
REVISITING ALPHABET REDUCTION IN DINUR’S PCP

VENKATESAN GURUSWAMI†, JAKUB OPRŠAL‡, AND SAI SANDEEP†

Abstract. Dinur’s celebrated proof of the PCP theorem alternates two main steps in several
iterations: gap ampli�cation to increase the soundness gap by a large constant factor (at the
expense of much larger alphabet size), and a composition step that brings back the alphabet size
to an absolute constant (at the expense of a �xed constant factor loss in the soundness gap). We
note that the gap ampli�cation can produce a Label Cover CSP. This allows us to reduce the
alphabet size via a direct long-code based reduction from Label Cover to a Boolean CSP. Our
composition step thus bypasses the concept of Assignment Testers from Dinur’s proof, and we
believe it is more intuitive — it is just a gadget reduction. The analysis also uses only elementary
facts (Parseval’s identity) about Fourier Transforms over the hypercube.

1. INTRODUCTION

Constraint Satisfaction Problem (CSP) is a canonical NP-complete problem. Assuming P ,
NP , no polynomial time algorithm can �nd a satisfying assignment to a satis�able CSP in-
stance. If we are happy with the easier goal of satisfying a 1−o(1) fraction of constraints, does
there exist an e�cient algorithm to do so? Answering this in the negative, the fundamental
PCP theorem [ALM+98, AS98] implies that for some �xed integers k,q ≥ 2 and c < 1, it is
NP-hard to �nd an assignment satisfying a fraction c of constraints in a satis�able CSP of arity
k over alphabet {0, 1, . . . ,q − 1}. Further this result holds for the combinations (q,k) = (2, 3)
and (3, 2). The PCP theorem lies at the center of a rich body of work that has yielded numerous
inapproximability results, including many optimal ones.

The PCP theorem was originally proved using algebraic techniques such as the low-degree
test and the sum-check protocol. In a striking work, Dinur [Din07] gave an alternate combi-
natorial proof of the PCP theorem. Her proof works by amplifying the ‘Unsat value’ of a CSP
instance — the fraction of constraints any assignment should violate. The goal is to show that
it is NP-hard to distinguish if the Unsat value of a CSP instance is equal to 0 or at least a con-
stant c > 0. Starting with a NP-hard problem such as 3-coloring with m constraints, we can
already deduce that it is NP-hard to identify if Unsat value is equal to 0 or at least 1/m. The
Unsat value is increased slowly and iteratively via two steps — gap ampli�cation and alphabet
reduction. In gap ampli�cation, we incur a constant factor blow up in the size of the instance,
and get a constant factor improvement in the Unsat value. However, this step also blows up the
†Computer Science Department, Carnegie Mellon University, Pittsburgh, USA.
‡Computer Science Department, Durham University, Durham, UK.
E-mail addresses: venkatg@cs.cmu.edu, jakub.oprsal@durham.ac.uk, spallerl@andrew.cmu.edu.
The �rst author was supported in part by NSF grants CCF-1526092 and CCF-1814603. Most of the work has been

done during a visit of the second author to Carnegie Mellon University. The second author has also received funding
from the UK EPSRC grant EP/R034516/1. The third author was supported in part by NSF grant CCF-1422045.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 92 (2019)

2 REVISITING ALPHABET REDUCTION IN DINUR’S PCP

alphabet size. To alleviate this, alphabet reduction brings back the alphabet size to an absolute
constant while losing a constant factor in the Unsat value (and blows up the instance size by
a constant factor). Combining both the steps, we can increase the Unsat value by a constant
factor (say 2) incurring a constant factor blow up in the size of the instance. Repeating this
logm times proves the PCP theorem.

In this paper, we revisit the alphabet reduction step. Alphabet reduction is achieved by
a method called composition, where we compose the ‘outer’ CSP over a large alphabet with an
‘inner’ PCP that is already proved to exist. In approximation view, this is equivalent to a gadget
reduction where we replace a single constraint over the original larger alphabet by a set of
several new constraints over a �xed, smaller alphabet. This is applied to every constraint in
the original CSP instance. The key issue with this is the consistency check — we need a way
to refer to the same assignment for original variables in di�erent constraints. Dinur achieves
this consistency by combining a good error correcting code with an inner PCP with a stronger
property called Assignment Testers, introduced earlier in [DR06] and independently under the
name probabilistically checkable proofs of proximity in [BSGH+06].

Our main contribution here is a more direct proof of alphabet reduction. We start with
an observation that the resulting CSP after gap ampli�cation has very structured constraints.
Speci�cally, it has the structure of Label Cover (not necessarily bipartite) with rectangular
constraints, i.e., an arity two CSP whose relations are a disjoint union of rectangles.1 Therefore,
we do not need a general alphabet reduction procedure — instead, it su�ces to focus on the case
when the outer CSP has the Label Cover structure, and is over a �xed, albeit large, alphabet.
We then follow the in�uential Label Cover and Long Code framework, originally proposed in
[BGS98] and strengthened in [Hås01], to reduce the CSP obtained from Gap ampli�cation, now
viewed as Label Cover, to a CSP over a much smaller �xed alphabet (in fact a Boolean CSP).

Our main result is the following, which can be viewed as reproving a special case of alphabet
reduction from [DR06, Din07].

Theorem 1.1. There is a polynomial time reduction from Label Cover with rectangular con-
straints with soundness 1 − δ to a �xed template CSP with soundness 1 − Cδ for an absolute
constant C > 0.

We analyse our reduction using Fourier analysis as pioneered by Håstad [Hås01]. Usually,
in this framework, we reduce from low soundness Label Cover to strong (and at times optimal)
soundness of CSP. But here we start with a high soundness Label Cover, and we reduce to high
soundness CSP.

We highlight a couple of di�erences from previous works that make our proof easier:

• We have the freedom to choose any CSP rather than trying to prove inapproximability
of a CSP. We choose the following 4-ary predicate R in our reduction: (u,v,w,x) ∈ R if
and only if u , v ∨w , x . This predicate appears in [Hås01] in the context of proving
optimal hardness for NAE-4SAT.

1We should remark here that while it is convenient that the gap ampli�cation produces such constraints, this
is not really crucial as there is a standard reduction (the constraint-variable Label-coverization) from any CSP of
�xed arity to Label Cover with a constant factor loss in soundness gap, see Section 4.

REVISITING ALPHABET REDUCTION IN DINUR’S PCP 3

• In [Hås01] and [BGS98], the objective is to prove optimal inapproximability, or at least
to get good soundness. However, our present goal is to prove ‘just’ a nontrivial sound-
ness. (On the other hand, we also start with high soundness Label Cover.) This allows
us to use a very convenient test distribution leading to a simple analysis. We remark
that a similar statement as Theorem 1.1 can be also deduced using [BGS98, Section
4.1.1]. We believe that the test presented in this paper is more direct since we bene�t
from ideas in [Hås01].

Composition is an essential step in both the original proof of the PCP theorem as well as
Dinur’s proof and deserves further attention. Our proof of composition bypasses the concept
of Assignment Testers and is more intuitive in our opinion as it is nothing but a gadget reduc-
tion. Our proof is elementary using only Parseval’s identity from Fourier Analysis over the
hypercube. Dinur’s analysis used the Friedgut-Naor-Kalai theorem [FKN02] about Boolean
functions with most of the Fourier mass at level 1.

It is possible to also perform alphabet reduction using the Hadamard code instead of the
long code as described in [GO05, RS07]; the latter [RS07] also avoids explicit use of Assignment
Testers. Long code tests correspond exactly to testing whether a function is a polymorphism of
the CSP, and as such corresponds to gadget reductions in the algebraic approach to CSP (see
e.g. [BKW17]). The PCP theorem surpasses these algebraic (gadget) reductions; this is even
more evident when extending the scope from CSPs to promise constraint satisfaction problems
(PCSPs) as there are PCSPs that can be shown to be NP-hard by using PCP theorem via a nat-
ural reduction through Label Cover, but cannot be shown to be NP-hard using only algebraic
reductions [AGH17, BKO19]. In this sense, the present paper shows that this strength of the
PCP theorem comes from the gap-ampli�cation step. We remark that the reduction from La-
bel Cover to PCP that we present in Section 3 follows the one presented in [BKO19, Section
3.3] with certain alternations that are necessary for the analytic measurement of the gap in
contrast to the algebraic notions of [BKO19].

Outline. We start by formally de�ning CSP, Label Cover, and other preliminaries in Section 2.
Then, in Section 3, we prove the main reduction from Label Cover to CSP. In Section 4, we show
how the reduction can be used in the composition step of Dinur’s proof.

2. PRELIMINARIES

2.1. CSPs and Label Cover

Loosely speaking, a CSP over some domain Σ is a decision problem which gets as input
a set of variables and a set of constraints on the values of these variables. The goal is to decide
whether there is an assignment of values from Σ to the variables such that all the constraints
are satis�ed. Usually, the shape of the constraints is somehow restricted. We give a formal
de�nition of CSP for templates with a single relation (i.e., the constraints are restricted to be
of the form (x1, . . . ,xk) ∈ R for a �xed relation R ⊆ Σk).

De�nition 2.1 (CSP). Fix a domain Σ and a relation A ⊆ Σk . The constraint satisfaction prob-
lem associated withA, denoted by CSP(A), takes input as a set of variablesV = {x1,x2, · · · ,xn}
and a set ofk-tuples of variables (constraints) {(xi1 , . . . ,xik), . . . }. The goal is to decide whether

4 REVISITING ALPHABET REDUCTION IN DINUR’S PCP

there exists an asignment s : V → Σ such that for each constraint (xi1 , . . . ,xik) we have
(s(xi1), . . . , s(xik)) ∈ A.

For a Boolean domain Σ = {true, false}, we allow constraints to involve either variables
or their negations.

Binary CSPs are traditionally referred to as Label Cover.

De�nition 2.2 (Label Cover). In an instance of Label Cover problem, we are given a tuple
(G = (V ,E), Σ,Π) where

(1) G is a graph on vertex set V .
(2) Each vertex in G has to be assigned a label from Σ.
(3) For each edge e = (u,v) ∈ E, there is a relation Πe ⊆ Σ × Σ. This corresponds to a

constraint between u and v .
A labelling of graph is a function s : V → Σ that assigns a label to each vertex of G. Such
labelling is said to satisfy a constraint e if and only if (s(u), s(v)) ∈ Πe .

For a Label Cover instance or in general for a CSP instance I , we use size(I) to denotem+n,
where m is the number of constraints and n is the number of variables. We remark that Label
Cover usually refers to the case whenG is bipartite, and the constraint relations are functions.
However, in this work, we �nd it convenient to consider a (closely related) version which has
rectangular relations.

De�nition 2.3 (Rectangular relation). A relation R ⊆ A×B is said to be rectangular if there is
a set C and functions π : A→ C and σ : B → C such that (a,b) ∈ R if and only if π (a) = σ (b).
Equivalently, R is rectangular if for all a,a′ ∈ A and b,b ′ ∈ B such that (a,b) ∈ R, (a,b ′) ∈ R,
and (a′,b) ∈ R, we have (a′,b ′) ∈ R.

2.2. Algebraic approach

Although not needed for our proofs, we include a de�nition of a polymorphism and some
intuition from the algebraic approach to CSP. We refer to [BKW17] for a more detailed expo-
sition.

De�nition 2.4 (Polymorphism). Let R ⊆ Σk be a relation. We say that a function f : Σn → Σ
is a polymorphism of R if for all tuples (a11, . . . ,ak1), . . . , (a1n , . . . ,akn) ∈ R, we have

(f (a11, . . . ,a1n), . . . , f (ak1, . . . ,akn)) ∈ R.

We remark that the property ‘f is a polymorphism of R’ can be expressed as a CSP(R) with
variables corresponding to all values of f (i.e., an instance with |Σ|n variables).

Our proof uses a Boolean CSP with the template given by the 4-ary relation

R = {(x ,x ′, z, z ′) | x , x ′ ∨ z , z ′}.

A useful exercise is to show that each polymorphism of R is a projection (a.k.a. dictator), i.e., if
f : {0, 1}n → {0, 1} is a polymorphism of R then there exists i ∈ [n] such that f (x) = x(i) or
f (x) = ¬x(i) for all x .

Projections can be viewed as code words of the so-called long code. The long code is an
error-correcting code that encodes a value i ∈ [n] into a sequence of bits pi of length 2n . Such
a sequence can be viewed as a function pi : {0, 1}n → {0, 1}, and is de�ned by pi (x) = x(i).

REVISITING ALPHABET REDUCTION IN DINUR’S PCP 5

We also remark that in the conjunction with the long-code, a rectangular constraint can
be expressed as an identity. More precisely, given a rectangular relation R ⊆ [n] × [m], say
R = {(i, j) : π (i) = σ (j)} for some π : [n] → [k] and σ : [m] → [k], then the long codes pi and
pj of values i , j satisfy

pi (xπ (1), . . . ,xπ (n)) = pj (xσ (1), . . . ,xσ (m))

for all x1, . . . ,xk ∈ {0, 1} if and only if (i, j) ∈ R. This is a key property of rectangular relations
that is used implicitly in our proof.

2.3. Boolean Fourier analysis

As usual in Boolean Fourier analysis, we treat true as −1 and false as +1. In particular, in
this notation, ¬x = −x and x ⊕ y = xy. Further, we de�ne

x ∨ y =

{
−1 if x = −1 or y = −1, and
1 otherwise.

We de�ne an inner product space on functions from {−1,+1}n → R as 〈f ,д〉 = Ex [f (x)д(x)].
For a set S ⊆ [n], let

χS (x1, . . . ,xn) =
∏
i ∈S

xi .

The set of such functions form an orthonormal basis for all functions from {−1,+1}n to R in
the above de�ned inner product space. Moreover, if S , ∅, then Ex [χS (x)] = 0.

De�nition 2.5 (Fourier expansion). Given a function f : {−1,+1}n → R, we can thus write it
uniquely as a linear combination of this basis—

f =
∑
S

f̂ (S)χS

The real quantities f̂ (S) are called the Fourier coe�cients of f . We abuse the notation f̂ (i) to
denote f̂ ({i}).

The following simple but crucial identity follows from the de�nitions and is all that we will
need in our analysis.

Theorem 2.6 (Parseval’s Identity). For each Boolean valued function f , i.e., f : {−1,+1}n →
{−1,+1}, ∑

S

f̂ (S)2 = 1.

We remark that χ {i } is the projection pi as de�ned above, and that the natural distance
de�ned by the scalar product 〈f ,д〉 on Boolean functions corresponds to relative Hamming
distance. This is thanks to the fact that if x ,y ∈ {−1, 1} then x = y if and only if xy = 1, and
consequently, the relative Hamming distance of f to the corresponding long code word can be
expressed as

(
1 − f̂ (i)

)
/2 .

6 REVISITING ALPHABET REDUCTION IN DINUR’S PCP

3. LABEL COVER TO CSP

This section describes our gadget reduction from Label Cover to the CSP with the Boolean
domain using the following 4-ary relation

R = {(x ,x ′, z, z ′) | x , x ′ ∨ z , z ′}.

We note that since we employ a standard method of folding, the produced CSP instance allows
for negation of variables in the constraints, e.g. constraints such as (x1,¬x2,x3,¬x4) ∈ R and
(x1,¬x2,x3,x4) ∈ R are allowed.

Theorem 3.1. There exists absolute constant C such that given a Label Cover instance (not nec-
essarily bipartite) G = (V ,E,Π) with rectangular constraints, there is a reduction from G that
outputs an instance I of CSP(R) such that size(I) = O(size(G)) and

• If G is satis�able, then I is satis�able as well.
• If no labelling can satisfy 1−δ fraction of constraints ofG, then no assignment can satisfy
1 −Cδ fraction of constraints in I for all δ .

The reduction can be described as a probabilistic checker of a solution to G encoded using
a long code, i.e., the proof contains for each u ∈ V a word fu : {−1, 1} |Σ | → −1, 1. The test is
then as follows: Sample an edge e = (u,v) from E uniformly at random, and then with equal
probability do one of the following:

(1) run a long code test inside fu ;
(2) run a long code test inside fv ;
(3) run a constraint test between fu and fv .

We describe the long code test and constraint test below. Both query the respective tables of
fu and fv at some 4 bits that are generated by a certain randomized algorithm, and then check
whether these 4 Boolean values satisfy the predicate R de�ned above.

This checker can be viewed as a gadget reduction in the following sense: We replace each
vertex u ∈ V with 2 |Σ | Boolean variables labelled by fu (x) for x ∈ {−1, 1} |Σ | (we see an as-
signment to such variables as a function fu : {−1, 1} |Σ | → {−1, 1}), and each edge e = (u,v)
with a set of weighted 4-ary constraints on fu and fv , each involving the relation R and some
4 values of fu and fv (the result is therefore an instance of CSP(R)). These constraints depend
only on the relation Πe .

To simplify some notation, we assume Σ = [n]. We also assume that the tables for fu ’s are
folded so fu is forced to satisfy f (−x) = −f (x). This is a standard technique. Such a folding is
ensured by including only one variable of each pair x ,−x , and if the test queries fu at the bit
corresponding to some x that is not included, the bit f (−x) is queried instead, and the value
is negated. As a consequence of this folding, we have to allow for negation of variables in
CSP(R). An important and useful consequence of this is that all ‘even’ Fourier coe�cients of
f vanish, i.e., f̂ (β) = 0 for all β such that |β | is even. We remark that folding can be avoided in
the construction of the gadget. Nevertheless, it considerably simpli�es the calculations below.
Further, for calculations, it is useful to view R as a predicate ρ : {±1} → {0, 1} de�ned as

ρ(x ,x ′, z, z ′) = 1 −
(xx ′ + 1)(zz ′ + 1)

4
.

It is easy to check that ρ(x ,x ′, z, z ′) = 1 if and only if (x ,x ′, z, z ′) ∈ R.

REVISITING ALPHABET REDUCTION IN DINUR’S PCP 7

Let us now describe the two probabilistic checkers. The long code test has on input a table
of a function f (= fu), and it essentially tests whether f is a polymorphism of R. A naïve way
would be to sample constraints for being a polymorphism uniformly at random. Although it is
not obvious from the description below, we sample tuples from R in a non-uniform way which
will simplify the acceptance probability of the test.

Long code test. Given f : {−1, 1}n → {−1, 1} to test against being a long code word. Choose
x ,y, z, µ ∈ {−1, 1}n uniformly at random. Test whether

(1) (f (x), f (x ⊕ (µ ∨ y)), f (z), f (z ⊕ (µ ∨ ¬y))) ∈ R.

Note that for each x ,y, z, µ ∈ {−1, 1}, (x ,x ⊕(µ∨y), z, z⊕(µ∨¬y)) ∈ R. This implies that any
dictator function passes the test with probability 1. (The same is true about polymorphisms of
R.)

Lemma 3.2. Assuming that f is folded, the probability the long code test accepts is at most

1 −
3
16

∑
|α |>1

f̂ (α)2.

Proof. Assume f (x) =
∑
α f̂ (α)χα (x). The probability that the test accepts is

(2) Ex,y,z,µ ρ(f (x), f (x ⊕ (µ ∨ y)), f (z), f (z ⊕ (µ ∨ ¬y))) =

Ex,y,z,µ

[
1 −

(
f (x)f (x ⊕ (µ ∨ y) + 1

) (
f (z)f (z ⊕ (µ ∨ ¬y)) + 1

)
4

]
=

3
4
−
1
4
Ex,y,µ f (x)f (x ⊕ (µ ∨ y)) −

1
4
Ey,z,µ f (z)f (z ⊕ (µ ∨ ¬y))

−
1
4
Ex,y,z,µ f (x)f (x ⊕ (µ ∨ y))f (z)f (z ⊕ (µ ∨ ¬y))

Let us attack this term by term.

(3) Ex,y,µ f (x)f (x ⊕ (µ ∨ y)) = Ex,y,µ
∑
α,β

f̂ (α) f̂ (β)χα (x)χβ (x ⊕ (µ ∨ y)) =

Ex,y,µ
∑
α

f̂ (α)2χα (y ∨ µ) =
∑
α

f̂ (α)2 Ey,µ χα (y ∨ µ) =
∑
α

f̂ (α)2(−1/2) |α | .

The last equality follows from the fact that Ey,µ [y ∨ µ] = (−1) · 3/4 + 1 · 1/4 = −1/2 and
coordinates are chosen independently. Similarly, we get that

(4) Ey,z,µ f (z)f (z ⊕ (µ ∨ ¬y)) =
∑
α

f̂ (α)2(−1/2) |α | .

Moving to the next term, we get

(5) Ex,y,z,µ f (x)f (x ⊕ y ∨ µ)f (z)f (z ⊕ (¬y) ∨ µ) =∑
α,β

f̂ (α)2 f̂ (β)2 Ey,µ χα (y ∨ µ)χβ ((¬y) ∨ µ) =
∑

α∩β=∅

f̂ (α)2 f̂ (β)2(−1/2) |α∪β | .

8 REVISITING ALPHABET REDUCTION IN DINUR’S PCP

The last equality follows since Ey,µ [(µ ∨ y) ⊕ (µ ∨ ¬y)] = Ey,µ [¬µ] = 0 and Ey,µ [µ ∨ y] =
Ey,µ [µ ∨ ¬y] = −1/2. The overall acceptance probability is then

(6)
3
4
−
1
2

∑
α

f̂ (α)2(−1/2) |α | −
1
4

∑
α∩β=∅

f̂ (α)2 f̂ (β)2(−1/2) |α∪β |

= 1 −
1
2

∑
α

f̂ (α)2
(
(−1/2) |α | + 1/2

)
−
1
4

∑
α∩β=∅

f̂ (α)2 f̂ (β)2(−1/2) |α∪β |

where for the last equality, we used Parseval’s identity. Further, we assumed that f is folded,
and therefore f̂ (α) = 0 for all α such that |α | is even. Restricting the sums to α and β with odd
cardinality, and using that for such disjoint α and β , |α ∪ β | is even, the last expression of (6)
can be bounded from above by

(7) 1 −
1
2

∑
|α |>1

f̂ (α)2 (3/8) −
1
4

∑
α∩β=∅

f̂ (α)2 f̂ (β)2(1/2) |α∪β |

≤ 1 −
3
16

∑
|α |>1

f̂ (α)2 −
1
16

∑
i,j

f̂ (i)2 f̂ (j)2 ≤ 1 −
3
16

∑
|α |>1

f̂ (α)2

which concludes the proof. �

We move on to the constraint test. The constraint test has on input tables for functions f and
д corresponding to someu andv such that (u,v) ∈ E, and it is supposed to test (assuming f and
д are correct long code words) whether the values these functions encode satisfy the constraint
given by a rectangular relation Πe . We assume that this relation is given by π ,σ : [n] → [m]
such that (i, j) ∈ Πe if and only if π (i) = σ (j).

The constraints tests two given functions f ,д : {−1, 1}n → {−1, 1} against satisfying
(8) f (xπ (1), . . . ,xπ (n)) = д(xσ (1), . . . ,xσ (n))

for all x1, . . . ,xm ∈ {−1, 1}. One may check that if both f and д are dictators, say f (x) = x(i)
and д(x) = x(j), then they satisfy (8) if and only if π (i) = σ (j).

We denote by yπ the vector in {−1, 1}n such that yπ (i) = y(π (i)). The identity (8) can be
then expressed as f (xπ) = д(yσ) for all x ,y ∈ {−1, 1}m .

Constraint test. Choose x , z ∈ {−1, 1}n and y ∈ {−1, 1}m uniformly at random, and test
whether
(9) (f (x), f (x ⊕ yπ),д(z),д(z ⊕ (¬y)σ)) ∈ R.

In the analysis below, we will use the following notation. Let α ⊆ [n] and π : [n] → [m], we
denote by π [α] the subset of [m] de�ned by

π [α] = {k : |π−1(k) ∩ α | is odd}.
Note that, for each x1, . . . ,xm ∈ {−1, 1},

(10)
∏
i ∈α

xπ (i) =
∏

i ∈π [α]

xi

which implies that χα (xπ) = χπ [α](x). Consequently, we get that χα and χβ satisfy (8) if and
only if π [α] = σ [β].

REVISITING ALPHABET REDUCTION IN DINUR’S PCP 9

Lemma 3.3. Given that both f and д are folded, the probability that the consistency test accepts
is at most

1 −
1
4

∑
i, j :π (i),σ (j)

f̂ (i)2д̂(j)2.

Proof. We can compute the acceptance probability in the same way as before, i.e., as

(11)
3
4
−
1
4
Ex,y [f (x)f (x ⊕ y

π)] −
1
4
Ez,y [д(z)д(z ⊕ (¬y)

σ)]

−
1
4
Ex,y,z [f (x)f (x ⊕ y

π)д(z)д(z ⊕ (¬y)σ)]

We have
Ex,y [f (x)f (x ⊕ y

π)] =
∑
α

f̂ (α)2 Ey [χα (y
π)] =

∑
α

f̂ (α)2 Ey [χπ [α](y)] = 0(12)

where the last equality holds since |α | is odd, and consequentlyπ [α] , ∅. Similarly,Ex,z [д(z)д(z⊕
(¬y)σ)] vanishes. Thus the probability that the test accepts is

(13)
3
4
−
1
4
Ex,y,z f (x)f (x ⊕ y

π)д(z)д(z ⊕ (¬y)σ)

=
3
4
−
1
4

∑
α,β

f̂ (α)2д̂(β)2 Ey [χα (y
π)χβ (−y

σ)] =
3
4
+
1
4

∑
α,β

f̂ (α)2д̂(β)2 Ey [χα (y
π)χβ (y

σ)]

=
3
4
+
1
4

∑
α,β

f̂ (α)2д̂(β)2 Ey [χπ [α](y)χσ [β](y)] =
3
4
+
1
4

∑
α,β :π [α]=σ [β]

f̂ (α)2д̂(β)2

= 1 −
1
4

∑
α,β :π [α],σ [β]

f̂ (α)2д̂(β)2

where the second equality follows from |β | being odd, and the last equality follows from the
Parseval’s identity. Since π (i) = σ (j) implies that π [{i}] = σ [{j}], the claim follows. �

Lemma 3.4. Given that both f and д are folded, the probability that the joint test accepts is at
most

1 −
1
16

(∑
|α |>1

f (α)2 +
∑
|β |>1

д(β)2 +
∑

i, j :π (i),σ (j)

f̂ (i)2д̂(j)2
)

Proof. Follows directly from Lemmas 3.2 and 3.3. �

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 3.1. The completeness is straightforward. We prove the soundness. Suppose
that the test passes with probability 1 − δ . We will show that this implies that there is an
assignment to the Label Cover instance that satis�es (1 − 16δ)-fraction of constraints.

Our decoding is as follows: for a nodev ∈ V , decodev to i ∈ Σ with probability proportional
to f̂v (i)

2. We will show that in expectation, this decoding satis�es at least 1 − 16δ fraction of
constraints, which proves that there exists a labelling that satis�es at least 1 − 16δ fraction of
constraints.

Let 1 − δe denote the probability that the test passes when we pick edge e . As test passes
with probability 1 − δ , we know that Ee [δe] = δ . Suppose that we pick e = (u,v) with f and

10 REVISITING ALPHABET REDUCTION IN DINUR’S PCP

д being the functions corresponding to u and v respectively. From the above lemma, we have
that

(14) 1 − δe ≤ 1 −
1
16

(∑
|α |>1

f̂ (α)2 +
∑
|β |>1

д̂(β)2 +
∑

i, j :π (i),σ (j)

f̂ (i)2д̂(j)2
)
,

and therefore,

(15) 16δe ≥
∑
|α |>1

f̂ (α)2 +
∑
|β |>1

д̂(β)2 +
∑

i, j :π (i),σ (j)

f̂ (i)2д̂(j)2.

The probability that our decoding satis�es edge e of Label Cover is at least

(16)
∑

i, j :π (i)=σ (j)

f̂ (i)2д̂(j)2 = 1 −
∑
α,β

|α |>1 or |β |>1 or
α={i } and β={j } but π (i),σ (j)

f̂ (α)2д̂(β)2

≥ 1 −
∑

α,β : |α |>1

f̂ (α)2д̂(β)2 −
∑

α,β : |β |>1

f̂ (α)2д̂(β)2 −
∑

i, j :π (i),σ (j)

f̂ (i)2д̂(j)2

= 1 −
∑
|α |>1

f̂ (α)2 −
∑
|α |>1

д̂(α)2 −
∑

i, j :π (i),σ (j)

f̂ (i)2д̂(j)2 ≥ 1 − 16δϵ

where the �rst equality follows from Perseval’s identity. Thus, the expected number of con-
straints satis�ed by the labelling is at least Ee [1 − 16δe] = 1 − 16δ which proves the required
claim with C = 1/16. �

3.1. Derandomization

With a little additional argument, we can derandomize the decoding used above. Instead
of decoding to i with probability f̂ (i)2, we simply decode to the i with the largest f̂ (i)2. We
set if to be such i . In this light, the reduction can be analysed by analysing completeness and
soundness of the gadget separately without considering the rest of the instance. The following
lemma then shows that the gadget has perfect completeness and soundness 99% not depending
on the parameters n,m, π and σ .

Lemma 3.5. There is a gadget with inputsn,m, k , π : [n] → [k], and σ : [m] → [k] that produces
an instance of CSP(R) with variables f (a1, . . . ,an) and д(a1, . . . ,am) such that

(1) if π (i) = σ (j) then pi and pj satisfy all the constraints, and
(2) if at least 99% of the constraints are satis�ed, then π (if) = σ (iд).

Proof. Using (7) and Lemma 3.3, we know that the probability that the test accepts is at most

1−
1
16

∑
|α |>1

f̂ (α)2−
1
48

∑
i,j

f̂ (i)2 f̂ (j)2−
1
16

∑
|α |>1

д̂(α)2−
1
48

∑
i,j

д̂(i)2д̂(j)2−
1
12

∑
i, j :π (i),σ (j)

f̂ (i)2д̂(j)2.

REVISITING ALPHABET REDUCTION IN DINUR’S PCP 11

Given that the acceptance probability is at least 99% > 1 − 1/96, we get that∑
|α |>1

f̂ (α)2 ≤ 1/6(17) ∑
i,j

f̂ (i)2 f̂ (j)2 ≤ 1/2(18) ∑
|α |>1

д̂(α)2 ≤ 1/6(19) ∑
i,j

д̂(i)2д̂(j)2 ≤ 1/2(20) ∑
i, j :π (i),σ (j)

f̂ (i)2д̂(j)2 ≤ 1/8(21)

From Parseval’s identity and (17), we get that 1 ≥
∑

i f̂ (i)
2 ≥ 5/6. Recall that if is such i

that f̂ (i)2 is maximal. Then using the above and (18), we obtain that

(22) f̂ (if)
2 ≥ f̂ (if)

2
∑
i

f̂ (i)2 ≥
∑
i

f̂ (i)4 =
∑
i, j

f̂ (i)2 f̂ (j)2 −
∑
i,j

f̂ (i)2 f̂ (j)2

≥ (5/6)2 − 1/2 = 4/9.

Similarly, from (19) and (20), we get д̂(iд)2 ≥ 4/9. Finally, since f̂ (if)
2д̂(iд)

2 ≥ (4/9)2 > 1/8,
we have that π (if) = σ (iд) otherwise (21) cannot be true. �

Theorem 3.1 can be also directly obtained from this lemma albeit with a worse constant
than in the above proof: Let C = 1% and assume that δ < 1. Given that the resulting CSP
instance has an assignment fails no more thanCδ -fraction of the constraints, we derive that in
at least (1 − δ)-fraction of the gadgets, no more than C-fraction of constraints are unsatis�ed.
Lemma 3.5 then shows that the assignment s : u 7→ ifu is an assignment of the Label Cover
instance that satis�es all the constraints corresponding to these gadgets. This completes the
proof.

4. CSP TO LABEL COVER

In this section, our goal is to show how the previous reduction can be used in the alphabet
reduction step of Dinur’s proof of PCP Theorem.

We �rst prove that the previous reduction can be combined with standard reductions to get
back Label Cover from the CSP.

Theorem 4.1 (Alphabet reduction). Given a Label Cover instanceG = (V ,E,Π, Σ0)with rectan-
gular constraints, there is a polynomial time reduction that outputs another Label Cover instance
with rectangular constraintsG ′ = (V ′,E ′,Π′, Σ) with alphabet size Σ such that |Σ| is an absolute
constant, size(G ′) = O(size(G)) and

• If G is satis�able, then G ′ is satis�able as well.
• If every labelling violates δ fraction of constraints of G, then every labelling violates Cδ
fraction of constraints in G ′ for an absolute constant C .

12 REVISITING ALPHABET REDUCTION IN DINUR’S PCP

Proof. We �rst convert the Label Cover instance G to a CSP instance I as in Theorem 3.1.
The CSP instance can be converted to bipartite Label Cover using standard clause-variable
Label-coverization technique. We include the proof here for the sake of completeness. We
have n vertices x1,x2, . . . ,xn corresponding to the variables of I on the left L, and m vertices
corresponding to constraints C1,C2, . . . ,Cm of I on the right R. The label set is binary on
the left, and satisfying assignments (at most 16) on the right corresponding to the possible
assignments to four variables in the constraint. We add an edge between u ∈ L and v ∈ R if
xu ∈ Cv . The constraint on this edge enforces that the assignment to xu is consistent with the
assignment Cv assigns to xu .

If there is a satisfying labelling toG, there is a satisfying assignment to I . Using this, we can
assign the variables on the left the satisfying assignment, and the corresponding assignment
to tuples for the vertices of constraints on the right, and thus get a satisfying assignment toG ′.
Suppose that every labelling violates at least δ fraction of constraints ofG. From Theorem 3.1,
every assignment violates at leastCδ fraction of constraints in I . Suppose there is a labelling to
G ′ that satis�es δ ′ fraction of constraints. Consider the assignment obtained by this labelling
on the left. This assignment violates at least Cδm number of constraints in I . Note that this
should violate at least Cδm constraints in G ′ and thus δ ′ ≥ C ′δ for an absolute constant C ′.
The constraints are in fact projections, and thus are rectangular too. �

In order for us to use this as Composition step in the PCP of Dinur, we need the �nal ob-
servation that the output of Gap Ampli�cation applied to a CSP with rectangular constraints
results in a Label Cover with rectangular constraints. Dinur achieves gap ampli�cation by
‘graph powering’ which is described more formally below.

De�nition 4.2 (Constraint Graph Powering). Given a d-regular Label Cover (a.k.a. Constraint
graph) G = (V ,E, Σ,Π), we obtain t th power of it Gt = (V ,E ′, Σ′,Π′) as follows:

• Vertices. The vertices in Gt are the same as vertices in G.
• Edges. u and v are connected by k parallel edges in E ′ if there are exactly k paths

between u and v in G.
• Alphabet. The alphabet of Gt is Σd dt/2e . A value a ∈ Σd

dt/2e is interpreted as assigning
values a : Γ(u) → Σ to d dt/2e elements from Σ. This value is treated as u’s opinion on
Γ(u), the set of all vertices within dt/2e distance from u.
• Constraints. An edge (u,v) ∈ E ′ is satis�ed by a,b ∈ Σd

dt/2e if and only if the following
holds: there is an assignment σ : Γ(u) ∪ Γ(v) → Σ that satis�es every constraint c(e)
where e ∈ E ∩ (Γ(u) × Γ(v)), and such that

∀u ′ ∈ Γ(u),σ (u) = au′ ;∀v ′ ∈ Γ(v),σ (v) = bv ′
where au′ (and respectively bv ′) is the value a (and resp. b) assigned tou ′ (and resp.v ′).

The output Gt is also a binary CSP, and hence can be viewed as a Label Cover. We claim
that if every constraint of G is rectangular, then every constraint of Gt is rectangular as well.
Let e = (u,v) be an edge in E ′ with constraint relation as Re . Suppose (a,b), (a′,b), (a,b ′) ∈ Re .
This implies that for all (u ′,v ′) ∈ E ∩ (Γ(u) × Γ(v)) with constraint relation ce ,

(au′,bv ′), (a
′
u′,bv ′), (au′,b

′
v ′) ∈ Rce .

REVISITING ALPHABET REDUCTION IN DINUR’S PCP 13

SinceRce is rectangular, (a′u′,b
′
v ′) ∈ Rce as well. As this holds for all suchu ′ andv ′, (a′,b ′) ∈ Re ,

thus proving that Re is a rectangular relation.
Combined with the preprocessing step, the gap ampli�cation theorem of Dinur can be

rewritten as follows.

Theorem 4.3 (Gap ampli�cation). Fix a parameter t . Given a Label Cover G = (V ,E,Π, Σ)
where Σ is an absolute constant, there is a polynomial time reduction to output a rectangular
Label Cover instance G ′ = (V ′,E ′,Π′, Σ′) with the alphabet size |Σ′ | = c(|Σ|, t) such that

• If G is satis�able, G ′ is satis�able as well.
• If every labelling violates at least δ fraction of the constraints of G, then every labelling
violates at least Ω(δ

√
t) fraction of the constraints of G ′.

Choosing t large enough constant and iterating Theorem 4.1 and Theorem 4.3 log(m) times
proves the PCP theorem.

Acknowledgments

We would like to thank Irit Dinur, Oded Goldreich, Prahladh Harsha, Johan Håstad, Jaiku-
mar Radhakrishnan, and Madhu Sudan for useful comments and feedback.

References

[AGH17] Per Austrin, Venkatesan Guruswami, and Johan Håstad. (2 + ϵ)-Sat is NP-hard. SIAM J. Comput.,
46(5):1554–1573, 2017.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof veri�cation
and the hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characterization of NP. Jour-
nal of the ACM, 45(1):70–122, 1998.

[BGS98] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs, and nonapproximability-towards
tight results. SIAM J. Comput., 27(3):804–915, 1998.

[BKO19] Jakub Bulín, Andrei Krokhin, and Jakub Opršal. Algebraic approach to promise constraint satisfaction.
In Proceedings of the 51st Annual ACM SIGACT Symposium on the Theory of Computing (STOC ’19), New
York, NY, USA, 2019. ACM.

[BKW17] Libor Barto, Andrei Krokhin, and Ross Willard. Polymorphisms, and how to use them. In Andrei
Krokhin and Stanislav Živný, editors, The Constraint Satisfaction Problem: Complexity and Approx-
imability, volume 7 of Dagstuhl Follow-Ups, pages 1–44. Schloss Dagstuhl–Leibniz-Zentrum fuer In-
formatik, Dagstuhl, Germany, 2017.

[BSGH+06] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust PCPs of
proximity, shorter PCPs, and applications to coding. SIAM J. Comput., 36(4):889–974, 2006.

[Din07] Irit Dinur. The PCP theorem by gap ampli�cation. Journal of the ACM, 54(3):12, 2007.
[DR06] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP theorem.

SIAM J. Comput., 36(4):975–1024, 2006.
[FKN02] Ehud Friedgut, Gil Kalai, and Assaf Naor. Boolean functions whose Fourier transform is concentrated

on the �rst two levels. Adv. in Applied Math., 29:427–437, 2002.
[GO05] Venkatesan Guruswami and Ryan O’Donnell. The PCP theorem and hardness of approximation: Notes

on lectures 7–9. https://courses.cs.washington.edu/courses/cse533/05au/, 2005.
[Hås01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859, 2001.
[RS07] Jaikumar Radhakrishnan and Madhu Sudan. On Dinur’s proof of the PCP theorem. Bull. Amer. Math.

Soc., 44:19–61, 2007.

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

https://courses.cs.washington.edu/courses/cse533/05au/

