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Abstract

In [12], the authors presented an algorithm for the reachability problem over directed planar
graphs that runs in polynomial-time and uses O(n1/2+ε) space. A critical ingredient of their

algorithm is a polynomial-time, Õ(
√
n)-space algorithm to compute a separator of a planar graph.

The conference version provided a sketch of the algorithm and many nontrivial details were left
unexplained. In this work, we provide a detailed construction of their algorithm.

1 Introduction

The purpose of this paper is to give a detail construction of an Õ(
√
n)-space and polynomial-time

algorithm for computing an O(
√
n)-size separator for a given planar graph with n vertices. We prove

the following theorem.

Theorem 1.1. For some constant α > 0, there exists an algorithm that takes an undirected planar
graph with n vertices as input and outputs its α-separator of size O(

√
n) in polynomial-time and

Õ(
√
n)-space.

Remark. In this paper, we have not optimized the constant α and prove the theorem with α = 1/31.
Throughout this paper, we will use n to denote the number of vertices of an input graph, which will
be used as a size parameter when we discuss graph problems. For measuring space complexity, we will
use, for simplicity, the number of words used as working memory, where we assume that each word is
large enough to contain an integer up to n, for specifying the index of a vertex of an input graph. By
“Õ(
√
n)-space” we mean that the computation that uses O(

√
n) words as working memory, which is

O(
√
n log n)-space in the standard Turing machine model.

The Separator Theorem states that any planar graph G with n vertices has a separator of size
O
(√
n
)
, that is, a set S of O

(√
n
)

vertices of G such that by removing S, G is split into disconnected
subgraphs of almost equal size, say, each having more than n/3 vertices. In fact, in their seminal work
that first proved the Separator Theorem, Lipton and Tarjan [14] gave an efficient separator algorithm,
an algorithm for computing an O(

√
n)-size separator for planar graphs. The notion of planar separator

and the algorithm of Lipton and Tarjan have found several applications in designing efficient algorithms
for planar graphs.

Since the work of Lipton and Tarjan, several versions of separator algorithms have been proposed
[8, 13, 10, 9, 11], and they have been applied to design various algorithms for planar graphs. The
purpose of this paper is to give yet another type of separator algorithm. The motivation for the new
separator algorithm stems from its relation to the graph reachability problem.

The graph reachability or the st-connectivity problem asks, for a given graph G and two of its
vertices s and t, whether there is a path in G from s to t or not. (Unless specified otherwise, we
assume here that an input of the graph reachability problem is a directed graph.) This problem is one
of the fundamental computational problems in both algorithm design and in complexity theory. In
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particular, this problem is known to be complete (under logspace reductions) for the complexity class
NL—nondeterministic logspace. Thus a O(log n)-space algorithm for graph reachability implies that
the complexity class NL equals L, and resolves one of the fundamental open problems in computational
complexity theory. Interestingly, for its undirected version, that is, for the undirected graph reachability
problem, Reingold [15] gave a remarkable O(log n)-space algorithm. Note that, by using standard
algorithmic techniques such as BFS or DFS we can design an algorithm that runs in almost linear-
space and in almost linear-time for solving reachability over directed graphs. Savitch gave an algorithm
that solves reachability using O((log n)2)-space. However Savitch’s algorithm takes super polynomial-
time. While the BFS/DFS algorithm is time-efficient, Savitch’s algorithm is space-efficient. Thus it is
natural to ask whether there exists an algorithm, for the directed graph reachability problem, that is
efficient in both time and space. In a survey article on the graph reachability and related problems,
Wigderson [16] asked whether there is a sublinear-space and polynomial-time algorithm for the graph
reachability problem. For this question, the best known answer is the algorithm given by Barnes
et al. [6] that runs in O

(
n/2

√
logn

)
-space and polynomial-time. Unfortunately, though the bound

O
(
n/2

√
logn

)
is “sublinear”, it is quite close to being linear. If we view O

(
n1−ε

)
(for some ε > 0), as

“sublinear”, it has been open whether such a sublinear-space and polynomial-time algorithm exists for
reachability problem.

Recently, there have been some advancements on this sublinear-space and polynomial-time com-
putability for restricted graph classes. (Since all algorithms stated below run in polynomial-time1, we
omit mentioning “polynomial-time” in the following.) The first break through was given by Asano and
Doerr [2], who showed an algorithm that solves the reachability problem on directed grid graphs in

Õ(n1/2+ε)-space. Inspired by this work, Imai, Nakagawa, Pavan, Vinodchandran, and Watanabe [12]

gave an Õ(n1/2+ε)-space algorithm for the reachability problem on directed planar graphs. Later Asano

et al. [3] gave an improved Õ(
√
n)-space algorithm. For directed grid graphs, Ashida and Nakano [5]

showed an Õ(n1/3)-space algorithm. Note that in all of the above algorithms the input graphs are
planar and they all critically rely on the existence of O(

√
n)-size separator. The last algorithm of

Ashida and Nakano is interesting in this sense because its space bound is much less than the separator
size. Furthermore, these algorithms except for the first one use a separator algorithm proposed by
Imai et al in [12] that produces a O(

√
n)-size separator in Õ(

√
n)-space. This separator algorithm is

based on an algorithm of Gazit and Miller [10] that is designed for computing a separator efficiently
on a parallel computation model. Since space-bounded computation and parallel computation share
common features, one can expect that the algorithm of Gazit and Miller can be modified naturally
to obtain an algorithm that runs in polynomial-time and uses Õ(

√
n)-space. Unfortunately, it is not

easy to translate Gazit and Miller’s algorithm to obtain a Õ(
√
n)-space algorithm for computing a

planar separator. The work of [12] provided a sketch of a Õ(
√
n)-space, polynomial-time algorithm for

computing a planar separator, however, several nontrivial details have been left unexplained in that
work.

In this paper we completely reconsider the design of a separator algorithm that runs in Õ(
√
n)-

space and polynomial-time on planar graphs. While we borrow many ideas from Gazit and Miller [10]
and Imai et al [12], our algorithm in this paper differs from both the algorithms in many technical
details. In Section 3, we give an outline of the separator algorithm and explain each of the steps and
sub-steps in latter sections, so that the interest reader can check our constructions carefully.

2 Preliminaries

In this section we explain basic notions and notation for discussing planar graphs. We then discuss
our computational model and explain some assumptions that we can introduce on input data for our
separator algorithm. We also recall two separator algorithms from the literature.

Throughout this paper, by a graph we usually mean an undirected graph. For any graph G, we
formally use V(G) and E(G) to denote the set of vertices of G and the set of edges of G respectively.
On the other hand, we will mainly discuss with some fixed graph G, and in this case, we simply use
V and E to denote V(G) and E(G). For any vertex v ∈ V , let NG(v) denote the set of its neighbors,
namely, vertices adjacent to v in G. For any U ⊆ V (resp., D ⊆ E) we use G[U ] (resp., G[D]) to
denote a subgraph of G induced by U (resp., by D).

1Unfortunately, while their running time are polynomially bounded, these bounds are quite high degree polynomials
except the first one by Asano and Doerr.
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We assume that an input graph is simple, that is, each pair of vertices has at most one edge. Though
a non-simple graph may be created by our transformations (in particular, in our base dual-graph), all
our arguments will be valid by treating multiple edges (between the same pair of vertices) as different
edges. By a path of G = (V,E), we mean a “simple” path, that is, a sequence adjacent edges of E
where no vertex is visited more than once. Similarly, a cycle of G = (V,E) is a sequence adjacent
edges of E that comes back to the first vertex where no vertex except for the first one is visited more
than once. We simply represent a path and a cycle by a sequence (v1, . . . , vm) of vertices of V such
that every {vi, vi+1} (and also {vm, v1} for a cycle) is an edge of E. Although the same sequence could
be used for representing both a path and a cycle, the difference should be clear from the context. We
may also use this sequence representation for indicating the “direction” of a path or a cycle.

While our argument should be mathematically precise, we would like to avoid rigorous but tedious
topological treatments of planar graphs. Thus, following the previous work in the literature (see, e.g.,
[13]) we prepare a framework for discussing plane graphs in a combinatorial way.

Definition 2.1 (Planar graph, plane graph, and combinatorial embedding). A graph G is planar if it
has a planar embedding, a way to arrange the vertices of NG(v) on the plane (i.e., R2) for all v ∈ V
and a drawing of the edges so that no pair of edges intersect each other except at their endpoints. A
planar embedding is specified by a combinatorial embedding, that is, a set {πv : v ∈ V } of lists, where
each πv is an enumeration of vertices of NG(v) in the clockwise order around v under the embedding.
Remark. Throughout this paper, we will use a plane graph to mean a planar graph that is embedded
in the plane following one of such combinatorial embeddings.

Consider any plane graph G embedded in the plane under a combinatorial embedding {πv : v ∈ V }.
One of the keys for discussing plane graphs is a way to define the faces of G. Intuitively, the graph G
(embedded in the plane) separates the plane into “subplanes,” each of which is a “face” of G. Here we
formally define the notion of “face” as follows.

First define the notion of “left-traverse” of G. Consider any edge {v1, v2} of G, and fix its direction
as, e.g., (v1, v2), which we regard as the first directed edge e1 (of the left-traverse). Consider the
enumeration πv2 of adjacent vertices of v2, and let v3 be the next vertex of v1 in the enumeration,
that is, v3 is clockwise the first vertex adjacent to v2 after v1. Then define e2 = (v2, v3) as the second
directed edge. Continue this process of identifying directed edges (based on edges of G) until we come
back to the first directed edge e1. We call this process left-traverse process, and a sequence of vertices
visited during the process left-traverse of G started from (v1, v2). Precisely speaking, we do not include
the last vertex, i.e., the starting vertex v1 in the sequence; see Figure 1 for examples. Although a left-
traverse is a sequence of vertices, this can be regraded as the sequence of the directed edges in the
order that they are identified by the left-traverse process. We remark here the following fact.

Lemma 2.1. Consider any graph G. For any of its left-traverse (v1, v2, . . .), no directed edge (vi, vi+1)
appears more than once. Thus, no infinite loop occurs in any left-traverse process.

Proof. 2 Assume to the contrary that some directed edge (vi, vi+1) appears more than once. Let
ei−1 = (vi−1, vi) and ei = (vi, vi+1) be the directed edges identified in the left-traverse process when vi
appears for the first time. From our assumption, we have another (vj , vi) for some j > i+ 1 right after
which ei appears for the second time in the process. Then since vi+1 is clockwise the next vertex of
vi−1 among all vertices adjacent to vi, it follows that vj must be located between vi+1 and vi−1 in the
clockwise enumeration πvi of NG(vi); that is, vi+1 cannot be clockwise the next of vj in πvi because
at least vi−1 comes before vi+1 after vj ; see Figure 1 (c). Thus, (vi, vi+1) cannot be next to (vj , vi) in
the process; a contradiction.

Consider any plane graph G with at least two faces. Then any left-traverse t = (v1, . . . , vm) of G
separates the plane where G is embedded into at least two “subplanes.” From the choice of directed
edges, it is clear that there is no vertex of G in the “subplane” left of the directed edges of t; that is,
a “face” is identified by this left-traverse. In fact, it has been known that for any plane graph, all its
faces are identified by some left-traverse as stated in Proposition 2.1 below. In this paper, we regard
this proposition as our definition of the notion of face; throughout this paper, we will identify each
face by its corresponding left-traverse, which is called the boundary of the face.

2The lemma may be clear since the same vertex cannot be the “next” vertex of two vertices in an enumeration of a
combinatorial embedding. But in order to give a clear image on the left-traverse notion, we give a bit careful proof here.
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(a) (b) (c)

(a) An example of the first two edges identified by a left-traverse process. As the next
directed edge of e1 = (v1, v2), an edge e2 = (v2, v3) is selected, where v3 is the clockwise
next vertex of v1 among all adjacent vertices of v2. By the choice of these edges, no vertex
adjacent to v2 exists in the left of e1 → e2, which guarantees that the left of each left-traverse
is a “face.” (b) A connected but not 2-connected graph. A left-traverse from edge (3, 4)
is (3, 4, 5, 6, 3, 2, 1, 2), which defines the outer face. On the other hand, the face inside the
square is defined by, e.g., a left-traverse from edge (4, 3), that is, (4, 3, 6, 5). (c) An example
for the proof of Lemma 2.1.

Figure 1: Left-traverse

Proposition 2.1. Consider any plane graph G. Then for any left-traverse of G, there is a unique
subplane, i.e., face, located left of the traverse w.r.t. its direction. On the other hand, for any face of
G, there is a left-traverse of G that defines the face as a subplane located left of the left-traverse w.r.t.
its direction.
Remark. Since each left-traverse is determined by a starting directed edge, there are more than one
essentially the same left-traverses. Thus, the correspondence between faces and left-traverses is not
one-to-one but one-to-many.

Note that a left-traverse is not a cycle in general; for example, Figure 1 (b). But if G is 2-connected,
then any left-traverse of G is a cycle; see, e.g., [7]. (A graph is 2-connected if every pair {u, v} of its
vertices are connected by two paths not sharing vertices except for {u, v}, or equivalently, it has no
cut vertex.)

Proposition 2.2. Consider any plane graph G that is also 2-connected. Then any left-traverse is a
cycle. That is, every face of G has a boundary consisting of one cycle, which we call a face boundary
cycle.

Definition 2.2 (Face boundary representation and face size). For any 2-connected plane graph G, for
any face, its face boundary representation is its face boundary cycle c, or more precisely, a sequence
of vertices of c in the order so that the face is located left of c w.r.t. the order. The size of a face is
the number of vertices of its face boundary cycle.

Definition 2.3 (Incidence and edge-incidence). Two faces are incident (resp., edge-incident) if their
boundaries share some vertex (resp., some edge).
Remark. In general, we say that two graph objects are incident if they share some vertex. For
example, we say that two paths are incident if they share some vertex (and possibly more).

Definition 2.4 (Complete face information). A complete face information of a graph G is a list of
all face boundary representations of G and lists of respectively all incident and edge-incident pairs of
faces of G.

While it is not essential for our discussion, we note here that a complete face information of any
plane graph with n vertices can be expressed in Õ(n)-space, which is easy to show by the Euler’s
formula on the number of vertices, edges, and faces of a plane graph.

We introduce a generalized separator notion, which will be mainly used in this paper. First we
define the standard separator notion formally.

Definition 2.5 (Standard separator). For any graph G with n vertices, and for any parameter α ∈
(0, 1), an α-separator of G is a set S of vertices of G such that the removal of S creates two disconnected
subgraphs each of which has at least αn vertices.
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A generalized separator notion is defined for weighted graphs. Here a weighted graph3 is a plane
graph G for which we additionally give a weight to each face of G. Formally, we may represent a
weighted graph G = (V,E) by V , E, its combinatorial planar embedding, and its complete weighted
face information where each face representation is also given its weight. By normalizing weights, we
may assume that the total weight is always 1.

Definition 2.6 (Cycle weighted separator). For any 2-connected weighted graph, and for any ρ ∈ (0, 1),
a cycle weighted ρ-separator of the graph is a cycle C that creates two subplanes each of which has
weight ≥ ρ.
Remark. The weight of a subplane is the sum of the weights of all faces in the subplane.

Computational model

For discussing sublinear-space algorithms, we use the standard multi-tape Turing machine model. A
multi-tape Turing machine consists of a read-only input tape, a write-only output tape, and a constant
number of work tapes. The space complexity of this Turing machine is measured by the total number
of cells that can be used as its work tapes. Throughout this paper, we will use n to denote the number
of vertices of an input graph and use it as the complexity parameter; that is, we will measure the
space and time complexity in terms of n (unless stated explicitly in other ways). As a unit for space
complexity, we will often use “word”, by which we mean c0 log n cells, where c0 is a constant large
enough such that index of a vertex (i.e., a number between 1 and n) can be stored in one word. We

use Õ(s(n)) to mean O(s(n)) words. Thus, for example, by an “Õ(s(n))-space algorithm” we formally
mean a Turing machine that implements the algorithm by using O(s(n) log n)-size work tapes, i.e.,
work tapes consisting of O(s(n) log n) cells in total, for processing an input graph with n vertices.

For the sake of explanation, we will follow a standard convention and describe a sublinear-space
algorithm by a sequence of constant number of sublinear-space subroutines A1, . . . , Ak such that each
Ai computes, from its given input, some output that is passed to Ai+1 as input. Note that some of
these outputs cannot be stored in a sublinear-size work tape; nevertheless, there is a standard way to
design a sublinear-space algorithm based on these subroutines. The key idea is to compute intermediate
inputs every time when they are necessary. For example, while running Ai, when it is necessary to see
the jth bit of the input to Ai, simply execute Ai−1 (from the beginning) until it yields the desired jth
bit on its work tape, and then resume the computation of Ai using this obtained bit. It is easy to see
that this computation can be executed in sublinear-space. Furthermore, while a large amount of extra
computation time is needed, we can show that the total running time can be polynomially bounded if
all subroutines run in polynomial-time.

Two separator algorithms and Reingold’s algorithm for the reachability test

We recall two separator algorithms that will be used to compute a separator in our algorithm.
The first one is the algorithm of Lipton and Tarjan [14].

Proposition 2.3 (Lipton-Tarjan separator algorithm). For any planar graph with n vertices, there
exists a 1/3-separator of size 2

√
2n. Furthermore, there exists a polynomial-time algorithm that finds

one of such separators by a breadth-first search. The algorithm can be modified so that when a given
(breadth-first search) tree of G is given as an additional input, then the algorithm runs in polynomial-

time w.r.t. n and in Õ(k)-space where k is the depth of the BFS tree.

The second one is based on an algorithm proposed by Miller in [13]. In that paper, Miller showed
a linear-time algorithm computing a cycle weighted 1/3-separator for a given 2-connected plane and
weighted graph.

Proposition 2.4. Consider any plane and 2-connected weighted graph with n vertices such that each
of its faces has weight ≤ 2/3 and size ≤ d. Then there exists a cycle weighted 1/3-separator of size
2
√

2bd/2cn. Furthermore, there exists an algorithm that finds one of such separators in O(n)-time
(under the unit cost).

As remarked in Section 1.2 of [10], for any graph with n vertices and nface faces of size ≤ d, we
have n ≤ 2dnface, which implies that 2

√
2bd/2cn ≤

√
8 · d√nface. Also looking into the proof of

this proposition, we see that the above algorithm operates only on faces of a given weighted graph if

3Our explanation is simplified from [13] by assuming zero weight to all vertices and edges.
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its complete face information is given, from which we can expect that it can be modified to run in
Õ(nface)-space. This has been indeed proved formally [4] as follows; in this paper, we will refer this
algorithm as Miller’s algorithm.

Proposition 2.5 (Modification of Miller’s separator algorithm [4]). Consider any plane and 2-connected
weighted graph with n vertices and nface faces such that each of its faces has weight ≤ 2/3 and size
≤ d. Then there exists a weighted cycle 1/3-separator of size O(d

√
nface). Furthermore, there exists

an algorithm that finds one of such separators in Õ(nface)-space if a combinatorial planar embedding
and a complete face information are given.

We also recall the log-space algorithm of Reingold [15] for the undirected graph reachability problem.
More specifically, we have an O(log n)-space algorithm that determines, for a given graph G and a pair
of vertices u and v of G, whether u is reachable to v in O(log n)-space. This algorithm will be used
several places in the following; we will call it Reinglod’s algorithm for the undirected graph reachability
test.

3 Outline of the Separator Algorithm

We explain the outline of our separator algorithm and state necessary claims to show the correctness
of the algorithm. These claims will be restated and proved in the subsequent sections.

Following the outline proposed by Gazit and Miller [10] we design a separator algorithm that
consists of the following steps:

1. Check the planarity condition etc. of an input graph, make some modifications on the input
graph to create our base graphs, and prepare supplementary information.

2. Transform the graph obtained at Step 1 to generate a frame-graph. (This step is separated into
four sub-steps. In some cases, a desired separator of the base dual-graph is created during some
sub-step; the algorithm of Lipton and Tarjan is used there.)

3. By using Miller’s algorithm, compute a desired weighted separator of the frame-graph, which
can be naturally transformed to a separator for the base dual-graph. Then compute a desired
separator for the original input graph.

Below we first explain Step 1, a preprocessing step to create two graphs that we will consider in the
subsequent steps. We then introduce the notion of “frame-graph”, and describe sub-steps of Step 2 to
obtain a frame-graph. Finally, we give the proof of our separator theorem by showing how to achieve
Step 3 for obtaining desired separators for the base dual-graph and the input graph. Following the
convention explained in Preliminaries section, we design an algorithm for each step and each sub-step
so that it gets data as input from the previous step and computes data as output passed to the next
step in Õ(

√
n)-space and polynomial-time.

Notational Remark. We would like to use symbols G and G̃ to denote the base graphs that we
will mainly consider in this paper, where G is obtained by transforming the input graph and G̃ is its
dual-graph. Thus, we will use (if necessary) Gorg to denote the original input graph. We also use n

to denote the number of vertices of G (and ñ for the number of vertices of G̃). Again we use norg to
denote the number of vertices of Gorg. As we will see, we have n = Θ(norg) = Θ(ñ); hence, there is
no difference among n, norg, and ñ as a complexity parameter, and we will simply use n for discussing
the complexity of algorithms.

Step 1 and our base graphs (Corresponding technical section: Section 4)

In Step 1 we check the conditions assumed for the input graph Gorg and prepare two base graphs and
some additional information for these graphs. Here Reingold’s algorithm for the reachability test plays
a key role for achieving this preprocessing in O(log n)-space (and hence, in polynomial-time).

First consider a sub-step for checking input graph conditions. For the graph Gorg given by its
adjacency matrix, we check whether it is connected by using Reingold’s algorithm. If Gorg is not
connected, the algorithm considers its largest connected component. If it has less than 30n/31 vertices,
then the algorithm can claim the empty set as a desired separator. Otherwise, the algorithm can work
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on a subgraph G′org induced by the largest component to obtain its 1/31-separator, which is clearly
a 1/31-separator of the original input graph Gorg (by adding the remaining connected components of
Gorg to a smaller separated subgraph of G′org). Note that identifying the largest connected component
and checking its size can be done in O(log n)-space by using Reingold’s algorithm.

We then apply the algorithm of Allender and Mahajan [1] for the planarity test. Precisely speak-
ing, they showed an O(log n)-space algorithm for the planarity test by using the undirected graph
reachability test as a subroutine, which can be used as a standard O(log n)-space algorithm with Rein-
gold’s algorithm. In the same paper, they also gave an O(log n)-space algorithm (by using Reingold’s
algorithm) that produces a combinatorial planar embedding (if a given graph is planar). Thus, we
use their algorithms to check whether the input graph is planar and (if it is so) to compute one of its
combinatorial planar embeddings.

In the rest of this paper, we assume that a given input graph Gorg is connected and planar and that
the algorithm is also given one of its combinatorial planar embeddings. (From some technical reason,
we also assume that Gorg is not a trivial single triangle.)

Next we transform the input graph Gorg into a well-structured graph G. From the above sub-step,
we have the combinatorial planar embedding of Gorg. Then it is not hard to compute its triangulation
in O(log n)-space, that is, a combinatorial planar embedding for its triangulated graph (see Section 4
for more explanation). Note here that a triangulated graph is 2-connected, and this 2-connectivity
will be preserved in the following sub-steps. As we will see below it would be easier if we can assume
that a graph is three-regular. So we transform the obtained triangulated graph to a three-regular
graph by vertex expansion shown in Figure 2. Formally, the vertex expansion is defined as follows:
Consider any vertex v of a triangulated graph. Since the graph is triangulated (and if it is not a trivial
single triangle), we may assume that its degree deg(v) is at least 3. The vertex expansion on v is to
replace v with a deg(v)-size face, that is, a face having a boundary cycle consisting of deg(v) vertices.
Each of the deg(v) edges incident to v is now connected to each vertex on the face boundary cycle
following their order under the assumed combinatorial planar embedding. We expand all vertices of
the triangulated Gorg in this way, and the obtained graph is our first base graph G.

(a) (b)

(a) An example of vertex expansion. Each vertex of the left graph is expanded to respectively
a triangle, a square, and a pentagon in the right graph. (b) An example of a base graph
Gorg (only its subgraph). All faces are either a face obtained by the vertex expansion or a
polygon (triangle ∼ hexagon) corresponding to a triangle of Gorg.

Figure 2: Vertex expansion

Here we point out some properties that are easy to see from Figure 2. That is, (i) G is three-
regular, and (ii) all faces of G are either a face obtained by expanding the corresponding vertex of
Gorg or a polygon (triangle ∼ hexagon) corresponding to a triangle of Gorg. The other properties are
summarized below.

Claim 1 (Base graph G; restated as Lemma 4.1). Hereafter let G denote a base graph, a graph
obtained by applying the vertex expansion on all vertices of the triangulated input graph Gorg (under
its combinatorial planar embedding). Let n denote the number of vertices of G (whereas we use norg
to denote the number of vertices of Gorg). Then G satisfies the following: (i) it is three-regular, (ii)
all faces of G are either a face obtained by expanding the corresponding vertex of Gorg or a polygon
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(triangle ∼ hexagon) corresponding to a triangle of Gorg, (iii) n = Θ(norg), and (iv) G has a planar
embedding naturally defined from the one for Gorg.

Gazit and Miller [10] considered a dual-like graph of an input graph; their separator algorithm was
explained by using both an input graph and its dual-like graph. We follow this style, but here we
consider the standard dual-graph. (See Figure 3 for an example of a dual-graph; it is easy to see from
the figure that a dual-graph is triangulated if its base graph is three-regular.)

An example of a three-regular base
graph (only its subgraph) and its dual-
graph. The base graph is indicated by
black nodes (for vertices) and solid lines
(for edges), while its dual-graph is indi-
cated by white nodes (for dual-vertices)
and dashed lines (for dual-edges). As
shown here a dual of a three-regular
graph is triangulated.

Figure 3: A three-regular graph and its dual-graph

Definition 3.1 (Base dual-graph G̃). Throughout this paper, let G̃ = (Ṽ , Ẽ) denote a dual-graph of

G (under its planar embedding) where G̃ is the set of faces of G and Ẽ is the set of dual-edges, i.e.,
pairs of dual-vertices whose corresponding faces share at least one edge.
Remark. We can identify a dual-vertex of G̃ with its corresponding face of G, and we sometimes
say that a dual-vertex ṽ has an edge e of G, meaning that e is one of the boundary edges of the face
corresponding ṽ.

Notational Remark. We will use a prefix “dual-” to denote a vertex, an edge, a path, and a
cycle in G̃ to distinguish them from those in G, and we will attach “˜” to variables denoting these
objects; for example, a vertex of G̃ is called a dual-vertex and it is denoted by, e.g., ṽ. (There are some
exceptions. In case we add some other prefix such as “boss-”, “frame-”, etc. for referring an object of
the dual-graph G̃, we may omit adding “dual-.” Also since subplanes and faces are notions involving a
topological interpretation on R2, we will not use “dual-” to denote them even if they are defined w.r.t.
the dual-graph G̃.)

We remark here that the base dual-graph G̃ may not be a simple graph though the base graph G
is simple (by assuming the input graph is a simple graph); see Figure 4 for an example. We assume
any reasonable way to identify non-simple dual-edges.

An example of the case where a non-
simple dual-graph is created from
a simple base graph. As the pre-
vious figure, i.e., Figure 3, a base
graph is indicated by black nodes
and solid lines, while some (not
all) of dual-vertices and dual-edges
are indicated by white nodes and
dashed lines.

Figure 4: An example of the creation of a non-simple dual-graph

It is easy to see that the number ñ of dual-vertices of G̃ is linearly related to n. Furthermore, we
have the following relation.
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Claim 2 (Restated as Lemma 4.2). Assume that n is large enough. If G̃ has a 1/10-separator of G̃
of size O(

√
n), then Gorg has a 1/31-separator of size O(

√
norg).

A frame-graph and four sub-steps of Step 2

A “frame-graph” is a weighted subgraph of the base dual-graph G̃. Roughly speaking, we transform G̃
by removing some of the dual-vertices, which creates new faces. The weight of these faces are defined
proportional to the number of removed dual-vertices. In order to be able to use Miller’s separator
algorithm, we require the following conditions to a frame-graph.

Definition 3.2 (Frame-graph). A frame-graph is a weighted subgraph H̃ of the base dual-graph G̃ that
satisfies the following conditions (we let k =

√
n and we will fix this usage hereafter):

(F1) H̃ is a weighted subgraph of G̃ induced by some subset of dual-edges of G̃. The weight of each

face4 f of H̃ is proportional5 to the number ñf of dual-vertices of G̃ located in the face (which

are removed from G̃), and it is less than 1/3.

(F2) H̃ is 2-connected.

(F3) H̃ contains O(ñ/k) faces.

(F4) The size of each face of H̃ is O(
√
k); that is, for each face of H̃, its boundary dual-cycle consists

of O(
√
k) dual-vertices.

Step 2 of our algorithm is to obtain a frame-graph H̃ from the base dual-graph G̃. Roughly speaking,
we identify “frame-cycles”, dual-cycles that define faces of H̃, and we compose H̃ as a collection of
such dual-cycles. Step 2 is divided into the following four sub-steps. (Here we only specify the outputs
of these sub-steps; some of the technical terms will be explained below. We may assume that the input
to these sub-steps is all data prepared as output in Step 1 and the previous sub-steps.)

2.1. Identify Voronoi regions and compute their boss-vertices that are used as a root of a BFS dual-
tree of each Voronoi region.
Output: The description of the Voronoi regions. That is, a set Ĩ of the boss-vertices, and for
each b̃ ∈ Ĩ, the description of a BFS dual-tree rooted at b̃, and a set of boundary cycles for the
corresponding Voronoi region.

2.2. Identify ridge edges (if needed), and compute connectors and branch vertices. Then identify
“preliminary” frame-cycles6.
Output: The set of branch vertices, connectors, and the description of preliminary frame-cycles.

2.3. Preprocess preliminary frame-cycles and compute frame-cycles, from which a frame-graph H̃
is defined. (During this preprocessing step, there are cases where a desired separator of G̃ is
obtained and the algorithm terminates by transforming it to a desired 1/31-separator of Gorg.
The algorithm of Lipton and Tarjan is used in one of such cases.)

Output: The description of H̃, that is, its combinatorial planar embedding and its complete
weighted face information.

2.4. Identify floor- and ceiling-cycles, and modify H̃ by adding floor- and ceiling-cycles as new face
boundary dual-cycles.
Output: The description of the modified frame-graph H̃, that is, its combinatorial planar
embedding and its complete face information.

We explain sub-steps a bit more in detail so that we can state important properties on their outputs.
(Note that some notions are used below without a definition or with an only rough and not precise
definition; see the corresponding section for their definitions. Though omitted below, we clearly need

4It is clear that H̃ is a plane graph w.r.t. the embedding naturally inherited from G̃. Thus, precisely speaking, we
assume this embedding for discussing the faces of H̃.

5It is simply ñf divided by the total number ñ− of dual-vertices removed from G̃ for defining H̃. In fact, we will use,
for simplicity, ñf instead of ñf/ñ

− in our algorithm.
6In our technical discussion, we will define these preliminary frame-cycles formally and call them “pre-frame-cycles.”
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to show that these sub-steps can be done in Õ(
√
n)-space and polynomial-time, which will be proved

in the subsequent technical sections.)

Step 2.1. (Corresponding technical section: Section 5)

We borrow the idea of Gazit and Miller [10] and introduce the notion of Voronoi region. A Voronoi
region is defined by a set of connected dual-vertices within distance 2k from some dual-vertex, which
we call a boss-vertex. Boss-vertices are selected in a greedy way, and it can be shown that we can cover
G̃ by selecting ñ/k boss-vertices. We use Ĩ to denote the set of all selected boss-vertices, and for each

boss-vertex b̃, we use Vr(̃b) to denote a Voronoi region having b̃ as a boss-vertex. Precisely speaking,
these Voronoi regions are subplanes dividing the plane where the base plane graph G is drawn. We
can show that each Voronoi region is defined by boundary cycles consisting of G’s edges; see Figure 5
for an example. The following properties are important.

Claim 3 (Voronoi region; follows from Lemmas 5.2 and 5.3). We have |Ĩ| ≤ ñ/k; that is, there are

at most ñ/k Voronoi regions. Consider any b̃ ∈ Ĩ and its Voronoi region Vr(̃b). Its boundary is a

set of cycles of G. For any dual-vertex ṽ ∈ Vr(̃b), there exists a dual-path from b̃ to ṽ of length ≤ 2k

consisting of only dual-vertices in Vr(̃b). Thus, Vr(̃b) has an O(k)-depth BFS dual-tree rooted at b̃.

An example of Voronoi regions and dual-cycles that are bases for frame-cycles. Solid lines
are the boundaries of Voronoi regions, and black nodes (which are called “branch vertices”)
are vertices of G that are incident to three Voronoi regions. White nodes are dual-vertices
(whose corresponding faces are) incident to these black nodes. In particular, three dual-
vertices incident to a branch vertex forms a dual-triangle, which we call “branch-triangle.”
The boss-vertex of each Voronoi region (which is also a dual-vertex) is indicated by a star.
Six dual-vertices labeled with 1 ∼ 6 connected with dashed lines that indicate dual-paths
(some of which is a dual-edge) form a dual-cycle; this may be regarded as a “frame-cycle.”
Note that this dual-cycle contains a part of Voronoi boundary shared by two Voronoi regions
that connects two branch vertices.

Figure 5: Voronoi regions and an example of “frame-cycle”

See Figure 5. There are vertices where three Voronoi regions meet, which we call branch vertices,
and a dual-triangle consisting of three dual-edges incident to a branch vertex is called a branch-triangle.
As shown in the figure, we can define a dual-cycle in a pair of Voronoi regions sharing a boundary edge
that consists of four dual-paths and two dual-edges of two branch-triangles. The dual-cycle following a
tour of dual-vertices labeled with 1 ∼ 6 is an example. The four dual-paths are those in the BFS dual-
trees of the corresponding Voronoi regions. This dual-cycle is a basis of a frame-cycle; in fact, during
this outline explanation, we regard it as a preliminary frame-cycle. From the property of Voronoi
regions, we may assume an O(k)-depth BFS dual-tree inside of such a preliminary frame-cycle.

Step 2.2. (Corresponding technical section: Section 7)

Dual-cycles like the one in Figure 5 can be used as frame-cycles for defining the target frame-graph
H̃. There is unfortunately a situation where some Voronoi region has more than one boundary cycle,
and in this situation, we may have a more complicated dual-cycle as illustrated in Figure 6 whose size
cannot be bounded appropriately.
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An example of the case where there exists a Voronoi region with multiple Voronoi boundary
cycles. Solid lines are Voronoi boundaries. We omit here showing vertices, dual-vertices, and
branch-triangles except for boss-vertices. The outmost solid cycle is one of the boundary
cycles of a Voronoi region Vr(̃b). This Vr(̃b) contains four Voronoi regions and it has two
boundary cycles between them (i.e., two large squares consisting of two subsquares). Dashed
lines are branch dual-paths. There are some “standard” dual-cycles that could be used as
frame-cycles; for example, two dual-cycles indicated by dashed lines surrounding shadow
parts have the same structure as the preliminary frame-cycle we saw in Figure 5. On the
other hand, the graph has a dual-cycle consisting of twelve dual-paths labeled by numbers
(where branch-triangles are omitted). The problem here is that we cannot bound the length
of such a dual-cycle; thus, it cannot be used for a face boundary of a frame-graph as it is for
satisfying the condition (F4).

Figure 6: A Voronoi region with multiple boundary cycles

This situation can be resolved by introducing additional branch vertices by which we can divide a
large dual-cycle into small ones. Here again we borrow the idea from Gazit and Miller to select some
of the edges of G as “ridge edges”; intuitively, by adding ridge edges to Voronoi boundary edges, some
Voronoi boundary cycles are connected and new branch vertices are created. More formally, let B
and R denote respectively the set of Voronoi boundary edges and that of ridge edges. Then we can
show that B ∪ R forms a connected component in G. We regard a degree three vertex in B ∪ R as a
branch vertex (whereas a branch vertex was previously a degree three vertex in B). By introducing new
branch vertices, large dual-cycles are divided into small and “standard” dual-cycles, i.e., preliminary
frame-cycles.

A path connecting a pair of branch vertices are called a connector. This is a generalization of
the shared Voronoi boundary that appears in the frame-cycle of Figure 5. In fact, centering each
connector, we can define a preliminary frame-cycle. The main task of this sub-step is to obtain all such
preliminary frame-cycles of G̃ from connectors. This one-to-one correspondence between connectors
and preliminary frame-cycles is important for a later discussion.

Step 2.3. (Corresponding technical section: Section 8)

Some preliminary frame-cycles may not be appropriate for frame-cycles from the following reasons: (i)
there may be a preliminary frame-cycle that defines a large subplane having too many dual-vertices of
G̃, which creates a face of weight more than 1/3 in H̃; (ii) there may be a preliminary frame-cycle that

splits G̃ into multiple disconnected subplanes, due to which H̃ cannot be 2-connected by removing
dual-vertices of G̃ not participating to the frame-cycles. Thus, in this sub-step, we first preprocess the
obtained preliminary frame-cycles to modify them to appropriate forms.

During this preprocessing step, we may have a situation where some preliminary frame-cycle itself
is a desired separator of G̃, say, 1/10-separator of G̃. Or we can apply the algorithm of Lipton-Tarjan

to the subgraph that is inside of some preliminary frame-cycle to obtain a desired separator of G̃. Note
that the latter one is the case where some preliminary frame-cycle is large enough to cover many dual-
vertices of G̃. Since (the inside of) each preliminary frame-cycle is covered by (at most) two Voronoi
regions, and each Voronoi region has an O(k)-depth BFS dual-tree, we can show by Proposition 2.3

that the algorithm of Lipton-Tarjan runs in Õ(k)-space. Once a desired separator of G̃ is obtained, the
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algorithm can terminate by yielding our target 1/31-separator of Gorg by Claim 2 (i.e., by the method
stated in its proof).

After this preprocessing step (and a separator is not yet obtained), we now have frame-cycles and we
can guarantee that each frame-cycle defines a single subplane that does not have so many dual-vertices
of G̃. Thus, we can define our frame-graph H̃ as a collection of faces defined7 by these frame-cycles.
We should note, on the other hand, that the actual step of our algorithm is designed in a slightly
different way. This step is designed to yield a frame-graph H̃ as an induced dual-graph consisting of
dual-edges of all frame-cycles. Thus, we need to prove the following claim. For its proof the one-to-one
correspondence between connectors and (preliminary) frame-cycles plays an important role.

Claim 4 (Face of H̃; restated as Lemmas 8.3 and 8.4). Each frame-cycle defines exactly one face in H̃.

Furthermore, there is no face in H̃ other than ones defined by either a frame-cycle or a branch-triangle.

Based on this claim, for a complete weighted face information of H̃, the algorithm needs to output
lists of frame-cycles, their weights, and their incidence relations. Note that the weight of each frame-
cycle is simply the number of dual-vertices of G̃ located its inside. From the preprocessing step, we
can guarantee that it is less than ñ−/3, where ñ− is the total number of dual-vertices removed from

G̃ to define H̃. Thus, the obtained H̃ satisfies the condition (F1).

We also prove that H̃ satisfies (F2) and (F3).

Claim 5 (Restated as Lemmas 8.1). H̃ is 2-connected.

Claim 6 (Number of connectors and fame-cycles; restated as Lemma 8.5). The numbers of connectors

is bounded by O(ñ/k). Hence, the number of faces of H̃, that is, frame-cycles and branch-triangles is
bounded by O(ñ/k).

Step 2.4. (Corresponding technical section: Section 9)

Let us see again the frame-cycle illustrated in Figure 5. It consists of four BFS dual-paths and two
branch-triangle edges. While we can bound the length of each BFS dual-path by O(k), this bound is
not enough for satisfying the condition (F4) that requires an O(

√
k) bound for the length of frame-

cycles. We again borrow the idea of Gazit and Miller to introduce the notion of “floor-cycle” and
“ceiling-cycle” to overcome this problem.

Floor- and ceiling-cycles are defined by using dual-vertices of the same level. A dual-vertex assigned
a level, that is the distance from its boss-vertex (which is a temporal definition just for an explanation
here). We consider connected components of dual-vertices of the same level; in particular, we are
interested in connected components of size ≤

√
k. A neck of level ` is a connected component of level

` dual-vertices whose size is bounded by
√
k. In such a neck we can find (at least) two dual-cycles,

one facing dual-vertices of level `+ 1 and another facing dual-vertices of level `− 1. A floor-cycle is a
dual-cycle of the former type that has enough number of dual-vertices (i.e., 2ñ/3 dual-vertices) in its
“outside”, the side the dual-cycle where level `+ 1 dual-vertices are located. Similarly, a ceiling-cycle
is a dual-cycle of the latter type that has more than 2ñ/3 dual-vertices in its “outside”, the side the
dual-cycle where level `−1 dual-vertices are located. If multiple nested such dual-cycles exist, then we
take the one with the largest level (resp., the smallest level) as the floor-cycle (resp., the ceiling-cycle).

Consider any frame-cycle c̃ of H̃. We can identify one floor-cycle containing its boss-vertex “inside.”
On the other hand, a ceiling-cycle (if it exits) is located around its branch-triangle containing some
dual-vertices of the branch-triangle “inside” (Figure 7). By removing all dual-vertices inside of these
floor- and ceiling-cycles (thereby creating new faces), we can reduce the length of each dual-path of
the frame-cycle c̃ remained “outside” of these new faces to O(

√
k).

Claim 7 (Reducing dual-path length of frame-cycles; restated as Lemma 9.8). Consider any frame-
cycle c̃, and let p̃ be any dual-path between its boss-vertex and the next dual-vertex of a branch-triangle
used in c̃. There exist one floor-cycle and at most one ceiling-cycle crossing p̃; let p̃′ be the part of p̃
located outside of these cycles. Then the length of p̃′ is O(

√
k).

In sub-step 2.4, for a given G̃ (and H̃) we identify floor- and ceiling-cycles and modify the frame-

graph H̃ by introducing new faces by removing all dual-vertices of H̃ from the inside of these floor-
and ceiling-cycles. We refer the obtained dual-graph H̃ ′ as a modified frame-graph. The weight of its

7Precisely speaking, faces are defined also by branch-triangles, but in the following explanation, we sometimes omit
mentioning branch-triangles for simplicity.
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Cycles indicated by dashed lines surrounding shadow parts are floor- or ceiling-cycles. By
the modification of H̃ in sub-step 2.4, their “insides” (i.e., these shadow parts) are removed
so that floor- and ceiling-cycles become are new face boundary dual-cycles; then the length
of each dual-path of a frame-cycle from a boss-vertex to the next face boundary dual-cycle
is reduced to O(

√
k).

Figure 7: Floor- and ceiling-cycles

faces is defined in the same way as H̃; that is, the weight of each face is defined by the number of
removed dual-vertices of G̃ in the face. Then from the property of the original frame-graph H̃ and by
our definition of floor- and ceiling-cycles, we can show that the modified frame-graph H̃ ′ satisfies the
condition (F1) ∼ (F3). Furthermore, from the above claim (and since the length of each floor- and
ceiling-cycle is O(

√
k) by definition), we have an O(

√
k) bound for the length of each face boundary

dual-cycle. Therefore, the obtained modified frame-graph H̃ ′ satisfies all the required conditions (F1)

∼ (F4). For simplifying our notation, we will use from now on H̃ to denote this modified frame-graph.

Step 3 and the proof of our separator theorem

Now that a modified frame-graph H̃ satisfying the conditions (F1) ∼ (F4) is obtained. Then the last

step of our algorithm is to apply Miller’s algorithm to obtain a weighted separator for H̃ and compute
our desired separators for G̃ and Gorg.

Let us first prepare some parameters needed for the analysis. We use ñH̃ and ñH̃face to denote

respectively the number of dual-vertices and faces of H̃, and let d be its max. face size. Then from the
conditions (F3) and (F4), we have ñH̃face = O(ñ/k) = O(n1/2) and d = O(

√
k) = O(n1/4) respectively;

hence, ñH̃ ≤ d × ñH̃face = O(n3/4). Thus, the number of dual-vertices removed from G̃ to obtain H̃,

which we denote by ñ−, is ñ − ñH̃ = Ω(n) − O(n3/4); we assume that n is large enough so that
ñ− ≥ 3ñ/4 holds.

We consider the application of Miller’s algorithm to H̃. This creates a cycle 1/3-separator of H̃.
From the condition (F4) and Proposition 2.5, it follows that the size of this separator is O(d

√
ñH̃) =

O(
√
n), and that Miller’s algorithm can be executed in Õ(ñH̃face)-space (= Õ(

√
n)-space). Then since

the obtained separator is a dual-cycle, it can be used as a 1/4-separator of G̃ as the following lemma

claims. (Cf. A separator of H̃ is not necessarily a separator of G̃ in general.) Thus, in Step 3, we first

apply Miller’s algorithm to the frame graph H̃ to obtain a weighted 1/3-separator (that is indeed a

1/4-separator of G̃) in Õ(
√
n)-space, and then for the obtained separator for G̃, we apply the method

stated in the proof of Claim 2 to compute a desired 1/31-separator of Gorg in Õ(1)-space.

Lemma 3.1. Any weighted dual-cycle 1/3-separator of a modified frame-graph H̃ is a dual-cycle 1/4-

separator of G̃.

Proof. Let C̃ denote a weighted dual-cycle 1/3-separator of H̃. Recall that H̃ is a dual-edge induced

subgraph of G̃. Thus, any dual-cycle of H̃ is also a dual-cycle of G̃; thus, the dual-cycle separator C̃ of
H̃ is a dual-cycle and hence a separator of G̃. Recall that the weight of each face of H̃ is the number of
dual-vertices of G̃ that are located in the face and that are removed when defining H̃ normalized by the
total number ñ− of removed dual-vertices. Thus, since C̃ is a weighted 1/3-separator, two subplanes

13



separated by C have weight ≥ 1/3; hence, the numbers of dual-vertices of these subplanes in G̃ are at

least ñ−/3 ≥ ñ/4 (as we checked before this lemma). Therefore, C̃ is a 1/4-separator of G̃.

4 Base Graphs G and G̃

We explain Step 1 of the algorithm, a preprocessing step for computing the base graphs G and G̃ and
supplementary information. Here we prove the key properties of these base graphs claimed in Outline
section. We also give some basic algorithms for achieving this step.

We begin by defining the notion of “triangulation” formally.

Definition 4.1 (Triangulation). A plane graph is triangulated (w.r.t. its planar embedding) if addition
of any edge results in a nonplanar graph. For a plane graph, its triangulation means to add edges to
the plane graph until it gets triangulated w.r.t. this planar embedding.

As explained in Outline section, we may assume, after the preprocessing sub-step of Step 1, that
the input graph Gorg is planar and connected and that the algorithm can use one of its combinatorial
embeddings. Then in the rest of Step 1, the algorithm conducts the following tasks: (i) triangulating
the input graph, (ii) applying the vertex expansion to this triangulated graph to obtain the base graph

G, and (iii) computing its dual as the base dual-graph G̃.
We explain the key properties of the base graphs. First one is for the base graph G.

Lemma 4.1 (Restatement of Claim 1). The following holds for G and Gorg: (i) G is three-regular,
(ii) all faces of G are either a face obtained by expanding the corresponding vertex of Gorg or a polygon
(triangle ∼ hexagon) corresponding to a triangle of Gorg, (iii) n = Θ(norg), and (iv) it has a planar
embedding naturally defined from the one for Gorg.

Proof. Properties (i) and (ii) are clear from the definition; see Figure 2 and the explanation there.
Thus, we prove (iii) and (iv) here. Recall that the vertex expansion on v is to replace v with a
degorg(v)-size face, by which we introduce degorg(v) new vertices replacing v. Hence, by applying
the vertex expansion to all vertices of Gorg = (Vorg, Eorg), we create

∑
v∈Vorg

degorg(v) = 2|Eorg| new

vertices, which is at least norg and at most 6norg since |Eorg| ≤ 3norg due to the planarity of Gorg and
the Euler’s formula. This proves (iii). For showing (iv), consider any vertex v ∈ Vorg. Let e0, . . . , ed−1
be edges incident to v indexed in the order of the given combinatorial embedding of Gorg. We may
consider that the vertex expansion on v introduces a new vertex v′i corresponding to each edge ei,
where v′i has an edge e′1 corresponding to ei and two edges e′0 and e′2 connecting to v′(i−1)mod d and

v′(i+1)mod d. Then it is easy to see that the order e′0, e
′
1, e
′
2 is a combinatorial embedding for v′i under

the embedding of G naturally inherited from Gorg.

Next consider the base dual-graph G̃. Recall that it is defined a dual-graph of G (Definition 3.1)
and it is triangulated thanks to the three-regularity of G (Figure 3). Here we show a way to get a

separator for Gorg from a separator for G̃.

Lemma 4.2 (Restatement of Claim 2). If G̃ has a 1/10-separator of G̃ of size O(
√
n), then Gorg has

a 1/31-separator of size O(
√
norg).

Proof. First, we introduce a way to define a set of vertices of G (resp., Gorg) that corresponds to a

given dual vertex of G̃. Consider any vertex ṽ of G̃. Note that ṽ is a face in G; we define inv(ṽ) by
a set of vertices of G that are incident to this face. Then define invorg(ṽ) by a set of vertices whose
vertex expansion intersects with inv(ṽ). For invorg(ṽ) the following more direct interpretation would
be helpful. Note that ṽ is a face in G; on the other hand, the above lemma claims (as property (ii))
that every face of G is either a face obtained by expanding a vertex v of Gorg or a polygon (triangle ∼
hexagon) face that corresponds to a triangle face {v1, v2, v3} of Gorg. Hence, we have invorg(ṽ) = {v}
for the former case and invorg(ṽ) = {v1, v2, v3} for the latter case. For any set W̃ of dual vertices

of G̃, we define inv(W̃ ) and invorg(W̃ ) by inv(W̃ ) =
⋃
ṽ∈W̃ inv(ṽ) and invorg(W̃ ) =

⋃
ṽ∈W̃ invorg(ṽ),

respectively.
Now for a given separator S̃, we show that S := invorg(S̃) is a separator of Gorg with a desired

property. Note first that we have |S| ≤ 3|S̃| from the above interpretation of invorg. Thus, from the

assumption, we have |S| = O(
√
n) (= O(

√
norg)). Below we use H̃1 and H̃2 to denote sets of vertices
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of G̃ separated by S̃. Also for each i ∈ {1, 2}, we let Hi = invorg(H̃i) \S. These symbols are used also
to denote their corresponding induced graphs.

We show that S is indeed a separator of G separating H1 and H2. For this we consider S′ := inv(S̃)

and H ′i := inv(H̃i) \ S′ for each i ∈ {1, 2}, and show that H ′1 and H ′2 are separated by S′. Suppose
otherwise, and assume that some v′1 ∈ H ′1 and v′2 ∈ H ′2 are connected after removing S′. Then there
should be a path p′ connecting v′1 and v′2 that has no vertex in S′. Consider a set P ′ of faces of G that

share an edge with p′. Then a set of vertices of G̃ corresponding the faces of P ′ forms a connected
component in G̃. This is due to the fact that any two dual-vertices of G̃ corresponding faces of G
incident to some common vertex of G must have an edge between them, thanks to the three-regularity
of G. Also it is clear that P ′ has no dual-vertex in S̃, and that there are two dual-vertices whose
corresponding faces are incident to v′1 and v′2 that are in H̃1 and H̃2 respectively. This contradicts

that S̃ separates H̃1 and H̃2.
Next we show that S is a 1/31-separator. Without losing generality we may assume that |H1| ≤

|H2|, and here we show that |H1| ≥ n/31 for sufficiently large n.

Consider first vertices of H̃1 and G̃. As explained above, each vertex of G̃ corresponds to either
a vertex of Gorg or a triangle face of Gorg; we call a vertex of G̃ a v-vertex for the former case and
a f-vertex for the latter case. The converse relation also holds; that is, each vertex of Gorg and each

triangle face of Gorg corresponds to some vertex of G̃. Thus, we have ñ = norg + F , where ñ is the

number vertices of G̃ and F is the number of faces of Gorg. Let V1 and F1 denote respectively the

number of v-vertices and f-vertices of H̃1. Then we have from our assumption that

V1 + F1 ≥ ñ/10 ≥ norg/10. (1)

Now consider a graph H+
1 induced by invorg(H̃1). (Recall that H1 = invorg(H̃1) \ S.) Let n+1 , e+1 ,

and f+1 denote the number of vertices, edges, and faces of H+
1 respectively. We let x = |H+

1 ∩S|. Then
we have n+1 = V1 + x, f+1 ≤ F1 + x and 2e+1 ≥ 3F1. The two inequalities hold because H+

1 might have

faces that are f-vertices of S̃ and the number of them is at most x. Then apply the Euler’s formula
for plane graphs to H+

1 , we have n+1 = e+1 − f
+
1 + 2, which derives V1 − 0.5F1 ≥ −2x+ 2. Hence, by

using (1) we have
3V1 ≥ norg/10− 4x+ 4 ≥ norg/10− 4x.

Recall that H1 = H+
1 \ S. Thus, we have

|H1| ≥ n+1 − |S| = V1 + x− |S| ≥ norg/30− x/3− |S|.

Then the desired bound holds for sufficiently large norg since x ≤ |S| and |S| = O(
√
norg).

Algorithms for Step 1

We discuss algorithms for achieving Step 1. As explained in Outline section, thanks to the previous
work of Reingold [15] and Allender and Mahajan [1], we have O(log n)-space algorithms for checking
the connectivity and planarity and for computing a combinatorial embedding of the input graph.
Thus, our remaining algorithmic tasks are (i) triangulating the input graph Gorg, (ii) computing a
three-regular graph (i.e.., the base graph G) by applying the vertex-expansion to the triangulated

graph, and (iii) computing the dual-base graph G̃. (By “computing a graph” we formally mean to
compute its embedding and its complete face information.) Here we explain how to achieve each task

in Õ(1)-space.
First consider the triangulation. The task of triangulation is essentially to introduce edges to

separate non-triangle faces into triangles. Hence, for the triangulation task, we first need to identify
each face, i.e., each traverse of Gorg. Consider any directed edge (u, v) for any undirected edge {u, v}
of Gorg, and consider the task of computing the left-traverse of Gorg from (u, v). As we remarked in
Preliminary section (Lemma 2.1), no same directed edge is identified during the left-traverse process
(until coming back to (u, v)). Thus, for conducting the left-traverse process, we only need to remember
(u, v) besides the directed edge currently identified in the process; hence, only some constant number
of variables are needed for computing each left-traverse. For an obtained left-traverse t = (v1, . . . , vm),
the triangulation of the face corresponding to the left-traverse is easy. Since the face corresponding t is
the subspace located from (vm, v1) to (v1, v2) clockwise, we simply add edges {v1, v3}, . . ., {v1, vm−1}
for triangulating this face. For the combinatorial embedding πv1 of vertices adjacent to v1, we need to
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An example of triangulating a face corresponding to
a left-traverse. The original plane graph is a path
whose edges are indicated by solid lines, while newly
added edges are indicated by dotted lines. Here we
consider a left-traverse (1, 2, 3, 4, 5, 4, 3, 2), which de-
fines a single face in the original graph. This face
is divided into triangle faces by adding edges {1, 3},
{1, 4}, {1, 5}, {1, 4′}, and {1, 3′}. The combinato-
rial embedding π1 for NG(1) is modified from (2)
to (2, 3′, 4′, 5, 4, 3). We remark here that the graph
becomes a simple graph again after the vertex ex-
pansion.

Figure 8: An example of triangulating a face

insert v3, . . . , vm−1 between vm and v1 in the reverse order. Note that multiple edges may be created,
which should be treated as different edges; see Figure 8.

Algorithmically, it is easier if we consider the triangulation in two sub-steps. First enumerate all
left-traverses of Gorg. Here for the second sub-step, we design the algorithm for this sub-step so that
it does output a traverse t = (v1, . . . ) only if v1 has the smallest index among all vertices in t. Then
in the second sub-step, the algorithm modifies the combinatorial embedding πv for each vertex v of
Gorg. For this, the algorithm searches through all left-traverses produced in the first sub-step for left-
traverses in which v appears. In the case where v appears in a left-traverse t as the first vertex (say,
t = (v, v2, . . . , vm)), a sequence vm−1, . . . , v3 is inserted between vm and v2 in πv. On the other hand,
in the case where v appears somewhere middle of t (say, t = (v1, . . . , vi, v, vi+2, . . .)), v1 is inserted
between vi and vi+2 in πv. Note that each left-traverse causes the insertion in a different part of πv.
The algorithm produces the updated πv’s for all v ∈ Gorg, and then update E(Gorg) by adding the
introduced edges.

Now for the tasks (ii) and (iii), the algorithm first enumerates all triangle face boundary cycles
of the triangulated Gorg, which in fact can be done easily when introducing edges during the above
triangulation. Once all triangle face boundary cycles are obtained, the rest of tasks (ii) and (iii) can
be done easily by using some constant number of variables because local information is enough for the
vertex expansion for obtaining the base graph G and also for computing the dual-graph G̃. Note that
the computation of face boundary dual-cycles of G̃ is nothing but that of left-traverses of G̃.

5 Voronoi Region

In this section, we formally define the notion of Voronoi region and explain the properties of Voronoi
regions. We then explain Step 2.1 of our algorithm for computing Voronoi regions.

We start with introducing the notion of “region”, an important notion throughout this paper.

Definition 5.1 (Region and boundary). A region is a set R of dual-vertices of G̃ such that any two
dual-vertices of R is connected by some dual-path consisting of only dual-vertices of R. In other words,
R is a region if G̃[R], the subgraph of G̃ induced by R, is connected. We also consider region R as a
set of faces of G, and a set of edges defined by

{ e ∈ E | there exists exactly one face in R that contains e }

is the boundary of R.
Remark. Though a region is defined as a set of dual-vertices of G̃, (formally speaking) it should be
regarded as a subplane in G defined by the corresponding set of faces of G. Thus, we will use symbols
without ˜ for regions.

We recall the following important fact from [13] that is provable for three-regular graphs.

Proposition 5.1. Any region of a three-regular graph (e.g., our base graph G) has a boundary con-
sisting of simple cycles.
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An example of a region and its
boundary. Here black nodes
and solid lines are those in
G; each face is regarded as a
dual-vertex of G̃. The shaded
part is a region. The boundary
of this region consists of two
cycles. In general Miller showed
that in three-regular graph, the
boundary of any region is a set
of simple cycles.

Figure 9: A region and its boundary

We introduce the notion of “Voronoi region”, a specific family of regions. For any dual-vertices ũ
and ṽ, by dist(ũ, ṽ) we mean the distance between ũ and ṽ, that is, the length of a shortest dual-path
between ũ and ṽ. Consider any dual-vertex ṽ. Technically, it would be easier if we can identify the
“nearest” dual-vertex to ṽ; for this purpose, we introduce a total order (denoted by <ṽ) in Ṽ based
on the distance from ṽ. For any dual-vertices ũ and w̃, we say that ũ is nearer to ṽ than w̃ (written
as ũ <ṽ w̃) if we have either

• dist(ũ, ṽ) < dist(w̃, ṽ), or

• dist(ũ, ṽ) = dist(w̃, ṽ), and ũ has a smaller index8 than w̃.

For any dual-vertex ṽ and any integer d ≥ 0, let L(ṽ, d) denote the set of dual-vertices whose
distance from ṽ is d. We introduce two types of neighborhoods. (Remark. Since L(ṽ, d)’s and the
neighborhoods defined below are also regions, we do not use ˜ for their symbols. Recall that k is the
parameter that is set

√
n throughout this paper.)

Definition 5.2 (k-neighborhood). For any dual-vertex ṽ, let dnb(ṽ) be the largest integer d such that
| ∪0≤i≤d L(ṽ, i) | < k holds. Then we define Nk(ṽ) and N+

k (ṽ) by

Nk(ṽ) =
⋃

0≤i≤d0

L(ṽ, i), and N+
k (ṽ) =

⋃
0≤i≤d0+1

L(ṽ, i),

where d0 = dnb(ṽ). We call Nk(ṽ) and N+
k (ṽ) a k-neighborhood and a k-neighborhood+ respectively.

Remark. By Nk(ṽ) and N+
k (ṽ) we also mean subgraphs of G̃ induced by sets Nk(ṽ) and N+

k (ṽ).

The following fact is immediate from the above definition.

Lemma 5.1. For any dual-vertex ṽ, we have the following: (i) Nk(ṽ) ⊆ N+
k (ṽ), (ii) both Nk(ṽ) and

N+
k (ṽ) are regions, (iii) |Nk(ṽ)| < k and |N+

k (ṽ)| ≥ k, and (iv) the distance between ṽ and any vertex
in N+

k (ṽ) is at most k.

We select representative k-neighborhoods, which will be used for defining Voronoi regions.

Definition 5.3. A subset Ĩ of Ṽ is a k-maximal independent set if it satisfies following conditions:

• For any two dual-vertices b̃1, b̃2 ∈ Ĩ, N+
k (̃b1) ∩N+

k (̃b2) = ∅.

• For any dual-vertex ṽ 6∈ Ĩ, there exists a dual-vertex b̃ ∈ Ĩ such that N+
k (ṽ) ∩N+

k (̃b) 6= ∅.

The following properties are immediate from the definition.

Lemma 5.2. Consider any k-maximal independent set Ĩ of G̃. Then we have (i) |Ĩ| ≤ ñ/k, and

(ii) for any dual-vertex ṽ ∈ Ṽ , we have some dual-vertex b̃ ∈ Ĩ and some dual-vertex ũ such that

ũ ∈ N+
k (ṽ) ∩N+

k (̃b), and we have dist(ṽ, b̃) ≤ 2k.

8We assume that dual-vertices are indexed in a certain way.
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Notational Remark. (The set Ĩ)
Though we explain our algorithm design for Voronoi regions later, we briefly mention that a standard
greedy method can be used to design an Õ(

√
n)-space and polynomial-time algorithm that computes

a k-maximal independent set. From now on, let us use Ĩ to denote the k-maximal independent set
obtained by this algorithm for the base dual-graph G̃.

Now we define Voronoi regions w.r.t. the above defined Ĩ. Intuitively, for each b̃ ∈ Ĩ, we would
like to define the “Voronoi region” Vr(̃b) of b̃ by a set of dual-vertices for which b̃ is closest among

all dual-vertices in Ĩ. But such a dual-vertex in Ĩ that is closest to ṽ may not be computable within
our desired space bound. Thus, we use “closest k-neighborhood” to determine our Voronoi regions, by
which we can identify Voronoi regions in O(k + ñ/k)-space.

Definition 5.4 (Voronoi region and boss-vertex). For any set W of dual-vertices, nrstṽ(W ) denotes
a dual-vertex ũ in W such that ũ <ṽ w̃ of all w̃ ∈ W \ {ũ}. For any sets W and W ′ of dual-vertices,
we write W <ṽ W

′ if nrstṽ(W ) <ṽ nrstṽ(W
′). For any dual-vertex ṽ, the boss-vertex of ṽ (denoted by

boss(ṽ)) is a dual-vertex b̃ ∈ Ĩ such that N+
k (̃b) <ṽ N+

k (̃b′) for any b̃′ ∈ Ĩ \ {b̃}. The Voronoi region of

b̃ (denoted by Vr(̃b)) is a set of dual-vertices ṽ such that boss(ṽ) = b̃.

Remark. In a nutshell, b̃ is the boss-vertex of ṽ if and only if its k-neighborhood is nearest to ṽ
among all dual-vertices in Ĩ. It may be the case that there is some other dual-vertex in Ĩ that is nearer
to ṽ.

By definition, for every dual-vertex ṽ ∈ Ṽ , there exists a unique Voronoi region Vr(̃b) that contains

ṽ. Furthermore, for any Voronoi region Vr(̃b), we show below that it is indeed a region and that every

dual-vertex in Vr(̃b) is reachable by a dual-path in Vr(̃b) of length ≤ 4k.

Lemma 5.3. For any dual-vertex b̃ ∈ Ĩ and any dual-vertex ṽ ∈ Vr(̃b), there exists a dual-path from b̃

to ṽ of length ≤ 2k consisting of only dual-vertices in Vr(̃b). (Hence, any pair of dual-vertices in Vr(̃b)

is connected by a dual-path in Vr(̃b) of length ≤ 4k.)

Proof. Consider any dual-vertex ṽ ∈ Vr(̃b). By Lemma 5.2 (ii), there exists some b̃′ ∈ Ĩ such that

N+
k (ṽ) ∩ N+

k (̃b′) 6= ∅ holds. Clearly, b̃ also satisfies N+
k (ṽ) ∩ N+

k (̃b) 6= ∅ because otherwise b̃ cannot be

the boss-vertex of ṽ. Thus, there is a dual-path from ṽ to b̃ of length ≤ 2k.
For the lemma, it suffices to show that there exists a dual-path of length ≤ 2k from ṽ to b̃ consisting

of only vertices in Vr(̃b). For this, consider ũ := nrstṽ(N
+
k (̃b)), i.e., the dual-vertex in N+

k (̃b) nearest

to ṽ, which in fact is the dual-vertex in the whole ∪b̃′∈ĨN
+
k (̃b′) nearest to ṽ witnessing that ṽ ∈ Vr(̃b).

Clearly, any shortest dual-path from ũ to b̃ belongs to N+
k (̃b) and its length is at most k. (It is easy

to see that N+
k (̃b) ⊆ Vr(̃b).) Consider any shortest dual-path ṽ to ũ. Again it is clear that its length

is at most k. We show that all dual-vertices on the dual-path belong to Vr(̃b). Suppose otherwise;

that is, there exists some dual-vertex ṽ′ on the dual-path that belongs to the other Vr(̃b′). Then for

this ṽ′, there exists some ũ′ ∈ Vr(̃b′) that is nearer to ṽ′ than ũ. But since ṽ′ is on one of the shortest
dual-paths from ṽ to ũ, this means that ũ′ is also nearer to ṽ than ũ, a contradiction. Therefore the
lemma follows.

The lemma shows that each Voronoi region Vr(̃b) has a spanning BFS dual-tree on (the subgraph

induced by) the Voronoi region with b̃ as a root and that the depth of such trees is at most 2k.

Furthermore, it follows from Lemma 5.2, the number of Voronoi regions (i.e., the size of Ĩ) is bounded
by ñ/k. This proves the properties stated in Claim 3. Before showing the algorithms for Step 2.1, we
show one more lemma.

Lemma 5.4. For any dual-vertex b̃ ∈ Ĩ and any dual-vertex ṽ ∈ Vr(̃b), there exists an algorithm that

computes dist(ṽ, b̃) in Õ(k)-space.

Proof. For any dual-vertex ũ, we can enumerate all dual-vertices in N+
k (ũ) in Õ(k)-space (the details

will be described in the Algorithms for Step 2.1). Thus, if ṽ is in N+
k (̃b), we can compute dist(ṽ, b̃) in

Õ(k)-space. Assume ṽ does not belong to N+
k (̃b). In this case, N+

k (ṽ) ∩N+
k (̃b) 6= ∅ holds, and let ũ be

a vertex in N+
k (ṽ) ∩ N+

k (̃b). We suppose that there is a dual-vertex w̃ /∈ N+
k (ṽ) ∪ N+

k (̃b) in one of the

shortest dual-paths between ṽ and b̃. The distances dist(ṽ, ũ) and dist(̃b, ũ) are at most dnb(ṽ) + 1 and

dnb(̃b) + 1 respectively, and the shortest dual-paths are clearly included in their k-neighborhoods+.
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Since w̃ /∈ N+
k (ṽ)∪N+

k (̃b), the distances dist(ṽ, w̃) and dist(̃b, w̃) are more than dnb(ṽ)+1 and dnb(̃b)+1
respectively. Thus w̃ cannot become a dual-vertex in the shortest dual-path, a contradiction. Therefore,
we can compute dist(ṽ, b̃) by calculating dist(ṽ, ũ) + dist(̃b, ũ) for any ũ ∈ N+

k (ṽ) ∩ N+
k (̃b) and taking

their minimum.

Algorithms for Step 2.1

We discuss algorithms for achieving Step 2.1. For algorithms we show below, it is rather easy to see
that they run within polynomial-time in n; thus, we omit explaining their time complexity. We also
explain algorithms as if one algorithm can pass a large amount of data to another algorithm; but as
explained in Preliminaries section this process can be realized without using a space for keeping such
data.

The task of Step 2.1 is to compute information on the Voronoi regions of G. More specifically, we
consider an algorithm that outputs

(a) the set Ĩ of boss-vertices;

(b) a family {Nk (̃b)}b̃∈Ĩ of k-neighborhoods;

(c) a list of (ṽ,boss(ṽ), ṽpre) for all ṽ ∈ Ṽ , where boss(ṽ) is the boss-vertex of the Voronoi region
that ṽ belongs to and ṽpre is the dual-vertex that is a parent in a BFS dual-tree of Vr(boss(ṽ));
and

(d) a list of boundary cycles of all Voronoi regions and lists of pairs of Voronoi regions sharing a
vertex (resp., an edge).

A key algorithmic tool we use here is a BFS algorithm traversing at most t dual-vertices from a
given source dual-vertex ṽ. In this paper we consider specific BFS that is convenient for designing
space efficient algorithms. We define a tree T satisfying the following condition as a BFS tree (from a
source dual-vertex ṽ): w̃ is a child of ũ in T if and only if ũ has the smallest index among dual-vertices
that are adjacent to w̃ and satisfies dist(ṽ, w̃)−dist(ṽ, ũ) = 1. For computing this BFS tree, we keep all
vertices having the same level, namely the same distance from the root, and collect the vertices in the
next level by processing smaller indexed vertex earlier; Cf. In a standard BFS algorithm, we process
vertices in the order added to a queue regardless of the indices. It is easy to see that the algorithm
runs in Õ(t)-space. Then we have an Õ(k)-space algorithm that enumerates, for a given ṽ, all elements

of Nk(ṽ), the set of the first k closest dual-vertices to ṽ in G̃. We may assume that the distance to ṽ is
also computed and kept for all enumerated dual-vertices. Recall that dnb(ṽ) = maxũ∈Nk(ṽ) dist(ũ, ṽ).
By using this algorithm, we can design an algorithm that decides whether a given dual-vertex ũ is
in N+

k (ṽ), where N+
k (ṽ) contains additionally all dual-vertices whose distance from ṽ is dnb(ṽ) + 1.

Though we cannot keep N+
k (ṽ) since it could become very large, we can determine whether ũ ∈ N+

k (ṽ)
by checking whether it is adjacent to some w̃ ∈ Nk(ṽ) whose distance from ṽ is ≤ dnb(ṽ). Then by using

this algorithm, we can design an Õ(k)-space algorithm that determines, for given ṽ and b̃, whether

N+
k (ṽ) ∩ N+

k (̃b) 6= ∅; it simply search in Ṽ a dual-vertex that belongs to both N+
k (ṽ) and N+

k (̃b). We

may assume that the algorithm can also identify the dual-vertex in N+
k (ṽ)∩N+

k (̃b) 6= ∅ that is nearest

to ṽ, namely, nrstṽ(N
+
k (̃b)), and compute its distance to ṽ.

Armed with these algorithmics we can compute (a) ∼ (d) in Õ(k+ ñ/k)-space. First, for computing

Ĩ as the output (a), we simply collect dual-vertices to Ĩ in a greedy way until there is no dual-vertex

ṽ such that N+
k (ṽ) ∩ N+

k (̃b) = ∅ for all so far obtained boss-vertices b̃. Note that the working memory
for keeping the obtained boss-vertices is needed here to achieve the greedy algorithm. Hence, we need
Õ(k+ñ/k)-space since we can bound |Ĩ| ≤ ñ/k. We may assume that Nk (̃b) is computed (and produced

as the output (b)) every time a new boss-vertex b̃ is obtained.
Next let us fix any dual-vertex ṽ, and consider how to compute (ṽ,boss(ṽ), ṽpre) as the output (c).

For computing b̃ṽ := boss(ṽ), we enumerate all b̃ ∈ Ĩ such that N+
k (ṽ)∩N+

k (̃b) 6= ∅; then b̃ṽ is obtained

as b̃ such that nrstṽ(N
+
k (̃b)) is the nearest to ṽ. According to our BFS tree definition, ṽpre needs to

satisfy that it is adjacent to ṽ and dist(̃b, ṽ)−dist(̃b, ṽpre) = 1 holds. By Lemma 5.4, we can enumerate

all such dual-vertices in Õ(k)-space, and ṽpre is the dual-vertex having the smallest index among the
candidates.
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Finally, consider the computation for (d), that is, a list of boundary cycles of all Voronoi regions

and lists of their incidence and edge-incidence relations. Consider any Voronoi region Vr(̃b) (specified

its boss-vertex b̃). Since it is easy to determine, for a given edge of G, whether it is a boundary edge

of Vr(̃b), we can enumerate all boundary edges in Õ(1)-space. Then since the boundary of Vr(̃b) is a

collection of cycles of G, we can simply use the Õ(1)-space algorithm for computing a left-traverse for

identifying all boundary cycles of Vr(̃b) from the set of its boundary edges. Thus, a list of boundary
cycles of all Voronoi regions and lists of pairs of Voronoi regions sharing a vertex (resp., an edge) are

Õ(1)-space computable.

6 Multiple-Dual-Cycle (m.d.-cycle)

In this section we introduce the notion of “multiple dual-cycle with an orientation” (in short, m.d.-
cycle), which will be used to discuss faces defined by dual-cycles. This section is a preliminary section
for our later discussion, and it does not correspond to any algorithmic step.

An m.d.-cycle c̃ is a sequence of dual-vertices connected with dual-edges (with a direction implied
by the sequence) that defines nonoverlapping subplane(s) under the assumed planar embedding. Intu-
itively, an m.d.-cycle is simply a collection of incident dual-cycles and paths; see Figure 10 for examples.
Formally we have the following definition.

This figure shows examples of m.d.-cycles. White nodes
are dual-vertices that are connected by dual-edges indi-
cated by dashed lines. We may specify an m.d.-cycle by
(ṽ1, ṽ2, ṽ3, ṽ4, ṽ5, ṽ6, ṽ7, ṽ6, ṽ5, ṽ4, ṽ8, ṽ3, ṽ1), which tra-
verses a set of directed dual-edges under the anti-
clockwise order (i.e., turning always right). Sim-
ilarly, (ṽ1, ṽ3, ṽ8, ṽ4, ṽ5, ṽ6, ṽ7, ṽ6, ṽ5, ṽ4, ṽ3, ṽ2, ṽ1) is a
m.d.-cycle traversing the same set of dual-vertices (with
a different set of directed dual-edges, though) under the
clockwise order (i.e., turning always left). Note that
non-duplicate dual-edges form dual-cycles, and dupli-
cate dual-edges form a dual-path.

An example of the cases that one needs to be careful is the difference be-
tween sequences (ṽ1, ṽ2, ṽ3, ṽ8, ṽ4, ṽ5, ṽ6, ṽ7, ṽ6, ṽ5, ṽ4, ṽ3, ṽ2, ṽ1) and (ṽ1, ṽ2, ṽ3, ṽ8, ṽ4, ṽ5, ṽ6,
ṽ7, ṽ6, ṽ5, ṽ4, ṽ3, ṽ1); the difference is only the last three (or two) dual-vertices. Both se-
quences traverse all dual-vertices, but the latter one is not an m.d.-cycle while the former
one is an m.d.-cycle. The difference is the usage of four directed dual-edges at ṽ3.

Figure 10: M.d.-cycles

Definition 6.1 (m.d.-cycle). An m.d.-cycle c̃ (under the clockwise/anti-clockwise order) is a sequence
(ṽ1, ṽ2), (ṽ2, ṽ3), . . . , (ṽm−1, ṽm) of directed dual-edges satisfying the following conditions: (i) ṽ1 = ṽm,
that is, it starts and ends with the same dual-vertex; (ii) every directed dual-edge (ṽi, ṽi+1) of c̃ is

based on a dual-edge {ṽi, ṽi+1} of G̃; (iii) no directed dual-edge appears more than once in c̃ (while it
is possible that some directed dual-edge and its reverse may both appear in c̃); and (iv) for every pair
(ṽi−1, ṽi) and (ṽi, ṽi+1) of consecutive directed dual-edges, (ṽi, ṽi+1) must be the clockwise (resp., anti-
clockwise) next directed dual-edge from ṽi appearing in c̃. (We regard the reverse directed dual-edge
(ṽ, ũ) of (ũ, ṽ) the furthest dual-edge from (ũ, ṽ) both clockwise and anti-clockwise.)
Remark. We use a sequence (ṽ1, ṽ2, . . . , ṽm) of dual-vertices for specifying a m.d.-cycle c̃, by which
we mean a sequence (ṽ1, ṽ2), . . . , (ṽm−1, ṽm) of dual-edges of c̃. We also regard c̃ as a directed dual
graph induced by its directed dual-edges.

Definition 6.2 (Duplicate/nonduplicate dual-edge and line part). For any m.d.-cycle c̃, a directed
dual-edge (ũ, ṽ) of c̃ is called a duplicate dual-edge if its reverse (ṽ, ũ) also appears in c̃. Otherwise, it
is called a nonduplicate dual-edge.
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(a) (b) (c)

Examples for showing the condition of m.d.-cycles. (a) A combination of directed dual-
edges around a dual-vertex ṽ that cannot appear “syntactically” in any m.d.-cycle. (Here we
consider this particular combination around ṽ. There exist some m.d.-cycle that have these
directed dual-edges (and more) around ṽ. By “syntactically” we mean that this combination
does not appear as a part of any m.d.-cycle in any order.) (b) A set of directed dual-edges
that may appear in some m.d.-cycle depending on their order; that is, in the order of (1),(2),
. . ., (3),(4) under the anti-clockwise order, and in the order of (1),(4), . . ., (3),(2) under the
clockwise order. (c) A set of directed dual-edges that does not appear in any m.d.-cycle
in the order of (1),(2), . . ., (3),(4), or in the order of (3),(4), . . ., (1),(2). Let us call this
property the noncrossing property of m.d.-cycle, which we will use several times later.

Figure 11: Examples of invalid/valid directed dual-edge sets for m.d.-cycles

Remark. It is easy to see (Figure 10) that duplicate directed dual-edges of c̃ form dual-path(s) in c̃;
this motivate us to call the set of duplicate directed dual-edges of c̃ the line part of c̃. On the other
hand, nonduplicate dual-edges of c̃ form dual-cycle(s). We will ignore the case where c̃ consists of only
duplicate dual-edges, and in the following, we may assume that c̃ has at least one dual-cycle.

Consider any m.d.-cycle c̃. As mentioned above, we assume that it has at least one dual-cycle.
Hence, the plane (where G̃ is embedded) is separated by c̃. We would like to classify these subplanes
as “inside” or “outside” of c̃. Intuitively speaking, we define the inside/outside of c̃ by the left/right
of the directed dual-edges of c̃.

We define the left/right notion formally, and show that one can indeed determine for a given dual-
vertex, whether it is located left or right of c̃ uniquely. In the following explanation, we abuse the
notation G̃ \ c̃ to denote a subgraph of G̃ obtained by “removing” c̃; precisely, G̃ \ c̃ is G̃[Ṽ \ V(c̃)], a

subgraph of G̃ = (Ṽ , Ẽ) induced by Ṽ \ V(c̃). Also in the following, for any dual-edge ẽ of G̃, by a
dual-triangle upon ẽ and its top-vertex, we mean respectively a dual-triangle that uses ẽ as one of its
three dual-edges and its dual-vertex opposite to ẽ.

We first introduce the notion of “left/right adjacent.” Consider any directed dual-edge ẽ of c̃. Since

G̃ is triangulated, there are two dual-triangles upon ẽ. We regard the one located left (resp., right) of
ẽ w.r.t. the direction of ẽ as left adjacent-triangle (resp., right adjacent-triangle). Then the top-vertex
of the left (resp., right) adjacent-triangle is called the left adjacent-vertex (resp., right adjacent-vertex)
of ẽ. While these notions are defined for any dual-edge of c̃, we consider only nonduplicate dual-edges
to define the notion of “left/right side” of c̃. For any dual-vertex we say it is in the left (resp., right)

of c̃ if it is connected in G̃ \ c̃ to the left (resp., right) adjacent-vertex of some nonduplicate dual-edge
of c̃. The following lemma shows that the side of c̃ is uniquely determined in this way.

Lemma 6.1. Consider any m.d.-cycle c̃ of G̃. W.r.t. c̃, the side of every dual-vertex of G̃\c̃ is uniquely
determined as left or right. For any duplicate dual-edge of c̃, its left and right adjacent-vertices are in
the same side; that is, they are both in the left (or in the right) of c̃.

Proof. We give a proof following Figure 12. Consider some m.d.-cycle c̃, and suppose that there
exists a dual-vertex ṽ that is in the both left and right of c̃. Let (ṽi, ṽi+1) and (ṽj , ṽj+1) be directed
nonduplicate dual-edges of c̃ witnessing that ṽ is in the left/right of c̃ respectively. Thus, there is a
dual-path to ṽ from the right (resp., left) adjacent-vertex of (ṽi, ṽi+1) (resp., (ṽj , ṽj+1)) that has no
common dual-vertex with c̃. Without losing generality, we assume that i < j; that is, (ṽi, ṽi+1) appears
earlier than (ṽj , ṽj+1) in c̃. Consider two subsequences of c̃, one from ṽi+1 to ṽj and another from ṽj+1

to ṽ1. They must cross at some dual-vertex ũ as shown in Figure 12, contradicting the noncrossing
property of m.d.-cycle (Figure 11).

Armed with this lemma, we can formally define the side of an m.d.-cycle. Intuitively, the inside of
an m.d.-cycle c̃ is subplane(s) located left of the non line part of c̃.
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The m.d.-cycle c̃ considered in the proof of the lemma is indicated by bold dashed line with
arrows showing its direction.

Figure 12: An example for the proof of Lemma 6.1

Definition 6.3 (Inside/outside of an m.d.-cycle). Consider any m.d.-cycle c̃. A dual-vertex is inside
(resp., outside) of c̃ if it is in the left (resp., right) of c̃. A dual-triangle is inside (resp., outside) of c̃
if its top-vertex is inside (resp., outside) of c̃. In general, the inside (resp., outside) of c̃ is the set of

subplanes of the plane dual graph G̃ consisting of faces (not including c̃ itself) defined by dual-triangles
inside (resp., outside) of c̃.

7 Dividing Voronoi Regions

In this section we introduce the notion of “ridge edge” and define the notion of “pre-frame-cycle” that
is a base for a frame-cycle and a frame-graph. For our algorithm, this section corresponds to Step 2.2,
and we explain algorithms for computing ridge edges and pre-frame-cycles.

While a dual-cycle shown in Figures 5 is a good candidate for a frame-cycle, there is a situation
where a more complicated dual-cycle is obtained similarly as illustrated in Figure 6, and we cannot
bound in general the size of such dual-cycles. Such a situation occurs if some Voronoi region has
multiple boundary cycles. Here we introduce “ridge edges” for adding more branch vertices, thereby
dividing Voronoi regions and large dual-cycles appropriately.

Consider any b̃ ∈ Ĩ such that Voronoi region Vr(̃b) has more than one boundary cycle. Let us fix

these b̃ and Vr(̃b) for a while. Let T̃ be the BFS dual-tree of Vr(̃b) that is obtained at the step 2.1

of our algorithm. Recall that it is an O(k)-depth spanning tree of dual-vertices in Vr(̃b). Consider

any two adjacent dual-vertices ũ and ṽ that are not connected in T̃ . Then by connecting ũ and ṽ by
ẽ = {ũ, ṽ}, a dual-cycle is created9 with two dual-paths of T̃ . This dual-cycle divides the plane into

two subplanes. We consider the case where this separation divides the set of boundary cycles of Vr(̃b).
Below we say that a dual-edge ẽ = {ũ, ṽ} crosses an edge e (and in parallel, e crosses ẽ) if two faces
corresponding to ũ and ṽ share the edge e.

Definition 7.1 (Ridge edge). Consider Vr(̃b) as a subgraph of G. An edge e of Vr(̃b) is a ridge edge

if the dual-edge ẽ = {ũ, ṽ} of Vr(̃b) crossing e satisfies the following (below we let c̃(ẽ) denote the

dual-cycle induced by ẽ and two dual-paths of T̃ from the boss-vertex respectively to ũ and ṽ):

• ẽ is not a dual-edge of the BFS dual-tree T̃ of Vr(̃b), and

• each of two subplanes separated by c̃(e) contains at least one boundary cycle of Vr(̃b).

9Precisely speaking, the created one should be considered as an m.d.-cycle instead of a simple cycle because two
dual-paths of T̃ may be merged before the boss-vertex. But since it does not have more than one dual-cycle, we discuss
below, for simplicity, as if it were a simple cycle with an orientation so that we can specify its inside/outside.
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An example of a ridge edge. A
bold dashed line is a dual-edge
connecting two dual-vertices ũ
and ṽ that creates a dual-cycle
with BFS dual-paths containing
a Voronoi boundary cycle (indi-
cated by a solid line) in its both
sides. Then an edge crossing this
dual-edge {ũ, ṽ} (indicated by a
bold line) is a ridge edge.

Figure 13: Ridge edge

Below we use Rb̃ to denote the set of ridge edges in Vr(̃b). Use Bb̃ to denote the set of boundary

edges of Vr(̃b). These sets are sometimes regarded as subgraphs of G.
We first point out a simple but important property that is immediate from the definition: namely,

no BFS dual-path of T̃ crosses Rb̃ ∪Bb̃. We then show the following two properties of Rb̃ and Bb̃.

(a) (b)

e is the ridge edge and v is its endpoint dual-cycle c̃ obtained by connecting ṽ0 and ṽ2

(c) (d)

dual-cycle c̃1 obtained by connecting ṽ0 and ṽ1 dual-cycle c̃2 obtained by connecting ṽ1 and ṽ2

Figure 14: Examples for the proof of Lemma 7.1

Lemma 7.1. Rb̃ as a subgraph of G is a forest. Furthermore, every leaf of Rb̃ is incident to some
boundary edge of Bb̃.

Proof. Consider any connected component K of Rb̃. We first show that K does not contain a cycle.

If K had a cycle, then the cycle divides Vr(̃b) into more than two subplanes each of which contains
at least one dual-vertex (since dual-vertices correspond to faces of G). From the definition of a ridge

edge, any dual-edge of the BFS dual-tree T̃ cannot cross a ridge edge; hence, there must be a subplane
whose dual-vertices are not in the BFS dual-tree. This contradicts to the fact that T̃ is a spanning
tree of Vr(̃b).
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Next we show that every leaf of K is incident to the boundary of Vr(̃b). Here we assume otherwise;
that is, there is some leaf v of a connected component of K that is not incident to the boundary of
Vr(̃b) and lead a contradiction.

Let e be the ridge edge that is incident to v. We consider three faces incident to v that are regarded
as dual-vertices ṽ0, ṽ1, and ṽ2 indexed in clockwise starting from the one adjacent to e so that a dual-
edge {ṽ0, ṽ2} crosses e. Let e1 and e2 are edges incident to v that are crossed by edges {ṽ0, ṽ1} and
{ṽ1, ṽ2} respectively (Figure 14 (a)). Note that neither e1 nor e2 is a ridge edge (because v is a leaf of

some connected component consisting of ridge edges). If ṽ1 does not belong to Vr(̃b), e1 and e2 become

boundary edges since ṽ0 and ṽ2 are in Vr(̃b), and v is incident to the boundary, a contradiction. Thus

ṽ1 is in Vr(̃b).

Consider a dual-cycle c̃ induced by (two dual-paths of) the BFS dual-tree T̃ and a dual-edge {ṽ0, ṽ2}
(Figure 14 (b)). The cycle c̃ divides the plane into two subplanes; let W and W ′ denote them. Note

that both contain at least one boundary cycle of Vr(̃b) since e is a ridge edge. Without losing generality,
we may assume that W is the subplane containing v. Note that W contains ṽ0, ṽ1, and ṽ2.

We have three cases:
(i) The dual-edges {ṽ0, ṽ1} and {ṽ1, ṽ2} are both in the BFS dual-tree T̃ : In this case, W becomes the

triangle consisting of ṽ0, ṽ1 and ṽ2. Obviously, W has no boundary cycle of Vr(̃b).

(ii) Either one of {ṽ0, ṽ1} and {ṽ1, ṽ2} is in T̃ : Without loss of generality, we assume that {ṽ0, ṽ1} is

in T̃ and {ṽ1, ṽ2} is not in T̃ . Consider a dual-cycle c̃′ induced by T̃ and a dual-edge {ṽ1, ṽ2}, and let
the divided subplane by c̃′ that does not contain v be U . The difference of W and U , namely W \U , is

the triangle consisting of ṽ0, ṽ1 and ṽ2. Thus U contains a boundary cycle of Vr(̃b); hence, e2 becomes
a ridge edge. A contradiction.
(iii) Neither {ṽ0, ṽ1} nor {ṽ1, ṽ2} is in T̃ : Consider a dual-cycle c̃1 induced by T̃ and a dual-edge
{ṽ0, ṽ1}, and let W1 denote one of the two subplanes divided by c̃1 that is entirely contained in W

(Figure 14 (c)). Note that W1 has no boundary cycle of Vr(̃b) because otherwise the other side of c̃1,

which contains W ′, has no boundary of Vr(̃b) (since e1 is not a ridge edge), contradicting the above

mentioned fact that W ′ has at least one boundary cycle of Vr(̃b). Similarly, the subplane W2 defined

by a dual-cycle c̃2 induced by T̃ and an edge {ṽ1, ṽ2} (Figure 14 (d)) has no boundary cycle of Vr(̃b).
Note, however, v is only one vertex of G that is in W \ (W1 ∪W2). Thus, W has no boundary cycle

of Vr(̃b). A contradiction.

Lemma 7.2. Bb̃ ∪Rb̃ as a graph is connected.

Proof. For proving by contradiction, suppose that Bb̃ ∪ Rb̃ is not connected. Let C and C ′ be two
connected components of Bb̃∪Rb̃. Here we note that both C and C ′ consist of some Voronoi boundary
cycles and ridge edges connecting them, which is immediate from the above lemma.

Let c̃ denote a set of dual-vertices of Vr(̃b) incident to edges of C. Due to the three regularity of
G, it is easy to see that c̃ forms an m.d.-cycle under the anti-clockwise10 order whose orientation is
determined so that C is located its outside. Note here the following two properties of c̃: Firstly, no
dual-vertex of Vr(̃b) belongs to the outside of c̃; if otherwise, i.e., if there were some ṽ ∈ Vr(̃b) outside

of c̃, then the BFS dual-path from b̃ to ṽ should cross some edge of C, which would not occur by the
basic property of Bb̃ and Rb̃. Thus, all dual-vertices of Vr(̃b) (including dual-vertices of c̃) are located
inside of c̃. Then clearly, C ′ is also included in the inside of c̃. Secondly, no edge of Bb̃ ∪Rb̃ crosses c̃,
which is immediate from the first property.

Among directed dual-edges of c̃, there must be some dual-edges11 that are not dual-edges of the
BFS dual-tree T̃ . Let ẽ1, . . . , ẽh denote such directed dual-edges of c̃ \ T̃ listed in the order of the

m.d.-cycle c̃ (e.g., Figure 15 (b)). For each ẽi, consider a pair of directed dual-paths of T̃ from the

boss-vertex b̃ to the tail of ẽi and the head of ẽi to b̃, with the direction consistent with the directed
dual-edge ẽi. Then this pair of dual-paths and ẽi define a dual-cycle12, which we denote by ãi. Also
denote by ai the subplane(s) defined as the inside of ãi. By our choice of the direction, a1, . . . , ah are

10The choice of the anti-clockwise order is necessary to define an m.d.-cycle consisting of all vertices of c̃ for the case
where c̃ has a line part like the one shown in Figure 15 (a) (see Remark of Definition 6.2 for the definition of “line part”).
Since C is located in the outside (i.e., the right) of the m.d.-cycle, no line part of the m.d.-cycle is created in its left.
Thus, choosing dual-vertices in the anti-clockwise order is necessary and sufficient to collect all dual-vertices of c̃.

11These dual-edges are not from the line part of c̃; see the explanation of Figure 15 (a). Thus, its direction in c̃ is
uniquely determined.

12Again formally speaking, this may not be a real cycle because two dual-paths of the BFS dual-tree may merge before
the boss-vertex. But for simplicity, we regard it as a simple dual-cycle.

24



included in the inside of c̃; also it is clear that there is no overlap between them. Furthermore, every
vertex of G located inside of c̃ is in some ai; see the explanation of Figure 15 (b). In this sense, the
set of subplanes a1, . . . , ah is a partition of the inside of c̃. In particular, there must be some ãi that
contains some and hence all vertices of C ′ because no edges of C ′ can cross the dual-edges of ãi. Then
ẽi satisfies the condition given in Definition 7.1. That is, the edge that crosses ẽi is a ridge edge, which
contradicts the second property of c̃ confirmed above.

(a) (b)

Examples for the m.d.-cycle c̃ considered in the proof of Lemma 7.2. (a) An example for the
case where an m.d.-cycle c̃ has a line part. Solid lines indicate edges of C, while dashed lines
and white nodes are dual-edges and dual-vertices respectively of the m.d.-cycle c̃ incident to
C. Note that dual-edges of a line part, i.e., ẽ1, ẽ2, ẽ3, are all dual-edges of the BFS dual-tree
T̃ from b̃. Suppose otherwise and, say, ẽ2 were non-tree dual-edge; then at least one of the
two BFS dual-paths from b̃ to ẽ2 must cross C, a contradiction. (b) Thin dashed lines are

dual-paths of the BFS dual-tree T̃ from b̃. Bold dashed lines are dual-edges ẽ1, . . . , ẽ4 of c̃
that do not belong to T̃ , where their order and directions are consistent with c̃. For each
ẽi, an dual-cycle is defined by two BFS dual-paths to the two end points of ẽi and ẽi, with
the direction consistent with that of ẽi, which define a subplane ai as its inside. Clearly, ai
is located inside of c̃, and furthermore, a1, . . . , a4 are the partition of the inside of c̃. To see
this, for each ẽi, consider ṽi (resp., ṽi+1) that is the first dual-vertex in the BFS dual-path

from b̃ to the tail (resp., the head) of ẽi. Then it is easy to see that each pair ai and ai+1

of adjacent faces share the same boundary from b̃ to ṽi+1; no situation like the one crossed
by X occurs because thin dashed lines are dual-tree edges. Thus, all vertices located inside
c̃ must be in some face ai.

Figure 15: Examples for the proof of Lemma 7.2

Now we are ready to define notions of “branch vertex” and “connector” formally.

Definition 7.2 (B, R, and branch vertex). Hereafter we use B and R to denote respectively the set of

Voronoi boundary edges and the set of ridge edges defined for G and G̃. Regard B ∪ R as an induced
subgraph of G. A branch vertex is a degree three vertex in this graph. For each branch vertex v, a
dual-triangle consisting of three dual-vertices incident to v is a branch-triangle.
Remark. From the above two lemmas on Bb̃ ∪ Rb̃, it is easy to see that B ∪ R, as a graph, is a
connected graph, and that every vertex of B ∪R has degree either 2 or 3.

Definition 7.3 (Connector). Two branch vertices are adjacent if they are connected by edges in B∪R
with no other branch vertex on it. The path connecting adjacent branch vertices is a connector.
Remark. It is easy to see that each connector consists of Voronoi boundary edges only or ridge edges
only. Note that it is possible that some branch vertex is adjacent to itself; that is, it is connected to
itself by a cycle connector. We fix some simple way to give a direction to each connector, and in the
following, we may assume that each connector has this direction.
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We are ready to define the notion of “pre-frame-cycle”, which will be used as a basis for defining
“frame-cycles” and “frame-graph.” We prepare some notation. Consider any connector p (see Fig-
ure 16). Following the remark of Definition 7.3, we may assume that p has a direction, and we use vfst
and vlast be the start and end vertices of p w.r.t. this direction. Note that vfst and vlast are an adjacent
pair of branch vertices. Let us call an edge of p having vfst as its end point the first edge, and similarly,
an edge of p having vlast as its end point the last edge. We will refer a part of p removing the first and
last edges as a body of p and denote it by p′. Also let ẽfst = {ṽfst.r, ṽfst.l} and ẽlast = {ṽlast.r, ṽlast.l}
be dual-edges that cross the first and the last edges respectively, where ṽfst.l (resp., ṽlast.l is the one
located left of the first (resp., the last) edge, and ṽfst.r (resp., ṽlast.r) is the one located right of the first
(resp., the last) edge.

Figure 16: Notation on a connector

We can easily see that both ṽfst.l and ṽlast.l (similarly, both ṽlast.r and ṽlast.r) have the same boss
dual-vertex.

Lemma 7.3. boss(ṽfst.l) = boss(ṽlast.l) and boss(ṽfst.r) = boss(ṽlast.r).

Proof. Consider dual-vertices incident to p that are located on the left side of p. We name them
ṽ0 = ṽfst.l, ṽ1, . . . , ṽt−1, ṽt = ṽlast.l so that ṽi and ṽi+1 are adjacent. Assume that there exists ṽi
such that boss(ṽi) 6= boss(ṽi+1), then an edge e that crosses {ṽi, ṽi+1} must be an edge of a Voronoi
boundary. But since e is incident to p, the end point of e that is on p must be a branch vertex. This
contradicts that p is a connecter. Therefore, there is no i such that boss(ṽi) 6= boss(ṽi+1), and hence
boss(ṽfst.l) = boss(ṽlast.l). With a similar argument, we can show boss(ṽfst.r) = boss(ṽlast.r).

Then the notion of “pre-frame-cycle” is defined as follows. (This notion will be revised in the next
section. Thus, let us call the one defined here as “the first version.”)

Definition 7.4 (pre-frame-cycle, the first version). Use notation defined in Figure 16; also see Fig-
ure 17. For any connector p, a pre-frame-cycle (w.r.t. p) is a “directed dual-cycle” that consists of (1)
a BFS dual-path from ṽfst.r to its boss-vertex, (2) a BFS dual-path from this boss-vertex to ṽlast.r, (3) a
branch-triangle dual-edge ẽlast from ṽlast.r to ṽlast.l, (4) a BFS dual-path from ṽlast.l to its boss-vertex,
(5) a BFS dual-path from this boss-vertex to ṽfst.l, and (6) a branch-triangle dual-edge ẽfst from ṽfst.l
to ṽfst.r. The direction of this dual-cycle is defined naturally from the above order of dual-edges and
dual-paths, from which the connector p is located in the left, i.e., the inside, of the pre-frame-cycle.
Remark. As shown in Figure 17, a pre-frame-cycle is not a simple dual-cycle in general; it may have
a line part and/or it may consist of two dual-cycles. Thus, it seems better to regard it as an m.d.-cycle,
more specifically, an m.d.-cycle under the clockwise order from Figure 17. Unfortunately, though, there
are cases where an important part of a pre-frame-cycle is missed if we consider an m.d.-cycle under
the clockwise order; see, e.g., Figure 18 (b), (c). Furthermore, we will eliminate the cases where more
than two dual-cycles appear as Figure 17 (b). Thus, though some pre-frame-cycle may have a line part,
we regard it as a simple directed dual-cycle.

A dual-cycle we saw in Figure 5 is in fact a pre-frame-cycle given as Figure 17 (a) (1). On the
other hand, a dual-cycle like the one in Figure 6 is now divided into several pre-frame-cycles thanks
to the introduction of new branch vertices; see Figure 19.

Algorithms for Step 2.2

The task of this step is to compute information of the pre-frame-cycles of G. We again explain as if
each step receives the output of the previous step as input, and omit the analysis of time complexity.
Note that we can use the outputs of Step 2.1 as input; the set of boss-vertices Ĩ, the BFS tree T̃b̃ of

every Voronoi region Vr(̃b) (̃b ∈ Ĩ), a list of boundary cycles of all Voronoi regions and a list of pairs
of Voronoi regions sharing a vertex. We consider an algorithm that outputs
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(a) (b)
(1) (1)

(2) (2)

This figure shows four typical pre-frame-cycles. pre-frame-cycles are defined by bold dashed
lines following the order indicated by numbers. Two boss-vertices are used for a pre-frame-
cycle in type (a), and only one boss-vertex is used in type (b). Note that two subplanes
are created as the inside/outside of the pre-frame-cycles in (a), whereas three subplanes are
created in (b). Also note that a connector, i.e., a solid line with an arrow, is included (except
its end points) in the inside subplane P0 of a pre-frame-cycle for every type. A pre-frame-
cycle of type (a) (2) has a line part, and more examples of pre-frame-cycles with a line part
are shown in Figure 18.

Figure 17: Typical pre-frame-cycles

(a) the set B ∪R of Voronoi boundary edges and ridge edges;

(b) the set of branch vertices of B ∪R;

(c) a list of connectors; and

(d) a list of pre-frame-cycles13.

First, for computing B ∪ R as the output of (a), we compute Rb̃ for each b̃ ∈ Ĩ. Note that the

boundaries Bb̃ are the input of the algorithm. If Vr(̃b) has only one boundary cycle, Rb̃ is empty from

the definition of ridge edge. Assume Vr(̃b) has at least two boundary cycles. For each non-tree edge

ẽ = {ũ, ṽ} of Vr(̃b), we compute the path from ũ to ṽ on T̃b̃ with a standard DFS (depth-first search)

algorithm. Since the diameter of T̃b̃ is O(k), this runs in Õ(k)-space. We denote the dual-cycle14

consisting of this path and ẽ as c̃ẽ, where its direction is determined in any appropriate way. For each
boundary cycle of Bb̃, fix one dual-vertex ṽB of Vr(̃b) adjacent to Bb̃, and run a DFS algorithm from

ṽB on T̃b̃ until getting to some vertex of c̃ẽ, and check the side of ṽB (and hence, the boundary cycle) is

located, which is again computed in Õ(k)-space. If both sides of c̃ẽ have at least one boundary cycle,
we add the edge crossing ẽ to Rb̃.

Next consider how to compute the branch vertices. For any vertex v of G, we simply check whether
v appears in B ∪R three times or not.

Now we compute connectors as output (c). For each branch vertex v, we traverse on B ∪R from v
to all three directions until reaching another branch vertex u (u may be equal to v). The path from v
to u is a connector. We outputs the path only if v has smaller or equal index than u for not outputting
a connector twice. The algorithm needs Õ(1)-space.

13This was not the output of Step 2.2 explained in Outline section; but we added this for the sake of explanation in
the next section

14Here again we explain, for simplicity, as if c̃ẽ is a simple dual-cycle, though it may have a line part.
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(a) (b) (c)

Pre-frame-cycles may have line parts when it has two BFS dual-paths (with the same boss-
vertex) merges before reaching to their boss-vertex. Here are some typical examples. Figures
(b) and (c) show the cases where the line part indicated by thin dashed lines (and hence the
corresponding boss-vertex) cannot be included if we regard them as m.d.-cycles under the
clockwise order.

Figure 18: Examples of line parts of pre-frame-cycles

Finally, we compute pre-frame-cycle as output (d). For each connector, we compute and output
BFS dual-paths and branch-triangle dual-edges according to the definition of pre-frame-cycle. The
dual-paths can be computed by DFS in Õ(k)-space. Then a sequence (similar to an m.d.-cycle)
representing a pre-frame-cycle can be easily obtained from these dual-paths and branch-triangle dual-
edges in Õ(k)-space.

8 Frame-Graph

We define the notion of “frame-graph” formally and show that an obtained frame-graph satisfying the
condition (F1) ∼ (F3). This section corresponds to Step 2.3 of our algorithm.

Roughly speaking, our frame-graph is defined by removing all dual-vertices (and dual-edges) not
participating in any pre-frame-cycle or branch-triangle, and these pre-frame-cycle and branch-triangles
define all the faces of the frame-graph. The actual situation is a bit more complicated in general because
of the type (b) of Figure 14 in which the 2-connectivity may not be guaranteed by removing unused
dual-edges. Fortunately, we can show that this situation can be avoided by preprocessing pre-frame-
cycles and merging two subplanes for type (b) graphs (if necessary).

8.1 Preprocessing pre-frame-cycles

We show a preprocessing step to simplify pre-frame-cycles so that each simplified pre-frame-cycle
becomes a simple dual-cycle by removing (at most two) line parts. Thus, we will simply call such a
simplified pre-frame-cycles as a dual-cycle although it may contain a line part.

In this preprocessing step, we go through all pre-frame-cycles, and for each pre-frame-cycle c̃, we
check the number of dual-vertices in each subplane defined as the inside of c̃ and then take one of
the following actions depending on these numbers: (i) do nothing, that is, keep c̃ as it is (only for
the type (a)), (ii) use the algorithm of Lipton and Tarjan (Proposition 2.3) to compute a separator

and use it as a desired separator of G̃, (iii) merge two subplanes (only for the type (b)), or (iv) use

the pre-frame-cycle c̃ as a desired separator of G̃. Recall that we can compute a target separator of
Gorg from a separator of G̃ as explained in Outline section (i.e., Claim 2). Thus, the whole algorithm
terminates with a desired output if either (ii) or (iv) is executed.

Now we explain this outline in detail. Consider any pre-frame-cycle c̃, and let us use the symbols
given in Figure 17 for c̃. In particular, P0 denotes a subplane defined as the inside of c̃ that has the
body of a connector p, and let P1 (resp., P1,1 and P1,2) a subplane(s) located outside of c̃. Let ñ0 (resp.,
ñ1, ñ1,1, ñ1,2) be the number of dual-vertices in P0 (resp., P1, P1,1, P1,2), not including dual-vertices
on its boundary c̃. Let ñc̃ denote the number of dual-vertices of c̃; recall that ñc̃ = O(k) (= O(

√
n)),

which can be assumed negligible compared with ñ.
First consider the type (a). We have the following three cases (here we do not have the case (iii)

mentioned above):

(i) If ñ0 < ñ/4: do nothing and use c̃ as a pre-frame-cycle.
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(a)

(b)

An example of new branch vertices that introduce new pre-frame-cycles. We use the Voronoi
region of Figure 6. Bold solid lines are paths consisting of ridge edges connecting three Voronoi
boundary cycles (which are indicated by thin solid lines in (a)). Black vertices are new branch
vertices, from which new branch-triangles (not shown here) are created. Then new branch dual-
paths are introduced; for visibility, only three of them are shown as bold dashed lines in (a) while
all of them are shown as bold dashed lines in (b). In (a), a pre-frame-cycle is indicated by its
component four dual-paths given numbers in the order of its direction. Note that this directed
dual-cycle contains one connector. Similarly, we can see in (b) (though a bit busy figure) that
the long dual-cycle of Figure 6 is now separated into pre-frame-cycles.

Figure 19: New branch vertices and obtained pre-frame-cycles

(ii) If ñ0 ≥ 2ñ/3: Note first that P0, that is, the inside of c̃ is included in the union of two Voronoi

regions. Consider one of these Voronoi regions having at least half of dual-vertices in P0. Let G̃0

be an induced subgraph of G̃ consisting of dual-vertices of G̃ located in this part; note that it
has at least ñ/3 dual-vertices. Recall that we have a BFS dual-tree covering dual-vertices of G̃0

of depth O(k) (= O(
√
n)), and also that this dual-tree (Section 5) and the list of dual-vertices

inside of c̃ (Section 7) are given as input. Thus, we may assume that a BFS dual-tree of G̃0 is

given. Then we can apply the algorithm of Lipton and Tarjan to G̃0 to obtain a separator of G̃0

that separates G̃0 into two subgraphs each of which has at least (ñ/3)/3 = ñ/9 dual-vertices.
Since the work space needed for the algorithm of Lipton and Tarjan is linearly bounded by the
depth of a BFS dual-tree of a given graph, this computation can be executed in Õ(

√
n)-space.

Clearly, the obtained separator is also a 1/9-separator for G̃, that is, our desired separator.

(iv) Otherwise: In this case we have ñ0 ≥ ñ/4 and ñ1 ≥ ñ− ñ0 − ñc̃, which is larger than, say, ñ/4.

Thus, we can output c̃ as a 1/4-separator of G̃.

Next consider the type (b). We have the following three cases (here we do not have the case (i)
mentioned above):

(ii) If ñ0 ≥ ñ/3: In this case, for an induced subgraph G̃0 of G̃ consisting of dual-vertices of G̃ in P0,
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we take the same action as (ii) for the type (a).

(iii) If either ñ0+ñ1,1 < ñ/4 or ñ0+ñ1,2 < ñ/4: Suppose that ñ0+ñ1,1 < ñ/4. Then we merge P0 and
P1,1, and use a dual-cycle c̃′ bounding this subplane as a replacement of c̃ and all pre-frame-cycles
in P0 and P1,1. More precisely, c̃′ is a sequence of dual-edges following (5) → (6) → (1) of (b) in
Figure 17. Then remove all pre-frame-cycles located left of c̃′, i.e., in the subplane P0∪P1,1, from
the list of pre-frame-cycles; that is, a new pre-frame-cycle c̃′ becomes the boundary dual-cycle
of the subplane P0 ∪ P1,1 and no pre-frame-cycle exist in it. The case where ñ0 + ñ1,2 < ñ/4
is handled in a similar way, and use a dual-cycle following (2) → (3) → (4) to replace c̃ and all
pre-frame-cycles in the subplane P0 ∪ P1,2.

(iv) Otherwise: In this case, we have ñ1,1 + ñ1,2 ≥ ñ− ñ0 − ñc̃, which is larger than, say, ñ/2 (since
ñ0 < ñ/3). Thus, either ñ1,1 or ñ1,2 must be larger than ñ/4. Let us assume that ñ1,1 > ñ/4.

Then since ñ0 + ñ1,2 ≥ ñ/4, c̃ is a 1/4-separator separating G̃ into subgraphs located in P1,1 and

P0 ∪ P1,2. Thus, we output c̃ as a desired separator of G̃.

In the rest of this paper, we consider the situation where the algorithm does not terminate during
this preprocessing and we still need to compute a separator. Also we revise our notion of pre-frame-
cycle, and consider these dual-cycles obtained by this preprocessing as pre-frame-cycles. We should
remark here that the inside of each pre-frame-cycle has less than ñ/4 dual-vertices of G̃.

Now we define “frame-graph” formally as follows.

Definition 8.1 (Frame-graph). For each pre-frame-cycle c̃ of G̃, let Ẽc̃ be the set of dual-edges that

appear once in c̃. Let Ẽ1 be the union of Ẽc̃ for all pre-frame-cycles c̃, and let Ẽ2 be the set of all
branch-triangle edges. Then a frame-graph of G̃ is a subgraph H̃ = (Ũ , D̃) of G̃, where D̃ = Ẽ1 ∪ Ẽ2

and Ũ is the set of all dual-vertices that are end points of dual-edges of D̃. A frame-graph is a plane
graph under the embedding of G̃ restricted to Ũ and D̃.
Remark. From the definition of “pre-frame-cycle” (i.e., Figure 17 and our preprocessing step), a
pre-frame-cycle c̃ is one dual-cycle that may have at most two line part(s) if dual-paths merge before

its boss-vertices; hence, the set Ẽc̃ of dual-edges that appear once is exactly the dual-cycle part of c̃.
Thus, we call it a frame-cycle and denote it by (c̃)− if we want to consider it as a directed dual-cycle

whose direction is consistent with c̃ (while Ẽc̃ is simply a set of dual-edges).

As explained in Outline section, a frame-graph H̃ needs to be a weighted subgraph of G̃. Here to
meet the condition (F1), we define the weight of each face of H̃ as follows.

Definition 8.2 (Frame-graph and face weight). For each face of a frame-graph H̃, its weight is the

number of dual-vertices of G̃ located in the face (that are removed to define H̃) divided by the total

number ñ− of dual-vertices removed from G̃.

Algorithms for Step 2.3

The task of this step is to compute H̃, that is, its complete weighted face information, which consists
of the list of branch-triangles and frame-cycles (as face boundary dual-cycles), the weights of faces
defined by them, and their incidence relations. Since we have already computed pre-frame-cycles in
Step 2.2 and the preprocessing step, we only need to consider a way to remove line parts from each
pre-frame-cycle to obtain the corresponding frame-cycle. From the definition of pre-frame-cycle, Note
that a line part exists in a pre-frame-cycle only if two dual-paths from two branch-triangles merge
before the boss-vertex; such a line part can be identified by a standard DFS using Õ(k)-space. Thus,

we can compute the list of all frame-cycles of H̃ in Õ(k)-space. From the obtained list of frame-cycles,
it is easy to compute their incidence relations. Note that the number of removed dual-vertices from
the inside of each frame-cycle has been already computed in the preprocessing step.

8.2 Properties of the frame-graph.

We show that the frame-graph H̃ satisfies the conditions (F1) ∼ (F3) given in Outline section.

We start with showing the 2-connectivity of H̃, that is, the condition (F2).

Lemma 8.1. H̃ = (Ũ , D̃) is 2-connented.
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Proof. For any two distinct dual-vertices ũ, ṽ ∈ Ũ , we show that there exists two vertex disjoint
dual-paths from ũ to ṽ in H̃. When both ũ and ṽ are on the same frame-cycle or the same branch
dual-triangle, there exist two dual-paths that are parts of the dual-cycle from ũ to ṽ clockwise and
anti-clockwise. Suppose ũ and ṽ are on two frame-cycles c̃ and c̃′ respectively. Let p0 and p∗ be the
connectors whose bodies are contained in c̃ and c̃′ respectively. Since B ∪ R is connected, there is a
sequence of connecters p0 = p1, p2, . . . , pk = p∗ such that pi and pi+1 share one endpoint for each i,
1 ≤ i < k. Note also that for each i, 1 < i < k, the body of pi is contained in a frame-cycle c̃i of the
type (a)(1) of Figure 17. We re-define the directions of pi so that we can traverse from p1 to pk. For
every connector pi, it is obvious that two dual-paths on c̃i one from ṽfst.l to ṽlast.l another from ṽfst.r
to ṽlast.r share no dual-vertex. We call these two dual-paths left- and right-path respectively. Then
we can construct a path p̃L (resp., p̃R) from ṽfst.l (resp., ṽfst.r) of p2 to ṽlast.l (resp., ṽlast.r) of pk−1
by using only left- (resp., right-) paths and dual-edges of the corresponding branch-triangles; clearly,
these two dual-paths p̃L and p̃R share no dual-vertex. That is, they are two vertex disjoint dual-paths
from ũ to ṽ. (We need to consider the cases where ũ or ṽ is on a branch-triangle or on a frame-cycle
based on a pre-frame-cycle created in the preprocessing step; these cases can be treated similarly, and
we omit detail explanation for these cases.)

Next we consider the conditions (F1) and (F3). For this we need to identify faces of H̃. Intuitively,

it is almost clear that every face of H̃ is defined by either a branch-triangle or a frame-cycle. We
prove below this intuition. Recall that we define our frame-graph H̃ by collecting necessary dual-edges
instead of by removing dual-vertices from the inside of each pre-frame-cycle. Thus, we need to prove
that there is no dual-vertex of H̃ inside of each frame-cycle to guarantee that each frame-cycle indeed
is a boundary of a face of H̃. We also need to prove that there is no other face other than those defined
by branch-triangles or frame-cycles.

We first discuss (almost) one-to-one correspondence between pre-frame-cycles and connectors in G̃.
Consider any pre-frame-cycle c̃ that is not among those introduced as a boundary dual-cycle of two
merged subplanes in the preprocessing step. From the definition of pre-frame-cycle, it is clear that the
inside of c̃ has the body of some connector. We show that it indeed does not contain any other edge
of B ∪R.

Lemma 8.2. Consider G̃ and its pre-frame-cycle c̃ that is not introduced in the preprocessing step.
Let p′ be the body of a connector p that is located inside of c̃. Then there is no edge of B ∪ R except
p′ that is inside of c̃.

Proof. We use the notation of Figure 16 here with p and c̃ of the lemma. Since the BFS dual-tree
of each Voronoi region does not cross any edge of R ∪ B, only two dual-edges ẽfst and ẽlast of c̃ are
crossing edges of R ∪ B. Therefore, R ∪ B is parted into at most three connected components by c̃,
and each component is in either in the left side of c̃ (that is, inside of c̃) or in the right side of c̃ (that
is, not outside of c̃). Clearly, one component of them is p′ and it is inside of c̃. The others15 contain
the branch vertices of p, i.e., two end points of p that are not in the pre-frame-cycle c̃; hence, those
components have no edge in the inside of c̃.

We now show that there is no dual-vertex of H̃ inside of each pre-frame-cycle. Thus, each frame-
cycle is indeed a boundary of a face of H̃. In the following, we consider H̃+ that is defined as a subgraph
of G̃ consisting of all dual-vertices and dual-edges of branch-triangles and pre-frame-cycles. Note that
H̃ is obtained from H̃+ by removing dual-vertices and dual-edges not participating in frame-cycles or
branch-triangles.

Lemma 8.3. Consider any pre-frame-cycle c̃. No dual-edge of H̃+ \ c̃ is located inside of c̃. Thus, the

inside of (c̃)− has no dual-vertex of H̃.
Remark. It is possible that the inside of (c̃)− has some dual-vertex of c̃, which is a dual-vertex of a

line part of c̃ that is removed in H̃ (Figure 20).

Proof. Consider any pre-frame-cycle c̃. If it is one of those introduced in the preprocessing step, then
the lemma is immediate because the inside of c̃ has no pre-frame-cycle (due to the preprocessing

step), and hence all dual-vertices are removed from there when defining H̃. Thus, in the following, we
consider a pre-frame-cycle c̃ of the type (a) of Figure 17. In particular, we assume for simplicity that

15There is a case where p forms a cycle from a branch vertex (Figure 17 (a)(2)), in which case B ∪ R has only one
component other than p′; this case can be treated similarly.
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(a) (b) (c)

Typical examples of line parts of pre-frame-cycles that are removed from H̃+ when defining
H̃. Dashed lines (both bold and thin) are pre-frame-cycles (where the arrows indicate the

directions for defining their insides), bold dashed lines are their line parts removed in H̃.
Figure (c) indicates the case where a new pre-frame-cycle is created by merging two suplanes
in the preprocessing step.

Figure 20: Examples of line parts removed in H̃

it is of the type (a)(1); the type (a)(2) can be treated similarly. Let p′ be the body of a connector
located inside of c̃.

Assume to the contrary that some dual-edge ẽ of the other pre-frame-cycle c̃′ exists inside of c̃. It
cannot be a dual-edge of a branch-triangle because if so, the inside of c̃ would have an edge of B ∪R
other than p′, contradicting to Lemma 8.2 above. Hence, it must be a part of a dual-path p̃ of a BFS
dual-tree. Since there is no Voronoi boundary (besides p′), the boss of this BFS dual-tree (and one

end of the dual-path p̃) is the boss-vertex of c̃ located in the same side of p′ as ẽ; let us denote it b̃. On
the other hand, the other end of this dual-path in c̃′ must be a branch-triangle that is located outside
of c̃ because the corresponding branch vertex must be outside of c̃. Thus, the dual-path p̃ must cross
c̃, and let w̃ denote a dual-vertex of the crossing point; that is, w̃ is a dual-vertex in both p̃ and c̃.
Clearly, its boss-vertex is b̃ because p̃ cannot cross p′. Thus, we have two dual-paths from w̃ to b̃, one
following c̃ and another following p̃, contradicting the fact that each dual-vertex has a unique BFS
dual-path to its boss-vertex.

From this lemma, we can claim that each frame-cycle is a boundary of a face in H̃ because it is a
dual-cycle (see Remark of Lemma 8.1) having no dual-vertex in its inside in H̃.

Lemma 8.4. The boundary of any face of frame-graph H̃ is either a frame-cycle or a branch-triangle.

Proof. Consider any face of H̃. Since H̃ is 2-connected, the face has a single boundary dual-cycle
c̃ (Proposition 2.1). Let us assume that this is not a branch-triangle and show that it indeed is a
frame-cycle.

Note first that c̃ has at least one dual-edge from some branch-triangle. This is because H̃ consists
of dual-edges of disjoint BFS dual-trees of G̃ (from disjoint Voronoi regions) and branch dual-triangles
and we need at least one dual-edge of some branch-triangle since no dual-cycle is formed by dual-edges
of disjoint dual-trees. Let ẽ and t̃ be respectively such a dual-edge and the branch-triangle with this
dual-edge. Note also that c̃ and t̃ are (the boundaries of) adjacent faces sharing dual-edge ẽ.

Here we overlap the original plane graph G with H̃. Then by definition there exists a branch vertex
in branch-triangle t̃ where three connectors of B∪R are merged. Clearly, there should be one connector
that starts with an edge crossing dual-edge ẽ. Thus, c̃ contains this connector. On the other hand,
there must be a frame-cycle c̃′ whose inside contains the body of this connector (Definition 7.416).

Note that both c̃ and c̃′ are boundaries of some faces of H̃. Therefore, c̃ must be the same as c̃′ since
two faces cannot overlap; that is, c̃ is a frame-cycle.

Now that we have identified all faces of H̃, we consider the conditions (F1) and (F3) for H̃. Recall
that the condition (F1) requires that each face weight is less than 1/3. Since faces are defined by either
a branch-triangle or a frame-cycle, and the former case is trivial, we need to consider faces defined a
frame-cycle. Note that the preprocessing step guarantees that the number of dual-vertices of G̃ inside

16Precisely speaking, we also need to consider frame-cycles introduced in the preprocessing step; but it is easy to see
that this fact remains true even after the preprocessing step.
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of each frame-cycle is less than ñ/4. Furthermore, for the total number ñ− of removed dual-vertex, we
will see later (in Section 9) that ñ− = ñ−O(

√
n); hence, we have ñ/4 < ñ−/3 for sufficiently large n,

satisfying the weight requirement of (F1).

For the condition (F3), that is, for showing that H̃ has O(n/k) faces, we count the number of
connectors and branch vertices.

Lemma 8.5. The number of connectors is O(n/k). Also, the number of branch vertices is O(n/k).

Proof. We consider a plane graph G′ = (V ′, E′) defined from B ∪ R, where V ′ is the set of branch
vertices of B∪R, and E′ is the set of edges between adjacent branch vertices in B∪R; thus, each edge
of E′ corresponds to some connector. We assume the planar embedding following that of G. Since G′

is plane, it satisfies Euler’s formula |F ′| + |V ′| = |E′| + 2, where F ′ is the set of faces of G′. Since
the degree of any branch vertex is 3, we have 2|E′| = 3|V ′|. By substituting this to the above Euler’s
formula, we have 3|F ′|+ 2|E′| = 3|E′|+ 6, implying |E′| = 3|F ′| − 6 = O(|F ′|).

Here we note that there is one to one correspondence between faces of G′ and Voronoi regions. To
see this, consider a graph consisting of only B edges, i.e., Voronoi boundary edges. Then the one-to-one
correspondence is clear. On the other hand, adding ridge edges does not divide any Voronoi region;
otherwise, the BFS dual-tree of the divided Voronoi region crosses some ridge edge, contradicting
the definition of ridge edges. Hence, no new face is created by adding R edges. Thus, we have
|F ′| = O(n/k). Therefore, we have |E′|, which is the number of connectors, is O(n/k). Also we can
bound the number of branch vertices by O(n/k) because 2|E′| = 3|V ′|.

Then the following corollary is immediate from the one-to-one correspondence respectively between
branch-triangles and branch vertices and between frame-cycles and connectors.

Corollary 8.6. The number of faces of H̃ is O(n/k).

9 Floor and Ceiling Modification

In this section, we formally define the notions of floor- and ceiling-cycles, and explain their properties.
We then explain Step 2.4 of our algorithm for computing floor- and ceiling-cycles and modified H̃ as
a final output of Step 2.

We begin with defining the notion of “core”. Recall that dnb(ṽ) is the largest d such that | ∪0≤i≤d
L(ṽ, i) | < k holds.

Definition 9.1 (Core). For any boss-vertex b̃ ∈ Ĩ, let dcore(̃b) denote the largest d ≤ dnb(̃b) such that

|L(̃b, d)| ≤
√
k. The core of b̃ (denoted by Core(̃b)) is defined by

Core(̃b) =
⋃

0≤i≤dcore (̃b)

L(̃b, i).

We first note the following relation.

Lemma 9.1. For any b̃ ∈ Ĩ, we have dnb(̃b)− dcore(̃b) ≤
√
k.

Proof. Suppose otherwise, that is, dcore(̃b) +
√
k < dnb(̃b) holds. Then we have

√
k⋃

i=1

L(̃b,dcore(̃b) + i) ⊆ Nk (̃b).

On the other hand, by definition, for any d such that dcore(̃b) < d ≤ dnb(̃b), we have |L(ṽ, d)| >
√
k,

from which we have |Nk (̃b)| > k, contradicting the definition of k-neighborhood.

Consider any boss-vertex b̃ ∈ Ĩ and its core Core(̃b). By definition Core(̃b) is a subset of Nk (̃b).

Hence, k′ := |Core(̃b)| < k; that is, the core contains less than k dual-vertices. It is also a region.
Thus, its boundary is a set of disjoint cycles of G. Let c be one of such boundary cycles. We regard the
subplane separated by c not containing any dual-vertex of the core as the outside of c. The cycle c is
called a core boundary cycle if its outside contains at least 2ñ/3 dual-vertices. It may be the case that
no core boundary cycle exists. In this case, by removing the core, we would have separated subgraphs
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G̃1, . . . , G̃t from which we can define ∪1≤i≤t0G̃i and ∪t0<i≤tG̃i for some t0 such that both parts have

at least (ñ/3)−k′ dual-vertices. Hence, the core itself is, say, a 1/4-separator of G̃ for sufficiently large
k =

√
n and ñ, and its size is k′ ≤

√
n; thus, the core itself can be used as a desired separator from

which we can construct a target separator of Gorg using the method stated in Lemma 4.2. Therefore, in
the following we may assume that each core has a core boundary cycle. Note also that more than one
core boundary cycles do not exist for each boss-vertex because the outside of such cycles are disjoint
and no disjoint two sets can contain 2ñ/3 dual-vertices in each. Then for such a core boundary cycle,

consider a set c̃ of dual-vertices in Core(̃b) (regarded as faces of G) sharing a boundary edge with the

core boundary cycle. We show in Lemma 9.2 below that a subgraph of G̃ induced by c̃ in fact forms a
dual-cycle. This observation leads the following definition.

A bold solid line indicates the core boundary cycle c
stated in the lemma, and some of its vertices are shown
as black nodes. White nodes are some of dual-vertices
that share a face boundary edge with c. In particu-
lar, dual-vertices ṽ1 and ṽ2 are those in Core(̃b) sharing
boundary edges with c, and edges e1 and e2 are repre-
sentatives of such boundary edges discussed in the proof.
It is easy to see that such dual-vertices form an m.d.-
cycle c̃ under the anti-clockwise order that is indicated
by a bold dashed line with arrows showing its direction.

Figure 21: An example of core boundary cycle and core-cycle for the proof of Lemma 9.2 (1)

Definition 9.2 (Core boundary cycle and core-cycle). For each core Core(̃b), its core boundary cycle

is a cycle such that (i) it is one of the boundary cycles of the region Core(̃b), and (ii) its outside has

at least 2ñ/3 dual-vertices. The core-cycle of Core(̃b) is a directed dual-cycle induced by the set of

dual-vertices in Core(̃b) sharing an edge with the core boundary cycle. The inside of the core-cycle is

the side with the boss-vertex b̃.
Remark. As defined above, a core boundary cycle is a cycle in G whereas a core-cycle is a dual-cycle
in G̃. We will use similar wording later; e.g., interior boundary cycle vs. interior-cycle, etc.

Lemma 9.2. Consider any boss-vertex b̃ and its core Core(̃b), and let c be its core boundary cycle.
Then we can define an m.d.-cycle c̃ under the anticlockwise order consisting of all dual-vertices of
Core(̃b) sharing an edge with c. This c̃ in fact is a dual-cycle. (We may assume that c is directed

so that its inside, i.e., the left side w.r.t. the direction, contains Core(̃b). The direction of c̃ is also

determined consistent with that of c, by which b̃ is located the inside of c̃.)
Remark. From the relation between c and c̃, we refer c̃ as the m.d.-cycle left-adjacent to c.

A graph consisting of black vertices connected by solid
edges is a part of the core boundary cycle c stated in the
lemma. A part of the m.d.-cycle c̃ is indicated by bold
dashed directed edges connecting white vertices as ṽ1, ṽ,
ṽ2, . . ., ṽ3, and ṽ, . . .. Its sub m.d.-cycle c̃′ considered in
the proof corresponds to the part ṽ, ṽ2, . . ., ṽ3, and ṽ. Here
w̃1, w̃2, and w̃3 are dual-vertices located in the opposite
side, i.e., the outside of c from, e.g., ṽ.

Figure 22: An example for the proof of Lemma 9.2 (2)

Proof. Let d0 = dcore(̃b); hence, Core(̃b) = ∪d≤d0L(̃b, d). We first show the existence of the m.d.-cycle
c̃ stated in the lemma (see Figure 21). Consider any edge e1 of the boundary cycle c, and let ṽ1 be a

dual-vertex in Core(̃b) (regarded as a face of G) that has e1 as one of its face boundary edges. Clearly,
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c has edges that are not boundary edges of ṽ1, and let e2 be the first such edge from e1 following the
direction so that ṽ1 is located left. Then we have some dual-vertex ṽ2 in Core(̃b) having e2 (as its face
boundary edge). Similarly, we can find e3 and ṽ3, and so on until coming back to e1. Let c̃ be the
obtained sequence of dual-vertices. Then c̃ is an m.d.-cycle under the anti-clockwise order that has all
dual-vertices of Core(̃b) in its inside. This is because there is no dual-vertex of Core(̃b) from ṽi−1 to
ṽi+1 anti-clockwise among all dual-vertices adjacent to ṽi. In fact, it is also easy to see that all ṽi’s are

in L(̃b, d0) facing w̃j ’s in L(̃b, d0 + 1).
We then prove that c̃ is indeed a dual-cycle (see Figure 22). For this, it suffices to show that

the degree of every dual-vertices of c̃ is two in c̃. Suppose otherwise; that is, we had a dual-vertex ṽ
connecting more than two dual-vertices in c̃. Hence, the m.d.-cycle c̃ would be expressed as a sequence
(ṽ1, ṽ, ṽ2, . . . , ṽ3, ṽ, ṽ4, . . .). (It may be the case that ṽ4 is the same as ṽ3.) We can split this into
two subsequences: (ṽ, ṽ2, . . . , ṽ3) and the remaining one, i.e., (ṽ1, ṽ, ṽ4, . . .). Note that both are m.d.-

cycles, and clearly, one of them has the boss-vertex b̃ in its inside while the other one does not. Without
losing generality, we assume that c̃′ = (ṽ, ṽ2, . . . , ṽ3) does not have the boss-vertex b̃ in its inside. Now

consider, e.g., the dual-vertex ṽ2. Since ṽ2 ∈ Core(̃b), its distance from b̃ is ≤ d0; hence, there must

be some dual-vertex ũ ∈ L(̃b, d0 − 1) inside of c̃′ adjacent to ṽ2. Thus, there must be a path of length

d0 − 1 from b̃ to ũ. On the other hand, this path should go through ṽ because b̃ is in the inside of
the other m.d.-cycle. But then the distance of ṽ becomes less than d0, contradicting the assumption
that ṽ shares a boundary edge with c, which means that there exists a dual-vertex w̃1 that shares this
boundary edge with ṽ in the outside of Core(̃b), i.e., in L(̃b, d0 + 1).

We state here the following size bounds, which are immediate from the definition.

Lemma 9.3. Each core-cycle has at most
√
k dual-vertices and at most ñ/3 dual-vertices in its inside.

We define the notions of neck, floor, and ceiling. For this we introduce the notion of “level.” The
main difference from the intuitive explanation in Outline section is that it is defined in terms of the
distance from all k-neighborhoods (instead of a single boss-vertex). For any ` ≥ 1, let L̃nb(`) denote a

set of dual-vertices ṽ whose distance from its nearest k-neighborhood in {Nk (̃b)}b̃∈Ĩ is `. More formally,
it is defined by

L̃nb(`) =
{
ṽ |dist(ṽ, ṽnrst) = `, where ṽnrst = nrstṽ(Nk(boss(ṽ)))

}
Clearly, a family {L̃nb(`)}`≥1 is a partition of Ṽ ′ := Ṽ \ ∪b̃∈ĨNk (̃b). For any dual-vertex ṽ ∈ Ṽ ′ (resp.,

any set U ⊆ Ṽ ′ of dual-vertices), the level of ṽ (resp., U) is ` such that ṽ ∈ L̃nb(`) holds (resp.,

U ⊆ L̃nb(`) holds). We use L̃nb(`) also to denote a subgraph of G̃ induced by L̃nb(`), which we call a
sliced graph of level `.

We first note a property of sliced graphs that allows us to define interior and exterior boundary
cycles.

An example of a connected component C of some level graph L̃nb(`). A solid line indicates
its exterior boundary cycle c, and a dashed line indicates the m.d.-cycle c̃ in C right-adjacent
to c; note that the edges of c̃ are traversed under the clockwise order. The level of both
ṽ1 and ṽ2 (and in fact all dual-vertices of c̃) is `, which is determined by the distance from

either Nk (̃b1) (e.g., for ṽ1) or Nk (̃b2) (e.g., for ṽ2).

Figure 23: Exterior boundary and its right-adjacent m.d.-cycle

Lemma 9.4 (Interior and exterior boundary cycles). For any ` ≥ 1, consider any connected component

C of sliced graph L̃nb(`) with a dual-vertex adjacent to some dual-vertex of level `+ 1. Then C has at
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least two disjoint boundary cycles: interior boundary cycle and exterior boundary cycle (see the proof
for their definition). Furthermore, for these boundary cycles, we can define m.d.-cycles like core-cycles.
More precisely, consider any one of such boundary cycles c. Then a set of dual-vertices of C sharing
a boundary edge with c forms an m.d.-cycle c̃ under the clockwise order.
Remark. It may be the case that the above c̃ is not a simple dual-cycle; see Figure 23. (Cf. A
core-cycle is a simple dual-cycle.) Below we will refer this c̃ as the m.d.-cycle in C right-adjacent to
c. On the other hand, a cycle c is called the base of c̃.

Proof. By definition C is a region, and hence, its boundary is a disjoint union of cycles of G. Since C
consists of only level ` dual-vertices, each boundary cycle edge is an edge between a pair of dual-vertices
of level either ` − 1 and ` or ` and ` + 1. Let us call the former one an interior edge and the latter
one an exterior edge. Note that an interior edge must exist to define level ` dual-vertices of C, and
that an exterior edge must exist because of the assumption of the lemma. We show that no boundary
cycle has a vertex incident with both interior and exterior boundary edges. Suppose otherwise; that
is, some vertex v exists that is incident with both interior and exterior boundary edges. Since G is
three regular, this v is incident to three faces, one corresponding to a level ` dual-vertex (of C), one
corresponding to a level ` − 1 dual-vertex, and one corresponding to a level ` + 1 dual-vertex. But
this contradicts the definition of level. Thus, C, as a region, has at least the following two disjoint
boundary cycles: an interior boundary cycle consisting of interior edges and an exterior boundary cycle
consisting of exterior edges.

Now consider any one of such boundary cycles of C, and denote it by c. Then by the same
argument as the proof of Lemma 9.2, we can define an m.d.-cycle c̃ consisting of all and only dual-
vertices of C that share boundary edges with c. (We may assume that the direction of c̃ is determined
so that vertices of c are located its inside (Figure 24), which is different from core-cycles. From this
difference, we need to consider the clockwise order when identifying an m.d.-cycle right-adjacent to a
given interior/exterior boundary cycle.)

Figure 24: Interior and exterior boundary cycles and their right-adjacent m.d.-cycles

Based on this lemma, we introduce the notion of interior- and exterior-cycles. (Recall here that
every m.d.-cycle is a collection of dual-cycles incident or connected by a line part.)

Definition 9.3 (Interior- and exterior-cycles). Let c be any interior (resp., exterior) boundary cycle

of some connected component C of L̃nb(`). Let c̃ be the m.d.-cycle in C right-adjacent to c, and let

D̃c̃ be the set of dual-cycles obtained from c̃ by removing all its line parts. An interior-cycle (resp.,

exterior-cycle) is a dual-cycle in D̃c̃.

Remark. Note that D̃c̃ is defined for each boundary cycle. There may be more than one interior
(resp., exterior) boundary cycles, but we focus on one boundary cycle c for defining c̃. We assume that
each interior- and exterior-cycle is directed following its base m.d.-cycle c̃; the notions of inside/outside
are the same as c̃ of Figure 24.

We show some basic properties of interior- and exterior-cycles. Below we say that two dual-cycles
have an overlap if each has a dual-vertex of the other dual-cycle in its inside (or intuitively, they
intersect at least at two dual-vertices).

Lemma 9.5. There is no overlap among interior-, exterior-, and core-cycles. The inside of each
interior-cycle contains at least one boss-vertex.
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Proof. Recall that every interior- or exterior-cycle is a subgraph of sliced graph L̃nb(`) for some `, and

that {L̃nb(`)}`≥1 is a partition of Ṽ \ ∪b̃∈ĨNk (̃b). On the other hand, every core-cycle is in Nk (̃b) for

some b̃. Hence, in order to show that there is no overlap among interior-, exterior-, and core-cycles, it
suffices to show that any two m.d.-cycles of level ` that could become interior- or exterior-cycles have no
overlap. Suppose otherwise; that is, suppose that we have m.d.-cycles c̃ and c̃′ that are right-adjacent
to some interior or exterior boundary cycles, say, c and c′ respectively of some connected component
C of some sliced graph L̃nb(`). (Note that c̃ and c̃′ must be in the same connected component because
they share some dual-vertex.) But by the construction of c̃ and c̃′, c and c′ must have a common
vertex, contradicting that all boundary cycles of any region are disjoint.

The second claim of the lemma follows from the following two facts: (i) every interior-cycle c̃ of

level ` has a dual-vertex ṽ of level `−1 in its inside, and (ii) there should be Nk (̃b) witnessing the level

of ṽ and there should be a dual-path from ṽ to the boss-vertex b̃ that does not intersect with c̃.

Lemma 9.6. Consider any boss-vertex b̃ ∈ Ĩ, dual-vertex ũ ∈ Vr(̃b), and the BFS dual-path p̃ from b̃
to ũ. Let (ṽ1, . . . , ṽt) be the tail subpath of p̃. where ṽt = ũ, and ṽ1 is the first dual-vertex on p̃ that is

not in Nk (̃b). For each i, 1 ≤ i < t, there exist an interior-cycle (resp., an exterior-cycle) that contains

ṽi and that has b̃ in its one side and ṽt in the other side.

Proof. We fix any i, 1 ≤ i < t, and let C be a connected component of a sliced graph containing ṽi,
and let ` be the level of ṽi and C. We first show that ṽi appears in one of the exterior-cycles of C that
satisfies the condition of the lemma. (The argument for the interior-cycles of C is similar.)

Note that the level of ṽi+1 is `+ 1; hence, an edge e0 crossing the dual-edge {ṽi, ṽi+1} is an edge of
some exterior boundary cycle c of C. We focus on this cycle; see Figure 25. Consider the enumeration
of dual-vertices adjacent to ṽi anti-clockwise from ṽi+1 to ṽi−1. Here we note that the level of the
dual-vertices in the enumeration is either `− 1, `, or `+ 1, and that (∗) the levels of every consecutive

pair of dual-vertices differs at most one because they are connected since G̃ is triangulated. Let x̃j−1
is the last dual-vertex in the enumeration that is of level ` + 1 and the edge ek crossing ṽi and x̃j−1
is an edge of the exterior boundary cycle c. Such x̃j−1 exists because (i) there exists a dual-vertex of
level ` + 1 in the adjacent dual-vertex enumeration whose boundary edge between ṽi is an edge of c
because at least we have ṽj+1 that satisfies this condition, and (ii) there should be the last one from
the fact (∗) stated above. Now from the property of x̃j−1 and also from (∗) it follows that the next one
x̃j in the adjacent dual-vertex enumeration is of level `. Then the boundary edge ek+1 between x̃j−1
and x̃j is a part of some exterior boundary cycle, which in fact must be the cycle c. This is because (i)
both ek and ek+1 must share the unique vertex w in the triangle ṽi, x̃j−1, and x̃j as their end point,
and (ii) the third edge e′ incident to w is not an exterior boundary edge.

Below let us denote x̃i simply by x̃. We can symmetrically show the existence of a dual-vertex ỹ
with the same property in the clockwise enumeration of adjacent dual-vertices of ṽi from ṽi+1 to ṽi−1.

Consider the m.d.-cycle c̃ right adjacent to c. Note first that a directed dual-edge (x̃, ṽi) appears
in c̃. This is because (i) a consecutive pair of boundary edges ek+1 and ek are shared by x̃ and ṽi
respectively, and (ii) the direction is consistent with the requirement that c is located inside of c̃. A
similar argument shows that (ṽi, ỹ) appears in c̃. Our goal is to show that this pair of dual-edges (x̃, ṽi)

and (ṽi, ỹ) appear in one of the dual-cycles of D̃c̃, that is, they are part of some exterior-cycle c̃′ (see

Definition 9.3 for D̃c̃). This goal clearly suffices for the lemma because ṽi−1 (and hence b̃) is in one
side of c̃′ while ṽi+1 (and hence ṽt) is in the other side. (Note that ṽi is the unique point where the

exterior-cycle c̃′ crosses the BFS dual-path from b̃ to u = ṽt.)
For our goal, it suffices to show that (∗) after (ṽi, ỹ) in c̃, the dual-edge (x̃, ṽi) must be used when

the m.d.-cycle c̃ comes back to ṽi next, that is, no other dual-edge to ṽi is used. Once this is proved,
it is clear that the subsequence of c̃ from (ṽi, ỹ) to (x̃, ṽi) has a directed dual-cycle having both (ṽi, ỹ)
and (x̃, ṽi) because ṽi appears in only these two dual-edges in this subsequence.

Now we show (∗). For this, consider the m.d.-cycle c̃ starting from ṽi with dual-edge (ṽi, ỹ). Also
we consider an upper part (i.e., the part from (x̃, ṽi) to (ṽi, ỹ) anti-clockwise) and a lower part (i.e.,
the part from (ṽi, ỹ) to (x̃, ṽi) anti-clockwise), and show that no dual-edge to ṽi in these parts is used
for coming back to ṽi for the first time. For the upper part, we can in fact easily show that there is
no directed dual-edge of c̃ to ṽi in this part. Suppose otherwise and that some directed dual-edge of c̃
coming into ṽi. This should come from a dual-vertex adjacent to ṽi that is of level ` sharing an edge
of c that is a boundary edge to a dual-vertex of level ` + 1. Clearly, this contradicts to the choice of
x̃ and ỹ. Consider next the lower part. Suppose that the m.d.-cycle c̃, after (ṽi, ỹ), comes back to
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ṽi for the first time from the lower part by some dual-edge (z̃, ṽi). Then after (z̃, ṽi), all dual-edges
going out from ṽi or coming back to ṽi must be located between (z̃, ṽi) and (ṽi, ỹ) clockwise because
the m.d.-cycle c̃ is defined under the clockwise order; otherwise, some subsequence of c̃ must cross the
subsequence of c̃ from ỹ to z̃, contradicting the noncrossing property of m.d.-cycle (Figure 11). Then
(x̃, ṽi) cannot appear in c̃, a contradiction.

A bold line (with black nodes) indicates a
part of the exterior boundary cycle c fo-
cused in the proof. In the proof, for the
anti-clockwise enumeration of dual-vertices
adjacent to ṽi from ṽi+1 to ṽi−1, we con-
sider x̃j−1, the last one in the enumeration
that is of level ` + 1 and whose boundary
edge, i.e., ek, is a part of c. We then show
that directed dual-edges (x̃, ṽi) and (ṽi, ỹ)
are part of the m.d.-cycle c̃ right adjacent
to c, and in fact they are part of the same
dual-cycle component of c̃, i.e., an exterior-
cycle defined from c̃.

Figure 25: An example for the proof of Lemma 9.6

Finally, we define the notion of neck, floor, and ceiling. Consider any interior- or exterior-cycle.
It is called a neck if it has at most

√
k dual-vertices, and an interior (resp., exterior) neck is a neck

interior-cycle (resp., neck exterior-cycle). A neck is called biased if it has less than ñ/3 dual-vertices in
its inside. Note that if there is any neck that has at least ñ/3 dual-vertices in both inside and outside,

then we can use the neck itself as a 1/4-separator of G̃ (when n is sufficiently large) from which we can
construct a target separator for Gorg. Therefore, in the following discussion, we assume that a neck is
biased or it has less than ñ/3 dual-vertices in its outside.

Roughly speaking, a floor-cycle (resp., ceiling-cycle) is a biased neck interior-cycle (resp., exterior-
cycle). But some more conditions are needed. As explained in Outline section, we modify the frame

graph H̃ by covering each boss-vertex by a floor-cycle and a branch-triangle by a ceiling-cycle in order
for reducing the length of each dual-path from a boss-vertex to (a dual-vertex of) a branch-triangle.
Thus, we only need the “largest” one covering each boss-vertex or branch-triangle. Also we do not need
an exterior-cycle that has no intersection with any branch-triangle as a ceiling-cycle. On the other
hand, it may be the case where some boss-vertex is contained in no floor-cycle. For such boss-vertices,
we would use their core-cycles as floor-cycles. From these considerations, we define the notion of floor-
and ceiling-cycles as follows.

Definition 9.4 (Floor- and ceiling-cycles). A floor-cycle is a biased neck interior-cycle that is not

contained in the inside of any other biased neck interior-cycle. For any boss-vertex b̃ that is contained
in no floor-cycle, we regard the core-cycle of Core(̃b) also as a floor-cycle. A ceiling-cycle is a biased
neck exterior-cycle that is not contained in the inside of any other biased neck cycle-cycle and that has
at least one dual-vertex of some branch-triangle.
Remark. When a floor-cycle (resp., ceiling-cycle) is a special case of interior-cycles (resp., exterior-
cycles), its inside/outside is the same as the corresponding interior-cycles (resp., exterior-cycles).
Similarly, for a floor-cycle defined as a core-cycle, its inside/outside follow those of the core-cycle.

We show that floor- and ceiling-cycles have desired properties. First we state the following size
bounds, which are immediate from the definition.

Lemma 9.7. Each floor- and ceiling-cycle has at most
√
k dual-vertices and less than ñ/3 dual-vertices

in its inside.

Next one is the key property of floor- and ceiling-cycles, which is the main reason of introducing
these structures. (One can find a similar argument in the proof of, e.g., Lemma 3.3 of [10].)
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Lemma 9.8. Consider any pre-frame-cycle (after the preprocessing), and let p̃ be any dual-path between

its boss-vertex b̃ and the “next” dual-vertex ũ of a branch-triangle used in the pre-frame-cycle 17. There
exist one floor-cycle c̃f and at most one ceiling-cycle c̃c crossing p̃. Let ũf and ũc denote dual-vertices
at the crossing point of respectively p̃ and c̃f , and p̃ and c̃c. Then p̃ is separated into at most three parts
p̃1, p̃2, and p̃3 by c̃f and c̃c: that is, dual-path p̃1 between b̃ and ũf , dual-path p̃3 between ũ and ũc, and
the remaining dual-path p̃2. (In the case where c̃c does not exist, p̃2 is simply a dual-path defined by
p̃ \ p̃1.) Furthermore, the length of p̃2 is less than 4

√
k.

Proof. Recall that p̃ is a dual-path of the BFS dual-tree from b̃. The existence of the unique floor-cycle
c̃f and at most one ceiling-cycle c̃c follows from Lemmas 9.5 and 9.6, and Definition 9.4. Furthermore,
it is easy to see that all dual-vertices of p̃ between b̃ and ũf (except ũf itself) are inside of the floor-cycle
c̃f and that all dual-vertices of p̃ between ũc (except ũc itself) and ũ (if they exist) are inside of the
ceiling-cycle c̃f . Thus, p̃ is divided into at most three parts p̃1, p̃2, and p̃3 as stated in the lemma, and
p̃2 is the part of p̃ located outside of both c̃f and c̃c.

We show that the length of p̃2 is less than 4
√
k. For our discussion, let us regard p̃2 as a directed

dual-path based on the distance from b̃. Consider first the head part of p̃2 consisting of dual-vertices
in Nk (̃b). This part exists only if the floor-cycle c̃f is defined by a core-cycle, and the length of this

part is by definition at most dnb(̃b)− dcore(̃b) that is bounded by
√
k (Lemma 9.1). Thus, the length

of this head part of p̃2 is either 0 or at most
√
k.

Now consider the remaining tail part of p̃2, and let ṽ1, ṽ2, . . . , ṽt be the enumeration of dual-vertices
of this part following the direction of p̃2. For the lemma, it suffices to show that the length of this part
of p̃2, i.e., t is less than 3

√
k. Assume to the contrary that t ≥ 3

√
k.

Considering the fact that ṽ1, ṽ2, . . . , ṽt are all in Vr(̃b)\Nk (̃b) and also on one dual-path of the BFS

dual-tree from b̃, we have ṽi ∈ L̃nb(`1 + (i− 1)) for each i, 1 ≤ i ≤ t where `1 is the level of ṽ1, which
fact will be referred as (∗) later.

Consider any i, 1 ≤ i ≤ t. Lemma 9.6 guarantees the existence of an interior-cycle c̃ini and an
exterior-cycle c̃exi containing ṽi (where c̃ini and c̃exi might be the same dual-cycle). We argue that either
c̃ini or c̃exi is not a neck; that is, |c̃ini | >

√
k or |c̃exi | >

√
k. Note first that c̃ini (resp., c̃exi ) contains c̃f

(resp., c̃c if it exists) in its inside (Lemmas 9.5 and 9.6). Hence, neither c̃ini nor c̃exi is a biased neck
(Definition 9.4). Next assume that both c̃ini and c̃exi are necks. Since c̃ini is not biased, c̃ini would have
less than ñ/3 dual-vertices in its outside. On the other hand, the inside of c̃exi is contained in the
outside of c̃ini (Figure 24). Hence, the inside of c̃exi would have less than ñ/3 dual-vertices, that is,
c̃exi is biased; a contradiction. Therefore, either c̃ini or c̃exi is not a neck; let c̃i denote this non-neck
dual-cycle. We note here that |c̃i| >

√
k.

Now consider any i, 1.5
√
k ≤ i ≤ 2.5

√
k, and let C̃i be a set of

√
k + 1 dual-vertices of c̃i that are

nearest to ṽi (including ṽi itself). (Here we can use the fact that |c̃i| >
√
k to ensure the existence

of C̃i.) Let C̃ = ∪1.5√k≤i≤2.5√kC̃i. Then we have |C̃| > k. Note also that the distance between any

dual-vertex of C̃i and ṽi is at most
√
k. (Recall that c̃i is a dual-cycle.) Here consider a set B̃ of

dual-vertices whose distance from ṽ2
√
k is at most 1.5

√
k. Then we have B̃ ⊃ C̃, and hence we have

|B̃| > k. Note here that N+
k (̃b) is the nearest k-neighborhood+ of ṽ2

√
k and the distance between

ṽ2
√
k and N+

k (̃b) is at least 2
√
k (from (∗) mentioned above). Hence, no dual-vertex of B̃ belongs to

N+
k (̃b′) for any b̃′ ∈ Ĩ; because otherwise, the distance of ṽ2

√
k from N+

k (̃b′) would be at most 1.5
√
k,

contradicting that b̃ is the boss-vertex of ṽ2
√
k. That is, N+

k (ṽ2
√
k) has no intersection with ∪b̃′∈ĨN

+
k (̃b′),

contradicting the choice of Ĩ.

Finally, we define the notion of “modified frame-graph” for our final graph to which Miller’s algo-
rithm is applicable.

Definition 9.5 (Modified frame-graph). Let H̃ be the frame-graph defined from G̃ in the previous

section. Let F̃ and C̃ be respectively a set of floor-cycles and ceiling-cycles having at least one dual-
vertex of H̃ in their insides. We let Ẽ′1 be the set of dual-edges that appear in some cycle in F̃ ∪ C̃ and

Ẽ′2 be the set of dual-edges of H̃ that are not in the inside of any cycle of F̃ ∪ C̃. A graph H̃ ′ = (Ũ ′, D̃′)

is a modified frame-graph, where D̃′ = Ẽ′1∪ Ẽ′2 and Ũ ′ is the set of all dual-vertices that are end points

of dual-edges of D̃′.

17More precisely, the “next” dual-vertex ũ is the first/last dual-vertex of a branch-triangle from/to the boss-vertex
appearing in the frame m.d.-cycle following its direction.
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Note that faces of H̃ ′ are defined by one of the following boundary dual-cycles: (i) a floor-cycle, (ii)

a ceiling-cycle, (iii) a branch-triangle, or (iv) a frame-cycle of H̃ modified by floor- and ceiling-cycles.

We call these boundary dual-cycles H̃ ′-face-cycles. Based on this observation, we define weights of
faces of H̃ ′ in the same way as H̃.

Definition 9.6. For each face of a modified frame-graph H̃ ′, its weight is the number of dual-vertices of
G̃ located in the face (i.e., in the inside of its H̃ ′-face-cycle) divided by the total number of dual-vertices

removed from G̃.

We show that the modified frame graph H̃ ′ satisfies the conditions (F1) ∼ (F4).
First the condition (F1) follows from the definition of a frame-graph and modified frame-graph.

In particular, the condition that the weight of each face is less than 1/3 follows from the fact that H̃
satisfies this condition. Next consider the condition (F3); that is, the number of faces is bounded by

O(ñ/k). Again this follows easily from the fact that H̃ satisfies this condition. As mentioned above,
new faces introduced by our modification are those defined by floor- or ceiling-cycles. By definition, the
number of these dual-cycles are bounded by either the number of boss-vertices or that of (dual-vertices

of) branch-triangles, which is bounded by O(ñ/k). Note that a face defined a frame-cycle of H̃ could be
divided by ceiling-cycles; but it is easy to see that each face is divided at most some constant number
of faces because the number of floor- and ceiling-cycles overlapping each frame-cycle is constant, say,
at most six. From these observations, we can bound the number of faces of H̃ ′ by O(ñ/k).

We argue that H̃ ′ keeps the condition (F2) as follows.

Lemma 9.9. H̃ ′ is 2-connected.

Proof. For any two distinct dual-vertices ũ and ṽ in Ũ ′, we show that there exist two vertex disjoint
dual-paths between ũ and ṽ. If ũ and ṽ are located on the same H̃ ′-face-cycle, it is obvious. Assume
that ũ and ṽ are in H̃ and they survived the modification; namely, they are on branch-triangles or
frame-cycles of H̃ remained after the modification of Definition 9.6. There are two vertex disjoint
dual-paths p̃L and p̃R in H̃ since H̃ is 2-connected (Lemma 8.1). In H̃ ′, some floor- and ceiling-cycles
are introduced. When some of these dual-cycles touches only one of p̃L and p̃R, then it is obvious that
two disjoint dual-paths exist in H̃ ′. Suppose that a floor- or ceiling-cycle c̃ touches both p̃L and p̃R.
Let ũL and ṽL (resp., ũR and ṽR) respectively denote the first and the last dual-vertices on p̃L (resp.,
p̃R) on which p̃L (resp., p̃R) intersects c̃. These four dual-vertices ũL, ṽL, ũR and ṽR divide c̃ into four
subsequences. We can get two disjoint subsequences from ũL to ṽL or ṽR and from ũR to ṽR or ṽL. If
otherwise; for example, if ũL is adjacent to ũR and ṽL, and ũR is adjacent to ũL and ṽL on c̃, then ṽR
never appears on c̃, a contradiction. Therefore, there exist two disjoint dual-paths consisting of three
subpaths; namely, the subpaths from ũ to ũL (resp., ũR), the disjoint subsequences of c̃ from ũL (resp.,
ũR) to ṽL or ṽR, and the subpath from ṽL (resp., ṽR) to ṽ.

Finally, assume that ũ and ṽ are on different floor- or ceiling-cycles c̃ũ and c̃ṽ. From the definition,
each of c̃ũ and c̃ṽ has at least one dual-vertex of H̃ in its inside; let w̃ũ and w̃ṽ denote them. There
exist two disjoint dual-paths p̃L and p̃R between w̃ũ and w̃ṽ in H̃. Note that p̃L and p̃R have distinct
intersections with c̃ũ; let ũL (resp., ũR) be the last intersection of p̃L (resp., p̃R) and c̃ũ from w̃ũ to
w̃ṽ. Similarly, let ṽL (resp., ṽR) be the first intersection of p̃L (resp., p̃R) and c̃ṽ. Clearly, there exist
two disjoint dual-paths from ũ to ũL and ũR on c̃ũ; one can find them by going along c̃ũ clockwise and
anti-clockwise. Similarly, we have two disjoint dual-paths from ṽL and ṽR to ṽ. By combining them,
there exist two disjoint dual-paths from ũ to ṽ. Note that there may be some floor- or ceiling-cycle
touching these disjoint dual-paths. Even in this case, by an argument similar to the above, we can
show two disjoint dual-paths between ũ and ṽ.

Finally, we confirm as a corollary of Lemma 9.7 that the condition (F4) holds.

Corollary 9.10. The size of each face of H̃ ′ is O(
√
k).

Proof. As mentioned above, the faces of H̃ ′ are defined by boundary dual-cycles of type (i) ∼ (iv); see
the comment after Definition 9.6. For those defined by floor-, ceiling-cycles, and branch-triangles, the
size bound of the lemma clearly holds by definition. Thus, we below consider faces defined by modified
frame-cycles.

Consider any face defined by a modified frame-cycle, and let (c̃)− and c̃ denote respectively the
original frame-cycle and the pre-frame-cycle from which (c̃)− is defined (Definition 8.1). Consider any
dual-path p̃ of c̃ connecting a boss-vertex of c̃ and its “next” dual-vertex of a branch-triangle used in c̃.

40



By our modification, a part p̃′ of p̃ that is in the outside of the corresponding floor-cycle and ceiling-
cycle (if it exists) could be used as a component of the modified frame-cycle, and its length is bounded

by 4
√
k by Lemma 9.8. Note that the floor-cycle may not be used in H̃ ′ if it only intersects with the

line part of c̃ that is removed for defining (c̃)− (e.g., Figure 20 (a)). In this case, however, only a part of
p̃′ is used for the modified frame-cycle, which is even shorter. Thus, the modified frame-cycle consists
of (at most) four such reduced dual-paths, (a part of) two floor-cycles, (a part of) four ceiling-cycles
(i.e., could be two for each branch-triangle), and two dual-edges from two branch-triangles, and their
total length is O(

√
k).

Algorithms for Step 2.4

The task of this step is to compute information of the modified frame-graph H̃ ′. We again explain as if
each step receives the output of the previous step as input, and omit analysis of time complexity. Note
that we can use the outputs of Step 2.3, i.e., the frame-graph H̃, as input. We consider an algorithm
that outputs

(a) a list of core-cycles;

(b) a list of interior- and exterior-cycles;

(c) a list of floor- and ceiling-cycles; and

(d) the complete weighted face information of H̃ ′.

First we point out that a cycle, a sequence of vertices representing a (directed) cycle, is Õ(1)-space
computable provided we have a way to distinguish a set of edges of the cycle (and, more precisely, it
is guaranteed that this set of edges indeed forms a cycle). Also for a given cycle c of G, the task of
computing an m.d.-cycle consisting of dual-vertices left/right adjacent to c can be done locally and

hence in Õ(1)-space; see the proof of Lemma 9.2 and Lemma 9.4.
Once these algorithmic techniques are clear, what remains to show here for computing the above

(a) and (b) is a way to identify core/interior/exterior boundary cycle edges.

For (a), we first compute all boundary cycles of Core(̃b) for all b̃ ∈ Ĩ. For any b̃ ∈ Ĩ, consider

Core(̃b). Note that it is a subset of Nk (̃b); thus, we have an Õ(k)-space algorithm that determines

whether a given dual-vertex belongs to Core(̃b) or not by using the same BFS algorithm of Step 2.1.

Then by using this procedure, we can identify edges of each boundary cycle of Core(̃b); basically, what
we need is to check, for a given candidate edge of G, whether one of its two adjacent dual-vertices
belongs to Core(̃b) and the other does not. Next we select core boundary cycles from all enumerated
boundary cycles. For a given boundary cycle c, we can use Reingold’s algorithm to determine whether
a given dual-vertex is in the outside of c; hence, we can count the number of dual-vertices outside of c
and determine whether c is a core boundary cycle. Thus, we can enumerate all core boundary cycles,
from which we can enumerate all core-cycle as the output (a).

For (b), i.e., interior- and exterior-cycles, we first compute the level of all dual-vertices of G̃. For

each dual-vertex ṽ and its boss-vertex b̃, we have an algorithm that computes dist(ṽ, b̃) in Õ(k)-space
(Lemma 5.4). The level of all dual-vertices is computable by this procedure. Based on this level
information, we can identify connected components of dual-vertices with the same level (outside of

∪b̃∈ĨNk (̃b)). Again this procedure is enough for enumerating interior and exterior boundary cycles,
and m.d.-cycles right-adjacent to them. Once we obtain a list of all m.d.-cycles right-adjacent to interior
or exterior boundary cycles, the remaining task for computing the output (b) is to remove all line parts

from these m.d.-cycles and decompose them into dual-cycles, which can be done in Õ(1)-space.
By using the core-, interior- and exterior-cycles obtained above as input, it is easy to list floor-

and ceiling-cycles; that is, the output (c). We compute the size of each cycle and check whether it is
a neck, and count the number of dual-vertices in its inside and check whether it is biased. By these
computations, biased neck interior- and exterior-cycles are obtained in Õ(1)-space. Furthermore, we

can check inclusion relations of these cycles and branch-triangles in Õ(1)-space, from which we can
obtain a list of floor- and ceiling-cycles, i.e., the output (c).

Now we can use H̃ and the list of floor- and ceiling-cycles as input for computing the output (d).

For this, we start with the list of frame-cycles (of H̃) as an initial list of H̃ ′-face-cycles. For each floor-
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and ceiling-cycle, we check whether the dual-cycle has at least one dual-vertex of H̃; if it does, then it
is added to the list, and the corresponding frame-cycles of H̃ in the list are modified appropriately (if

necessary). In this way we can compute a list of all H̃ ′-face-cycles in Õ(1)-space. Once we have the
list, the rest of the task is similar to the previous sub-steps.
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