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Abstract

The area of graph property testing seeks to understand the relation between the global properties of
a graph and its local statistics. In the classical model, the local statistics of a graph is defined relative to
a uniform distribution over the graphs vertex set. A graph property P is said to be testable if the local
statistics of a graph can allow one to distinguish between graphs satisfying P and those that are far from
satisfying it.

Goldreich recently introduced a generalization of this model in which one endows the vertex set of the
input graph with an arbitrary and unknown distribution, and asked which of the properties that can be
tested in the classical model can also be tested in this more general setting. We completely resolve this
problem by giving a (surprisingly “clean”) characterization of these properties. To this end, we prove a
removal lemma for vertex weighted graphs which is of independent interest.

1 Introduction

1.1 Background and the main result

Property testers are fast randomized algorithms whose goal is to distinguish (with high probability, say, 2/3)
between objects satisfying some fixed property P and those that are ε-far from satisfying it. Here, ε-far means
that an ε-fraction of the input object should be modified in order to obtain an object satisfying P. The study
of such problems originated in the seminal papers of Rubinfeld and Sudan [28], Blum, Luby and Rubinfeld [9],
and Goldreich, Goldwasser and Ron [20]. Problems of this nature have been studied in so many areas that it
will be impossible to survey them here. Instead, the reader is referred to the recent monograph [18] for more
background and references. While this area studies questions in theoretical computer science, it has several
strong connections with central problems in extremal combinatorics, most notably to the regularity method
and the removal lemma, see Subsection 1.2.

The classical property testing model assumes that one can uniformly sample entries of the input. In
distribution-free testing one assumes that the input is endowed with some arbitrary and unknown distribution
D, which also affects the way one defines the distance to satisfying a property. As discussed in [19], one
motivation for this model is that it can handle settings in which one cannot produce uniformly distributed
entries from the input. Another motivation is that the distribution D can assign higher weight/importance
to parts of the input which we want to have higher impact on the distance to satisfying the given property.
Until very recently, problems of this type were studied almost exclusively in the setting of testing properties
of functions, see [10, 11, 15, 17, 24]. Let us mention that distribution-free testing is similar in spirit to the
celebrated PAC learning model of Valiant [31], see also the discussion in [27].

Our investigation here concerns a distribution-free variant of the adjacency matrix model, also known as
the dense graph model. The adjacency matrix model was first defined and studied in [20], where the area of
property testing was first introduced. This model has been extensively studied in the past two decades, see
Chapter 8 of [18]. For a selected (but certainly not comprehensive) list of works on the dense graph model of
property testing, see [2, 21, 23].
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Instead of defining the adjacency matrix model of [20], let us directly define its distribution-free variant
which was introduced recently by Goldreich [19]. Since the distribution in this model is over the input’s
vertices, it is called the Vertex-Distribution-Free (VDF) model1. The input to the algorithm is a graph G
and some arbitrary and unknown distribution D on V (G). We will thus usually refer to the input as the pair
(G,D). For a pair of graphs G1, G2 on the same vertex-set V , and for a distribution D on V , the (edit) distance
between G1 and G2 with respect to D is defined as

∑
{x,y}∈E(G1)4E(G2)D(x)D(y). We say that (G,D) is ε-far

from satisfying a graph property P if for every G′ ∈ P, the distance between G and G′ with respect to D
is at least ε. A tester for a graph property P is an algorithm that receives as input a pair (G,D) and a
proximity parameter ε, and distinguishes with high probability (say 2

3 ) between the case that G satisfies P
and the case that (G,D) is ε-far from P. The algorithm has access to a device that produces random vertices
from G distributed according to D. The only2 other way the algorithm can access G is by performing “edge
queries” of the form “is (u, v) an edge of G?”. We say that property P is testable in the VDF model if there
is a function q(ε) and a tester for P that always performs a total number of at most q(ε) vertex samples and
edge queries to the input. We stress again that D is unknown to the tester, so (in particular) that q should be
independent of D. The function q is sometimes referred to as the sample (or query) complexity of the tester.
A tester has 1-sided error if it always accepts an input satisfying P. Otherwise it has 2-sided error.

Suppose we assume that in the VDF model, the distribution D is restricted to be the uniform distribution3.
In this paper we will refer to this model as the standard model. This model is “basically” equivalent to the
adjacency matrix model, which was introduced in [20]. We refer the reader to [19] for a discussion on the
subtle differences between the adjacency matrix model and the above defined standard model4.

A very elegant result proved in [19], states that if P is testable in the VDF model then it is testable in the
standard model with one-sided error. A natural follow-up question, raised by Goldreich in [19], asks whether
every property which is testable with one-sided error in the standard model, is also testable in the VDF model.
A characterization of the properties testable with one-sided error in the standard model was given in [5], where
it was shown that these are precisely the semi-hereditary properties (see [5] for the definition of this term).
We show (see Proposition 4.2), that if P is testable in the VDF model then P is hereditary5. Since there
are properties which are semi-hereditary but not hereditary, this implies a negative answer to Goldreich’s
question. Thus, it is natural to ask the following revised version of Goldreich’s question:

Problem 1.1. Are all hereditary graph properties testable in the VDF model?

It might be natural to guess6 that every hereditary property is testable in the VDF model, the justification
being that all lemmas that were used in [5] should also hold for weighted graphs. As it turns out, this is indeed
the case. However, putting all these lemmas together does not seem to work in the VDF model. As our main
result, Theorem 1 below, shows, it is no coincidence that the proof technique of [5] does not carry over as is
to the weighted setting.

We start with an important definition. Let us say that a graph property P is extendable if for every graph
G satisfying P there is a graph G′ on |V (G)| + 1 vertices which satisfies P and contains G as an induced
subgraph. In other words, P is extendable if whenever G is a graph satisfying P and v is a “new” vertex (i.e.
v /∈ V (G)), one can connect v to V (G) in such a way that this larger graph will also satisfy P. Note that
if P is extendable then in fact for every graph G ∈ P and for every n > |V (G)|, there is an n-vertex graph
satisfying P which contains G as an induced subgraph. Our main result in this paper is the following:

Theorem 1. A graph property is testable in the VDF model if and only if it is hereditary and extendable.

It is interesting to compare the above (rather) simple characterization of the properties that are testable
in the VDF model, with the (very) complicated characterization of [2] of the properties that are testable in
the standard model.

1Goldreich suggested to study variants of this model in other settings (such as bounded degree graphs [22]) as well. For brevity,
we will use the term “VDF model” to refer to the “VDF variant of the adjacency matrix model”.

2Note that the algorithm does not receive |V (G)| as part of the input.
3In particular, G is ε-far from P if one needs to change at least εn2 edges to turn G into a graph satisfying P.
4Just as an example, in [20] the tester “knows” |V (G)| while in the VDF model (and thus also in the standard model) it does not.
5A graph property is hereditary if it is closed under removal of vertices.
6This was at least our initial guess.
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Let us mention some immediate consequences of Theorem 1. Since a graph cannot contain both an isolated
vertex and a vertex connected to all other vertices, we infer that for every fixed H the (hereditary) property
of being induced H-free is extendable. We thus infer that:

Corollary 2. The property of being induced H-free is testable in the VDF model for every fixed H.

It is also clear that the property of being H-free is extendable if and only if H has no isolated vertices. We
thus infer that:

Corollary 3. The property of being H-free is testable in the VDF model if and only if H has no isolated
vertices.

It is easy to see that most (natural) hereditary graph properties are extendable, so Theorem 1 immediately
implies that they are all testable in the VDF model. These include the properties of being Perfect, Interval,
Chordal and k-Colorable. In the other direction, Theorem 1 implies that if H has an isolated vertex then H-
freeness is not testable in the VDF model. If one is interested in a more “natural” non-extendable hereditary
property, then it is not hard to see that another such example is the property P of being induced {A,B}-free,
where A (resp. B) is the graph obtained from the 2-edge path P2 by adding a new vertex which is adjacent
to all 3 vertices of P2 (resp. not adjacent to any vertex of P2). It is easy to see that C5 satisfies P but is not
extendable. It was proved in [19] that the properties of being Hamiltonian, Eulerian and Connected are not
testable in the VDF model. Those three results follow immediately from our Theorem 1 since these properties
are not hereditary.

1.2 The combinatorial interpretation of Theorem 1

Let us discuss the combinatorial implications of Theorem 1 and its relation to other results in the area of
extremal combinatorics. The famous triangle removal lemma of Ruzsa and Szemerédi [29] states that if a
graph G is ε-far from being triangle free (with respect to the uniform distribution), then a (uniform) sample
of s(ε) vertices from G contains a triangle with probability at least 2

3 . We refer the reader to [13] for more
background on this lemma and its variants. The result of [5] mentioned above, can be thought of as a
generalization of this lemma to arbitrary hereditary properties. It can be stated as saying that for every
hereditary graph property P there is a function sP : (0, 1)→ N such that the following holds for every ε > 0.
If a graph G is ε-far from P (with respect to the uniform distribution) then a (uniform) sample of sP(ε)
vertices from G induces a graph not satisfying P with probability at least 2/3.

To prove (the “if” direction of) Theorem 1, we will actually prove the following combinatorial statement,
which can be thought of as a vertex-weighted version of the graph removal lemma.

Theorem 4. For every hereditary and extendable graph property P there is a function sP : (0, 1) → N such
that the following holds for every ε > 0 and for every vertex-weighted graph (G,D) which is ε-far from P.
Let u1, . . . , us, s = sP(ε), be a sequence of random vertices of G, sampled according to D and independently.
Then G[{u1, . . . , us}] does not satisfy P with probability at least 2

3 .

The following similar-looking result7 was (implicitly) proved by Austin and Tao [7] and Lovász and Szegedy [26].

Theorem 5 ([7, 26]). For every hereditary graph property P there is a function sP : (0, 1) → N such that
the following holds for every ε > 0 and for every vertex-weighted graph (G,D) which is ε-far from P. Let
u1, . . . , us, s = sP(ε), be a sequence of random vertices of G, sampled according to D and independently.
Construct a graph S on s by letting {i, j} ∈ E(S) if and only if {ui, uj} ∈ E(G). Then S does not satisfy P
with probability at least 2

3 .

Note that Theorem 5 holds for all hereditary properties, while Theorem 4 only holds for hereditary prop-
erties which are extendable. Observe that the graph S in Theorem 5 is a blowup of the graph G[U ], where
U = {u1, . . . , us}. Thus, the difference between Theorems 4 and 5 is that Theorem 5 only guarantees that a

7We note that the results of [7] and [26] are more general. The authors of [26] actually prove that the conclusion of Theorem
5 holds for all graphons. The authors of [7] prove extensions of Theorem 5 in several directions, including a version for uniform
hypergraphs, and a strengthening in which the notion of testability is replaced with the stronger notion of repairability.
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blowup of G[U ] does not satisfy P w.h.p., while Theorem 4 guarantees the stronger assertion that G[U ] itself
does not satisfy P w.h.p. This is an important difference: while Theorem 4 immediately implies the existence
of a VDF-tester for every hereditary and extendable property P (see Subsection 3.3), we do not know of any
way of using Theorem 5 to prove the existence of such a tester. One natural candidate for a tester derived
from Theorem 5 would be the algorithm which accepts if and only if the graph S (defined in Theorem 5) does
not satisfy P. It turns out, however, that this algorithm often fails to be a valid tester8.

It is worth noting that Theorem 5 can be deduced from the “unweighted” case, i.e. the result of [5], via a
simple argument, see Lemma 5.5 and the discussion following it. On the other hand, the proof of Theorem 4
requires several new ideas on top of those used in [5].

1.3 Variants of the VDF model

The proof of the “only if” part of Theorem 1, showing that if P is either non-extendable or non-hereditary then
P is not testable in the VDF model, relies on allowing the input graph to have only O(1) vertices (where the
constant is independent of ε); on excluding |V (G)| from the input fed to the tester; and on having distributions
D that assign to some vertices weight Θ(1) and to some vertices weight o(1/|V (G)|). This raises the natural
question of what happens if we only require the tester to work on sufficiently large graphs; or if the tester
receives |V (G)| as part of the input; or if we forbid D from assigning very low or very high weights (as above).
As the following three theorems show, either one of these variations has a dramatic effect on the model, since
it then allows all hereditary properties to be testable.

We start with the setting in which the input graph is guaranteed to be large enough. In a revised version
of [19], Goldreich asked whether every hereditary property P is testable (in the VDF model) on graphs of
order at least M = MP , for M which is independent of ε. As we show in Proposition 5.2, this turns out to be
false. On the positive side, we show that under the stronger assumption that the input size is at least MP(ε)
(where MP : (0, 1)→ N is a function dependent on P), all hereditary properties are testable.

Theorem 6. If |V (G)| ≥ Ω(1) then every hereditary property is testable in the VDF model.

D. Ron (personal communication) asked what happens if we allow testers to receive |V (G)| (i.e., the number
of vertices in the input graph) as part of the input9. Our following theorem answers this question.

Theorem 7. If testers can receive |V (G)| as part of the input, then every hereditary property is testable in
the VDF model.

Finally, we consider settings in which restrictions are posed on the weights that the distribution D can assign.

Theorem 8. If maxv∈V (G)D(v) = o(1) then every hereditary property is testable in the VDF model.

Theorem 9. If minv∈V (G)D(v) = Ω
(

1
n

)
then every hereditary property is testable in the VDF model.

We note that the implied constant in the Ω-notation in Theorem 9 is allowed to depend on ε. We refer
the reader to Section 5 for the precise statements of Theorems 6, 8 and 9. Let us mention that the proofs of
Theorems 6, 7 and 9 rely on reductions to our main result in this paper, Theorem 1. The proof of Theorem
8 proceeds by a reduction to the standard model (i.e. to the result of [5]). As part of this proof, we solve
another problem raised in [19].

1.4 Paper overview

The rest of the paper is organized as follows. Section 2 is devoted to proving vertex-weighted analogues of
several lemmas that were used in prior works (most notably regularity and counting lemmas, and corollaries
thereof). Some more routine parts of these proofs are deferred to the appendix. In Section 3 we prove the
“if” direction of Theorem 1 (i.e. Theorem 4). This is by far the most challenging (and interesting) part of

8For example, if P = C5-freeness then this tester will reject w.h.p if the input graph is a triangle with uniform vertex
distribution (as the graph S will be a blowup of a triangle, and thus contain C5), even though this input graph clearly satisfies P.

9We note that in the VDF model as defined in [19], the number of vertices in the input graph is not known to the tester
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this paper. The main step towards proving Theorem 1 is establishing Lemma 3.1, which is the key lemma of
this paper. For the reader’s convenience, we give in Subsection 3.1 an overview of the key ideas of the proof.
As the proofs in Section 2 are somewhat routine, we encourage readers who are familiar with the regularity
method to skip Section 2 (at least on their first read), and go directly to Section 3.

The “only if” direction of Theorem 1 is proved in Section 4. In Section 5 we prove Theorems 6, 7, 8 and
9. We also raise two additional problems related to the VDF model; one is to what extent can one extend
the results of Theorems 6-9 beyond hereditary properties, and the other asks if the sample complexity in the
VDF model is the same as in the standard model (for properties that are testable in the VDF model), see
Subsection 5.3. Along the way we resolve another open problem raised in [19] (see Lemma 5.5). Throughout
the paper, when we say that a function is increasing/decreasing we mean weakly increasing/decreasing (i.e.
non-decreasing/non-increasing).

2 Preliminary Lemmas

In this section we introduce vertex-weighted analogues of some key tools of the regularity method, most notable
Szemerédi’s regularity lemma [30], the strong regularity lemma [1], and the counting lemma, as well as some
standard corollaries thereof. We also prove some other auxiliary lemmas needed for the proof of Theorem 1.

We start with two simple lemmas regarding probability distributions on a finite set. Given a distribution
D on a set U and a subset W ⊆ U , we set D(W ) :=

∑
w∈W D(w). We denote by DW the distribution D

conditioned on W , namely DW (w) = D(w)
D(W ) for every w ∈W .

Lemma 2.1. For every set U , for every η ∈ (0, 1) and for every distribution D on U , there is a partition P
of U into 1/η parts such that

∑
W∈P

∑
{x,y}∈(W2 )D(x)D(y) ≤ η.

Proof. Let P be a random partition of U into k := 1/η parts, where each element is assigned to one of the
parts uniformly at random and independently of all other elements. Then for every pair of distinct elements
x, y ∈ U , the probability that x and y belong to the same part is exactly 1

k . By linearity of expectation we have

E

∑
W∈P

∑
{x,y}∈(W2 )

D(x)D(y)

 ≤ ∑
{x,y}∈(U2)

D(x)D(y) · 1

k
≤ η,

so there is a choice of P with the required property. �

Lemma 2.2. Let a be an integer, let U be a finite set and let D be a distribution on U such that D(u) ≤ 1
2a

for every u ∈ U . Then there is a partition U = U1 ∪ · · · ∪ . . . Ua such that D(Ui) ≥ 1
2a for every 1 ≤ i ≤ a.

Proof. We proof is by induction on a. The base case a = 1 is trivial, so we assume from now on that a ≥ 2.
Let U1 ⊆ U be a set of minimal size satisfying D(U1) ≥ 1

2a . Then D(U1) ≤ 1
a , because otherwise we could

remove an arbitrary element of U1 (whose weight by assumption is at most 1
2a ) and thus get a proper subset

of U1 having weight at least 1
2a , in contradiction the minimality of U1. Now set U ′ := U \ U1, noting that

D(U ′) ≥ 1− 1
a . Then every u ∈ U ′ satisfies

DU ′(u) =
D(u)

D(U ′)
≤

1
2a

1− 1
a

=
1

2(a− 1)
.

So by the induction hypothesis for (U ′,DU ′), there is a partition U ′ = U2 ∪ · · · ∪ Ua such that

D(Ui) = DU ′(Ui) · D(U ′) ≥ 1

2(a− 1)
· D(U ′) ≥ 1

2(a− 1)
·
(

1− 1

a

)
=

1

2a

for every 2 ≤ i ≤ a. This completes the proof. �
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We consider vertex-weighted graphs, i.e. pairs (G,D) such that G is a graph and D is a distribution on
V (G). For a set X ⊆ V (G), the subgraph of (G,D) induced by X is defined to be (G[X],DX), where DX is
the distribution D conditioned on X. The weight of an edge/non-edge {x, y} (with respect to D) is defined
as D(x)D(y). For a pair of disjoint sets X,Y ⊆ V (G), define the density of (X,Y ), denoted d(X,Y ), to be
d(X,Y ) = 1

D(X)D(Y )

∑
(x,y)∈E(X,Y )D(x)D(y), where E(X,Y ) is the set of edges with one endpoint in X and

one endpoint in Y . A pair of disjoint vertex-sets (X,Y ) is called ε-regular if for every X ′ ⊆ X and Y ′ ⊆ Y
with D(X ′) ≥ εD(X) and D(Y ′) ≥ εD(Y ), it holds that |d(X ′, Y ′) − d(X,Y )| ≤ ε. The following lemma
describes some basic properties of ε-regular pairs.

Lemma 2.3. Let (X,Y ) be an ε-regular pair with density d. Then the following holds.

1. For every α ≥ ε and X ′ ⊆ X, Y ′ ⊆ Y with D(X ′) ≥ αD(X) and D(Y ′) ≥ αD(Y ), the pair (X ′, Y ′) has
density at least d− ε and at most d+ ε, and is ε′-regular with ε′ = max{ε/α, 2ε}.

2. The set of vertices x ∈ X which satisfy |d(x, Y )− d| > ε has weight less than 2ε · D(X).

Proof. Starting with Item 1, let X ′ ⊆ X and Y ′ ⊆ Y be such that D(X ′) ≥ αD(X) and D(Y ′) ≥ αD(Y ).
Since α ≥ ε, the ε-regularity of (X,Y ) implies that d− ε ≤ d(X ′, Y ′) ≤ d+ ε. Now let us show that (X ′, Y ′)
is ε′-regular with ε′ = max{ε/α, 2ε}. Let X ′′ ⊆ X ′ and Y ′′ ⊆ Y ′ be such that D(X ′′) ≥ ε′D(X ′) and
D(Y ′′) ≥ ε′D(Y ′). Then D(X ′′) ≥ ε

αD(X ′) ≥ εD(X) and similarly D(Y ′′) ≥ εD(Y ). So by the ε-regularity of
(X,Y ) we have |d(X ′′, Y ′′)− d(X,Y )| ≤ ε and hence |d(X ′′, Y ′′)− d(X ′, Y ′)| ≤ 2ε ≤ ε′, as required.

We now prove Item 2. Let X+ (resp. X−) be the set of all x ∈ X satisfying d(x, Y ) > d + ε (resp.
d(x, Y ) > d− ε). We have

d(X+, Y ) =
1

D(X+)D(Y )
·
∑
x∈X+

∑
y∈NY (x)

D(x)D(y) =
1

D(X+)D(Y )
·
∑
x∈X+

D(x) · D(Y ) · d(x, Y )

>
1

D(X+)D(Y )
· D(X+)D(Y ) · (d+ ε) = d+ ε.

So unless D(X+) < εD(X), we get a contradiction to the ε-regularity of (X,Y ). Similarly, we must have
D(X−) < εD(X). The assertion follows. �

The following is a vertex-weighted counting lemma.

Lemma 2.4 (Counting lemma for vertex-weighted graphs). For every integer h ≥ 2 and η ∈ (0, 1) there is
δ = δ2.4(h, η) such that the following holds. Let H be a graph on [h] and let U1, . . . , Uh be pairwise-disjoint
vertex-sets in a vertex-weighted graph (G,D), such that the following holds.

1. For every 1 ≤ i < j ≤ h, if {i, j} ∈ E(H) then d(Ui, Uj) ≥ η, and if {i, j} /∈ E(H) then d(Ui, Uj) ≤ 1−η.

2. For every 1 ≤ i < j ≤ h, the pair (Ui, Uj) is δ-regular.

Let U be the set of all (u1, . . . , uh) ∈ U1 × · · · × Uh such that u1, . . . , uh induce a copy of H in which ui plays

the role of i for every 1 ≤ i ≤ h. Then
∑

(u1,...,uh)∈U
∏h
i=1D(ui) ≥ δ

∏h
i=1D(Ui).

Proof. The proof is by induction on h. The base case h = 2 trivially holds with δ = δ(2, η) = η. So from now
on we assume that h ≥ 3, and set

δ = δ(h, η) = min

{
1

4(h− 1)
,
η

2
,

1

2
·
(η

2

)h−1

· δ(h− 1, η/2)

}
.

For each 2 ≤ i ≤ h, let Wi be the set of all vertices u1 ∈ U1 for which |d(u1, Ui) − d(U1, Ui)| > δ. By

Item 2 of Lemma 2.3, we have D(Wi) < 2δ · D(U1). Hence, the set U ′1 := U1 \
⋃h
i=2Wi satisfies D(U ′1) >

D(U1) − (h − 1) · 2δ · D(U1) ≥ 1
2D(U1), where in the last inequality we used our choice of δ. Now fix any

u1 ∈ U ′1. We define sets U ′2, . . . , U
′
h as follows: for 2 ≤ i ≤ h, if {1, i} ∈ E(H) then set U ′i = NUi(u1),

and if {1, i} /∈ E(H) then set U ′i = Ui \ NUi(u1). By using Item 1 and the fact that u1 ∈ U ′1, we get that
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D(U ′i) ≥ (η− δ)D(Ui) ≥ η
2 · D(Ui) for every 2 ≤ i ≤ h. By Item 1 of Lemma 2.3, and by Conditions 1-2 of the

current lemma, we get that for every 2 ≤ i < j ≤ h, the pair (U ′i , U
′
j) is δ′-regular with δ′ = 2δ/η ≤ δ(h−1, η/2),

and that if {i, j} ∈ E(H) then d(U ′i , U
′
j) ≥ η−δ ≥ η/2 and if {i, j} /∈ E(H) then d(U ′i , U

′
j) ≤ 1−η+δ ≤ 1− η

2 .

We now see that the sets U ′2, . . . , U
′
h satisfy the requirements of the lemma with respect to the graph

H ′ = H[{2, . . . , h}] and with η
2 in place of η. Let U ′ be the set of all (u2, . . . , uh) ∈ U ′1 × · · · × U ′h such that

u2, . . . , uh induce a copy of H ′ with ui playing the role of i for every 2 ≤ i ≤ h. By the induction hypothesis,
we have

∑
(u2,...,uh)∈U ′

h∏
i=2

D(ui) ≥ δ(h− 1, η/2) ·
h∏
i=2

D(U ′i) ≥ δ(h− 1, η/2) · (η/2)h−1 ·
h∏
i=2

D(Ui) ≥ 2δ

h∏
i=2

D(Ui).

For every (u2, . . . , uh) ∈ U ′, the tuple (u1, . . . , uh) induces a copy of H with ui playing the role of i for every
1 ≤ i ≤ h. Hence, for every (u2, . . . , uh) ∈ U ′ we have (u1, . . . , uh) ∈ U (where U is defined in the statement
of the lemma). Since this is true for every u1 ∈ U ′1, we get that

∑
(u1,...,uh)∈U

h∏
i=1

D(ui) ≥
∑
u1∈U ′

1

D(u1) · 2δ
h∏
i=2

D(Ui) = D(U ′1) · 2δ
h∏
i=2

D(Ui) ≥ δ
h∏
i=1

D(Ui),

as required. �

A partition P = {V1, . . . , Vr} of the vertex-set of a vertex-weighted graph (G,D) is called ε-regular if the
sum of D(Vi)D(Vj) over all pairs 1 ≤ i < j ≤ r for which (Vi, Vj) is not ε-regular, is at most ε. We now state
vertex-weighted versions10 of Szemerédi’s regularity lemma [30] and of the strong regularity lemma [1]. The
proofs of these lemmas appear in the appendix.

Lemma 2.5 (Szemerédi’s regularity lemma for vertex-weighted graphs). For every ε ∈ (0, 1) and m ≥ 0 there
is T = T2.5(ε,m) such that for every vertex-weighted graph (G,D) and for every partition P0 of V (G) of size
not larger than m, there is an ε-regular partition P of V (G) which has at most T parts and refines P0.

Lemma 2.6 (Strong regularity lemma for vertex-weighted graphs). For every function E : N → (0, 1) and
for every integer m, there is S = S2.6(E ,m) such that for every vertex-weighted graph (G,D) and for every
partition P0 of V (G) of size at most m, there is a refinement P of P0, and a refinement Q of P, such that
the following hold.

1. |Q| ≤ S.

2. The partition Q is E(|P|)-regular.

3.
∑
P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · |d(Qi, Qj)− d(Pi, Pj)| ≤ E(0). Here the outer sum is over all
unordered pairs of distinct P1, P2 ∈ P, and the inner sum is over all Q1, Q2 ∈ Q such that Qi ⊆ Pi for
i = 1, 2.

Our last two lemmas are vertex-weighted analogues of well-known corollaries to Szemerédi’s regularity
lemma and the strong regularity lemma, respectively. The “unweighted” versions of these corollaries were
used in [5] in order to prove that every hereditary property is testable in the standard model.

Lemma 2.7. For every integer t ≥ 1 and for every δ > 0 there is ζ = ζ2.7(t, δ) > 0, such that the following
holds. Let (G,D) be a vertex-weighted graph such that all vertices in G have weight less than ζ. Then there
are pairwise-disjoint vertex-sets Q1, . . . , Qt ⊆ V (G) with the following properties.

1. D(Qi) ≥ ζ for every 1 ≤ i ≤ t.

2. (Qi, Qj) is δ-regular for every 1 ≤ i < j ≤ t.
10We note that a weighted version of Szemerédi’s regularity lemma, where both vertex-weights and edge-weights are allowed,

was proved in [14], but only under the assumption that all vertex-weights are o(1). Hence this lemma is unsuitable in our setting.
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3. Either all pairs (Qi, Qj) have density at least 1
2 , or all pairs (Qi, Qj) have density less than 1

2 .

Proof. Setting a = 4t and ε = δ
4a4 , we will prove the lemma with

ζ = ζ2.7(t, δ) =
1

4a2 · T2.5(ε, 2a)
.

Let (G,D) satisfying D(v) < ζ for every v ∈ V (G). Apply Lemma 2.2 with U = V (G), with the distribution D,
and with a as defined above. Lemma 2.2 supplies a partition V (G) = U1∪· · ·∪ . . . Ua such that D(Ui) ≥ 1

2a for
every 1 ≤ i ≤ a. Now apply Lemma 2.5 to (G,D) with parameter and with the partition P0 := {U1, . . . , Ua}, to
obtain a ε-regular partition P which refines P0. For each 1 ≤ i ≤ a, put Pi = {P ∈ Pi : P ⊆ Ui}, and sample

Pi ∈ Pi with probability proportional to the weight of the parts, i.e. Pi = P holds with probability D(P )
D(Ui)

for

every P ∈ Pi. We claim that with positive probability, D(Pi) ≥ ζ for every 1 ≤ i ≤ a, and all pairs (Pi, Pj)

are δ-regular. For every 1 ≤ i ≤ a, the probability that D(Pi) < ζ is at less than ζ·|P|
D(Ui)

≤ ζ·T2.5(ε,2a)
1/2a ≤ 1

2a ,

where in the first inequality we used the guarantees of Lemma 2.5. By the union bound, with probability
larger than 1

2 we have D(Pi) ≥ ζ for every 1 ≤ i ≤ a. Next, observe that since P is ε-regular, the probability
that (Pi, Pj) is not δ-regular (for some specific 1 ≤ i < j ≤ a) is at most ε

D(Ui)D(Uj)
≤ ε

4a2 ≤
1
a2 . So by taking

the union bound over all pairs 1 ≤ i < j ≤ a, we get that with probability at least 1−
(
a
2

)
· 1
a2 >

1
2 , all pairs

(Pi, Pj) are δ-regular. This proves our assertion.

We thus showed that there is a choice of P1, . . . , Pa such that D(Pi) ≥ ζ for every 1 ≤ i ≤ a and such that
(Pi, Pj) is δ-regular for every 1 ≤ i < j ≤ a. Now consider an auxiliary graph on [a] in which {i, j} is an edge
if d(Pi, Pj) ≥ 1

2 and {i, j} is a non-edge if d(Pi, Pj) <
1
2 . As a = 4t, a well-known bound on Ramsey numbers

implies that this graph contains either a clique or an independent set {i1, . . . , it}. Then Q1 = Pi1 , . . . , Qt = Pit
satisfy the requirements of the lemma. �

Lemma 2.8. For every function E : N → (0, 1) and for every integer m, there is S = S2.8(E ,m) such that
for every vertex-weighted graph (G,D) and for every partition P0 of V (G) having size at most m, there is a
partition P = {P0, P1, . . . , Pr} of V (G) and vertex-sets Qi ⊆ Pi for 1 ≤ i ≤ r, such that the following holds:

1. D(P0) < E(0).

2. For every 1 ≤ i ≤ r, Pi is contained in some part of P0.

3. D(Qi) ≥ 1/S for every 1 ≤ i ≤ r. In particular, r ≤ S.

4. For every 1 ≤ i < j ≤ r, the pair (Qi, Qj) is E(r)-regular.

5.
∑

1≤i<j≤r D(Pi)D(Pj) · |d(Qi, Qj)− d(Pi, Pj)| ≤ E(0).

Proof. We may and will assume E is monotone decreasing11. For convenience, put ε = E(0). Let E ′ : N →
(0, 1) be the function E ′(r) = min

{
E(r), ε

2

r4 ,
ε
4

}
. We will show that one can choose S = S2.8(E ,m) to be

S = 4s2

ε , where s := S2.6(E ′,m). Apply Lemma 2.6 to (G,D) with parameter E ′ and with the given partition
P0, to obtain partitions P ′ and Q such that P ′ refines P0, Q refines P ′, and Items 1-3 in Lemma 2.6 hold. Let
P0 be the union of all parts of P ′ of weight less than ε/|P ′|, and let P1, . . . , Pr be the parts of P ′ of weight at
least ε/|P ′|. Then we have D(P0) < |P ′| · ε/|P ′| = ε, establishing Item 1. Now set P = {P0, P1, . . . , Pr}. It is
evident that Item 2 holds.

For each 1 ≤ i ≤ r, denote Qi = {Q ∈ Q : Q ⊆ Pi}, and sample Qi ∈ Qi with probability proportional

to the weight of the parts; in other words, for each Q ∈ Qi, the probability that Qi = Q is w(Q)
w(Pi)

. We will

show that with positive probability, Q1, . . . , Qr satisfy Items 3-5. For each 1 ≤ i ≤ r, the probability that

D(Qi) <
D(Pi)
4|Q| is less than |Q| · D(Pi)

4|Q| = D(Pi)
4 . So by the union bound, the probability that there is 1 ≤ i ≤ r

for which D(Qi) <
D(Pi)
4|Q| is less than 1

4 . So we probability larger than 3
4 , for every 1 ≤ i ≤ r we have

D(Qi) ≥
D(Pi)

4|Q|
≥ ε

4|P ′||Q|
≥ ε

4|Q|2
≥ ε

4s2
=

1

S
,

11Indeed, we can replace E with E ′(r) = mins≤r E(s), which is clearly monotone decreasing.
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where in the last inequality is due to our choice of Q via Lemma 2.6.

We now prove that Item 4 holds with probability greater than 1
2 . Fix any 1 ≤ i < j ≤ r. Since Q is

ε′-regular with ε′ = E ′(|P|′) ≤ min
{
E(|P ′|), ε2

|P′|4

}
, and since E(|P ′|) ≤ E(r) (by the monotonicity of E),

the probability that the pair (Qi, Qj) is not E(r)-regular is at most ε2/|P′|4
D(Pi)D(Pj)

≤ |P ′|−2 ≤ r−2, where the

first inequality holds because D(Pi),D(Pj) ≥ ε/|P ′|. By the union bound over all pairs 1 ≤ i < j ≤ r, the
probability that there is 1 ≤ i < j ≤ r for which (Qi, Qj) is not E(r)-regular is at most

(
r
2

)
· r−2 < 1

2 .

It remains to show that Item 5 holds with probability at least 1
4 . Observe that

E

 ∑
1≤i<j≤r

D(Pi)D(Pj) · |d(Qi, Qj)− d(Pi, Pj)|

 =

∑
1≤i<j≤r

∑
Q′
i∈Qi,Q′

j∈Qj

D(Q′i)D(Q′j) ·
∣∣d(Q′i, Q

′
j)− d(Pi, Pj)

∣∣ ≤ ε

4
,

where in the inequality we used Item 3 of Lemma 2.6, our choice of E ′, and the fact that P1, . . . , Pr ∈ P ′. So
by Markov’s inequality, the probability that Item 5 fails is at most 1

4 , as required. �

3 The Main Proof

In this section we prove the “if” direction of Theorem 1. In Subsection 3.1 we give a high-level overview of the
main obstacle one needs to overcome in proving Theorem 1, and the main idea behind the way we overcome
it. In Subsection 3.2 we state and prove Lemma 3.1, which constitutes the main ingredient in the proof of
Theorem 1. Finally, we prove (the “if” direction of) Theorem 1 in Subsection 3.3.

3.1 Proof overview

The main difficulty: Suppose P is an extendable hereditary graph property. We are given a graph G and
a distribution D so that G is ε-far from P with respect to D. Our goal is to show that a sample of O(1)
vertices12 from G finds with high probability (whp) an induced subgraph F of G which does not satisfy P.
There are two ways one can try to tackle this problem. First, one can take a blowup G′ of G, in which a
vertex is replaced by a cluster of vertices whose size is proportional to the vertex’s weight under D, and thus
(try to) “reduce” the problem to the non-weighted case. While this approach can allow one to handle some
properties13, it seems that the main bottleneck is that a copy of F in G′ does not correspond necessarily to
a copy of F in G, since F might contain several of the vertices that replaced a vertex of G. Moreover, if this
vertex v has weight Ω(1) then even a sample of size O(1) will very likely contain several of the vertices of G′

that replaced v.

A second approach would be to just reprove the result of [5], while replacing the regularity lemmas used
there with regularity lemmas for vertex-weighted graphs. While such lemmas are indeed not hard to prove
(see e.g. Lemmas 2.4 and 2.5-2.8), the main problem is again vertices of high weight. Now the issue is that
clusters of the regular partition might contain only a single vertex of high weight, a situation in which one
would not be able to embed graphs F that need to use more than one vertex from the same cluster.

The key new idea: The main idea is then to prove a lemma that allows one to partition G into three sets
X,Y, Z with the following properties: (i) Z will have total weight at most ε/2, (ii) all vertices in X will have
weight at least Ω(1), (iii) Y will have a highly regular Szemerédi partition, that is, there will be a partition of
the vertices of Y into sets P1, . . . , Pr so that the bipartite graphs between all pairs (Pi, Pj) are pseudo-random
(or regular in the sense of the regularity lemma), (iv) each of the clusters Pi will have “enough” vertices, and
(v) for each x ∈ X and set Pi, either x will be connected to all vertices of Pi or to none of them. Let us now
see how a partition with the above five properties can allow one to test P.

12Throughout this subsection, Ω(1) and O(1) mean positive quantities that depend only on ε and not on n or D.
13Indeed, this is the approach used in [19].
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We first claim that G[X ∪Y ] (i.e. the graph induced by X ∪Y ) is ε/2-far from satisfying P. Indeed, if this
is not the case, then we can first turn the graph induced by these sets into a graph satisfying P by making
changes of total weight at most ε/2, and then use the fact that P is extendable and the fact that the total
weight of Z is at most ε/2 in order to reconnect the vertices of Z to X ∪ Y (and amongst themselves) so that
the resulting graph will be in P. The total weight of edges we thus change is less than ε, a contradiction.

We now examine the partition P1, . . . , Pr of Y and perform a “cleaning” procedure analogous to the one
performed in applications of the regularity lemma. By this we mean that we make (only!) within Y changes of
total weight less than ε/2 so that if after these changes the set Y contains an induced copy of some graph F ,
then in the original graph, a sample of O(1) vertices from Y finds one such copy with high probability (whp).
Here we will also rely on property (iv) of the partition. The fact that G[X ∪ Y ] is ε/2-far from satisfying P
and that we made changes of total weight less than ε/2 when cleaning Y , means that G[X ∪ Y ] (after the
cleaning) indeed has an induced copy of a graph F that does not satisfy P. We now claim that a sample of
size O(1) from G (before the cleaning) finds a copy of F whp. First, since the total weight of Z is small, then
sampling from G is (effectively) like sampling from G[X ∪ Y ]. Now let FX (resp. FY ) be the subgraph of F
induced by X (resp. Y ). By the above discussion, a sample of size O(1) finds a copy of FY whp. Now, and
this is the first crucial point, property (v) mentioned above guarantees that the vertices of X which form the
copy of FX , form a copy of F with every set of vertices in Y which forms a copy of FY . Now, and this is
the second crucial point, property (ii) above guarantees that a sample of O(1) vertices finds the14 copy of FX
contained in X whp. Altogether, the algorithm finds an induced copy of F using O(1) queries.

The new regularity lemma: As it turns out, one cannot hope to partition G as described in the first
paragraph above, and instead we will have to define a partition with a much more complicated set of features.
This is stated in Lemma 3.1 in the next subsection. One of the main difficulties is making sure that parts
Pi of the partition of Y will not contain only few (or even a single) vertices of high weight (i.e. we want to
guarantee property (iv) stated above). This is done by making sure that the weight of the vertices in Y is
very small compared to the weight of the parts P1, . . . , Pr. This in itself is challenging, because at the same
time we need to have many parts Pi in order to satisfy property (v) above. The proof of Lemma 3.1 will use
some of the lemmas of Section 2, most notably Lemma 2.8, which we will need to iterate (at least implicitly)
in order to find the sought-after partition in the statement of Lemma 3.1.

3.2 The Key Lemma

In this subsection we state and prove Lemma 3.1, which is the main ingredient in the proof of the “if” direction
of Theorem 1.

Lemma 3.1. For every function Ψ : N → N and ε > 0 there is S = S3.1(Ψ, ε) such that for every vertex-
weighted graph (G,D) there is a partition V (G) = X ∪ Y ∪ Z, a partition P = {P1, . . . , Pr} of Y , vertex-sets
Qi ⊆ Pi, and pairwise-disjoint vertex-sets Qi,1, . . . , Qi,t ⊆ Qi, where t = Ψ(|X| + r), such that the following
holds:

1. D(Z) < ε.

2. Every vertex in X has weight at least 1/S.

3. For every x ∈ X and for every 1 ≤ i ≤ r, either x is adjacent to all vertices of Pi, or to none of the
vertices of Pi.

4.
∑

1≤i≤r
∑
{x,y}∈(Pi2 )D(x)D(y) ≤ ε.

5.
∑

1≤i<j≤r D(Pi)D(Pj) · |d(Qi, Qj)− d(Pi, Pj)| ≤ ε.

14By “the” we mean that X might contain only a single copy of FX , but this copy has to be of weight Ω(1). This is in sharp
contrast to the situation within Y , where each copy of FY might have very small weight, but the total weight of such copies must
be Ω(1).
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6. For every 1 ≤ i ≤ r, all pairs (Qi,k, Qi,`) are 1
Ψ(|X|+r) -regular, and either all pairs (Qi,k, Qi,`) have

density at least 1
2 , or all pairs (Qi,k, Qi,`) have density less than 1

2 .

7. For every 1 ≤ i < j ≤ r and 1 ≤ k, ` ≤ t, the pair (Qi,k, Qj,`) is 1
Ψ(|X|+r) -regular and |d(Qi,k, Qj,`) −

d(Qi, Qj)| ≤ 1
Ψ(|X|+r) .

8. For every 1 ≤ i ≤ r and 1 ≤ k ≤ t, D(Qi,k) ≥ 1/S.

Note that Items 2 and 8 in Lemma 3.1 together imply that |X|+ rt ≤ S. The following lemma constitutes
the main part of the proof of Lemma 3.1. After proving Lemma 3.2, we deduce Lemma 3.1 from Lemmas 3.2
and 2.7.

Lemma 3.2. For every function Ψ : N → N and ε > 0 there is S = S3.2(Ψ, ε) such that for every vertex-
weighted graph (G,D) there is a partition V (G) = X∪Y ∪Z, a partition P = {P1, . . . , Pr} of Y and vertex-sets
Qi ⊆ Pi (for 1 ≤ i ≤ r) such that Items 1-5 in Lemma 3.1 hold (with respect to S = S3.2(Ψ, ε)), and such that
the following two conditions are satisfied.

(a) For every 1 ≤ i < j ≤ r, the pair (Qi, Qj) is 1
Ψ(|X|+r) -regular.

(b) For every 1 ≤ i ≤ r the following holds: D(Qi) ≥ 1/S, and all vertices in Qi have weight less than
1

Ψ(|X|+r) · D(Qi).

Proof. We may and will assume that the function Ψ is monotone increasing15, and that the function
S2.8(E ,m), whose existence is guaranteed by Lemma 2.8, is monotone decreasing in E and monotone in-
creasing in m. Here, being monotone decreasing in E means that if a pair of functions E1, E2 : N → (0, 1)
satisfy E1(r) ≤ E2(r) for every r ∈ N, then S2.8(E1,m) ≥ S2.8(E2,m) for every m. For each s ∈ N, define the
function Es : N→ (0, 1) by

Es(r) = min

{
ε

2
,

1

Ψ(s+ r)

}
.

Now define the functions S′, S′′ : N→ N by setting:

S′(s) = S2.8

(
Es,

1

ε
· 2s
)
, S′′(s) = max

{
s,

2S′(s)

ε
·Ψ (s+ S′(s))

}
.

Note that S′′(s) ≥ s for every s ∈ N, and that S′ and S′′ are monotone increasing. We define a monotone
increasing sequence s1, s2, . . . as follows: s1 = 1, and for each i ≥ 2, si = S′′(si−1). We will show that the
lemma holds with

S = S3.2(Ψ, ε) = s2/ε .

Let (G,D) be a vertex-weighted graph. We iteratively define a sequence of pairwise-disjoint vertex-sets
X1, X2, . . . ⊆ V (G) as follows: let X1 be the set of all vertices of G of weight at least 1/s1; for each i ≥ 2,
let Xi be the set of all vertices in V (G) \ (X1 ∪ · · · ∪Xi−1) having weight at least 1/si. Since X1, X2, . . . are
pairwise-disjoint, there must be 1 ≤ i ≤ 2

ε for which D(Xi) ≤ ε
2 . We now set Z ′ = Xi, X = X1 ∪ · · · ∪Xi−1

and Y ′ = V (G) \ (X ∪ Z ′) = V (G) \ (X1 ∪ · · · ∪Xi). Note that D(Z ′) ≤ ε
2 . Setting s = si−1 ≤ s2/ε−1 ≤ S,

note that every vertex in X has weight at least 1
s (so in particular |X| ≤ s), while every vertex in Y ′ has

weight less than 1
si

= 1
S′′(s) .

If D(Y ′) < ε
2 then D(Y ′ ∪ Z ′) < ε, so the assertion of the lemma holds for Y = ∅ and Z = Z ′ ∪ Y ′, and

we are done. So we may and will assume from now on that D(Y ′) ≥ ε
2 . Let P ′0 be a partition of Y ′ into 1/ε

parts such that
∑
P∈P′

0

∑
{x,y}∈(P2)D(x)D(y) ≤ ε, as guaranteed by Lemma 2.1. For every x ∈ X, consider

the partition Px := {NY ′(x), Y ′ \NY ′(x)} of Y ′. Let P0 be the common refinement of the partitions P ′0 and
(Px)x∈X . Then for every x ∈ X and P ∈ P0, either x is adjacent to every vertex of P , or x is not adjacent to
any vertex of P . Moreover, we have |P0| ≤ 1

ε · 2
|X| ≤ 1

ε · 2
s.

15To guarantee that Ψ is monotone increasing, we can simply replace Ψ with the function Ψ′(s) := max{Ψ(0), . . . ,Ψ(s)}.
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Now apply Lemma 2.8 to (G[Y ′],DY ′) with parameters Es and m = 1
ε ·2

s, and with the partition P0 (noting
that |P0| ≤ m), to obtain a partition P = {P0, P1, . . . , Pr} of Y ′ and vertex-sets Qi ⊆ Pi (for 1 ≤ i ≤ r), with
the properties stated in that lemma. Note that in particular we have

r ≤ S2.8

(
Es,

1

ε
· 2s
)

= S′(s). (1)

Set Z = Z ′ ∪ P0 and Y = Y ′ \ P0, noting that D(P0) < Es(0) ≤ ε
2 , and hence D(Z) = D(Z ′) + D(P0) < ε,

as required by Item 1 in Lemma 3.1. Items 3 and 4 in Lemma 3.1 hold because each of the sets P1, . . . , Pr is
contained in some part of P0, and hence also in some part of P ′0. Item 2 of Lemma 3.1 was already verified
above, and Item 5 of Lemma 3.1 is guaranteed by Lemma 2.8. Item (a) holds because Lemma 2.8 guarantees
that all pairs (Qi, Qj) are Es(r)-regular, and because Es(r) ≤ 1

Ψ(s+r) ≤
1

Ψ(|X|+r) (here we used our choice of

Es, the fact that |X| ≤ s, and the monotonicity of Ψ). It remains to prove Item (b). For each 1 ≤ i ≤ r, we
have

D(Qi) ≥ DY ′(Qi) · D(Y ′) ≥ DY ′(Qi) ·
ε

2
≥ ε

2S2.8

(
Es, 1

ε · 2s
) (2)

=
ε

2S′(s)
≥ 1

S′′(s)
≥ 1

S′′(s2/ε−1)
=

1

s2/ε
=

1

S
,

where in the third inequality we used the guarantees of Lemma 2.8, and later we used our choice of S′ and
S′′, the monotonicity of Ψ and S′′, and the fact that s = si−1 for some i ≤ 2/ε. Next, recall that all vertices
of Y have weight less than

1

S′′(s)
≤ 1

Ψ (s+ S′(s))
· ε

2S′(s)

≤ 1

Ψ(s+ r)
· D(Qi) ≤

1

Ψ(|X|+ r)
· D(Qi),

where in all inequalities we used the monotonicity of Ψ, and in the second inequality we also used (1) and (2).
This shows that D(u) ≤ 1

Ψ(|X|+r) · D(Qi) for every u ∈ Qi, as required. �

Proof of Lemma 3.1. Define the functions

ζ : N→ (0, 1), ζ(m) = ζ2.7

(
Ψ(m),

1

Ψ(m)

)
,

and

Ψ′ : N→ N, Ψ′(m) =
2Ψ(m)

ζ(m)
.

We may and will assume that the function ζ2.7(t, δ) is monotone decreasing in t and monotone increasing in δ.
This assumption implies that the function ζ defined above is monotone decreasing. We prove the lemma with

S = S3.1(Ψ, ε) :=
S3.2(Ψ′, ε)

ζ(S3.2(Ψ′, ε))
≥ S3.2(Ψ′, ε) .

Let (G,D) be a vertex-weighted graph. Apply Lemma 3.2 to (G,D) with parameters Ψ′ and ε, to obtain
a partition V (G) = X ∪ Y ∪ Z, a partition P = {P1, . . . , Pr} of Y , and subsets Qi ⊆ Pi (for 1 ≤ i ≤ r) such
that Items 1-5 of Lemma 3.1 hold (with respect to S3.2(Ψ′, ε)), and so do Items (a) and (b) of Lemma 3.2.

Let us now prove that Items 6-8 (in Lemma 3.1) hold. It will be convenient to put m := |X|+ r. By Item
(b) in Lemma 3.2 and by our choice of Ψ′, we have

D(u) <
1

Ψ′(m)
· D(Qi) <

ζ(m)

Ψ(m)
· D(Qi) ≤ ζ(m) · D(Qi) (3)

for every 1 ≤ i ≤ r and u ∈ Qi. Recalling our choice of ζ, we see that Lemma 2.7 is applicable to (G[Qi],DQi)
with parameters t = Ψ(m) = Ψ(|X|+ r) and δ = 1

Ψ(m) = 1
Ψ(|X|+r) . Applying Lemma 2.7 with this input, we
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obtain pairwise-disjoint vertex-sets Qi,1, . . . , Qi,t ⊆ Qi satisfying the properties stated in that lemma. The
guarantees of Lemma 2.7 immediately establish Item 6, and also imply that for every 1 ≤ k ≤ t we have

D(Qi,k) ≥ ζ(m) · D(Qi) = ζ(|X|+ r) · D(Qi) ≥ ζ(|X|+ r) · 1

S3.2(Ψ′, ε)
≥ ζ(S3.2(Ψ′, ε))

S3.2(Ψ′, ε)
=

1

S
,

where in the second and third inequalities we used the fact that |X|+ r, 1
D(Qi)

≤ S3.2(Ψ′, ε), as guaranteed by

Item 2 (of Lemma 3.1) and Item (b) (of Lemma 3.2); in the third inequality we also used the monotonicity
of ζ. This establishes Item 8. It remains to prove Item 7. By Item (a) of Lemma 3.2, the pair (Qi, Qj) is

1
Ψ′(m) -regular for every 1 ≤ i < j ≤ r. Recalling that 1

Ψ′(m) = ζ(m)
2Ψ(m) , we apply Item 1 of Lemma 2.3 to

Qi, Qj , Qi,k, Qj,` (for any 1 ≤ k, ` ≤ t), to conclude that |d(Qi,k, Qj,`) − d(Qi, Qj)| ≤ 1
Ψ(m) = 1

Ψ(|X|+r) , and

that the pair (Qi,k, Qj,`) is 1
Ψ(|X|+r) -regular, as required. �

3.3 Proof of the Main Result

In this subsection we prove (the “if” direction of) Theorem 1. For a hereditary and extendable graph property
P, our tester for P will work as follows: given an input (G,D) and a proximity parameter ε, the tester samples
a sequence of vertices u1, . . . , us ∈ V (G) independently and with distribution D, where s = sP(ε) is as in
Theorem 4; the tester then accepts if and only if G[u1, . . . , us] satisfies P. Since P is hereditary, this tester
accepts with probability 1 if the input graph satisfies P. In the other direction, Theorem 4 immediately implies
that if the input (G,D) is ε-far from P then the tester rejects with probability at least 2

3 . So we see that the
“if” direction of Theorem 1 follows from Theorem 4.

From now on our goal is to prove Theorem 4. We start by introducing variants of some definitions from
[5]. An embedding scheme is a complete graph K with a vertex partition AK ∪BK , such that every vertex in
BK is colored black or white, every edge with an endpoint in AK is colored black or white, and every edge
contained in B is colored black, white or grey. Note that one of Ak, Bk may be empty; that the vertices of
AK are not colored; and that the edges with an endpoint in AK cannot be colored grey. An embedding from
a graph F to an embedding scheme K is a map ϕ : V (F )→ V (K) such that the following holds:

1. For every α ∈ AK we have |ϕ−1(α)| ≤ 1.

2. For every β ∈ BK , if β is colored black then ϕ−1(β) induces a complete graph, and if β is colored white
then ϕ−1(β) induces an empty graph.

3. For every {λ, µ} ∈
(
V (K)

2

)
, if {λ, µ} is colored black then the bipartite graph between ϕ−1(λ) and ϕ−1(µ)

is complete, and if {λ, µ} is colored white then the bipartite graph between ϕ−1(λ) and ϕ−1(µ) is empty
(note that there are no restrictions in the case that {λ, µ} is colored grey).

Note that Condition 3 implies that for every α ∈ AK and λ ∈ V (K)\{α}, the bipartite graph between ϕ−1(α)
and ϕ−1(λ) is either complete or empty. We use the notation F → K to mean that there is an embedding
from F to K. For a graph-family F and an integer m, let Fm be the family of all embedding schemes K on
at most m vertices, such that there is an embedding from some F ∈ F to K. We now introduce a variant of
the function ΨF defined in [5].

Definition 3.3. For a graph-family F and an integer m for which Fm 6= ∅, define

ΨF (m) = max
K∈Fm

min
F∈F :F→K

|V (F )|.

If Fm = ∅ then define ΨF (m) = 0.

We are now ready to prove Theorem 4 (and thus also the “if” direction of Theorem 1).

Proof of Theorem 4. Let P be a hereditary and extendable graph property. Let F = F(P) be the family
of graphs which do not satisfy P. Fix ε ∈ (0, 1), and let Ψ : N→ N be the function

Ψ(m) = max

{
8

ε
,ΨF (m),

1

δ2.4(ΨF (m), ε8 )

}
,
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where ΨF is defined in Definition 3.3. We may and will assume that the function δ2.4(h, η) is monotone
decreasing in h and monotone increasing in η. Set S := S3.1(Ψ, ε8 ). We prove the theorem with

s = sP(ε) := Ψ(S) · 2SΨ(S)

δ2.4
(
Ψ(S), ε8

) . (4)

Let (G,D) be a vertex-weighted graph which is ε-far from P. Apply Lemma 3.1 to (G,D) with parameter
ε
4 and with Ψ as above, to obtain a partition V (G) = X∪Y ∪Z, a partition {P1, . . . , Pr} of Y , subsets Qi ⊆ Pi
(for 1 ≤ i ≤ r), and pairwise-disjoint subsets Qi,1, . . . , Qi,t ⊆ Qi, such that t = Ψ(|X| + r) and Items 1-8 in
Lemma 3.1 hold.

We claim that G is 3ε
4 -far from any graph G′ on V (G) which satisfies G′[X ∪ Y ] ∈ P. So suppose by

contradiction that there is a graph G′ on V (G) such that G′[X ∪ Y ] satisfies P and such that G′ is 3ε
4 -close

to G. Since P is extendable, there is a graph G′′ on V (G) = V (G′) such that G′′[X ∪ Y ] = G′[X ∪ Y ] and
such that G′′ satisfies P. In order to turn G′ into G′′, we only need to add/delete edges which are incident
to vertices of Z. Therefore, the total weight of edge-changes needed to turn G′ into G′′ is at most D(Z) < ε

4 ,
as guaranteed by Lemma 3.1. So we see that G can be turned into G′′, which satisfies P, by adding/deleting
edges whose total weight is less than 3ε

4 + ε
4 = ε, in contradiction the assumption that (G,D) is ε-far from P.

We thus proved that G is 3ε
4 -far from any graph G′ satisfying G′[X ∪ Y ] ∈ P. Now, let G′ be the graph

obtained from G by doing the following changes:

1. For every 1 ≤ i ≤ r, if d(Qi,k, Qi,`) ≥ 1
2 for every 1 ≤ k < ` ≤ t then turn Pi into a clique, and if

d(Qi,k, Qi,`) <
1
2 for every 1 ≤ k < ` ≤ t, then turn Pi into an independent set. By Item 6 in Lemma

3.1, one of these options has to hold. The total weight of edge-changes needed in this item is at most ε
4

by Item 4 of Lemma 3.1.

2. For every 1 ≤ i < j ≤ r, if d(Qi, Qj) > 1− ε
4 then add all edges between Pi and Pj , and if d(Qi, Qj) <

ε
4

then remove all edges between Pi and Pj (note that if ε
4 ≤ d(Qi, Qj) ≤ 1− ε

4 then no changes are made
in the bipartite graph between Pi and Pj). The total weight of edge-changes needed in this item is less
than ε

2 by Item 5 of Lemma 3.1.

Note that no edge with an endpoint in X was added/deleted in Items 1-2, so G′ and G agree on all edges that
are incident to vertices of X.

We see that the total weight of edge-changes made in Items 1-2 is less than 3ε
4 . So G′[X ∪Y ] cannot satisfy

P, implying that G′[X ∪Y ] ∈ F . Note that by definition (see Items 1-2 above), the graph G′ has the following
properties:

(a) For every 1 ≤ i ≤ r, Pi is either a clique or an independent set in G′. Moreover, Pi is a clique in G′ then
dG(Qi,k, Qi,`) ≥ 1

2 for every 1 ≤ k < ` ≤ t, and if Pi is an independent set in G′ then dG(Qi,k, Qi,`) <
1
2

for every 1 ≤ k < ` ≤ t.

(b) For every pair 1 ≤ i < j ≤ r, if there is an edge in G′ between Pi and Pj then dG(Qi, Qj) ≥ ε
4 . Then by

Item 7 of Lemma 3.1 we have that dG(Qi,k, Qj,`) ≥ ε
4 −

1
Ψ(|X|+r) ≥

ε
8 for every 1 ≤ k, ` ≤ t. Analogously,

if there is a non-edge in G′ between Pi and Pj then dG(Qi, Qj) ≤ 1 − ε
4 , which implies (by Item 7 of

Lemma 3.1) that dG(Qi,k, Qj,`) ≤ 1− ε
4 + 1

Ψ(|X|+r) ≤ 1− ε
8 for every 1 ≤ k, ` ≤ t.

Now let K be the following embedding scheme: AK = X and BK = {β1, . . . , βr}; for each 1 ≤ i ≤ r,
vertex βi is colored black if Pi is a clique in G′ and white if Pi is an independent set in G′; for each x, x′ ∈ X,
edge {x, x′} is colored black if {x, x′} ∈ E(G) and white otherwise; for each x ∈ X, 1 ≤ i ≤ r, edge {x, βi} is
colored black if the bipartite graph between x and Pi is complete and white if this bipartite graph is empty
(Item 3 in Lemma 3.1 implies that one of these options must hold); finally, for every 1 ≤ i < j ≤ r, edge
{βi, βj} is colored black if the bipartite graph between Pi and Pj is complete in G′, white if the bipartite
graph between Pi and Pj is empty in G′, and grey otherwise.

Observe that the map ϕ : X ∪ Y → V (K) which maps x to itself (for every x ∈ X) and Pi to βi (for
every 1 ≤ i ≤ r), is an embedding from G′[X ∪ Y ] to K. Since |V (K)| = |X| + r, we have K ∈ Fm for
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m := |X| + r. By the definition of the function ΨF (see Definition 3.3), there is F ∈ Fm such that F → K
and |V (F )| ≤ ΨF (m) = ΨF (|X|+ r) ≤ Ψ(|X|+ r) = t.

Now, fixing an embedding ρ from F to K, write Wi := ρ−1(βi) = {wi,1, . . . , wi,fi} for 1 ≤ i ≤ r. Put
W = W1 ∪ · · · ∪Wr and H = F [W ]. We claim that the sets (Qi,k)1≤i≤r,1≤k≤fi satisfy the requirements 1-2 in
Lemma 2.4 with respect to h = |V (F )| ≤ ΨF (m), η = ε

8 and H as above, in the graph G. In other words, we
show that we can apply Lemma 2.4 with the sets U1, . . . , Uh being (Qi,k)1≤i≤r,1≤k≤fi , and with G as the host
graph. We actually already proved that Item 1 in Lemma 2.4 holds (indeed, this follows from the fact that
F → K, the definition of the embedding scheme K, and Items (a)-(b) above). Item 2 of Lemma 2.4 follows from
Items 6-7 of Lemma 3.1, which together imply that for every 1 ≤ i ≤ j ≤ r and 1 ≤ k ≤ fi, 1 ≤ ` ≤ fj (with
the exception of (i, k) = (j, `)), the pair (Qi,k, Qj,`) is δ-regular with δ = 1

Ψ(m) ≤ δ2.4(ΨF (m), ε8 ) ≤ δ2.4(h, ε8 ),

as required.

We thus showed that Lemma 2.4 is applicable to the tuple of sets (Qi,k)1≤i≤r,1≤k≤fi and the graph H =
F [W ] (with the parameters defined above). Let U be the set of all tuples (ui,k)1≤i≤r,1≤k≤fi , where ui,k ∈ Qi,k,
which induce (in G) a copy of H = F [W ] in which ui,k plays the role of wi,k for every 1 ≤ i ≤ r and 1 ≤ k ≤ fi.
By Lemma 2.4, we have

∑
(ui,k)i,k∈U

r∏
i=1

fi∏
k=1

D(ui,k) ≥ δ2.4
(
h,
ε

8

)
·
r∏
i=1

fi∏
k=1

D(Ui,k) ≥ δ2.4
(

ΨF (m),
ε

8

)
· S−|W |, (5)

where in the last inequality we used the guarantees of Item 8 in Lemma 3.1 and the monotonicity of the
function δ2.4. Observe that for every (ui,k)i,k ∈ U , the subgraph of G induced by the vertex-set X ∪{ui,k : 1 ≤
i ≤ r, 1 ≤ k ≤ fi} contains an induced copy of F . Indeed, this follows from our choice of F , the definition of U ,
and Item 3 in Lemma 3.1. Now sample an (|X|+ |W |)-tuple of vertices from G according to the distribution
D and independently. Note that if every vertex in X appears in the first |X| vertices of the sample, and if the
tuple of the last |W | vertices of the sample belongs to U , then the subgraph induced by the sample contains
an induced copy of F and hence does not satisfy P. The probability for this event is at least

δ2.4

(
ΨF (m),

ε

8

)
· S−|X|−|W | .

Here we used (5) and Item 2 in Lemma 3.1. Next, note that |X| + |W | ≤ |X| + rt ≤ S, where in the last
inequality we used Items 2 and 8 of Lemma 3.1. Similarly, ΨF (m) ≤ t ≤ S. So we see that a sample of S
random vertices induces a graph which does not satisfy P with probability at least δ2.4

(
S, ε8

)
·S−S . Therefore,

a sample of s = sP(ε) vertices (see (4)) induces a graph not satisfying P with probability at least

1−
(

1− δ2.4
(
S,
ε

8

)
· S−S

) 2SS

δ2.4(S, ε8 ) ≥ 1− e−2 ≥ 2

3
,

as required. This completes the proof. �

It is natural to ask about the dependence of the sample complexity s (of the tester described by Theorem
1) on ε. One answer is that one cannot prove any upper bound on this relation, because it was shown in [6]
that no such bound exists even in the standard model. Suppose then that one is interested only in “simple”
properties such as induced H-freeness (for some fixed H). In this case, it is not too hard to see that although
we are iterating Lemma 2.8, which has wowzer-type (that is, iterated-tower) bounds16 in this setting even for
unweighted graphs (see [12, 25]), we are still getting “only” a wowzer-type bound. We should also point that
it might be possible to use the ideas in [12], together with those presented here, in order to get tower-type
bounds on the sample complexity of testing induced H-freeness in the VDF model.

16To be precise, we mean here that the “standard” way of establishing Lemma 2.8 (which is also the way we prove this lemma
in this paper) is via the strong regularity lemma (see Lemma 2.6), which is known to only give wowzer-type bounds [12, 25].
In [12], (an unweighted variant of) Lemma 2.8 was proved without the use of the strong regularity lemma, thus giving better,
tower-type, bounds. This is alluded to in the following sentence.
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4 VDF-Testable Properties are Extendable and Hereditary

In this section we prove the “only if” direction of Theorem 1. The proof is divided between Propositions 4.1
and 4.2. As shown in [19], we can (and will) always assume that a VDF tester only queries the input graph
on pairs of vertices which it has sampled.

Proposition 4.1. If a graph property P is not extendable, then P is not testable in the VDF model.

Proof. Since P is not extendable, there is a graph G1 ∈ P, such that no (|V (G1)|+1)-vertex graph satisfying
P contains G1 as an induced subgraph. Let G2 be a graph obtained from G1 by adding a “new” vertex v (and
putting an arbitrary bipartite graph between v and V (G1)), let D1 be the uniform distribution on V (G1), and
let D2 be the distribution on V (G2) which assigns weight 1

|V (G1)| to each u ∈ V (G1) ⊆ V (G2) and weight17 0
to v.

It is clear that for every integer q, a sample of q vertices from G1 according to D1 is indistinguishable from
a sample of q vertices from G2 according to D2. Observe that G1 satisfies P while (G2,D2) is 1

|V (G1)|2 -far

from P. To see that the latter statement is true, observe that by our choice of G1, no matter how we change
the bipartite graph between v and V (G1), we will always get a graph that does not satisfy P. Hence, in order
to make G2 satisfy P, one must change the adjacency relation between a pair of vertices from V (G1), whose
weight (under D2) is 1

|V (G1)| .

Now, the fact that (G1,D1) and (G2,D2) are indistinguishable implies that P is not testable18 in the
VDF model. �

Proposition 4.2. If a graph property P is not hereditary, then P is not testable in the VDF model.

Proof. Since P is not hereditary, there is a graph G1 and an induced subgraph G2 of G1, such that G1

satisfies P but G2 does not. Let D2 be the uniform distribution on V (G2), and let D1 be the distribution on
V (G1) which is supported on V (G2) ⊆ V (G1) and uniform when conditioned on V (G2), i.e. D1(u) = 1

|V (G2)|
if u ∈ V (G2) and D1(u) = 0 if u ∈ V (G1) \ V (G2). Clearly, for every integer q, a sample of q vertices from G1

according to D1 is indistinguishable from a sample of q vertices from G2 according to D2. Also, G1 satisfies
P, whereas (G2,D2) is 1

|V (G2)|2 -far from P because G2 /∈ P. Thus, P is not testable19 in the VDF model. �

5 On Variations of the VDF Model and Related Problems

In the following two subsections we prove Theorems 6, 7, 8 and 9. We then consider two additional problems
related to the VDF model; one problem asks if the query complexity in the VDF model is the same as in the
standard model (for P that are testable in the VDF model), and the other asks for a characterization of the
properties that are testable in variants of the VDF model (as in Theorems 6-9). We start by giving the precise
definitions of the settings considered in Theorems 6-9.

The “large inputs” model In this model, a property P is testable if there exists a function
MP : (0, 1) → N such that for every ε > 0, P is ε-testable on graphs (G,D) satisfying |V (G)| ≥ MP(ε),
with sample complexity depending only on ε.

17Evidently, if one does not wish to allow vertices of weight 0, then one can instead assign to v a weight tending to 0; or, more
accurately, a weight that is small enough with respect to (the inverse of) the sample complexity of an alleged tester for P (in a
proof by contradiction that such a tester does not exist).

18We note that if P is non-extendable but hereditary, then one can easily obtain infinitely many examples showing that P is
not testable (rather than just the one example given in the proof of Proposition 4.1). Indeed, instead of adding just one vertex
to G1, one can add to G1 any number k of vertices (for a large k), and give these new vertices weight o(1/k), while distributing
the remaining weight uniformly among the vertices of G1 (note that such an assignment is precisely what the setting of Theorem

9 forbids). The assumption that P is hereditary implies that every graph obtained in this way is
1−o(1)

|V (G1)|2
-far from satisfying P.

19In analogy to Footnote 18, we note that if P is non-hereditary but extendable then one can obtain infinitely many examples
showing that P is not testable (rather than just the one given in the proof of Proposition 4.2). Indeed, the extendability of P
implies that there are arbitrarily large graphs which satisfy P and contain G1 (and hence also G2) as an induced subgraph. Each of
these graphs (together with an appropriate distribution, as in the proof of Proposition 4.2) is a witness to the non-testability of P.

16



The “size-aware” model In this model, testers are allowed to receive, as part of the input, the number of
vertices of the input graph.

The “no heavy-weights” (NHW) model In this model, a property P is testable if there exists a function
cP : (0, 1) → (0, 1) such that for every ε > 0, P is ε-testable on graphs (G,D) satisfying maxv∈V (G)D(v) ≤
cP(ε), with sample complexity depending only on ε.

The “no light-weights” (NLW) model In this model, a property P is testable if for every ε, δ > 0, P is
ε-testable on graphs (G,D) satisfying minv∈V (G)D(v) ≥ δ

|V (G)| , with sample complexity depending only on ε

and δ.

Theorem 6 (resp. 7, 8, 9) then states that every hereditary property is testable in the “large inputs” (resp.
“size-aware” NHW, NLW) model20.

5.1 Proof of Theorems 6, 7 and 9

In this subsection we prove Theorems 6, 7 and 9, i.e. we show that every hereditary property is testable in the
“large inputs” model and in the NLW model. Let us introduce some definitions that we will use throughout
this subsection. Let P be a hereditary graph property. A graph F is called P-good if F satisfies P and for every
r > |V (F )| there is an r-vertex graph which satisfies P and contains F as an induced subgraph; otherwise F
is called P-bad, and we denote by rP(F ) the minimal r > |V (F )| such that there is no r-vertex graph which
satisfies P and contains F as an induced subgraph. Note that since P is hereditary, there is no graph on r
vertices for any r ≥ rP(F ) which satisfies P and contains F as an induced subgraph. For an integer s ≥ 1, let
RP(s) be the maximum of rP(F ) over all P-bad graphs F with at most s vertices. Now define the property
H = H(P) := induced {F : F is P-bad}-freeness. Observe that H is hereditary and extendable (in fact, if P
itself is extendable then H = P), and that H ⊆ P. We are now ready to prove Theorem 6, which we rephrase
as follows.

Lemma 5.1. For every hereditary property P there are functions MP , tP : (0, 1) → N such that for every
ε > 0, P is ε-testable with one-sided error on vertex-weighted graphs with at least MP(ε) vertices with one-sided
error and sample complexity tP(ε).

Proof. Consider the (extendable and hereditary) property H = H(P) defined above. By (the proof of)
Theorem 1, there is a function sH : (0, 1)→ N such that for every ε > 0 and for every vertex-weighted graph
(G,D) which is ε-far from H, a sample of s vertices from G (taken from D) induces a subgraph which does
not satisfy H with probability at least 2

3 .

Our tester for P samples tP(ε) := sH(ε) vertices, and accepts if and only if the subgraph induced by the
sample satisfies H. We prove the lemma with M = MP(ε) := RP(sH(ε)).

Let (G,D) be a vertex-weighted graph with |V (G)| ≥ M . Suppose first that G satisfies P. Our goal is to
show that the subgraph induced by a sample of sH(ε) vertices, taken from D and independently, satisfies H
with probability 1. So suppose by contradiction that G contains an induced subgraph F on at most sH(ε)
vertices which does not satisfy H. By the definition of rP(F ), there is no graph on rP(F ) vertices which
satisfies P and contains F as an induced subgraph. As |V (G)| ≥ M = RP(sH(ε)) ≥ rP(F ), and as P is
hereditary, we get that G does not satisfy P, a contradiction.

Suppose now that (G,D) is ε-far from P. Then (G,D) is also ε-far from H, as H ⊆ P. By our choice of
sH(ε), a sample of sH(ε) vertices of G, taken from D and independently, does not satisfy H with probability
at least 2

3 . So our tester rejects (G,D) with probability at least 2
3 , as required. �

20Note that if P is testable in the “large inputs” model then it is also testable in the NHW model (because by setting
cP (ε) := 1/MP (ε) we can make sure that the input graph has at least MP (ε) vertices). Still, we decided to include a separate
proof for Theorem 8 (instead of deducing it from Theorem 6) for two reasons: one is that in the course of the proof we resolve
another open question raised in [19]; and the other is that our proof of Theorem 8 shows that P is testable (in the NHW model)
by a tester that accepts if and only if the subgraph induced by the sample satisfies P, whereas the tester given by the proof of
Theorem 6 is not always of this form.
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It is natural to ask whether we can replace the function MP(ε) in Lemma 5.1 by a constant depending
only on P (and not on ε). As is shown in the following proposition, we cannot.

Proposition 5.2. There is a hereditary property P such that for every M > 0, there is no tester for P in the
VDF model even if we are guaranteed that the input graph has at least M vertices.

Proof. For each k ≥ 3, let C∗k be the graph obtained from the k-cycle Ck by adding an isolated vertex.
Consider the property P = {C∗k : k ≥ 3}-freeness. Let M > 0. Set G = CM and G′ = C∗M . Let D be the
uniform distribution on V (G), and let D′ be the distribution on V (G′) which assigns weight 0 to the isolated
vertex in G′, and is uniform on the rest of the vertices of G′. Then G ∈ P and (G′,D′) is 1

M2 -far from P,
but a sample (of any number of vertices) from (G,D) is indistinguishable from a sample of the same size from
(G′,D′). This shows that P is not testable even if we require input graphs to have at least M vertices. �

We now move on to prove Theorem 7.

Proof of Theorem 7. Let P be a hereditary graph property. Our goal is to design (and prove the correctness
of) a one-sided-error tester for P in the VDF model, provided that the tester receives |V (G)| as part of the
input. Let MP : (0, 1)→ N be as in Lemma 5.1. On input ε ∈ (0, 1), G and D (where G is a graph and D is
a distribution on V (G)), our tester works as follows:

1. If |V (G)| ≥ MP(ε), then invoke the tester whose existence is guaranteed by Lemma 5.1, and accept if
and only if this tester accepts.

2. Otherwise, i.e. if |V (G)| < MP(ε), then do the following: setting M := MP(ε) and t := M log(3M)/ε,
sample vertices u1, . . . , ut ∈ V (G) according to D and independently, and put U := {u1, . . . , ut}. Accept
if and only if there exists a graph on |V (G)| vertices which satisfies P and contains G[U ] as an induced
subgraph (in the notation introduced at the beginning of this subsection, this is the same as saying that
rP(G[U ]) > |V (G)|).

Let us prove the correctness of our tester. First, Lemma 5.1 guarantees that if |V (G)| ≥ MP(ε) then the
tester works correctly; namely, it accepts with probability 1 if G ∈ P, and rejects with probability at least 2

3
if (G,D) is ε-far from P.

So from now on we may assume that |V (G)| < MP(ε). Suppose first that G ∈ P. Evidently, for every
U ⊆ V (G) there is a graph on |V (G)| vertices which satisfies P and contains G[U ] as an induced subgraph
(indeed, G is such a graph). Hence, the tester accepts G with probability 1 (see Item 2).

Now suppose that (G,D) is ε-far from P. Observe that for each v ∈ V (G), the probability that v /∈ U is

(1−D(v))
t ≤ e−D(v)·t =

(
1

3M

)−D(v)·M/ε

.

By taking the union bound over all v ∈ V (G) which satisfy D(v) ≥ ε/M , we see that the probability that there
is v ∈ V (G) \U with D(v) ≥ ε/M , is at most 1

3 . Suppose that every v ∈ V (G) \U satisfies D(v) < ε/M (this
happens with probability at least 2

3 ). Then D(V (G) \ U) < |V (G)| · ε/M < ε (where in the last inequality we
used our assumption that |V (G)| < M). Now, if (by contradiction) there is a graph G′ on |V (G)| vertices which
satisfies P and contains G[U ] as an induced subgraph, then one can turn G into G′ by only adding/deleting
edges which are incident to vertices in V (G) \ U . Since D(V (G) \ U) < ε, this stands in contradiction to the
assumption that (G,D) is ε-far from P. We conclude that there is no such graph G′. This implies that (G,D)
is rejected with probability at least 2

3 , as required. �

Finally, we prove Theorem 9, i.e. that every hereditary property is testable in the NLW model. In this
model, our tester for a hereditary property P simply samples a sequence of vertices and accepts if and only if
the subgraph induced by the sample satisfies P. The tester’s correctness is established in the following lemma.

Lemma 5.3. For every hereditary graph property P there is a function tP : (0, 1)2 → N, such that for
every ε, δ > 0 and for every vertex-weighted graph (G,D) the following holds: if (G,D) is ε-far from P,
and all vertices in G have weight at least δ

|V (G)| , then a sample of tP(ε, δ) vertices of G, taken from D and

independently, induces a graph which does not satisfy P with probability at least 2
3 .
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Proof. Consider the (extendable and hereditary) property H = H(P) defined above. By (the proof of)
Theorem 1, there is a function sH : (0, 1)→ N such that for every ε > 0 and for every vertex-weighted graph
(G,D) which is ε-far from H, a sample of sH(ε) vertices of G (taken from D) induces a subgraph which does
not satisfy H with probability21 at least 5

6 . Setting R := RP(sH(ε)), we prove the lemma with

t = tP(ε, δ) := max
{
sH(ε), 2R2 log(6R)/δ

}
.

Let ε > 0 and let (G,D) be a vertex-weighted graph on n vertices which is ε-far from P, and in which
all vertices have weight at least δ

n . Let u1, . . . , ut be a sequence of t = tP(ε, δ) random vertices of G, taken
according to D and independently, and set U = {u1, . . . , ut}. We need to show that with probability at least
2
3 , G[U ] does not satisfy P. Suppose first that n < 2R. We claim that in this case we have U = V (G) with
probability at least 2

3 (this is clearly sufficient because G itself does not satisfy P). For a vertex v ∈ V (G),
the probability that ui 6= v for every 1 ≤ i ≤ t is

(1−D(v))
t ≤

(
1− δ

n

)t
<

(
1− δ

2R

)t
≤ e− δt

2R ≤ 1

6R
.

So by the union bound over all n < 2R vertices of G, we see that with probability at least 2
3 , U = V (G), as

required.

Suppose now that n ≥ 2R. By our choice of s = sH(ε) we get that G[{u1, . . . , us}] does not satisfy H with
probability at least 5

6 . By the definition of H, if G[{u1, . . . , us}] does not satisfy H then some P-bad graph
F is an induced subgraph of G[{u1, . . . , us}]. We will now show that with probability at least 5

6 , we have
|U | ≥ R. This will imply that with probability at least 2

3 , G[U ] contains as an induced subgraph a P-bad
graph F on at most sH(ε) vertices, and also |U | ≥ R = RP(sH(ε)) ≥ rP(F ). By the definition of rP(F ), this
would imply that G[U ] does not satisfy P, as required.

So from now on, our goal is to show that |U | ≥ R with probability at least 5
6 . Fix a partition of V (G) into

R sets V1, . . . , VR, each of size at least b nRc ≥
n

2R . For each 1 ≤ i ≤ R, set Ii = {u(i−1)· tR+1, . . . , ui· tR }, and let

Ai be the event that Ii ∩ Vi 6= ∅. Note that if Ai occurs for every 1 ≤ i ≤ R, then |U | ≥ R. The probability
that Ai does not occur is at most

(1−D(Vi))
t/R ≤

(
1− n

2R
· δ
n

)t/R
≤ e−

δt
2R2 ≤ 1

6R
.

By the union bound, the probability that there is 1 ≤ i ≤ R for which Ai does not occur, is at most 1
6 , as

required. �

5.2 Proof of Theorem 8

In this subsection we prove Theorem 8, i.e. we show that every hereditary property is testable in the NHW
model. Our tester for a hereditary property P simply samples a sequence of vertices and accepts if and only
if the subgraph induced by the sample satisfies P. The tester’s correctness follows from the following lemma.

Lemma 5.4. For every hereditary graph property P there are functions tP : (0, 1)→ N and cP : (0, 1)→ (0, 1)
such that for every ε > 0 and for every vertex-weighted graph (G,D), if (G,D) is ε-far from P and all vertices
in G have weight at most cP(ε), then a sample of tP(ε) vertices of G, taken from D and independently, induces
a graph which does not satisfy P with probability at least 2

3 .

The key idea in the proof of Lemma 5.4, which appeared in [19], is to “blow up” the vertex-weighted graph
(G,D) by replacing each vertex v with a vertex-set whose size is proportional to D(v), and thus obtain an
(unweighted) graph G′, to which one can apply known testability results in the standard model.

Let us introduce some definitions. For a graph G, say on V (G) = {v1, . . . , vn}, and for integers b1, . . . , bn ≥
0, a (b1, . . . , bn)-blowup of G is any graph admitting a vertex-partition V1 ∪ · · · ∪ Vn such that |Vi| = bi for

21The proof of Theorem 1 only guarantees a success probability of 2
3

, but this can clearly be amplified to 5
6

by repeating the
experiment O(1) times.
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every 1 ≤ i ≤ n, and such that the bipartite graph between Vi and Vj is complete if {vi, vj} ∈ E(G) and empty
if {vi, vj} /∈ E(G). The sets V1, . . . , Vn are called the blowup-sets. Note that we do not pose any restrictions
on the graphs induced by the sets V1, . . . , Vn; these graphs may be arbitrary. Now let D be a distribution on
V (G), and let N ∈ N be such that D(vi) · N is an integer for every 1 ≤ i ≤ n. A (D, N)-blowup of G is a
(b1, . . . , bn)-blowup of G with bi = D(vi) · N for every 1 ≤ i ≤ n. Note that a blowup is always treated as
“unweighted” (in other words, the distribution on its vertices is uniform). For simplicity of presentation, we
assume henceforth that all vertex-weights (i.e. D(v1), . . . ,D(vn)) are rational22. Goldreich [19] proved that
for every graph F and ε ∈ (0, 1), if a vertex-weighted graph (G,D) is ε-far from being F -free, then for every
suitable23 N , any (D, N)-blowup of G is ε

(|V (F )|
2 )

-far from being F -free. Goldreich further asked whether the(|V (F )|
2

)−1
-factor can be avoided. In the following lemma we show that this is indeed the case, and moreover

that an analogous statement holds for every hereditary property. This lemma is also the key ingredient in the
proof of Lemma 5.4.

Lemma 5.5. Let P be a hereditary graph property and let (G,D) be a vertex-weighted graph which is ε-far
from P. Then for every suitable N , any (D, N)-blowup of G is ε-far from P.

Proof. Fix any suitable N and let G′ be a (D, N)-blowup of G. As above, we use v1, . . . , vn to denote the
vertices of G, and V1, . . . , Vn to denote the corresponding blowup sets. Suppose by contradiction that there
is a graph H ′ on V (G′) that satisfies P and is ε-close to G′. Let H be the random graph defined as follows:
the vertex-set of H is V (H) = V (G) = {v1, . . . , vn}. To define the edge-set of H, sample for each 1 ≤ i ≤ n
a vertex ui ∈ Vi uniformly at random, and make {vi, vj} an edge in H if and only if {ui, uj} is an edge in H ′

(for 1 ≤ i < j ≤ n). Then H satisfies P (with probability 1) because H is isomorphic to an induced subgraph
of H ′ and P is hereditary. Let us compute the expected distance between H and G (here the distance is with
respect to the distribution D). For each 1 ≤ i < j ≤ n, the probability that {vi, vj} ∈ E(G)4E(H) is precisely

|EG′(Vi, Vj)4EH′(Vi, Vj)|
|Vi||Vj |

=
|EG′(Vi, Vj)4EH′(Vi, Vj)|

D(vi)D(vj)N2
.

Hence, the expected distance between H and G is∑
1≤i<j≤n

D(vi)D(vj) ·
|EG′(Vi, Vj)4EH′(Vi, Vj)|

D(vi)D(vj)N2
=

1

N2

∑
1≤i<j≤n

|EG′(Vi, Vj)4EH′(Vi, Vj)| ≤ ε,

where the last inequality uses the assumption that G′ is ε-close to H ′. So G is ε-close to a graph H which
satisfies P, a contradiction. �

By combining Lemma 5.5 with the result of [5] (that all hereditary properties are testable with one-sided
error in the standard model), we obtain the following: for every hereditary property P, for every vertex-
weighted graph (G,D) which is ε-far from P, for every suitable N and for every (D, N)-blowup G′ of G, it holds
that G′ is ε-far from P with respect to the uniform distribution, and hence a sample of some s = sP(ε) vertices
of G′, taken uniformly and independently, induces a graph which w.h.p. does not satisfy P. Observe that this
induced subgraph of G′ has (essentially) the same distribution as the graph S on [s] obtained by sampling
vertices u1, . . . , us ∈ V (G) from D independently, and letting {i, j} ∈ E(S) if and only if {ui, uj} ∈ E(S) (this
is precisely the graph defined in Theorem 5). We thus established Theorem 5, as promised in Subsection 1.2.

22If one allows general (i.e. possibly irrational) weights, then it is necessary to change the definition of a (D, N)-blowup by
rounding D(vi) ·N to the closest integer. This results in an additive error of n

N
in the conclusion of Lemma 5.5, due to rounding.

Consequently, in (the proofs of) Lemma 5.4 and Proposition 5.7 we need to consider (D, N)-blowups with N → ∞ in order to
have this error go to 0. We also need to replace ε in several places with (say) ε

2
(or any other number smaller than ε). For

example, the conclusion of Proposition 5.7 should be that P is testable in the VDF model by a tester having one-sided error and
sample complexity qP (ε/2).

23We call N suitable if D(v) ·N is an integer for every v ∈ V (G).
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As noted in Subsection 1.2, the graph S defined above is a blowup of an induced subgraph of G, but
is not necessarily a subgraph of G in itself. This is because the sequence u1, . . . , us might contain several
vertices which belong to the same blowup-set. In other words, it may be the case that G′ contains “forbidden
subgraphs” which use several vertices from one of the blowup-sets, and thus do not correspond to “forbidden
subgraphs” in G. This creates an obstacle for proving Lemma 5.4, because this lemma asserts that a (suitably
chosen) random induced subgraph of G (and not just the blowup thereof) does not satisfy P w.h.p. To avoid
this obstacle, we use the assumption that all vertices in G have relatively small weight, which guarantees
that it is unlikely to sample more than once from some blowup-set (or in other words, that S is isomorphic
to G[{u1, . . . , us}].). We note that a different way of dealing with this obstacle is to restrict ourselves to
properties for which we can guarantee, by appropriately choosing the graphs inside the blowup-sets, that
there would not be any minimal forbidden subgraph which uses several vertices from one of the blowup-sets,
see Subsection 5.3.

Proof of Lemma 5.4. Let P be a hereditary graph property. By the main result of [5], there is a function
qP : (0, 1) → N such that for every ε > 0 and for every (unweighted) graph G which is ε-far from P, a
sample of qP(ε) vertices from G, taken uniformly at random and independently, induces a graph which does
not satisfy P with probability at least 5

6 . We will show that the lemma holds with t = tP(ε) := qP(ε) and
c = cP(ε) := 1

3q2P(ε)
.

Let ε > 0 and let (G,D) be a vertex-weighted graph on n vertices which is ε-far from P, and in which all
vertices have weight at most c, where c = cP(ε). Write V (G) = {v1, . . . , vn} and fix a positive integer N such
that D(vi) ·N is an integer for every 1 ≤ i ≤ n. Let G′ be an arbitrary (D, N)-blowup of G, and denote the
blowup-sets by V1, . . . , Vn. By Lemma 5.5, G′ is ε-far from P. This implies that a random sequence u1, . . . , uq
of q = qP(ε) vertices of G′, sampled uniformly and independently, induces a graph which does not satisfy P
with probability at least 2

3 .

Let ϕ : V (G′) → V (G) be the map which maps all elements of Vi to vi (for every 1 ≤ i ≤ n). Observe
that for u ∈ V (G′) sampled uniformly, the random vertex ϕ(u) ∈ V (G) has the distribution D (because
|Vi| = D(vi) ·N = D(vi) · |V (G′)|). Furthermore, if a set U ⊆ V (G′) satisfies |Vi ∩U | ≤ 1 for every 1 ≤ i ≤ n,
then G[ϕ(U)] is isomorphic to G′[U ]. Let u1, . . . , uq be a random sequence of vertices of G′, sampled uniformly
and independently, and set U := {u1, . . . , uq}. Recall that G′[U ] does not satisfy P with probability at least
5
6 . Furthermore, the probability that |Vi ∩ U | ≥ 2 for some 1 ≤ i ≤ n is at most

n∑
i=1

(
q

2

)
· D2(vi) ≤

q2

2
· c ·

n∑
i=1

D(vi) =
q2

2
· c =

1

6
.

We conclude that with probability at least 2
3 , G′[U ] does not satisfy P and |Vi ∩ U | ≤ 1 for every 1 ≤ i ≤ n,

implying that G[ϕ(U)] does not satisfy P either. This completes the proof. �

It is natural to ask whether the function cP(ε) from Lemma 5.4 needs to depend on ε, namely whether
the statement of Lemma 5.4 holds even if cP is a constant function (depending only on P). It follows from
Proposition 5.2, however, that this is not the case. In other words, allowing cP(ε) to depend on ε is unavoidable.

5.3 Testing in the VDF Model vs. Testing in the Standard Model

It is natural to ask about the relation between the sample complexity for testing a property in the VDF model
and the sample complexity for testing it in the standard model. More specifically, it will be interesting to
resolve the following:

Problem 5.6. Is it true that every extendable hereditary property P can be tested in the VDF model with the
same (or close to the same) sample complexity as in the (standard) dense graph model?

While at present we cannot answer this question, we can show that many natural properties P can be
tested in the VDF model with (exactly) the same sample complexity as that of the (optimal) tester for P in
the standard model, which works by sampling a certain number of vertices and accepting if and only if they
induce a graph which satisfies P. This is explained in the following paragraph.
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As mentioned in Subsection 5.2, the assumption made in Lemma 5.4 regarding the non-existence of high-
weight vertices is needed in order to handle the possibility of having copies of some (forbidden) graph F in
G′ which do not correspond to copies of F in G. For some graph properties, however, such an assumption
is not required, as we can make sure that every copy of a minimal forbidden graph in G′ will correspond to
such a copy in G. To make this precise, we need the following definition. A family of graphs F is said to be
blowup-avoidable if for every graph G, say on {v1, . . . , vn}, and for every n-tuple of integers b1, . . . , bn ≥ 0,
there is a (b1, . . . , bn)-blowup G′ of G with blowup-sets V1, . . . , Vn, such that there is no induced copy of any
F ∈ F in G′ which intersects some Vi in at least 2 vertices; in other words, for every F ∈ F , every induced copy
of F in G′ corresponds to an induced copy of F in G. We say that a hereditary property P is blowup-avoidable
if the family of minimal forbidden induced subgraphs for P is blowup-avoidable. We now prove the following
proposition, which partially resolves Problem 5.6. The proof is similar to that of Lemma 5.4.

Proposition 5.7. Let P be a hereditary graph property which is blowup-avoidable, and suppose that P admits
a tester in the standard model, which works by sampling qP(ε) vertices uniformly at random and independently,
and accepting if and only if the subgraph induced by the sample satisfies P. Then P is testable in the VDF
model by a tester having one-sided error and sample complexity24 qP(ε).

Proof. Given an input (G,D), the required VDF tester for P samples (from D) a sequence of qP(ε) vertices,
and accepts if and only if the subgraph induced by the sample satisfies P. Since P is hereditary, this tester
accepts with probability 1 if the input graph satisfies P. So it remains to show that if the input (G,D) is
ε-far from P, then with probability at least 2

3 , a sequence of qP(ε) vertices of G, sampled according to D and
independently, induces a graph which does not satisfy P.

Let F = F(P) be the family of minimal forbidden induced subgraphs for P. Let (G,D) be a vertex-
weighted graph on n vertices, which is ε-far from P. Write V (G) = {v1, . . . , vn} and fix a positive integer N
such that D(vi) ·N is an integer for every 1 ≤ i ≤ n. As P is blowup-avoidable, there is a (D, N)-blowup G′ of
G with blowup-sets V1, . . . , Vn, such that there is no induced copy of any F ∈ F in G′ which intersects some
Vi in at least 2 vertices. By Lemma 5.5, G′ is ε-far from P. So by our choice of qP(ε), with probability at
least 2

3 a sequence of qP(ε) vertices of G′, sampled uniformly and independently, induces a graph which does
not satisfy P, and hence contains an induced copy of some F ∈ F .

Let ϕ : V (G′) → V (G) be the map which maps all elements of Vi to vi (for every 1 ≤ i ≤ n). Observe
that for u ∈ V (G′) sampled uniformly, the random vertex ϕ(u) ∈ V (G) has the distribution D. Note that if
u1, . . . , ur ∈ V (G′) span an induced copy of some F ∈ F (in the graph G′), and if |{u1, . . . , ur} ∩ Vi| ≤ 1 for
every 1 ≤ i ≤ n, then ϕ(u1), . . . , ϕ(ur) span an induced copy of F in G. It is now easy to see that a sequence
of qP(ε) vertices of G (sampled from D and independently) does not satisfy P, as required. �

To demonstrate the usefulness of Proposition 5.7, observe that induced F -freeness is blowup-avoidable for
every F ∈ {P2, P3, C4} (here Pk is the path with k edges). Indeed, this is established by taking the blowup-sets
(in the definition of blowup-avoidability) to be cliques. By combining Proposition 5.7 with known results for
the standard model [5, 3, 16], we immediately get that induced F -freeness is testable in the VDF model with
sample complexity poly(1/ε) if F ∈ {P2, P3}, and with sample complexity at most 2poly(1/ε) if F = C4.

We now describe another corollary of Proposition 5.7. We say that a graph property P is closed under
blowups if for every graph G satisfying P, every blowup of G in which the blowup-sets are independent sets also
satisfies P. We claim that if a hereditary property P is closed under blowups then it is also blowup-avoidable.
To see this, let F be the set of minimal forbidden induced subgraphs for P, let G be an n-vertex graph, let
b1, . . . , bn ≥ 0 be integers and let G′ be the (b1, . . . , bn)-blowup of G in which the blowup-sets, V1, . . . , Vn, are
independent. Let F ∈ F and suppose that G′ contains an induced copy of F . If, by contradiction, this copy
intersects some Vi in more than one vertex, then F is a blowup of some graph F ′ with |V (F ′)| < |V (F )|, where
the blowup-sets are independent sets. Since P is closed under blowups and F /∈ P, we must have F ′ /∈ P; but
this contradicts the fact that F is a minimal forbidden induced subgraph for P.

So we see that the conclusion of Proposition 5.7 applies to hereditary properties which are closed under
blowups. Some examples of such properties include Kt-freeness; the property of having a homomorphism into

24Provided that the input distributions are only allowed to assign rational weights. If irrational weights are allowed, then the
sample complexity (of the VDF tester for P) should be slightly increased to (say) qP (ε/2), see Footnote 22.
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a fixed graph H (and in particular the property of being k-colorable); and the property of being the blowup
of a fixed graph H (cf. [8]).

On the negative side, there are many natural hereditary properties which are extendable but not blowup-
avoidable, such as the property of being H-free for a graph H which is neither a clique nor contains isolated
vertices. It would be interesting to resolve Problem 5.6 for these properties.

5.4 Which Properties are Testable in the Restricted VDF Models?

It may be interesting to characterize the graph properties which are testable in each of the variations of the
VDF model (defined at the beginning of Section 5).

Problem 5.8. Which graph properties are testable in the “large inputs”/“size-aware”/NHW/NLW model?

While at the moment we are unable to resolve Problem 5.8, we can rule out some initial guesses. A first
guess might be that only hereditary properties are testable in these models. This, however, turns out to
be false; for example, connectivity and hamiltonicity are testable in each of these models, as implied by the
following proposition.

Proposition 5.9. Let P be a property such that for every ε > 0 there is M(ε) so that every vertex-weighted
graph on at least M(ε) vertices is ε-close to P. Then P is testable in all four variations of the VDF models.

Proof. The fact that P is testable in the “large inputs” (resp. NHW) model is trivial; indeed, by choosing
MP(ε) := M(ε) (resp. cP(ε) := 1/M(ε)) we can make sure that every input graph will be ε-close to P, so a
tester that simply accepts without making any queries is a valid tester for P.

Let us now consider the NLW model. Given ε, δ > 0 and an input graph (G,D) with all vertex-weights
at least δ

|V (G)| , our tester for P works as follows: setting M := M(ε), the tester samples O (M log(M)/δ)

vertices according to D and independently; if the number of distinct vertices in the sample is at least M then
the tester accepts (without making any queries), and otherwise the tester accepts if and only if the subgraph
induced by the sample satisfies P. To see that this is a valid tester, observe that if G has less than M vertices
then w.h.p. the tester samples all the vertices (because they all have weight at least δ

|V (G)| >
δ
M ), and if G

has at least M vertices then (G,D) is ε-close to P by assumption.

Finally, let us prove that P is testable in the “size-aware” model. On input ε > 0 and (G,D), our tester for
P (in the “size-aware” model) does the following: if |V (G)| ≥ M(ε) then the tester accepts without making
any queries, and if |V (G) < M(ε) then the tester samples t := M(ε) log(3M(ε))/ε vertices u1, . . . , ut ∈ V (G)
according to the distribution D and independently, and accepts if and only if there is a graph on |V (G)|
vertices which satisfies P and contains G[{u1, . . . , ut}] as an induced subgraph. The proof of correctness for
this tester is similar to the proof of Theorem 7, and we leave the details to the reader. �

To see that connectivity and hamiltonicity satisfy the condition in Proposition 5.9, observe that any vertex-
weighted graph (G,D) with |V (G)| ≥ 1

ε is ε-close to being connected (because there must be v ∈ V (G) with
D(v) ≤ ε, and we can make G connected by connecting v to all other vertices); and any vertex-weighted graph
(G,D) with |V (G)| ≥ 2

ε + 1 is ε-close to being hamiltonian (to see this, take a random ordering v1, . . . , vn of
the vertices of G, and observe that the expected value of

∑n
i=1D(vi)D(vi+1) is at most 2

n−1 ). These examples
show that the restricted models allow for properties which are testable with 2-sided error but not with 1-sided
error (unlike the “unrestricted” VDF model, see [19, Theorem 2.3]).

Another natural guess regarding the answer to Problem 5.8 would be that every property which is testable
in the standard model is also testable in the restricted models (see [2] for a characterization of the properties
testable in the standard model). This guess is ruled out by the following proposition, which describes a
property which is testable in the standard model but not in the restricted models.

Proposition 5.10. The property P of having edge-density25 at most 1
4 is not testable in either of the four

variants of the VDF model.

25The edge-density of a (vertex-weighted) graph G is defined as 2e(G)/|V (G)|2; in other words, the density is defined with
respect to the uniform distribution on V (G), and not with respect to the given distribution D.
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Proof. Let G1 be the n-vertex graph consisting of a clique of size n
2 and n

2 isolated vertices, and let D1 be
the uniform distribution on V (G1). Let G2 be the n-vertex graph consisting of a clique X of size 3n

4 and n
4

isolated vertices, and let D2 be the distribution on V (G2) that assigns weight 2
3n to every vertex of X, and

weight 2
n to every vertex of V (G2)\X. Note that (G1,D1) and (G2,D2) are valid inputs in each of the variants

of the VDF model (provided that n is large enough), and that G1 satisfies P while (G2,D2) is Ω(1)-far from
P. On the other hand, we now show that for every q, a sample of q vertices from (G1,D1) is indistinguishable
from a sample of q vertices from (G2,D2) (provided that n is large enough with respect to q). To this end,
let Ui be a set of q random vertices of Gi sampled according to Di and independently (for i = 1, 2). Then
for both i = 1, 2, the graph Gi[Ui] consists of a clique and some isolated vertices. Letting Xi be the clique in
Gi[Ui], we have

P[|X1| = k] = o(1) +

(
q

k

)
·
k−1∏
i=0

(n
2
− i
)
·
q−k−1∏
i=0

(n
2
− i
)
·
(

1

n

)q
= (1 + o(1))

(
q

k

)
·
(

1

2

)q
,

P[|X2| = k] =

o(1) +

(
q

k

)
·
k−1∏
i=0

(
3n

4
− i
)
·
q−k−1∏
i=0

(n
4
− i
)
·
(

2

3n

)k
·
(

2

n

)q−k
=

(1 + o(1))

(
q

k

)
·
(

1

2

)q
,

where in both cases, the additive term o(1) accounts for the event that some vertex has been sampled more
than once. So we see that |P[|X1| = k]− P[|X2| = k]| = o(1). This implies that the total variation distance
between the distribution of G1[U1] and the distribution of G2[U2] is o(1). It follows that P is not testable in
any of the four variants of the VDF model (note that knowing n does not help to distinguish between (G1,D1)
and (G2,D2), since these graphs have the same number of vertices). �

Finally, we note that the proof of Proposition 5.10 can be adapted to show that other properties are also
not testable in either of the variants of the VDF model. These properties include the property of having a cut
with at least αn2 edges (for 0 < α < 1

4 ) and the property of containing a clique with at least αn vertices (for
0 < α < 1).

Acknowledgements We are grateful to an anonymous referee for spotting a gap in the proof of Theorem
1 in a preliminary version of the paper.
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6 Proof of Lemmas 2.5 and 2.6

Here we prove lemmas 2.5 and 2.6. We start by extending some basic results about regular partitions to the
vertex-weighted setting.

Lemma 6.1. Let X,Y be disjoint vertex sets in a vertex-weighted graph (G,D) and let PX ,PY be partitions
of X,Y , respectively. Then ∑

X′∈PX ,Y ′∈PY

D(X ′)

D(X)
· D(Y ′)

D(Y )
· d(X ′, Y ′) = d(X,Y ),

and ∑
X′∈PX ,Y ′∈PY

D(X ′)

D(X)
· D(Y ′)

D(Y )
· d2(X ′, Y ′) =

d2(X,Y ) +
∑

X′∈PX ,Y ′∈PY

D(X ′)

D(X)
· D(Y ′)

D(Y )
· (d(X ′, Y ′)− d(X,Y ))

2
.

Proof. We start with the first part of the lemma.∑
X′∈PX ,Y ′∈PY

D(X ′)

D(X)
· D(Y ′)

D(Y )
· d(X ′, Y ′) =

1

D(X)D(Y )

∑
X′∈PX ,Y ′∈PY

∑
(x,y)∈E(X′,Y ′)

D(x)D(y)

=
1

D(X)D(Y )

∑
(x,y)∈E(X,Y )

D(x)D(y) = d(X,Y ).

Next, for each X ′ ∈ PX , Y ′ ∈ PY , set ε(X ′, Y ′) = d(X ′, Y ′)− d(X,Y ).∑
X′∈PX ,Y ′∈PY

D(X ′)

D(X)
· D(Y ′)

D(Y )
· d2(X ′, Y ′) =

∑
X′∈PX ,Y ′∈PY

D(X ′)

D(X)
· D(Y ′)

D(Y )
· (d(X,Y ) + ε(X ′, Y ′))

2
=

∑
X′∈PX ,Y ′∈PY

D(X ′)

D(X)
· D(Y ′)

D(Y )
·
(
d2(X,Y ) + 2d(X,Y )ε(X ′, Y ′) + ε2(X ′, Y ′)

)
=

d2(X,Y ) +
∑

X′∈PX ,Y ′∈PY

D(X ′)

D(X)
· D(Y ′)

D(Y )
· ε2(X ′, Y ′),

where in the last equality we used the first part of the lemma. �

The index of P is defined as

q(P) =
∑

1≤i<j≤r

D(Vi)D(Vj) · d2(Vi, Vj).
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Lemma 6.2. For every vertex-partition P of a vertex-weighted graph (G,D), and for every refinement P ′ of
P, we have q(P ′) ≥ q(P).

Proof. Write P = {P1, . . . , Pr}, and for each 1 ≤ i ≤ r put P ′i = {P ′ ∈ P ′ : P ′ ⊆ Pi}. Then

q(P ′) ≥
∑

1≤i<j≤r

∑
P ′
i∈P′

i,P ′
j∈P′

j

D(P ′i )D(P ′j) · d2(P ′i , P
′
j) ≥

∑
1≤i<j≤r

D(Pi)D(Pj) · d2(Pi, Pj) = q(P),

where in the second inequality we used the second part of Lemma 6.1. �

Lemma 6.3. Let (G,D) be a vertex-weighted graph and let P = {V1, . . . , Vr} be a non-ε-regular partition of
V (G). Then there is a refinement P ′ of P such that |P ′| ≤ |P| · 2|P| and q(P ′) ≥ q(P) + ε5.

Proof. For each 1 ≤ i < j ≤ r for which (Vi, Vj) is not ε-regular, let V ′i,j ⊆ Vi, V
′
j,i ⊆ Vj be such that

D(V ′i,j) ≥ εD(Vi),D(V ′j,i) ≥ εD(Vj), and |d(V ′i,j , V
′
j,i) − d(Vi, Vj)| > ε. For each 1 ≤ i ≤ r, let P ′ be

the common refinement of the partitions {V ′i,j , V ′i \ V ′i,j} where j runs over all indices for which (Vi, Vj) is

not ε-regular, and let P ′ =
⋃r
i=1 P ′i be the resulting refinement of P. Then clearly |P ′| ≤ |P| · 2|P|. We

now show that q(P ′) ≥ q(P) + ε5. First, observe that by Lemma 6.1, for every 1 ≤ i < j ≤ r we have∑
X′∈Pi,Y ′∈Pj

D(X′)
D(Vi)

· D(Y ′)
D(Vj)

· d2(X ′, Y ′) ≥ d2(Vi, Vj). Next, fix any pair 1 ≤ i < j ≤ r for which (Vi, Vj) is not

ε-regular. By Lemma 6.1 we have∑
X′∈Pi,Y ′∈Pj

D(X ′)

D(Vi)
· D(Y ′)

D(Vj)
· d2(X ′, Y ′) =

d2(Vi, Vj) +
∑

X′∈Pi,Y ′∈Pj

D(X ′)

D(Vi)
· D(Y ′)

D(Vj)
· (d(X ′, Y ′)− d(Vi, Vj))

2 ≥

d2(Vi, Vj) +
D(V ′i,j)D(V ′j,i)

D(Vi)D(Vj)
·

∑
X′⊆V ′

i,j ,Y
′⊆V ′

j,i

D(X ′)

D(V ′i,j)
· D(Y ′)

D(V ′j,i)
· (d(X ′, Y ′)− d(Vi, Vj))

2 ≥

d2(Vi, Vj) + ε2 ·
∑

X′⊆V ′
i,j ,Y

′⊆V ′
j,i

D(X ′)

D(V ′i,j)
· D(Y ′)

D(V ′j,i)
·
[(
d(X ′, Y ′)− d(V ′i,j , V

′
j,i)
)

+
(
d(V ′i,j , V

′
j,i)− d(Vi, Vj)

)]2 ≥
d2(Vi, Vj) + ε2 ·

(
d(V ′i,j , V

′
j,i)− d(Vi, Vj)

)2 ≥ d2(Vi, Vj) + ε4,

where in the penultimate inequality we used the first part of Lemma 6.1 to infer that∑
X′⊆V ′

i,j ,Y
′⊆V ′

j,i

D(X ′)

D(V ′i,j)
· D(Y ′)

D(V ′j,i)
·
(
d(X ′, Y ′)− d(V ′i,j , V

′
j,i)
)

= 0.

Denoting by N the set of pairs 1 ≤ i < j ≤ r for which (Vi, Vj) is not ε-regular, we see that

q(P ′) ≥
∑

1≤i<j≤r

D(Vi)D(Vj) ·
∑

X′∈Pi,Y ′∈Pj

D(X ′)

D(Vi)
· D(Y ′)

D(Vj)
· d2(X ′, Y ′)

≥
∑

1≤i<j≤r

D(Vi)D(Vj) · d2(Vi, Vj) +
∑

(i,j)∈N

D(Vi)D(Vj) · ε4

= q(P) + ε4 ·
∑

(i,j)∈N

D(Vi)D(Vj) ≥ q(P) + ε5,

where in the last inequality we used the assumption that P is not ε-regular. �

Proof of Lemma 2.5. For i ≥ 0, if Pi is not ε-regular then we apply Lemma 6.3 to obtain a partition Pi+1

which refines Pi and satisfies |Pi+1| ≤ |Pi| · 2|Pi| and q(Pi+1) ≥ q(Pi) + ε5. Since the index of any partition
is at most 1, this process must end after at most ε−5 steps. When the process ends, we have an ε-regular
partition. Since the size of P0 and the number of steps depend only on ε and P0, the size of this partition can
be upper-bounded by a function of ε and P0, as required. �
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Proof of Lemma 2.6. We may assume, without loss of generality, that E is monotone decreasing. Let P1

be the partition obtained by applying Lemma 2.5 with parameter ε = E(0) and with the partition P0. Next,
for each i ≥ 1, apply Lemma 2.5 with parameter E(|Pi|) and with the partition Pi to obtain a partition Pi+1

which is E(|Pi|)-regular and refines Pi. In light of Lemma 6.2, and as the index of any partition is at most 1,
there must be 1 ≤ i ≤ 1

E2(0) for which q(Pi+1) ≤ q(Pi) + E2(0). For this i, set P = Pi and Q = Pi+1. Since

the size of P0 and the number of steps in the process are bounded from above by functions of E(0) and m,
and since the size of the partition guaranteed by Lemma 2.5 can be bounded from above by a function of the
parameters of this lemma (which in our case depend only on E and m), we see that |Q| too can be bounded
from above by a function of E and m. This proves Item 1.

Item 2 is immediate from our choice of Q. It remains to prove Item 3. By the definition of the index and
by our choice of P and Q, we have

q(P) + E2(0) ≥ q(Q) =
∑

P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · d2(Q1, Q2) =

∑
P1,P2∈P

D(P1)D(P2) · d2(P1, P2) +
∑

P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · (d(Q1, Q2)− d(P1, P2))
2

=

q(P) +
∑

P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · (d(Q1, Q2)− d(P1, P2))
2
,

where in the second inequality we used the second part of Lemma 6.1. The above implies that∑
P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · (d(Q1, Q2)− d(P1, P2))
2 ≤ E2(0),

and hence ∑
P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · |d(Q1, Q2)− d(P1, P2)| ≤

√ ∑
P1,P2∈P

∑
Q1⊆P1,Q2⊆P2

D(Q1)D(Q2) · (d(Q1, Q2)− d(P1, P2))
2 ≤ E(0),

where the second inequality follows from Cauchy-Schwarz. This completes the proof. �
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