
On List Recovery of High-Rate Tensor Codes

Swastik Kopparty∗ Nicolas Resch † Noga Ron-Zewi‡ Shubhangi Saraf§

Shashwat Silas ¶

June 1, 2019

Abstract

We continue the study of list recovery properties of high-rate tensor codes, initiated by
Hemenway, Ron-Zewi, and Wootters (FOCS’17). In that work it was shown that the tensor
product of an efficient (poly-time) high-rate globally list recoverable code is approximately locally
list recoverable, as well as globally list recoverable in probabilistic near-linear time. This was
used in turn to give the first capacity-achieving list decodable codes with (1) local list decoding
algorithms, and with (2) probabilistic near-linear time global list decoding algorithms. This was
also yielded constant-rate codes approaching the Gilbert-Varshamov bound with probabilistic
near-linear time global unique decoding algorithms.

In the current work we obtain the following results:

1. The tensor product of an efficient (poly-time) high-rate globally list recoverable code is
globally list recoverable in deterministic near-linear time. This yields in turn the first
capacity-achieving list decodable codes with deterministic near-linear time global list de-
coding algorithms. It also gives constant-rate codes approaching the Gilbert-Varshamov
bound with deterministic near-linear time global unique decoding algorithms.

2. If the base code is additionally locally correctable, then the tensor product is (genuinely)
locally list recoverable. This yields in turn constant-rate codes approaching the Gilbert-
Varshamov bound that are locally correctable with query complexity and running time
No(1). This improves over prior work by Gopi et. al. (SODA’17; IEEE Transactions on
Information Theory’18) that only gave query complexity Nε with rate that is exponentially
small in 1/ε.

3. A nearly-tight combinatorial lower bound on output list size for list recovering high-rate
tensor codes. This bound implies in turn a nearly-tight lower bound of NΩ(1/ log log N) on
the product of query complexity and output list size for locally list recovering high-rate
tensor codes.
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1 Introduction

Error-correcting codes enable protection of data from errors. They allow one to encode a message
so that even after some symbols of the encoding get changed, the original message can still be
recovered.

Formally, an error-correcting code of blocklength n over a finite alphabet Σ is a subset C ⊆ Σn. If
k is such that |C| = |Σ|k, then a k symbol message can be encoded using this code. The redundancy
of the code is measured by the rate ρ = k/n (so that |C| = |Σ|ρn). The robustness to errors is
measured by its relative distance δ, defined to be the minimum, over all distinct x, y ∈ C, of
the relative Hamming distance dist(x, y). A basic but important observation is that for codes with
relative distance δ, for every w ∈ Σn, there is at most one codeword c ∈ C for which dist(w, c) < δ/2.
Finding this codeword given w is the algorithmic problem of unique decoding C upto half the
minimum distance.

Given this setup, we now state some central goals of coding theory. First, we would like to
understand the best possible tradeoffs for ρ and δ that are achievable. Next, we would like to
have explicit constructions of codes that achieve this best possible tradeoff. Finally, we would like
efficient algorithms for decoding such optimal codes upto half their minimum distance – this would
give codes correcting the maximum possible fraction of (worst-case) errors for their rate.

For the case of |Σ| = 2 (the binary alphabet), the Gilbert-Varshamov bound states that for
all δ ≤ 1/2 and γ > 0 there exist codes with n → ∞ for which1 ρ ≥ 1 − H2(δ) − γ. In fact,
a random linear code satisfies this with high probability. The Gilbert-Varshamov bound is the
best known tradeoff in the setting where δ = Ω(1), and surprisingly, it is not known to be tight.
Furthermore, despite their abundance, we do not know how to explicitly construct codes achieving
the Gilbert-Varshamov bound.

For growing alphabets, |Σ| = ω(1), the picture is almost completely understood. We know that
the best tradeoff achievable is ρ = 1 − δ − γ, and furthermore we know how to explicitly con-
struct codes achieving this tradeoff that can be efficiently unique decoded upto half their minimum
distance.

1.1 The cast

In recent years, several important variations of the problem of unique decoding have been consid-
ered. We will need many of these, so we give below a quick and gentle introduction (without formal
definitions).

List decoding. In list decoding we attempt to decode from an even larger fraction α of errors
than δ/2 – now there may be more than one nearby codeword, and our goal is to find the list of all
of them. A basic limitation is that efficient list decoding is only possible if the number of nearby
codewords is guaranteed to be polynomially bounded.

Unlike the case of unique decoding, the optimal tradeoff between the rate ρ and the list decoding
radius α (for polynomial-size lists) is known for all alphabet sizes. The optimal rate for a given α
is known as the list decoding capacity. For |Σ| = 2, the list decoding capacity is ρ = 1−H2(α)− γ,
while for |Σ| = ω(1), the list decoding capacity is ρ = 1−α−γ. Over large alphabets, this tradeoff
can be achieved by explicit codes with efficient list decoding algorithms [GR08] (see also [KRSW18]

1Here H2 is the binary entropy function.
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for the state of the art). Over binary alphabet, we do not know how to explicitly construct codes
achieving list decoding capacity.

List recovery. List recovery is a generalization of list decoding where we are given a small list
of candidate alphabet symbols at each coordinate (these lists are called the input lists) and the
goal is to find the output list of all codewords that are consistent with many of these input lists.
In other words, we want all codewords such that for a (1− α)-fraction of coordinates, the symbol
of the codeword at that coordinate lies within the input list for that coordinate (we call these the
“nearby codewords”). When the input list size is 1, then list recovery is the same as list decoding.

Local decoding. In local decoding, we want to unique decode in sublinear time. Standard
decoding has linear output size, so we need to aim lower. For a given w ∈ Σn and a given message
coordinate i ∈ [k], we only ask to recover symbol i of the message underlying the codeword c near
w. We would like to run in sublinear time (and hence use only a sublinear number of queries to
w), so we allow the algorithm to use randomness and allow a small probability of error.

Local correction is a variation of local decoding where one is required to recover codeword symbols
as opposed to message symbols. In approximate local decoding (local correction, resp.) one is only
required to recover correctly most of the message (codeword, resp.) coordinates.

Local list decoding. Local list decoding combines the notions of local decoding and list decoding.
We are given some w ∈ Σn, and the goal is that for any nearby codeword, one can in sublinear time
recover the ith symbol of the message corresponding to the codeword for any i ∈ [k]. In order to
make this precise, the local list decoding algorithm first does some preprocessing and then produces
as output a collection of algorithms Aj . For any nearby codeword c, with high probability one of
these algorithms corresponds to it.2 These algorithms then behave like local decoding algorithms.
On input i ∈ [k], if the algorithm corresponded to a codeword c, then by making queries to only a
sublinear number of coordinates, the algorithm with high probability outputs the correct value of
the ith symbol of the message corresponding to c.

The above definition of local list decoding can be extended to local list recovery in a straightfor-
ward way where now the algorithms Aj correspond to all codewords that agree with most of the
input lists. As above, we can also define a local correction version of local list decoding (or local list
recovery) where the algorithms Aj are required to recover codeword symbols as opposed to message
symbols. Finally, we can also define approximate local list decoding (or local list recovery) where
the algorithms Aj are only required to recover correctly most of the message (or codeword in the
local correction version) coordinates.

1.2 The context

The starting point for this paper is the recent result of [HRW17a] on high-rate list recoverable tensor
codes, and its corollaries. Tensoring is a natural operation on codes that significantly enhances their
local properties [BS06, Val05, CR05, DSW06, GM12, BV09, BV15, Vid15, Mei09, Vid13, KMRS17].

2Some of these algorithms Aj might not correspond to any codeword and might output garbage. Later in the
paper we define local list decoding to not allow these garbage producing Aj ’s. Eliminating the garbage can be easily
done if the underlying code is also locally testable, and in this case the stronger notion can be achieved.
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The main technical result of [HRW17a] was that the tensor product of an efficient (poly-time)
high-rate globally list recoverable code is approximately locally list recoverable (in either the local
decoding or local correction version). They then observed that the ’approximately’ modifier can be
eliminated by pre-encoding the tensor product with a locally decodable code. This gave the first
construction of codes with rate arbitrarily close to 1 that are locally list recoverable from an Ω(1)
fraction of errors (however, only in the local decoding version). Finally, using the expander-based
distance amplification method of [AEL95, AL96] (specialized to the setting of local list recovery
[GI02, GKO+18]), this gave the first capacity-achieving locally list recoverable (and in particular,

list decodable) codes with sublinear (and in fact N Õ(1/ log logN)) query complexity and running time
(once more, in the local decoding version).

The above result also yielded further consequences for global decoding. Specifically, [HRW17a]
observed that the approximate local list recovery algorithm for tensor codes naturally gives a
probabilistic near-linear time global list recovery algorithm. Once more, using the expander-based
distance amplification method of [AEL95, AL96, GI02], this gave the first capacity-achieving list
recoverable (and in particular, list decodable) codes with probabilistic near-linear time global list
recovery algorithms. Finally, via the random concatenation method of [Tho83, GI04], this yielded in
turn a (randomized) construction of constant-rate binary codes approaching the Gilbert-Varshamov
bound with a probabilistic near-linear time algorithm for global unique decoding upto half the
minimum distance.

One could potentially hope (following [GKO+18] which implemented a local version of [Tho83,
GI04]) for an analogous result that would give constant-rate codes approaching the Gilbert-Varshamov
bound that are locally correctable (or locally decodable) with query complexity and running time
No(1). However, what prevented [HRW17a] from obtaining such a result was the fact that their
capacity-achieving locally list recoverable codes only worked in the local decoding version (i.e., they
were only able to recover message coordinates).

1.3 Results

We revisit the technique of [HRW17a] and show the following.

• The tensor product of an efficient (poly-time) high-rate globally list recoverable code is
globally list recoverable in deterministic near-linear time. Plugging this into the machinery
of [AEL95, AL96, GI02], we get the first capacity-achieving list recoverable (and in particular,
list decodable) codes with deterministic near-linear time global list recovery algorithms. Plug-
ging this into the machinery of [Tho83, GI04], yields in turn constant-rate binary codes (with
a randomized construction) approaching the Gilbert-Varshamov bound with deterministic
near-linear time global unique decoding algorithms.

Our deterministic global list recovery algorithm is obtained by derandomizing the random
choices of the [HRW17a] algorithm using appropriate samplers.

• An instantiation of the base code to produce tensor product codes which are themselves gen-
uinely locally list recoverable (i.e., not just approximately locally list recoverable) in the local
correction version. Once more, plugging this into the machinery of [AEL95, AL96, GKO+18],
we get capacity-achieving locally list recoverable codes, but now in the local correction version.
This now plugs in turn into the machinery of [Tho83, GI04, GKO+18] to give constant-rate
binary codes (with a randomized construction) approaching the Gilbert-Varshamov bound
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that are locally decodable with query complexity and running time No(1). This improves over
prior work [GKO+18] that only gave query complexity N ε with rate that is exponentially
small in 1/ε.

We obtain our result by taking the base code to be the intersection of an efficient (poly-time)
high-rate globally list recoverable code and a high-rate locally correctable code. Assuming
both codes are linear, we have that the intersection is a high-rate code that is both! The
result of [HRW17a] already guarantees that this tensor product is approximately locally list
recoverable (in the local correction version), and we use the fact that the tensor product of
a locally correctable codes is also locally correctable [Vid15] to remove the ’approximately’
modifier.3

• A combinatorial lower bound showing the limitations on the list recoverability of high-rate
tensor codes. Specifically, we show that when the rate of the base code is high, every t-wise
tensor product of this code has output list size doubly-exponential in t. This means that
taking t to be more than log logN leads to superpolynomial output list size, precluding the
possibility of efficient list recovery.

Instantiating this appropriately, this implies in turn that there is a base code such that for
every tensor power with block length N , the product of the query complexity and output list
size for local list recovery is at least NΩ(1/ log logN). We note that in contrast, it could be that
for every base code, there is a tensor power with block length N for which local correction
can be done with query complexity O(1).

A key observation that we use is that a high-rate code has many codewords with pairwise-
disjoint supports. We combine this along with other linear-algebraic arguments to design a
list recovery instance for the tensor product of a high-rate code which has many codewords
that are consistent with it.

Below we give formal statements of our results. For formal definitions of the various notions of
decoding in the following theorem statements, see Section 2.

1.3.1 Deterministic near-linear time global list recovery

Our first main result shows that the tensor product of an efficient (poly-time) high-rate globally
list recoverable code is globally list recoverable in deterministic near-linear time. In the theorem
statement, one should think of all parameters δ, α, L, t, and consequently also s, as constants (or
more generally, as slowly increasing/decreasing functions of n). In that case, the theorem says
that if C ⊆ Fn is (α, `, L)-globally list recoverable deterministically in time T = poly(n), then
the t-iterated tensor product C⊗t of length N := nt is (Ω(α), `, LO(1))-globally list recoverable
deterministically in time O(nt · T ) = nt+O(1) = N1+O(1/t).

Theorem 1.1 (Deterministic near-linear time list recovery of high-rate tensor codes). The following
holds for any δ, α > 0, and s = poly(1/δ, 1/α). Suppose that C ⊆ Fn is a linear code of relative
distance δ that is (α, `, L)-globally list recoverable deterministically in time T . Then C⊗t ⊆ Fnt is

(α · s−t2 , `, Lst
3 ·Lt)-globally list recoverable deterministically in time nt · T · Lst

3 ·Lt.

3To eliminate ’garbage’ we also use the fact that the tensor product is locally testable [Vid15].
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Applying the expander-based distance amplification method of [AEL95, AL96, GI02] on the
codes given by the above theorem, we obtain the first capacity-achieving list recoverable (and in
particular, list decodable) codes with deterministic near-linear time global list recovery algorithms.

Corollary 1.2 (Deterministic nearly-linear time capacity-achieving list recoverable codes). For
any constants ρ ∈ [0, 1], γ > 0, and ` ≥ 1 there exists an infinite family of codes {CN}N , where CN
has block length N , alphabet size No(1), rate ρ, and is (1 − ρ − γ, `,No(1))-globally list recoverable
deterministically in time N1+o(1).

Applying the random concatenation method of [Tho83, GI04], the above corollary yields in turn
constant-rate codes approaching the Gilbert-Varshamov bound with deterministic near-linear time
global unique decoding algorithms.

Corollary 1.3 (Deterministic near-linear time unique decoding up to the GV bound). For any
constants ρ ∈ [0, 0.02] and γ > 0 there exists an infinite family of binary linear codes {CN}N ,
where CN has block length N and rate ρ, and is globally uniquely decodable deterministically from
H−1

2 (1−ρ)−γ
2 -fraction of errors in time N1+o(1).

1.3.2 Local list recovery

Our second main result shows that if the base code is both globally list recoverable and locally
correctable, then the tensor product is (genuinely) locally list recoverable (in the local correction
version).

Theorem 1.4 (Local list recovery of high-rate tensor codes). The following holds for any δ, α > 0,
and s = poly(1/δ, 1/α). Suppose that C ⊆ Fn is a linear code of relative distance δ that is (α, `, L)-
globally list recoverable, and locally correctable from (δ/2)-fraction of errors with query complexity

Q, and t ≥ 3. Then C⊗t ⊆ Fnt is (α ·s−t3 , `, Lst
3 ·logt L)-locally list recoverable with query complexity

nO(1) ·QO(t) · Lst
3 ·logt L.

Once more, applying the expander-based distance amplification method of [AEL95, AL96, GI02,
GKO+18], as well as the random concatenation method of [Tho83, GI04, GKO+18], the above
theorem yields constant-rate codes approaching the Gilbert-Varshamov bound that are locally cor-
rectable with query complexity No(1).

Corollary 1.5 (Local correction up to the GV bound). For any constants ρ ∈ [0, 0.02] and γ > 0
there exists an infinite family of binary linear codes {CN}N , where CN has block length N and rate

ρ, and is locally correctable from
H−1

2 (1−ρ)−γ
2 -fraction of errors with query complexity No(1).

1.3.3 Combinatorial lower bound on output list size

Our final main result shows a nearly-tight combinatorial lower bound on output list size for list
recovering high-rate tensor codes.

Theorem 1.6 (Output list size for list recovering high-rate tensor codes). Suppose that C ⊆ Fn is
a linear code of rate 1− γ, and that C⊗t ⊆ Fnt is (0, `, L)-list recoverable. Then L ≥ `1/γt.

The above bound can be instantiated concretely as follows.
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Corollary 1.7. For any δ > 0 and ` > 1 there exists L > 1 such that the following holds for any
sufficiently large n. There exists a linear code C ⊆ Fn of relative distance δ that is (Ω(δ), `, L)-list
recoverable, but C⊗t ⊆ Fnt is only (0, `, L′)-list recoverable for L′ ≥ exp((2δ)−(t−3/2) ·

√
logL).

Finally, we also obtain a nearly-tight lower bound of NΩ(1/ log logN) on the product of query
complexity and output list size for locally list recovering high-rate tensor codes.

Corollary 1.8. For any δ > 0 and sufficiently large n there exists a linear code C ⊆ Fn of relative
distance δ such that the following holds. Suppose that C⊗t ⊆ FN is ( 1

N , 2, L)-locally list recoverable

with query complexity Q. Then Q · L ≥ NΩδ(1/ log logN).

2 Preliminaries

For a prime power q we denote by Fq the finite field of q elements. For any finite alphabet Σ and
for any pair of strings x, y ∈ Σn, the relative distance between x and y is the fraction of coordinates
i ∈ [n] on which x and y differ, and is denoted by dist(x, y) := |{i ∈ [n] : xi 6= yi}| /n. For a
subset Y ⊆ Σn, we denote by dist(x, Y ) the minimum relative distance of a string y ∈ Y from x.
For a positive integer ` we denote by

(
Σ
`

)
the collection of all subsets of Σ of size ` and by

(
Σ
≤`
)

the collection of all nonempty subsets of Σ of size at most `. For any string x ∈ Σn and tuple
S ∈

(
Σ
≤`
)n

we denote by dist(x, S) the fraction of coordinates i ∈ [n] for which xi /∈ Si, that is,

dist(x, S) := |{i ∈ [n] : xi /∈ Si}| /n. For a string x ∈ Σn and a subset T ⊆ [n], we use x|T ∈ Σ|T | to
denote the restriction of x to the coordinates in T . Throughout the paper, we use exp(n) to denote
2Θ(n), and whenever we use log, it is base 2, unless noted otherwise.

2.1 Error-correcting codes

An error-correcting code is simply a subset C ⊆ Σn. We call Σ the alphabet of the code, and n its
block length. The elements of C are called codewords. If F is a finite field and Σ is a vector space
over F, we say that a code C ⊆ Σn is F-linear if it is an F-linear subspace of the F-vector space Σn.
If Σ = F, we simply say that C is linear.

The rate of a code is the ratio ρ := log |C|
log(|Σ|n) , which for F-linear codes equals dimF(C)

n·dimF(Σ) . The relative

distance dist(C) of C is the minimum δ > 0 such that for every pair of distinct codewords c1, c2 ∈ C
it holds that dist(c1, c2) ≥ δ. We denote by ∆(C) := dist(C) · n the (absolute) distance of C.

The best known general trade-off between rate and distance of codes is the Gilbert-Varshamov
bound, attained by random (linear) codes. For x ∈ [0, 1] let

Hq(x) = x logq(q − 1) + x logq(1/x) + (1− x) logq(1/(1− x))

denote the q-ary entropy function.

Theorem 2.1 (Gilbert-Varshamov (GV) bound, [Gil52, Var57]). For any prime power q, δ ∈
(0, 1 − 1

q ), and ρ ∈ (0, 1 −Hq(δ)), a random linear code C ⊆ Fnq of rate ρ has relative distance at
least δ with probability 1− exp(−n).

Corollary 2.2. For any ρ ∈ [0, 1] and γ > 0, and prime power q ≥ 2H2(1−ρ−γ)/γ, a random linear
code C ⊆ Fnq of rate ρ has relative distance at least 1− ρ− γ with probability 1− exp(−n).
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An encoding map for C is a bijection EC : Σk → C, where |Σ|k = |C|. We call the elements in
the domain of EC messages, and k the message length. We say that C is encodable in time T if an
encoding map for C can be computed in time T . For a code C ⊆ Σn of relative distance δ and a
given parameter α < δ/2, we say that C is decodable from α-fraction of errors in time T if there
exists an algorithm, running in time T , that given a received word w ∈ Σn, computes the unique
codeword c ∈ C (if any) which satisfies dist(c, w) ≤ α.

Fact 2.3 (Reed-Solomon codes, [RS60, BW]). For any prime power q and integers k ≤ n ≤ q, there
exists a linear code C ⊆ Fnq of rate ρ := k/n and relative distance at least 1 − ρ that is encodable

and decodable from 1−ρ
2 -fraction of errors in time poly(n, log q).

Let C ⊆ Fn be a linear code of dimension k. A generating matrix for C is an n×k matrix G such
that Im(G) = C. A parity-check matrix for C is an (n − k) × n matrix H such that ker(H) = C.
The dual code C⊥ ⊆ Fn is given by

C⊥ = {y ∈ Fn | 〈y, c〉 = 0 ∀c ∈ C}.

It is well-known that C⊥⊥ = C, and that a matrix G is a generating matrix for C if and only if GT

is a parity-check matrix for C⊥.

2.2 List recoverable codes

List recovery is a generalization of the standard error-correction setting where each entry wi of
the received word w is replaced with a list Si of ` possible symbols of Σ. Formally, for α ∈ [0, 1]
and integers `, L we say that a code C ⊆ Σn is (α, `, L)-list recoverable if for any tuple S ∈

(
Σ
≤`
)n

there are at most L different codewords c ∈ C so that dist(c, S) ≤ α. We say that C is (α,L)-list
decodable if it is (α, 1, L)-list recoverable.

Theorem 2.4 ([Gur01], Theorem 5.3). For any prime power q, α ∈ (0, 1− 1
q ), ρ ∈ (0, 1−Hq(α)−

1/ logq(L + 1)), a random linear code C ⊆ Fnq of rate ρ is (α,L)-list decodable with probability
1− exp(−n).

Theorem 2.5 ([Gur01], Lemma 9.6). For any prime power q, integers 1 ≤ ` ≤ q and L > `,
α ∈ (0, 1), and ρ ∈ [0, 1] which is at most

1

log q
·
[
(1− α) · log(q/`)−H2(α)−H2(`/q) · q

logq(L+ 1)

]
,

a random linear code C ⊆ Fnq of rate ρ is (α, `, L)-list recoverable with probability 1− exp(−n).

Corollary 2.6 ([HRW17b], Corollary 2.2). For any ρ ∈ [0, 1], γ > 0, and ` ≥ 1, and for sufficiently
large prime power q, a random linear code C ⊆ Fnq of rate ρ is (1− ρ− γ, `, qO(`/γ))-list recoverable
with probability 1− exp(−n).

We say that C is (α, `, L)-list recoverable in time T if there exists an algorithm, running in time
T , that given a tuple S ∈

(
Σ
`

)n
, returns all codewords c ∈ C (if any) which satisfy dist(c, S) ≤ α.

The following theorem from [GX13, GK16, HRW17a] gives a family of high-rate linear codes which
are efficiently list recoverable with constant alphabet size and nearly-constant output list size.
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Theorem 2.7 ([HRW17b], Theorem A.1). There exists an absolute constant b0 so that the following
holds. For any γ > 0, ` ≥ 1, q ≥ `b0/γ that is an even power of a prime4, and integer n ≥ qb0`/γ,
there exists a linear code C ⊆ Fnq of rate 1 − γ and relative distance Ω(γ2) that is (Ω(γ2), `, L)-

list recoverable for L = qq
(`/γ)·exp(log∗n)

. Moreover, C can be encoded in time poly(n, log q) and list
recovered in time poly(n,L).

2.3 Local codes

Locally testable codes. Intuitively, a code is said to be locally testable [FS95, RS96, GS06] if,
given a string w ∈ Σn, it is possible to determine whether w is a codeword of C, or rather far
from C, by reading only a small part of w. For our purposes, we shall also require an additional
tolerance property of determining whether w is sufficiently close to the code.

Definition 2.8 (Tolerant locally testable code (Tolerant LTC)). We say that a code C ⊆ Σn

is (Q,α, β)-tolerantly locally testable if there exists a randomized algorithm A that satisfies the
following requirements:

• Input: A gets oracle access to a string w ∈ Σn.

• Query complexity: A makes at most Q queries to the oracle w.

• Completeness: If dist(w,C) ≤ α, then A accepts with probability at least 2
3 .

• Soundness: If dist(w,C) ≥ β, then A rejects with probability at least 2
3 .

Remark 2.9. The definition requires 0 ≤ α < β ≤ 1. The above success probability of 2
3 can be

amplified using sequential repetition, at the cost of increasing the query complexity. Specifically,
amplifying the success probability to 1 − exp(−t) requires increasing the query complexity by a
multiplicative factor of O(t).

Locally correctable codes. Intuitively, a code is said to be locally correctable [BFLS91, STV01,
KT00] if, given a codeword c ∈ C that has been corrupted by some errors, it is possible to decode
any coordinate of c by reading only a small part of the corrupted version of c.

Definition 2.10 (Locally correctable code (LCC)). We say that a code C ⊆ Σn is (Q,α)-locally
correctable if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A takes as input a coordinate i ∈ [n], and also gets oracle access to a string w ∈ Σn

that is α-close to a codeword c ∈ C.

• Query complexity: A makes at most Q queries to the oracle w.

• Output: A outputs ci with probability at least 2
3 .

Remark 2.11. The definition requires α < dist(C)/2. The above success probability of 2
3 can be

amplified using sequential repetition, at the cost of increasing the query complexity. Specifically,
amplifying the success probability to 1 − exp(−t) requires increasing the query complexity by a
multiplicative factor of O(t).

4That is, q is of the form p2t for a prime p and for an integer t.
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Locally list recoverable codes. The following definition from [GL89, STV01, GKO+18] gener-
alizes the notion of locally correctable codes to the setting of list decoding/recovery. In this setting,
the local list recovery algorithm is required to output in an implicit sense all codewords that are
consistent with most of the input lists.

Definition 2.12 (Locally list recoverable code). We say that a code C ⊆ Σn is (Q,α, ε, `, L)-locally
list recoverable if there exists a randomized algorithm A that satisfies the following requirements:

• Input: A gets oracle access to a string S ∈
(

Σ
≤`
)n

.

• Query complexity: A makes at most Q queries to the oracle S.

• Output: A outputs L randomized algorithms A1, . . . , AL, where each Aj takes as input a
coordinate i ∈ [n], makes at most Q queries to the oracle S, and outputs a symbol in Σ.

• Completeness: For any codeword c ∈ C which satisfies dist(c, S) ≤ α, with probability at
least 1− ε over the randomness of A, the following event happens: there exists some j ∈ [L]
such that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2

3
, (1)

where the probability is over the internal randomness of Aj .

• Soundness: With probability at least 1 − ε over the randomness of A, the following event
happens: for every j ∈ [L], there exists some c ∈ C such that for all i ∈ [n],

Pr[Aj(i) = ci] ≥
2

3
,

where the probability is over the internal randomness of Aj .

We say that A has preprocessing time Tpre if A outputs the description of the algorithms A1, . . . , AL
in time at most Tpre, and has running time T if each Aj has running time at most T . As before, we
say that the code C is (Q,α, ε, L)-locally list decodable if it is (Q,α, ε, 1, L)-locally list recoverable.

Remark 2.13. The above definition of locally list recoverable code defers from that given in
[HRW17a, Definition 4.5] in two ways. First, our definition requires that the local algorithms
A1, . . . , AL in the output list of A locally decode codeword coordinates as opposed to message coor-
dinates. Second, following [GKO+18], we require an additional soundness property that guarantees
that with high probability, each local algorithm in the output list locally decodes a true codeword.
These two requirements will be crucial for our GV bound local correction application (Corollary
1.5).

2.4 Tensor codes

In this paper we study the list recovery properties of the high-rate tensor product codes, defined
as follows.

Definition 2.14 (Tensor product codes). Let C1 ⊆ Fn1 , C2 ⊆ Fn2 be linear codes. Their tensor
product code C1⊗C2 ⊆ Fn1×n2 consists of all matrices M ∈ Fn1×n2 such that all the rows of M are
codewords of C2 and all the columns are codewords of C1.
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The following are some well-known facts about the tensor product operation, and its effect on
the classical parameters of a code.

Fact 2.15. Suppose that C1 ⊆ Fn1, C2 ⊆ Fn2 are linear codes of rates ρ1, ρ2 and relative distances
δ1, δ2 respectively. Then the tensor product code C1 ⊗ C2 ⊆ Fn1×n2 is a linear code of rate ρ1 · ρ2

and relative distance δ1 · δ2.
Moreover, if C1, C2 are encodable in times T1, T2, respectively, then C1⊗C2 is encodable in time

n1T2 +n2T1, and if C1, C2 are decodable from α1, α2-fraction of errors in times T1, T2, respectively,
then C1 ⊗ C2 is decodable from (α1 · α2)-fraction of errors in time n1T2 + n2T1.

For a linear code C, let C⊗1 := C and C⊗t := C ⊗ C⊗(t−1). By induction on t we have the
following.

Corollary 2.16. Suppose that C ⊆ Fn is a linear code of rate ρ and relative distance δ. Then the
tensor product code C⊗t ⊆ Fnt is a linear code of rate ρt and relative distance δt.

Moreover, if C is encodable in time T then C⊗t is encodable in time t · nt−1 · T , and if C⊗t is
decodable from α-fraction of errors in time T then C⊗t is decodable from αt-fraction of errors in
time t · nt−1 · T .

For a pair of matrices G1 ∈ Fn1×k1 and G2 ∈ Fn2×k2 , their tensor product G1 ⊗ G2 is the
(n1 · n2)× (k1 · k2)-matrix over F with entries

(G1 ⊗G2)(i1,i2),(j1,j2) = (G1)i1,j1 · (G2)i2,j2

for every i1 ∈ [n1], i2 ∈ [n2], j1 ∈ [k1], and j2 ∈ [k2].

Fact 2.17. Suppose that G1, G2 are generating matrices of linear codes C1 ⊆ Fn1 , C2 ⊆ Fn2,
respectively. Then the tensor product G1 ⊗G2 is a generating matrix of C1 ⊗ C2.

3 Deterministic near-linear time global list recovery

3.1 Deterministic near-linear time list recovery of high-rate tensor codes

In this section we prove Theorem 1.1, restated bollow, which shows that the tensor product of an ef-
ficient (poly-time) high-rate globally list recoverable code is globally list recoverable in deterministic
near-linear time.

Theorem 1.1 (Deterministic near-linear time list recovery of high-rate tensor codes). The following
holds for any δ, α > 0, and s = poly(1/δ, 1/α). Suppose that C ⊆ Fn is a linear code of relative
distance δ that is (α, `, L)-globally list recoverable deterministically in time T . Then C⊗t ⊆ Fnt is

(α · s−t2 , `, Lst
3 ·Lt)-globally list recoverable deterministically in time nt · T · Lst

3 ·Lt.

Theorem 1.1 follows by applying the lemma below iteratively.

Lemma 3.1. The following holds for any δ, α, δdec, δ
′
dec > 0, and s̄ = poly(1/δ, 1/α, 1/δdec, 1/δ

′
dec).

Suppose that C ⊆ Fn is a linear code of relative distance δ that is (α, `, L)-globally list recoverable
deterministically in time T , and C ′ ⊆ Fn′ is a linear code that is (α′, `, L′)-globally list recoverable
deterministically in time T ′. Suppose furthermore that C,C ′ are uniquely decodable deterministically
from δdec, δ

′
dec-fraction of errors in times Tdec, T

′
dec, respectively.

Then C ⊗ C ′ ⊆ Fn×n′ is (α′/s̄, `, (L′)s̄·L/(α
′)2)-globally list recoverable deterministically in time

(L′)s̄·L/(α
′)2 · n ·

(
n′ · (T + Tdec) + n · T ′dec + T ′

)
.
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Before we prove the above lemma, we first show how it implies Theorem 1.1.

Proof of Theorem 1.1. We start with the code C, and iteratively tensor with a new copy of C for
t − 1 times. Specifically, we initially set C ′ := C, and at each step we apply Lemma 3.1 with the
code C ′ being the code constructed so far, and the code C being a new copy of C.

On each iteration, we can set in Lemma 3.1 δdec := min{α, δ/2} and Tdec := T since the code
C can be uniquely decoded from δdec-fraction of errors by running the list recovery algorithm for
C on the received word, and returning the codeword from the output list that is closest to the
received word. Moreover, by Corollary 2.16, on the i-th iteration we can set δ′dec := δtdec and
T ′dec := i · ni−1 · T . We conclude that on each iteration we can apply Lemma 3.1 with s̄ := st for
s = poly(1/δ, 1/α).

In the above setting of parameters, we have that the list recovery radius of C⊗t is at least α̃ :=

α/s̄t = α/st
2
, and that the output list size is at most L̃ := Ls̄

t·Lt/α̃2t ≤ LsO(t3)·Lt . Finally, on the i-th
iteration the running time is increased by an additive factor of n′ · (T +Tdec)+n ·T ′dec = O(i ·ni ·T ),
and then by a multiplicative factor of at most L̃ · n, yielding a total running time of at most

t−1∑
i=1

O(i · ni · T ) ·
(
L̃ · n

)t−i
· T ≤ LsO(t3)·Lt · nt · T.

So the desired conclusion holds by slightly enlarging the size of the polynomial s.

We now proceed to the proof of Lemma 3.1. Our plan is to derandomize the approximate
local list recovery algorithm for high-rate tensor codes of [HRW17a]. Recall that an approximate
local list recovery algorithm (local correction version) is a randomized algorithm A that outputs a
collection of (without loss of generality, deterministic) local algorithms Aj satisfying the following:
for any codeword c that is consistent with most of the input lists, with high probability (over the
randomness of A) one of the local algorithms Aj locally corrects most of the coordinates of c.

As observed in [HRW17a], an approximate local list recovery algorithm naturally gives a prob-
abilistic near-linear time global list recovery algorithm as follows. First run the algorithm A to
obtain the collection of local algorithms Aj . Then for each Aj , output a codeword that is obtained
by applying Aj on each codeword coordinate, and then uniquely decoding the resulting word to
the closest codeword. The guarantee now is that any codeword that is consistent with most of the
input lists will be output with high probability.

To derandomize the probabilistic global algorithm described above, we note that the prepro-
cessing algorithm A in [HRW17a] produces the collection of local algorithms Aj by choosing a
random subset of rows in the tensor product,5 that is chosen uniformly at random amongst all
subsets of the appropriate size. We then observe that this subset can be alternatively chosen using
a randomness-efficient sampler without harming much the performance. Finally, since the sampler
uses a small amount of randomness (logarithmic in the blocklength of C), we can afford to iterate
over all seeds and return the union of all output lists. This gives a deterministic near-linear time
global list recovery algorithm that outputs all codewords that are consistent with most of the input
lists.

5In [HRW17a], the role of columns and rows is swapped.

12



3.1.1 Samplers

We start by defining the appropriate samplers we use.

Definition 3.2 ((averaging) sampler). An (n, η, γ)-sampler with randomness r and sample size m
is a randomized algorithm that tosses r random coins and outputs a subset I ⊆ [n] of size m such
that the following holds. For any function f : [n] → [0, 1], with probability at least 1− η over the
choice of I, ∣∣Ei∈I [f(i)]− Ei∈[n] [f(i)]

∣∣ ≤ γ.
We shall use the following construction from Goldreich [Gol97].

Theorem 3.3 ([Gol97], Corollary 5.6). For any η, γ > 0 and integer n, there exists an (n, η, γ)-
sampler with randomness log(n/γ), sample size O

(
1/(ηγ2)

)
, and running time poly(log n, 1/η, 1/γ).

In what follows, let Γ denote the (n, η, γ)-sampler promised by the above theorem, where we set

η := 0.1
L ·

δdec·δ′dec
3 and γ := α′ · δ·δdec·δ

′
dec

24 . Let r := log(n/γ) ≤ log(n · s̄/α′) and m := O(1/(ηγ2)) ≤
L·s̄/(α′)2 denote the randomness and sample size of Γ, respectively (assuming that s̄ is a sufficiently
large polynomial).

3.1.2 Randomness-efficient algorithm

We first describe a randomness-efficient global list recovery algorithm Ã for C⊗C ′ that is obtained
by replacing the choice of a uniform random subset of rows made in [HRW17a] with a sample from
Γ. We will later observe that the randomness can be eliminated by iterating over all seeds of Γ and
returning the union of all output lists.

The algorithm Ã behaves as follows. First, it uses Γ to sample a subset of m rows I =
{i1, . . . , im} ⊆ [n]. Then for k = 1, . . . ,m, it runs the list recovery algorithm A′ for C ′ on the
ik-th row S|{ik}×[n′]; let L′i1 ,L

′
i2
, . . . ,L′im ⊆ C

′ denote the lists output by A′ on each of the rows in

I. Finally, for any choice of codewords c′1 ∈ L′i1 , c
′
2 ∈ L′i2 , . . . , c

′
m ∈ L′im , the algorithm Ã outputs a

codeword c̃ ∈ C ⊗ C ′ that is obtained as follows.
For each column j ∈ [n′], the algorithm Ã runs the list recovery algorithm A for C on the j-th

column S|[n]×{j}; let L1,L2, . . .Ln′ ⊆ C denote the lists output by A on each of the n′ columns.

Then the algorithm Ã chooses for each column j ∈ [n′] the codeword cj ∈ Lj whose restriction
to I is closest to ((c′1)j , (c

′
2)j . . . , (c

′
m)j) (i.e., the restriction of c′1, c

′
2, . . . , c

′
m to the j-th column).

Finally, the algorithm Ã sets the value of each column j ∈ [n′] to cj , and uniquely decodes the
resulting word c̃0 to the nearest codeword c̃ ∈ C ⊗ C ′, assuming there is one at distance at most
δdec · δ′dec. If dist(c̃, S) ≤ α′/s̄, then Ã includes c̃ in the output list L̃. The formal description is
given in Algorithm 1.

3.1.3 Output list size, randomness, and running time

The output list size is at most the number of choices of c′1 ∈ L′1, c′2 ∈ L′2, . . . , c′m ∈ L′m which is
(L′)m ≤ (L′)L·s̄/(α

′)2 , and the randomness is r ≤ log (n · s̄/α′). As to running time, the algorithm
Ã invokes the sampler Γ, followed by m invocations of the list recovery algorithm A′ for C ′, and
(L′)m · n′ invocations of the list recovery algorithm A for C. Finally, it invokes (L′)m times the

13



Algorithm 1 The randomness-efficient global list recovery algorithm Ã for C ⊗ C ′.

function Ã(S ∈
( F
≤`
)n×n′

)
Sample I = {i1, . . . , im} ⊆ [n] of size m using sampler Γ.
for k = 1, . . . ,m do

Run the list recovery algorithm A′ for C ′ on the ik-th row S|{ik}×[n′], and let L′ik ⊆ C
′ be

the list of codewords output by A′.
end for
Initialize c̃0 ∈ Fn×n′ , L̃ ← ∅.
for any choice of codewords c′1 ∈ L′i1 , c

′
2 ∈ L′i2 , . . . , c

′
m ∈ L′im do

for j ∈ [n′] do
Run the list recovery algorithm A for C on the j-th column S|[n]×{j}, and let Lj ⊆ C

be the list of codewords output by A.
Choose a codeword cj ∈ Lj for which cj |I is closest to ((c′1)j , (c

′
2)j , . . . , (c

′
m)j) (breaking

ties arbitrarily).
Set the j-th column of c̃0 to cj .

end for
Uniquely decode c̃0 from (δdec · δ′dec)-fraction of errors, and let c̃ ∈ C ⊗C ′ be the resulting

codeword (if exists). If dist(c̃, S) ≤ α′/s̄, add c̃ to L̃.
end for

end function

unique decoding algorithm for C ⊗C ′ which can be implemented to run in time n · T ′dec + n′ · Tdec

by Fact 2.15. Thus the total running time is at most

poly(log n,m) +m · T ′ + (L′)m · n′ · T + (L′)m · (n · T ′dec + n′ · Tdec)

≤ (L′)s̄·L/(α
′)2 ·

(
n′ · (T + Tdec) + n · T ′dec + T ′

)
,

where the inequality holds for a sufficiently large polynomial s̄.

3.1.4 Correctness

Next we establish the following.

Claim 3.4. Suppose that c̃ ∈ C ⊗ C ′ has dist(c̃, S) ≤ α′/s̄. Then with probability at least 2/3, the
codeword c̃ is included in L̃.

Note that the above claim in particular implies that there are at most O((L′)m) codewords
c̃ ∈ C ⊗ C ′ with dist(c̃, S) ≤ α′/s̄. To prove the above claim, it is enough to show that with
probability at least 2/3 over the choice of I = {i1, . . . , im}, there exists a choice of c′1 ∈ L′i1 , c

′
2 ∈

L′i2 , . . . , c
′
m ∈ L′im such that at the iteration corresponding to c′1, c

′
2, . . . , c

′
m the word c̃0 satisfies

that dist(c̃0, c̃) ≤ δdec · δ′dec. Once we establish this, the unique decoding algorithm for C ⊗ C ′ will
successfully decode c̃ from c̃0.

For a row i ∈ [n], let ĉi be the codeword in L′i that is closest to the i-th row of c̃ (breaking ties
arbitrarily), that is, the codeword ĉi ∈ L′i for which dist(ĉi, c̃|{i}×[n′]) is minimal. We will show that
with probability at least 2/3 over the choice of I = {i1, . . . , im}, at the iteration corresponding to
the choice of ĉi1 ∈ L′i1 , ĉi2 ∈ L

′
i2
, . . . , ĉim ∈ L′im , the word c̃0 will satisfy that dist(c̃0, c̃) ≤ δdec · δ′dec.
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Following [HRW17a], to establish the above, we show that with high probability over the choice
of I, a large fraction of the columns j ∈ [n′] are “good”, in the sense that c̃0 and c̃ agree on all of
these columns at the iteration corresponding to the choice of ĉi1 ∈ L′i1 , ĉi2 ∈ L

′
i2
, . . . , ĉim ∈ L′im . In

what follows, let c̃1, c̃2 . . . , c̃n′ denote the columns of c̃.

Definition 3.5 (Good column). Let I = {i1, . . . , im} ⊆ [n] be a subset of m rows. We say that a
column j ∈ [n′] is good with respect to I if it satisfies the following properties:

1. The codeword c̃ is consistent with all but an α-fraction of the input lists on column j, that
is, dist(c̃j , S|[n]×{j}) ≤ α.

2. Let Lj denote the list of all codewords in C that are consistent with all but an α-fraction of
the input lists on column j. Then for any c ∈ Lj \ {c̃j} it holds that dist(c|I , c̃j |I) > δ/2.

3. dist
(
c̃j |I , ((ĉi1)j , . . . , (ĉim)j)

)
≤ δ/4.

Claim 3.6 below shows that at the iteration corresponding to the choice of ĉi1 ∈ L′i1 , ĉi2 ∈
L′i2 , . . . , ĉim ∈ L

′
im

, c̃0 and c̃ agree on all of the good columns. Claim 3.7 complements this by
showing that with probability at least 2/3 over the choice of I, at least a (1 − δdec · δ′dec)-fraction
of the columns are good with respect to I. The combination of these claims yields the desired
conclusion.

Claim 3.6. Let I = {i1, . . . , im} ⊆ [n] be a subset of m rows, and suppose that a column j ∈ [n′]
is good with respect to I. Then at the iteration corresponding to the choice of ĉi1 ∈ L′i1 , ĉi2 ∈
L′i2 , . . . , ĉim ∈ L

′
im

it holds that c̃0|[n]×{j} = c̃j.

Proof. By Property (1) in the definition of a good column, c̃ is consistent with all but an α-fraction
of the input lists on column j, and so c̃j ∈ Lj . By Property (3),

dist
(
c̃j |I , ((ĉi1)j , . . . , (ĉim)j)

)
≤ δ/4.

On the other hand, by Property (2) for any other codeword c ∈ Lj we have that

dist
(
c|I , ((ĉi1)j , . . . , (ĉim)j)

)
≥ dist

(
c̃j |I , c|I

)
− dist

(
c̃j |I , ((ĉi1)j , . . . , (ĉim)j)

)
> δ/4.

Thus, c̃j is the codeword in Lj whose restriction to I is closest to ((ĉi1)j , . . . , (ĉim)j), and so
the algorithm Ã will set cj := c̃j at the iteration corresponding to the choice of ĉi1 ∈ L′i1 , ĉi2 ∈
L′i2 , . . . , ĉim ∈ L

′
im

. Consequently, the j-th column of c̃0 will be set to the j-th column of c̃.

Claim 3.7. With probability at least 2/3 over the choice of I, at least a (1− δdec · δ′dec)-fraction of
the columns are good with respect to I.

For the proof of the above claim we shall also use the notion of a ”good row”.

Definition 3.8 (Good Row). A row i ∈ [n] is good if the codeword c̃ is consistent with all but an
α′-fraction of the input lists row i, that is, dist(c̃|{i}×[n′], S|{i}×[n′]) ≤ α′.

We claim that with high probability over the choice of I, a large fraction of the rows in I are
good.

Claim 3.9. With probability at least 0.9 over the choice of I, at least a
(

1− δ·δdec·δ′dec
12

)
-fraction of

the rows in I are good.
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Proof of Claim 3.9. For i ∈ [n], let f(i) := dist(c̃|{i}×[n′], S|{i}×[n′]), and note that by the sampling
property of Γ, with probability at least 0.9 over the choice of I we have that

Ei∈I [f(i)] ≤ Ei∈[n] [f(i)] + γ = dist(c̃, S) + γ ≤ α′ ·
δ · δdec · δ′dec

12
,

where the last inequality holds by assumption that γ = α′ · δ·δdec·δ
′
dec

24 and dist(c̃, S) ≤ α′ · δ·δdec·δ
′
dec

24
(which holds assuming that s̄ is a sufficiently large polynomial). An averaging argument yields that

in this case, for at least a (1− δ·δdec·δ′dec
12 )-fraction of the rows i ∈ I it holds that dist(c̃|{i}×[n′], S|{i}×[n′]) =

f(i) ≤ α′.

Finally, we provide the proof of Claim 3.7.

Proof of Claim 3.7. We will show that each of the three properties in the definition of a good

column holds for at least a (1− δdec·δ′dec
3 )-fraction of the columns with probability at least 0.9 over

the choice of I. The claim will then follow by a union bound over the choice of I and the fraction
of bad columns.

Property (1): Assuming that dist(c̃, S) ≤ α·δdec·δ′dec
3 (which once more holds assuming that s̄ is a

sufficiently large polynomial), an averaging argument implies that for at least a (1− δdec·δ′dec
3 )-fraction

of the columns j ∈ [n′] it holds that dist
(
c̃j , S|[n]×{j}

)
≤ α.

Property (2): Fix j ∈ [n′] and c ∈ Lj \ {c̃j}, and note that dist(c, c̃j) ≥ δ since C has relative
distance δ. For i ∈ [n], let

f(i) :=

{
1, if ci = (c̃j)i

0, otherwise.
,

and note that by the sampling property of Γ, with probability at least 1 − 0.1
L ·

δdec·δ′dec
3 over the

choice of I we have that

dist(c|I , c̃j |I) = Ei∈I [f(i)] ≥ Ei∈[n] [f(i)]− γ = dist(c, c̃j)− γ > δ/2,

where the last inequality follows by choice of γ < δ/2. Hence, by a union bound, with probability

at least 1− 0.1 · δdec·δ
′
dec

3 over the choice of I, we have dist(c|I , c̃j |I) > δ/2 for all c ∈ Lj \ {c̃j}.
Finally, by an averaging argument we conclude that with probability at least 0.9 over the choice

of I, at least a (1− δdec·δ′dec
3 )-fraction of the columns j ∈ [n′] satisfy Property (2).

Property (3): By Claim 3.9, with probability at least 0.9 over the choice of I = {i1, . . . , im},
at least a (1 − δ·δdec·δ′dec

12 )-fraction of the rows in I are good, where for a good row ik ∈ I we have
that c̃|{ik}×[n′] ∈ L′ik , and so ĉik = c̃|{ik}×[n′]. Assuming this is the case, we have that c̃ agrees with

(ĉi1 , . . . , ĉim) on at least a
(

1− δ·δdec·δ′dec
12

)
-fraction of the points in I×[n′], and so by averaging for at

least a (1− δdec·δ′dec
3 )-fraction of the columns j ∈ [n′] it holds that dist (c̃j |I , ((ĉi1)j , . . . , (ĉim)j)) ≤ δ/4.
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3.1.5 Deterministic algorithm

Lastly, to obtain a deterministic global list recovery algorithm, we simply iterate over the ran-
domness of Γ, and output the union of all output lists. This increases the running time by a
multiplicative factor of 2r = n · s̄/α′. Moreover, Claim 3.4 guarantees that any codeword that is
consistent with all but (α′/s̄)-fraction of the input lists will be output in one of the invocations,
and consequently will be included in the final output list (which is of size at most (L′)s̄·L/(α

′)2 by
the same claim).

3.2 Deterministic nearly-linear time capacity-achieving list recoverable codes

In this section we prove the following lemma which implies Corollary 1.2 from the introduction.

Lemma 3.10. For any constants ρ ∈ [0, 1], γ > 0, and ` ≥ 1 there exists an infinite family of
codes {CN}N that satisfy the following.

• CN is an F2-linear code of block length N and alphabet size No(1).

• CN has rate ρ and relative distance at least 1− ρ− γ.

• CN is (1− ρ− γ, `,No(1))-globally list recoverable deterministically in time N1+o(1).

• CN is encodable deterministically in time N1+o(1).

To prove the above lemma, we first use Theorem 1.1 to obtain deterministic nearly-linear time
high-rate list recoverable codes, and then use the Alon-Edmonds-Luby (AEL) distance amplification
method [AEL95, AL96] to turn these codes into deterministic nearly-linear time capacity-achieving
list recoverable codes. Specifically, we shall use the following version of the AEL method for list
recovery from [GI02] which roughly says the following. Given an efficient “outer” code C of rate
approaching 1 that is list recoverable from a tiny fraction of errors, and a small “inner” code C ′

that is a (possibly non-efficient) capacity-achieving list recoverable code, they can be combined to
get a new code CAEL that on the one hand, inherits the tradeoff between rate and error correction
that C ′ enjoys, and on the other hand, is almost as efficient as C is.

Lemma 3.11 (Distance amplification for list recovery, [GI02], Lemma 6). There exists an absolute
constant b0 such that the following holds for any δ, α, γ > 0 and t ≥ (δ · α · γ)−b0.

Suppose that C ⊆ (Σρ·t)n is an outer code of rate 1 − γ and relative distance δ that is (α, `, L)-
globally list recoverable in time T , and C ′ ⊆ Σt is an inner code of rate ρ and relative distance
1 − ρ − γ that is (1 − ρ − γ, `′, `)-globally list recoverable in time T ′. Then there exists a code
CAEL ⊆ (Σt)n of rate ρ − γ and relative distance 1 − ρ − 2γ that is (1 − ρ − 2γ, `′, L)-globally list
recoverable in time T + n · (T ′ + poly(t, log n)).

Moreover,

• If C,C ′ have encoding times T, T ′, respectively, then CAEL has encoding time T + n · (T ′ +
poly(t, log n)).

• If C,C ′ are F-linear then so is CAEL.
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Remark 3.12. Lemma 6 in [GI02] is stated for the special case of `′ = 1, and for a more specific
choice of list recovery radii and running times. Also, it does not mention explicitly relative distance,
encoding time, and linearity. However, these can be deduced from the proof of the lemma, combined
with the expander graph construction described in [KMRS17, Lemma 2.12] (See also [GKO+18,
Lemma 5.4] for a similar transformation for the setting of local list recovery).

Next we prove Lemma 3.10, based on Theorem 1.1 and Lemma 3.11.

Proof of Lemma 3.10. We shall first apply Theorem 1.1 on a suitable base code C to obtain a
deterministic nearly-linear time high-rate list recoverable code C ′, and then use the transformation
given by Lemma 3.11 to obtain a deterministic nearly-linear time capacity-achieving list recoverable
code C ′′.

Base code C: The code C will be the efficient high-rate list recoverable code given by Theorem
2.7, in an appropriate setting of parameters.

Specifically, in what follows, we let β := (log log logN)−o(1) (where the o(1) term in the exponent
is an arbitrarily slowly decreasing function of N), and we choose the block length of C to be Nβ,
and the rate to be 1−γβ/4. As we will see in a moment, the rationale for these choices is that if we
raise C to the tensor power of 1/β, Theorem 1.1 will yield a code of block length N with running
time N1+O(β) = N1+o(1) and rate greater than 1− γ.

Theorem 2.7 then guarantees, for any constant `′ ≥ 1, the existence of a linear code C as above
that has relative distance (log log logN)−o(1), and is ((log log logN)−o(1), `′, exp exp((log log logN)o(1)))-
globally list recoverable in time NO(β), provided that the alphabet size is sufficiently large even
power of a prime exp((log log logN)o(1)).

High-rate list recoverable code C ′: Let C ′ be the code obtained by raising C to a tensor power
of 1/β = (log log logN)o(1). Then C ′ has block length N , alphabet size exp((log log logN)o(1)), rate
at least 1 − γ/4, and relative distance exp(−(log log logN)o(1)). Furthermore, by Theorem 1.1, it
is (exp(−(log log logN)o(1)), `′, No(1))-globally list recoverable deterministically in time N1+O(β) =
N1+o(1).

Capacity-achieving list recoverable code C ′′: Let C ′′ be the code obtained by applying
Lemma 3.11 with the outer code being the code C ′ constructed so far, and the inner code being a
capacity-achieving list recoverable code D′′ of rate ρ+γ/4 and relative distance at least 1−ρ−γ/2.

Corollaries 2.2 and 2.6 guarantee the existence of a code D′′ as above that is (1− ρ− γ/2, `, `′)-
globally list recoverable for some constant `′, provided that the alphabet size is a sufficiently large
constant prime power, and the block length is sufficiently large. To satisfy the conditions of Lemma
3.11, we further require that the block length of D′′ is sufficiently large exp((log log logN)o(1)), and
that the alphabet size of C ′ is exp exp((log log logN)o(1))—the size of D′′—which can be achieved
by grouping together consecutive symbols of C ′.

Lemma 3.11 then implies that C ′′ is a code of block length N , alphabet size No(1), rate ρ, and
relative distance 1− ρ− γ, that is (1− ρ− γ, `,No(1))-globally list recoverable deterministically in
time N1+o(1) (using brute-force decoding of inner code).

Finally, it can be verified that encoding time is as claimed, and that all codes in the process
can be taken to be F2-linear, and all transformations preserve F2-linearity, so the final code can be
guaranteed to be F2-linear as well.
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3.3 Deterministic near-linear time unique decoding up to the GV bound

In this section we prove the following lemma which implies Corollary 1.3 from the introduction.

Lemma 3.13. For any constants ρ ∈ [0, 0.02] and γ > 0 there exists an infinite family of binary
linear codes {CN}N , where CN has block length N and rate ρ, and is globally uniquely decodable

deterministically from
H−1

2 (1−ρ)−γ
2 -fraction of errors in time N1+o(1).

Furthermore, there exists a randomized algorithm which, on input N , runs in time N1+o(1) and
outputs with high probability a description of a code CN with the properties above. Given the
description, the code CN can be encoded deterministically in time N1+o(1).

To prove the above lemma, we rely on the following lemma from [Tho83, HRW17a] which says that
one can turn a code that approximately satisfies the Singleton bound into one that approximately
satisfies the GV bound via random concatenation. In what follows let θ(x) := 1−H2(1− 2x−1) for
x ∈ [0, 1].

Claim 3.14 ([GR10], Lemma 2.2). θ(x) ≤ x for all x ∈ [0, 1].

Lemma 3.15 (Random concatenation, [HRW17c], Lemma 7.3). There exists an absolute constant

b0 such that the following holds for any γ > 0, ρ′ ∈ [0, 1], ρ ∈
[
0, θ(ρ

′)−γ/2
ρ′

]
, and t ≥ b0

γ2·(1−ρ)
.

Suppose that C ⊆ (Fρ
′·t

2 )n is an F2-linear code of rate ρ and relative distance 1 − ρ − γ2

b0
, and

Ccon ⊆ Ftn2 is a code obtained from C by applying a random linear code C(i) ⊆ Ft2 of rate ρ′ on each
coordinate i ∈ [n] of C independently. Then Ccon has relative distance at least H−1

2 (1− ρ · ρ′)− γ
with probability 1− exp(−n).

We shall also use the following lemma that states the effect of concatenation on list recovery
properties.

Lemma 3.16 (Concatenation for list recovery, [HRW17c], Lemma 7.4). Suppose that C ⊆ (Σρ′·t)n

is (α, `, L)-globally list recoverable in time T , and Ccon ⊆ Σtn is a code obtained from C by applying
a code C(i) ⊆ Σt of rate ρ′ on each coordinate i ∈ [n] of C. Suppose furthermore that at least
(1 − γ)-fraction of the codes C(i) are (α′, `′, `)-globally list recoverable in time T ′. Then Ccon is
((α− γ) · α′, `′, L)-globally list recoverable in time T + n · T ′.

Next we prove Lemma 3.13, based on Lemma 3.10 and the above Lemmas 3.15 and 3.16.

Proof of Lemma 4.12. We apply random concatenation on the deterministic nearly-linear time
capacity-achieving list recoverable code C given by Lemma 3.10. By Lemma 3.15, the result-
ing code C̃ will approach the Gilbert-Varshmaov bound with high probability, while by Lemma
3.16, the code C̃ will also be nearly-linear time list recoverable (and in particular, list decodable)
with high probability. Thus, whenever the list decoding radius exceeds half the minimum distance
(which turns to be the case whenever the rate is smaller than 0.02), the code C̃ can be uniquely
decoded from half the minimum distance in near-linear time by first running the list decoding al-
gorithm, and then choosing the codeword from the output list that is closest to the received word.
Details follow.
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The code C: Let b0 be the absolute constant guaranteed by Lemma 3.15, and apply Lemma
3.10 with rate ρ0 := ρ

θ−1(ρ+γ/2)
(noting that this is at most 1 since θ(x) ≤ x for all x ∈ [0, 1],

and θ is monotonically increasing in [0, 1]), proximity parameter γ0 := γ2/b0, and input list size
`0 := 21/γ . Lemma 3.10 then guarantees, for infinite number of N ’s, the existence of an F2-linear
code C of block length N , alphabet size No(1), rate ρ0, and relative distance 1 − ρ0 − γ0, that is
(1− ρ0 − γ0, `0, N

o(1))-globally list recoverable deterministically in time N1+o(1).

The code C̃: Let C̃ ⊆ FtN2 be a binary linear code obtained from C by applying a random linear
code C(i) ⊆ Ft2 of rate ρ′ := θ−1(ρ + γ/2) on each coordinate i ∈ [n] of C independently. Then
the code C̃ has rate ρ, and by Lemma 3.15 it also has relative distance at least H−1

2 (1 − ρ) − γ
with probability 1− exp(−N). Moreover, by Theorem 2.4, each C(i) is (H−1

2 (1− ρ′ − γ), 21/γ)-list
decodable with probability 1−o(1), so with probability 1−exp(−N) this property holds for at least
(1−γ2/b0)-fraction of the C(i)’s. Lemma 3.16 implies in turn that the code C̃ is (α̃, No(1))-globally
list decodable in time N1+o(1) (using brute-force decoding of inner codes C(i)) for

α̃ = (1− ρ0 − 2γ2/b0) ·H−1
2 (1− ρ′ − γ).

Decoding: Next assume that the list decoding radius α̃ exceeds the desired decoding radius, i.e.,

(1− ρ0 − 2γ2/b0) ·H−1
2 (1− ρ′ − γ) ≥ H−1

2 (1− ρ)− γ
2

, (2)

where ρ0 := ρ
θ−1(ρ+γ/2)

and ρ′ := θ−1(ρ + γ/2). It was shown in [Rud07, Section 4.4] that this is

indeed the case whenever ρ ≤ 0.02 and γ is a sufficiently small constant.
Assuming that (2) holds, one can globally uniquely decode C̃ up to half the minimum distance

in time N1+o(1) by list decoding C̃, and outputting the codeword in the output list that is closest
to the received word.

4 Local list recovery

4.1 Local list recovery of high-rate tensor codes

In this section we prove the following lemma which implies Theorem 1.4 from the introduction.

Lemma 4.1. The following holds for any δ, α, ε > 0 and s = poly(1/δ, 1/α). Suppose that C ⊆ Fn
is a linear code of relative distance δ that is (α, `, L)-globally list recoverable, and (Q, δ/2)-locally

correctable, and t ≥ 3. Then C⊗t ⊆ Fnt is (Q̃, α·s−t3 , ε, `, Lst
3 ·logt L ·log(1/ε))-locally list recoverable

for

Q̃ = n3 · (Q logQ)t · Lst
3 ·logt L · log2(1/ε).

Moreover, if C is globally list recoverable in time poly(n), locally correctable in time T , and
globally decodable for (δ/2)-fraction of errors in time poly(n), then the local list recovery algorithm

for C⊗t has preprocessing time poly(n) ·Lst
3 ·logt L · log2(1/ε) and running time poly(n) · (T log T )t ·

(st
3

logt L).
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The above lemma relies on the following lemma from [HRW17a] which says that the tensor
product of a high-rate globally list recoverable code (which is not necessarily locally correctable)
is approximately locally list recoverable. Approximate local list recovery is a relaxation of local list
recovery, where the local algorithms in the output list are not required to recover all the codeword
coordinates, but only most of them. Formally, a β-approximately (Q,α, ε, `, L)-locally list recoverable
code C ⊆ Σn satisfies all the requirements of Definition 2.12, except that the requirement (1) is
replaced with the relaxed condition that

Pr
i∈[n]

[
Aj(i) = ci

]
≥ 1− β, (3)

where the probability is over the choice of uniform random i ∈ [n],6 and the soundness requirement
is eliminated.

Lemma 4.2 (Approximate local list recovery of high-rate tensor codes, [HRW17b], Lemma 4.1).
The following holds for any δ, α, β, ε > 0 and s = poly(1/δ, 1/α, 1/β). Suppose that C ⊆ Fn is
a linear code of relative distance δ that is (α, `, L)-globally list recoverable. Then C⊗t ⊆ Fnt is

β-approximately (n · (st2 logt L), α · s−t2 , ε, `, Lst
2 ·logt L · log(1/ε))-locally list recoverable.

Moreover, if C is globally list recoverable in time poly(n), then the approximate local list recovery

algorithm for C⊗t has preprocessing time log(n) · Lst
2 ·logt L · log(1/ε) and running time poly(n) ·

(st
2

logt L).

To turn the approximate local list recovery algorithm given by the above lemma into a local list
recovery algorithm we shall use the fact that the tensor product of a locally correctable code is
also locally correctable with slightly worse parameters. A similar observation was made in [Vid15,
Proposition 3.15.], but for completeness we provide a full proof below in Section 4.1.1.

Lemma 4.3 (Local correction of tensor codes). Suppose that C ⊆ Fn is a linear code that is

(Q,α)-locally correctable. Then C⊗t ⊆ Fnt is (
(
O(Q logQ)

)t
, αt)-locally correctable.

Moreover, if C is locally correctable in time T , then the local correction algorithm for C⊗t runs
in time (O(T log T ))t.

To guarantee the soundness property we shall also use the following lemma which says that high-
rate tensor codes are tolerantly locally testable. We prove this lemma in Section 4.1.2, based on a
robust local testing procedure for high-rate tensor codes given in [Vid15].

Lemma 4.4 (Tolerant local testing of high-rate tensor codes). Suppose that C ⊆ Fn is a linear
code of relative distance δ, and t ≥ 3. Then C⊗t ⊆ Fnt is (n2 · δ−O(t), δO(t), (δ/2)t)-tolerantly locally
testable.

Moreover, if C is globally decodable from (δ/2)-fraction of errors in time T , then the tolerant
local testing algorithm for C⊗t runs in time T · n · δ−O(t).

Finally, we show a general transformation that turns an approximately locally list recoverable
code that is also locally correctable and tolerantly locally testable into a (genuinely) locally list
recoverable code.

6A simple averaging argument shows that in the case of approximate local list recovery, each of the local algorithms
A1, . . . , AL can be assumed to be deterministic.
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Lemma 4.5. Suppose that C ⊆ Σn is a β-approximately (Q,α, ε, `, L)-locally list recoverable
code that is also (Qcorr, γ)-locally correctable and (Qtest, β, γ)-tolerantly locally testable. Then C
is (Q̃, α, 2ε, `, L)-locally list recoverable for

Q̃ = max{Q ·Qtest ·O(|L| log(|L|/ε)), Q ·Qcorr}.

Moreover, if the approximate local list recovery algorithm has preprocessing time Tpre and running
time T , and the local correction and tolerant local testing algorithms run in times Ttest, Tcorr, respec-
tively, then the local list recovery algorithm has preprocessing time Tpre +T ·Ttest ·O(|L| log(|L|/ε))
and running time T · Tcorr.

Proof. First note that by Remark 2.9, we may assume that the tolerant local testing algorithm Atest

fails with probability at most ε/|L|, at the cost of increasing the query complexity and running
time by a multiplicative factor of O(log(|L|/ε)).

The local list recovery algorithm Ã first runs the approximate local list recovery algorithm A,
let A1, A2, . . . , AL be the (deterministic) output local algorithms. Then for any j = 1, . . . |L|, the
local list recovery algorithm Ã runs the tolerant local testing algorithm Atest on Aj , and outputs
Acorr(Aj) if and only if the test passes, where Acorr is the local correction algorithm.

It can be verified that query complexity, output list size, and running times are as claimed. For
completeness, suppose that c ∈ C satisfies dist(c, S) ≤ α. Then with probability at least 1 − ε
the approximate local list recovery algorithm A will output some Aj for which dist(Aj , c) ≤ β.
Consequently, the tolerant local testing algorithm Atest will accept Aj with probability at least
1 − ε. So we conclude that with probability at least 1 − 2ε the local algorithm Acorr(Aj) will be
included in the output list of Ã, and furthermore, by properties of Acorr it will be consistent with
the codeword c.

For soundness, suppose that Acorr(Aj) is not consistent with some codeword c ∈ C. Then by
properties of Acorr, it holds that dist(Aj , C) > γ. But in this case the tolerant local testing algorithm
Atest will reject Aj with probability at least 1− ε/|L|. So by union bound, with probability at least
1− ε, each local algorithm in the output list of Ã is consistent with some codeword c ∈ C.

Next we prove Lemma 4.1 based on the above transformation and Lemmas 4.2, 4.3, and 4.4.

Proof of Lemma 4.1. By Lemma 4.3 the tensor product code C⊗t is ((O(Q logQ))t, (δ/2)t)-locally
correctable, and by Lemma 4.4 it is (n2 · δ−O(t), δb0t, (δ/2)t)-tolerantly locally testable for some
absolute constant b0. Moreover, by Lemma 4.2 the tensor product code C⊗t is (δb0t)-approximately

(n·(st3 logt L), α·s−t3 , ε/2, `, Lst
3 ·logt L ·log(1/ε))-locally list recoverable. Finally, Lemma 4.5 implies

that C⊗t is (Q̃, α · s−t3 , ε, `, Lst
3 ·logt L · log(1/ε))-locally list recoverable for

Q̃ = n3 · (Q logQ)t · Lst
3 ·logt L · log2(1/ε).

Running times follow similarly.

4.1.1 Local correction of tensor codes – proof of Lemma 4.3

Lemma 4.3 can be easily deduced from the following lemma using induction.
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Lemma 4.6. Suppose that C ⊆ Fn, C ′ ⊆ Fn′ are linear codes that are (Q,α), (Q′, α′)-locally
correctable, respectively. Then C ⊗ C ′ ⊆ Fn×n′ is (Q ·O(Q′ logQ′), α · α′)-locally correctable.

Moreover, if C,C ′ are locally correctable in times T, T ′, respectively, then the local correction
algorithm for C ⊗ C ′ runs in time T ·O(T ′ log T ′).

Proof. First note that by Remark 2.11, we may assume that the local correction algorithm A′ for
C ′ fails with probability at most 1/6, at the cost of increasing the query complexity and running
time by some multiplicative constant b0. Similarly, we may also assume that the local correction
algorithm A for C fails with probability at most 1/(6b0Q

′), at the cost of increasing the query
complexity and running time by a multiplicative factor of O(logQ′).

Let w ∈ Fn×n′ be a string that is (α · α′)-close to some codeword c ∈ C ⊗ C ′. Recall that the
local correction algorithm Ã for C ⊗ C ′ is given as input a codeword coordinate (i, j) ∈ [n] × [n′]
in the tensor product code C ⊗ C ′, is allowed to query the received word w at every coordinate of
C ⊗ C ′, and must produce a guess for ci,j , the codeword value indexed by (i, j).

To this end, the local correction algorithm Ã for C ⊗C ′ first runs the local correction algorithm
A′ for C ′ on input j ∈ [n′], let J = {j1, . . . , jm} ⊆ [n′] be the set of query locations for m := b0 ·Q′.
Next for each query location jr ∈ J , the algorithm Ã obtains a guess for the symbol at position
(i, jr) by running the local correction algorithm A for C on input i with oracle access to the column
jr. Let vr be the guess for the symbol at position (i, jr) produced by A. At this point we have
candidate symbols (v1, . . . , vm) for all positions in {i} × J . Finally, the algorithm Ã responds with
the output of A′ on query locations j1, . . . , jm and values v1, . . . , vm. The formal description of the
local correction algorithm Ã is given in Algorithm 2.

Algorithm 2 The local correction algorithm Ã for C ⊗ C ′.
function Ã((i, j) ∈ [n]× [n′])

. Ã receives oracle access to a matrix w ∈ Fn×n′ .
Run the local correction algorithm A′ for C ′ on input j, let J = {j1, . . . , jm} ⊆ [n′] be the

query locations for m = b0 ·Q′.
for r = 1, . . . ,m do

Run the local correction algorithm A for C on input i and oracle access to the jr-th
column w|[n]×{jr} .

Let vr ← A(i).
. vr is a candidate for the symbol at position (i, jr) ∈ [n]× [n′].

end for
. At this point, we have candidate symbols (v1, . . . , vm) for every position in {i} × J .
Let v be the output of A′ on query locations j1, . . . , jm and values v1, . . . , vm.

Return: v
end function

The algorithm Ã invokes the algorithm A′ once, followed by m = O(Q′) invocations of the
algorithm A. Thus, the query complexity of Ã is

O(Q′) +m ·O(Q · logQ′) = Q ·O(Q′ logQ′),

and the running time is

O(T ′) +m ·O(T · logQ′) = O(T ′) + T ·O(Q′ logQ′) = T ·O(T ′ log T ′).
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As for correctness, recall that by assumption the received word w is (α ·α′)-close to the codeword
c ∈ C ⊗ C ′. Let us call a column ’good’ if w and c are α-close on this column, and note that
by Markov’s inequality, at least (1 − α′)-fraction of the columns are good. Furthermore, by our
assumptions on each good column the local correction algorithm A for C succeeds with probability
at least 1 − 1

6m , and so by union bound, with probability at least 5/6 the values (v1, . . . , vm) will
be computed correctly on each good column. Conditioned on this, the local correction algorithm
A′ for C ′ computes v correctly with probability at least 5/6, so the total success probability is 2/3.

4.1.2 Tolerant local testing of high-rate tensor codes – proof of Lemma 4.4

The proof of Lemma 4.4 relies on the following robust local testing procedure for high-rate tensor
codes from [Vid15] which is a local testing procedure with the property that local view on words
far from the code is far on average from an accepting view.

Theorem 4.7 (Robust local testing of high-rate tensor codes, [Vid15, Theorem 3.1]). Suppose that
C ⊆ Fn is a linear code of relative distance δ, and t ≥ 3. Then for any w ∈ Fnt, the expected
relative distance of w from C⊗2 on a random axis-parallel plane is at least δO(t) · dist(w,C⊗t).

Proof of Lemma 4.4. Say we are given a string w ∈ Fnt and we need to test if it is close to a
codeword of C⊗t. Let τ ≥ δO(t) be some threshold parameter to be chosen later. The test is to
choose a random axis-parallel plane P in Fnt and find if there is a codeword c ∈ C⊗2 which is
τ -close to w|P . If yes, then accept, else reject. Clearly this test makes only n2 queries. Also by
Corollary 2.16, when τ < (δ/2)2, this can be implemented in O(T · n) time.

To show completeness, let w ∈ Fnt be some string which is α-close to a codeword c ∈ C⊗t for
α ≥ δO(t) to be chosen later. Since individual points on a random axis-parallel plane are uniform
over Fnt , by Markov inequality, the probability that w|P is τ -far from c|P ∈ C⊗2 is at most α/τ .
So the probability that the test rejects w is at most p0 := α/τ .

To show soundness, let w ∈ Fnt be some string which is (δ/2)t-far from any codeword c ∈ C⊗t.
Then by Theorem 4.7, the expected relative distance of w|P from C⊗2 is at least δO(t). Thus the

probability that the test rejects w is at least p1 := δO(t)−τ
1−τ .

Next observe that we can choose τ ≥ δO(t) and α ≥ δO(t) sufficiently small so that p0 < p1.
Finally to get the acceptance and rejection probabilities to 2/3 as in the definition of tolerant
locally testable codes, we repeat the above local test δ−O(t) times and accept a string if it is
accepted in at least p0+p1

2 -fraction of the tests. By Chernoff bound, the new test will have the
required soundness and completeness.

4.2 Capacity-achieving locally list recoverable codes

In this section we prove the following lemma which shows the existence of capacity-achieving locally
list recoverable codes. An analogous lemma was proven in [HRW17b, Lemma 5.3], however only
for local decoding message coordinates, and without the soundness property. The fact that we are
able to locally correct codeword coordinates, as well as guarantee the soundness property, will be
crucial for our GV bound local correction application.

Lemma 4.8. For any constants ρ ∈ [0, 1], γ > 0, ε > 0, and ` ≥ 1 there exists an infinite family
of codes {CN}N that satisfy the following.
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• CN is an F2-linear code of block length N and alphabet size No(1).

• CN has rate ρ and relative distance at least 1− ρ− γ.

• CN is (No(1), 1−ρ−γ, ε, `,No(1))-locally list recoverable with preprocessing and running time
No(1).

• CN is encodable in time N1+o(1).

As in the proof of Lemma 3.10, we first use Lemma 4.1 to obtain high-rate locally list recoverable
codes, and then use the Alon-Edmonds-Luby (AEL) distance amplification method [AEL95, AL96]
to turn these codes into capacity-achieving locally list recoverable codes. However, this time we
shall use the following version of the AEL method for local list recovery from [GKO+18].

Lemma 4.9 (Distance amplification for local list recovery, [GKO+18], Lemma 5.4.). There exists
an absolute constant b0 such that the following holds for any δ, α, γ > 0 and t ≥ (δ · α · γ)−b0.

Suppose that C ⊆ (Σρ·t)n is an outer code of rate 1−γ and relative distance δ that is (Q,α, ε, `, L)-
locally list recoverable, and C ′ ⊆ Σt is an inner code of rate ρ and relative distance 1− ρ− γ that
is (1− ρ− γ, `′, `)-globally list recoverable. Then there exists a code CAEL ⊆ (Σt)n of rate ρ− γ and
relative distance 1− ρ− 2γ that is (Q · poly(t), 1− ρ− 2γ, ε, `′, L)-locally list recoverable.

Moreover,

• If the local list recovery algorithm for C has preprocessing time Tpre and running time T , and
C ′ can be globally list recovered in time T ′, then the local list recovery algorithm for CAEL

has preprocessing time Tpre +Q · (T ′+ poly(t, log n)) and running time T +Q · poly(t) · (T ′+
poly(log n)).

• If C,C ′ have encoding times T, T ′, respectively, then CAEL has encoding time T + n · (T ′ +
poly(t, log n)).

• If C,C ′ are F-linear then so is CAEL.

To apply Lemma 4.1, we shall also need a high-rate base code that is both globally list recoverable
and locally correctable. We obtain such a code by intersecting the high-rate globally list recoverable
codes given by Theorem 2.7 with the high-rate locally correctable codes given by the following
lemma.

Lemma 4.10 (High-rate locally correctable codes). For any γ, β > 0, and integer N where q := Nβ

is a prime power, there exists a code CN that satisfies the following.

• CN is an Fq-linear code of block length N and alphabet size N (γβ)−O(1/β)
.

• CN has rate 1− γ and relative distance Ω(γ · β).

• CN is (Nβ · (γβ)−O(1/β),Ω(γ · β))-locally correctable in time Nβ · (γβ)−O(1/β).

• CN is encodable in time poly(N).

We prove the above lemma in Section 4.2.1, based on the high-rate locally correctable codes of
[KSY14]. Next we prove Lemma 4.8, based on Lemmas 4.1, 4.9, and 4.10.
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Proof of Lemma 4.8. The proof is similar to that of Lemma 3.10, with the main difference being
that now we also need to take care that the base code will also be locally correctable. Specifically,
we shall first apply Lemma 4.1 on a suitable high-rate base code C that is both globally list
recoverable and locally correctable to obtain a high-rate locally list recoverable code C ′, and then
use the transformation given by Lemma 4.9 to obtain a capacity-achieving locally list recoverable
code C ′′.

Base code C: The code C will be the intersection of the efficient high-rate globally list recoverable
code given by Theorem 2.7 with the high-rate locally correctable code given by Lemma 4.10, in an
appropriate setting of parameters.

Specifically, let β := (log logN)−o(1) (where the o(1) term in the exponent is an arbitrarily
slowly decreasing function of N), and we choose the block length of C to be Nβ, and the rate to be
1−γβ/4. The code C will be constructed in turn as D1∩D2, where D1 is the high-rate globally list
recoverable code given by Theorem 2.7, and D2 is obtained using the high-rate locally correctable
code given by Lemma 4.10, and both codes D1, D2 have block length Nβ and rate 1−γβ/8. Details
follow.

The code D1: Let `′ ≥ 1 be a constant to be chosen later on, and let D1 be the linear code guaran-
teed by Theorem 2.7 of block length Nβ, rate 1−γβ/8, and relative distance (log logN)−o(1), that is
((log logN)−o(1), `′, exp exp((log logN)o(1)))-globally list recoverable. Note that such a code exists
provided that the alphabet size is sufficiently large even power of a prime q := exp((log logN)o(1)).

The code D2: The code D2 will be constructed in turn as the concatenation of the high-rate
locally correctable code D′2 given by Lemma 4.10 with an efficiently encodable and decodable linear
code D′′2 obtained using Fact 2.3. The purpose of the concatenation is to reduce the alphabet size
of D′2 to that of D1, as well as make the code D′2 linear.

We first describe the code D′2. Suppose that Nβ2
is a power of q (which holds for infinite number

of N ’s). Lemma 4.10 guarantees the existence of an Fq-linear code D′2 of length Nβ · (1− γβ/16),
alphabet size qa for a = (logN)1+o(1), rate 1 − γβ/16, and relative distance (log logN)−o(1), that
is (NO(β2), (log logN)−o(1))-locally correctable.

Next we describe the code D′′2 . The code D′′2 will be an efficiently encodable and decodable linear
code of length 1

1−γβ/16 ·a, alphabet size q, rate 1−γβ/16, and relative distance (log logN)−o(1). The

code D′′2 can be obtained in turn by taking the Reed-Solomon code from Fact 2.3 of length 1−γβ/32
1−γβ/16 ·a,

alphabet size qlog logN (noting that qlog logN > log2N > a), rate 1 − γβ/32, and relative distance
(log logN)−o(1), and concatenating it with another Reed-Solomon code of length 1

1−γβ/32 · log logN ,

alphabet size q, rate 1− γβ/32, and relative distance (log logN)−o(1).
Finally, by concatenating D′2 with D′′2 we obtain a linear code D2 of length Nβ, alphabet size q =

exp((log logN)o(1)), rate 1−γβ/8, and relative distance (log logN)−o(1), that is (NO(β2), (log logN)−o(1))-
locally correctable.

We conclude that C := D1∩D2 is a linear code of block lengthNβ, alphabet size exp((log logN)o(1)),
rate 1−γβ/4, and relative distance (log logN)−o(1), that is ((log logN)−o(1), `′, exp exp((log logN)o(1)))-
globally list recoverable, and (NO(β2), (log logN)−o(1))-locally correctable.
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High-rate locally list recoverable code C ′: Let C ′ be the code obtained by raising C to a ten-
sor power of 1/β = (log logN)o(1). Then C ′ has block length N , alphabet size exp((log logN)o(1)),
rate at least 1 − γ/4, and relative distance exp(−(log logN)o(1)). Furthermore, by Lemma 4.1, it
is (No(1), exp(−(log logN)o(1)), ε, `′, No(1))-locally list recoverable.

Capacity-achieving locally list recoverable code C ′′: Let C ′′ be the code obtained by ap-
plying Lemma 4.9 with the outer code being the code C ′ constructed so far, and the inner code
being a capacity-achieving globally list recoverable code D′′ of rate ρ + γ/4 and relative distance
at least 1− ρ− γ/2.

Corollaries 2.2 and 2.6 guarantee the existence of a code D′′ as above that is (1− ρ− γ/2, `, `′)-
globally list recoverable for some constant `′, provided that the alphabet size is a sufficiently large
constant prime power, and the block length is sufficiently large. To satisfy the conditions of Lemma
4.9, we further require that the block length of D′′ is sufficiently large exp((log logN)o(1)), and
that the alphabet size of C ′ is exp exp((log logN)o(1))—the size of D′′—which can be achieved by
grouping together consecutive symbols of C ′.

Lemma 4.9 then implies that C ′′ is a code of block length N , alphabet size No(1), rate ρ, and
relative distance 1− ρ− γ, that is (No(1), 1− ρ− γ, ε, `,No(1))-locally list recoverable.

Finally, it can be verified that running times are as claimed (using brute-force encoding and
decoding of inner code D′′), and that all codes in the process can be taken to be F2-linear, and
all transformations preserve F2-linearity, so the final code can be guaranteed to be F2-linear as
well.

4.2.1 High-rate locally correctable codes – proof of Lemma 4.10

Lemma 4.10 is a consequence of the following theorem from [KSY14], summarizing the parameters
of multiplicity codes.

Theorem 4.11 (Multiplicity codes, [KSY14], Lemmas 3.5 and 3.6, and [Kop14]). The following
holds for any integers s, d,m, and for any prime power q ≥ max{10 ·m, d+6·s

s , 12 · (s+ 1)}. There

exists an Fq-linear code C of block length qm, alphabet size q(
m+s−1
m ), relative distance at least

δ := 1 − d
s·q , and rate at least

(
1− m2

s

)
· (1 − δ)m, that is (O(sm · q), δ/10)-locally correctable.

Moreover, C can be locally corrected in time O(q/δm), and encoded in time poly
(
qm,

(
m+s−1
m

))
.

Proof of Lemma 4.10. We set the code CN to be the code given by Theorem 4.11 with the following
parameters. We choose q := Nβ to be the field size (which exists whenever q is a prime power),
and choose m = 1/β. Note that indeed qm = N . We choose s = 2m2/γ, δ = γ/(2m), and
d = s · q · (1− δ).

The alphabet size of the code is

q(
m+s−1
m ) ≤ Nβ·(m+s)m ≤ N (γβ)−O(1/β)

,

the relative distance is at least δ ≥ Ω(γ · β), and the rate is at least(
1− m2

s

)
· (1− δ)m =

(
1− γ

2

)(
1− γ

2m

)m
≥ 1− γ.
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Furthermore, CN is locally correctable from Ω(γβ)-fraction of errors with query complexity

O(sm · q) ≤ Nβ · (γβ)−O(1/β).

as required.
Finally, it can be verified that running times are as required.

4.3 Local correction up to the GV bound

In this section we prove the following lemma which implies Corollary 1.5 from the introduction.

Lemma 4.12. For any constants ρ ∈ [0, 0.02] and γ > 0 there exists an infinite family of binary
linear codes {CN}N , where CN has block length N and rate ρ, and is locally correctable from
H−1

2 (1−ρ)−γ
2 -fraction of errors with query complexity No(1).

Furthermore,

• The local correction algorithm for CN runs in time No(1).

• There exists a randomized algorithm which, on input N , runs in time N1+o(1) and outputs with
high probability a description of a code CN with the properties above. Given the description,
the code CN can be encoded deterministically in time N1+o(1).

Similarly to Lemma 3.13, the proof of the above lemma relies on the random concatenation
Lemma 3.15, as well as the following lemma that is an analogue of Lemma 3.16 for the setting of
local list recovery.

Lemma 4.13 (Concatenation for local list recovery). Suppose that C ⊆ (Σρ′·t)n is (Q,α, ε, `, L)-
locally list recoverable, and Ccon ⊆ Σtn is a code obtained from C by applying a code C(i) ⊆ Σt of
rate ρ′ on each coordinate i ∈ [n] of C. Suppose furthermore that at least (1 − γ)-fraction of the
codes C(i) are (α′, `′, `)-globally list recoverable. Then Ccon is (Q · t, (α− γ) · α′, ε, `′, L)-locally list
recoverable.

Moreover, if the local list recovery algorithm for C has preprocessing time Tpre and running time
T , and each C(i) can be globally list recovered in time T ′, then the local list recovery algorithm for
Ccon has preprocessing time Tpre +Q · T ′ and running time T +Q · T ′.

We prove the above lemma in Section 4.3.1. Finally, we shall also use the following lemma
which shows that a locally list decodable code (satisfying the soundness property) is also locally
correctable.

Lemma 4.14. Suppose that C ⊆ Σn is a code of relative distance δ that is (Q,α, 0.1, L)-locally list

decodable for α < δ/2. Then C is
(
O
(
Q · L · log2 n

(δ/2−α)2

)
, α
)

-locally correctable.

Moreover, if the local list decoding algorithm has preprocessing time Tpre and running time T ,

then the local correction algorithm runs in time Tpre +O
(
T · L · log2 n

(δ/2−α)2

)
.

Proof. We first run the local list decoding algorithm, and then choose a local corrector from the
output list that is sufficiently close to the received word (which can be checked via sampling).

Specifically, let A be the local list decoding algorithm for C, by Remark 2.11 we may assume
that both the completeness and soundness properties of A hold with success probability 1 − 1

n10
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instead of 2
3 at the cost of increasing the query complexity and running time by a multiplicative

factor of O(log n).
On oracle access to w ∈ Σn and input coordinate i ∈ [n], the local correction algorithm Acorr

for C first runs the local list decoding algorithm A for C, let A1, . . . , AL be the local algorithms in
the output list of A. Then for each j = 1, . . . , L, the algorithm Acorr runs Aj on a random subset

Sj ⊆ [n] of O
(

logn
(δ/2−α)2

)
coordinates, and computes the fraction δj of coordinates in Sj on which

the decoded values differ from the corresponding values of w. Finally, the algorithm Acorr finds
some Aj for which δj ≤ δ/2 (if such Aj exists), and uses Aj to locally correct the input coordinate
i. Clearly, the query complexity and running time of Acorr are as claimed. Next we show that Acorr

satisfies the required local correction guarantee.
Let c ∈ C be the (unique) codeword which satisfies that dist(w, c) ≤ α. We shall show below

that with probability 0.9− o(1), there exists some Aj that computes c and satisfies that δj ≤ δ/2,
and on the other hand, with probability 0.9 − o(1), any Aj which does not compute c satisfies
that δj > δ/2. This will imply in turn that the algorithm Acorr will succeed in decoding the input
coordinate correctly with probability 0.8− o(1) ≥ 2

3 as required.
We first show that with probability 0.9−o(1), there exists some Aj that computes c and satisfies

that δj ≤ δ/2. To see this note that by the completeness property of A, and since dist(w, c) ≤ α,
with probability at least 0.9 over the randomness of A there exists some Aj that computes c. In
this case, by union bound with probability 1− o(1) it holds that each decoded coordinate of Aj in
Sj equals to the corresponding coordinate in c. Furthermore, by Chernoff bound with probability
1− o(1) it holds that w and c differ on Sj by at most δ

2 -fraction of the coordinates. Consequently,
with probability 0.9− o(1) it holds that δj ≤ δ/2.

Next we show that with probability 0.9 − o(1), any Aj which does not compute c satisfies that
δj > δ/2. For this note that by the soundness property of A, with probability at least 0.9 over
the randomness of A, any such Aj computes some codeword c′ ∈ C \ {c}. As above, by union
bound with probability 1− o(1) it holds that for any such Aj , each decoded coordinate of Aj in Sj
equals to the corresponding coordinate in c′. On the other hand, since C has relative distance δ
and dist(w, c) ≤ α, we have that dist(w, c′) ≥ δ − α = δ/2 + (δ/2− α), and so by Chernoff bound
with probability 1−o(1) for any such Aj it holds that w and c′ differ on Sj by more than δ

2 -fraction
of the coordinates. Consequently, with probability 0.9 − o(1) it holds that δj > δ/2 for any such
Aj .

Next we prove Lemma 4.12, based on the above lemma and Lemmas 4.8, 3.15, and 4.13.

Proof of Lemma 4.12. The proof is similar to that of Lemma 3.13. As in Lemma 3.13, we apply
random concatenation on the capacity-achieving locally list recoverable code C given by Lemma
4.8. By Lemma 3.15, the resulting code C̃ will approach the Gilbert-Varshmaov bound with
high probability, while by Lemma 4.13, the code C̃ will also be locally list recoverable (and in
particular, locally list decodable) with high probability. Lemma 4.14 then implies that whenever
the list decoding radius exceeds the desired local correction radius, then the code C̃ can also be
locally corrected from this radius. Details follow.

The code C: As in Lemma 3.13, let b0 be the absolute constant guaranteed by Lemma 3.15,
and apply Lemma 4.8 with rate ρ0 := ρ

θ−1(ρ+γ/4)
, proximity parameter γ0 := γ2/(4b0), and input
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list size `0 := 21/γ . Lemma 4.8 then guarantees, for infinite number of N ’s, the existence of an
F2-linear code C of block length N , alphabet size No(1), rate ρ0, and relative distance 1− ρ0 − γ0,
that is (No(1), 1− ρ0 − γ0, 0.1, `0, N

o(1))-locally list recoverable.

The code C̃: Let C̃ ⊆ FtN2 be a binary linear code obtained from C by applying a random linear
code C(i) ⊆ Ft2 of rate ρ′ := θ−1(ρ + γ/4) on each coordinate i ∈ [n] of C independently. Then
the code C̃ has rate ρ, and by Lemma 3.15 it also has relative distance at least H−1

2 (1− ρ)− γ/2
with probability 1 − exp(−N). Moreover, by Theorem 2.4, each C(i) is (H−1

2 (1 − ρ′ − γ), 21/γ)-
list decodable with probability 1 − o(1), so with probability 1 − exp(−N) this property holds for
at least (1 − γ2/(4b0))-fraction of the C(i)’s. Lemma 4.13 implies in turn that the code C̃ is
(No(1), α̃, 0.1, No(1))-locally list decodable for

α̃ = (1− ρ0 − γ2/(2b0)) ·H−1
2 (1− ρ′ − γ).

Local correction: Next assume that the local list decoding radius α̃ exceeds the desired local
correction radius, i.e.,

(1− ρ0 − γ2/(2b0)) ·H−1
2 (1− ρ′ − γ) ≥ H−1

2 (1− ρ)− γ
2

, (4)

where ρ0 := ρ
θ−1(ρ+γ/4)

and ρ′ := θ−1(ρ + γ/4). It was shown in [Rud07, Section 4.4] that this is

indeed the case whenever ρ ≤ 0.02 and γ is a sufficiently small constant.

Assuming that (4) holds, Lemma 4.14 implies that C̃ is locally correctable from
H−1

2 (1−ρ)−γ
2 -

fraction of errors with query complexity No(1).

Finally, it can also be verified that running times are as claimed (using brute-force encoding and
decoding of inner codes C(i)).

4.3.1 Concatenation for local list recovery – proof of Lemma 4.13

Proof of Lemma 4.13. The local list recovery algorithm Ã for Ccon will run the local list recovery
algorithm A for C, and answer the queries of A by globally list recovering the C(i)’s corresponding
to the queries of A.

In more detail, on oracle access to a string of input lists S ∈
(

Σ
`′

)tn
, the local list recovery algorithm

Ã for Ccon runs the local list recovery algorithm A for C, and whenever A asks for some coordinate
i ∈ [n], the algorithm Ã globally list recovers the i-th block of S of length t from α′-fraction of
errors, and feeds the messages corresponding to the first ` codewords in the output list as an answer
to the query of A. Let A1, . . . , AL be the resulting output local algorithms of A. Then Ã outputs
L local algorithms Ã1, . . . , ÃL where each algorithm Ãj is defined as follows.

To locally correct the r-th coordinate in the k-th block of Ccon of length t (that is, a coordinate
of the form (k − 1) · t + r ∈ [tn] where 1 ≤ k ≤ n and 1 ≤ r ≤ t), the algorithm Ãj runs the
algorithm Aj on input coordinate k. As above, whenever Aj asks for some coordinate i ∈ [n], the
algorithm Ãj globally list recovers the i-th block of S of length t from α′-fraction of errors, and
feeds the messages corresponding to the first ` codewords in the output list as an answer to the
query of Aj . Let σ ∈ Σρ′·t be the output symbol of Aj . Then the algorithm Ãj outputs the r-th
symbol of C(k)(σ) ∈ Σt.
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Clearly, query complexity, output list size, and running times of Ã are as claimed. Soundness
property also clearly holds. To see that the completeness property holds as well note that if
dist(c̃, S) ≤ (α− γ) ·α′ for some c̃ ∈ Ccon, then by Markov’s inequality for at most (α− γ)-fraction
of i ∈ [n] it holds that the i-th block of S of length t is inconsistent with the i-th block of c̃ of
length t by more than α′-fraction of the coordinates. Moreover, since at least (1−γ)-fraction of the
codes C(i) are (α′, `′, `)-list recoverable, list recovery of the C(i)’s fails on at most α-fraction of the
blocks. Completeness then follows since C is locally list recoverable from α-fraction of errors.

5 Combinatorial lower bound on output list size

In this section, we first provide a combinatorial lower bound on the output list size for list recovering
a high-rate tensor product C⊗t, even in the noiseless setting. In particular, we show that the output
list size must be doubly-exponential in t. From this, we are able to deduce certain corollaries
demonstrating that our algorithms nearly achieve optimal parameters.

Recall that given vectors v1 ∈ Fn1 , v2 ∈ Fn2 , . . . , vt ∈ Fnt , their tensor product v1 ⊗ v2 ⊗ · · · ⊗ vt
is the t-dimensional box whose value in the (i1, i2, . . . , it) ∈ n1 × n2 · · · × nt coordinate is given by
the product

(v1 ⊗ v2 ⊗ · · · ⊗ vt)i1,i2,...,it = (v1)i1 · (v2)i2 · · · (vt)it .

For the special case of t = 2, the tensor product v⊗ u can be thought of as the outer product vuT .
We also record the following standard fact regarding tensor products.

Fact 5.1. Let v1, . . . , vt1 ∈ Fn1 and u1, . . . , ut2 ∈ Fn2 be sets of linearly independent vectors. Then
the collection {vi ⊗ uj | i ∈ [t1], j ∈ [t2]} is linearly independent in Fn1×n2.

5.1 Output list size for list recovering high-rate tensor codes

In this section we prove Theorem 1.6 from the introduction, which we restate here for convenience.

Theorem 1.6 (Output list size for list recovering high-rate tensor codes). Suppose that C ⊆ Fn is
a linear code of rate 1− γ, and that C⊗t ⊆ Fnt is (0, `, L)-list recoverable. Then L ≥ `1/γt.

To prove this theorem, we first prove the following proposition. Informally speaking, we iter-
atively apply the Singleton bound to conclude that linear codes of rate 1 − γ contain about 1/γ
codewords with pairwise disjoint supports. Recall that, for a vector v ∈ Fn, the support of v is
Supp(v) = {i ∈ [n] | vi 6= 0}.

Proposition 5.2. Let C ⊆ Fn be a subspace of dimension k, and let r be a positive integer. Suppose
that (

1− 1
r

)
· n+ 1 ≤ k . (5)

Then there exist non-zero vectors c1, . . . , cr ∈ C such that for all i 6= j, Supp(ci) ∩ Supp(cj) = ∅.

Proof. Let m := n− k + 1, and note that Condition (5) is equivalent to

(r − 1)m ≤ k − 1 .

Take a basis for C of the form (e1, u1), . . . , (ek, uk), where ei ∈ Fk is the ith standard basis vector,
and u1, . . . , uk ∈ Fn−k are vectors. For j = 1, . . . , r− 1, we can find a nontrivial linear combination
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of the vectors u(j−1)·m+1, . . . , uj·m summing to zero, as they are a (multi-)set of m = n − k + 1

vectors lying in Fn−k. Taking this linear combination of (e(j−1)·m+1, u(j−1)·m+1), . . . , (ej·m, uj·m),
we obtain a nonzero vector whose support is contained in the interval {(j − 1) ·m+ 1, . . . , j ·m};
denote this vector by cj . In this manner, we obtain r − 1 nonzero vectors c1, . . . , cr−1 ∈ C with
pairwise disjoint support. Finally, we may add the vector cr := (ek, uk) to this collection, yielding
r vectors, as desired.

Next we prove Theorem 1.6, based on the above proposition.

Proof of Theorem 1.6. Let r := 1/γ, and recall wish to come up with `r
t

codewords in C⊗t that
are contained in the output list for appropriately chosen input lists.

In order to accomplish this, we first use Proposition 5.2 to obtain a subset C ′ ⊆ C of r nonzero
codewords with pairwise disjoint support. We then consider the subset C ′′ ⊆ C⊗t containing all
tensor products c1 ⊗ c2 ⊗ · · · ⊗ ct of t (not necessarily distinct) codewords c1, . . . , ct ∈ C ′, and
our main observation is that all these rt tensor products are also nonzero with pairwise disjoint
support. Finally, we let B ⊆ F be an arbitrary subset of size `, and consider the subset C̄ ⊆ C⊗t

containing all linear combinations of codewords in C ′′ with coefficients in B. Since all codewords
in C ′′ are nonzero with pairwise disjoint support, they are in particular linearly independent, so
the set C̄ contains `r

t
distinct codewords in C⊗t.

Moreover, since codewords in C ′′ have pairwise disjoint support, for each coordinate (i1, . . . , it) ∈
[n]t, there is at most one codeword c ∈ C ′′ for which ci1,...,it is nonzero. Therefore this is the only
term which can contribute nontrivially to the value in the (i1, . . . , it) coordinate of a codeword in
C̄. So we can let the corresponding input list Si1,...,it contain all ` multiples of ci1,...,it by elements
in B. Details follow.

The set C ′. Since C has rate 1 − γ, it has dimension k = (1 − γ)n, and so Proposition 5.2
guarantees the existence of a subset C ′ ⊆ C of r = 1/γ nonzero codewords with pairwise disjoint
support.

The set C ′′. Next we let

C ′′ :=
{
c1 ⊗ c2 ⊗ · · · ⊗ ct | c1, c2, . . . , ct ∈ C ′

}
be the subset of C⊗t containing all tensor products of t (not necessarily distinct) codewords in C ′.
Since all codewords in C ′ are nonzero, their t-wise tensor products are nonzero as well.

To see that all codewords in C ′′ have pairwise disjoint support, suppose that c = c1⊗c2⊗. . .⊗ct ∈
C ′′, and (i1, i2, . . . , it) ∈ Supp(c). Then

0 6= ci1,i2,...,it = (c1)i1 · (c2)i2 · · · (ct)it ,

so we must have that (c1)i1 , (c2)i2 , . . . , (ct)it are all nonzero. We conclude that

Supp(c) ⊆ Supp(c1)× Supp(c2)× · · · × Supp(ct).

Now, suppose that c = c1 ⊗ . . . ⊗ ct, c′ = c′1 ⊗ . . . ⊗ c′t are a pair of codewords in C ′′ with cj 6= c′j
for some j ∈ [t]. Since all codewords in C ′ have pairwise disjoint support it must hold that
Supp(cj) ∩ Supp(c′j) = ∅, and we conclude that Supp(c) ∩ Supp(c′) = ∅.
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The set C̄. Now, let B ⊆ F be an arbitrary subset of size `, and let

C̄ :=

{ ∑
c∈C′′

βc · c
∣∣∣∣ βc ∈ B for all c ∈ C ′′

}
be the subset of C⊗t containing all linear combinations of codewords in C ′′ with coefficients in B.
Since all codewords in C ′′ are nonzero with pairwise disjoint support, they are in particular linearly
independent in Fnt ,7 so the set C̄ contains `r

t
distinct codewords in C⊗t.

Input lists. Finally, we wish to define input lists Si1,...,it for any coordinate (i1, . . . , it) ∈ [n]t so
that for any codeword c ∈ C̄, and for any coordinate (i1, . . . , it) ∈ [n]t, it holds that ci1,...,it ∈ Si1,...,it .

To this end, we observe that since codewords in C ′′ have pairwise disjoint support, for each
coordinate (i1, . . . , it) ∈ [n]t, there is at most one codeword c ∈ C ′′ for which ci1,...,it is nonzero.
Therefore this is the only term which can contribute nontrivially to the value in the (it, . . . , it)
coordinate of a codeword in C̄. So we can define the corresponding input list Si1,...,it as

Si1,...,it := {β · ci1,...,it | β ∈ B}

if such a codeword c exists, and as Si1,...,it = {0} otherwise. Note that each set Si1,...,it has size at
most `, and that they satisfy the required property.

This yields a set of `r
t

codewords from C⊗t that are contained in the output list for the input
list tuple S defined above, proving the theorem.

5.2 Concrete lower bound on output list size

In this section, we demonstrate a setting of parameters that yields Corollary 1.7 from the intro-
duction, restated below.

Corollary 1.7. For any δ > 0 and ` > 1 there exists L > 1 such that the following holds for any
sufficiently large n. There exists a linear code C ⊆ Fn of relative distance δ that is (Ω(δ), `, L)-list
recoverable, but C⊗t ⊆ Fnt is only (0, `, L′)-list recoverable for L′ ≥ exp((2δ)−(t−3/2) ·

√
logL).

We use the following result on the list-recoverability of random linear codes from [RW18].

Theorem 5.1 ([RW18], Corollary 3.3). There exists an absolute constant b0 so that the following
holds. For any γ > 0, ` ≥ 1, and a prime power q ≥ `b0/γ, a random linear code C ⊆ Fnq of rate
1− γ is (Ω(γ), `, L)-list recoverable for

L ≤
(
q`

γ

)(log `)/γ

· exp

(
log2 `

γ3

)
with probability 1− exp(−n).

Proof of Corollary 1.7. Let C ⊆ Fnq be the linear code given by Theorem 5.1 of rate 1 − 2δ and

q = `O(1/δ) that is (Ω(δ), `, L)-list recoverable for L = exp((log2 `)/δ3), or equivalently, ` = exp(δ3/2 ·√
logL). By Corollary 2.2, we may further assume that the code C has relative distance at least δ.

Now, by Theorem 1.6 we have that L′ ≥ `(2δ)−t = exp((2δ)−(t−3/2) ·
√

logL).
7This also follows from the fact that all codewords in C′′ are linearly independent together with Fact 5.1.
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5.3 Lower bound for local list recovering

We now prove Corollary 1.8 from the introduction, restated below.

Corollary 1.8. For any δ > 0 and sufficiently large n there exists a linear code C ⊆ Fn of relative
distance δ such that the following holds. Suppose that C⊗t ⊆ FN is ( 1

N , 2, L)-locally list recoverable

with query complexity Q. Then Q · L ≥ NΩδ(1/ log logN).

We first recall Lemma 4.14 (restated below in a shorter form) which says that a locally list decod-
able (and in particular locally list recoverable) code with output list size L and query complexity
Q is also locally correctable with query complexity roughly Q · L.

Lemma 5.3. Suppose that C ⊆ Σn is a code of relative distance δ that is (Q,α, 0.1, L)-locally list

decodable for α < δ/2. Then C is
(
O
(
Q · L · log2 n

(δ/2−α)2

)
, α
)

-locally correctable.

So to prove Corollary 1.8, it is enough to show a lower bound on the query complexity for local
correcting C⊗t, assuming that the output list for list recovering C⊗t is small. To show such a lower
bound, we first observe that for any linear code C, the (absolute) distance of C⊥ is a lower bound
on the query complexity for local correcting C.

Lemma 5.4. Suppose that C ⊆ Fn is a linear code that is (Q, 1
n)-locally correctable. Then Q ≥

∆(C⊥)− 2.

We prove the above lemma in Section 5.3.1. To apply this lemma to C⊗t we further observe that
the tensor product preserves the dual distance of the base code.

Lemma 5.5. Suppose that C1 ⊆ Fn1, C2 ⊆ Fn2 are linear codes, and that C⊥1 , C
⊥
2 have distances

∆1,∆2, respectively. Then (C1 ⊗ C2)⊥ has distance min{∆1,∆2}. In particular, if C ⊆ Fn is a
linear code, and C⊥ has distance ∆, then (C⊗t)⊥ has distance ∆ for any t ≥ 1.

We prove the above lemma in Section 5.3.2. We now proceed to the proof of Corollary 1.8.

Proof of Corollary 1.8. Let C ⊆ Fn be a random linear code of rate 1 − 2δ. By Corollary 2.2, for
sufficiently large field size, the code C will have relative distance at least δ with high probability.
Moreover, since C⊥ has rate 2δ, by the same corollary we also have that C⊥ has relative distance
at least 1 − 3δ with high probability. We conclude for any sufficiently large n the existence of a
linear code C ⊆ Fn of rate 1−2δ and relative distance at least δ such that C⊥ has relative distance
at least 1− 3δ.

Next observe that for the code C⊗t to be (Q, 1
N , 0.1, 2, L)-locally list recoverable, it in particular

must be (0, 2, L)-list recoverable, so the lower bound from Theorem 1.6 implies that L ≥ 21/(2δ)t .
Now, if 21/(2δ)t ≥ N then we have that Q · L ≥ 21/(2δ)t ≥ N , and we are done. So we may assume
that 21/(2δ)t < N which implies in turn that t = Oδ(log logN) and n = N1/t = NΩδ(1/ log logN).

Moreover, as we have assumed we have a (Q, 1
N , 0.1, 2, L)-local list recovery algorithm for C⊗t,

we also have a (Q, 1
N , 0.1, L)-local list decoding algorithm for C⊗t. Lemma 5.3 then promises that

we have a (O(Q · L · log2N
(δt/2−1/N)2

), 1
N )-local correction algorithm for C⊗t. Now, by Lemma 5.5 we

have that (C⊗t)⊥ has (absolute) distance at least (1− 3δ)n, and consequently Lemma 5.4 implies
that

O

(
Q · L · log2N

(δt/2− 1
N )2

)
≥ (1− 3δ)n− 2 = NΩδ(1/ log logN) .

This implies Q · L ≥ NΩδ(1/ log logN), as desired.
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5.3.1 Dual distance is a lower bound on query complexity – proof of Lemma 5.4

First, we recall the standard fact that (absolute) dual distance ∆ implies that the uniform distri-
bution over the code is (∆− 1)-wise independent.

Fact 5.6 ([ABI86]). Suppose that C ⊆ Fnq is a linear code, and that C⊥ has (absolute) distance ∆.
Then for all 1 ≤ i1 < · · · < is ≤ n with s < ∆, and all a1, . . . , as ∈ Fq,

Pr
c∈C

[ci1 = a1 ∧ · · · ∧ cis = as] =
1

qs
.

In what follows let ∆ := ∆(C⊥), and let q denote the alphabet size of C. Now, making use of
Yao’s principle, it suffices to show a distribution D over vectors w at absolute distance at most
1 from C such that the following holds. For any deterministic algorithm making at most ∆ − 2
queries to its input w sampled according to D, the probability that it correctly computes c1 is at
most 1/3, where c is the unique codeword in C at absolute distance at most 1 from w. We will in
fact show that no deterministic query algorithm can correctly compute c1 with probability greater
than 1/q.

Let D denote the distribution that samples c ∈ C uniformly at random and then sets c1 = 0.
Let A be a deterministic algorithm making at most ∆ − 2 queries, and let j1, . . . , js ∈ [n] denote
the queries made by A, where we assume s ≤ ∆ − 2. Note that querying 1 does not help A, as it
will always read 0. Hence, without loss of generality, 1 /∈ {j1, . . . , js}.

Now, by Fact 5.6 and Bayes’ rule, for any b1, . . . , bs, a ∈ Fq,

Pr
c∈C

[c1 = a|cj1 = b1, . . . , cjs = bs] =
Pr [c1 = a, cj1 = b1, . . . , cjs = bs]

Pr [cj1 = b1, . . . , cjs = bs]
=
q−(s+1)

q−s
=

1

q
.

Additionally, observe that the distribution of the tuple (cj1 , . . . , cjs) is the same if c is a uniformly
random codeword from C or if it is sampled according to D.

Hence, if we think of the query algorithm as implementing a (deterministic) function g : Fsq → Fq
from the responses to its queries to its guess for c1, regardless of the responses b1, . . . , bs to the
queries, we have

Pr
w∈D

[c1 = g(b1, . . . , bs)|wj1 = b1, . . . , wjs = bs] =
1

q
,

where c is the unique codeword in C for which dist(c, w) ≤ 1
n . That is, the query algorithm will

not be able to guess c1 with probability greater than 1/q, as claimed.

5.3.2 Tensor product preserves dual distance – proof of Lemma 5.5

First note that we clearly have that ∆((C1 ⊗ C2)⊥) ≤ min{∆1,∆2}: for example, the matrix
whose first column is a vector from C⊥1 of weight ∆1 and all other columns are 0 gives a matrix in
(C1 ⊗ C2)⊥ of weight ∆1, and similarly a matrix in (C1 ⊗ C2)⊥ of weight ∆2 can be constructed.
We now establish the opposite inequality of ∆((C1 ⊗ C2)⊥) ≥ min{∆1,∆2}.

It is well-known (and not hard to show) that the (absolute) distance of a code C is the minimum
number of linearly dependent columns in a parity-check matrix for C. Furthermore, by duality we
have that if G is a generating matrix for C then GT is a parity-check matrix for C⊥. We conclude
that the distance of C⊥ is the minimum number of linearly dependent rows in a generating matrix
for C.
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Let G1, G2 be generating matrices for C1, C2, respectively, and note that by the above, any
collection of t1 < ∆1, t2 < ∆2 rows of G1, G2, respectively, are linearly independent. Next recall that
G1⊗G2 is a generating matrix for C1⊗C2, and so it suffices to show that for any t < min{∆1,∆2},
any collection of t rows of G1 ⊗G2 are linearly independent.

Let u1, u2, . . . , un1 and v1, v2, . . . , vn2 denote the rows of G1, G2, respectively, and note that each
row in G1⊗G2 is of the form ui⊗ vj for some i ∈ [n1], j ∈ [n2]. Fix t < min{∆1,∆2}, and suppose
that ui1 ⊗ vj1 , ui2 ⊗ vj2 , . . . , uit ⊗ vjt is a collection of t rows of G1 ⊗ G2. Then by the above we
have that both collections ui1 , ui2 , . . . , uit and vj1 , vj2 , . . . , vjt are linearly independent (ignoring
duplications). Fact 5.1 implies in turn that the collection ui1 ⊗ vj1 , ui2 ⊗ vj2 , . . . , uit ⊗ vjt are also
linearly independent which concludes the proof of the lemma.
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