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Abstract

We prove that the OR function on {−1, 1}n can be point-wise approximated with error
ε by a polynomial of degree O(k) and weight 2O(n log(1/ε)/k), for any k ≥

√
n log(1/ε). This

result is tight for k = (1 − Ω(1))n. Previous results were either not tight or had ε = Ω(1).
In general we obtain a tight approximate degree-weight result for any symmetric function.
Building on this we also obtain an approximate degree-weight result for bounded-width CNF.
For these two classes no such result was known.

One motivation for such results comes from the study of indistinguishability. Two dis-
tributions P , Q over n-bit strings are (k, δ)-indistinguishable if their projections on any k
bits have statistical distance at most δ. The above approximations give values of (k, δ) that
suffice to fool OR, symmetric functions and bounded-width CNF, and the first result is tight
for all k while the second result is tight for k = (1 − Ω(1))n. We also show that any two
(k, δ)-indistinguishable distributions are O(n)k/2δ-close to two distributions that are (k, 0)-
indistinguishable, improving the previous bound of O(n)kδ. Finally we present proofs of
some known approximate degree lower bounds in the language of indistinguishability, which
we find more intuitive.

1 Introduction

The idea of approximating boolean functions point-wise using real-valued polynomials of
“low complexity” has been a powerful tool in theoretical computer science. A natural notion
of complexity of the polynomial is its degree, extensively studied since the seminal work by
Nisan and Szegedy [NS94]. We can also consider the weight of the approximating polynomial,
that is the sum of absolute value of its coefficients, which was studied under the name
“spectral norm” in [AFH12, AFK17] for polynomials over {−1, 1}. In this paper we study
weight in conjunction with degree, and we will show that we can typically trade degree with
weight for approximating several large classes of functions over some basis.

Bogdanov and Williamson [BW17] showed tight degree-weight tradeoffs for approximat-
ing OR on {−1, 1}n within constant error. To set context, recall that the approximate degree
of OR is Θ(

√
n) [NS94]. They showed that OR can be approximated in degree O(k) and

weight 2O(n/k) for k ≥
√
n, and this is tight. Prior to their results, Servedio et al. [STT12]

showed w = 2Õ(n/k); Chandrasekaran et al. [CTUW14] showed w = 2Õ(n log2(1/ε)/k) for
error ε when k ≥

√
n log(1/ε); Bun and Thaler [BT15] showed w = 2Ω(n/k). Apparently
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little degree-weight tradeoff result was known for arbitrary symmetric functions and non-
symmetric functions.

Bounds on the weight of approximations have several applications, ranging from differen-
tial privacy [CTUW14], to attribute efficient learning [KS06, STT12], and to indistinguish-
ability [BW17].

1.1 Our results: approximate degree-weight

We prove a tight result for approximating the OR function. This refines the result in [BW17]
by including the dependency on the error ε, and the upper bound improves on the result in
[CTUW14] by getting a better dependence on log(1/ε) and removing the other log terms.
Jumping ahead, this kind of improvement is critical to obtain our result for t-CNF, because
we will need to set ε exponentially small. However our improvements don’t seem to affect
their applications mentioned above.

We state the upper and lower bounds as separate theorems. Note that in the lower
bound for k ≤ c

2n we have 2(cn/k−1) log(1/ε) ≥ 2cn log(1/ε)/2k, so the upper bound is tight for
k = (1− Ω(1))n.

Theorem 1.1. For every ε, n, k satisfying
√
n log(1/ε) ≤ k ≤ n, ORn can be ε-approximated

on {−1, 1}n in degree O(k) and weight 2O(n log(1/ε)/k).

Theorem 1.2. There exists a constant c < 1 such that for every ε, n, k ≤ n, if a polynomial
p ε-approximates ORn on {−1, 1}n in degree k, then its weight is at least 2(cn/k−1) log(1/ε).

These theorems are special cases of the following results for symmetric functions. A
function is symmetric if its value only depends on the Hamming weight of the input, i.e. the
number of −1’s in the input on {−1, 1}n. For a symmetric function fn with input length
n, let τ(fn) denote the smallest number t ∈ [0, n2 ] such that fn is constant on inputs of
Hamming weight in (t, n − t). For 0 ≤ t ≤ n

2 , let SYMn,t denote the class of symmetric
functions fn with τ(fn) = t. To set context, the ε-approximate degree of any f ∈ SYMn,t is

Θ
(√

n(log(1/ε) + t)
)

[Pat92, dW08].

Again we state the upper and lower bounds separately.

Theorem 1.3. For every ε, n, t, k satisfying
√
n(log(1/ε) + t) ≤ k ≤ n, every function

f ∈ SYMn,t can be ε-approximated on {−1, 1}n in degree O(k) and weight 2O(n(log(1/ε)+t)/k).

Theorem 1.4. There exists a constant c < 1 such that for every ε, n, t, and k with k ≤ c
2n

and 0 ≤ t ≤ n
2 , if a polynomial p ε-approximates f ∈ SYMn,t on {−1, 1}n in degree k, then

its weight is at least 2Ω(n(log(1/ε)+t)/k).

Independently and concurrently, Bogdanov et al. [BMTW19] obtained a similar re-

sult with a weaker upper bound: degree O(k) and weight 2O(n(logn(1/ε)+t) log2 n/k) for k ≥√
n(logn(1/ε) + t) log n.
We then move to non-symmetric functions. A t-CNF is a CNF with clauses of size t.

Sherstov [She18] proved that the ε-approximate degree of t-CNF is Ot

(
n

t
t+1 (log(1/ε))

1
t+1

)
.

For t = 2 and constant ε this isO(n2/3). We prove the following degree-weight approximation
for t-CNF, which recovers [She18] and shows that the larger the degree k the smaller the

weight w we can have, up to about w = 2O(n1−1/t). For t = 2 the latter is 2O(
√
n).

Theorem 1.5. For every ε, n, t, k satisfying n
t
t+1 (log(1/ε))

1
t+1 ≤ k ≤ n, there exists

constant ct depending on t such that any t-CNF can be ε-approximated on {−1, 1}n in degree

ct · k and weight 2ct·n(log(1/ε))1/t/k1/t.
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1.2 Fourier vs. Boolean basis, and our results for approxi-
mate degree-weight of EXACT and AND

In Section 1.1 we approximate the functions over the Fourier basis {−1, 1}, where 1 rep-
resents False and −1 represents True. Alternatively we can use 0 for False and 1 for True,
called the Boolean basis. In some cases the Fourier basis is more convenient as negation of
variables becomes negation of values; while in some other case the Boolean basis is more
convenient as multiplication is equivalent to AND.

The degree of a polynomial is basis invariant, but the weight is not. The following lemma
shows the direction from the Boolean basis to the Fourier Basis, proved in Section 2.

Lemma 1.6. For any polynomial f : {0, 1}n → R on the Boolean input basis, we have a
polynomial representing the same function on the Fourier input basis with the same weight.

The other direction is not always true. For example, as shown in the following claims,
PARITY and OR have large weights on {0, 1}n, even though PARITY has constant weight
on {−1, 1}n with degree n, and OR has much smaller weight for large degrees on {−1, 1}n
as shown in Theorem 1.1. Claim 1.8 shows that it is impossible to get approximate degree-
weight tradeoffs for ORn over {0, 1}. For completeness we present their proofs in Section
8.

Claim 1.7. For any ε ∈ (0, 1), the weight of any polynomial f that ε-approximates PARITY : {0, 1}n →
{−1, 1} is at least (1− ε)2n.

Claim 1.8. For any fixed ε ≤ 1
3 , the weight of any polynomial f that ε-approximates

OR : {0, 1}n → {0, 1} is 2Ω(
√
n).

Therefore approximate degree-weight tradeoff upper bounds on {0, 1}n are stronger than
those on {−1, 1}n. In fact, to prove Theorem 1.3 for symmetric functions on {−1, 1}n, we
actually prove the following stronger result on {0, 1}n for EXACTn,n−t, where

EXACTn,r(x) =

{
1 if the Hamming weight of x is r,
0 otherwise.

Note that both EXACTn,t and EXACTn,n−t belong to the class SYMn,t for 0 ≤ t ≤ n
2 , but on

{0, 1}n we can only prove the theorem for EXACTn,n−t since EXACTn,t = 1−ORn for t = 0.

Theorem 1.9. For every ε, k, n, t such that
√
n(log(1/ε) + t) ≤ k ≤ n and 0 ≤ t ≤ n

2 ,
there is a polynomial p : {0, 1}n → R that ε-approximates EXACTn,n−t with degree O(k) and
weight 2O(n(log(1/ε)+t)/k).

A straightforward corollary using Lemma 1.6 is that the same parameters also work for
{−1, 1}n. In particular, as ANDn = EXACTn,n, we get the following approximate degree-
weight tradeoff upper bound for ANDn with arbitrary accuracy on both basis, in contrast
to ORn. Note that ANDn has constant weight on {0, 1}n with degree n, matched by this
result. Also note that by Theorem 1.2 and De Morgan’s rule this upper bound is tight over
{−1, 1} for k = (1 − Ω(1))n, thus also tight over {0, 1} for the same range of k by Lemma
1.6.

Corollary 1.10. For every ε, n, k satisfying
√
n log(1/ε) ≤ k ≤ n, ANDn can be ε-

approximated on {0, 1}n and on {−1, 1}n in degree O(k) and weight 2O(n log(1/ε)/k).

It is instructive to see why for ORn we can only use ORn ∈ SYMn,0 and thus the weaker
result for SYMn,0 on {−1, 1}n. The reason is that if we try to use De Morgan’s rule on
{0, 1}n from ANDn, by substituting each xi with 1 − xi, the weight will be blown up to be
exponential in the degree as Claim 2.2 will show, eliminating the potential degree-weight
tradeoff.

3



1.3 Our results: (k, δ)-indistinguishability

One of our motivations for these approximation results comes from our interest in indistin-
guishability. Two distributions on n bits are called k-wise indistinguishable if the marginals
on any k bits are identical. It seems natural to ask which functions are fooled by k-wise indis-
tinguishability, or in other words cannot distinguish any two k-wise indistinguishable distri-
butions. Linear programming duality shows that k-wise indistinguishability fools a function
f if and only if the approximate degree of f is at most k [BIVW16, Theorem 1.1]. We will
have more discussions about that in Section 1.4.

We study a natural relaxation of indistinguishability [BIVW16], defined next.

Definition 1.11. Two distributions on n bits are (k, δ)-indistinguishable if the marginals
on any k bits are δ-close in statistical distance.

A function f : {0, 1}n → R is ε-fooled by (k, δ)-indistinguishability if for any two (k, δ)-
indistinguishable distributions P and Q we have |E[f(P )]− E[f(Q)]| ≤ ε.

Actually in the aforementioned paper, Bogdanov and Williamson [BW17] proved tradeoff
results in terms of (k, δ)-indistinguishability. They showed that if f can be ε-approximated
on {−1, 1}n in degree k and weight w, then f is ε-fooled by (k, δ)-indistinguishability for
δ = ε/w. Using this they showed that k ≥

√
n, (k, δ)-indistinguishable fools OR for any

δ = 2−O(n/k). They also show that this is tight. However, as mentioned before, they only
consider fooling by constant error.

Using this connection in [BW17] (see also Theorem 2.4), tradeoffs between degree and
weight imply tradeoffs between k and δ. Therefore the following “fools” theorems for OR,
symmetric functions, and t-CNF/DNF follow from our degree-weight tradeoff upper bounds
for approximating these functions.

Theorem 1.12. For every ε, n, and k satisfying Ω
(√

n log(1/ε)
)
≤ k ≤ n,

(
k, 2−O(n log(1/ε)/k)

)
-

indistinguishability ε-fools ORn.

Theorem 1.13. For every ε, n, t, k satisfying Ω
(√

n(log(1/ε) + t)
)
≤ k ≤ n,

(
k, 2−O(n(log(1/ε)+t)/k)

)
-

indistinguishability ε-fools any function f ∈ SYMn,t.

Theorem 1.14. For every ε, n, t, k satisfying n
t
t+1 (log(1/ε))

1
t+1 ≤ k ≤ n, there exists

constant ct depending on t such that
(
ct · k, 2−ct·n(log(1/ε))1/t/k1/t

)
-indistinguishability ε-fools

t-CNF/DNF on n variables.

We also prove the following “does not fool” theorems, matching the first two “fools”
results. Theorem 1.15 shows that Theorem 1.12 is tight for all k ≤ n, while Theorem 1.16
shows that Theorem 1.13 is tight for k = (1 − Ω(1))n. Using Theorem 2.4, they imply the
degree-weight tradeoff lower bounds in Theorem 1.2 and 1.4. This is how the latter are
proved in this paper.

Theorem 1.15. For every ε, n, and k,
(
k, 2−Ω(n log(1/ε)/k)

)
-indistinguishability doesn’t ε-fool

ORn.

Theorem 1.16. There exists a constant c′ < 1 such that for every ε, n, t, and k with
k ≤ c′n and 0 ≤ t ≤ n

2 , there exists function f ∈ SYMn,t such that
(
k, 2−Ω(n(log(1/ε)+t)/k)

)
-

indistinguishability doesn’t ε-fool f .

The independent work by Bogdanov et al. [BMTW19], mentioned earlier, also obtained
similar “does not fool” result for symmetric functions with constant ε (moreover, unlike
ours, their distributions do not depend on k).
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Finally, we improve the result in [BIVW16] about k-wise indistinguishability vs. (k, δ)-
indistinguishability, analogous to the k-wise independence vs. almost k-wise independence
results in [AGM03, Theorem 2.1], [OZ18]. This result is tight because of the distributions
given in [O’D14, Theorem 1.2] when k is constant.

Theorem 1.17. If P and Q are (k, δ)-indistinguishable, then they are O(eknk/2δ)-close to
P ′ and Q′ that are k-wise indistinguishable.

1.4 Our results: reproving approximate degree lower bounds
in the language of indistinguishability

We suggest that indistinguishability could be a more convenient framework to prove ap-
proximate degree lower bounds. To illustrate, we reprove (in Section 7) the following known
approximate-degree lower bounds in the language of indistinguishability (for the first item,
this presentation already appeared in lecture notes [Vio17, Lecture 8-9]). We find the proofs
more intuitive than the originals.

Claim 1.18. Let d̃egε(f) denote the ε-approximate degree of f over {0, 1}. Then

(i) d̃eg1/3(ANDm ◦ ORn) = Ω(
√
mn) [BT13, ?];

(ii) d̃egε(ANDm ◦ ORn) = Ω(
√
n) for ε = 1/2− 2−Θ(m) [BT17];

(iii) d̃egε(GapMAJm◦fn) = Ω(d̃eg1/3(fn)) for ε = 1/2−2−Θ(m) [BCH+17] where GapMAJm
is any function that outputs 1 on inputs of Hamming weight at least 2

3m and 0 on inputs
of Hamming weight at most 1

3m;

(iv) d̃eg1/3(gm ◦ fn) = Ω
(

d̃eg1/3(gm) · d̃egε(fn)
)

for ε = 1/2− 1/mα with α > 1 [She13];

(v) d̃egεm(XORm ◦ f) = Ω(m · d̃egε(f)) and d̃egεm(ANDm ◦ f) = Ω(m · d̃egε(f)) [She12];

It will be interesting to present the proofs of more advanced results, such as the AC0

lower bound [BT17] and the surjectivity lower bound [BKT18], in this language.

1.5 Techniques

Existence of low degree-weight polynomials. As observed in [STT12, BW17], the
Chebyshev polynomials Td has degree d and weight 2O(d), and by composing it with the
monomial xk/d, which has high-degree but weight just one, we can get a polynomial Td(x

k/d)
with larger degree O(k), whose weight is only 2O(d), and maintains some of the properties
similar to those we are looking for from Tk(x). For example it is bounded on [0, 1] and has
derivative ≥ d2 · kd ≥ kd for x ≥ 1.

At a high level, Theorem 1.9 follows by applying such an idea to the construction by
Sherstov [She18] for EXACTn,n−t. The crux of his construction is to first ε-approximate
inputs of Hamming weight {0, 1, . . . , n − `} ∪ {n − t} with a number ` that will be quite
large for small ε, by a simple application of Chebyshev polynomials. Then he multiplies
this approximant with a set of auxiliary polynomials, each zeroing out the value of the
approximant on inputs of one specific Hamming weight in {n − ` + 1, . . . , n − t − 1} ∪
{n − t + 1, . . . , n}, also using Chebyshev polynomials but with carefully designed “shifts”,
i.e. Tk(ax + b) with suitable a and b. For the first part, we basically replace the usage of
Tk(x) by Td(x

k/d) to get degree-weight tradeoff for a suitable d. For the second part, we
use Td(ax

k/d + b) instead, and we need to prove different bounds on a and b. It is also
more involved to combine these two parts in our proof, as we have to carefully choose k for
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each auxiliary polynomial to satisfy the degree and weight constraints. Finally Theorem 1.3
follows from Theorem 1.9 on {−1, 1}n by writing symmetric functions as linear combinations
of EXACTs, and in particular we get Theorem 1.1 as ORn ∈ SYMn,0.

For Theorem 1.5 our proof is simpler than Sherstov’s for t-CNF [She08], as we are only
considering approximating them on {−1, 1}n instead of {−1, 1}m≤n. The latter means that the
Hamming weight is restricted to be at most n but the input length m could be much larger.
Essentially his construction decomposes a t-CNF into an AND composed with (t− 1)-CNFs
inductively for each t. Therefore we use polynomials with degree-weight tradeoff as an outer
approximation for the AND function and inner approximations for the (t− 1)-CNFs, and by
tweaking the parameters we get a polynomial with degree-weight tradeoff. As mentioned
earlier, we exploit the good dependence on ε in Corollary 1.10 for ANDn as we need to set
ε exponentially small in the inner approximations.

“Does not fool” theorems. The notion of fooling by (k, δ)-indistinguishability does not
seem to have a dual characterization, because there does not seem to be a way to express
statistical tests in the dual LP. Indeed in Theorem 2.4 while we are considering the weight
of the approximations in the dual, we are essentially restricting the statistical tests to the
parity tests in the primal, which are not equivalent and can be separated easily for small-bias
distributions [NN93]. Therefore degree-weight tradeoff lower bounds do not imply “does not
fool” results. Instead we use a different method.

For Theorem 1.15 and 1.16 we reduce it to the case of k-wise indistinguishability (that
is δ = 0) by Lemma 5.1, generalizing the proof in [BW17]. By inserting 0’s into some
random indices, we generate (k, δ)-indistinguishable distributions from k′-wise indistinguish-
able distributions while keeping their Hamming weight, for suitable settings of k, δ, and k′.
Then the result follows from approximate degree lower bound of symmetric functions.

The proof of Theorem 1.17 follows the proof in [OZ18], which applies to independence
rather than indistinguishability.

1.6 Organization

In Section 2 we provide useful facts about Chebyshev polynomials, weights, and its con-
nection to (k, δ)-indistinguishability. In Section 3 we prove Theorem 1.17. In Section 4 we
prove Theorem 1.3 for symmetric functions and in particular Theorem 1.1 for OR, thus also
proving Theorem 1.13 and 1.12. We prove matching lower bounds (Theorem 1.2, 1.4, 1.15,
1.16) in Section 5. In Section 6 we prove Theorem 1.5 and 1.14 for t-CNF. We prove Claim
1.18 in Section 7, and we provide complementary proofs of Claim 1.7 and 1.8 in Section 8.
Finally we list some open problems in Section 9.

2 Preliminaries

Let [n] denote the set {1, 2, . . . , n}.
Weight of polynomials. We denote the weight of polynomial p by |||p|||. On {−1, 1}n,

|||p||| is the `1 Fourier weight of p [O’D14]. It has the following properties.

Claim 2.1 ([She18, Fact 2.7]). For any polynomials p and q,

• |||ap||| = |a| · |||p||| for any a ∈ R;

• |||p+ q||| ≤ |||p|||+ |||q|||;
• |||p · q||| ≤ |||p||| · |||q|||.
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Claim 2.2 ([BW17, Fact 8, 9]). For any univariate polynomial p of degree k,

(i) if q(x) = p(axt + b) where |a|+ |b| ≥ 1 and t ≥ 1, then |||q||| ≤ (|a|+ |b|)k|||p|||;
(ii) if q(x1, . . . , xn) = p(

∑n
i=1 xi/n) then |||q||| ≤ |||p|||.

Change of basis. We present a sketch of proof for the change of basis theorem here.

Proof of Lemma 1.6. Define g : {−1, 1}n → R by g(x) = f
(

1−x1
2 , 1−x2

2 , . . . , 1−xn
2

)
, and the

result follows from a multivariate version of Claim 2.2 (i) with |a|+ |b| = 1. �

Chebyshev polynomials. Chebyshev polynomials (c.f. [Che98]), denoted as Td for
each degree d, is a sequence of orthogonal univariate polynomials that can be uniquely de-

fined by Td(cosx) = cos dx for each d. Its value is given by Td(x) = 1
2

((
x+
√
x2 − 1

)d
+
(
x−
√
x2 − 1

)d)
.

Claim 2.3 (c.f. [She18, BW17]). For degree-d Chebyshev polynomial Td, we have the fol-
lowing properties:

(i) Td(1) = 1;

(ii) Td
(
cos
(

2i−1
2d π

))
= 0, for i ∈ [d];

(iii) |Td(z)| ≤ 1 for z ∈ [−1, 1];

(iv) T ′d(t) ≥ d2 for t ∈ [1,∞), so Td is monotonically increasing on [1,∞);

(v) Td(1 + δ) ≥ 2d
√
δ−1 for δ ∈ [0, 1];

(vi) |||Td||| ≤ 22d.

Fooling by (k, δ)-Indistinguishability. The following theorem shows that low-degree
low-weight approximation implies fooling by (k, δ)-indistinguishability.

Theorem 2.4 ([BW17]). Given any function f : {−1, 1}n → R, for any k and δ we have

max
P,Q : (k,δ)-indist.

|E[f(P )]− E[f(Q)]| ≤ min
g : ε-approx. f

deg(g)≤k

2ε+ 2δ|||g|||.

3 Proof of Theorem 1.17

More generally we are going to prove that for any k ≤ n, any two distributions P and Q
on {−1, 1}n are w-close to some k-wise indistinguishable distributions P ′ and Q′, where

w = ek
√∑

|S|≤k(E[χS(P )]− E[χS(Q)])2.

To prove this theorem, we need the following lemmas.

Lemma 3.1. Let φ : {−1, 1}n → R≥0 be a polynomial of degree at most k. Then

‖φ̂‖2 =

√∑
|S|≤k

φ̂(S)2 ≤ ekφ̂(∅).

Proof. This lemma is essentially the same as Lemma 2.1 in [OZ18]. We have

‖φ̂‖2 = E[φ2(x)] ≤ ekE[|φ(x)|] = ekE[φ(x)] = ekφ̂(∅),

where the first step comes from Parseval’s Theorem ([O’D14, Section 1.4]), the second step
holds by hypercontractivity ([O’D14, Theorem 9.22]), the third step follows from the fact
that φ(x) ≥ 0 for all x, and the last step follows from standard Fourier analysis ([O’D14,
Proposition 1.8]). �
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Lemma 3.2 (Farkas’ Lemma). Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the
following two statements is true:

1. There exists an x ∈ Rn such that Ax = b and x ≥ 0.

2. There exists a y ∈ Rm such that A>y ≥ 0 and b>y < 0.

Proof of Theorem 1.17. Given distributions P and Q, let bS = E[χS(P )]−E[χS(Q)] for each
|S| ≤ k. We are going to find distributions P ′′ and Q′′ such that for all 1 ≤ |S| ≤ k,

E[χS(P ′′)]− E[χS(Q′′)] = −bS
w
.

Suppose such P ′′ and Q′′ exist, then we set P ′ = P+wP ′′

1+w and Q′ = Q+wQ′′

1+w . Then the
statistical distance ∆(P, P ′) ≤ w

1+w ≤ w and similarly for Q and Q′. We also have

E[χS(P ′)]− E[χS(Q′)] =
1

1 + w

(
E[χS(P )]− E[χS(Q)] + w(E[χS(P ′′)]− E[χS(Q′′)])

)
= 0,

for all 1 ≤ |S| ≤ k, therefore P ′ and Q′ are k-wise indistinguishable.
To prove the existence of P ′′ and Q′′, we write it as an LP feasibility problem with

variables p(x) for x ∈ {−1, 1}n corresponding to P ′′(x) and q(x) for Q′′(x), and the following
constraints.∑

x∈{−1,1}n p(x) = 1∑
x∈{−1,1}n q(x) = 1∑
x∈{−1,1}n χS(x)p(x)−

∑
x∈{−1,1}n χS(x)q(x) = − bS

w for each 1 ≤ |S| ≤ k
p(x) ≥ 0 for each x ∈ {−1, 1}n
q(x) ≥ 0 for each x ∈ {−1, 1}n

By Farkas’ Lemma, to prove that it is feasible is equivalent to prove that the following
LP is infeasible, with unconstrained variables y∅, y′∅, and yS for 1 ≤ |S| ≤ k.

y∅ +
∑

1≤|S|≤k ySχS(x) ≥ 0 for each x ∈ {−1, 1}n

y′∅ −
∑

1≤|S|≤k ySχS(x) ≥ 0 for each x ∈ {−1, 1}n

y∅ + y′∅ − 1
w

∑
1≤|S|≤k ySbS < 0

To prove that it is infeasible, it suffices to prove that any assignments satisfying the first
two sets of constraints must violate the third one. Summing up the first set of constraints
for all x ∈ {−1, 1}n, we get y∅ ≥ 0, and similarly we have y′∅ ≥ 0. Now define a polynomial
φ = y∅+

∑
1≤|S|≤k ySχS , then the degree of φ is at most k and the first two sets of constraints

become

φ(x) ≥ 0 for each x ∈ {−1, 1}n,
φ(x) ≤ y∅ + y′∅ for each x ∈ {−1, 1}n.

By Lemma 3.1 we have
√∑

|S|≤k y
2
S ≤ eky∅, and we set w = ek

√∑
|S|≤k b

2
S . Note that we

have w = O(eknk/2δ) when P and Q are (k, δ)-indistinguishable. Therefore

1

w

∑
1≤|S|≤k

ySbS ≤
1

w

∑
1≤|S|≤k

|yS ||bS | ≤
1

w

√∑
|S|≤k

y2
S

√∑
|S|≤k

b2S ≤
eky∅
w

√∑
|S|≤k

b2S = y∅ ≤ y∅ + y′∅,

where the second inequality holds by Cauchy-Schwarz. This violates the third constraint
thus completes our proof. �
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4 Proofs of Theorem 1.1, 1.3, 1.12, 1.13, and 1.9

We prove Theorem 1.9 first, since it is the basis of all the other theorems in this section.
Warm-up for proving Theorem 1.9.
Our goal is to construct a univariate polynomial p∗ to ε-approximate EXACTn,n−t such

that |p∗
(
i
n

)
− 1| ≤ ε for i = n− t and |p∗

(
i
n

)
| ≤ ε for all i ∈ [n] \ {n− t}. Besides, p∗ must

have the desired degree and weight.
We can already get a good approximation using Chebyshev polynomials. Let

` = log
2

ε
+ t, d =

√
n`.

Without loss of generality assume d ∈ N, define univariate polynomials q0 and p0 by

q0(z) = Td

(
n

n− `
· z
)
, p0(z) = q0(z)/q0

(
n− t
n

)
.

For z ∈ [0, n−`n ], we have n
n−` · z ≤ 1 thus by Claim 2.3 (iii) we have

∣∣q0

(
i
n

)∣∣ ≤ 1 for all i =

0, 1, . . . , n− `. The value of q0

(
n−t
n

)
is also large enough, as by Claim 2.3 (iii) we have

q0

(
n− t
n

)
= Td

(
1 +

`− t
n− `

)
≥ 2

√
n`
√

`−t
n−`−1 ≥ 2(`−t)−1 =

1

ε
,

where the third step uses n
n−` ≥ 1 and ` ≥ `−t. Therefore

∣∣p0

(
i
n

)∣∣ ≤ ε for all i = 0, 1, . . . , n−`
and p0

(
i
n

)
= 1 for i = n − t, thus p0 is a good approximation for these i’s. We have

deg(p0) = d and |||p0||| = 2O(d), which are fixed by n, t, and ε.
To get approximations that have degree-weight tradeoff, we would decrease d and increase

the power of n
n−` · z inside Td accordingly. We use the same `, and for any k ≥

√
n`, let

d =
n`

k
,

thus d decreases when k increases. Without loss of generality assume d, kd ∈ N, define

q1(z) = Td

((
n

n− `
· z
) k
d

)
, p1(z) = q1(z)/q1

(
n− t
n

)
.

Similarly we have
∣∣q1

(
i
n

)∣∣ ≤ 1 for all i = 0, 1, . . . , n− `. We also get

q1

(
n− t
n

)
= Td

((
1 +

`− t
n− `

) k
d

)
≥ Td

(
1 +

`− t
n− `

· k
d

)
≥ 2

d
√

`−t
n−`

k
d
−1 ≥ 2(`−t)−1 =

1

ε
,

where the second step uses Bernoulli’s inequality and Claim 2.3 (iv), the third step uses
Claim 2.3 (v), the fourth step uses

√
kd =

√
n` ≥

√
n(`− t) and n

n−` ≥ 1. Therefore p1 is a
good approximation for some i, namely∣∣∣∣p1

(
i

n

)∣∣∣∣ ≤ ε for all i = 0, 1, . . . , n− `, (1)

p1

(
i

n

)
= 1 for i = n− t. (2)

The degree of q1 and p1 is d · kd = k. Now we are going to bound their weights. We can

write q1(z) = Td(a · zk/d) with a =
(

n
n−`

)k/d
, so by Claim 2.3 (vi) and Claim 2.2 (i),

|||q1||| ≤ |||Td||| · ad = 2O(d) ·
(

1 +
`

n− `

)k
≤ 2O(d) · e

k`
n−` ,

9



where the last step uses 1 + x ≤ ex for all x ∈ R. We can assume ` ≤ 3
4n, otherwise√

n` = Ω(n) thus d = Ω(n) so we can simply use p0. Thus we have n(n − `) ≥ 1
4n

2 ≥ 1
4k

2,

so k`
n−` = O

(
n`
k

)
= O(d), therefore |||q1||| ≤ 2O(d), which is the same as |||Td||| up to the O(·) in

the exponent. In other words, we can ignore effect of the scaling term n
n−` to the weight.

Consequently,

|||p1||| ≤ |||q1||| · ε ≤ 2O(d) = 2O(n(log(1/ε)+t)/k). (3)

Therefore p1 has the degree-weight tradeoff we need in Theorem 1.9.
The problem of p1 is that for i = n − ` + 1, . . . , n − t − 1 and n − t + 1, . . . , n, we have

no bound on its value. We need the following construction of auxiliary polynomials T
(k)
n,m

with degree-weight tradeoff that can be made zero on some specific points. Multiplying p1

by such T
(k)
n,m, we can zero out the value on those i’s and get the desired approximations.

Lemma 4.1. For every n, m, k such that 0 ≤ m < n and
√

n
n−m ≤ k ≤ n

n−m , there is a

univariate polynomial T
(k)
n,m of degree O(k) and weight 2

O
(

n
k(n−m)

)
such that

T (k)
n,m(1) = 1, (4)

T (k)
n,m

(m
n

)
= 0, (5)∣∣∣T (k)

n,m(z)
∣∣∣ ≤ 1, for any z ∈ [0, 1]. (6)

Our proof generalizes Sherstov’s in the sense that the above lemma for auxiliary polyno-
mials already gives some degree-weight tradeoff via parameter k. The range of k is chosen
carefully such that the proof of this lemma works and it can also be used in the proof of
Theorem 1.9. Building on the warm-up and assuming the lemma, we now present the proof
of Theorem 1.9.

Proof of Theorem 1.9. Now we use the same d and ` as discussed above, and define the
following univariate polynomial p∗ by

p∗(z) = p1(z)
n−t−1∏
m=n−`

T
(k′m)
n−t,m

(
n

n− t
· z
) n∏
m=n−t+1

(
1−

(
T

(k′′m)
m,n−t

( n
m
· z
))2

)
,

using the auxiliary polynomials from Lemma 4.1, where

k′m = k

√
n− t

n`(n− t−m)
for m = n− `, . . . , n− t− 1,

k′′m = k

√
m

nt(m− n+ t)
for m = n− t+ 1, . . . , n.

First, we need to show that our applications of Lemma 4.1 are legitimate.

•
√

n−t
n−t−m ≤ k′m ≤ n−t

n−t−m for m ∈ [n − t − 1] \ [n − ` − 1]: on one hand, we have

k ≥
√
n` so k′m ≥

√
n−t

n−t−m ; on the other hand, we have n −m ≤ ` and t < ` ≤ n, so

n
` ≤

n−t
`−t ≤

n−t
n−t−m , thus by k ≤ n we have k′m ≤

√
n(n−t)

`(n−t−m) ≤
n−t

n−t−m .

•
√

m
m−n+t ≤ k′′m ≤ m

m−n+t for m ∈ [n] \ [n − t]: on one hand, we have k ≥
√
n` and

` ≥ t so k′′m ≥
√

`m
t(m−n+t) ≥

√
m

m−n+t ; on the other hand, we have n −m < t ≤ n, so

n
t ≤

n−(n−m)
t−(n−m) = m

m−n+t , thus by k ≤ n we have k′′m ≤
√

nm
t(m−n+t) ≤

m
m−n+t .
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Second, we are going to show that p∗ is a good approximation. By Lemma 4.1 (6) and
Equation (1) we have∣∣∣∣p∗( in

)∣∣∣∣ ≤ ε · n−t−1∏
m=n−`

1 ·
n∏

m=n−t+1

(1− 02) = ε for all i = 0, 1, . . . , n− `− 1. (7)

For all i = n − `, . . . , n − t − 1, when m = i we have T
(k′m)
n−t,m

(
n
n−t ·

i
n

)
= T

(k′m)
n−t,m

(
m
n−t

)
= 0.

For all i = n − t + 1, . . . , n, when m = i we have T
(k′′m)
m,n−t

(
n
m ·

i
n

)
= T

(k′′m)
m,n−t(1) = 1 thus

1−
(
T

(k′′m)
m,n−t

(
n
m ·

i
n

))2
= 0. We also have T

(k′m)
n−t,m

(
n
n−t ·

i
n

)
= 1 and T

(k′′m)
m,n−t

(
n
m ·

i
n

)
= 0 when

i = n− t. Therefore

p∗
(
i

n

)
=


0 for all i = n− `, . . . , n− t− 1,

1 ·
∏n−t−1
m=n−` 1 ·

∏n
m=n−t+1(1− 02) = 1, for i = n− t,

0 for all i = n− t+ 1, . . . , n.

(8)

Therefore p∗
(
i
n

)
= 1 for i = n− t and

∣∣p∗( in)∣∣ ≤ ε otherwise.

Now we are going to bound the degree and weight of p∗. We have k′m = k
√

n−t
n`(n−t−m) ≤

k 1√
`(n−t−m)

and k′′m = k
√

m
nt(m−n+t) ≤ k

1√
t(m−n+t)

. By Lemma 4.1,

deg(p∗) ≤ k +
n−t−1∑
m=n−`

O
(
k′m
)

+
n∑

m=n−t+1

O
(
k′′m
)

≤ O

(
k +

k√
`

n−t−1∑
m=n−`

1√
n− t−m

+
k√
t

n∑
m=n−t+1

1√
m− n+ t

)

= O

(
k +

k√
`

`−t∑
i=1

1√
i

+
k√
t

t∑
i=1

1√
i

)
= O(k), (9)

where in the last step we use
∑n

i=1
1√
i

= O(
√
n) for any n ∈ N. Similar to the argument in

the calculation of |||q1|||, we can safely ignore effects of the scaling terms n
n−t and n

m to the
weight of p∗. By (3) and Lemma 4.1 we have

log |||p∗||| ≤ O(d) +
n−t−1∑
m=n−`

O

(
n− t

k′m(n− t−m)

)
+

n∑
m=n−t+1

O

(
m

k′′m(m− n+ t)

)

= O

(
n`

k
+

n−t−1∑
m=n−`

√
n`(n− t)
k

1√
n− t−m

+
n∑

m=n−t+1

√
ntm

k

1√
m− n+ t

)

≤ O

(
n`

k
+
n
√
`

k

`−t∑
i=1

1√
i

+
n
√
t

k

t∑
i=1

1√
i

)
= O

(n
k

(log(1/ε) + t)
)
. (10)

Finally, define p : {0, 1}n → R by p(x) = p∗
(∑n

i=1 xi
n

)
. The theorem follows from (7)-(10)

and Claim 2.2 (ii). �

Now we prove Theorem 1.3 and Theorem 1.13. We are working on the Fourier basis
since we need to negate our input variables. Since ORn ∈ SYMn,0, we get Theorem 1.1 from
Theorem 1.3, and Theorem 1.12 from Theorem 1.13.
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Proof of Theorem 1.3. By Lemma 1.6 we can get the same results for EXACT on the Fourier
basis as in Theorem 1.9. Then we can write f as

f(x) = c+
t∑
i=0

c′i · EXACTn,i(x) +
t∑
i=0

c′′i · EXACTn,n−i(x)

= c+
t∑
i=0

c′i · EXACTn,n−i(x) +
t∑
i=0

c′′i · EXACTn,n−i(x), (11)

where c, c′i’s, and c′′i ’s are fixed reals, and x = (−x1, . . . ,−xn). Now let ε′ = ε
2t+2 , then for

0 ≤ i ≤ t,
√
n(log(1/ε′) + i) = O

(√
n(log(1/ε) + t)

)
so we can ignore the constant factor

difference and apply Theorem 1.9 with ε = ε′ and the same k for each EXACTn,n−i. The
degrees of the approximations for EXACT are O(k), so the total degree is also O(k). The
weights of the approximations for EXACT are 2O(n(log(1/ε′)+i)/k) = 2O(n(log(1/ε)+t)/k). By
Claim 2.1 the total weight is O(t)2O(n(log(1/ε)+t)/k) = 2O(n(log(1/ε)+t)/k). �

Proof of Theorem 1.13. Apply Theorem 1.3, set δ = ε
2w = 2−O(nk (log(1/ε)+t)). Then it follows

from Theorem 2.4. �

4.1 Proof of Lemma 4.1

Let d = 2n
k(n−m) so k

d = k2(n−m)
2n . As m < n we have d > 0 and k

d > 0. Without loss of

generality assume d, kd ∈ N, we can define

T (k)
n,m(z) = Td

(
a · zk/d + b

)
,

where a, b ∈ R are parameters to be set and Td is the degree-d Chebyshev polynomial. We

have deg
(
T

(k)
n,m

)
≤ d · kd = k.

We set a, b such that

a+ b = 1, (12)

a
(m
n

)k/d
+ b = cos

( π
2d

)
, (13)

then Property (4) follows from (12) and Claim 2.3 (i), and Property (5) follows from (13)
and Claim 2.3 (ii) with i = 1.

Our goal is to prove 0 ≤ a ≤ 1. Assume this is true. From (12) we have b ∈ [0, 1]. Hence
a · zk/d + b is increasing in z ∈ [0, 1], mapping [0, 1] to [b, 1] ⊆ [0, 1]. Therefore Property (6)
follows from Claim 2.3 (iii). Besides, we have |a| + |b| = a + b = 1, so by Claim 2.3 (vi)

and Claim 2.2 (i) we have |||T (k)
n,m||| = 1 · 2O(d) = 2

O
(

n
k(n−m)

)
. Therefore T

(k)
n,m(z) is the desired

polynomial.
To see that a ∈ [0, 1], we solve the linear equations (12) and (13) to get

a =
1− cos

(
π
2d

)
1−

(
m
n

)k/d . (14)

Because m < n, we have m
n < 1, thus 1 −

(
m
n

)k/d
> 0. We always have 1 − cos

(
π
2d

)
≥ 0.

Therefore from (14) we have a ≥ 0. On the other hand, let u = n
n−m , from (14) we can get

a ≤
1
2

(
π
2d

)2
1−

(
1− n−m

n

)k/d ≤ π2

16
k2

2u2

1− e−
k2

2u2

, (15)
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where the first step uses cosx ≥ 1 − 1
2x

2 for x ∈ R in the numerator, and the second step
uses the value of d in the numerator and 1 + x ≤ ex for x ∈ R in the denominator. Since√

n
n−m ≤ k ≤ n

n−m and m < n, we have 0 < k2

2u2
≤ 1

2 . Consider the function f(z) = z
1−e−z

on z ∈ (0, 1
2 ]. Its derivative f ′(z) = ez(ez−z−1)

(ez−1)2
> 0 for z ∈ (0, 1], hence f(z) is increasing

in (0, 1
2 ], thus f(z) ≤ f

(
1
2

)
. From (15) we have a ≤ π2

16 f
(

1
2

)
= π2√e

32(
√
e−1)

< 1, finishing our

proof. �

5 Proofs of Theorem 1.2, 1.4, 1.15, and 1.16

First we generalize the proof in [BW17], reducing the problem into fooling by k-wise in-
distinguishability. We use ` to deal with non-constant ε and symmetric functions with
non-constant t.

Lemma 5.1. Let c′′ be any constant. For every n, k and ` satisfying c′′

16

√
n` ≤ k ≤ c′′

16n,
there exists n′ with ` ≤ n′ ≤ n such that if there exist k′-wise indistinguishable distributions
P ′,Q′ on {0, 1}n′ for k′ = c′′

√
n′`, then there exist distributions P , Q on {0, 1}n such that

the Hamming weight distribution |P | ≡ |P ′|, |Q| ≡ |Q′|, and P and Q are
(
k, 2−Ω(n`/k)

)
-in-

distinguishable.

Proof. To sample from P , and Q respectively, we select n′-many indices from [n] uniformly
at random as “active” indices and then fill in these n′ indices using a random sample from
P ′, and Q′ respectively; for other indices we simply set them to be 0. Obviously this process
keeps the Hamming weight of the samples.

Suppose P ′ and Q′ are k′-wise indistinguishable with k′ = c′′
√
n′` for some constant

0 < c′′ < 1. For any k indices S of P and Q, if there are at most k′ active indices in S, then
their projections on S are identical by k′-wise indistinguishability. Therefore the probability
that statistical test on k bits can distinguish P from Q is bounded by the probability that
such event doesn’t happen. By tail bounds of hypergeometric distribution [Hoe63], we have

Pr[more than k′ active indices in S] ≤ e−kD
(
k′+1
k
||n
′
n

)
= 2

−Ω
(
kD
(
k′
k
||n
′
n

))
, (16)

where D(a||b) = a log a
b + (1 − a) log 1−a

1−b is the Kullback-Leibler divergence. By a lower
bound from Hellinger distance H, for any p and any a ≥ 16, we have

D(ap||p) ≥ 2H2(ap||p) ≥ (
√
ap−√p)2 = (

√
a− 1)2p ≥ 1

2
ap,

where the last step comes from the fact that 2
√
a ≤ a

2 for a ≥ 16. Now we set n′ = c′′2

162
n2

k2
`,

then we have k′ = c′′2

16
n
k `, thus k′

k /
n′

n = 16, therefore we have

2
−Ω
(
kD
(
k′
k
||n
′
n

))
≤ 2

−Ω
(
k k
′
k

)
= 2−Ω(k′) = 2−Ω(n`/k).

For ` ≤ n′, we need c′′2

162
n2

k2
≥ 1 thus k ≤ c′′

16n. For n′ ≤ n, we need c′′2

162
n
k2
` ≤ 1 thus

k ≥ c′′

16

√
n`. �

Combining the following equivalence between approximate degrees and bounded indis-
tinguishability, with the ε-approximate degree lower bound of symmetric functions due
to Buhrman et al. [BCdWZ99], improving [Pat92], we can obtain k-wise indistinguish-
able distributions that don’t fool symmetric functions.
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Theorem 5.2 ([BIVW16, Theorem 1.1]). For every ε, n, k, and f : {0, 1}n → {0, 1} the
following are equivalent:

1. f is not ε-fooled by k-wise indistinguishability;

2. The ε/2-approximate degree of f is bigger than k.

Theorem 5.3 ([BCdWZ99]). For any f ∈ SYMn,t, d̃egε(f) = Ω
(√

n(log(1/ε) + t)
)

.

Now we can prove Theorem 1.16 with f = EXACTn,t ∈ SYMn,t for 0 ≤ t ≤ n
2 , and

similarly for f = THRn,t+1 where THRn,r is True iff the Hamming weight of its input is at
least r.1 In particular for ORn = THRn,1 we get Theorem 1.15 by applying t = 0. Note that
for t = O(1) (in particular for OR), this theorem works for all k as (n, ε0.999)-indistinguish-
ability2 doesn’t ε-fool any non-constant function.

Proof of Theorem 1.16. We consider function EXACTn,t. Let ` = log(2/ε) + t, c′′ be the

constant in Ω(·) in Theorem 5.3. Set c′ = c′′

16 .

For k ≤ c′′
√
n`, by Theorem 5.3 and Theorem 5.2 k-wise indistinguishability does not

ε-fool EXACTn,t, hence the theorem for k ≤ c′′
√
n` as 2−c

′′2n`/k ≤ 2−k.

For c′′
√
n` ≤ k ≤ c′′

16n, apply Lemma 5.1 to get n′ then Theorem 5.3 and Theorem

5.2 give us k′-wise indistinguishable distributions P ′ and Q′ on {0, 1}n′ that don’t ε-fool
EXACTn′,t. The theorem follows by applying Lemma 5.1 again to get distributions P ,Q. �

Theorem 2.4 shows that a polynomial p that (ε/2)-approximates f in degree k must have
weight at least ε/δ if (k, δ)-indistinguishability does not ε-fool f . Let c < 1 be the constant
in the Ω(·) in Theorem 1.16. Then we get Theorem 1.2 from Theorem 1.15, and Theorem
1.4 from Theorem 1.16.

6 Proofs of Theorem 1.5 and 1.14

We first give a proof for t = 2, then generalize it for larger t.

Proof of Theorem 1.5 with t = 2. Given a 2-CNF F , we can first transform F by the follow-
ing procedure. For each i ∈ [n], from F we pick up all the terms that contain xi unnegated.

Let mi be the number of such terms and C
(i)
1 , C

(i)
2 , . . . , C

(i)
mi be these terms. We remove xi

from them to get C
′(i)
1 , C

′(i)
2 , . . . , C

′(i)
mi . If mi = 0, define f ′i(x) = ¬xi, otherwise define it as∧mi

j=1C
′(i)
j . Remove all the original terms from F , continue for the next i until i = n. Then

we do this procedure on the remaining terms of F for each i ∈ [n] again, but this time we
are collecting terms that contain ¬xi and defining f ′′i (x) similarly. At last we define

F1(x) =
n∧
i=1

xi ∨ f ′i(x), (17)

F2(x) =

n∧
i=1

¬xi ∨ f ′′i (x), (18)

and by distributive law we have F = F1 ∧ F2. Note that all the f ′i ’s and f ′′i ’s are 1-CNFs,
namely ANDs of literals.

1Note that THRn,r ∈ SYMn,r−1 for r ≤ n
2 + 1, equivalently THRn,t+1 ∈ SYMn,t for t ≤ n

2 .
2Indeed (n, δ)-indistinguishability for any δ > ε.
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We define F ′ : {−1, 1}n × {−1, 1}2n → {0, 1} by F ′(x, y) =
∧2n
i=1 yi ∨ fi(x), where fi ={

f ′i for i ∈ [n]
f ′′i−n for i ∈ [2n] \ [n]

. If we set

yi =

{
xi for i ∈ [n]
−xi−n for i ∈ [2n] \ [n]

, (19)

we will have F (x) = F ′(x, y) for all x ∈ {−1, 1}n by (17) and (18). Therefore it suffices to
prove this theorem for F ′(x, y). Note here it is important to choose the input basis of F ′ to
be the Fourier basis so we can negate the variables without increasing the weight.

Let N = 2n and B ∈ [N ] be an integer to be determined later. Let S1, . . . , SN
B

be an

even partition of [N ] into subsets of size B. For each i ∈ [NB ] we can define hi : {−1, 1}n ×

{−1, 1}Si → {0, 1} by hi(x, y) =
∧
j∈Si yj ∨ fj(x) and we have F ′(x, y) =

∧N
B
i=1 hi(x, y) =∧

N
B

(h1(x, y), . . . , hN
B

(x, y)), where
∧

N
B

: {0, 1}
N
B → {0, 1} is the AND function on N

B bits on

the Boolean basis. Our goal is to approximate the outer AND function and the inner hi’s
carefully so that the total degree and weight can be bounded as we want.

For any subset T ⊆ S ⊆ [N ], define the indicator function I(·;T, S) : {−1, 1}N → {0, 1}
by

I(y;T, S) =
∏
j∈T

yj + 1

2

∏
j∈S\T

1− yj
2

, (20)

so it is 1 if and only if y represents False on T and True on S \ T . Thus each hi can be
written using interpolation as

hi(x, y) =
∑
T⊆Si

∧
j∈T

fj(x) ∧
∧
j∈T
¬yj ∧

∧
j∈Si\T

yj


=
∑
T⊆Si

∧
j∈T

fj(x) · I(y;T, Si)

. (21)

Now suppose we have a polynomial p : {0, 1}
N
B → R that εout-approximates the outer

ANDN
B

function within degree dout and weight wout, where εout, dout, and wout are parameters

to be set later. We called this p the outer approximation. We can write it as

p(z) =
∑

U⊆[NB ]
|U |≤dout

aU
∏
i∈U

zi, (22)

where aU ∈ R, and
∑

U |aU | = wout by definition. Define F ′′ : {−1, 1}n × {−1, 1}2n → R
by substituting the outer ANDN

B
function in F ′ by p: F ′′(x, y) = p(h1(x, y), . . . , hN

B
(x, y)).

Since p is a point-wise approximation, we have

‖F ′′ − F ′‖∞ ≤ ‖p− ANDN
B
‖∞ = εout. (23)

On the other hand, we can expand F ′′ as

F ′′(x, y) =
∑

U⊆[NB ]
|U |≤dout

aU
∏
i∈U

hi(x, y)
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=
∑

U⊆[NB ]
|U |≤dout

aU
∏
i∈U

∑
T⊆Si

∧
j∈T

fj(x) · I(y;T, Si)



=
∑

U⊆[NB ]
|U |≤dout

aU
∑

T : U→P([N ])
T (i)⊆Si,∀i∈U

∏
i∈U

 ∧
j∈T (i)

fj(x) · I(y;T (i), Si)



=
∑

U⊆[NB ]
|U |≤dout

aU
∑

T : U→P([N ])
T (i)⊆Si,∀i∈U

∏
i∈U

∧
j∈T (i)

fj(x)

(∏
i∈U

I(y;T (i), Si)

)

=
∑

U⊆[NB ]
|U |≤dout

aU
∑

T : U→P([N ])
T (i)⊆Si,∀i∈U

 ∧
j∈img(T )

fj(x) · I(y; img(T ),∪i∈USi)

, (24)

where img(T ) denotes the image of function T : U → P([N ]) and P([N ]) is the powerset of
[N ], the first step uses (22), the second step uses (21), the third step exchanges the product
with the sum, the fourth step uses properties of multiplication, and the last step uses the
fact that multiplication on the Boolean basis is equivalent to AND. It is important that we
set the input basis of the outer approximation p (thus the output basis of

∧
j∈img(T ) fj(x) ·

I(y; img(T ),∪i∈USi)) to be the Boolean basis even though the input basis of the whole
function is the Fourier basis; otherwise the last step doesn’t hold.

Each
∧
j∈img(T ) fj(x) is a 1-CNF (i.e. AND) since fj(x) is 1-CNF. Suppose we can

approximate them by ˜∧
j∈img(T ) fj(x)’s within error εin, degree din, and weight win, where

εin, din, and win are parameters to be set later. We called these ˜∧
j∈img(T ) fj(x)’s the inner

approximations. Then we can define F̃ ′′ : {−1, 1}n × {−1, 1}2n → R by

F̃ ′′(x, y) =
∑

U⊆[NB ]
|U |≤dout

aU
∑

T : U→P([N ])
T (i)⊆Si,∀i∈U

 ∧̃
j∈img(T )

fj(x) · I(y; img(T ),∪i∈USi)

. (25)

Observe that for any y ∈ {−1, 1}N , for any U ⊆
[
N
B

]
with |U | ≤ dout, there is only one

T : U → [N ] with T (i) ⊆ Si,∀i ∈ U such that I(y; img(T ),∪i∈USi) = 1: it is uniquely
determined by the value of y on ∪i∈USi; all other summands will varnish. Therefore we
have

‖F̃ ′′ − F ′′‖∞ ≤
∑

U⊆[NB ]
|U |≤dout

aUεin ≤
∑

U⊆[NB ]
|U |≤dout

|aU |εin = woutεin. (26)

Hence if we set

εout =
ε

2
, (27)

εin =
ε

2wout
, (28)

then F̃ ′′ ε-approximates F ′ since ‖F̃ ′′−F ′‖∞ ≤ ‖F̃ ′′−F ′′‖∞+‖F ′′−F ′‖∞ ≤ woutεin+εout =
ε, where the first steps uses the triangular inequality, the second step uses (23) and (26),

and the third step uses (27),(28). What remains to bound is the degree and weight of F̃ ′′.
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Denote the degree of F̃ ′′ as d, and the weight of F̃ ′′ as w. Note that by (20) we have

deg(I(·; img(T ),∪i∈USi)) = | ∪i∈U Si| = |U |B ≤ doutB, (29)

|||I(·; img(T ),∪i∈USi)||| ≤ 1. (30)

For each U , there are at most 2|∪i∈USi| ≤ 2doutB T ’s, since T satisfies that T (i) ⊆ Si, ∀i ∈ U .
Therefore we have

d ≤ doutB + din (31)

logw ≤ log

 ∑
U⊆[NB ]
|U |≤dout

aU2doutBwin

 ≤ logwout + doutB + logwin, (32)

where the first inequality comes from (25) and (29), and the second inequality follows from
(25), (30), Claim 2.1, and the observation above. What remains is to set din, win, dout, and
wout to get the desired bounds on d and w.

By assumption k satisfies n
2
3 (log(1/ε))

1
3 ≤ k ≤ n. For convenience we will ignore the

difference between N and n, and use them interchangeably, as they are the same up to a
multiplicative factor of 2. Set

B =
N

k
, (33)

kin = k, (34)

kout =
√
k log(1/ε), (35)

where kin and kout are numbers to be used later as the k’s for the inner approximations and
the outer approximation, respectively.

For the outer approximation, from (33) and (35) we have√
N

B
log

1

εout
=
√
k log(1/ε) = kout ≤ k =

N

B
,

where the first equality follows from (27) and ignoring the constant factor, the inequality

comes from k ≥ N2/3(log(1/ε))1/3 and the fact that log(1/ε) ≤ N (otherwise we can get all
the bounds trivially). This means we can apply Corollary 1.10 over {0, 1} with ε = εout,
k = kout, and n = N

B to get the outer approximating polynomial p with the following
parameters:

dout = O(kout) = O
(√

k log(1/ε)
)
, (36)

logwout = O

(
N

Bkout
log

1

εout

)
= O

(√
k log(1/ε)

)
, (37)

using (27), (33), and (35).
For the inner approximations, we have kin = k ≤ N , and we also have√

N log
1

εin
= O

(√
N log

wout
ε

)
= O

(√
N
√
k log(1/ε)

)
≤ O(k) = O(kin), (38)

where the first step uses (28), the second step uses (37), and the third step uses k ≥
N2/3(log(1/ε))1/3. Therefore we can invoke Corollary 1.10 over {−1, 1} with ε = εin, k = kin,

and n = N to get the inner approximations ˜∧
j∈img(T ) fj(x) with the following parameters:

din = O(kin) = O(k), (39)
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logwin = O

(
N

kin
log

1

εin

)
= O

(
N

k
logwout

)
= O

(
N√
k

√
log(1/ε)

)
, (40)

using (28), (34), and (37).
Finally, combining (31), (33), (36) and (39), we get

d = O

(
N

k

√
k log(1/ε) + k

)
= O

(
N√
k

√
log(1/ε) + k

)
= O(k),

where the last step follows from k ≥ N2/3(log(1/ε))1/3. Combing (32), (33), (36), (37), and
(40), we get

logw = O

(√
k log(1/ε) +

N

k

√
k log(1/ε) +

N√
k

√
log(1/ε)

)
= O

(
N√
k

√
log(1/ε)

)
,

since k ≤ N implies N√
k

√
log(1/ε) ≥

√
k log(1/ε). �

Proof of Theorem 1.5. By induction on t: t = 1 is Corollary 1.10 for AND. Now assume the
theorem holds for (t − 1)-CNF, and we want to prove it for t-CNF. Similarly to the proof
for t = 2, Equations (17)-(32) remain the same. The outer function is still ANDN

B
, while

the inner functions
∧
j∈img(T ) fj(x)’s become (t− 1)-CNFs. What remains is to set din, win,

dout, and wout to get the desired bounds on d and w.

By assumption k satisfies n
t
t+1 (log(1/ε))

1
t+1 ≤ k ≤ n. Set

B =
N

k2/t
,

kin = k,

kout = k
1
t (log(1/ε))

1
t .

For the outer approximation, it’s not hard to verify that
√

N
B log 1

εout
= kout ≤ N

B , so we

can apply Corollary 1.10 to get

dout = O(kout) = O
(
k

1
t (log(1/ε))

1
t

)
,

logwout = O

(
N

Bkout
log

1

εout

)
= O

(
k

1
t (log(1/ε))

t−1
t

)
.

For the inner approximation, it’s not hard to verify that N
t−1
t

(
log 1

εin

) 1
t ≤ kin ≤ N , so

we can use the induction hypothesis for (t− 1)-CNF to get

din ≤ ct−1 · kin = ct−1 · k,

logwin ≤ ct−1 ·
N

k
1/(t−1)
in

(
log

1

εin

) 1
t−1

≤ c′t−1 ·
N

k1/t
(log(1/ε))

1
t ,

where c′t−1 is some constant depending on ct−1.
Combining all these bounds, for some constant ct (depending only on t) we get

d = O

(
N

k1/t
(log(1/ε))

1
t

)
+ ct−1 · k ≤ ct · k,

logw = O
(
k

1
t (log(1/ε))

t−1
t

)
+ ct−1 ·

N

k1/t
(log(1/ε))

1
t ≤ ct ·

N

k1/t
(log(1/ε))

1
t . �

Proof of Theorem 1.14. Use Theorem 1.5 and Theorem 2.4. �
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7 Proof of Claim 1.18

First, we have the following lemma for compositions of indistinguishable distributions. Es-
sentially it is equivalent to the dual block composition method in [BT13], but we find it
more intuitive and easier to prove.

Lemma 7.1 ([Vio17, Lecture 6-7]). Suppose that distributions A0, A1 over {0, 1}nA are
kA-wise indistinguishable; and distributions B0, B1 over {0, 1}nB are kB-wise indistinguish-
able. For b ∈ {0, 1}, define Cb over {0, 1}nA·nB by first drawing a sample x ∈ {0, 1}nA
from Ab, then replacing each bit xi by a sample of Bxi independently. Then C0 and C1 are
(kA · kB)-wise indistinguishable.

Proof. Consider any set S ⊆ {1, . . . , nA · nB} of kA · kB bit positions. We will show that
they have the same distribution in C0 and C1.

View the nA ·nB as nA blocks of nB bits. Call a block K of nB bits heavy if |S∩K| > kB;
call the other blocks light. There are at most kA heavy blocks by assumption, so that the
distribution of the (entire) heavy blocks are the same in C0 and C1 by kA-wise indistin-
guishability of A0 and A1. Furthermore, conditioned on any outcome for the Ab samples in
Cb, those bit positions in the light blocks have the same distribution in both C0 and C1 by
kB-wise indistinguishability of B0 and B1 and independence between blocks.

Therefore C0 and C1 are kA · kB-wise indistinguishable. �

Also observe that we can only consider disjoint distributions for indistinguishability.

Claim 7.2 ([Vio17, Lecture 8-9]). For any function f , and for any k-wise indistinguish-
able distributions A0 and A1, if f can distinguish with probability ε then there are distri-
butions B0 and B1 with the same property and disjoint supports. (By disjoint support we
mean for any x either Pr[B0 = x] = 0 or Pr[B1 = x] = 0.)

Proof. Let distribution C by the “common part” of A0 and A1. That is to say, we define
C such that Pr[C = x] := min{Pr[A0 = x],Pr[A1 = x]} divided by some constant that
normalize C into a distribution. We can write A0 and A1 as

A0 = pC + (1− p)B0 ,

A1 = pC + (1− p)B1 ,

where p ∈ (0, 1), B0 and B1 are two distributions. Clearly B0 and B1 have disjoint supports.
Then we have

E[f(A0)]− E[f(A1)] = pE[f(C)] + (1− p)E[f(B0)]

− pE[f(C)]− (1− p)E[f(B1)]

= (1− p)
(
E[f(B0)]− E[f(B1)]

)
≤ E[f(B0)]− E[f(B1)] .

Similarly, for all S 6= ∅ such that |S| ≤ k, we have E[χS(A0)] − E[χS(A1)] = (1 −
p)
(
E[χS(B0)]− E[χS(B1)]

)
, so E[χS(B0)]− E[χS(B1)] = 0.

Therefore if f can distinguish A0 and A1 with probability ε then it can also distinguish
B0 and B1 with such probability. Besides, B0 and B1 are k-wise indistinguishable. �

Now we can prove approxiamte degree lower bounds using indistinguishability.

19



Proof of Claim 1.18. (i) We know that d̃eg1/3(ANDm) = Ω(
√
m) and d̃eg1/3(ORn) =

Ω(
√
n) [NS94]. By standard error reduction techniques (c.f. [BNRdW07]) d̃egε(f) =

Θ(d̃eg1/3(f)) for all constant ε ∈ (0, 1
2). By Theorem 5.2 we get Ω(

√
m)-wise indistin-

guishable distrubutions A0, A1 s.t. Pr[ANDm(A1) = 1] ≥ Pr[ANDm(A0) = 1] + 0.99,
and similarly we have B0, B1 for ORn. By Claim 7.2, A0, A1 have disjoint supports,
and same for B0, B1.3 Compose them by Lemma 7.1 to get Ω(

√
mn)-wise indistin-

guishable distributions C0, C1. It remains to show that ANDm ◦ ORn can distinguish
them:

• C0: First A0 is sampled. As there exists unique x = 1m such that ANDm(x) = 1,
Pr[A1 = x] > 0 thus by disjointness of support Pr[A0 = x] = 0. Therefore we get
a string with at least one “0”. But then this “0” is replaced with sample from B0.
We have Pr[B0 = 0n] ≥ 0.99, and when it happens, ANDm ◦ ORn will return 0.

• C1: First A1 is sampled, and we know that A1 = 1m with probability at least 0.99.
Each bit “1” is replaced by a sample from B1, and we know that Pr[B1 = 0n] = 0
by disjoitness of support since Pr[B0 = 0n] > 0, thus in this case ANDm ◦ ORn
will return 1.

Therefore ANDm ◦ ORn is not 0.98-fooled by C0, C1. By Theorem 5.2 and standard

error reduction techniques we have d̃eg1/3(ANDm ◦ ORn) = Ω(
√
mn).

(ii) Similarly, we have Ω(
√
n)-wise indistinguishable distributionsB0, B1 s.t. Pr[ORn(B1) =

1] ≥ Pr[ORn(B0) = 1] + 0.99, thus Pr[ORn(B0) = 1] ≤ 0.01. We define Cb as m inde-
pendent copies ofBb for b ∈ {0, 1}. Obviously C0, C1 are Ω(

√
n)-wise indistinguishable.

For C1, every copy of B1 satisfies Pr[B1 = 0n] = 0 by disjointness of support, thus
Pr[ANDm ◦ ORn(C1) = 1] = 1. For C0, we have Pr[ANDm ◦ ORn(C0) = 1] ≤ 0.01m =
2−Θ(m). Therefore ANDm ◦ORn is not (1−2−Θ(m))-fooled by C0, C1, thus by Theorem
5.2 we are done.

(iii) Define GapMAJ′m as the partial function version of GapMAJm with an extra requirement
that it is undefined on inputs of Hamming weight in (1

3m,
2
3m). For a partial function

g with domain D ⊂ {0, 1}m, define the bounded approximate degree b̃degε(g) as the
minimum degree of polynomial p such that |p(x)−g(x)| ≤ ε for x ∈ D and |p(x)| ≤ 1+ε

for x /∈ D. It is easy to see that d̃egε(GapMAJm ◦ fn) ≥ b̃degε(GapMAJ′m ◦ fn), so it
remains to prove the lower bound for the latter.

Analogous to Theorem 5.2, it is necessary and sufficient to give two Ω(d̃eg1/3(fn))-wise

indistinguishable distributions C0, C1 such that

E
x∼C1

x∈D

[GapMAJ′m ◦ fn(x)]− E
x∼C0

x∈D

[GapMAJ′m ◦ fn(x)]−
∑
x/∈D

(C1(x) + C0(x)) ≥ 2ε, (41)

whereD is the domain of GapMAJ′m◦fn, i.e. the distinguishing advantage of GapMAJ′m◦
fn on D minus the probability mass of C0 and C1 outside of D must be at least 2ε.

Let k = d̃eg1/3(fn). Similarly as before we can get Ω(k)-wise indistinguishable distri-

butions B0, B1 s.t. Pr[fn(B1) = 1] ≥ Pr[fn(B0) = 1]+0.99. Now for b ∈ {0, 1}, we still
define Cb as m independent copies of Bb, thus C0, C1 are Ω(k)-wise indistinguishable.
We have Pr[fn(B1) = 1] ≥ 0.99 and Pr[fn(B1) = 0] ≤ 0.01. Hence in expectation
more than 0.99 fraction of the m independent copies of B1 will make fn return 1.
Therefore by Chernoff bound, on C1 the probability that GapMAJ′m gets an input of

3Indeed by making them disjoint A0, A1 and B0, B1 witness the one-sided approximate degree [KT14] lower
bounds of ANDm and ORn, respectively.
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Hamming weight less than 2
3m is at most 2−Θ(m). Similarly on C0 the probability

that GapMAJ′m gets an input of Hamming weight larger than 1
3m is at most 2−Θ(m).

Therefore Inequality (41) holds for 2ε = 1− 2−Θ(m), and we finish the proof.

(iv) Similarly as before we get A0, A1 for gm and B0, B1 for fn. Composing them by

Lemma 7.1 gives Ω
(

d̃eg1/3(gm) · d̃egε(fn)
)

-wise indistinguishable distributions C0, C1.

Note that now we have Pr[fn(B1) = 1] ≥ Pr[fn(B0) = 1] + (1 − 2
mα ), thus we have

Pr[fn(Bb) 6= b] ≤ 2
mα for both b ∈ {0, 1}, i.e. Bb errs with probability at most 2

mα .
Then by union bound, Pr[gm ◦ fn(C1) = 1] ≥ 1− 1

3 −m ·
2
mα = 2

3 − o(1), and similarly
Pr[gm ◦ fn(C0) = 0] = 2

3 − o(1), thus gm ◦ fn is not 1
6 -fooled by C0, C1 and we finish

the proof similarly.

(v) The (m − 1)-wise indistinguishable distributions A0, A1 for XORm can be explicitly
obtained by defining A0 to be the uniform distribution over all strings of {0, 1}m

with parity 0, and A1 for parity 1. Similarly as before we have Ω(d̃egε(fn))-wise in-
distinguishable distributions B0, B1 s.t. E[fn(B1)] − E[fn(B0)] ≥ 2ε. Composing

them by Lemma 7.1 gives Ω(m · d̃egε(fn))-wise indistinguishable distributions C0, C1.
Alternatively we can define C0

m, C
1
m inductively by:

• C0
1 = B0, C1

1 = B1;

• for each k > 1, for C0
k first randomly draw z ∈ {0, 1}, then sample from BzCzk−1

as result; for for C1
k first randomly draw z ∈ {0, 1}, then sample from BzC1−z

k−1 .

It is easy to see that C0 = C0
m and C1 = C1

m. For simplicity we convert the output
basis from {0, 1} to {−1, 1}, so XORm ◦ fn becomes products of fn’s. Under this basis
we have E[fn(B0)]− E[fn(B1)] ≥ 2ε. Then

E[XORm ◦ fn(C0
m)]− E[XORm ◦ fn(C1

m)]

=
1

4

∑
z,z′∈{0,1}

E[fn(Bz) · XORm−1 ◦ fn(Czm−1)]− E[fn(Bz′) · XORm−1 ◦ fn(C1−z′
m−1))]

=
1

4

∑
z,z′∈{0,1}

E[fn(Bz)]E[XORm−1 ◦ fn(Czm−1)]− E[fn(Bz′)]E[XORm−1 ◦ fn(C1−z′
m−1))]

=
1

2
(E[fn(B0)]− E[fn(B1)])(E[XORm−1 ◦ fn(C0

m−1)]− E[XORm−1 ◦ fn(C1
m−1)])

≥ 1

2
· 2ε · (E[XORm−1 ◦ fn(C0

m−1)]− E[XORm−1 ◦ fn(C1
m−1)]).

Therefore by induction we have E[XORm ◦ fn(C0
m)] − E[XORm ◦ fn(C1

m)] ≥ 2εm, thus

d̃egεm(XORm ◦ fn) = Ω(m · d̃egε(fn)) by Theorem 5.2.

For ANDm, use the same A0, A1 if m is odd, and switch their roles if m is even. The
remaining proof follows similarly except that we keep the output basis to be {0, 1}.

�

8 Proofs of Claim 1.7 and 1.8

Proof of Claim 1.7. Suppose f : {0, 1}n → R ε-approximates PARITY and minimizes the
weight. On one hand, we have 1

2n
∑

x∈{0,1}n f(x)PARITY(x) ∈ [1 − ε, 1 + ε]. On the other
hand, write f as f =

∑
S⊆[n] cS

∏
i∈S xi, then∑

x∈{0,1}n
f(x)PARITY(x) =

∑
T⊆[n]

(−1)|T |
∑
S⊆T

cS =
∑
S⊆[n]

cS
∑
T⊇S

(−1)|T | = (−1)nc[n],
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where the last step comes from the fact that whenever S $ [n] we have
∑

T⊇S(−1)|T | = 0

as we can arrange such T ’s into matching pairs that has exactly opposite value of (−1)|T |.
Therefore we have |||f ||| ≥ |c[n]| ≥ (1− ε)2n. �

Proof of Claim 1.8. Let f be the polynomial that ε-approximates OR and minimizes the
weight. Let w = |||f |||. By a sampling argument ([Gro97], c.f. [Zha14, CMS18]) we can get a
polynomial g : {0, 1}n → R such that g 1

3 -approximates OR and g has O(w2n) monomials.
Now define h : {0, 1}n × {0, 1}n → R by h(x1 · · ·xn, y1 · · · yn) = 1 − g(x1y1, . . . , xnyn), then
h 1

3 -approximates the set disjointness function DISJ, where x1 · · ·xn and y1 · · · yn are inter-
preted as indicators of two sets X,Y ⊆ [n] respectively and DISJ(X,Y ) = 1 iff X ∩ Y = ∅.
Now h also has O(w2n) monomials. By Theorem 8 in [BdW01] we get w = 2Ω(

√
n). �

9 Discussion and Open Problems

An obvious open question is to prove approximate degree-weight tradeoffs for more func-
tions. A central function in the area is Surjectivity. For this it would suffice to have a
polynomial approximating OR on the domain {−1, 1}m≤n, in which the Hamming of the in-
put is restricted to be at most n. [She18] showed that the degree of such a polynomial
depends on n instead of m as if we are working on {−1, 1}n. It is natural to ask if the same
holds for weight. The answer is negative. To show this, note that the proof of Theorem 1.16
actually gives us (k, δ)-indistinguishable distributions with bounded Hamming weight that
don’t fool OR. In particular, for any ε, n,m, k satisfying c′

16

√
m log(1/ε) ≤ k ≤ c′

16m and

n = c′2

162
m2

k2
log(1/ε), we have distributions that are

(
k, 2−Ω(m log(1/ε)/k)

)
-indistinguishable on

{−1, 1}m≤n but cannot ε-fool OR. For m > n, we have 2−Ω(m log(1/ε)/k) < 2−Ω(n log(1/ε)/k) for
fixed k and ε. This also means that we need other methods for Surjectivity.

Another open problem is to show tight degree-weight tradeoffs for OR on {−1, 1}m≤n.
Chandrasekaran et al. [CTUW14, Corollary 5.2] proved that it requires weight roughly at

least
(

m
k
√
n

)√n
for constant ε, so when k

√
n ≤ (1− Ω(1))m it requires 2Ω(

√
n).

Another open problem is to understand how the approximate weight of a symmetric
function f changes when k = Θ(n). In [AFH12, AFK17] they showed that when k = n for
constant error it is very close to 2O(τ ′(f)), where τ ′(f) is the smallest number t′ ∈ [0, n2 ] such
that f or f · PARITY is constant on inputs of Hamming weight in (t′, n − t′). Our results
show tight bounds of 2O(τ(f)) for k ≤ Θ(n), but τ(f) could be much larger than τ ′(f) as in
the case of PARITY. What happens in between? Can we get a better upper or lower bound?

We also lack a matching “does not fool” result for t-CNF as tight approximate degree and
weight are not known even for 2-CNF (without promise on the input). The open problem
here is to prove lower bounds matching our results for t-CNF.
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