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Abstract

For any unsatisfiable CNF formula we give an exponential lower bound on the
size of resolution refutations of a propositional statement that the formula has a
resolution refutation. We describe three applications. (1) An open question in [2]
asks whether a certain natural propositional encoding of the above statement is hard
for Resolution. We answer by giving an exponential size lower bound. (2) We show
exponential resolution size lower bounds for reflection principles, thereby improving
a result in [1]. (3) We provide new examples of CNFs that exponentially separate
Res(2) from Resolution (an exponential separation of these two proof systems was
originally proved in [9]).

1 Introduction

Proving lower bounds on the size of propositional proofs is the central task of proof
complexity theory. After Cook and Reckhow [4] motivated this line of research as an
approach towards establishing NP 6= coNP, some initial success for weak proof systems
followed, e.g., the first exponential size lower bound for Resolution was proved by Haken
[5]. Nevertheless, many important open problems from the 1980s and 1990s remain
unsolved, and it seems that proving nontrivial lower bounds on the size of propositional
proofs is hard. If it is hard for people, it is natural to ask if it is also hard for the
proof systems themselves. In trying to formalize this question so that it makes sense to
a proof system, we must say what we mean by ‘proving is hard’. It can be ‘there are
no short proofs’, a statement which occurs as a part of reflection principles. By ‘short’
we mean polynomial in the size of the formula being proven or refuted. The negation
of the reflection principle for a proof system P is a conjunction of the statement ‘y is
a P -refutation of length s of formula x of length n’ and the statement ‘z is a satisfying
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assignment of formula x’. In a propositional formulation of the principle, P, s, n are
fixed parameters and x, y, z are disjoint sets of variables. A possible way to formalize
the above question is then to take the first conjunct of the negation of the reflection
principle and plug in for the x-variables some formula F of length n. The resulting
formula was discussed and utilized by Pudlák [8]; we denote it by REFFP,s and call it a
refutation statement for P . We may now ask whether some proof system Q can shortly
refute REFFP,s, and if it can not, we can interpret this to mean that lower bounds for
P -refutations of F are hard for Q.

Pudlák [8] found connections between the reflection principles and automatizability,
and these were elaborated on in [1]. Following [3], a proof system P is automatizable if
there is a deterministic algorithm that when given as input an unsatisfiable CNF formula
F outputs its P -refutation in time polynomial in the size of the shortest P -refutation of
F . Recently, Atserias and Müller [2] showed that Resolution is not automatizable unless
P = NP. Refutation statements for Resolution play a prominent role in their proof. They
show that strong enough resolution size lower bounds for REFFRes,s with an unsatisfiable

F imply their result. However, they leave the lower bound problem for REFFRes,s as an

open question, and in place of REFFRes,s they use in the proof a different formulation of

the refutation statement, obtained by a relativization of REFFRes,s, for which lower bounds
are easier to get. In this paper we focus mainly on giving an answer to the question.

1.1 Results in This Paper

The result that requires the most work is the following lower bound.

Theorem 1. For each ε > 0 there is δ > 0 and an integer t0 such that if n, r, s, t are
integers satisfying t ≥ s ≥ n + 1, r ≥ n ≥ 2, t ≥ r3+ε, t ≥ t0, and F is an unsatisfiable
CNF consisting of r clauses C1, . . . , Cr in n variables x1, . . . , xn, then any resolution
refutation of REFFs,t has length greater than 2t

δ
.

Here REFFs,t, missing the lower index denoting the proof system as we concentrate on
resolution refutation statements, is a variant of the refutation statement insisting that
the resolution refutation it describes has the form of a levelled graph. A similar sim-
plifying assumption, making it more practical to design random restrictions, is used in
[10] for a propositional version of the coloured polynomial local search principle. Our
proof proceeds with defining a random restriction tailored to REFFs,t and to an adversary
argument. The nature of the refutation statement and the fact that the relations between
refutation lines are encoded in unary, rather than in binary, necessitate a more compli-
cated adversary argument than in [7] or [10], and this in turn poses more requirements
on the random restriction. We discuss these details after the proof, in Remarks 20 and
21.

We then show that Theorem 1 implies an exponential resolution size lower bound for
the encoding of the refutation statement for which the lower bound question in [2] is
originally asked.

We see two reasons for working with the unary encoding of REFFs,t. First, REFFs,t is
weaker than refutation statements encoded in binary or relativized refutation statements.
Hence lower bounds for REFFs,t imply lower bounds for the other encodings. Second,
researchers who dealt with propositional encodings of reflection principles or refutation
statements opted for the unary encoding [1, 6, 8].
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Our next result is that the negation of the reflection principle for Resolution, ex-
pressed by the formula SATn,r ∧REFn,rs,t , exponentially separates the system Res(2) from
Resolution. It was shown by Atserias and Bonet [1] that a similar encoding of the nega-
tion of the reflection principle separates the two theories almost-exponentially (giving a

2Ω(2log
ε n) resolution lower bound and a polynomial Res(2) upper bound). The exponential

separation of Res(2) from Resolution was originally proved in [9] using a variation of the
graph ordering principle. Our lower bound is stated in Theorem 2 below.

Theorem 2. For every c > 4 there is δ > 0 and an integer n0 such that if n, r, s, t are
integers satisfying t ≥ s ≥ n+ 1, r ≥ n ≥ n0, nc ≥ t ≥ r4, then any resolution refutation
of SATn,r ∧ REFn,rs,t has length greater than 2n

δ
.

The proof of the theorem also yields new examples of CNFs exponentially separating
Res(2) from Resolution.

Theorem 3. Let δ1 > 0 and let {An}n≥1 be a family of unsatisfiable CNFs such that
An is in n variables, has the number of clauses polynomial in n, and has no resolution
refutations of length at most 2n

δ1 . Then there is δ > 0 and a polynomial p such that
An ∧ REFAnn+1,p(n) has no resolution refutations of length at most 2n

δ
and has polynomial

size Res(2) refutations.

A Res(2) upper bound for SATn,r ∧REFn,rs,t , needed for completing the separation by
this formula as well as by the formulas in Theorem 3, is stated in the following theorem.

Theorem 4. The negation of the reflection principle for Resolution expressed by the
formula SATn,r ∧ REFn,rs,t has Res(2) refutations of size O(trn2 + tr2 + st2n3 + st3n).

A polynomial size Res(2) upper bound on a similar encoding of the negation of the
reflection principle for Resolution was proved in [1]. We simplify the proof and adapt it
to SATn,r ∧ REFn,rs,t .

1.2 Outline of the Paper

The rest of the paper is organized as follows.
In Section 2 we give the necessary preliminaries.
In Section 3, Resolution of s levels of t clauses is introduced, and the clauses of the

refutation statement REFFs,t for this refutation system are listed. We show that this
system simulates Resolution with at most quadratic increase in length.

In Section 4 we prove Theorem 1. That Theorem 1 also answers the original lower
bound question from [2] is shown in Appendix A.

In Section 5 we define the formula SATn,r ∧REFn,rs,t and we prove Theorems 2 and 3.
In Section 6 we prove Theorem 4.

2 Preliminaries

For an integer s, the set {1, . . . , s} is denoted by [s]. We write dom(σ), im(σ) for the
domain and image of a function σ. Two functions σ, τ are compatible if σ ∪ τ is a
function. If x is a propositional variable, the positive literal of x, denoted by x1, is x,
and the negative literal of x, denoted by x0, is ¬x. A clause is a set of literals. A clause
is written as a disjunction of its elements. A term is a set of literals, and is written as
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a conjunction of the literals. A CNF is a set of clauses, written as a conjunction of the
clauses. A k-CNF is a CNF whose every clause has at most k literals. A DNF is a set of
terms, written as a disjunction of the terms. A k-DNF is a DNF whose every term has
at most k literals. We will identify 1-DNFs with clauses. A clause is non-tautological if it
does not contain both the positive and negative literal of the same variable. A clause C
is a weakening of a clause D if D ⊆ C. A clause D is the resolvent of clauses C1 and C2

on a variable x if x ∈ C1,¬x ∈ C2 and D = (C1 \ {x})∪ (C2 \ {¬x}). If E is a weakening
of the resolvent of C1 and C2 on x, we say that E is obtained by the resolution rule from
C1 and C2, and we call C1 and C2 the premises of the rule.

Let F be a CNF and C a clause. A resolution derivation of C from F is a sequence
of clauses Π = (C1, . . . , Cs) such that Cs = C and for all u ∈ [s], Cu is a weakening of
a clause in F , or there are v, w ∈ [u− 1] such that Cu is obtained by the resolution rule
from Cv and Cw. A resolution refutation of F is a resolution derivation of the empty
clause from F . The length of a resolution derivation Π = (C1, . . . , Cs) is s. For u ∈ [s],
the height of u in Π is the maximum h such that there is a subsequence (Cu1 , . . . , Cuh) of
Π in which uh = u and for each i ∈ [h− 1], Cui is a premise of a resolution rule by which
Cui+1

is obtained in Π. The height of Π is the maximum height of u in Π for u ∈ [s].
A partial assignment to the variables x1, . . . , xn is a partial map from {x1, . . . , xn} to

{0, 1}. Let σ be a partial assignment. The CNF F � σ is formed from F by removing
every clause containing a literal satisfied by σ, and removing every literal falsified by σ
from the remaining clauses. If Π = (C1, . . . , Cs) is a sequence of clauses, Π �σ is formed
from Π by the same operations. Note that if Π is a resolution refutation of F , then Π�σ
is a resolution refutation of F �σ.

The Res(k) refutation system is a generalization of Resolution. Its lines are k-DNFs
and it has the following inference rules (A,B are k-DNFs, j ∈ [k], and l, l1, . . . , lj are
literals):

A ∨ l1 B ∨ (l2 ∧ · · · ∧ lj) ∧-introduction
A ∨B ∨ (l1 ∧ · · · ∧ lj)

Axiomx ∨ ¬x

A ∨ (l1 ∧ · · · ∧ lj) B ∨ ¬l1 ∨ · · · ∨ ¬lj
Cut

A ∨B
A Weakening

A ∨B

Let F be a CNF. A Res(k) derivation from F is a sequence of k-DNFs (D1, . . . , Ds) so
that each Di either belongs to F or follows from the preceding lines by an application of
one of the inference rules. A Res(k) refutation of F is a Res(k) derivation from F whose
final line is the empty clause. The size of a Res(k) derivation is the number of symbols
in it.

3 Resolution Refutations of s Levels of t Clauses

We introduce a variant of Resolution in which the clauses forming a refutation are ar-
ranged in layers.

Definition 5. Let F be a CNF of r clauses in n variables x1, . . . , xn. We say that F has
a resolution refutation of s levels of t clauses if there is a sequence of clauses Ci,j indexed
by all pairs (i, j) ∈ [s]× [t], such that each clause C1,j on the first level is a weakening of
a clause in F , each clause Ci,j on level i∈ [s]\{1} is a weakening of the resolvent of two
clauses from level i− 1 on a variable, and the clause Cs,t is empty.
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The following proposition shows that this system quadratically simulates Resolution
and preserves the refutation height. The proof uses a simple self-replicating pattern both
to transport a premise of the resolution rule to the required level and to fill in all clauses
Ci,j that do not directly participate in the simulation.

Proposition 6. If a (n− 1)-CNF F in n variables has a resolution refutation of height
h and length s, then F has a resolution refutation of h levels of 3s clauses.

Proof. Let Π be a resolution refutation of F of height h and length s. Assume that Π is
(C1, . . . , Cs), and that without loss of generality Cj, j ∈ [s], is non-tautological and either
Cj ∈ F or Cj is the resolvent of Cj1 , Cj2 for some j1, j2 < j. For j ∈ [s], let hj be the
height of j in Π. We prove by induction on s′ ∈ [s] the following: There is a resolution
derivation of Cs′ of h levels of 3s′ clauses such that for each j ∈ [s′] and i ∈ {hj, . . . , h},
Ci,3j = Cj.

Base step: s′ = 1. Pick a variable x such that no literal of x is in C1. Such a variable
exists by our assumptions. For all i ∈ [h], set (Ci,1, Ci,2, Ci,3) = (C1∪{x}, C1∪{¬x}, C1).
This is a valid resolution derivation of h levels of 3 clauses: the clauses on the first level
are weakenings of C1 ∈ F , and each clause on any subsequent level is derived from the
first and second clause of the previous level.

Induction step: Assume the statement holds for s′, as witnessed by a derivation Π′.
We prove it for s′ + 1. Pick a variable x such that no literal of x is in Cs′+1; it exists
by our assumptions. If Cs′+1 ∈ F , define, for each i ∈ [h], (Ci,3s′+1, Ci,3s′+2, Ci,3s′+3) =
(Cs′+1 ∪ {x}, Cs′+1 ∪ {¬x}, Cs′+1). If Cs′+1 is obtained by the resolution rule in Π, the
premises of the rule appear on level hs′+1 − 1 in Π′ by the induction hypothesis. So
we can extend Π′ by defining, for i ∈ {hs′+1, . . . , h}, (Ci,3s′+1, Ci,3s′+2, Ci,3s′+3) = (Cs′+1 ∪
{x}, Cs′+1∪{¬x}, Cs′+1). Next, for each i ∈ [hs′+1−1], define (Ci,3s′+1, Ci,3s′+2, Ci,3s′+3) =
(C1∪{x}, C1∪{¬x}, C1). It is easy to check that this is a valid derivation and it satisfies
the required properties.

We proceed to our formalization of the refutation statement for this refutation system.
Let n, r, s, t be integers. Let F be a CNF consisting of r clauses C1, . . . , Cr in n variables
x1, . . . , xn. We define a propositional formula REFFs,t expressing that F has a resolution
refutation of s levels of t clauses.

We first list the variables of REFFs,t. D-variables D(i, j, `, b), i ∈ [s], j ∈ [t], ` ∈
[n], b ∈ {0, 1}, encode clauses Ci,j as follows: D(i, j, `, 1) (resp. D(i, j, `, 0)) means that
the literal x` (resp. ¬x`) is in Ci,j. L-variables L(i, j, j′) (resp. R-variables R(i, j, j′)),
i ∈ [s]\{1}, j, j′ ∈ [t], say that Ci−1,j′ is a premise of the resolution rule by which Ci,j
is obtained, and it is the premise containing the positive (resp. negative) literal of the
resolved variable. V -variables V (i, j, `), i∈ [s]\{1}, j ∈ [t], ` ∈ [n], say that Ci,j is obtained
by resolving on x`. I-variables I(j,m), j ∈ [t],m ∈ [r], say that C1,j is a weakening of
Cm.

REFFs,t is the union of the following fifteen sets of clauses:

¬I(j,m) ∨D(1, j, `, b) j∈ [t],m∈ [r], b∈{0, 1}, xb`∈Cm, (1)

clause C1,j contains the literals of Cm assigned to it by I(j,m),

¬D(i, j, `, 1) ∨ ¬D(i, j, `, 0) i∈ [s], j∈ [t], `∈ [n], (2)
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no clause Ci,j contains x` and ¬x` at the same time,

¬L(i, j, j′) ∨ ¬V (i, j, `) ∨D(i− 1, j′, `, 1) i∈ [s]\{1}, j, j′∈ [t], `∈ [n], (3)

¬R(i, j, j′) ∨ ¬V (i, j, `) ∨D(i− 1, j′, `, 0) i∈ [s]\{1}, j, j′∈ [t], `∈ [n], (4)

clause Ci−1,j′ used as the premise given by L(i, j, j′) (resp. R(i, j, j′)) in resolving on x`
must contain x` (resp. ¬x`),

¬L(i, j, j′) ∨ ¬V (i, j, `) ∨ ¬D(i− 1, j′, `′, b) ∨D(i, j, `′, b)

i∈ [s]\{1}, j, j′∈ [t], `, `′∈ [n], b∈{0, 1}, (`′, b) 6= (`, 1),
(5)

¬R(i, j, j′) ∨ ¬V (i, j, `) ∨ ¬D(i− 1, j′, `′, b) ∨D(i, j, `′, b)

i∈ [s]\{1}, j, j′∈ [t], `, `′∈ [n], b∈{0, 1}, (`′, b) 6= (`, 0),
(6)

clause Ci,j derived by resolving on x` must contain each literal different from x` (resp.
¬x`) from the premise given by L(i, j, j′) (resp. R(i, j, j′)),

¬D(s, t, `, b) `∈ [n], b∈{0, 1}, (7)

clause Cs,t is empty,

V (i, j, 1) ∨ V (i, j, 2) ∨ . . . ∨ V (i, j, n) i∈ [s]\{1}, j∈ [t], (8)

I(j, 1) ∨ I(j, 2) ∨ . . . ∨ I(j, r) j∈ [t], (9)

L(i, j, 1) ∨ L(i, j, 2) ∨ . . . ∨ L(i, j, t) i∈ [s]\{1}, j∈ [t], (10)

R(i, j, 1) ∨R(i, j, 2) ∨ . . . ∨R(i, j, t) i∈ [s]\{1}, j∈ [t], (11)

¬V (i, j, `) ∨ ¬V (i, j, `′) i∈ [s]\{1}, j∈ [t], `, `′∈ [n], ` 6= `′, (12)

¬I(j,m) ∨ ¬I(j,m′) j∈ [t],m,m′∈ [r],m 6= m′, (13)

¬L(i, j, j′) ∨ ¬L(i, j, j′′) i∈ [s]\{1}, j, j′, j′′∈ [t], j′ 6= j′′, (14)

¬R(i, j, j′) ∨ ¬R(i, j, j′′) i∈ [s]\{1}, j, j′, j′′∈ [t], j′ 6= j′′, (15)

the V, I, L,R-variables define functions with the required domains and ranges.

4 A Lower Bound on Lengths of Resolution Refuta-

tions of Resolution Refutation Statements

We restate Theorem 1 from the Introduction.

Theorem 7. For each ε > 0 there is δ > 0 and an integer t0 such that if n, r, s, t are
integers satisfying

t ≥ s ≥ n+ 1, r ≥ n ≥ 2, t ≥ r3+ε, t ≥ t0, (16)

and F is an unsatisfiable CNF consisting of r clauses C1, . . . , Cr in n variables x1, . . . , xn,
then any resolution refutation of REFFs,t has length greater than 2t

δ
.

The rest of this section is devoted to a proof of the theorem. We argue by contra-
diction. Fix ε > 0 and assume that for each δ > 0 and t0 there are integers n, r, s, t
satisfying (16), an unsatisfiable CNF F , and a resolution refutation Π of REFFs,t, such
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that F consists of r clauses C1, . . . , Cr in n variables x1, . . . , xn, and Π has length at most
2t
δ
.
The forthcoming distribution on partial assignments to the variables of REFFs,t employs

in its definition and analysis two important parameters, p and w. We choose them in
function of t and ε as follows:

p = t−a with a = min

{
2 + ε/2

3 + ε/2
,
3

4

}
, w = t4/5.

We now fix values of t0, δ for which we will get the desired contradiction. Take t0 so
large and δ > 0 so small that the inequalities

max
{
e−

pw
3 + 2s · e−

pt
3 , e−

pt
8r

}
· 2tδ + 3s · e−

pt
3 + 3p+ 67p3st < 1, (17)

10pt+ 4w <
t

4
, (18)

ee
ln(t)− pt3 < 2, (19)

hold for any n, r, s, t satisfying (16).

Definition 8. For i ∈ [s], j, j′ ∈ [t], ` ∈ [n], b ∈ {0, 1},m ∈ [r], we say that (i, j) is
the home pair of the variable D(i, j, `, b) (resp. R(i, j, j′); L(i, j, j′); V (i, j, `′); I(j,m) if
i = 1).

We write V (i, j, ·) to stand for the set {V (i, j, `) : ` ∈ [n]}. Similarly, we write
I(j, ·), L(i, j, ·), R(i, j, ·) to stand for the corresponding sets of variables, and we denote
by D(i, j, ·, ·) the set of variables {D(i, j, `, b) : ` ∈ [n], b ∈ {0, 1}}.

Let σ be a partial assignment. We say that V (i, j, ·) is set to ` by σ if σ(V (i, j, `)) = 1
and σ(V (i, j, `′)) = 0 for all `′ ∈ [n], `′ 6= `. Similarly for I(j, ·), L(i, j, ·), R(i, j, ·). We say
that D(i, j, ·, ·) is set to a clause Ci,j by σ if for all ` ∈ [n], b ∈ {0, 1}, σ(D(i, j, `, b)) = 1
if xb` ∈ Ci,j and σ(D(i, j, `, b)) = 0 if xb` 6∈ Ci,j.

For Y ∈ {D(i, j, ·, ·), V (i, j, ·), I(j, ·), R(i, j, ·), L(i, j, ·), }, we say that Y is set by σ if
Y is set to v by σ for some value v. We will often omit saying “by σ” if σ is clear from
the context.

Definition 9. A random restriction ρ is a partial assignment to the variables of REFFs,t
given by the following experiment:

1. For each pair (i, j) ∈ [s]× [t], with independent probability p include (i, j) in a set
AD. Then for each (i, j) ∈ AD and for each ` ∈ [n], independently, with probability
1/2 choose between including the literal x` or ¬x` in a clause Ci,j. Set D(i, j, ·, ·)
to Ci,j.

2. For each j ∈ [t], with independent probability p include the pair (1, j) in a set AI .
Then for each (1, j) ∈ AI \ AD, independently, choose at random m ∈ [r] and set
I(j, ·) to m.

3. For each pair (i, j) ∈ {2, . . . , s} × [t], with independent probability p include (i, j)
in a set AV . Then for each (i, j) ∈ AV , independently, choose at random ` ∈ [n]
and set V (i, j, ·) to `.
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4. For each pair (i, j) ∈ {2, . . . , s} × [t], with independent probability p include the
pair (i, j) in a set ARL. Then, for each i ∈ {2, . . . , s}, define Ai := ARL ∩ ({i} × [t])
and do the following. If |Ai| > 2pt, define hi := ∅, Bi−1 := ∅. Otherwise, choose at
random an injection hi from {L(i, j, ·) : (i, j) ∈ Ai} ∪ {R(i, j, ·) : (i, j) ∈ Ai} to [t].
Define Bi−1 := {(i− 1, j) : j ∈ im(hi)}. Set L(i, j, ·) to hi(L(i, j, ·)) and R(i, j, ·) to
hi(R(i, j, ·)) for all (i, j) ∈ Ai.

Lemma 10. With probability at least 1− 3s · e−pt/3, all of the following are satisfied.

(i) For each i ∈ [s], the cardinality of AD ∩ ({i} × [t]) is at most 2pt.

(ii) For each i ∈ {2, . . . , s}, the cardinality of Ai is at most 2pt and the cardinality of
AV ∩ ({i} × [t]) is at most 2pt.

(iii) The cardinality of AI is at most 2pt.

Proof. By the Chernoff bound and the union bound it follows that item (i) is false with
probability at most s · e−pt/3. Similarly for the remaining items.

Definition 11. Denote by Gρ the graph with vertices AD ∪AV ∪AI ∪ARL ∪
⋃
i∈[s−1]Bi,

and with edges only between vertices on neighboring levels, such that (i, j) is connected
by an edge to (i − 1, j′) if and only if hi(L(i, j, ·)) = j′ (then (i − 1, j′) is called the left
child of (i, j)) or hi(R(i, j, ·)) = j′ (then (i− 1, j′) is the right child of (i, j)).

The following lemma will be used later to show that a random restriction likely does
not falsify any clause of REFFs,t.

Lemma 12. With probability at least 1− 3p− 67p3st, the following are both satisfied.

(i) (s, t) 6∈ (AD ∪ ARL ∪ AV ).

(ii) There is no triple ((i1, j1), (i2, j2), (i3, j3)) of elements of [s] × [t], such that all the
following hold:

(a) For each u∈ [3] there is X∈{D, V, I, RL} with (iu, ju)∈AX ,

(b) |{(iu, ju, X) : u ∈ [3], X∈{D, V, I, RL}, (iu, ju)∈AX}| ≥ 3,

(c) the subgraph of Gρ consisting of the vertices that are in the triple and their
children and all edges that go from a vertex of the triple to its children, is
connected.

Proof. The probability that item (i) is true is (1− p)3 ≥ 1− 3p.
Regarding item (ii), we distinguish several cases based on the relative positions of the

elements in a triple ((i1, j1), (i2, j2), (i3, j3)). Note that the order in which the elements
of the triple are listed does not matter in what we are proving, but some of the elements
may coincide. When considering the cases, recall that due to our choice of the function
hi in the definition of ρ, two vertices in Gρ cannot share a child.

In case all the elements of the triple are the same, (b) is satisfied only if the element
is chosen to AX for three distinct values of X. This cannot happen on level 1, and on
the other levels it happens with probability p3. There are st many triples considered
in the present case, so by the union bound the probability that there is any such triple
satisfying all conditions in (ii) is at most p3st.
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In case (i1, j1) 6= (i2, j2) = (i3, j3), condition (c) is satisfied only if i1 = i2 + 1 or
i2 = i1 + 1. In each of these two subcases, there are at most st2 such triples. In the
former subcase, we must have (i1, j1) ∈ ARL and at the same time hi1(R(i1, j1, ·)) = j2

or hi1(L(i1, j1, ·)) = j2. This happens with probability at most 2p/t. Also, (i2, j2) has
to be in AX and AX′ for distinct X,X ′, which happens with probability at most 3p2.
So, the probability that any triple considered in this subcase satisfies (a) - (c) is at most
st2 · 6p3/t = 6p3st. In the latter subcase, (i2, j2) has to be in ARL, connected to (i1, j1),
and additionally it has to be in AD or AV , while (i1, j1) has to be in arbitrary possible
AX . This happens with probability at most 2p/t ·2p ·3p = 12p3/t, so the probability that
any such triple satisfies (a) - (c) is at most 12p3st.

In case all the elements of the triple are distinct, we again consider two subcases: first,
i1 = i2 + 1 = i3 + 2, and second, i1 − 1 = i2 = i3. Each subcase concerns at most st3

triples. In the first subcase, (i3, j3) has to be a child of (i2, j2), which in turn has to be
a child of (i1, j1), and (i3, j3) also has to be in arbitrary possible AX . This happens with
probability at most 12p3/t2. Hence the probability that any such triple satisfies (a) - (c)
is at most 12p3st. In the second subcase, (i1, j1) has to have children (i2, j2) and (i3, j3),
and each child has to be in some AX for any suitable X. This happens with probability
at most 2p/(t(t− 1)) · (3p)2 = 18p3/(t(t− 1)) ≤ 36p3/t2. Hence the probability that any
such triple satisfies (a) - (c) is at most 36p3st.

We now define some specific ways to measure a clause and we use them in the next
lemma to describe how a clause simplifies under a restriction.

Definition 13. Let E be a clause in Π�ρ, and let (i, j) ∈ [s]× [t]. If E contains a literal
of a variable from D(i, j, ·, ·) (resp. R(i, j, ·); L(i, j, ·); V (i, j, ·); I(j, ·) and i = 1), we
say that the pair (i, j) is D-mentioned (resp. R-mentioned ; L-mentioned ; V -mentioned ;
I-mentioned) in E.

We say that pair (i, j) is mentioned in E if it is Z-mentioned in E for some Z ∈
{D, V, I, R, L}.

We say that (i, j) is V -important (resp. L-important ; R-important ; I-important) in E
if E contains the negative literal of a variable in V (i, j, ·) (resp. L(i, j, ·);R(i, j, ·); I(j, ·)
and i = 1) or if E contains at least n/2 (resp. t/2; t/2; r/2) positive literals of variables
in V (i, j, ·) (resp. L(i, j, ·); R(i, j, ·); I(j, ·) and i = 1). A pair is D-important in E if it
is D-mentioned in E.

Lemma 14. With probability at least 1 − max
{
e−

pw
3 + 2s · e− pt3 , e− pt8r

}
· 2tδ , for every

clause E in Π�ρ all of the following are satisfied.

(i) At most w many pairs (i, j) are D-mentioned in E.

(ii) At most w many pairs (1, j) are I-important in E.

(iii) At most w many pairs (i, j) are V -important in E.

(iv) At most w many pairs (i, j) are L-important in E.

(v) At most w many pairs (i, j) are R-important in E.

(vi) For each m ∈ [r], |{j : I(j,m) ∈ E}| ≤ t
4
.

(vii) For each i ∈ {s− n+ 1, . . . , s− 1} and ` ∈ [n], |{j : V (i, j, `) ∈ E}| ≤ t
4
.
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Proof. It is sufficient to prove that if E ′ is a clause in Π that violates any of (i) - (vii),

then with probability at least 1−max
{
e−

pw
3 + 2s · e− pt3 , e− pt8r

}
, E ′ is satisfied by ρ. Since

Π has length at most 2t
δ
, the lemma then follows by the union bound.

Regarding item (i), assume that E ′ in Π D-mentions more than w pairs (i, j). This
means that a literal of a variable in D(i, j, ·, ·) is in E ′ for more than w many pairs (i, j).
For each such (i, j), such a literal is satisfied by ρ with probability at least p/2. So the
probability that none of these literals in E ′ is satisfied is at most (1− p/2)w < e−pw/2.

Regarding item (ii), suppose that more than w pairs (1, j) are I-important in E ′.
For each such (1, j), the probability that (1, j) ∈ AI \ AD is p(1 − p), and provided this
happens, the probability that ρ satisfies a literal in E ′ of a variable in I(j, ·) is at least
min{(r− 1)/r, 1/2} = 1/2. Hence the probability that E ′ is not satisfied by ρ is at most
(1− p(1− p)/2)w < (1− p/3)w < e−pw/3 (the first inequality follows from (18)).

Regarding item (iii), a calculation similar to that for (ii) gives that a clause E ′ in Π
with more than w many V -important pairs (i, j) is not satisfied by ρ with probability at
most (1− p/2)w < e−pw/2.

Regarding item (iv), suppose that more than w many pairs (i, j) from {2, . . . , s}× [t]
are L-important in E ′. For each i ∈ {2, . . . , s}, assume without loss of generality that
the set of pairs (i, j) that are L-important in E ′ is the set {(i, 1), . . . , (i, wi)}; denote
it by Wi. Note that the distribution of ρ does not change if we choose Ai and hi in
t many steps as follows. Start with Ai,0 = hi,0 = ∅. At step j = 1, 2, . . . , t, first add
(i, j) to Ai,j−1 with probability p to get Ai,j. Then, if |Ai,j| ≤ 2pt and (i, j) ∈ Ai,j,
choose at random two distinct elements j′, j′′ from [t] \ im(hi,j−1), and define hi,j :=
hi,j−1 ∪ {(L(i, j, ·), j′), (R(i, j, ·), j′′)}. If |Ai,j| ≤ 2pt and (i, j) /∈ Ai,j, define hi,j := hi,j−1.
If |Ai,j| > 2pt define hi,j := ∅. This finishes step j. Finally, define Ai := Ai,t and hi := hi,t.

For i ∈ {2, . . . , s}, let Hi be the set of literals in E ′ of a variable in L(i, j, ·) for some
(i, j) ∈ Wi. Also, for (i, j) ∈ Wi, let Ti,j be the set of those j′ ∈ [t] such that the partial
assignment given by setting L(i, j, ·) to j′ satisfies some literal in Hi. We know that
|Ti,j| ≥ t/2 for each (i, j) ∈ Wi.

The event that no literal in Hi is satisfied by ρ is a subset of the union of events (a)
|Ai,t| > 2pt, and (b) |Ai,wi | ≤ 2pt and for each (i, j) ∈ Ai,wi , hi,j(L(i, j, ·)) /∈ Ti,j. Event (a)
happens with probability at most e−pt/3 by the Chernoff bound. We bound the probability
of event (b). For each j ∈ [wi], if (i, j) ∈ Ai,j and |Ai,j| ≤ 2pt, then the probability that
hi,j(L(i, j, ·)) ∈ Ti,j is at least (|Ti,j \ im(hi,j−1)|)/t ≥ (t/2−4pt)/t = (1−8p)/2 ≥ 1/3 (the
last inequality follows from (18)). Therefore, denoting l := min{2pt, wi}, the probability
of event (b) is at most

l∑
k=0

(
wi
k

)
pk(1− p)wi−k

(
2

3

)k
≤

wi∑
k=0

(
wi
k

)(
2p

3

)k
(1− p)wi−k = (1− p/3)wi .

Thus, the probability that no literal in Hi is satisfied by ρ is at most e−pt/3 + e−pwi/3,
and, denoting S := {i ∈ {2, . . . , s} : wi 6= 0}, the probability that no literal in

⋃
i∈S Hi is
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satisfied by ρ is at most

∏
i∈S

(
e−

pwi
3 + e−

pt
3

)
≤ e−

pw
3 +

|S|∑
k=1

(
|S|
k

)
e−

ptk
3

≤ e−
pw
3 + |S| · e−

pt
3

|S|∑
k=1

(
|S| − 1

k − 1

)
e−

pt(k−1)
3

= e−
pw
3 + |S| · e−

pt
3 ·
(

1 + e−
pt
3

)|S|−1

≤ e−
pw
3 + s · e−

pt
3 · ee

ln(t)− pt3 ≤ e−
pw
3 + 2s · e−

pt
3 ,

where the penultimate inequality follows from |S| − 1 ≤ s ≤ t, and the last inequality
follows from (19).

Item (v) is handled in the same way as (iv).
Regarding item (vi), suppose that for some m ∈ [r] there are more than t/4 of I(j,m)

in E ′. Similarly to the case (ii), each such I(j,m) is satisfied by ρ with independent
probability at least p(1 − p)/r > p/(2r), so E ′ is not satisfied with probability at most
(1− p/(2r))t/4 < e−pt/(8r).

Item (vii) is treated similarly to (vi), with the resulting probability of not satisfying E ′

being (1− p/n)t/4 < e−pt/(4n) < e−pt/(8r), where the last inequality follows from (16).

By (17) and by Lemmas 10, 12, and 14, there is a restriction ρ satisfying all the
assertions of the lemmas. Fix any such ρ.

Definition 15. A partial assignment σ to the variables of REFFs,t is called an admissible
assignment if it extends ρ and satisfies all the following conditions.

(C1) For each (i, j) ∈ [s]× [t], D(i, j, ·, ·) (resp. V (i, j, ·), I(j, ·), L(i, j, ·), R(i, j, ·)) either
is set to some clause (resp. some ` ∈ [n], some m ∈ [r], some j′ ∈ [t], some j′ ∈ [t])
by σ or contains no variable that is in dom(σ).

(C2) For each (i, j) ∈ [s] × [t], if L(i, j, ·) or R(i, j, ·) is set to some j′ ∈ [t], then both
D(i, j, ·, ·) and D(i− 1, j′, ·, ·) are set.

(C3) For each (i, j) ∈ [s]× [t], if D(i, j, ·, ·) is set, then V (i, j, ·) is set (if i ∈ {2, . . . , s})
or I(j, ·) is set (if i = 1).

(C4) For each (i, j) ∈ [s] × [t], if D(i, j, ·, ·) is set to a clause Ci,j, then Ci,j is non-
tautological and has at least min{s − i, n} many literals. If D(i, j, ·, ·) is set to a
clause Ci,j with less than n literals and V (i, j, ·) is set to some ` ∈ [n], then none of
the literals of x` is in Ci,j.

(C5) If D(s, t, ·, ·) is set, it is set to the empty clause.

(C6) For each j ∈ [t], if D(1, j, ·, ·) and I(j, ·) are set, then σ satisfies all clauses in (1)
with this j.

(C7) For each i ∈ {2, . . . , s}, j, j′ ∈ [t], if L(i, j, ·) (resp. R(i, j, ·)) is set to j′ and both
V (i, j, ·), D(i − 1, j′, ·, ·) are set, then σ satisfies all clauses in (3) (resp. (4)) with
these i, j, j′.
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(C8) For each i ∈ {2, . . . , s}, j, j′ ∈ [t], if L(i, j, ·) (resp. R(i, j, ·)) is set to j′ and V (i, j, ·),
D(i, j, ·, ·), D(i− 1, j′, ·, ·) are set, then σ satisfies all clauses in (5) (resp. (6)) with
these i, j, j′.

(C9) For each i ∈ {2, . . . , s}, the binary relation hσ,i := {(Z(i, j, ·), j′) : j, j′ ∈ [t], Z ∈
{L,R}, and Z(i, j, ·) is set to j′ by σ} is a partial injection from {Z(i, j, ·) : j ∈
[t], Z ∈ {L,R}} to [t].

We now prove that an admissible assignment cannot falsify a clause of REFFs,t � ρ
(Lemma 16), that admissible assignments exist (Lemma 17), and that if for a clause E in
Π �ρ there is an admissible assignment that falsifies a literal in E whenever it evaluates
its variable and that evaluates each D- (resp. V -, I-, L-, R-) variable with a home pair
D- (resp. V -, I-, L-, R-) important in E, then there is also an admissible assignment that
does the same for at least one clause in Π�ρ from which E was obtained by the resolution
rule (Lemma 19). This is a contradiction, which concludes the proof of Theorem 7.

Lemma 16. No clause in REFFs,t �ρ is falsified by any admissible assignment.

Proof. Let σ be an admissible assignment. It suffices to show that σ does not falsify any
clause of REFFs,t. This is guaranteed for each clause from (1) by (C1), (C6); from (2) by
(C1), (C4); from (3) and (4) by (C1), (C7); from (5) and (6) by (C1), (C8); from (7) by
(C1), (C5); and from (8) - (15) by (C1).

Lemma 17. There is an admissible assignment.

Proof. We first verify that ρ satisfies the conditions of Definition 15 except possibly for
(C2), (C3). Then we extend ρ by only assigning some D, V, I-variables to satisfy these
remaining two conditions without violating the others.

Conditions (C1), (C4), (C6) and (C9) are satisfied by construction: for (C4) recall
that for each (i, j) ∈ [s]× [t], if D(i, j, ·, ·) is set to some clause by ρ then the clause has
exactly n literals; for (C6) observe that its hypothesis is not satisfied by ρ; and for (C9)
note that hρ,i = hi for i ∈ {2, . . . , s}. Condition (C5) follows from item (i) of Lemma
12. Item (ii) of the same lemma implies that neither the hypothesis in (C7) nor the
hypothesis in (C8) is met.

To extend ρ to an admissible assignment, we distinguish cases based on the isomor-
phism type of the component in Gρ containing a pair for which (C2) or (C3) is not
satisfied. By item (ii) of Lemma 12, there are only three types of components in Gρ: 1)
an isolated vertex, 2) a vertex with its two children and edges from the vertex to the
children, and 3) two vertices with their children and edges from each of the two vertices
to its children, such that one of the two vertices is a child of the other.

In case 1), let (i, j) be the isolated vertex. Only (C3) may be unsatisfied; assume this
is the case. Recall again that whenever ρ sets D(i, j, ·, ·) to some clause Ci,j, the clause
contains n literals and is non-tautological. Now, if i ∈ {2, . . . , s}, set V (i, j, ·) arbitrarily.
For i = 1, since F is unsatisfiable, it must contain a clause Cm, for some m ∈ [r], of which
Ci,j is a weakening. Set I(j, ·) to m.

In case 2), since one of the three vertices of the component is in ARL and its children
are not, item (ii) of Lemma 12 implies that there is at most one triple (i, j, Y ) such that
(i, j) is a vertex of the three forming the component, Y ∈ {D(i, j, ·, ·), V (i, j, ·), I(j, ·)},
and Y is set by ρ. We set the remaining D(i, j, ·, ·), V (i, j, ·), I(j, ·) for all vertices (i, j)
of the component in any way that respects how Y is set, only uses clauses of n literals to
assign to the vertices (to satisfy (C4)), and satisfies (C6), (C7), (C8) for these vertices.
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In case 3), there are exactly two vertices of the component that are in ARL, hence
item (ii) of Lemma 12 implies that there is no triple (i, j, Y ) such that (i, j) is a vertex
of the component, Y ∈ {D(i, j, ·, ·), V (i, j, ·), I(j, ·)}, and Y is set by ρ. Hence we can
set D(i, j, ·, ·), V (i, j, ·), I(j, ·) for all vertices (i, j) of the component in any way that only
uses clauses of n literals to assign to the vertices (to satisfy (C4)), and satisfies (C6),
(C7), (C8) for these vertices.

Extending ρ for every component of Gρ in this way satisfies (C1) - (C4), does not
affect (C5) and (C9), and satisfies (C6), (C7), (C8) because whenever we assigned all
literals of a clause in (1), (3), (4), (5), (6), we made sure the clause was satisfied.

Definition 18. For a partial assignment σ to the variables of REFFs,t that satisfies (C1)
and (C9) of Definition 15, denote by Gσ the graph with vertex set

⋃
i∈[s−1]{(i, j) : j ∈

im(hσ,i+1)} ∪ {(i, j) : (i, j) is the home pair of a variable in dom(σ)} and edges between
(i, j), (i′, j′) ∈ [s]× [t] if and only if i = i′+1 and hσ,i(L(i, j, ·)) = j′ or hσ,i(R(i, j, ·)) = j′.

Lemma 19. Suppose that a clause E in Π � ρ is obtained by the resolution rule from
clauses E0 and E1. Suppose further that there is an admissible assignment σ which
satisfies both conditions

(i) every literal in E of a variable in dom(σ) is falsified by σ,

(ii) for each Z ∈ {D, V, I, R, L}, each Z-variable with a home pair Z-important in E
is in dom(σ).

Then there is an admissible assignment τ and b ∈ {0, 1} such that (i) and (ii) hold with
τ in place of σ and Eb in place of E.

Proof. Let σ be an admissible assignment that satisfies (i) and (ii). We first subject σ to
the following three-step cleanup process to obtain the minimal admissible sub-assignment
σ1 of σ that satisfies (i) and (ii).

Step 1: Remove from dom(σ) each variable in L(i, j, ·) (resp. R(i, j, ·)) that is not in
dom(ρ) such that (i, j) is not L-important (resp. R-important) in E. Denote by σ′ the
new partial assignment.

Step 2: Remove from dom(σ′) each variable in D(i, j, ·, ·) that is not in dom(ρ) such
that (i, j) is not D-important in E and no edge in Gσ′ is incident to (i, j). Denote by σ′′

the new partial assignment.
Step 3: For each (i, j) ∈ [s] × [t], remove from dom(σ′′) each variable in V (i, j, ·, ·)

(resp. I(j, ·) if i = 1) that is not in dom(ρ) such that (i, j) is not V -important (resp.
I-important) in E and D(i, j, ·, ·) is not set by σ′′. Let σ1 stand for the resulting partial
assignment.

It is straightforward to check that that σ′, σ′′, σ1 are admissible assignments (the
order of the steps was chosen to maintain (C2) and (C3) satisfied during the process;
(C1) follows since we always unassign variables in groups listed there, and the remaining
conditions of Definition 15 cannot turn from being true to false by unassigning variables),
and that they satisfy (i) and (ii). The three steps and the order of their execution ensure
that σ1 is the minimal admissible sub-assignment of σ satisfying (i) and (ii).

Let Q be the variable resolved on to obtain E from E0 and E1. Suppose that Q is a
Z-variable, Z ∈ {D, V, I, L,R}, with a home pair (i, j) ∈ [s]× [t].

If Q ∈ dom(σ1), then σ1 with either E0 or E1 already satisfy (i) and (ii).
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If Q 6∈ dom(σ1) and (i, j) is not Z-important in E ∪ {Q}, then (i, j) cannot be Z-
important in Eb either, where b ∈ {0, 1} is such that Q ∈ Eb, and therefore σ1 with Eb
already satisfy (i) and (ii).

Otherwise, we have that Q 6∈ dom(σ1) and (i, j) is Z-important in E ∪ {Q}. It is
enough to show how to extend σ1 to an admissible assignment τ which assigns a value to
Q such that (i) and (ii) are satisfied with τ in place of σ and E ∪ {Q1−τ(Q)} in place of
E.

Observe that (i, j) is not Z-important in E. This is because σ1 with E satisfy (ii) and
Q 6∈ dom(σ1). We consider three cases.

Case 1. Suppose that Q ∈ V (i, j, ·) (resp. Q ∈ I(j, ·) and i = 1). Because (i, j) is
not V - (resp. I-) important in E, there are less than n/2 (resp. r/2) positive and no
negative literals of variables from V (i, j, ·) (resp. I(j, ·)) in E. Pick any ` ∈ [n] such that
V (i, j, `) 6∈ E ∪ {Q} (resp. any m ∈ [r] such that I(j,m) 6∈ E ∪ {Q}) and extend σ1 to
τ by setting V (i, j, ·) to ` (resp. I(j, ·) to m). This choice makes τ with E ∪ {Q} satisfy
(i) and (ii). From the construction and the fact that σ1 is an admissible assignment it
follows that τ is too. In particular, to see that (C4) - (C8) are satisfied by τ , note that
since σ1 satisfies (C2), (C3) and Q 6∈ dom(σ1), no variable from D(i, j, ·, ·) is in dom(σ1)
(and hence is not in dom(τ) either), and there is no edge in Gσ1 incident to (i, j) (and
hence there is no such edge in Gτ either).

Case 2. Suppose that Q ∈ D(i, j, ·, ·). Since (i, j) is not D-important in E, no literal
of a variable from D(i, j, ·, ·) is in E. Because σ1 satisfies (C2) and Q 6∈ dom(σ1), there
is no edge of Gσ1 incident to (i, j). But V (i, j, ·) (resp. I(j, ·) if i = 1) may be set by
σ1. If (i, j) ∈ {2, . . . , s} × [t], set D(i, j, ·, ·) to an arbitrary non-tautological clause with
n literals, unless (i, j) = (s, t), in which case set D(i, j, ·, ·) to the empty clause. Then,
set V (i, j, ·), unless it is already set by σ1, to any value ` ∈ [n] such that V (i, j, `) 6∈ E.
Such ` exists, because if V (i, j, ·) is not set by σ1 then (i, j) is not V -important in E, and
hence there are more than n/2 available values to choose ` from. If i = 1, either I(j, ·)
is set by σ1 to some m ∈ [r] and we set D(1, j, ·, ·) to any non-tautological clause with n
literals that contains the literals of Cm, or I(j, ·) is not set by σ1, in which case we first
set it to any m ∈ [r] such that I(j,m) 6∈ E and then we set D(1, j, ·, ·) as before; such
m exists because if I(j, ·) is not set by σ1 then (1, j) is not I-important in E, and hence
there are more than r/2 available values to choose m from. Like in the previous case, it
is easy to check that in each of the subcases considered we extended σ1 to an admissible
assignment τ such that τ with E ∪ {Q1−τ(Q)} satisfy (i) and (ii).

Case 3. Suppose that Q ∈ L(i, j, ·) (if Q ∈ R(i, j, ·) we proceed in a completely
analogous way). We may assume that V (i, j, ·) is set to some clause Ci,j and D(i, j, ·, ·)
is set to some ` ∈ [n] by σ1; if not, perform the steps in Case 2 to set them both. We
have to set L(i, j, ·) to some j′, i.e., we have to add to Gσ1 an edge from (i, j) to a left
child (i − 1, j′), and the first set U1 of pairs (i − 1, j′) we would like to avoid are the
vertices of Gσ1 . To upper bound the number of vertices of its subgraph Gρ that are on
level i−1, we use items (i) - (iii) of Lemma 10. According to these items, Gρ has on level
i − 1: at most |Ai−1| ≤ 2pt endpoints of edges between levels i − 1 and i − 2, further,
at most |Bi−1| = 2|Ai| ≤ 4pt endpoints of edges between levels i and i− 1, and at most
|AD|+ |AV | ≤ 4pt (or |AD|+ |AI | ≤ 4pt if i−1 = 1) isolated vertices. To upper bound the
number of vertices in Gσ1 on level i− 1 that are not in Gρ, note that by the minimality
of σ1, each such vertex either is or shares an edge with a Z ′-important pair in E for
some Z ′ ∈ {D, V, I, R, L}. By items (i) - (v) of Lemma 14, there are at most 4w pairs
that can in this way give rise to a vertex in Gσ1 on level i − 1 that is not in Gρ. Hence
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|U1| ≤ 10pt+ 4w.
The second set U2 of pairs (i−1, j′) we would like to avoid when looking for a suitable

left child of (i, j) are those with L(i, j, j′) ∈ E (because we want τ to satisfy (i)). Because
(i, j) is not L-important in E, we have |U2| < t/2.

The third set U3 of pairs (i−1, j′) we would like the left child of (i, j) to avoid depends
on whether i = 2 or i ∈ {3, . . . , s}. If i = 2, since σ1 satisfies (C4), we know that C2,j has
at least n − 1 literals (because s ≥ n + 1) and that the clause at the left child of (2, j)
is completely determined by C2,j (because we want τ to satisfy (C4)): it is the clause
(C2,j \ {¬x`}) ∪ {x`}. Pick some m ∈ [r] such that the clause Cm of F is a subset of
(C2,j\{¬x`})∪{x`}. For some j′ ∈ [t], we want to set D(i−1, j′, ·, ·) to (C2,j\{¬x`})∪{x`}
and I(j′, ·) to m by τ (in order to satisfy (C6)), but this is not possible if I(j′,m) ∈ E.
For this reason, in the case i = 2 we define U3 := {(1, j′) : I(j′,m) ∈ E}. By item (vi) of
Lemma 14, |U3| ≤ t/4.

If i ∈ {3, . . . , s}, we are concerned with the case that Ci,j has less than n− 1 literals;
otherwise we leave U3 empty. Since σ1 satisfies (C4), no literal of x` is in Ci,j, and Ci,j
has at least s − i literals. Pick some `′ ∈ [n] such that no literal of x`′ is in Ci,j ∪ {x`}.
For some j′ ∈ [t], we want to set D(i − 1, j′, ·, ·) to Ci,j ∪ {x`} and V (i − 1, j′) to `′ (to
make τ satisfy (C4)). But this is not possible to do if V (i − 1, j′, `′) ∈ E. Therefore, in
the case i ∈ {3, . . . , s} we define U3 := {(i− 1, j′) : V (i− 1, j′, `′) ∈ E}. Thanks to item
(vii) of Lemma 14, we have |U3| ≤ t/4 again.

Now set L(i, j, ·) to j′ such that (i − 1, j′) 6∈ U1 ∪ U2 ∪ U3. Such j′ exists because
|U1 ∪ U2 ∪ U3| ≤ 10pt + 4w + t/2 + t/4 < t by (18). Also, set D(i − 1, j′, ·, ·) and either
I(j′, ·) (if i = 2) or V (i − 1, j′, ·) (if i ∈ {3, . . . , s}) as indicated at the definition of U3.
In the case where we left U3 empty, set D(i − 1, j′, ·, ·) to (Ci,j \ {¬x`}) ∪ {x`} and set
V (i− 1, j′, ·) to any `′ ∈ [n] such that V (i− 1, j′, `′) 6∈ E; such `′ exists because (i− 1, j′)
is not V -important in E (by avoiding U1). This finishes the definition of τ . Item (ii) is
satisfied by τ and E ∪ {Q1−τ(Q)} because D(i, j, ·, ·) is set by τ . Item (i) follows for the
variables in D(i, j, ·, ·), V (i, j, ·) because we set them using Case 2; for the variables in
L(i, j, ·) because (i − 1, j′) 6∈ U2; and for the variables in D(i − 1, j′, ·, ·), V (i − 1, j′, ·),
I(j′, ·) by avoiding U3 and because (i − 1, j′) is neither D- nor V - nor I-important in
E (due to avoiding U1). Finally, τ is an admissible assignment: the reasons why (C4)
and (C6) are satisfied at (i − 1, j′) are given at the definition of U3, and the remaining
conditions are easy to check due to avoiding U1.

Remark 20. If we assume s = n + 1 in Theorem 7 (instead of assuming only s ≥ n + 1)
then we can allow t to be smaller: it is enough to assume that t ≥ r2+ε. This can be
useful if one wants to reduce the number of variables of REFFs,t while keeping the lower
bound of the theorem valid. The latter can be showed by making only the following
modification in the proof of Theorem 7: change the definition of p to p = s−1/3t−a

′
with

a′ = min
{

1+ε
3+ε

, 1
2

}
, and change the definition of w to w = s1/3t3/5.

We note that if in the definition of REFFs,t we encode the functions determined by V -
and I-variables in binary instead of in unary, the assumption t ≥ r3+ε in Theorem 7 is
not necessary (and the proof of the theorem simplifies somewhat), and, in addition, the
L- and R-variables can be encoded in binary too (with some further simplifications of
the proof). This reduces the number of variables of REFFs,t in two ways, by allowing a
smaller t and by using a more efficient encoding.

Remark 21. Most of the obstacles our proof has to overcome are caused by the nature of
the object described by REFFs,t and by the fact that the functions determined by V, I, L,R-
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variables are encoded in unary, rather than in binary. This forces us to work with several
notions of width of two kinds, and we cannot keep as an invariant of the maintained partial
assignment that it falsifies all literals of a clause as we traverse the refutation (as is the
case e.g. in [10]). Moreover, keeping falsified just the literals with important indices and
adding some simple conditions about not directly falsifying an axiom (a method which
works e.g. in [7] for the pigeonhole principle) is not enough either, because we need to be
prepared to consistently answer the prover’s questions about clauses situated at remote
parts of the same not too small component (learnt through the L- and R-variables). This
is further complicated by the need to respond by adding a fresh literal to a clause that
has too few literals to make sure its width grows fast enough (such clauses originate in
the component of the empty clause), and by the necessity to arrive to a weakening of a
clause in F when asked how a clause on level 2 is derived; both are more difficult to meet
under the unary encoding and pose specific requirements on random restrictions. Our
strategy stores some useful information in the form of negating some other literals than
just those with important indices in a clause, as can be seen in the hierarchy of setting
of variables of different kinds in Definition 15.

5 Reflection Principle for Resolution

We express the negation of the reflection principle for Resolution by a CNF in the form
of a conjunction SATn,r ∧ REFn,rs,t . The only shared variables by the formulas SATn,r

and REFn,rs,t encode a CNF with r clauses in n variables. The meaning of SATn,r is that
the encoded CNF is satisfiable, while the meaning of REFn,rs,t is that it has a resolution
refutation of s levels of t clauses. A formal definition is given next.

Formula SATn,r has the following variables. C-variables C(m, `, b), m ∈ [r], ` ∈
[n], b ∈ {0, 1}, encode clauses Cm as follows: C(m, `, 1) (resp. C(m, `, 0)) means that
the literal x` (resp. ¬x`) is in Cm. T -variables T (`), ` ∈ [n], and T (m, `, b), m ∈
[r], ` ∈ [n], b ∈ {0, 1}, encode that an assignment to variables x1, . . . , xn satisfies the CNF
{C1, . . . , Cr}. The meaning of T (`) is that the literal x` is satisfied by the assignment.
The meaning of T (m, `, 1) (resp. T (m, `, 0)) is that clause Cm is satisfied through the
literal x` (resp. ¬x`).

We list the clauses of SATn,r:

T (m, 1, 1) ∨ T (m, 1, 0) ∨ . . . ∨ T (m,n, 1) ∨ T (m,n, 0) m ∈ [r], (20)

¬T (m, `, 1) ∨ T (`) m ∈ [r], ` ∈ [n], (21)

¬T (m, `, 0) ∨ ¬T (`) m ∈ [r], ` ∈ [n], (22)

¬T (m, `, b) ∨ C(m, `, b) m ∈ [r], ` ∈ [n], b ∈ {0, 1}. (23)

The meaning of (20) is that clause Cm is satisfied through at least one literal. The
meaning of (21) and (22) is that if Cm is satisfied through a literal, then the literal is
satisfied. The meaning of (23) is that if Cm is satisfied through a literal, then it contains
the literal.

Variables of REFn,rs,t are the variables C(m, `, b) of SATn,r together with all the vari-

ables of REFFs,t for some (and every) F of r clauses in n variables. That is, REFn,rs,t
has the following variables: C(m, `, b) for m ∈ [r], ` ∈ [n], b ∈ {0, 1}; D(i, j, `, b) for
i ∈ [s], j ∈ [t], ` ∈ [n], b ∈ {0, 1}; R(i, j, j′) and L(i, j, j′) for i∈ [s]\{1}, j, j′ ∈ [t]; V (i, j, `)
for i∈ [s]\{1}, j ∈ [t], ` ∈ [n]; I(j,m) for j ∈ [t],m ∈ [r].
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The clauses of REFn,rs,t are (2) - (15) of REFFs,t together with the following clauses (to
replace clauses (1)):

¬I(j,m) ∨ ¬C(m, `, b) ∨D(1, j, `, b) j ∈ [t],m ∈ [r], ` ∈ [n], b ∈ {0, 1}, (24)

saying that if clause C1,j is a weakening of clause Cm, then the former contains each
literal of the latter. So the difference from (1) is that Cm is no longer a clause of some
fixed formula F , but it is described by C-variables.

Lemma 22. Let F be a CNF with r clauses C1, . . . , Cr in n variables x1, . . . , xn, and
let γF be an assignment such that its domain are all C-variables and γF (C(m, `, b)) = 1
if xb` ∈ Cm and γF (C(m, `, b)) = 0 if xb` /∈ Cm. There is a substitution τ that maps the
variables of SAT � γF to {0, 1} ∪ {xb` : ` ∈ [n], b ∈ {0, 1}} such that (SAT � γF ) � τ is F
together with some tautological clauses.

Proof. Define τ as follows. If γF (C(m, `, b)) = 0, then τ(T (m, `, b)) = 0. This satisfies
(21) - (23) and deletes T (m, `, b) from (20). If γF (C(m, `, b)) = 1, then (23) has been
satisfied and we define τ(T (m, `, b)) = xb` and τ(T (`)) = x`. This choice turns (21) - (22)
into a tautological clauses and correctly substitutes the remaining literals of (20) to yield
the clause Cm of F .

A polynomial size Res(2) upper bound for SATn,r ∧ REFn,rs,t , is proved in Section 6.
We now prove the lower bound, stated in the introduction as Theorem 2 and restated
below as Theorem 23.

Theorem 23. For every c > 4 there is δ > 0 and an integer n0 such that if n, r, s, t are
integers satisfying

t ≥ s ≥ n+ 1, r ≥ n ≥ n0, nc ≥ t ≥ r4, (25)

then any resolution refutation of SATn,r ∧ REFn,rs,t has length greater than 2n
δ
.

Proof. Fix c > 4. We first observe that if Π is a resolution refutation of SATn,r ∧REFn,rs,t
and γ is a partial assignment such that its domain are all C-variables, then Π � γ is
either a refutation of REFn,rs,t �γ, or a refutation of SATn,r �γ. This is because Π �γ is a
resolution refutation and the two restricted formulas do not share any variables.

Let F be a CNF with r clauses in n variables, and let γF be a partial assignment
defined in Lemma 22, which evaluates the C-variables so that they describe the clauses
of F . Notice that REFn,rs,t �γF is REFFs,t, since γF turns the clauses (24) into the clauses
(1) (and removes the satisfied clauses). Therefore, in the case that Π�γF is a refutation
of REFn,rs,t �γF and F is unsatisfiable, the lower bound of Theorem 7 applies (setting ε = 1
in that theorem, there is n0 such that conditions (16) on n, r, s, t follow from (25)): the
theorem yields some δ1 > 0 such that the length of Π�γF is at least 2n

δ1 .
On the other hand, if Π � γF is a refutation of SATn,r � γF , the substitution τ from

Lemma 22 takes it into a not larger resolution refutation of F (since tautological clauses
can be removed from any resolution refutation).

It remains to take any unsatisfiable formula F whose number of clauses is polynomially
related to the number of variables and that requires resolution refutations of exponential
length, e.g. negation of the pigeonhole principle [5]. A trivial modification of F to serve
also in the extreme case r = n allowed by (25) yields δ2 > 0 such that any resolution
refutation of F has length greater than 2n

δ2 , where n is the number of variables of F .
Setting δ to the minimum of δ1 and δ2 concludes the proof of the theorem.
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A similar proof gives Theorem 3. We restate the theorem below for convenience.

Theorem 24. Let δ1 > 0 and let {An}n≥1 be a family of unsatisfiable CNFs such that
An is in n variables, has the number of clauses polynomial in n, and has no resolution
refutations of length at most 2n

δ1 . Then there is δ > 0 and a polynomial p such that
An ∧ REFAnn+1,p(n) has no resolution refutations of length at most 2n

δ
and has polynomial

size Res(2) refutations.

Proof. Let p(n) ≥ max{r4, t0}, where r is the maximum of the number of clauses of An
and n, and t0 is given by Theorem 7 for ε = 1. That theorem and the assumptions on An
give the required lower bound. To get the upper bound, start with the Res(2) refutation
of SATn,r ∧ REFn,rn+1,p(n) given by Theorem 4. Take the substitutions γAn and τ from

Lemma 22 and observe that ((SATn,r∧REFn,rn+1,p(n))�γAn)�τ is An∧REFAnn+1,p(n) together
with some tautological clauses.

6 The Upper Bounds

We restate and prove Theorem 4 from the Introduction.

Theorem 25. The negation of the reflection principle for Resolution expressed by the
formula SATn,r ∧ REFn,rs,t has Res(2) refutations of size O(trn2 + tr2 + st2n3 + st3n).

Proof. By induction on i ∈ [s] we derive for each j ∈ [t] the formula

Di,j :=
∨

`∈[n],b∈{0,1}

(
D(i, j, `, b) ∧ T (`)b

)
. (26)

Then, cutting Ds,t with (7) for each ` ∈ [n] and b ∈ {0, 1}, yields the empty clause.
Base case: For each j ∈ [t] we shall derive D1,j. For each m ∈ [r], ` ∈ [n], b ∈ {0, 1},

cut (23) with (24) to obtain ¬I(j,m)∨¬T (m, `, b)∨D(1, j, `, b). Applying ∧-introduction
to this and ¬T (m, `, b) ∨ T (`)b (which is either (21) or (22)) yields

¬I(j,m) ∨ ¬T (m, `, b) ∨
(
D(1, j, `, b) ∧ T (`)b

)
. (27)

Cutting (27) for each ` ∈ [n] and b ∈ {0, 1} with (20) gives ¬I(j,m)∨D1,j. Cutting these
clauses for m ∈ [r] with (9) yields D1,j.

Induction step: Assume we have derived Di−1,j′ for all j′ ∈ [t]. For each j ∈ [t] we
shall derive Di,j. Write P1 in place of L and P0 in place of R.

For each ` ∈ [n], b ∈ {0, 1}, j′ ∈ [t], cut ¬D(i−1, j′, `, 1)∨¬D(i−1, j′, `, 0) (from (2))
with ¬P1−b(i, j, j

′) ∨ ¬V (i, j, `) ∨D(i− 1, j′, `, 1− b) (which is from (3) or (4)) to obtain
¬P1−b(i, j, j

′) ∨ ¬V (i, j, `) ∨ ¬D(i− 1, j′, `, b). Cut this with Di−1,j′ to get

¬P1−b(i, j, j
′) ∨ ¬V (i, j, `) ∨

(
Di−1,j′ \ {D(i− 1, j′, `, b) ∧ T (`)b}

)
. (28)

Cutting (28) with axiom T (`) ∨ ¬T (`) yields

¬P1−b(i, j, j
′) ∨ ¬V (i, j, `) ∨ T (`)1−b

∨ (Di−1,j′ \ {D(i− 1, j′, `, 0) ∧ ¬T (`), D(i− 1, j′, `, 1) ∧ T (`)}) .
(29)
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Next, for each `′ ∈ [n] \ {`} and b′ ∈ {0, 1}, apply ∧-introduction to T (`′) ∨ ¬T (`′) and
¬P1−b(i, j, j

′) ∨ ¬V (i, j, `) ∨ ¬D(i− 1, j′, `′, b′) ∨D(i, j, `′, b′) (from (5) or (6)) to get

¬P1−b(i, j, j
′) ∨ ¬V (i, j, `) ∨

(
D(i, j, `′, b′) ∧ T (`′)b

′
)

∨ ¬D(i− 1, j′, `′, b′) ∨ T (`′)1−b′ .
(30)

Cutting (30), for each `′ ∈ [n] \ {`} and b′ ∈ {0, 1}, with (29) results, after a weakening,
in

¬P1−b(i, j, j
′) ∨ ¬V (i, j, `) ∨ T (`)1−b ∨Di,j. (31)

Recall that we have obtained (31) for each ` ∈ [n], b ∈ {0, 1}, j′ ∈ [t]. For each ` ∈ [n]
and b ∈ {0, 1}, cut the clauses (31), j′ ∈ [t], with

∨
j′∈[t] P1−b(i, j, j

′) (from (10) or (11))
to derive

¬V (i, j, `) ∨ T (`)1−b ∨Di,j. (32)

For each ` ∈ [n], cut 32 for b = 0 and b = 1 on variable T (`) to get ¬V (i, j, `)∨Di,j, and
from these clauses derive Di,j by cuts with (8).

As for bounding the size of the refutation, the size of the base case is O(trn2+tr2), the
total size of the induction steps is O(st2n3 + st3n), and the size of the finish is O(n2).

Acknowledgement. I thank Albert Atserias, Ilario Bonacina, Tuomas Hakoniemi and
Moritz Müller for their comments.
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A Formula REF of Atserias and Müller

The purpose of this section is to give an answer to the lower bound question from [2] in
its original formulation, in which the refutation statement is formulated a bit differently
from our REFFs,t.

We list the clauses of the formula REF(F, s̃) of [2]:

V [u, 0] ∨ V [u, 1] ∨ . . . ∨ V [u, n] u∈ [s̃], (33)

I[u, 0] ∨ I[u, 1] ∨ . . . ∨ I[u, r] u∈ [s̃], (34)

L[u, 0] ∨ L[u, 1] ∨ . . . ∨ L[u, s̃] u∈ [s̃], (35)

R[u, 0] ∨R[u, 1] ∨ . . . ∨R[u, s̃] u∈ [s̃], (36)

¬V [u, i] ∨ ¬V [u, i′] u∈ [s̃], i, i′∈ [n] ∪ {0}, i 6= i′, (37)

¬I[u, j] ∨ ¬I[u, j′] u∈ [s̃], j, j′∈ [r] ∪ {0}, j 6= j′, (38)

¬L[u, v] ∨ ¬L[u, v′] u∈ [s̃], v, v′∈ [s̃] ∪ {0}, v 6= v′, (39)

¬R[u, v] ∨ ¬R[u, v′] u∈ [s̃], v, v′∈ [s̃] ∪ {0}, v 6= v′, (40)

¬I[u, 0] ∨ ¬V [u, 0] u∈ [s̃], (41)

I[u, 0] ∨ V [u, 0] u∈ [s̃], (42)

¬I[u, 0] ∨ ¬L[u, 0] u∈ [s̃], (43)

¬I[u, 0] ∨ ¬R[u, 0] u∈ [s̃], (44)

¬L[u, v] u, v∈ [s̃], u ≤ v, (45)

¬R[u, v] u, v∈ [s̃], u ≤ v, (46)

¬L[u, v] ∨ ¬V [u, i] ∨D[v, i, 1] u, v∈ [s̃], i∈ [n], b∈{0, 1}, (47)

¬R[u, v] ∨ ¬V [u, i] ∨D[v, i, 0] u, v∈ [s̃], i∈ [n], b∈{0, 1}, (48)

¬L[u, v] ∨ ¬V [u, i] ∨ ¬D[v, i′, b] ∨D[u, i′, b] u, v∈ [s̃], i, i′∈ [n], b∈{0, 1}, i 6= i′, (49)

¬R[u, v] ∨ ¬V [u, i] ∨ ¬D[v, i′, b] ∨D[u, i′, b] u, v∈ [s̃], i, i′∈ [n], b∈{0, 1}, i 6= i′, (50)

¬I[u, j] ∨D[u, i, b] u∈ [s̃], j∈ [r], xbi ∈Cj, (51)

¬D[u, i, 0] ∨ ¬D[u, i, 1] u∈ [s̃], i∈ [n], (52)

¬D[s̃, i, b] i∈ [n], b∈{0, 1}. (53)

The meanings of the variables and clauses of REF(F, s̃) are very similar to those
of REFFs,t, which we described in words in detail, so let us concentrate on the main
differences. First of all, the clauses described by REF(F, s̃) through D-variables are
indexed from 1 to s̃; this is their order in the refutation they should form (and they are
not arranged in levels). Moreover, unlike in REFFs,t where each clause described by D-
variables, with the exception of clauses on level 1, has to be derived only by the resolution
rule, in REF(F, s̃) there are both options (weakening of a clause in F and the resolution
rule). That exactly one of these options must be chosen in a valid resolution refutation
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is ensured with the help of (41), (42), and the additional value 0 that the second index
of V, I, L,R-variables can attain. In particular, any assignment satisfying REF(F, s̃)
evaluates to 1 exactly one of the variables in {I[u, j] : j ∈ [r]} ∪ {V [u, i] : i ∈ [n]}.

We show how a lower bound on the length of resolution refutations for the formula
REF(F, s̃) follows from the lower bound for REFFn+1,t.

Let F be a CNF in n variables with r clauses and assume the parameter s̃ in REF(F, s̃)
is such that t = b s̃

n+1
c satisfies condition (16) of Theorem 7 for REFFn+1,t.

It is straightforward to assign some variables of REF(F, s̃) so that after removing the
satisfied clauses, the formula becomes REFFn+1,t up to a renaming of variables (and after

removing certain clauses from (5) and (6) in REFFn+1,t, which immediately follow from
(2) - (4) anyway). First, set the appropriate variables in REF(F, s̃) so that the clauses
D1, D2, . . . , Ds−t(n+1) described by the formula are all obtained, say, by a weakening of
the clause C1 ∈ F , and that none of these clauses is used as a premise of the resolution
rule. Then, arrange the remaining clauses into n + 1 levels of t clauses. Evaluate to 1
all variables L[u, 0], R[u, 0] with u on the first level, and evaluate to 0 all the remaining
L[u, v], R[u, v] except for those with u on the first highest level than v. Further, evaluate
to 1 all variables V [u, 0] with u on the first level, and evaluate to 0 all the remaining
V [u, i] except for those with u from second to last level and a non-zero i. Next, evaluate
to 1 all I[u, 0] with u from second to last level, and evaluate to 0 all the remaining I[u, j]
variables except for those on the first level with a non-zero j. Finally, replace all the
non-evaluated variables by the corresponding variables of REFFn+1,t, respecting the above
chosen arrangement to n+ 1 levels of t clauses.

Since the substitution just described takes any refutation of REF(F, s̃) to a refutation
of REFFn+1,t without any increase in size, Theorem 7 implies an exponential resolution
size lower bound for the original formula REF(F, s̃) of Atserias and Müller, as stated in
the following theorem.

Theorem 26. For each ε > 0 there is δ > 0 and an integer t0 such that if n, r, s̃ are
integers satisfying

r ≥ n ≥ 2,

⌊
s̃

n+ 1

⌋
≥ r3+ε,

⌊
s̃

n+ 1

⌋
≥ t0,

and F is an unsatisfiable CNF consisting of r clauses C1, . . . , Cr in n variables x1, . . . , xn,

then any resolution refutation of REF(F, s̃) has length greater than 2b
s̃

n+1
cδ .
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