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Abstract

Thee-approximate degreée?g(f) of a Boolean functiory is the least degree of a real-valued poly-
nomial that approximateg pointwise to withine. A sound and complete certificate for approximate
degree being at leastis a pair of probability distributions, also known aslaal polynomial that are
perfectlyk-wise indistinguishable, but are distinguishableftyith advantagd — <. Our contributions
are:

e We give a simple, explicit new construction of a dual polymairfor the AND function onn bits,
certifying that itss-approximate degree {3 (\ /nlog 1/5). This construction is the first to extend

to the notion of weighted degree, and yields the first exptiertificate that the /3-approximate
degree of any (possibly unbalanced) read-once DNE(ign). It draws a novel connection be-
tween the approximate degreeAdfID and anti-concentration of the Binomial distribution.

e We show that any pair afymmetriadistributions onn-bit strings that are perfectly-wise indis-
tinguishable are also statistically-wise indistinguishable with at mosf3/2 - exp (—Q (k?/K))
error for allk < K < n/64. This bound is essentially tight, and implies that any symniméunc-
tion f is a reconstruction function with constant advantage famap secret sharing scheme that
is secure against siz&-coalitions with statistical errak /2 - exp (—Q (deg/3(f)2/K)> for all
values of K up ton/64 simultaneously. Previous secret sharing schemes reqghiaed” be de-
termined in advance, and only worked fbe= AND. Our analysis draws another new connection
between approximate degree and concentration phenomena.

As a corollary of this result, we show that for ady< n/64, any degreel polynomial approx-
imating a symmetric functiorf to error1/3 must have coefficients df,-norm at leastx —3/2 -
exp (Q (dAngI/3 (f)? /d)). We also show this bound is essentially tight for ahy cTégl/g(f).
These upper and lower bounds were also previously only kriowire casef = AND.
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1 Introduction

The e-approximate degree of a functigh {—1,1}" — {0,1}, denotedas_g/g(f), is the least degree of a
multivariate real-valued polynomialsuch thatp(z) — f(z)| < e for all inputsz € {—1,1}".2 Such g is
said to be an approximating polynomial fr This is a central object of study in computational complexity,
owing to its polynomial equivalence to many other complexity measures includnsgisiy, exact degree,
deterministic and randomized query complexit]f and quantum query complexitg]

By linear programming duality; hass-approximate degree more tharf and only if there exist a pair
of probability distributions: andr over the domain off such that; andv are perfectlyk-wise indistin-
guishable (i.e., alk-wise projections of. andv are identical), but arél — ¢)-distinguishable by, namely
Exu[f(X)]—Ey[f(Y)] > 1—e. Said equivalently, a sound and complete certificatefapproximate
degree being more thanis adual polynomialy = (¢ — v)/2 that contains no monomials of degre®r
less, and such that, |¢(z)| = 1and)_, q(z)f(z) > .

Dual polynomials have immediate applications to cryptographic secret sharthgal polynomial; =
(n—v)/2for f is a description of a cryptographic scheme for sharing a 1-bit secretgstioparties, where
the secret can be reconstructed by applyfng the shares, and the scheme is secure against coalitions of
sizek (see ] for details).

Motivation for explicit constructions of dual polynomials. Recent years have seen significant progress
in proving new approximate degree lower bounds by explicitly constructirad plolynomials exhibiting
the lower boundT, 8,10-12, 25, 26, 28]. These new lower bounds have in turn resolved significant open
questions in quantum query complexity and communication complexity. At theitattoore of these
results are techniques for constructing a dual polynomial for compasediénsf o g := f(g,...,9),
given dual polynomials fof andg individually. -

Often, an explicitly constructed dual polynomial showing theg_(g) > d exhibits additional metric
properties, beyond what is required simply to Witn?sgs(g) > d. Much of the major recent progress in
proving approximate degree lower bounds has exploited these additiotréd preperties 7,11, 12, 28].
Accordingly, even if cases where an approximate degree lower bauaddinctiong is known, it can often
be useful to construct an explicit dual polynomial withessing the lowentioHence, we are optimistic that
the new constructions of dual polynomials given in this work will find futysplecations.

Explicit constructions of dual polynomials are also necessary to implemerbthesponding secret-
sharing scheme, and to analyze the complexity of the algorithm that samplémthe of the secret.

Our results in a nutshell. Our results fall into two categories. In the first category, we reproverak
known approximate degree lower bounds by giving the first explicittcoasons of dual polynomials wit-
nessing the lower bounds. Specifically, our dual polynomial certifiesthleatapproximate degree of the
n-bit AND function is©(y/nlog1/e). This construction is the first to extend to the notion of weighted
degree, and yields the first explicit certificate that tig8-approximate degree of any (possibly unbalanced)
read-once DNF i§)(y/n). Interestingly, our dual polynomial construction draws a novel anchateanec-
tion between the approximate degreed®D and anti-concentration of the Binomial distribution.

In the second category, we prove new and tight results about the sthe abefficients of polyno-
mials that approximate symmetric functions. Specifically, we show that fordagy n/64, any degree
d polynomial approximatingf to error 1/3 must have coefficients of weight;norm) at leastd®/? -

exp (Q (cIAe/gl/3 (f)2 /d)). We show this bound is tight (up to logarithmic factors in the exponent) for
anyd > Jégl/g(f). These bounds were previously only known in the chAse AND [5,24]. Our analysis

YIn this work, for convenience we also consider functions mapping }™ to {0, 1}.



actually establishes a considerably more general result, and as awensegve obtain new cryptographic
secret sharing schemes with symmetric reconstruction procedurese(=em$.2 for details).

1.1 A New Dual Polynomial for AND

To describe our dual polynomial fgkND, it will be convenient to consider th&ND function to have
domain{—1,1}" and rang€{0, 1}, with AND(z) = 1 if and only if z = 1™. In their seminal work, Nisan
and SzegedyZ1] proved that the /3-approximate degree of tHeND function onn inputs is©(y/n). More
generally, it is now well-known that theapproximate degree &ND is © <\/nlog(1/£)> [6,16]. These
works do not construct explicit dual polynomials witnessing the lower bsutids was achieved later in
works ofépalek R9] and Bun and Thalerd].

Our first contribution is the construction of a new dual polynomi&hr AND, which is simple enough
to describe in a single equation:

¢(z) = (—Zl)" <z£_[1[1} Hiz) (ES 11 ﬂfz) 2- 1)

i€S

Here, S is a random subset dfl, ..., n} of size at most;(n — d) (whered determines the degree of the
polynomials against which the exhibited lower bound holds), Anglan (explicit) normalization constant.

In the language of secret sharing, to share a secref—1, 1}, the dealer samples shares {—1,1}"
with probability proportional tdEg [T, #:)?, conditioned on the parity of the sharflsz; being equal to
S.

In Corollary2.2we show that certifies that every degregpolynomial must differ from th&ND func-
tion by 27" Z,(J:Odm (Z) at some input. In other words, the approximation error of a degaynomial
is lower bounded by the probability that a sum of unbiased independemievstes from its mean hy/2.

Our function¢ given in (1), unlike previous dual polynomialdQ, 16, 27, 29], also certifies that the
weighted1 /3-approximate degree gND with weightsw € RZ, is Q(||w]|2) (see Corollary2.3).2 This
lower bound is tight for alkv, matching an upper bound of Ambainig.[ The only difference in our dual
polynomial construction for the weighted case is in the distribution over$%etad the lower bound in the
weighted case is derived from anti-concentratiomwefghtedsums of Bernoulli random variables.

Both statements are corollaries of the following theorem.

Theorem 1.1. DefineAND: {—1,1}" — {0,1} asAND(x) = 1 if and only ifz = 1". The functiong
defined in Equatioifl) is a dual witness fodeg,, .(AND) > d for e = Pry ;_1 13»[(w, X) > d].

By combining, in a black-box manner, the dual polynomial for the weighpgeximate degree ¢§ND
with prior work (e.g., L7, Proof of Theorem 7]), one obtains, for any read-once DNRn explicit dual
polynomial for the fact thateg, /3(f) > ©(n'/2). Very recent work of Ben-David et al2] established this
result for the first time, shaving logarithmic factors off of prior wollo[17]. In fact, Ben-David et al.J]
prove more generally that any depfrread-onceAND-OR formula has approximate degree©(@,/n.
Their method, however, does not appear to yield an explicit dual polymoewien in the casé = 2.

Discussion. It has been well known that theapproximate degree of theND function onn variables
is © ( nlog(l/s)) [6,21], a fact which has many applications in theoretical computer science. This is

2 For a polynomiap(x1, . .., z,), a weight vectow € RZ, assigns weightv; to variablez;. The weighted degree gfis the
maximum weight over all monomials appearingginwhere the weight of a monomial is the sum of the weights of the variables
appearing within it. The weightedrapproximate degree of, denotecﬁ?gwye(f), is the least weighted degree of any polynomial
that approximateg pointwise to errok.



superficially reminiscent of Chernoff bounds, which state that the mM&/nlog(l/a)) layers of the
Hamming cube contain B— ¢ fraction of all inputs (i.e., “mosth-bit strings have Hamming weight close
ton/2). However, these two phenomena have not previously been connawtei is not a priori clear why
approximate degree should be related to concentration of measure. Foxiapgting polynomialp for f
must approximatg atall inputs in{—1,1}". Why should it matter thanost(but very far from all) inputs
have Hamming weight close to/27?

The new dual witness fokND constructed in Equatioril) above provides a surprising answer to this
guestion. The connection between (anti-)concentration and approxiegieedofAND arises not because
of the number ofnputsto f that have Hamming weight close t9'2, but because of the number érity
functionson n bits that havedegreeclose ton /2. This connection appears to be rather deep, as evidenced
by our construction’s ability to yield a tight lower bound in the case of weighfgaroximate degree.

1.2 Indistinguishability for Symmetric Distributions

In this section, for convenience we consider functions mapfing}” to {0, 1}. Two distributions: andv
over {0, 1}" are(statistically)(k, §)-wise indistinguishablé for all subsetsS C {1,...,n} of sizek, the
induced marginal distributiong|s andv|s are within statistical distance Whené = 0, we say they are
(perfectly)k-wise indistinguishable

For general pairs of distributions, perféctvise indistinguishability does not imply any sort of security
against distinguishers of size+ 1. Any binary linear error-correcting code of distarice- 1 and block
lengthn induces a pair of distributions (the uniform distribution over codewordsoare of its affine shifts)
that are perfectly:-wise indistinguishable, yet perfectiy + 1)-wise distinguishable.

In contrast, we prove that perfeetwise indistinguishability fosymmetriadistributions implies strong
statistical security against larger adversaries:

Theorem 1.2. If ;, and v are symmetric ovef0, 1}" and perfectlyk-wise indistinguishable, then they are
statistically (K, O(K3/2) . ¢=k*/1156K)_yjise indistinguishable for all < k < K < n/64.

Theoreml.2 has the following direct consequence for secret sharing schemebits/e/ith symmetric
reconstruction. We saly., v) area-reconstructible by if Ex.,[f(X)] — Ey,[f(Y)] > a.

Corollary 1.3. Let f be a symmetric Boolean function. There exists a pair of distributiossd v that are
(K, K3/2. e‘Q(deg1/3(f)2/K)>-indistinguishable for allX’ < n/64, but areQ(1)-reconstructible byf.

Corollary1.3is an immediate consequence of our Theoflefnand the fact that any symmetric function
has an optimal dual polynomial that is itself symmetric. In the special ¢ase AND (or equivalently
f = OR), Corollary 1.3 implies the existence of gisual secret sharing schenfsee, for example20])
that is (K, K3/2 - e~/ K)) statistically secure against all coalitions of sige simultaneously for ali
up to sizen/64. This property, where security guarantees are in place for many coalities at the same
time, is in contrast to an earlier result of Bogdanov and William&pmwhere they proved that for any fixed
coalition sizeK, there is a visual secret sharing scheme thakise 2"/ %))-statistically secure. In their
construction, the distribution of sharesandr depend on the value df .

We remark that the bound of Corollaty3 cannot hold in general fak” = n, since there exists distribu-
tions that are perfectl§2(n)-wise indistinguishable but are reconstructible by the majority function am all
inputs. We do not however know if a bound of the fofn< (1 — Q(1))n is tight in this context.



Tight weight-degree tradeoffs for polynomials approximating symnetric functions. Letf: {0,1}" —
{0,1} be any function. For any integer> 0, denote byiV.(f,d) the minimumweightof any degreet
polynomial that approximateg pointwise to errors. By the weight of a polynomial, we mean tig-
norm of its coefficients over the parity (Fourier) badsis Sectiord, we observe that Corollary.3implies
weight-degree trade-off lower bounds for symmetric functions.

Corollary 1.4. For any symmetric functiofi: {0,1}" — {0, 1}, any constant € (0,1/2), and any integer
K such thatn /64 > K > aééa(f), we havelV,(f, K) > K—3/2. 2Q<deg1/3(f)2/K).

The following theorem shows that the lower bound obtained in Corollagys tight (up to polyloga-
rithmic factors in the exponent) for all symmetric functions.

Theorem 1.5. For any symmetric functiorf: {0,1}" — {0,1}, any constant € (0,1/2) and K >
deg. (f) - vTogn, We(f, K) < 200B1/a(D%/1) 4

Theoreml.5also implies that Corollari.3is tight (up to polylogarithmic factors in the exponent) for
all symmetricf and for allK’ > deg1/3(f)\/log n. This is because any improvement to Corollargwould
yield an improvement to Corollar.4, contradicting Theorerh.5.

Essentially Optimal Ramp Visual Secret Sharing SchemesThe following result shows that in the case
f = AND, Corollary 1.3 is essentially tight foall X > 2, and Theoreni.2is tight as a reduction from
perfect to approximate indistinguishability for symmetric distributions. It dods/sonstructing essentially
optimal ramp visual secret sharing schemes.

Theorem 1.6. For all 2 < k < K < n there exist symmetrie-wise indistinguishable distributions and

v overn-bit strings that are\/2*4K+3 Y ask (I?fd)Q-reconstructible byAND ¢, whereAND g () is the
AND of the firstK bits ofz.

Discussion of Theorerh.6. This theorem gives the existence of a ramp visual secret sharinnedhat
is perfectly secure against agyparties, but in which any<’ > k parties can reconstruct the secret with
the above advantage. This generalizes the schemé&$ whire only reconstruction by all parties was
considered.

Let us express the reconstruction advantage appearing in Thdoéma manner more easily compa-
rable to other results in this manuscript. Standard results on anti-concamtrhtite Binomial distribution

state thap =25 - 3~ (%) = e~ O**/K) (see, e.g.,18]). The Cauchy-Schwarz inequality then implies

that the reconstruction advantage appearing in Thedréiis at least —1/2 . ¢=O(k*/K) 6

3In fact, our main weight lower bound (Corollay4) holds over any set of functions (not just parities) that each deperad o
mostd variables.

“Here and throughout, th@ notation hides polylogarithmic factors in

°A visual secret sharing scheme is a scheme where the reconstruatictiof is theAND of some subset of the shares. A
ramp scheme is one where there is not necessarily a sharp threstwaégtbéhe perfect secrecy and reconstruction thresholds; in
particular, we allow forx’ > k + 1.

% Theorem1.6 is closely related to Theorerh.1, in that Theoreml.6 gives another anti-concentration-based proof that
deg.(ANDg) > kfore = K~'/2. ¢=©**/K)  However, the two results are incomparable. Theoferdoes not yield an
explicit dual polynomial folAND k-, and thez-approximate degree lower bound #ND  implied by Theoreni..6is loose by the
K~/ factor appearing in the expression forOn the other hand, Theoreiml only yields a visual secret sharing scheme with
reconstruction by alh parties, while Theorert.6yields a ramp scheme with non-trivial reconstruction advantage bxxiie of
the first K (out of n) parties.



Hence, the visual secret sharing schemes given in Thearém@re nearly optimal; if the reconstruc-
tion advantage could be improved by more than the leading( polyfactor (or the constant factor in the
exponent), then this would contradict Theorgr@which upper bounds the distinguishing advantage of any
statistical test oveK bits against symmetric, perfecthywise indistinguishable distributions. Theordn®
also shows that the indistinguishability parameter in Thedteéhecannot be significantly improved, even in
the restricted case where the only statistical teANS .

In Section6 we describe another application of Theorgrto security against share consolidation and
“downward self-reducibility” of visual secret shares.

1.3 Related Works

Prior Work. Servedio, Tan, and Thale24] established Corollar{.4and Theoreni.5in the special case
f = OR, showing that degreé polynomials that approximate th@R function require weighg® (/4 —

90(deg1/3(0R)*/d) 7 They used this result to establish tight weight-degree tradeoffs for puiiat threshold
functions computing decision lists. As previously mentioned, Bogdanov aitidnivgon [b] generalized
the weight-vs-degree lower bound fro24] beyond polynomials, thereby obtaining a visual secret-sharing
scheme for any fixed that is(K, e~2("/K))-statistically secure.

Elkies [14] and Sachdeva and Vishn@3] exploit concentration of measure to prove a tight upper bound
on the degree of univariate polynomials that approximate the functiort” over the domairi—1, 1]. Their
techniques inspired our (much more technical) proof of Thedreéin

Other Related Work. This work subsumes Bogdanov's manuscrigit Wwhich shows a slightly weaker
lower bound on the weighted approximate degree of AND, and does rie¢ @& explicit dual polynomial.
Inindependent work, Huang and Viold] prove a weaker form of our Corollady.3: their distributions, v
depend on the value df. They also prove (a slightly tighter version of) Theor#&r thereby establishing
that the statistical distance in Corollahy3is tight.

1.4 Techniques and Organization

The proof of Theoreni.1 (Section2) is an elementary verification that the functigngiven in ) is a
dual polynomial. The only property that is not immediate is correlation WKD. Verifying this property
amounts to upper bounding the normalization consigrwhich follows from orthogonality of the Fourier
characters.

In the proof of Theoreni.2 (Section3), a K-bit statistical distinguisher for symmetric distribution is
first decomposed into a sum of at mést- 1 testsq),, that evaluate to 1 only when the input has Hamming
weight exactlyw. Lemma3.3 shows that the univariate symmetrizatignsof these distinguishers can be
pointwise approximated by a degrégeolynomial with error at mosp(K1/2) . e=+*/K),

To construct the desired approximation, we derive an identity relating the nmiayeaerating function
of the squared Chebyshev coefficientpgf(interpreted as relative probabilities) to the average magnitude
of a polynomialg related top,, on the unit complex circle (Claim3.6 and3.7). We bound these magni-
tudes analytically (Clain3.8) and derive tail inequalities for the Chebyshev coefficients from beondhe
moment generating function as in standard proofs of Chernoff-Hogffdounds.

"These bounds fdDR were implicit in [24], but not explicitly highlighted. The upper bound was explicitly stated B) Lemma
4.1], which gave applications to differential privacy, and the lowemgbin [9, Lemma 32], which used it to establish tight weight-
degree tradeoffs for polynomial threshold functions computing oramk DNFs.



In the special case when the secrecy paramétexrsd K are fixed and the number of partiesap-
proaches infinityp,, () turns out to equal’,, (t — 1)*(t + 1)X~*, whereC,, is some quantity indepen-
dent oft. In this case, the Chebyshev coefficients are the regular coefficietite polynomialg™>(s) =
2700, (s — 1)2¥(s + 1)2E-w) 8 Whenw = 0, K/2, or 1, the coefficients of/> are exponentially con-
centrated around the middle as they follow the binomial distribution. We provehisaexponential decay
in magnitudes happens for all valueswof which requires understanding complicated cancellations in the
algebraic expansion @f°(s). We generalize this analysis to the finitary setting: 64K.

We prove Theorenl.5 (Section4) by writing any symmetric functiory as a sum of at most :=
min{|f~1(0),|f~*(1)|} many conjunctions, and approximating each conjunction to such low eeorely
error< ¢) that the sum of all approximations is an approximationffatself. Theoremi.5then follows by
constructing low-weight, low-degree polynomial approximations for eacluaiction in the sum.

Theoreml.6 (Sectionb) is proved by lower bounding the error of degfepolynomial approximations
to the symmetrizatiorf of the functionAND g ($|{1,_.7K}). By duality, a lower bound on approximation
error translates into a secret sharing scheme with the same reconstrustzomiage. To lower bound the
error, we estimate the values of the coefficients in the Chebyshev expanisfowith indices larger than
k. Owing to orthogonality, the largest of these coefficients lower boundaghbeoximation error of any
degreek polynomial.

In Section6 we formulate a security of secret sharing against consolidation andrahiself-reducibility
of visual schemes, and derive these properties from the main results.

2 Dual Polynomial For the Weighted Approximate Degree of AND
In this section we prove Theorefnl and derive its two corollaries about the unweighted and weighted
approximate degree of AND.

Notation and Definitions. Let[n] = {1,...,n}. Given avectow € R%, define the weight of a monomial
xs(x) = [l;cq i, v € {—1,1} to equaly_,_ g w;. Define thew-weighted degree of a polynomial to be the
maximum weight of a monomial in it. That is, pf= ngn] csxs, then define

deg,,(p) = Jnax w(S).

Define thew-weighteds-approximate degre&éw@(f) to be the minimumu-weighted degree of a poly-
nomialp that satisfiep(xz) — f(x)| < e for all z in the domain off. Given two real-valued functionf g

over domain{—1,1}", define(f, g) := 5w > e 1130 f(2) - g().

Lemma 2.1. For any finite setX and any functionf: X — R, ag/gw7g(f) > d iff there exists a function
¢ : X — R satisfying the following conditions.

e Pure high degredor any real polynomiap of weighted degree is at mast(¢, p) = 0.
e Normalization ) _ [¢(z)] =1,
e Correlation (¢, f) > ¢,

We call ¢ a dual witness foﬁ?aéw’e(f) > d. The lemma follows by linear programming duality and is
a straightforward generalization of previous results (see 80g29]). We prove the “if” direction, which is
sufficient for our purposes.

8Thei-th coefficient ofg™ is the value of theé-th Kravchuk polynomial with parametei evaluated afw.



Proof. For anyp of weighted degree at mogt

1f = plloo = I = Pllocli@lls = (&, f —p) = (¢, f) = (b,p) Z &

The dual polynomial of interest is

o) = 2 ) Bl

wherez € {—1,1}", H is the uniform distribution over the sef§' C [n] : w(S) < (|lw|y — d)/2}, andZ
is the normalization constant

Z= Y Esulxs@)

ze{-1,1}"

Proof of Theorenml..1. We prove the theorem by showing thiasatisfies the three conditions of Lema.
The expressiofs..[xs(x)]? can be written as a sum of products of pairs of monomials of weight at most
([[w|]1 —d)/2, so its weighted degree is at mdst||; —d. Thus every monomial that occurs in the expansion
of x[n)(2) Es~p [xs(z)]? must have weighted degre¢leastd, and sop has pure high weighted degree at
leastd as desired.

The scaling byZ in the definition of$ ensures thap hasZ; norm 1. The correlation op andAND is
given by (¢, AND) = ¢(1") = L. Finally, the normalization constast evaluates to

Z= Y Esuls@P= Y Eseulxs@)Erwulxr(z)]

ze{-1,1}" ze{-1,1}"

= Z Esrulxsar(z)] = Esron Z xsar(x)
ze{-1,1}" ze{-1,1}"

9 PrS = T) = |31|

since the inner summation overevaluates t@"” whenS = T', and zero otherwise.
It remains to show that/Z = |H|/2" equals the desired expression for For a setS C [n], let
X (S) € {—1,1}" be the string that assigns valueand—1 to elements inside and outside respectively.
Thenw(S) = ||wl|[1/2 + (w, X(S5))/2, so
H
] Prscalu($) > Jully/2+ d/2) = Prooq oy, X) > d
O

Corollary 2.2 (Approximate degree of AND)Recall thatAND: {—1,1}" — {0, 1} denotes the function
satisfyingAND(z) = 1 if and only ifz = 1™. If p has degree at mogt then|p(x) — AND(z)| > Pr[X <
(n — d)/2] for somer, whereX is a Binomial(n, 1/2) random variable.

The expression on the right is lower bounded by the largar/ef— O(d/\/n) and2-9@*/") I the
larged regime ¢ > +/n), this bound is tight ¢, 16]

Proof. Apply Theoreml.1to the weight vectorw = (1,1,...,1). Ol
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Earlier constructions of dual polynomials for AND are quite differentrfrour Corollary2.2[10, 16,
27,29 and are based on real-valued polynomial interpolation. Specifically @@refully chosen sé&t C
{0,1,...,n} of size[T'| = 2d, the prior constructions consideuaivariatepolynomialp(t) = [ [;cp,,\r(t—
i), and they define)(x) = p(|z|), where|z| denotes the Hamming weight of Clearly: has degree at
mostn — |T'|. A fairly complicated calculation is required to show that, for an appropriatéce of T,
defining® in this way ensures that)(1™)| captures an-fraction of theL;-mass ofi.

Corollary 2.3 (Weighted approximate degree of AND}E&w,gm(AND) > Jwl||2/2.
The proof uses the Paley-Zygmund inequality:

Lemma 2.4(Paley-Zygmund inequality)Let Z > 0 be any random variable with finite variance. Then, for
any0 < 60 < 1,

2 (E[Z])°

PrZ 2 0B(Z)) 2 (1= 0 Fr7

Proof of Corollary2.3. We apply the Paley-Zygmund inequality o, X)?. First,E[(w, X)]* = ||w||3 and
E[(w, X)4 = > wi + Swawf < 3||w||3. Then

3

1 1 2 1
Pr <w,X) > ||U}H2 - _Pr ‘<U},X>’ > HwHQ — _Pr <’UJ,X>2 > HwHQ > . By
2 4 2 32

1_
2 2 2 3

9
16
where the first equality follows from the sign-symmetryf Applying Theoreml.1with d = ||w||2/2
yields the claim. Ol

3 Approximate Indistinguishability from Perfect Indistinguishabi lity

In this section, we prove Theorein2, which states that any pair of symmetric and perfektlyise indis-
tinguishable distributions ovel0, 1}™ are also approximately indistinguishable against statistical tests that
observeK > k of the bits. We may and will assume without loss of generality that the statistitas i@s
symmetric function, meaning that it depends only on the Hamming weight of tleev@asbits of its input.

Let X andY denote an arbitrary pair of symmetri&, 0)-wise indistinguishable distributions over
{0,1}™. We will be interested in obtaining an upper bound on the statistical distartbeiofrojections
to any K indices of[n], namely the advantagéx [T'(X|s) — Ey[T(Y|s)] whereT : {0,1}% — {0,1}
is a symmetric function and C [n] is any set of sizek. We can decomposé into a sum of tests
Quw : {0,1}% — {0,1}, whereQ,, outputs 1 if and only if the Hamming weight of its input is exaatly
Specifically, we decomposE as

K
T — Z wawu (2)
w=0

where each,, is either zero or one. We will bound the distinguishing advantage of €gcin the sum
individually. This advantage is captured by a univariate funcgignthat expresseg),, in terms of the
Hamming weight of its input, after shifting and scaling the Hamming weight to resitdheimterval—1, 1].

Fact 3.1. Let S C [n] be any set of siz&. There exists a univariate polynomig), of degree at mosk’
such that the following holds. Foralle {—1,—-1+2/n,...,1 —2/n,1}, py(t) = Ez[Qw(Z]|s)] where
7 is a random string of Hamming weight ' (t) = (1 — t)n/2 € {0,1,...,n}.
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Proof. This statement is a simple extension of Minsky and Papert’s classic symmetritionque 19].
Specifically, Minsky and Papert showed that for any polynomjal{0,1}" — R, there exists a univariate
polynomial P of degree at most the total degreegf such thatforall € {0,...,n}, P(i) = Ejy—;[pn()].
Apply this result top,, () = Q. (z|s) and letp,, (t) = P(¢~1(t)) = P ((1 — t)n/2). The fact then follows
from the observation that the total degreeXf(z|s) is at mostk, since this function is & -junta. O]

In particular, the value,,(¢) is a probability for every € {—1,—-1+2/n,...,1—2/n,1}. Moreover,
this probability must equal zero when the Hamming weight a$ less thano or greater tham — K + w.
Thereforep,, hasK distinct zeros at the points,, = Z_ U Z,, where

Z_={-1+2h/n:h=0,..K —w—1}, Zy={1-2h/n:h=0,..,w—1}. 3
and sop,, must have the form
puw(t)=Cw- [ (t=2) (4)
2ELw

for someC,, that does not depend @rf As p,,(t) is probability whert € {—1,—-14+2/n,...,1—2/n,1},
the functionp,, is 1-bounded at those inputs. In fag, is uniformly bounded on the interval1, 1:

Claim 3.2. Assumingn > 64K, [p,(t)| < 2forall ¢t € [-1,1].

The proof is in Sectior8.4. Formula @) and Claim3.2 will be applied to show thap,, has a good
uniform polynomial approximation on the intervat1, 1].

Lemma 3.3. Assumingn > 64K, there exists a degreke-polynomial g, such that|p,(t) — qu(t)| <
4VK exp(—k?/1156K) for all t € [—1,1].

Lemma3.3is the main technical result of this section. It is proved in Sec3idn
Proof of Theoreml..2 Now let T be a general distinguisher dii inputs. By FactsA.1 andA.2 (see Ap-
pendix), T can be assumed to be a symmetric Boolean-valued function. We bound thgudgting advan-

tage as follows. Recalling tha&€ andY” are(k, 0)-indistinguishable symmetric distributions ovgr, 1},
for any setS C [n] of size K’ we have:

E[T(X[s)] = E[T(Y]s)]

I
M) =

bu (E[Qu(X|s)] — E[Qu(Y]s)])  (by (2))

g
g

M) =

IE[Qu(X|s)] — E[Qu(Y]s)]|  (by boundedness af,)

g
Clg

I
M) =

Elpu(6(IXD] — Elpu(¢(|Y1))]]  (by symmetry ofX, Y, and FacB.1)

g
Il
o

|Elqu (6(1X1)] — Elauw (¢([Y )] +8VE exp(~k?/1156K)  (by Lemma3.3)

M=

Il
o

w

K3/%) . R /156K by k-wise indistinguishability ofy, V)

—

Therefore,X andY are(K, O(K3/2) . ¢~#*/1156K) yise indistinguishable fo2 < K < n/64. O

*pw, Cw, andZ,, also depend o andn but we omit those arguments from the notation as they will be fixed in the.proo




3.1 Proof of Lemma3.3

We will prove Lemma3.3 by studying the Chebyshev expansiornpgf To this end we take a brief detour
into Chebyshev polynomials and an even briefer one into Fourier analysis.

Chebyshev polynomials. The Chebyshev polynomials are a family of real polynom{&lg}, 1-bounded
on[—1, 1], with T;; having degred. We extend the definition to negative indices by setfihg = 7;. The
Chebyshev polynomials are orthogonal with respect to the medstite = (1 — t2)~'/2dt supported on
[—1, 1]. Therefore every degrek-polynomialp: R — R has a unique (symmetrized) Chebyshev expansion

K
p(t) = Z cdTu(t), Cod = €4
d=—K
wherec_g, ..., cx are theChebyshev coefficients p.

The Chebyshev polynomials satisfy the following identity, which plays an impbirtde in our analysis:
Fact3.4.¢ Ty(t) = $Tu_1(t) + 3 Tus1 ().

This formula, together with the “base cas&$(t) = 1 and7i(t) = t, specifies all Chebyshev polyno-
mials.

We will also need the following form of Parseval’s identity for univariatéypomials.

Claim 3.5 (Parseval’s identity) For every complex polynomial, the sum of the squares of the magnitudes
of the coefficients df equalsE.[|h(z)[%], wherez is a random complex number of magnitude 1.

Proof outline. We will argue that the Chebyshev expans@j(}K cqT4(t) of py, (t) has small weight on
the coefficients:; when|d| > k. Zeroing out those coefficients then yields a good degrapproximation
of p,, as desired.

The upper bound on the Chebyshev coefficientgpfis derived in two steps. The first step, which
is of an algebraic nature, expresses the Chebyshev coefficiepts @ regular coefficients of a related
polynomialg.'® We are interested in the coefficients of the derived polynomi@l) = g((1 + ¢)s), which
represent the Chebyshev coefficientof p,, amplified by the exponential scaling factdr+ ).

The second step, which is analytic, upper bounds the magnitude of thigcieoe$ of g.(s). The
main tool is Parseval's identity, which identifies the sum of the squares of teefficients by the aver-
age magnitude of. over the complex unit circl&y [g((1 + £)e?)|2. We bound themaximummagnitude
maxy |g((1 + ¢)e'?)|? by explicitly analyzing the functiog. This step comprises the bulk of our proof.

The third step translates the bound on the squared 2—@@4{(1 + £)24c? of the amplified coef-
ficients into a tail bound on,; by optimizing over a suitable value ef This is analogous to the standard
derivation of Chernoff-Hoeffding bounds by analysis of the momemegating function of the relevant
random variable.

We now sketch how this outline is executed for the special case whtereds to infinity whilek and K
remain fixed. Although this setting is technically much easier, it allows us to highlighmain conceptual
points of our argument. The analysis for finite&ean be viewed as an approximation of this proof strategy.

1%We omit the dependence anas this parameter remains constant throughout the proof.
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Sketch of the limiting casen — oo. By the expansion4) of p,,, asn tends to infinityp,, converges
uniformly to the function

p(t) = Cu- (t = 1"t + )57,

as this corresponds to F&&tl when the bits of the string are independent arld — ¢) /2-biased. A9 (t)
is a probability for every € [—1, 1], Claim 3.2 follows immediately.

Step 1.Our algebraic treatment of the Chebyshev transform yields that the €heogoefficient,; of pgy
is the(K + d)-th regular coefficient of the polynomial

s—1 2w S+_1)ZH(—w)
o (s) = (1 . 5
o= (7)) (7 ©
Step 2.The evaluation of the polynomigk®(s) = ¢>((1 + ¢)s) ats = €' satisfies the identity
w K—w
. o\ K K (4, _ cosb cos 6
‘g ((1+5)e ))_(He) 1+6)K . c, (1 1+5> <1+1+5> , (6)

whered = £2/2(1 + ). This happens to equal
(1+e) (1 +0)Xpu(cos8/(1 +9)), 7)

and is in particular uniformly bounded &y + )% (1 + §)¥ for all 6. This similarity betweemp> andg>®
is the crux of our analysis.

Step 3. By Parseval’s identity, after suitable shifting and cancellation, the amplified (fuChebyshev
coefficientsy L 1 (1 +¢)?c2 is upper bounded bl 4 §)*%. Therefore the taip", .., ¢2 can have value
at most(1 + )25 /(1 + ¢)?* < exp(2Ke? — 2(e — £2/2)k). This upper bound holds for all< [0, 1], and
plugging in the approximate minimizer= k/2K yields a bound of the desired foreap(—Q(k?/K)).

Outline of the general case. We now give the outline of our full proof for the general case and eglev
technical statements that we use to prove our main upper bound. ldé&ytggr{eralizes to the following
statement:

Claim 3.6. The Chebyshev coefficietof p,, is the(K + d)-th regular coefficient of the polynomial
s2 —2sz+1
- I (250),
ZGZw
whereC,, is as in Equation(4).
The general form of identityg] is:

Claim 3.7. Fore > 0,6 = £2/2(1 + ¢), andf € [, 7],

. cosf
(1 +e)e”)|* = (1 + )1+ 8K C2 [ hsasryarey <1+5’2)
2€ZLyw

wherehs(s, 2) = (s — 2)? +6(1 — 22).

11



Owing to the second term ihg, there is no identity analogous t@)(whenn is finite andp,, has
zeros insidg—1, 1). Neverthelesg, [, hs(s, 2) can be uniformly bounded either by a sufficiently small
multiple of p,,(s)?, or a fixed quantity that is constant in the parameter range of interest.

Claim 3.8. Assume: > 64K andw < K/2. Then

Cz- I ho(s,2) <

ZGZ’LU

e85 ()2 if|s] <1 —w/16K
050K if 1 —w/16K < |s| < 1.

We now prove Lemm&.3. Claim 3.6 is proved in Sectior8.2 Claim 3.7 is proved in Sectior8.3.
Claims3.2and3.8are proved in Sectiof.4 as the proofs share the same structure.

Fact 3.9. py(t) = pr—w(1l — ).

Proof. By Fact3.1, both sides are degrd€-polynomials that agree on + 1 > K points so they are
identical. O

Proof of Lemma&.3. By Fact3.9we may and will assume that < K/2. Letp, = fo:_K cgTy. The
approximating polynomiad,, is Z|d|<k cqTy. It remains to prove a tail upper bound on the Chebyshev
coefficients. By Clain8.6, the(K +d)-th coefficient ofg(s) is c4. Therefore the polynomial(s) = g((1+
£)s) has coefficient$l + ¢)%+?c,; asd ranges from-K to K. We apply Parseval’s identity (Claif5) to

Ge-
It follows that

K
3 (14 )2 EHDE = By [g((1+ €)e)?
d=—K
< max [g((1+¢)e™)
oe|—m,x]
= sér[l_alxl](l +e)* (14 6)%K .02 H hs1/(146))(s/(1 +0),2),

ZGZ’LU

by Claim3.7. Since0 < § = 2/2(1+¢) < 1/2, for simplicity we may replacé ;1 ,/(1s))(s/(1+0), z)
by has(s, z) in the above inequality. This gives the following approximation boundfer max;c|_ 1) [pw(t)—
qu(t)]:

R ‘ Zldle Cde(t)‘

<
<D s ledl max [Ta(t)

<2 Z lcal (by symmetry and boundednessIoj)
d>k

<2VK - Zd>k 2 (by Cauchy-Schwarz)

< WK - \/(1 + &) 2K +k) Z

2K +d) 2
de(l +e) c5

< 2\/?\/(1 +e)72k . (1+6)2K . max C2 H has(s, z).

se[—1,1] ez
w
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By the boundedness pf, (Claim 3.2), the upper bounds in Clai@8 can be unified by the inequality

c? H has(s, z) < 4e1300K

2€E2w

that is valid for alls € [-1,1]. Sincel + 4 < ¢’ and1 +¢ > e =*/2for0 < e < 1,

o< 2VE - \/ 41K < 4R - IR 2Rk < 4/ . /0K 2R

where the last inequality follows from the definition= 2 /2(1 + ). Settinge = k/34K we obtain that
a < 4@‘ e—k2/1156K_ 0
3.2 Proof of Claim 3.6

Claim 3.6 is a direct consequence of the following formula for the Chebyshevnsiga of products of
linear functions.

Claim 3.10. If p(t) = [],c,(t — 2), where|Z| = K then thed-th Chebyshev coefficient pfis thed-th
regular coefficient of the Laurent polynomigls) = [],c,(s + s~ ' — 22)/2.

Indeed, multiplying the polynomiaj(s) from Claim3.10by s then yields Clain8.6.

Proof. We prove this by induction o&. When K = 0, p has only one nonzero Chebyshev coefficient
and it is equal td as claimed. Now assume the claim holds #6t) and we prove it fot — z)p(t). Let
[s?] (¢(s)) denote thel-th regular coefficient of. Then the Chebyshev expansionpds

p(t) =D 5" (9(s)) - Tu(t),

d

and the Chebyshev expansion(of- z)p(t) is

(t = 2)p(t) = D _[s"] (9(s)) tTult) — Z[Sd} (9(s)) zTa(t)

d

= [ (9(s)) - $Tu1( +Z 3Ta(t) = [s7 (9(s)) 2Tu(t) (by Fact3.4)
d d

=315 (s9(s) - $Tun +Z d+1) ATa () = 3 1s% (9(s)) 2Tu(t)
d d

= 3 (S0(9) Tult) + 21 <‘°’29<s>) Ty(t) - 315" (z0() Tu(t)
d

d

as desired. O
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3.3 Proofof Claim3.7

Proof. By definition of Z,,, we have that € [—1, 1] and thus may set = cos¢. We also writes =
(1+¢€)e = (1 +¢)cosd +i(1 + ) sin 6, from which it follows that:

2 —2s24+1=(s—z2+V22—1)(s—2— V22 —1) = (s —cos ¢+ isinp)(s — cos ¢ — isin ¢)
=(s—€?)(s—e ) = ((L+e)e — ) (1 +e)e — ™)
- ((1 +e)eil6+9) _ 1) ((1 +e)eil0=9) _ 1) .

Recalling that = Q(f—;) we have that for any,

(1 +e)e” =12 = (=1 + (1 +¢)cosy)* + ((1 + &) siny)?
=1-2(1+¢)cosy+ (1+¢)?
=2(1+¢)(1 —cosy+9),

from which it follows that
. 2 )
|52 — 252 4+ 112 = (1 4 ¢)e’0F9) — 1‘ ‘(1 +e)el0=9) _q

4(1 4+ 5)2(1 — cos(0 + @) +6) - (1 — cos(0 — ¢) + 6)
=4(1+ 5)2(1 + 5)2 <1 _ COS(QW) <1 _ COS(Q_QS))

’ 2

1+0 1+9

cosf cos ¢ 2 sin @ sin ¢ 2
= 4(1+¢)*(146)? ((1—1+5> - <1+5> >

= 4(142)*(1+4)? <<1 - Zfisée)z - <(1z1i);>1§29>>

4(1 +¢)? ((1 + 0 — zcos0)? — (1 — 22) sin? 9)
41+e)* ((1+0)* —2(1 +d)zcosf — 1 + 2% + cos? )
4(1+e)% ((cosf — (1 +6)2)% + (1 — 2%)(25 + 62)) .

Note that the fourth equality uses the sum and difference formulas foastheosine.

We then have

s2—2sz+ 1| 9 9 9 9
— | = (1+€)” ((cos® — (1+8)z)* + (1 — 2°)(20 + 6°))
2 2 2
B 9 9 costl (1 —2%)(20 4 6°)
=(1+¢)°(1+9) <<1+6 z> + 1o .
The claim then follows by multiplicativity of the norm. O
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3.4 Proofs of Claim3.8and Claim 3.2

Proof of Claim 3.8 The objective is to uniformly bound the value of the function

hs(s)=Co- ] ho(s,z),  where  hs(s,2) = (s — 2)* +6(1 — 2°)
2ELyw

for s € [—1,1]. Whenk, K are fixed and» becomes large, all zeros i}, approach—1 or +1, hs(s, z)
uniformly approaches(s, 2) = (s — 2)?, hy(s) approachesg(s) = p°(s) and is therefore uniformly
bounded.

The main difficulty in extending this argument to finiteis thaths(s, z) can no longer be uniformly
bounded by a multiple ofs — z)? since whens equalsz, the latter function vanishes but the former one
doesn’t. For this reason, we divide the analysis into two parameter regitfremns is bounded away from
the set of zero%,,, an approximation of the infinitary term-by-term argument can be carried\ien
s is near the zeroes, we argue thgts) cannot be much larger than (sg) for an sy that is even farther
away fromZ,,, and then argue thai(so) = pw(s0)?> must be small because it represents the square of a
probability of a rare event.

Fact 3.11. hs(s, 2)hs(s, —z) = hs(—s, z2)hs(—s, —z).
Fact 3.12. hs(s, z) < hs(|s|, z) whenz < 0ands > 0.
Fact 3.13. hs(s, z) < hs(so,z) Whensg < s <1, s9<2z—1,and|z| < 1.

Proof. The fact is equivalent to checking th@ap — 2)? — (s — 2)2 > 0 whensy < s < 1 andsy < 2z — 1.
If s < zthen we have thaty < s < z from which it immediately follows thatsy — 2)2 > (s — 2)2. If
s > z then(s — 2)? is at most(1 — 2)2. However, sincéz| < 1, we have thaty < 2z — 1 < z and thus
(so — 2)? is always at leastz — (22 — 1)) = (1 — 2)2. Again we have thatsy — 2)? > (s — 2)2. O

We begin by reducing to the case of non-negative inputg0, 1].
Claim 3.14. Assumingw < K/2, hs(s) < hs(|s]|).

Proof. Whenw < K /2 then elements aof,, (3) can be splitintav pairs of the formd = {(—1+2h/n,1—
2h/n): 0 < h < w}, andK — 2w remaining element® = {—1 + 2h/n: w < h < K — w} are all non-
positive. By Fact.11, [T _, e hs(s, 2)hs(s,—2) = [(_. .)ea ho(ls], 2)hs(|s|,—2). By Fact3.12,
[I.eshs(s,2) <Il.cphs(|s], 2). Therefore the produdi]. ., hs(s,z) <[l.cz, hs(lsl;2). O

The following claim handles values sfin the rang€0, 1 — w/16K].
Claim 3.15. Assumindg) < s <1 —w/16K,
(1+6)(s—2)2, if 2 < —1/V2.
hs(s,z) < .
(14 (64K /w)d)(s — 2)2, ifz>1—w/32K

Proof. The ratiohs(s, z)/(s — 2)? equalsl + ((1 — 2%)/(s — 2)?)d. The number1 — 22)/(s — 2)? is at
mostl whens > 0 andz < —1/\/5 and at most the following when> 1 — w/32K.

1—(1—w/32K)? o 2w/32K

(1-w/16K) — (1 —w/32K))? — (w/32K)?

= 64K /w.
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Corollary 3.16. Assuming) < s < 1 — w/16K andn > 64K, hs(s) < %K hy(s).

Proof. By the choice of parameters, all zerosdn meet the criterion for the first inequality in Claignl5
while all zeros inZ, meet the criterion for the second one. Therefore

=C? H hs(s, z) H hs(s, z)

2€Z_ 2€Z4
<Cp [T a+0)(s—2)?* ] (1 + (64K/w)d)(s — 2)?
2€Z_ 2€Z 4
< (140571 4 (64K /w)d)¥ - C? Hhosz Hhosz

z€Z_ 2€Z4
< e(SK . 6645K . ho(S).

The following two claims handle values sfn the ranggl — w/16 K, 1].

Claim 3.17. Assumingy < K and1 — w/8K < sy <1—w/16K < s <1,

hs(s,2) < hs(s0,2), if z>1—w/32K
’ (14 w/8K)? - hs(so,2), ifz<—w/8K.

Proof. By the choice of parameters the first inequality follows from Rat8 For the second one, we upper
bound the ratio

<(880_—Zz)>22 =0 —S—_;)/;K)? N (1 " %)2 <1+ ;}()2.

This is greater than one, $8 — 2)? + §(1 — 22) < (1 + w/8K)?((sg — 2)? + §(1 — 2?)) as desired. O

Corollary 3.18. Assumingl — w/8K < 5o < 1—w/16K < s <1landn > 2K, hs(s) < ew/4h5(80).

Proof. By the choice of parameters, all zerosAn meet the criterion for the first inequality in Claignl7,
while all zeros inZ,;. meet the criterion for the second one. Therefore

:ngu H h6(3>z) H hé(saz)

ZE€EZ_ 2€EZ4
02 H 1+ w/8K)? - hs(so, 2 H hs(so, 2
ZEZ ZEZ+

= (14 w/8K)?Z-1". hs(so)
< (1+w/8K)*K - hs(s0) < e/*hs(so).

Claim 3.19. If s is of the forml — 2k /n for some integed < h < wn/e? K then0 < py,(so) < e~ %.
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Proof. By Fact3.1, p,(so) is the probability that a random string of Hamming weighand lengthn has
exactlyw ones in its firstX’ positions. The probability that it has at leasbnes in its first’ positions is at

most
K\ h h-1 h—w+1 eK\"Y /h\Y —w
w n n—1 n—w+1~" \ w n -

Proof of Claim3.8. By Claim3.14we may assume € [0, 1]. When0 < s < 1—w/16K the result follows
from Corollary3.16 Whenl — w/16K < |s| < 1, by the assumption > 64K there must exist a valug
betweenl — w/8K andl — w/16K that is of the forml — 2h/n. In particularh < wn/e?K. Then

O]

hs(s) < e”/*hs(sg) < €“/4e55K p,(s0)? < BOKTTw/4

where the inequalities follow from CorollaB/18 Corollary3.16 and Claim3.19 respectively. O

Proof of Claim 3.2 This proof has a similar structure to that of Clag18 By symmetry we can again
restrict attention to inputse [0, 1]. Whent < 1—2w/n then|p,(t)| is not much larger thafp,, ()| where
t’ is the largest number of the forin— 2 /n not exceeding for integerh. Otherwise the valu@,,(t)| is
not much larger thatp,,(so)|, for somesy € [1 — w/8K,1 — w/16K] of the form1 — 2h /n for an integer
h. Inturn,p,(so) is the probability of a rare event, so we conclude thatt)| is small.

Claim 3.20. If —=2/n < <t <1 —2w/n then
[t — 2], if 2>1—2w/n,
|t —z| < .
1+2(t =)t — 2|, ifz<-1/2—2/n.

Proof. The first part follows because the expressions under the absolue aadunonnegative. For the
second part, we bound the ratio

t— 2z t—t
-1 <1420t—-t
t— 2z +t’fz_ +2( )
as desired. O

Corollary 3.21. Assuming: > 64K and—2/n <t/ <t <1 —2w/n, |p,(t)] < (1 +2(t — ")) X |pu(t)].

Proof. By the choice of parameters, all zerosAn meet the criterion for the first inequality in Claign20
while all zeros inZ_ meet the criterion for the second one. Therefore

pu®)]=Cu [T It—21 T] It -2l

2€Z_ Z€Z+
<Co [T+20-t) =2 I |t - 2|
z2E€Z_ Z€Z+

= (120t = )7 |pu(t)]
< (1420t =) - |pu(®)]-

17



Proof of Claim3.2 By Fact3.9we may assume < K/2, and by ClainB3.14(for § = 0) we may assume
0 <t <1.Ift <1-2w/nthenthere exists & such thap,,(¢') is a probability and) < t — ¢’ < 2/n. By
Corollary3.21, [p, ()] < (1 + 4/n)%|pu ()] < 2lpu(t)].

If 1 —2w/n <t < 1, thent > 1 — w/16K. By the assumptiom > 64K there must exist a
values, betweenl — w/8K andl — w/16K that is of the forml — 2h/n. In particularh < wn/e?K. By

Corollary3.18 [p,(t)| = /ho(t) < e*/8/ho(s0) = €“/8|pw(so)|. By Claim3.19 p,,(so) is non-negative
and at most . Thereforep,(t)| < e¥/® . e~ < 1. O

4 Proofs of Corollary 1.4and Theorem1.5

4.1 Proof of Corollary 1.4
Proof of Corollary1.4. Corollary1.3implies the existence of@ (= £5%) satisfying||¢||, = 1, (f,¢) =«

for somes = Q(1) and(¢, q) < K3/2. 2_Q(deg1/3(f)2/K> for any parity of degree at mo#f.
For anyp of degreeK” and weight at most,

1 = plloo = IF = Pllsclldl > (6, F — p) = (& f) — {6,p) > & —w - K2 . 2~ (F81a /),

Thus, we conclude that’, »(f, K) = K3/ 2Q<deg1/3(f)2/K). Corollary 1.4 now follows using

standard error reduction techniques that showdTéé;(f) = @(@1/3(]0)) for all constant$) < ¢ < 1/2.
O

4.2 Proof of Theorem1.5

We first require the following lemma. This lemma builds on ideai# Claim 2], which showed a similar
result fort = 9(1).

Lemma 4.1. For anyy € {0,1}", denote byEQ, the function on{0, 1}" that outputs 1 on inpug, and O
otherwise. Then for any> 0 andd > /ntlog 1, we haveV, o) (EQy, d) < 20(ntlos*(n)/d),

Proof. Note that for any € {—1,1}", the functionEQ, is just theAND function onn input bits (with 0-1
valued output), with possibly negated input variables. Thus it sufficeséoag approximating polynomial
for the AND function onn bits. We now expres&ND,, asAND, o AND,, ,,, wherel is a parameter we will

set later. We compute the inn&ND,, ,, exactly and approximate the outeND, to errorn— ", This can
be done with a polynomial of degreeO < Elog(nt)> [6,16]. Combining the fact thap is bounded by
1 +n92® < 2 at all Boolean inputs with Parseval’s identity and the Cauchy-Schwarmnitieg it can be

. . O(v/Tlog(nh) 11 1y + " .
seen that the weight gfis at most/ . Itis well known that the exact multilinear polynomial
representation AND,, ,, has constant weight. Hence, by compogingith the multilinear polynomial that

exactly computeAND,, ,, we obtain an approximatiapfor AND,, of degreeD <n “"f") , errorn ),

HBuilding on [6], It is possible to derive explicit--approximating polynomials fohND where the degree i9 ( élog(l/a))

and the weight 90 (V=(1/%) tather thare® (VI1o=(1/5) Using this tighter weight bound would improve our final result by a
factor oflog n in the exponent. We omit this tighter result for brevity.

18



n’tlogn
a2

and weighQO( Vitiog? ”) We now fix the value of to ¢ := < n, thereby ensuring that the degree
of ¢ is at mostd. With this setting of, the weight ofz is at mosC(t1o8*()/d) proving the lemma. [

Proof of Theoreni.5. Let f : {0,1}" — {0, 1} be any symmetric function, corresponding to the univariate
predicateD; : {0} U [n] — {0,1}". For the purpose of this proof, let us denotedgythe smallest for
which f is constant on inputs of Hamming weight in the interjéat 1, » — i — 1]. Without loss of generality,
f(x) = 0 for strings ofx Hamming weight betweeh; + 1 andn — k¢ — 1. The case wher¢ = 1 on input
strings of Hamming weight betweén + 1 andn — ky — 1 can be proved using a similar argument. Define
supp(f) := {z € {0,1}" : f(x) = 1}. Note thatsupp(f)| < 2 - n*7.

Observe thatf(z) = >, cqupp(r) EQu(z). Lemmad.1limplies, for eachy € supp(f), the existence
of polynomialsp, of degreek’ and weight2C("#s1o&”(")/K) 'which approximatéQ, to error L - n=*r,
Define a polynomiap: {0,1}" — R by p(z) = ZyESupp(f) py(z). Clearlyp has degreds, weight at

mostnOks) . 20(nkslog?(n)/K) — 90(nk/K) and error at mogtupp(f)| - n~* /6 < 1/3, where the upper
bounds on the weight and error follow from the triangle inequality.
The theorem now follows standard error reduction technigques andi'®#t@orem P2], which states

that for symmetric functionsleg(f) = © (/- ky).
O]

Remark 4.2. The upper bound obtained in Theordn®is more general than as stated, and the only prop-
erty of symmetric functions it exploits is that symmetric functions of low appate degree are highly
biased. More specifically, the proof of Theordn® shows that any functiorf: {0,1}" — {0,1} with
min{|f~1(0)], |f~1(1)|} < n! satisfiesV.(f, K) < 200/K) for any K > v/ntlogn.

5 Proof of Theorem1.6

Proof outline. As we explain in more detail in the proof itself, it is sufficient to establish therdrador
fixed k and K and infinitely manyn because the statement is downward reducibte in

Using the Chebyshev approximation formulas from SecHawme derive explicit lower bounds on the
large Chebyshev coefficients on the polynomigrepresenting the distinguishing advantage of the AND
function on K inputs. Owing to orthogonality and boundedness of the Chebyshev poigi this is
a lower bound on the approximate degreeAdiD . By strong duality as given in the following Claim
(see fi]) we obtain Theoreni.6.

Claim5.1. If El\eEE/Q(Fn) > k then there exists a pair of perfecttywise indistinguishable distributions,
vover{0,1}" such thatf x,[F(X)] — Ey ., [Fn(Y)] > €.

Recall that the Chebyshev polynomials are orthogonal under the meastite = (1 — t2)~1/2dt
supported orj—1, 1]. We will need the following identity for their average square magnitude utider
measure:

Eio[Ty(t)?] =1/2  whend > 0. (8)

Proof of Theoreni.6. By symmetry of the distinguisherg, and v can be assumed symmetric. LEf
denote the function of0, 1}" that outputAAND g (x]{le}), i.e., F, outputs theAND of the firstK < n
bits of the input. We prove the theorem 16y, (z1, . . ., 7,) = NOR(x|¢1,. i) By the symmetry of and
1 inputs the theorem also holds f6},.
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First, we claim that the statement of Theorémd is stronger as: becomes larger, so it is sufficient
to prove it in the limiting case when approaches infinity and, K are fixed. Suppose that and v
are distributions oven bit strings that aré:-wise indistinguishable yet arereconstructable byr,,. We
must show that there are distributiop$ and»’ over {0,1}"~! are k-wise indistinguishable yet are
reconstructable by7, ;. But this holds fory’ (respectively.’) that generate a random sample fram
(respectivelyy) and then throw away the last bit.

If the statement was false then by Claini there would exist degrelepolynomials@ that approximate

Gy, pointwise on{0, 1}"™ to within errore = \/2—4K+1 ik (KH) for almost alln. Applying the

construction from the proof of Fagt1to ,,, there exist univariate degréepolynomialsp; approximating
py on the set of point$V,, = {—1 + 2h/n: 0 < h < n} to within errors. We emphasize the dependence
onn as it will play a role in the proof.

By Formula @) the polynomialy has the form

po(t) =Cg I (t—2),
2€2%

whereZ} = {—1+2h/n: 0 < h < K} (the setZ, is empty). The value! (1) is the probability thats,,
accepts the all-zero string, so it must equal one. The conSamust therefore equdl], eZn( —z)~ L
As n tends to infinity, the sef, converges to a single zero atl of multiplicity K, so the sequen(ﬁ
converges uniformly to the polynomial

pe(t) = 27Kt + 1)K,
By the triangle inequality, for every > 0 and all sufficiently large:, pj is within € + ¢ of pg° on the set
W,,. A degreek polynomial is determined by its values &¥;,; and the set of degrelepolynomials that
are withine + ¢ of pg° on Wy, is compact. Therefore the sequence of approximating polynopjjatsust
contain a subsequence (for values:ahat are multiples ok + 1) that converges (uniformly) to a limiting
degreek polynomialpg®. Sincepy is within e + ¢ of pi on W, for infinitely manyn, p5° must be within
e 4 26 of pg° on W), for infinitely manyn. The union of these sel¥, is dense irj—1, 1], and by continuity
py° can bes 4 J-approximated by the degréepolynomialpy® everywhere on—1, 1]. As ¢ was arbitrary it
follows that thez=-approximate degree @f° can be at most.

All that remains to prove that this is not true, i.e., to show a lower bounid ah thes-approximate
degree opg°. This lower bound is known (see, e.dL4]); we provide the details now for completeness. Let
q be any degreé-polynomial. By Claim3.6the d-th Chebyshev coefficient ¢ff° equals the X + d)-th
regular coefficient 0§>°(s) = 2725 (s + 1)2X, which has valu@ 2% (K+d) Sinceq has degree at most
the d-th Chebyshev coefficient; of pg® — ¢ must also equat—2% (K+d) wheneverld| > k. By symmetry
of the Chebyshev coefficients, orthogonality of the Chebyshev polyisnaiad Equationg),

_ 2K \\?
Eino[(p3°(t) — a(t))?] = c§ + Z (2¢)? By [Ta(t)?] > Zd>k < 2K (K | d)) _ 22

It follows that the approximation errgpg°(t) — ¢(t)| must exceed for somet € [—1, 1], contradicting the
initial assumption. O

6 Robustness of Symmetric Secret Sharing Against Consolidation

Consider a secret sharing scheme withparties, divided in: blocks of sizet, that is perfectly secure
against sizé: coalitions. If all parties in each block come together and consolidate theimaf®mn even
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into a single bit, the number docksagainst which the scheme remains secure dropgttoln general this
is the best possible, with linear schemes providing tight examples.

The following corollary shows that if the distribution over shares is symmeteic thuch better security
against this type of attack can be obtained.

Corollary 6.1. Let f1,..., fa: {0,1}* — {0,1}. AssumeX,Y are k-wise indistinguishable symmetri-
cally distributed random variables ovén-bit strings. WriteX = X;...X,, Y = Y;...Y,, where
all blocks X;, Y; have sizel. For every K, the n-bit random variablesX’ = f1(X3)... f,(X,) and
Y = f1(Y1) ... fa(Yy) are O((tK)3/2n* ¢—+*/1156tK) _close to being perfectli -wise indistinguishable,
assumingk < n/64.

The resulting scheme can be viewed as perfectly secure secret sivthiregpotentially faulty dealer:
With probability 1 — p, the dealer samples perfectly-wise indistinguishable share$’ or Y’, and with
probabilityp = O((¢tK)3/2n ¢~*/1156iK) she |eaks arbitrary information about the secret.

For example, ifX, Y are visual shares sampled from the dual polynonijgien they aré: = Q(v/tn)-
wise indistinguishable, assuming constant reconstruction error. Cgréllaithen says that the induced
block-sharesX’, Y’ areQ)(1/n/ log n)-wise indistinguishable except with probabilityp —Q(v/nlogn).

If, in addition, f; = --- = f,, = AND, then X', Y’ are themselves shares of a visual secret sharing
scheme that is secure agaist,/n/logn)-size coalitions. Therefore symmetric visual secret sharing
schemes are downward self-reducible at a small loss in security and dealein the following sense: A
scheme fom parties can be derived from one fior parties by dividing the parties into blocks aAtiDing
the shares in each block.

Proof of Corollary6.1. By Theoreml.2, X andY are(tK, O((tK)3/?) - e=+*/1156tK) wjise indistinguish-
able. Since any sizé&- distinguisher againgtX’, Y”’) induces a size# distinguisher againgtX,Y’), the
former are(K, § = O((tK)3/2) - e~¥*/1156tK ) wise indistinguishable. By Theorem D.1 || any pair of
(K, §)-wise indistinguishable distributions ovenbits is25n -close to a pair of perfectly indistinguishable
ones. O
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A Properties of Symmetric Functions and Distributions

Here, we prove some basic facts that we need about symmetric functidrstimbutions (see first para-
graph of Sectior8). Let@ : {0,1}" — R be a function. We say tha&p is symmetric if the output of

@ depends only on the Hamming weight of its input. If we }t {0,1}" — [0, 1] denote a probability
distribution, we say thak is symmetric if the corresponding function mapping inputs to probabilities is a
symmetric function. We need two further facts about such distributions.

Fact A.1. Suppose thak is a symmetric distribution ovej0,1}". For S C {0, ...,n}, let X|s denote the
projection of X to the indices inS. Then,X | is also symmetric.
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Proof. Let z,, be an arbitrary element d0, 1}‘5‘ of Hamming weightw. Using symmetry ofX, we can
observe that

n—|S]
SN\ Prl|X|=h+w
BrlXls = 2] = Z >, PrlXls =z andX|pps =yl = ) < h’ ‘> : (‘ ) ]
h= OyE{O 1} [S| h=0 w+h

ly|=h

The expression on the right depends onlyw@and not onz,,, so the distributionX |¢ must be symmetric
also. O

Fact A.2. Suppose thak” andY are symmetric distributions ovéf, 1}". Then without loss of generality,
the best statistical te€p : {0, 1} — [0, 1] for distinguishing betweeX andY is a symmetric function. In
particular, we have:

max AEx[QX)] - Ey[Q(V)]} = max{Ex[Q(X)] - Ey [Q(Y)]}

symmetriaQ

Proof. Let Q* denotearg maxg{Ex[Q(X)] — Ey[Q(Y)]}. If Q" is symmetric then the proof is complete.
If not, define@ as the following symmetrized version §f:

Q(2) = E,[Q* (o ()],

where the expectation is over a uniform permutation It is clear thatQ is a symmetric function and
we will write Q,, to denote the valué) takes on any input of Hamming weight We now show that
its distinguishing advantage betwegh andY is the same ag)*. Clearly, it is enough to show that
Ex[Q(X)] = Ex[Q*(X)] for arbitrary symmetric distributiorX . This follows from a simple calculation:

-3 S e = PR S 0w

w=0 |g|=w w=0 |z|=

= 3" Pr[|X] = w] - Qu = Ex[Q(X)].
w=0
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