systems.

Acknowledgements

Research supported by a Postdoctoral Prize Fellowship from EPSRC (1st au-
thor).

References

1. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. For-
mal Methods in System Design 41(1), 45–65 (2012)

2. Beyersdorff, O., Hinde, L., Pich, J.: Reasons for hardness in QBF proof systems.
Electronic Colloquium on Computational Complexity (ECCC) 24, 44 (2017),
https://eccc.weizmann.ac.il/report/2017/044

3. Chew, L.: Hardness and optimality in QBF proof systems modulo NP. Electronic
Colloquium on Computational Complexity (ECCC) 25, 178 (2018), https://

eccc.weizmann.ac.il/report/2018/178

4. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems.
The Journal of Symbolic Logic 44(1), 36–50 (1979)

5. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for cnf formulas.
In: Proceedings of the Conference on Design, Automation and Test in Europe -
Volume 1. pp. 10886–. DATE ’03, IEEE Computer Society, Washington, DC, USA
(2003), http://dl.acm.org/citation.cfm?id=789083.1022836

6. Heule, M., Seidl, M., Biere, A.: Efficient extraction of skolem func-
tions from QRAT proofs. In: Formal Methods in Computer-Aided De-
sign, FMCAD 2014, Lausanne, Switzerland, October 21-24, 2014. pp. 107–
114 (2014). https://doi.org/10.1109/FMCAD.2014.6987602, https://doi.org/

10.1109/FMCAD.2014.6987602

7. Heule, M., Seidl, M., Biere, A.: A unified proof system for QBF preprocessing. In:
Automated Reasoning - 7th International Joint Conference, IJCAR 2014, Held as
Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014.
Proceedings. vol. 8562, pp. 91–106. Springer (2014). https://doi.org/10.1007/978-
3-319-08587-6 7, https://doi.org/10.1007/978-3-319-08587-6_7

8. Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M.: A first step
towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A.
(eds.) SAT. vol. 4501, pp. 201–214. Springer (2007)

The Equivalences of Refutational QRAT 19

9. Kiesl, B., Heule, M.J.H., Seidl, M.: A little blocked literal goes a long way. In:
Theory and Applications of Satisfiability Testing - SAT 2017 - 20th Interna-
tional Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017,
Proceedings. pp. 281–297 (2017). https://doi.org/10.1007/978-3-319-66263-3 18,
https://doi.org/10.1007/978-3-319-66263-3_18

10. Kiesl, B., Rebola-Pardo, A., Heule, M.J.H.: Extended resolution simulates DRAT.
In: Automated Reasoning - 9th International Joint Conference, IJCAR 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,
2018, Proceedings. pp. 516–531 (2018). https://doi.org/10.1007/978-3-319-94205-
6 34, https://doi.org/10.1007/978-3-319-94205-6_34

11. Kleine Büning, H., Bubeck, U.: Theory of quantified Boolean formulas. In: Biere,
A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Fron-
tiers in Artificial Intelligence and Applications, vol. 185, pp. 735–760. IOS Press
(2009)

12. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

13. Lonsing, F., Egly, U.: QRAT+: generalizing QRAT by a more powerful QBF redun-
dancy property. CoRR abs/1804.02908 (2018), http://arxiv.org/abs/1804.

02908

14. Slivovsky, F., Szeider, S.: Variable dependencies and Q-resolution. In: Sinz, C.,
Egly, U. (eds.) Theory and Applications of Satisfiability Testing - SAT 2014 -
17th International Conference, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings. vol. 8561, pp. 269–
284. Springer (2014). https://doi.org/10.1007/978-3-319-09284-3 21, http://dx.

doi.org/10.1007/978-3-319-09284-3_21

15. Wetzler, N., Heule, M.J.H., Hunt, W.A.: Drat-trim: Efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) Theory and Ap-
plications of Satisfiability Testing – SAT 2014. pp. 422–429. Springer International
Publishing, Cham (2014)

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

