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Abstract

Theε-approximate degreẽdegε(f) of a Boolean functionf is the least degree of a real-valued poly-
nomial that approximatesf pointwise to withinε. A sound and complete certificate for approximate
degree being at leastk is a pair of probability distributions, also known as adual polynomial, that are
perfectlyk-wise indistinguishable, but are distinguishable byf with advantage1− ε. Our contributions
are:

• We give a simple, explicit new construction of a dual polynomial for theAND function onn bits,

certifying that itsε-approximate degree isΩ
(√

n log 1/ε
)

. This construction is the first to extend

to the notion of weighted degree, and yields the first explicit certificate that the1/3-approximate
degree of any (possibly unbalanced) read-once DNF isΩ(

√
n). It draws a novel connection be-

tween the approximate degree ofAND and anti-concentration of the Binomial distribution.

• We show that any pair ofsymmetricdistributions onn-bit strings that are perfectlyk-wise indis-
tinguishable are also statisticallyK-wise indistinguishable with at mostK3/2 · exp

(
−Ω

(
k2/K

))

error for allk < K ≤ n/64. This bound is essentially tight, and implies that any symmetric func-
tion f is a reconstruction function with constant advantage for a ramp secret sharing scheme that

is secure against size-K coalitions with statistical errorK3/2 · exp
(
−Ω

(
d̃eg

1/3(f)
2/K

))
for all

values ofK up ton/64 simultaneously. Previous secret sharing schemes requiredthatK be de-
termined in advance, and only worked forf = AND. Our analysis draws another new connection
between approximate degree and concentration phenomena.

As a corollary of this result, we show that for anyd ≤ n/64, any degreed polynomial approx-
imating a symmetric functionf to error1/3 must have coefficients ofℓ1-norm at leastK−3/2 ·
exp

(
Ω
(

d̃eg
1/3 (f)

2
/d
))

. We also show this bound is essentially tight for anyd > d̃eg
1/3(f).

These upper and lower bounds were also previously only knownin the casef = AND.
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1 Introduction

The ε-approximate degree of a functionf : {−1, 1}n → {0, 1}, denoted̃degε(f), is the least degree of a
multivariate real-valued polynomialp such that|p(x)− f(x)| ≤ ε for all inputsx ∈ {−1, 1}n.1 Such ap is
said to be an approximating polynomial forf . This is a central object of study in computational complexity,
owing to its polynomial equivalence to many other complexity measures including sensitivity, exact degree,
deterministic and randomized query complexity [21], and quantum query complexity [6].

By linear programming duality,f hasε-approximate degree more thank if and only if there exist a pair
of probability distributionsµ andν over the domain off such thatµ andν are perfectlyk-wise indistin-
guishable (i.e., allk-wise projections ofµ andν are identical), but are(1− ε)-distinguishable byf , namely
EX∼µ[f(X)]−EY∼ν [f(Y )] ≥ 1−ε. Said equivalently, a sound and complete certificate forε-approximate
degree being more thank is adual polynomialq = (µ − ν)/2 that contains no monomials of degreek or
less, and such that

∑
x |q(x)| = 1 and

∑
x q(x)f(x) ≥ ε.

Dual polynomials have immediate applications to cryptographic secret sharing: a dual polynomialq =
(µ−ν)/2 for f is a description of a cryptographic scheme for sharing a 1-bit secret amongstn parties, where
the secret can be reconstructed by applyingf to the shares, and the scheme is secure against coalitions of
sizek (see [4] for details).

Motivation for explicit constructions of dual polynomials. Recent years have seen significant progress
in proving new approximate degree lower bounds by explicitly constructing dual polynomials exhibiting
the lower bound [7, 8, 10–12, 25, 26, 28]. These new lower bounds have in turn resolved significant open
questions in quantum query complexity and communication complexity. At the technical core of these
results are techniques for constructing a dual polynomial for composed functionsf ◦ g := f(g, . . . , g),
given dual polynomials forf andg individually.

Often, an explicitly constructed dual polynomial showing that̃degε(g) ≥ d exhibits additional metric
properties, beyond what is required simply to witness̃degε(g) ≥ d. Much of the major recent progress in
proving approximate degree lower bounds has exploited these additional metric properties [7, 11, 12, 28].
Accordingly, even if cases where an approximate degree lower bound for a functiong is known, it can often
be useful to construct an explicit dual polynomial witnessing the lower bound. Hence, we are optimistic that
the new constructions of dual polynomials given in this work will find future applications.

Explicit constructions of dual polynomials are also necessary to implement thecorresponding secret-
sharing scheme, and to analyze the complexity of the algorithm that samples the shares of the secret.

Our results in a nutshell. Our results fall into two categories. In the first category, we reprove several
known approximate degree lower bounds by giving the first explicit constructions of dual polynomials wit-
nessing the lower bounds. Specifically, our dual polynomial certifies thattheε-approximate degree of the
n-bit AND function isΘ(

√
n log 1/ε). This construction is the first to extend to the notion of weighted

degree, and yields the first explicit certificate that the1/3-approximate degree of any (possibly unbalanced)
read-once DNF isΩ(

√
n). Interestingly, our dual polynomial construction draws a novel and clean connec-

tion between the approximate degree ofAND and anti-concentration of the Binomial distribution.
In the second category, we prove new and tight results about the size ofthe coefficients of polyno-

mials that approximate symmetric functions. Specifically, we show that for anyd ≤ n/64, any degree
d polynomial approximatingf to error 1/3 must have coefficients of weight (ℓ1-norm) at leastd3/2 ·
exp

(
Ω
(

d̃eg1/3 (f)
2 /d

))
. We show this bound is tight (up to logarithmic factors in the exponent) for

anyd > d̃eg1/3(f). These bounds were previously only known in the casef = AND [5,24]. Our analysis

1In this work, for convenience we also consider functions mapping{0, 1}n to {0, 1}.
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actually establishes a considerably more general result, and as a consequence we obtain new cryptographic
secret sharing schemes with symmetric reconstruction procedures (see Section1.2for details).

1.1 A New Dual Polynomial forAND

To describe our dual polynomial forAND, it will be convenient to consider theAND function to have
domain{−1, 1}n and range{0, 1}, with AND(x) = 1 if and only if x = 1n. In their seminal work, Nisan
and Szegedy [21] proved that the1/3-approximate degree of theAND function onn inputs isΘ(

√
n). More

generally, it is now well-known that theε-approximate degree ofAND is Θ
(√

n log(1/ε)
)

[6,16]. These

works do not construct explicit dual polynomials witnessing the lower bounds; this was achieved later in
works ofŠpalek [29] and Bun and Thaler [8].

Our first contribution is the construction of a new dual polynomialφ for AND, which is simple enough
to describe in a single equation:

φ(x) =
(−1)n

Z

(∏

i∈[n]

xi

)(
ES

∏

i∈S

xi

)2

. (1)

Here,S is a random subset of{1, . . . , n} of size at most12(n − d) (whered determines the degree of the
polynomials against which the exhibited lower bound holds), andZ is an (explicit) normalization constant.

In the language of secret sharing, to share a secrets ∈ {−1, 1}, the dealer samples sharesx ∈ {−1, 1}n
with probability proportional to(ES

∏
i∈S xi)

2, conditioned on the parity of the shares
∏
xi being equal to

s.
In Corollary2.2we show thatφ certifies that every degree-d polynomial must differ from theAND func-

tion by2−n
∑(n−d)/2

k=0

(
n
k

)
at some input. In other words, the approximation error of a degree-d polynomial

is lower bounded by the probability that a sum of unbiased independent bitsdeviates from its mean byd/2.
Our functionφ given in (1), unlike previous dual polynomials [10, 16, 27, 29], also certifies that the

weighted1/3-approximate degree ofAND with weightsw ∈ R
n
≥0 is Ω(‖w‖2) (see Corollary2.3).2 This

lower bound is tight for allw, matching an upper bound of Ambainis [1]. The only difference in our dual
polynomial construction for the weighted case is in the distribution over setsS, and the lower bound in the
weighted case is derived from anti-concentration ofweightedsums of Bernoulli random variables.

Both statements are corollaries of the following theorem.

Theorem 1.1. DefineAND : {−1, 1}n → {0, 1} asAND(x) = 1 if and only ifx = 1n. The functionφ
defined in Equation(1) is a dual witness for̃degw,ε(AND) ≥ d for ε = PrX∼{−1,1}n [〈w,X〉 ≥ d].

By combining, in a black-box manner, the dual polynomial for the weighted-approximate degree ofAND
with prior work (e.g., [17, Proof of Theorem 7]), one obtains, for any read-once DNFf , an explicit dual
polynomial for the fact that̃deg1/3(f) ≥ Ω(n1/2). Very recent work of Ben-David et al. [2] established this
result for the first time, shaving logarithmic factors off of prior work [10,17]. In fact, Ben-David et al. [2]
prove more generally that any depth-d read-onceAND-OR formula has approximate degree2−O(d)√n.
Their method, however, does not appear to yield an explicit dual polynomial, even in the cased = 2.

Discussion. It has been well known that theε-approximate degree of theAND function onn variables

is Θ
(√

n log(1/ε)
)

[6, 21], a fact which has many applications in theoretical computer science. This is

2 For a polynomialp(x1, . . . , xn), a weight vectorw ∈ R
n
≥0 assigns weightwi to variablexi. The weighted degree ofp is the

maximum weight over all monomials appearing inp, where the weight of a monomial is the sum of the weights of the variables
appearing within it. The weightedε-approximate degree off , denoted̃degw,ε(f), is the least weighted degree of any polynomial
that approximatesf pointwise to errorε.

2



superficially reminiscent of Chernoff bounds, which state that the middleΘ
(√

n log(1/ε)
)

layers of the

Hamming cube contain a1− ε fraction of all inputs (i.e., “most”n-bit strings have Hamming weight close
ton/2). However, these two phenomena have not previously been connected, and it is not a priori clear why
approximate degree should be related to concentration of measure. An approximating polynomialp for f
must approximatef at all inputs in{−1, 1}n. Why should it matter thatmost(but very far from all) inputs
have Hamming weight close ton/2?

The new dual witness forAND constructed in Equation (1) above provides a surprising answer to this
question. The connection between (anti-)concentration and approximate degree ofAND arises not because
of the number ofinputsto f that have Hamming weight close ton/2, but because of the number ofparity
functionsonn bits that havedegreeclose ton/2. This connection appears to be rather deep, as evidenced
by our construction’s ability to yield a tight lower bound in the case of weightedapproximate degree.

1.2 Indistinguishability for Symmetric Distributions

In this section, for convenience we consider functions mapping{0, 1}n to {0, 1}. Two distributionsµ andν
over{0, 1}n are(statistically)(k, δ)-wise indistinguishableif for all subsetsS ⊆ {1, . . . , n} of sizek, the
induced marginal distributionsµ|S andν|S are within statistical distanceδ. Whenδ = 0, we say they are
(perfectly)k-wise indistinguishable.

For general pairs of distributions, perfectk-wise indistinguishability does not imply any sort of security
against distinguishers of sizek + 1. Any binary linear error-correcting code of distancek + 1 and block
lengthn induces a pair of distributions (the uniform distribution over codewords and one of its affine shifts)
that are perfectlyk-wise indistinguishable, yet perfectly(k + 1)-wise distinguishable.

In contrast, we prove that perfectk-wise indistinguishability forsymmetricdistributions implies strong
statistical security against larger adversaries:

Theorem 1.2. If µ andν are symmetric over{0, 1}n and perfectlyk-wise indistinguishable, then they are
statistically(K,O(K3/2) · e−k2/1156K)-wise indistinguishable for all1 ≤ k < K ≤ n/64.

Theorem1.2has the following direct consequence for secret sharing schemes over bits with symmetric
reconstruction. We say(µ, ν) areα-reconstructible byf if EX∼µ[f(X)]− EY∼ν [f(Y )] ≥ α.

Corollary 1.3. Letf be a symmetric Boolean function. There exists a pair of distributionsµ andν that are(
K,K3/2 · e−Ω(d̃eg1/3(f)

2/K)
)

-indistinguishable for allK ≤ n/64, but areΩ(1)-reconstructible byf .

Corollary1.3is an immediate consequence of our Theorem1.2, and the fact that any symmetric function
has an optimal dual polynomial that is itself symmetric. In the special casef = AND (or equivalently
f = OR), Corollary 1.3 implies the existence of avisual secret sharing scheme(see, for example [20])
that is

(
K,K3/2 · e−Ω(n/K)

)
-statistically secure against all coalitions of sizeK, simultaneously for allK

up to sizen/64. This property, where security guarantees are in place for many coalitionsizes at the same
time, is in contrast to an earlier result of Bogdanov and Williamson [5] where they proved that for any fixed
coalition sizeK, there is a visual secret sharing scheme that is(K, e−Ω(n/K))-statistically secure. In their
construction, the distribution of sharesµ andν depend on the value ofK.

We remark that the bound of Corollary1.3cannot hold in general forK = n, since there exists distribu-
tions that are perfectlyΩ(n)-wise indistinguishable but are reconstructible by the majority function on alln
inputs. We do not however know if a bound of the formK ≤ (1− Ω(1))n is tight in this context.
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Tight weight-degree tradeoffs for polynomials approximating symmetric functions. Letf : {0, 1}n →
{0, 1} be any function. For any integerd ≥ 0, denote byWε(f, d) the minimumweightof any degree-d
polynomial that approximatesf pointwise to errorε. By the weight of a polynomial, we mean theℓ1-
norm of its coefficients over the parity (Fourier) basis3. In Section4, we observe that Corollary1.3 implies
weight-degree trade-off lower bounds for symmetric functions.

Corollary 1.4. For any symmetric functionf : {0, 1}n → {0, 1}, any constantε ∈ (0, 1/2), and any integer

K such thatn/64 ≥ K ≥ d̃egε(f), we haveWε(f,K) ≥ K−3/2 · 2Ω
(
d̃eg1/3(f)

2/K
)

.

The following theorem shows that the lower bound obtained in Corollary1.4 is tight (up to polyloga-
rithmic factors in the exponent) for all symmetric functions.

Theorem 1.5. For any symmetric functionf : {0, 1}n → {0, 1}, any constantε ∈ (0, 1/2) andK >

d̃egε(f) ·
√
log n,Wε(f,K) ≤ 2Õ(d̃eg1/3(f)

2/K).4

Theorem1.5 also implies that Corollary1.3 is tight (up to polylogarithmic factors in the exponent) for
all symmetricf and for allK ≥ d̃eg1/3(f)

√
log n. This is because any improvement to Corollary1.3would

yield an improvement to Corollary1.4, contradicting Theorem1.5.

Essentially Optimal Ramp Visual Secret Sharing Schemes.The following result shows that in the case
f = AND, Corollary1.3 is essentially tight forall K ≥ 2, and Theorem1.2 is tight as a reduction from
perfect to approximate indistinguishability for symmetric distributions. It does so by constructing essentially
optimal ramp visual secret sharing schemes.5

Theorem 1.6. For all 2 ≤ k < K ≤ n there exist symmetrick-wise indistinguishable distributionsµ and

ν overn-bit strings that are
√
2−4K+3 ·∑d>k

(
2K
K+d

)2
-reconstructible byANDK , whereANDK(x) is the

AND of the firstK bits ofx.

Discussion of Theorem1.6. This theorem gives the existence of a ramp visual secret sharing scheme that
is perfectly secure against anyk parties, but in which anyK > k parties can reconstruct the secret with
the above advantage. This generalizes the schemes in [5] where only reconstruction by alln parties was
considered.

Let us express the reconstruction advantage appearing in Theorem1.6 in a manner more easily compa-
rable to other results in this manuscript. Standard results on anti-concentration of the Binomial distribution
state that2−2K ·∑d>k

(
2K
K+d

)
= e−Θ(k2/K) (see, e.g., [18]). The Cauchy-Schwarz inequality then implies

that the reconstruction advantage appearing in Theorem1.6 is at leastK−1/2 · e−O(k2/K).6

3In fact, our main weight lower bound (Corollary1.4) holds over any set of functions (not just parities) that each depend on at
mostd variables.

4Here and throughout, thẽO notation hides polylogarithmic factors inn.
5A visual secret sharing scheme is a scheme where the reconstruction function is theAND of some subset of the shares. A

ramp scheme is one where there is not necessarily a sharp threshold between the perfect secrecy and reconstruction thresholds; in
particular, we allow forK > k + 1.

6 Theorem1.6 is closely related to Theorem1.1, in that Theorem1.6 gives another anti-concentration-based proof that
d̃egε(ANDK) ≥ k for ε = K−1/2 · e−Θ(k2/K). However, the two results are incomparable. Theorem1.6 does not yield an
explicit dual polynomial forANDK , and theε-approximate degree lower bound forANDK implied by Theorem1.6is loose by the
K−1/2 factor appearing in the expression forε. On the other hand, Theorem1.1 only yields a visual secret sharing scheme with
reconstruction by alln parties, while Theorem1.6yields a ramp scheme with non-trivial reconstruction advantage by theAND of
the firstK (out ofn) parties.
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Hence, the visual secret sharing schemes given in Theorem1.6 are nearly optimal; if the reconstruc-
tion advantage could be improved by more than the leading poly(K) factor (or the constant factor in the
exponent), then this would contradict Theorem1.2which upper bounds the distinguishing advantage of any
statistical test overK bits against symmetric, perfectlyk-wise indistinguishable distributions. Theorem1.6
also shows that the indistinguishability parameter in Theorem1.2cannot be significantly improved, even in
the restricted case where the only statistical test isANDK .

In Section6 we describe another application of Theorem1.2to security against share consolidation and
“downward self-reducibility” of visual secret shares.

1.3 Related Works

Prior Work. Servedio, Tan, and Thaler [24] established Corollary1.4and Theorem1.5 in the special case
f = OR, showing that degreed polynomials that approximate theOR function require weight2Θ̃(n/d) =

2Θ̃(d̃eg1/3(OR)2/d).7 They used this result to establish tight weight-degree tradeoffs for polynomial threshold
functions computing decision lists. As previously mentioned, Bogdanov and Willamson [5] generalized
the weight-vs-degree lower bound from [24] beyond polynomials, thereby obtaining a visual secret-sharing
scheme for any fixedK that is(K, e−Ω(n/K))-statistically secure.

Elkies [14] and Sachdeva and Vishnoi [23] exploit concentration of measure to prove a tight upper bound
on the degree of univariate polynomials that approximate the functiont 7→ tn over the domain[−1, 1]. Their
techniques inspired our (much more technical) proof of Theorem1.2.

Other Related Work. This work subsumes Bogdanov’s manuscript [3], which shows a slightly weaker
lower bound on the weighted approximate degree of AND, and does not derive an explicit dual polynomial.
In independent work, Huang and Viola [15] prove a weaker form of our Corollary1.3: their distributionsµ, ν
depend on the value ofK. They also prove (a slightly tighter version of) Theorem1.5, thereby establishing
that the statistical distance in Corollary1.3 is tight.

1.4 Techniques and Organization

The proof of Theorem1.1 (Section2) is an elementary verification that the functionφ given in (1) is a
dual polynomial. The only property that is not immediate is correlation withAND. Verifying this property
amounts to upper bounding the normalization constantZ, which follows from orthogonality of the Fourier
characters.

In the proof of Theorem1.2 (Section3), aK-bit statistical distinguisher for symmetric distribution is
first decomposed into a sum of at mostK +1 testsQw that evaluate to 1 only when the input has Hamming
weight exactlyw. Lemma3.3 shows that the univariate symmetrizationspw of these distinguishers can be
pointwise approximated by a degree-k polynomial with error at mostO(K1/2) · e−Ω(k2/K).

To construct the desired approximation, we derive an identity relating the moment generating function
of the squared Chebyshev coefficients ofpw (interpreted as relative probabilities) to the average magnitude
of a polynomialg related topw on the unit complex circle (Claims3.6 and3.7). We bound these magni-
tudes analytically (Claim3.8) and derive tail inequalities for the Chebyshev coefficients from bounds on the
moment generating function as in standard proofs of Chernoff-Hoeffding bounds.

7These bounds forOR were implicit in [24], but not explicitly highlighted. The upper bound was explicitly stated in [13, Lemma
4.1], which gave applications to differential privacy, and the lower bound in [9, Lemma 32], which used it to establish tight weight-
degree tradeoffs for polynomial threshold functions computing read-once DNFs.
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In the special case when the secrecy parametersk andK are fixed and the number of partiesn ap-
proaches infinity,pw(t) turns out to equalCw(t − 1)w(t + 1)K−w, whereCw is some quantity indepen-
dent oft. In this case, the Chebyshev coefficients are the regular coefficients of the polynomialg∞(s) =
2−wCw(s − 1)2w(s + 1)2(K−w).8 Whenw = 0, K/2, or 1, the coefficients ofg∞ are exponentially con-
centrated around the middle as they follow the binomial distribution. We prove that this exponential decay
in magnitudes happens for all values ofw, which requires understanding complicated cancellations in the
algebraic expansion ofg∞(s). We generalize this analysis to the finitary settingn ≥ 64K.

We prove Theorem1.5 (Section4) by writing any symmetric functionf as a sum of at mostℓ :=
min{|f−1(0)|, |f−1(1)|} many conjunctions, and approximating each conjunction to such low error (namely
error≪ ℓ) that the sum of all approximations is an approximation forf itself. Theorem1.5then follows by
constructing low-weight, low-degree polynomial approximations for each conjunction in the sum.

Theorem1.6(Section5) is proved by lower bounding the error of degreek polynomial approximations
to the symmetrizationf of the functionANDK

(
x|{1,...,K}

)
. By duality, a lower bound on approximation

error translates into a secret sharing scheme with the same reconstruction advantage. To lower bound the
error, we estimate the values of the coefficients in the Chebyshev expansion of f with indices larger than
k. Owing to orthogonality, the largest of these coefficients lower bounds theapproximation error of any
degree-k polynomial.

In Section6we formulate a security of secret sharing against consolidation and downward self-reducibility
of visual schemes, and derive these properties from the main results.

2 Dual Polynomial For the Weighted Approximate Degree of AND

In this section we prove Theorem1.1 and derive its two corollaries about the unweighted and weighted
approximate degree of AND.

Notation and Definitions. Let [n] = {1, . . . , n}. Given a vectorw ∈ R
n
≥0, define the weight of a monomial

χS(x) =
∏

i∈S xi, xi ∈ {−1, 1} to equal
∑

i∈S wi. Define thew-weighted degree of a polynomial to be the
maximum weight of a monomial in it. That is, ifp =

∑
S⊆[n] cSχS , then define

degw(p) = max
S:cS 6=0

w(S).

Define thew-weightedε-approximate degreẽdegw,ε(f) to be the minimumw-weighted degree of a poly-
nomialp that satisfies|p(x)− f(x)| ≤ ε for all x in the domain off . Given two real-valued functionsf, g
over domain{−1, 1}n, define〈f, g〉 := 1

2n
∑

x∈{−1,1}n f(x) · g(x).

Lemma 2.1. For any finite setX and any functionf : X → R, d̃egw,ε(f) ≥ d iff there exists a function
φ : X → R satisfying the following conditions.

• Pure high degree: For any real polynomialp of weighted degree is at mostd, 〈φ, p〉 = 0.

• Normalization:
∑

x∈X |φ(x)| = 1,

• Correlation: 〈φ, f〉 ≥ ε,

We callφ a dual witness for̃degw,ε(f) ≥ d. The lemma follows by linear programming duality and is
a straightforward generalization of previous results (see e.g. [10,29]). We prove the “if” direction, which is
sufficient for our purposes.

8Thei-th coefficient ofg∞ is the value of thei-th Kravchuk polynomial with parameter2K evaluated at2w.
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Proof. For anyp of weighted degree at mostd,

‖f − p‖∞ = ‖f − p‖∞‖φ‖1 ≥ 〈φ, f − p〉 = 〈φ, f〉 − 〈φ, p〉 ≥ ε.

The dual polynomial of interest is

φ(x) =
(−1)n

Z
χ[n](x) · ES∼H[χS(x)]

2,

wherex ∈ {−1, 1}n, H is the uniform distribution over the sets{S ⊆ [n] : w(S) ≤ (‖w‖1 − d)/2}, andZ
is the normalization constant

Z =
∑

x∈{−1,1}n

ES∼H[χS(x)]
2.

Proof of Theorem1.1. We prove the theorem by showing thatφ satisfies the three conditions of Lemma2.1.
The expressionES∼H[χS(x)]

2 can be written as a sum of products of pairs of monomials of weight at most
(‖w‖1−d)/2, so its weighted degree is at most‖w‖1−d. Thus every monomial that occurs in the expansion
of χ[n](x)ES∼H[χS(x)]

2 must have weighted degreeat leastd, and soφ has pure high weighted degree at
leastd as desired.

The scaling byZ in the definition ofφ ensures thatφ hasL1 norm 1. The correlation ofφ andAND is
given by〈φ,AND〉 = φ(1n) = 1

Z . Finally, the normalization constantZ evaluates to

Z =
∑

x∈{−1,1}n

ES∼H[χS(x)]
2 =

∑

x∈{−1,1}n

ES∼H[χS(x)]ET∼H[χT (x)]

=
∑

x∈{−1,1}n

ES,T∼H[χS∆T (x)] = ES,T∼H

∑

x∈{−1,1}n

χS∆T (x)

= 2n Pr[S = T ] =
2n

|H| ,

since the inner summation overx evaluates to2n whenS = T , and zero otherwise.
It remains to show that1/Z = |H|/2n equals the desired expression forε. For a setS ⊆ [n], let

X(S) ∈ {−1, 1}n be the string that assigns values1 and−1 to elements inside and outsideS, respectively.
Thenw(S) = ‖w‖1/2 + 〈w,X(S)〉/2, so

|H|
2n

= PrS⊆[n][w(S) ≥ ‖w‖1/2 + d/2] = PrX∼{−1,1}n [〈w,X〉 ≥ d].

Corollary 2.2 (Approximate degree of AND). Recall thatAND : {−1, 1}n → {0, 1} denotes the function
satisfyingAND(x) = 1 if and only ifx = 1n. If p has degree at mostd, then|p(x) − AND(x)| ≥ Pr[X ≤
(n− d)/2] for somex, whereX is aBinomial(n, 1/2) random variable.

The expression on the right is lower bounded by the larger of1/2 − O(d/
√
n) and2−O(d2/n). In the

larged regime (d ≥ √
n), this bound is tight [6,16]

Proof. Apply Theorem1.1to the weight vectorw = (1, 1, . . . , 1).
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Earlier constructions of dual polynomials for AND are quite different from our Corollary2.2 [10, 16,
27,29] and are based on real-valued polynomial interpolation. Specifically, fora carefully chosen setT ⊆
{0, 1, . . . , n} of size|T | = 2d, the prior constructions consider aunivariatepolynomialp(t) =

∏
i∈[n]\T (t−

i), and they defineψ(x) = p(|x|), where|x| denotes the Hamming weight ofx. Clearlyψ has degree at
mostn − |T |. A fairly complicated calculation is required to show that, for an appropriate choice ofT ,
definingψ in this way ensures that|ψ(1n)| captures anε-fraction of theL1-mass ofψ.

Corollary 2.3 (Weighted approximate degree of AND). d̃egw,3/32(AND) ≥ ‖w‖2/2.

The proof uses the Paley-Zygmund inequality:

Lemma 2.4(Paley-Zygmund inequality). LetZ ≥ 0 be any random variable with finite variance. Then, for
any0 < θ < 1,

Pr[Z ≥ θE(Z)] ≥ (1− θ)2
(E[Z])2

E[Z2]
.

Proof of Corollary2.3. We apply the Paley-Zygmund inequality to〈w,X〉2. First,E[〈w,X〉]2 = ‖w‖22 and
E[〈w,X〉4] =∑w4

i + 3
∑
w2
iw

2
j ≤ 3‖w‖22. Then

Pr

[
〈w,X〉 ≥ ‖w‖2

2

]
=

1

2
Pr

[
|〈w,X〉| ≥ ‖w‖2

2

]
=

1

2
Pr

[
〈w,X〉2 ≥ ‖w‖22

4

]
≥ 1

2
· 9

16
· 1
3
=

3

32
,

where the first equality follows from the sign-symmetry ofX. Applying Theorem1.1 with d = ‖w‖2/2
yields the claim.

3 Approximate Indistinguishability from Perfect Indistinguishabi lity

In this section, we prove Theorem1.2, which states that any pair of symmetric and perfectlyk-wise indis-
tinguishable distributions over{0, 1}n are also approximately indistinguishable against statistical tests that
observeK > k of the bits. We may and will assume without loss of generality that the statistical test is a
symmetric function, meaning that it depends only on the Hamming weight of the observed bits of its input.

Let X and Y denote an arbitrary pair of symmetric(k, 0)-wise indistinguishable distributions over
{0, 1}n. We will be interested in obtaining an upper bound on the statistical distance oftheir projections
to anyK indices of[n], namely the advantageEX [T (X|S) − EY [T (Y |S)] whereT : {0, 1}K → {0, 1}
is a symmetric function andS ⊆ [n] is any set of sizeK. We can decomposeT into a sum of tests
Qw : {0, 1}K → {0, 1}, whereQw outputs 1 if and only if the Hamming weight of its input is exactlyw.
Specifically, we decomposeT as

T =

K∑

w=0

bwQw, (2)

where eachbw is either zero or one. We will bound the distinguishing advantage of eachQw in the sum
individually. This advantage is captured by a univariate functionpw that expressesQw in terms of the
Hamming weight of its input, after shifting and scaling the Hamming weight to reside inthe interval[−1, 1].

Fact 3.1. LetS ⊆ [n] be any set of sizeK. There exists a univariate polynomialpw of degree at mostK
such that the following holds. For allt ∈ {−1,−1 + 2/n, . . . , 1 − 2/n, 1}, pw(t) = EZ [Qw(Z|S)] where
Z is a random string of Hamming weightφ−1(t) = (1− t)n/2 ∈ {0, 1, . . . , n}.
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Proof. This statement is a simple extension of Minsky and Papert’s classic symmetrizationtechnique [19].
Specifically, Minsky and Papert showed that for any polynomialpn : {0, 1}n → R, there exists a univariate
polynomialP of degree at most the total degree ofpn, such that for alli ∈ {0, . . . , n},P (i) = E|x|=i[pn(x)].
Apply this result topn(x) = Qw(x|S) and letpw(t) = P (φ−1(t)) = P ((1− t)n/2). The fact then follows
from the observation that the total degree ofQw(x|S) is at mostK, since this function is aK-junta.

In particular, the valuepw(t) is a probability for everyt ∈ {−1,−1 + 2/n, . . . , 1− 2/n, 1}. Moreover,
this probability must equal zero when the Hamming weight ofZ is less thanw or greater thann−K + w.
Thereforepw hasK distinct zeros at the pointsZw = Z− ∪ Z+, where

Z− = {−1 + 2h/n : h = 0, ...,K − w − 1} , Z+ = {1− 2h/n : h = 0, ..., w − 1}. (3)

and sopw must have the form

pw(t) = Cw ·
∏

z∈Zw

(t− z) (4)

for someCw that does not depend ont.9 As pw(t) is probability whent ∈ {−1,−1+2/n, . . . , 1− 2/n, 1},
the functionpw is 1-bounded at those inputs. In fact,pw is uniformly bounded on the interval[−1, 1]:

Claim 3.2. Assumingn ≥ 64K, |pw(t)| ≤ 2 for all t ∈ [−1, 1].

The proof is in Section3.4. Formula (4) and Claim3.2 will be applied to show thatpw has a good
uniform polynomial approximation on the interval[−1, 1].

Lemma 3.3. Assumingn ≥ 64K, there exists a degree-k polynomialqw such that|pw(t)− qw(t)| ≤
4
√
K exp(−k2/1156K) for all t ∈ [−1, 1].

Lemma3.3 is the main technical result of this section. It is proved in Section3.1.

Proof of Theorem1.2. Now let T be a general distinguisher onK inputs. By FactsA.1 andA.2 (see Ap-
pendix),T can be assumed to be a symmetric Boolean-valued function. We bound the distinguishing advan-
tage as follows. Recalling thatX andY are(k, 0)-indistinguishable symmetric distributions over{0, 1}n,
for any setS ⊆ [n] of sizeK we have:

E[T (X|S)]− E[T (Y |S)]

=
K∑

w=0

bw
(
E[Qw(X|S)]− E[Qw(Y |S)]

)
(by (2))

≤
K∑

w=0

∣∣E[Qw(X|S)]− E[Qw(Y |S)]
∣∣ (by boundedness ofbw)

=
K∑

w=0

∣∣E[pw(φ(|X|)]− E[pw(φ(|Y |))]
∣∣ (by symmetry ofX,Y , and Fact3.1)

≤
K∑

w=0

∣∣E[qw(φ(|X|))]− E[qw(φ(|Y |))]
∣∣+ 8

√
K exp(−k2/1156K) (by Lemma3.3)

= O(K3/2) · e−k2/1156K (by k-wise indistinguishability ofX,Y )

Therefore,X andY are(K,O(K3/2) · e−k2/1156K)-wise indistinguishable for2 ≤ K ≤ n/64.
9pw, Cw, andZw also depend onK andn but we omit those arguments from the notation as they will be fixed in the proof.
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3.1 Proof of Lemma3.3

We will prove Lemma3.3 by studying the Chebyshev expansion ofpw. To this end we take a brief detour
into Chebyshev polynomials and an even briefer one into Fourier analysis.

Chebyshev polynomials. The Chebyshev polynomials are a family of real polynomials{Td}, 1-bounded
on [−1, 1], with Td having degreed. We extend the definition to negative indices by settingT−d = Td. The
Chebyshev polynomials are orthogonal with respect to the measuredσ(t) = (1 − t2)−1/2dt supported on
[−1, 1]. Therefore every degree-K polynomialp : R → R has a unique (symmetrized) Chebyshev expansion

p(t) =
K∑

d=−K

cdTd(t), c−d = cd

wherec−K , . . . , cK are theChebyshev coefficientsof p.
The Chebyshev polynomials satisfy the following identity, which plays an important role in our analysis:

Fact 3.4. t · Td(t) = 1
2Td−1(t) +

1
2Td+1(t).

This formula, together with the “base cases”T0(t) = 1 andT1(t) = t, specifies all Chebyshev polyno-
mials.

We will also need the following form of Parseval’s identity for univariate polynomials.

Claim 3.5 (Parseval’s identity). For every complex polynomialh, the sum of the squares of the magnitudes
of the coefficients ofh equalsEz[|h(z)|2], wherez is a random complex number of magnitude 1.

Proof outline. We will argue that the Chebyshev expansion
∑K

d=−K cdTd(t) of pw(t) has small weight on
the coefficientscd when|d| > k. Zeroing out those coefficients then yields a good degree-k approximation
of pw as desired.

The upper bound on the Chebyshev coefficients ofpw is derived in two steps. The first step, which
is of an algebraic nature, expresses the Chebyshev coefficients ofpw as regular coefficients of a related
polynomialg.10 We are interested in the coefficients of the derived polynomialgε(s) = g((1 + ε)s), which
represent the Chebyshev coefficientscd of pw amplified by the exponential scaling factor(1 + ε)d.

The second step, which is analytic, upper bounds the magnitude of the coefficients of gε(s). The
main tool is Parseval’s identity, which identifies the sum of the squares of these coefficients by the aver-
age magnitude ofgε over the complex unit circleEθ |g((1 + ε)eiθ)|2. We bound themaximummagnitude
maxθ |g((1 + ε)eiθ)|2 by explicitly analyzing the functiong. This step comprises the bulk of our proof.

The third step translates the bound on the squared 2-norm
∑K

d=−K(1 + ε)2dc2d of the amplified coef-
ficients into a tail bound oncd by optimizing over a suitable value ofε. This is analogous to the standard
derivation of Chernoff-Hoeffding bounds by analysis of the moment generating function of the relevant
random variable.

We now sketch how this outline is executed for the special case wheren tends to infinity whilek andK
remain fixed. Although this setting is technically much easier, it allows us to highlight the main conceptual
points of our argument. The analysis for finiten can be viewed as an approximation of this proof strategy.

10We omit the dependence onw as this parameter remains constant throughout the proof.

10



Sketch of the limiting casen → ∞. By the expansion (4) of pw, asn tends to infinitypw converges
uniformly to the function

p∞w (t) = Cw · (t− 1)w(t+ 1)K−w,

as this corresponds to Fact3.1when the bits of the stringZ are independent and(1− t)/2-biased. Asp∞w (t)
is a probability for everyt ∈ [−1, 1], Claim3.2follows immediately.

Step 1.Our algebraic treatment of the Chebyshev transform yields that the Chebyshev coefficientcd of p∞w
is the(K + d)-th regular coefficient of the polynomial

g∞(s) = Cw

(
s− 1√

2

)2w (s+ 1√
2

)2(K−w)

. (5)

Step 2.The evaluation of the polynomialg∞ε (s) = g∞((1 + ε)s) ats = eiθ satisfies the identity

∣∣∣g∞
(
(1 + ε)eiθ

)∣∣∣ = (1 + ε)K · (1 + δ)K · Cw ·
(
1− cos θ

1 + δ

)w (
1 +

cos θ

1 + δ

)K−w

, (6)

whereδ = ε2/2(1 + ε). This happens to equal

(1 + ε)K(1 + δ)Kpw(cos θ/(1 + δ)), (7)

and is in particular uniformly bounded by(1 + ε)K(1 + δ)K for all θ. This similarity betweenp∞ andg∞ε
is the crux of our analysis.

Step 3. By Parseval’s identity, after suitable shifting and cancellation, the amplified sum of Chebyshev
coefficients

∑K
d=−K(1 + ε)2dc2d is upper bounded by(1 + δ)2K . Therefore the tail

∑
k≥d c

2
d can have value

at most(1 + δ)2K/(1 + ε)2k ≤ exp(2Kε2 − 2(ε− ε2/2)k). This upper bound holds for allε ∈ [0, 1], and
plugging in the approximate minimizerε = k/2K yields a bound of the desired formexp(−Ω(k2/K)).

Outline of the general case. We now give the outline of our full proof for the general case and relevant
technical statements that we use to prove our main upper bound. Identity (5) generalizes to the following
statement:

Claim 3.6. The Chebyshev coefficientcd of pw is the(K + d)-th regular coefficient of the polynomial

g(s) = Cw

∏

z∈Zw

(
s2 − 2sz + 1

2

)
,

whereCw is as in Equation(4).

The general form of identity (6) is:

Claim 3.7. For ε > 0, δ = ε2/2(1 + ε), andθ ∈ [−π, π],
∣∣g((1 + ε)eiθ)

∣∣2 = (1 + ε)2K(1 + δ)2K · C2
w

∏

z∈Zw

hδ(1+1/(1+δ))

(
cos θ

1 + δ
, z

)

wherehδ(s, z) = (s− z)2 + δ(1− z2).
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Owing to the second term inhδ, there is no identity analogous to (7) whenn is finite andpw has
zeros inside(−1, 1). Nevertheless,

∏
z∈Zw

hδ(s, z) can be uniformly bounded either by a sufficiently small
multiple ofpw(s)2, or a fixed quantity that is constant in the parameter range of interest.

Claim 3.8. Assumen ≥ 64K andw ≤ K/2. Then

C2
w ·

∏

z∈Zw

hδ(s, z) ≤
{
e65δK · pw(s)2 if |s| ≤ 1− w/16K

e65δK if 1− w/16K ≤ |s| ≤ 1.

We now prove Lemma3.3. Claim 3.6 is proved in Section3.2. Claim 3.7 is proved in Section3.3.
Claims3.2and3.8are proved in Section3.4as the proofs share the same structure.

Fact 3.9. pw(t) = pK−w(1− t).

Proof. By Fact 3.1, both sides are degree-K polynomials that agree onn + 1 > K points so they are
identical.

Proof of Lemma3.3. By Fact3.9 we may and will assume thatw ≤ K/2. Let pw =
∑K

d=−K cdTd. The
approximating polynomialqw is

∑
|d|<k cdTd. It remains to prove a tail upper bound on the Chebyshev

coefficients. By Claim3.6, the(K+d)-th coefficient ofg(s) is cd. Therefore the polynomialgε(s) = g((1+
ε)s) has coefficients(1 + ε)K+dcd asd ranges from−K toK. We apply Parseval’s identity (Claim3.5) to
gε.

It follows that
K∑

d=−K

(1 + ε)2(K+d)c2d = Eθ |g((1 + ε)eiθ)|2

≤ max
θ∈[−π,π]

|g((1 + ε)eiθ)|2

= max
s∈[−1,1]

(1 + ε)2K(1 + δ)2K · C2
w

∏

z∈Zw

hδ(1+1/(1+δ))(s/(1 + δ), z),

by Claim3.7. Since0 ≤ δ = ε2/2(1+ ε) ≤ 1/2, for simplicity we may replacehδ(1+1/(1+δ))(s/(1+ δ), z)
byh2δ(s, z) in the above inequality. This gives the following approximation bound forα = maxt∈[−1,1] |pw(t)−
qw(t)|:

α = max
t∈[−1,1]

∣∣∣
∑

|d|≥k
cdTd(t)

∣∣∣

≤
∑

|d|≥k
|cd| max

t∈[−1,1]
|Td(t)|

≤ 2
∑

d≥k

|cd| (by symmetry and boundedness ofTd)

≤ 2
√
K ·

√∑
d≥k

c2d (by Cauchy-Schwarz)

≤ 2
√
K ·

√
(1 + ε)−2(K+k)

∑
d≥k

(1 + ε)2(K+d)c2d

≤ 2
√
K

√
(1 + ε)−2k · (1 + δ)2K · max

s∈[−1,1]
C2
w

∏

z∈Zw

h2δ(s, z).
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By the boundedness ofpw (Claim 3.2), the upper bounds in Claim3.8can be unified by the inequality

C2
w

∏

z∈Zw

h2δ(s, z) ≤ 4e130δK

that is valid for alls ∈ [−1, 1]. Since1 + δ ≤ eδ and1 + ε ≥ eε−ε2/2 for 0 ≤ ε ≤ 1,

α ≤ 2
√
K ·

√
(1 + δ)2K

(1 + ε)2k
· 4e130δK ≤ 4

√
K ·

√
e132δK−2εk+ε2k ≤ 4

√
K ·

√
e67ε2K−2εk,

where the last inequality follows from the definitionδ = ε2/2(1 + ε). Settingε = k/34K we obtain that
α ≤ 4

√
K · e−k2/1156K .

3.2 Proof of Claim 3.6

Claim 3.6 is a direct consequence of the following formula for the Chebyshev expansion of products of
linear functions.

Claim 3.10. If p(t) =
∏

z∈Z(t − z), where|Z| = K then thed-th Chebyshev coefficient ofp is thed-th
regular coefficient of the Laurent polynomialg(s) =

∏
z∈Z(s+ s−1 − 2z)/2.

Indeed, multiplying the polynomialg(s) from Claim3.10by sK then yields Claim3.6.

Proof. We prove this by induction onK. WhenK = 0, p has only one nonzero Chebyshev coefficient
and it is equal to1 as claimed. Now assume the claim holds forp(t) and we prove it for(t − z)p(t). Let
[sd] (g(s)) denote thed-th regular coefficient ofg. Then the Chebyshev expansion ofp is

p(t) =
∑

d

[sd] (g(s)) · Td(t),

and the Chebyshev expansion of(t− z)p(t) is

(t− z)p(t) =
∑

d

[sd] (g(s)) tTd(t)−
∑

d

[sd] (g(s)) zTd(t)

=
∑

d

[sd] (g(s)) · 1
2Td−1(t) +

∑

d

[sd] (g(s)) · 1
2Td+1(t)−

∑

d

[sd] (g(s)) zTd(t) (by Fact3.4)

=
∑

d

[sd−1] (sg(s)) · 1
2Td−1(t) +

∑

d

[sd+1]
(
s−1g(s)

)
· 1
2Td+1(t)−

∑

d

[sd] (g(s)) zTd(t)

=
∑

d

[sd]
(s
2
g(s)

)
Td(t) +

∑

d

[sd]

(
s−1

2
g(s)

)
Td(t)−

∑

d

[sd] (zg(s))Td(t)

=
∑

d

[sd]

(
s+ s−1 − 2z

2
g(s)

)
Td(t),

as desired.
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3.3 Proof of Claim 3.7

Proof. By definition ofZw, we have thatz ∈ [−1, 1] and thus may setz = cosφ. We also writes =
(1 + ε)eiθ = (1 + ε) cos θ + i(1 + ε) sin θ, from which it follows that:

s2 − 2sz + 1 = (s− z +
√
z2 − 1)(s− z −

√
z2 − 1) = (s− cosφ+ i sinφ)(s− cosφ− i sinφ)

= (s− eiφ)(s− e−iφ) = ((1 + ε)eiθ − eiφ)((1 + ε)eiθ − e−iφ)

=
(
(1 + ε)ei(θ+φ) − 1

)(
(1 + ε)ei(θ−φ) − 1

)
.

Recalling thatδ = ε2

2(1+ε) , we have that for anyγ,

|(1 + ε)eiγ − 1|2 = (−1 + (1 + ε) cos γ)2 + ((1 + ε) sin γ)2

= 1− 2(1 + ε) cos γ + (1 + ε)2

= 2(1 + ε)(1− cos γ + δ),

from which it follows that

|s2 − 2sz + 1|2 =
∣∣∣(1 + ε)ei(θ+φ) − 1

∣∣∣
2 ∣∣∣(1 + ε)ei(θ−φ) − 1

∣∣∣
2

= 4(1 + ε)2(1− cos(θ + φ) + δ) · (1− cos(θ − φ) + δ)

= 4(1 + ε)2(1 + δ)2
(
1− cos(θ + φ)

1 + δ

)(
1− cos(θ − φ)

1 + δ

)

= 4(1 + ε)2(1 + δ)2

((
1− cos θ cosφ

1 + δ

)2

−
(
sin θ sinφ

1 + δ

)2
)

= 4(1 + ε)2(1 + δ)2

((
1− z cos θ

1 + δ

)2

−
(
(1− z2) sin2 θ

(1 + δ)2

))

= 4(1 + ε)2
(
(1 + δ − z cos θ)2 − (1− z2) sin2 θ

)

= 4(1 + ε)2
(
(1 + δ)2 − 2(1 + δ)z cos θ − 1 + z2 + cos2 θ

)

= 4(1 + ε)2
(
(cos θ − (1 + δ)z)2 + (1− z2)(2δ + δ2)

)
.

Note that the fourth equality uses the sum and difference formulas for sineand cosine.

We then have
∣∣∣∣
s2 − 2sz + 1

2

∣∣∣∣
2

= (1 + ε)2
(
(cos θ − (1 + δ)z)2 + (1− z2)(2δ + δ2)

)

= (1 + ε)2(1 + δ)2

((
cos θ

1 + δ
− z

)2

+
(1− z2)(2δ + δ2)

1 + δ

)
.

The claim then follows by multiplicativity of the norm.
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3.4 Proofs of Claim3.8and Claim 3.2

Proof of Claim 3.8 The objective is to uniformly bound the value of the function

hδ(s) = C2
w ·

∏

z∈Zw

hδ(s, z), where hδ(s, z) = (s− z)2 + δ(1− z2)

for s ∈ [−1, 1]. Whenk,K are fixed andn becomes large, all zeros inZw approach−1 or +1, hδ(s, z)
uniformly approachesh0(s, z) = (s − z)2, hw(s) approachesh0(s) = p∞w (s) and is therefore uniformly
bounded.

The main difficulty in extending this argument to finiten is thathδ(s, z) can no longer be uniformly
bounded by a multiple of(s − z)2 since whens equalsz, the latter function vanishes but the former one
doesn’t. For this reason, we divide the analysis into two parameter regimes.Whens is bounded away from
the set of zerosZw, an approximation of the infinitary term-by-term argument can be carried out. When
s is near the zeroes, we argue thathδ(s) cannot be much larger thanhδ(s0) for an s0 that is even farther
away fromZw, and then argue thath0(s0) = pw(s0)

2 must be small because it represents the square of a
probability of a rare event.

Fact 3.11. hδ(s, z)hδ(s,−z) = hδ(−s, z)hδ(−s,−z).

Fact 3.12. hδ(s, z) ≤ hδ(|s|, z) whenz ≤ 0 ands ≥ 0.

Fact 3.13. hδ(s, z) ≤ hδ(s0, z) whens0 ≤ s ≤ 1, s0 ≤ 2z − 1, and|z| ≤ 1.

Proof. The fact is equivalent to checking that(s0 − z)2 − (s− z)2 ≥ 0 whens0 ≤ s ≤ 1 ands0 ≤ 2z − 1.
If s ≤ z then we have thats0 ≤ s ≤ z from which it immediately follows that(s0 − z)2 ≥ (s − z)2. If
s > z then(s − z)2 is at most(1 − z)2. However, since|z| ≤ 1, we have thats0 ≤ 2z − 1 ≤ z and thus
(s0 − z)2 is always at least(z − (2z − 1))2 = (1− z)2. Again we have that(s0 − z)2 ≥ (s− z)2.

We begin by reducing to the case of non-negative inputss ∈ [0, 1].

Claim 3.14. Assumingw ≤ K/2, hδ(s) ≤ hδ(|s|).

Proof. Whenw ≤ K/2 then elements ofZw (3) can be split intow pairs of the formA = {(−1+2h/n, 1−
2h/n) : 0 ≤ h < w}, andK − 2w remaining elementsB = {−1 + 2h/n : w ≤ h < K − w} are all non-
positive. By Fact3.11,

∏
(−z,z)∈A hδ(s, z)hδ(s,−z) =

∏
(−z,z)∈A hδ(|s|, z)hδ(|s|,−z). By Fact3.12,∏

z∈B hδ(s, z) ≤
∏

z∈B hδ(|s|, z). Therefore the product
∏

z∈Zw
hδ(s, z) ≤

∏
z∈Zw

hδ(|s|, z).

The following claim handles values ofs in the range[0, 1− w/16K].

Claim 3.15. Assuming0 ≤ s ≤ 1− w/16K,

hδ(s, z) ≤
{
(1 + δ)(s− z)2, if z ≤ −1/

√
2.

(1 + (64K/w)δ)(s− z)2, if z ≥ 1− w/32K

Proof. The ratiohδ(s, z)/(s − z)2 equals1 + ((1 − z2)/(s − z)2)δ. The number(1 − z2)/(s − z)2 is at
most1 whens ≥ 0 andz ≤ −1/

√
2 and at most the following whenz ≥ 1− w/32K.

1− (1− w/32K)2

((1− w/16K)− (1− w/32K))2
≤ 2w/32K

(w/32K)2
= 64K/w.
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Corollary 3.16. Assuming0 ≤ s ≤ 1− w/16K andn ≥ 64K, hδ(s) ≤ e65δKh0(s).

Proof. By the choice of parameters, all zeros inZ− meet the criterion for the first inequality in Claim3.15,
while all zeros inZ+ meet the criterion for the second one. Therefore

hδ(s) = C2
w

∏

z∈Z−

hδ(s, z)
∏

z∈Z+

hδ(s, z)

≤ C2
w

∏

z∈Z−

(1 + δ)(s− z)2
∏

z∈Z+

(1 + (64K/w)δ)(s− z)2

≤ (1 + δ)K−w(1 + (64K/w)δ)w · C2
w

∏

z∈Z−

h0(s, z)
∏

z∈Z+

h0(s, z)

≤ eδK · e64δK · h0(s).

The following two claims handle values ofs in the range[1− w/16K, 1].

Claim 3.17. Assumingw ≤ K and1− w/8K ≤ s0 ≤ 1− w/16K ≤ s ≤ 1,

hδ(s, z) ≤
{
hδ(s0, z), if z ≥ 1− w/32K

(1 + w/8K)2 · hδ(s0, z), if z ≤ −w/8K.

Proof. By the choice of parameters the first inequality follows from Fact3.13. For the second one, we upper
bound the ratio

(s− z)2

(s0 − z)2
≤ (1− z)2

(1− z − w/8K)2
=

(
1 +

w/8K

1− z − w/8K

)2

≤
(
1 +

w

8K

)2

.

This is greater than one, so(s− z)2 + δ(1− z2) ≤ (1 + w/8K)2((s0 − z)2 + δ(1− z2)) as desired.

Corollary 3.18. Assuming1− w/8K ≤ s0 ≤ 1− w/16K ≤ s ≤ 1 andn ≥ 2K, hδ(s) ≤ ew/4hδ(s0).

Proof. By the choice of parameters, all zeros inZ− meet the criterion for the first inequality in Claim3.17,
while all zeros inZ+ meet the criterion for the second one. Therefore

hδ(s) = C2
w

∏

z∈Z−

hδ(s, z)
∏

z∈Z+

hδ(s, z)

≤ C2
w

∏

z∈Z−

(1 + w/8K)2 · hδ(s0, z)
∏

z∈Z+

hδ(s0, z)

= (1 + w/8K)2|Z−| · hδ(s0)
≤ (1 + w/8K)2K · hδ(s0) ≤ ew/4hδ(s0).

Claim 3.19. If s0 is of the form1− 2h/n for some integer0 ≤ h ≤ wn/e2K then0 ≤ pw(s0) ≤ e−w.
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Proof. By Fact3.1, pw(s0) is the probability that a random string of Hamming weighth and lengthn has
exactlyw ones in its firstK positions. The probability that it has at leastw ones in its firstK positions is at
most

(
K

w

)
· h
n
· h− 1

n− 1
· · · h− w + 1

n− w + 1
≤
(
eK

w

)w(h
n

)w

≤ e−w.

Proof of Claim3.8. By Claim3.14we may assumes ∈ [0, 1]. When0 ≤ s ≤ 1−w/16K the result follows
from Corollary3.16. When1−w/16K ≤ |s| ≤ 1, by the assumptionn ≥ 64K there must exist a values0
between1− w/8K and1− w/16K that is of the form1− 2h/n. In particularh ≤ wn/e2K. Then

hδ(s) ≤ ew/4hδ(s0) ≤ ew/4e65δKpw(s0)
2 ≤ e65δK−7w/4,

where the inequalities follow from Corollary3.18, Corollary3.16, and Claim3.19, respectively.

Proof of Claim 3.2 This proof has a similar structure to that of Claim3.8. By symmetry we can again
restrict attention to inputst ∈ [0, 1]. Whent ≤ 1−2w/n then|pw(t)| is not much larger than|pw(t′)| where
t′ is the largest number of the form1 − 2h/n not exceedingt for integerh. Otherwise the value|pw(t)| is
not much larger than|pw(s0)|, for somes0 ∈ [1−w/8K, 1−w/16K] of the form1− 2h/n for an integer
h. In turn,pw(s0) is the probability of a rare event, so we conclude that|pw(t)| is small.

Claim 3.20. If −2/n ≤ t′ ≤ t ≤ 1− 2w/n then

|t− z| ≤
{
|t′ − z|, if z ≥ 1− 2w/n,

(1 + 2(t− t′))|t′ − z|, if z ≤ −1/2− 2/n.

Proof. The first part follows because the expressions under the absolute value are nonnegative. For the
second part, we bound the ratio

t− z

t′ − z
= 1 +

t− t′

t′ − z
≤ 1 + 2(t− t′)

as desired.

Corollary 3.21. Assumingn ≥ 64K and−2/n ≤ t′ ≤ t ≤ 1− 2w/n, |pw(t)| ≤ (1 + 2(t− t′))K |pw(t′)|.

Proof. By the choice of parameters, all zeros inZ+ meet the criterion for the first inequality in Claim3.20,
while all zeros inZ− meet the criterion for the second one. Therefore

|pw(t)| = Cw

∏

z∈Z−

|t− z|
∏

z∈Z+

|t− z|

≤ Cw

∏

z∈Z−

(1 + 2(t− t′))
∣∣t′ − z

∣∣ ∏

z∈Z+

∣∣t′ − z
∣∣

= (1 + 2(t− t′))|Z−| ·
∣∣pw(t′)

∣∣

≤ (1 + 2(t− t′))K ·
∣∣pw(t′)

∣∣.
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Proof of Claim3.2. By Fact3.9we may assumew ≤ K/2, and by Claim3.14(for δ = 0) we may assume
0 ≤ t ≤ 1. If t ≤ 1− 2w/n then there exists at′ such thatpw(t′) is a probability and0 ≤ t− t′ ≤ 2/n. By
Corollary3.21, |pw(t)| ≤ (1 + 4/n)K |pw(t′)| ≤ 2|pw(t′)|.

If 1 − 2w/n ≤ t ≤ 1, then t ≥ 1 − w/16K. By the assumptionn ≥ 64K there must exist a
values0 between1− w/8K and1− w/16K that is of the form1− 2h/n. In particularh ≤ wn/e2K. By
Corollary3.18, |pw(t)| =

√
h0(t) ≤ ew/8

√
h0(s0) = ew/8|pw(s0)|. By Claim3.19, pw(s0) is non-negative

and at moste−w. Therefore|pw(t)| ≤ ew/8 · e−w ≤ 1.

4 Proofs of Corollary 1.4and Theorem1.5

4.1 Proof of Corollary 1.4

Proof of Corollary1.4. Corollary1.3implies the existence of aφ
(
= µ−ν

2

)
satisfying‖φ‖1 = 1, 〈f, φ〉 = ε

for someε = Ω(1) and〈φ, q〉 ≤ K3/2 · 2−Ω
(
d̃eg1/3(f)

2/K
)

for any parity of degree at mostK.
For anyp of degreeK and weight at mostw,

‖f − p‖∞ = ‖f − p‖∞‖φ‖1 ≥ 〈φ, f − p〉 = 〈φ, f〉 − 〈φ, p〉 ≥ ε− w ·K3/2 · 2−Ω
(
d̃eg1/3(f)

2/K
)

.

Thus, we conclude thatWε/2(f,K) = K−3/2 · 2Ω
(
d̃eg1/3(f)

2/K
)

. Corollary 1.4 now follows using

standard error reduction techniques that show thatd̃egε(f) = Θ(d̃eg1/3(f)) for all constants0 < ε < 1/2.

4.2 Proof of Theorem1.5

We first require the following lemma. This lemma builds on ideas in [24, Claim 2], which showed a similar
result fort = Θ(1).

Lemma 4.1. For anyy ∈ {0, 1}n, denote byEQy the function on{0, 1}n that outputs 1 on inputy, and 0

otherwise. Then for anyt > 0 andd >
√
nt logn, we haveWn−O(t)(EQy, d) ≤ 2O(nt log2(n)/d).

Proof. Note that for anyy ∈ {−1, 1}n, the functionEQy is just theAND function onn input bits (with 0-1
valued output), with possibly negated input variables. Thus it suffices to give an approximating polynomial
for theAND function onn bits. We now expressANDn asANDℓ ◦ ANDn/ℓ, whereℓ is a parameter we will
set later. We compute the innerANDn/ℓ exactly and approximate the outerANDℓ to errorn−Ω(t). This can

be done with a polynomialp of degreeO
(√

ℓ log(nt)
)

[6, 16]. Combining the fact thatp is bounded by

1 + n−Ω(t) ≤ 2 at all Boolean inputs with Parseval’s identity and the Cauchy-Schwarz inequality, it can be

seen that the weight ofp is at mostℓ
O
(√

ℓ log(nt)
)

.11 It is well known that the exact multilinear polynomial
representation ofANDn/ℓ has constant weight. Hence, by composingp with the multilinear polynomial that

exactly computesANDn/ℓ, we obtain an approximationq for ANDn of degreeO

(
n
√

t logn
ℓ

)
, errorn−Ω(t),

11Building on [6], It is possible to derive explicitε-approximating polynomials forAND where the degree isO
(√

ℓ log(1/ε)
)

and the weight is2O
(√

ℓ log(1/ε
)

rather thanℓO
(√

ℓ log(1/ε)
)

. Using this tighter weight bound would improve our final result by a
factor oflog n in the exponent. We omit this tighter result for brevity.
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and weight2
O
(√

ℓt log3 n
)

. We now fix the value ofℓ to ℓ := n2t log n
d2

< n, thereby ensuring that the degree

of q is at mostd. With this setting ofℓ, the weight ofq is at most2O(nt log2(n)/d), proving the lemma.

Proof of Theorem1.5. Let f : {0, 1}n → {0, 1} be any symmetric function, corresponding to the univariate
predicateDf : {0} ∪ [n] → {0, 1}n. For the purpose of this proof, let us denote bykf the smallesti for
whichf is constant on inputs of Hamming weight in the interval[i+1, n−i−1]. Without loss of generality,
f(x) = 0 for strings ofx Hamming weight betweenkf +1 andn− kf − 1. The case wheref = 1 on input
strings of Hamming weight betweenkf +1 andn− kf − 1 can be proved using a similar argument. Define
supp(f) := {x ∈ {0, 1}n : f(x) = 1}. Note that|supp(f)| ≤ 2 · nkf .

Observe thatf(x) =
∑

y∈supp(f) EQy(x). Lemma4.1 implies, for eachy ∈ supp(f), the existence

of polynomialspy of degreeK and weight2O(nkf log2(n)/K), which approximateEQy to error 1
6 · n−kf .

Define a polynomialp : {0, 1}n → R by p(x) =
∑

y∈supp(f) py(x). Clearlyp has degreeK, weight at

mostnO(kf ) · 2O(nkf log2(n)/K) = 2Õ(nkf/K), and error at most|supp(f)| · n−kf /6 ≤ 1/3, where the upper
bounds on the weight and error follow from the triangle inequality.

The theorem now follows standard error reduction techniques and Paturi’s theorem [22], which states
that for symmetric functions,̃deg(f) = Θ

(√
n · kf

)
.

Remark 4.2. The upper bound obtained in Theorem1.5 is more general than as stated, and the only prop-
erty of symmetric functions it exploits is that symmetric functions of low approximate degree are highly
biased. More specifically, the proof of Theorem1.5 shows that any functionf : {0, 1}n → {0, 1} with

min{|f−1(0)|, |f−1(1)|} ≤ nt satisfiesWε(f,K) ≤ 2Õ(nt/K) for anyK ≥
√
nt logn.

5 Proof of Theorem1.6

Proof outline. As we explain in more detail in the proof itself, it is sufficient to establish the theorem for
fixedk andK and infinitely manyn because the statement is downward reducible inn.

Using the Chebyshev approximation formulas from Section3 we derive explicit lower bounds on the
large Chebyshev coefficients on the polynomialp0 representing the distinguishing advantage of the AND
function onK inputs. Owing to orthogonality and boundedness of the Chebyshev polynomials, this is
a lower bound on the approximate degree ofANDK . By strong duality as given in the following Claim
(see [4]) we obtain Theorem1.6.

Claim 5.1. If d̃egε/2(Fn) ≥ k then there exists a pair of perfectlyk-wise indistinguishable distributionsµ,
ν over{0, 1}n such thatEX∼µ[Fn(X)]− EY∼ν [Fn(Y )] ≥ ε.

Recall that the Chebyshev polynomials are orthogonal under the measuredσ(t) = (1 − t2)−1/2dt
supported on[−1, 1]. We will need the following identity for their average square magnitude underthis
measure:

Et∼σ[Td(t)
2] = 1/2 whend > 0. (8)

Proof of Theorem1.6. By symmetry of the distinguishers,µ and ν can be assumed symmetric. LetFn

denote the function on{0, 1}n that outputsANDK

(
x|{1,...,K}

)
, i.e.,Fn outputs theAND of the firstK < n

bits of the input. We prove the theorem forGn(x1, . . . , xn) = NOR(x|{1,...,K}). By the symmetry of0 and
1 inputs the theorem also holds forFn.
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First, we claim that the statement of Theorem1.6 is stronger asn becomes larger, so it is sufficient
to prove it in the limiting case whenn approaches infinity andk,K are fixed. Suppose thatµ and ν
are distributions overn bit strings that arek-wise indistinguishable yet areε-reconstructable byGn. We
must show that there are distributionsµ′ and ν ′ over {0, 1}n−1 are k-wise indistinguishable yet areε-
reconstructable byGn−1. But this holds forµ′ (respectivelyν ′) that generate a random sample fromµ
(respectively,ν) and then throw away the last bit.

If the statement was false then by Claim5.1there would exist degree-k polynomialsG̃n that approximate

Gn pointwise on{0, 1}n to within error ε =

√
2−4K+1

∑
d>K

(
2K
K+d

)2
for almost alln. Applying the

construction from the proof of Fact3.1to G̃n, there exist univariate degree-k polynomialsp̃n0 approximating
pn0 on the set of pointsWn = {−1 + 2h/n : 0 ≤ h ≤ n} to within errorε. We emphasize the dependence
onn as it will play a role in the proof.

By Formula (3) the polynomialpn0 has the form

pn0 (t) = Cn
0

∏

z∈Zn
0

(t− z),

whereZn
0 = {−1 + 2h/n : 0 ≤ h < K} (the setZ+ is empty). The valuep0n(1) is the probability thatGn

accepts the all-zero string, so it must equal one. The constantCn
0 must therefore equal

∏
z∈Zn

0
(1 − z)−1.

As n tends to infinity, the setZ0 converges to a single zero at−1 of multiplicity K, so the sequencepn0
converges uniformly to the polynomial

p∞0 (t) = 2−K(t+ 1)K .

By the triangle inequality, for everyδ > 0 and all sufficiently largen, p̃n0 is within ε + δ of p∞0 on the set
Wn. A degree-k polynomial is determined by its values onWk+1 and the set of degree-k polynomials that
are withinε+ δ of p∞0 onWk+1 is compact. Therefore the sequence of approximating polynomialsp̃n0 must
contain a subsequence (for values ofn that are multiples ofk + 1) that converges (uniformly) to a limiting
degree-k polynomialp̃∞0 . Sincep̃n0 is within ε + δ of pn0 onWn for infinitely manyn, p̃∞0 must be within
ε+2δ of p∞0 onWn for infinitely manyn. The union of these setsWn is dense in[−1, 1], and by continuity
p∞0 can beε+ δ-approximated by the degree-k polynomialp̃∞0 everywhere on[−1, 1]. As δ was arbitrary it
follows that theε-approximate degree ofp∞0 can be at mostk.

All that remains to prove that this is not true, i.e., to show a lower bound ofk on theε-approximate
degree ofp∞0 . This lower bound is known (see, e.g., [14]); we provide the details now for completeness. Let
q be any degree-k polynomial. By Claim3.6 thed-th Chebyshev coefficient ofp∞0 equals the(K + d)-th
regular coefficient ofg∞(s) = 2−2K(s+1)2K , which has value2−2K

(
2K
K+d

)
. Sinceq has degree at mostk,

thed-th Chebyshev coefficientcd of p∞0 − q must also equal2−2K
(

2K
K+d

)
whenever|d| > k. By symmetry

of the Chebyshev coefficients, orthogonality of the Chebyshev polynomials, and Equation (8),

Et∼σ[(p
∞
0 (t)− q(t))2] = c20 +

∑
d>0

(2cd)
2
Et∼σ[Td(t)

2] ≥
∑

d>k
2 ·
(
2−2K

(
2K

K + d

))2

= ε2.

It follows that the approximation error|p∞0 (t)− q(t)| must exceedε for somet ∈ [−1, 1], contradicting the
initial assumption.

6 Robustness of Symmetric Secret Sharing Against Consolidation

Consider a secret sharing scheme withtn parties, divided inn blocks of sizet, that is perfectly secure
against size-k coalitions. If all parties in each block come together and consolidate their information even
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into a single bit, the number ofblocksagainst which the scheme remains secure drops tok/t. In general this
is the best possible, with linear schemes providing tight examples.

The following corollary shows that if the distribution over shares is symmetric then much better security
against this type of attack can be obtained.

Corollary 6.1. Let f1, . . . , fn : {0, 1}t → {0, 1}. AssumeX,Y are k-wise indistinguishable symmetri-
cally distributed random variables overtn-bit strings. WriteX = X1 . . . Xn, Y = Y1 . . . Yn, where
all blocksXi, Yi have sizet. For everyK, the n-bit random variablesX ′ = f1(X1) . . . fn(Xn) and
Y ′ = f1(Y1) . . . fn(Yn) areO((tK)3/2nKe−k2/1156tK)-close to being perfectlyK-wise indistinguishable,
assumingK ≤ n/64.

The resulting scheme can be viewed as perfectly secure secret sharingwith a potentially faulty dealer:
With probability 1 − p, the dealer samples perfectlyK-wise indistinguishable sharesX ′ or Y ′, and with
probabilityp = O((tK)3/2nKe−k2/1156tK) she leaks arbitrary information about the secret.

For example, ifX,Y are visual shares sampled from the dual polynomial (1) then they arek = Ω(
√
tn)-

wise indistinguishable, assuming constant reconstruction error. Corollary 6.1 then says that the induced
block-sharesX ′, Y ′ areΩ(

√
n/ log n)-wise indistinguishable except with probabilityexp−Ω(

√
n logn).

If, in addition, f1 = · · · = fn = ANDt thenX ′, Y ′ are themselves shares of a visual secret sharing
scheme that is secure againstΩ(

√
n/ logn)-size coalitions. Therefore symmetric visual secret sharing

schemes are downward self-reducible at a small loss in security and dealer error in the following sense: A
scheme forn parties can be derived from one fortn parties by dividing the parties into blocks andANDing
the shares in each block.

Proof of Corollary6.1. By Theorem1.2,X andY are(tK,O((tK)3/2) · e−k2/1156tK)-wise indistinguish-
able. Since any size-K distinguisher against(X ′, Y ′) induces a size-tK distinguisher against(X,Y ), the
former are(K, δ = O((tK)3/2) · e−k2/1156tK)-wise indistinguishable. By Theorem D.1 of [4], any pair of
(K, δ)-wise indistinguishable distributions overn bits is2δnK-close to a pair of perfectly indistinguishable
ones.
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A Properties of Symmetric Functions and Distributions

Here, we prove some basic facts that we need about symmetric functions and distributions (see first para-
graph of Section3). Let Q : {0, 1}n → R be a function. We say thatQ is symmetric if the output of
Q depends only on the Hamming weight of its input. If we letX : {0, 1}n → [0, 1] denote a probability
distribution, we say thatX is symmetric if the corresponding function mapping inputs to probabilities is a
symmetric function. We need two further facts about such distributions.

Fact A.1. Suppose thatX is a symmetric distribution over{0, 1}n. For S ⊆ {0, ..., n}, letX|S denote the
projection ofX to the indices inS. Then,X|S is also symmetric.
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Proof. Let zw be an arbitrary element of{0, 1}|S| of Hamming weightw. Using symmetry ofX, we can
observe that

Pr
X
[X|S = zw] =

n∑

h=0

∑

y∈{0,1}n−|S|

|y|=h

Pr[X|S = zw andX|[n]\S = y] =

n−|S|∑

h=0

(
n− |S|
h

)
Pr[|X| = h+ w](

n
w+h

) .

The expression on the right depends only onw and not onzw, so the distributionX|S must be symmetric
also.

Fact A.2. Suppose thatX andY are symmetric distributions over{0, 1}n. Then without loss of generality,
the best statistical testQ : {0, 1}n → [0, 1] for distinguishing betweenX andY is a symmetric function. In
particular, we have:

max
symmetricQ

{EX [Q(X)]− EY [Q(Y )]} = max
Q

{EX [Q(X)]− EY [Q(Y )]}.

Proof. LetQ∗ denoteargmaxQ{EX [Q(X)]− EY [Q(Y )]}. If Q∗ is symmetric then the proof is complete.
If not, defineQ̃ as the following symmetrized version ofQ∗:

Q̃(z) := Eσ[Q
∗(σ(z))],

where the expectation is over a uniform permutationσ. It is clear thatQ̃ is a symmetric function and
we will write Q̃w to denote the valuẽQ takes on any input of Hamming weightw. We now show that
its distinguishing advantage betweenX and Y is the same asQ∗. Clearly, it is enough to show that
EX [Q̃(X)] = EX [Q∗(X)] for arbitrary symmetric distributionX. This follows from a simple calculation:

EX [Q∗(X)] =
n∑

w=0

∑

|x|=w

Pr[X = x]Q∗(x) =
n∑

w=0

Pr[|X| = w](
n
w

)
∑

|x|=w

Q∗(x)

=
n∑

w=0

Pr[|X| = w] · Q̃w = EX [Q̃(X)].
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