
Improved 3LIN Hardness via Linear Label Cover

Prahladh Harsha ∗ Subhash Khot† Euiwoong Lee†

Devanathan Thiruvenkatachari†

Abstract

We prove that for every constant c and ε = (log n)−c, there is no polynomial time algorithm
that when given an instance of 3-LIN with n variables where an (1− ε)-fraction of the clauses
are satisfiable, finds an assignment that satisfies at least (1

2 +ε)-fraction of clauses unless NP ⊆
BPP. The previous best hardness using a polynomial time reduction achieves ε = (log log n)−c,
which is obtained by the Label Cover hardness of Moshkovitz and Raz [J. ACM, 57(5), 2010]
followed by the reduction from Label Cover to 3-LIN of H̊astad [J. ACM, 48(4):798–859,
2001].

Our main idea is to prove a hardness result for Label Cover similar to Moshkovitz and
Raz where each projection has a linear structure. This linear structure of Label Cover allows
us to use Hadamard codes instead of long codes, making the reduction more efficient. For the
hardness of Linear Label Cover, we follow the work of Dinur and Harsha [SIAM J. Comput.,
42(6):2452–2486, 2013] that simplified the construction of Moshkovitz and Raz, and observe that
running their reduction from a hardness of the problem LIN (of unbounded arity) instead of
the more standard problem of solving quadratic equations ensures the linearity of the resultant
Label Cover.

1 Introduction

In this paper, we study the 3-LIN problem. An instance of 3-LIN consists of a set of n variables
over F2 and a set of m equations that contain at most three variables each, and the goal is to find an
assignment to the n variables that satisfies the most number of equations.1 If the given set of linear
equations admits an assignment that satisfies every equation, then one such assignment can be found
in polynomial time by Gaussian elimination. However, the general problem of finding the most of
number of equations is NP-hard when the instance does not admit a satisfying assignment, and a
large amount of research has been done on the limit of polynomial time approximation algorithms.

Assigning random values to variables satisfies exactly half the equations in expectation, giving
a 1/2-approximation algorithm. H̊astad and Venkatesh [HV04] achieved an approximation factor of
1/2 + 1/O(

√
m), which was improved by Khot and Naor [KN08] to 1/2 +O(

√
logn/n).

∗School of Technology and Computer Science, Tata Institute of Fundamental Research, India. Supported in part
by the DIMACS/Simons Collaboration in Cryptography through NSF grant #CNS-1523467 (while the author was
visiting Rutgers University and DIMACS) and the Swarnajayanti Fellowship.
†Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, USA.

Supported by the NSF Award CCF-1422159, the Simons Collaboration on Algorithms and Geometry and the Simons
Investigator Award.

1This maximization version is also known as Max 3-LIN in the literature.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 93 (2019)

From the hardness side, there are strong hardness results even when the instance is almost-
satisfiable. For 1 ≥ c > s > 0, let Gap 3-LIN(c, s) denote the problem of distinguishing whether
the given instance of 3-LIN is at least c-satisfiable or at most s-satisfiable. H̊astad’s classic hardness
results [H̊as01] show the following.

Theorem 1.1 ([H̊as01]). The following hardness results for Gap 3-LIN hold.

1. For any constant ε > 0, Gap 3-LIN(1− ε, 1/2 + ε) is NP-hard.

2. There exists a constant c > 0 such that for ε = 1/(logn)c, there is no polynomial time algorithm
that solves Gap 3-LIN(1− ε, 1/2 + ε) unless NP ⊆ DTIME[nO(log logn)].

H̊astad’s results are proved by giving the reduction from Label Cover to 3-LIN. Label
Cover is a common starting point for hardness results, and we define the optimization problem
below.

Definition 1.2 (Label Cover). An instance of Label Cover contains a regular bipartite multi-
graph G = (A,B,E) and two finite sets ΣA and ΣB, where |ΣA| ≥ |ΣB|. Every vertex in A is
supposed to get a label in ΣA, and every vertex in B is supposed to get a label in ΣB. For each
edge e ∈ E there is a projection πe : ΣA → ΣB. Given a labeling to the vertices of the graph, i.e.,
functions φA : A → ΣA and φB : B → ΣB, an edge e = (a, b) ∈ E is said to be “satisfied” if
πe(φA(a)) = φB(b). For 1 ≥ c > s > 1, Gap Label Cover(c, s) is the problem if distinguishing
whether the given instance of Label Cover is at least c-satisfiable or at most s-satisfiable.

H̊astad’s theorem can be stated in terms of reduction from Gap Label Cover(1, δ) as follows.

Theorem 1.3 ([H̊as01]). For every ε ∈ (0, 1) and positive integer `, there exists a δ = poly(ε) and
a poly(n, 2`, 21/ε)-time reduction from n-sized instances of Gap Label Cover(1, δ) with label size
` to Gap 3-LIN(1− ε, 1/2 + ε).

When [H̊as01] was published, the hardness of Label Cover was achieved by the PCP The-
orem [AS98, ALM+98] and parallel repetition [Raz98]. More precisely, Gap Label Cover(1, ε)
with label size poly(1/δ) was NP-hard under poly(nlog 1/δ)-time reductions. The two results of
H̊astad stated in theorem 1.1 follow from this hardness of Gap Label Cover and theorem 1.3 by
setting δ to be an arbitrarily small constant and 1/logn respectively. Since achieving a subconstant
soundness for Label Cover by parallel repetition requires a superpolynomial blowup in the in-
stance size, ε > 0 could not be taken to subconstant under polynomial time reductions. Later in a
celebrated paper, Moshkovitz and Raz [MR10] gave an improved hardness of Label Cover that
achieves sub-constant error under polynomial time reductions. Their main result can be stated as
follows.

Theorem 1.4 ([MR10, Theorem 11]). For every n, and every δ > 0 (that can be any function of
n), 3-SAT on inputs of size n can be reduced to Gap Label Cover(1, δ) when Label Cover
instance has n1+o(1) · poly(1/δ) vertices and |ΣA| ≤ exp(poly(1/δ)), |ΣB| ≤ poly(log 1/δ).

A corollary of the above result, obtained by combining it with H̊astad’s reduction from the-
orem 1.3, is that given a system of linear equations, it is NP-hard to distinguish between cases
where 1− o(1) fraction of equations are satisfied vs at most 1/2 + o(1) fraction are satisfied, where
the o(1) term is 1/(log logn)−Ω(1).

2

Theorem 1.5 ([MR10]). There exists some constant c > 0 such that for ε = 1/(log logn)c, Gap 3-LIN(1−
ε, 1/2 + ε) is NP-hard.

Later, an improved parallel repetition by Dinur and Steurer [DS14] allowed c to be an arbitrary
constant.

The above route prove hardness of 3-LIN is restricted by the large size of the alphabet in the
resulting Label Cover instance in theorem 1.4. Quantitatively, the alphabet size is exponential
in poly(1/ε). The fact that the long code in H̊astad’s reduction has size exponential in the alphabet
size restricts ε = 1/(log logn)O(1).

Our main contribution for 3-LIN is to bring ε in the above result down to 1/(logn)c for any
constant c, while keeping the size of the reduced instance polynomial (albeit the reduction becomes
randomized).

Theorem 1.6 (Main). For any constant c > 0 and ε = 1/(logn)c, there is no polynomial time
algorithm for Gap 3-LIN(1− ε, 1/2 + ε) unless NP ⊆ BPP.

We get around the above alphabet barrier by starting with a reduction that would make the
resulting Label Cover linear, and use Hadamard codes instead of long codes. Since the Hadamard
code keeps the reduction size polynomial in the alphabet size, we can take ε = 1/(logn)Ω(1). A similar
idea was previously used by Khot [Kho01]. We define Linear Label Cover as follows.

Definition 1.7 (Linear Label Cover). A Linear Label Cover is a special case of Label
Cover where the alphabets are of the form ΣA = Fa2,ΣB = Fb2 where a, b are natural numbers. Each
projection π : Fa2 → Fb2 is affine in the sense that π(x) = αx+β for some α ∈ Fb×a2 , β ∈ Fb2. For 1 ≥
c > s > 0, the Gap Linear Label Cover(c, s) is defined similarly to Gap Label Cover(c, s).

We prove the following hardness result for Linear Label Cover, which may be of independent
interest.

Theorem 1.8 (Hardness of Linear Label Cover). For any constant c > 0, for δ = 1/(logn)c, there is
no polynomial time algorithm for Gap Linear Label Cover(1− δ, δ) unless NP ⊆ BPP, when
Label Cover instance has poly(n) vertices and |ΣA| = poly(n), |ΣB| = polylog(n).

We remark that if the above theorem can be further strengthened to obtain δ = 1/nc (i.e., a
linear version of the Sliding Scale conjecture), then this leads to near-optimal hardness of 3-LIN
(i.e, Gap 3-LIN(1− ε, 1/2 + ε) is hard for ε = 1/poly(n)) [Mos15].

1.1 Proof Ideas

Our main technical contribution is theorem 1.8 for Linear Label Cover, essentially proving a
linear analogue of the Moshkovitz-Raz PCP [MR10] followed by the Dinur-Steurer parallel repeti-
tion [DS14]. The proof is given through a long sequence of reductions. We split them in 3 major
steps.

1. Interestingly, the starting point of our reduction is again the hardness of (not necessarily lin-
ear) Label Cover proved by Moshkovitz and Raz [MR10] augmented by Dinur and Steurer
[DS14], proving NP-hardness of Gap Label Cover(1, 1/logc n) for any c > 0, while keeping
the reduction size and the alphabet size polynomial. In section 2, we give a randomized

3

reduction from this Label Cover to Gap LIN(1− 1/logc n, 0.9). This style of reduction ap-
peared previous from Label Cover to Closest Vector Problem [Kho10]. Note that the
standard proof of the PCP theorem encodes 3-SAT (or Circuit SAT) by solving quadratic
equations over F2, and this is essentially the only place that needs where nonlinearity occurs.
Our hardness result for solving linear equations with completeness very close to (but not
exactly) 1 allows us to follow previous PCP constructions that will ensure linearity of the
Label Cover instance in the subsequent steps.

2. To prove the hardness of Linear Label Cover given the above hardness of LIN, we closely
follow the steps of Dinur and Harsha [DH13], who gave a simpler and modular proof of [MR10].
The two basic building blocks in their proof are robust PCPs and decodable PCPs. Robust
PCPs are PCPs where in the soundness case, for any proof and most random choices of
the verifier, not only are the local views non-accepting, but they are also very far from any
accepting string. It is indeed equivalent to Label Cover. Using our previous hardness
for LIN as the starting point and following the standard robust PCP construction (e.g.,
low-degree extension and sum-check protocol), we can prove a polynomial time reduction to
Linear Label Cover(1 − 1/ logc n, 1/ logc n) for any c > 1, but the alphabet size will be
always exp(logc0 n) for some c0 > 1, which is superpolynomial.

3. The second building block, decodable PCP, is similar to robust PCP with the additional
requirement that the prover is given a position i in the original string and supposed to output
the value of the ith position if the given proof is a honest encoding of a valid original string.
The main idea of Dinur and Harsha [DH13] is to iteratively compose a robust PCP with a
suitable decodable PCP, where the composed PCP is another robust PCP that consists of a
decodable PCP for each constraint of the original robust PCP. This iteratively reduces the
query complexity and the alphabet size of the robust PCP, which is related to the alphabet
size of the equivalent Label Cover instance. This iterative composition is interleaved and
preprocessed by technical operations that reduce the alphabet size of the robust PCP and
make it regular.

Once these two building blocks are linear, the operations of [DH13] can be used verbatim in
our construction. Our main observation is that every step of this construction preserves (1)
the robust completeness 1− δ for some δ = 1/polylog(n), and (2) the linearity, which were not
issues in [DH13]. In section 3, we introduce the basic building blocks and these operations,
and show how they preserve robust completeness and linearity. These iterative operations
will eventually reduce the alphabet size of the Linear Label Cover polynomial, proving
theorem 1.8.

After the hardness of Linear Label Cover is proved, we give a reduction from Linear
Label Cover with the above parameters to 3-LIN with the required parameters. We do this by
composing with the Hadamard Code to get a (1 − ε) vs (1/2 + ε) NP-hardness result for 3LIN.
Similar PCP constructions based on Hadamard codes were presented in [Kho01]. Details of this
step can be found in section 4.

4

2 Reduction to System of Linear Equations

In this section, we first prove the hardness of approximate solving linear equations over large fields,
where each equation can involve as many variables as possible. It will serve as the starting point
towards proving hardness of Linear Label Cover.

Theorem 2.1. For any constant c > 0, ε = 1/(logn)c, Gap LIN(1−1/(logn)c, 0.9) is NP-hard under
polynomial time randomized reductions.

Proof. The proof starts from the following hardness of Label Cover, which is obtained by com-
bining the main result of Moshkovitz and Raz [MR10] with the parallel repetition of Dinur and
Steurer [DS14].

Theorem 2.2 ([MR10, DS14]). For any constant c > 0, for δ = 1/(logn)c, Gap Label Cover(1, δ)
is NP-hard when the Label Cover instance satisfies |ΣA|, |ΣB| ≤ |A|+ |B|.

Let G = (A,B,E), ΣA, ΣB, and {πe}e∈E be an instance of Label Cover. We show a reduction
to LIN over F2 where

• If all Label Cover edges are satisfiable, at least (1− 1
|ΣA|) fraction of equations are satisfiable.

• If at most δ fraction of Label Cover edges are satisfiable, at most (1− 1
(δ|ΣA|)) fraction of

equations are satisfiable.

For each vertex v ∈ ΣA∪ΣB and possible label ` on the Label Cover instance, we have a variable
xv,` in the LIN instance. Let n = |A||ΣA|+ |B||ΣB| = poly(|A|+ |B|) be the number of variables.
Consider the following four kinds of equations. Recall that every arithmetic is performed over F2.

(1)
∑
`∈ΣA

xv,` = 1 ∀v ∈ A

(2)
∑
`∈ΣB

xv,` = 1 ∀v ∈ B

(3)
∑

r:πuv(r)=`

xv,r = xu,` ∀(u, v) ∈ E,∀` ∈ ΣB

(4) xv,` = 0 ∀(v, `) ∈ A× ΣA

In our final LIN instance, we treat (1), (2), and (3) as hard constraints that need to be always
satisfied, and find x that always satisfies all hard constraints and as many constraints in (4) as
possible. Also note that in (4), we only consider vertices in A.

This is equivalent to the usual LIN problem with hard constraints by folding. Formally, let V
be the set of assignments that satisfy (1), (2), and (3). If V is empty, we can conclude that the
Label Cover instance is unsatisfiable. Otherwise, there exist c ∈ N and linearly independent

vectors y0, . . . , yc ∈ F(A×ΣA)∪(B×ΣB)
2 such that V = {y0 +

∑c
i=1 yizi : z1, . . . , zc ∈ F2}. This gives

an one-to-one correspondence between Fc2 and V , so we can treat z1, . . . , zc as the variables of LIN
and write the fourth constraints xv,` = 0 in terms of z, which gives an instance of LIN without
hard constraints.

5

Completeness. If the Label Cover instance is satisfiable, xv,` = 1 if and only if v is assigned
with ` gives an assignment that satisfies (1), (2), and (3), and violates one equation in (4) for each
v ∈ A.

Soundness. Let x be an assignment that satisfies (1), (2), and (3). For v ∈ A∪B, let Lv := {` :
xv,` = 1}. Since (1) and (2) require

∑
` xv,` = 1 for every v ∈ A ∪B, Lv is not empty for every v.

Consider the randomized strategy for Label Cover where each v ∈ A ∪ B is assigned with a
uniform random label from Lv independently. For (u, v) ∈ E with u ∈ A, v ∈ B, by (3), xv,` = 1
for some ` ∈ ΣB implies that there exists r ∈ ΣA with πuv(r) = ` such that xu,r = 1. This implies
(u, v) is satisfied with probability at least 1

|Lu| by the randomized strategy. Then the expected
fraction of the Label Cover constraints satisfied by the strategy is at least

Eu∈A

[
1

|Lu|

]
>

1

Eu∈A[|Lu|]
.

Therefore, if at most δ fraction of Label Cover constraints are simultaneously satisfiable, we can
conclude that

δ >
1

Eu∈A[|Lu|]
⇔ Eu∈A[|Lu|] >

1

δ
.

So in total, at least 1
(δ|ΣA|) fraction of equations are violated.

Gap Amplification. We have a hardness of LIN over F2 where the completeness value is at
least 1 − 1

|ΣA| and the soundness value is at most 1 − 1
(δ|ΣA|) . Consider a new system of linear

equations where we sample m linear equations independently, where each new equation randomly
chooses δ · |ΣA| old equations and takes a random linear combination of them. In the completeness
case, at least an (1−O(δ)) fraction of new equations can be satisfied by a good assignment to old
equations.

In the soundness case, fix an assignment to n possible variables. (There are 2n of them.) It
satisfies at most an 1 − 1

(δ|ΣA|) fraction of old equations. Note that if a new equation chooses an

old equation not satisfied by the assignment, it is satisfied with probability exactly 1/2. Therefore,
the expected number of new equations satisfied by this fixed assignment is at most

m ·
((

1− 1

(δ|ΣA|)
)δ·|ΣA| +

1

2

)
≤ m ·

(
1

e
+

1

2

)
≤ 0.87m.

For a given c ∈ N, let δ = 1/logc n. By taking sufficiently large m = O(n), we can apply the Chernoff
and union bound to conclude that no assignment satisfies more than a 0.9 fraction of new equations.
So we reduce from Label Cover to Gap LIN(1−O(δ), 0.9), which finishes the proof.

We remark that the sampling performed above is the only step in our reduction involving
randomization.

3 Reduction to Linear Label Cover

In this section, we show for any c > 0, unless NP ⊆ BPP, there is no polynomial time algorithm
for Gap Linear Label Cover(1− ε, ε) with ε = 1/(logn)c, proving theorem 1.8.

6

The construction we employ is almost identical to that of Dinur and Harsha [DH13], except
that the basic building blocks (robust PCP and decodable PCP) try to prove (almost) satisfiability
of linear equations instead of standard quadratic equations. They are introduced in sections 3.1
and 3.2.

After constructing the building blocks, the result of [DH13] is proved by iterative composition
of them followed by technical steps including alphabet and degree reduction. Our main observation
in this part is that each of the steps in the construction preserves linearity so that the final Label
Cover instance produced also has a liear structure. We present them in section 3.3 and section 3.4.
Finally, section 3.5 shows how to combine all these steps to prove theorem 1.8.

3.1 Robust PCPs

In this subsection, we define robust PCPs. For two strings x, y of the same length n, let agr(x, y)
denote the relative agreement of the strings x, y, defined as

agr(x, y) := Pr
i∈[n]

[xi = yi]

If S is a set of strings, agr(x, S) is defined as maxy∈S{agr(x, y)}.

Definition 3.1 (Robust PCPs). For functions r, q,m, a, s : N → N and c, δ : N → [0, 1], a verifier
V is a robust probabilistically checkable proof (robust PCP) system for a promise problem L =
(LYES, LNO) with randomness complexity r, query complexity q, proof length m, alphabet size a,
robust completeness c, and robust soundness error δ if V is a probabilistic polynomial-time algorithm
that behaves as follows: On input x of length n and oracle access to a proof string π ∈ Σm(n) over
the (proof) alphabet Σ where |Σ| = a(n), V reads the input x, tosses at most r = r(n) random coins,
and generates a sequence of locations I = (i1, . . . , iq) ∈ [m]q(n) and a predicate f : Σq → {0, 1},
which satisfy the following properties.

Robust Completeness. If x ∈ LYES then there exists π such that

E
(I,f)

[agr(πI , f
−1(1))] > c. (1)

Robust Soundness. If x ∈ LNO then for every π,

E
(I,f)

[agr(πI , f
−1(1))] 6 δ, (2)

where the distribution over (I, f) is determined by x and the random coins of V .
We say that V is linear if Σ = Fb2 for some b and for every f , the accepting sets of the predicate

f , i.e., f−1(1), forms an affine subspace of Σq = Fbq2 over the field F2.

Robust completeness and soundness must be contrasted with (regular) completeness and sound-
ness of standard PCP verifiers in which the expression for completeness and soundness given in (1)
and (2) respectively are replaced as follows:

Completeness: Pr
I,f

[f(πI) = 1] > c,

Soundness: Pr
I,f

[f(πI) = 1] 6 δ.

7

In fact, this is the only difference between the above definition and the standard definition of
a PCP system. The robust soundness states that not only does the local view violate the local
predicate f , but in fact has very little agreement with any of the satisfying assignments of f (and
thus is a strengthening of standard robustness). Robust completeness on the other hand is a
weakening of standard completeness.

Another crucial aspect of robust PCP is its equivalence to Label Cover. Namely, existence
of robust PCP for L with parameters r, q,m, a, s, c, δ is equivalent to existence of a reduction from
L to Gap Label Cover(c, δ) where |A| = 2r, |B| = m, |ΣA| ≤ aq, |ΣB| = a and each v ∈ A has
degree q. See Lemma 2.5 of [DH13]. Also note that the definition of linearity is equivalent in robust
PCP and Label Cover.

Theorem 3.2 (Robust PCP, Analog of [DH13, Theorem 6.4]). There exist constants b1, b2 > 0,
c0 > 1 such that for any c > c0 and ε = 1/logc n, Gap LIN(1− ε, 0.9) with n variables has a linear
robust verifier with robust completeness 1 − ε, robust soundness error ε, query complexity 1/εb1,
proof length poly(n), randomness complexity O(log n), and proof alphabet size at most 1/εb2.

Equivalently, there is a (deterministic) polynomial time reduction from Gap LIN(1 − ε, 0.9)
to Gap Linear Label Cover(1 − ε, ε), where the Label Cover instance has poly(n) veritces,
|ΣA| ≤ exp(1/εb1 log(1/εb2)), |ΣB| ≤ 1/εb2, and each v ∈ A has degree 1/εb1.

The proof of this theorem is identical to that of [DH13, Theorem 6.4] and omitted here. The only
difference is Gap LIN(1−ε, 0.9) with 1/ε = logO(c) n instead of standard quadratic equations when
performing the low degree-extension and the sum-check protocol. The theorem follows by observing
that all the operations are linear and hence the final predicate is also linear. The completeness of
the robust PCP is dictated by the completeness value in theorem 2.1.

Combining this reduction with the randomized reduction from theorem 2.1, we obtain the
following theorem (which is a more formal version of theorem 1.8).

Theorem 3.3 (Hardness of Linear Label Cover). There exist constants b1, b2 > 0, c0 > 1 such
that for any c > c0 and ε = 1/logc n, unless NP ⊆ BPP, there is no polynomial time algorithm
for Gap Linear Label Cover(1− ε, ε) where the Label Cover instance has poly(n) veritces,
|ΣA| ≤ exp(1/εb1 log(1/εb2)), |ΣB| ≤ 1/εb2, and each v ∈ A has degree 1/εb1.

3.2 Decodable PCPs

We now discuss the decodable PCP (dPCP), which differs from a PCP in that it has a decoder as
opposed to a verifier. A decoder is similar to a verifier in that it checks whether a string is in the
given language or not by probabilistically checking a small number of positions in the proof, but it
is additionally supposed to return the ith position of the original string for given i.

For Σ = Fa2 for some a ∈ N, let LINΣ denote the problem of solving linear equations where an
instance consists of k variables that can have a value from Σ, and a system of linear equations C
on k · a variables over F2 canonically represented by the k variables over Σ. It is equivalent to LIN
over F2 on k ·a variables, except that we consider each block of a variables as one variable that can
take a value from Σ. We define a decoder for LINΣ below.

Definition 3.4 (Decoder for LINΣ). Let Σ = Fa2 and σ = Fb2 for some a and b. A decoder for
LINΣ over a proof alphabet σ with parameters m, q, r : N → N is a probabilistic polynomial-time
algorithm D. It is given a system of linear equations C on n variables over Σ, and an index j ∈ [n]

8

as input, and oracle access to a proof π of length m(n) over proof alphabet σ. It tosses r = r(n)
random coins and generates (1) a sequence of q = q(n) locations I = (i1, . . . , iq) and (2) a (local
decoding) function f : σq → Σ ∪ {⊥}. D is called linear if for every f , P := f−1(Σ) is an affine

space of σq = (Fqb
2) and f : P → Σ is an affine function over the base field F2.

Now we define a dPCP for LINΣ. The dPCP in [DH13] is defined for Circuit SAT, whereas
ours is for LINΣ. Note that unlike in [DH13], the dPCP we will construct does not imply any
computational hardness, because it only proves whether the given system of linear equations is
perfectly satisfiable or not, which is a computationally easy problem. The key point is it proves
the system is satisfiable using a proof which is in some sense “locally decodable”. The dPCP will
then be composed with the previous linear robust PCP, which is a system of linear equations with
imperfect completeness, to reduce the query complexity.

Definition 3.5 (Decodable PCPs for LINΣ). For functions δ : N → [0, 1] and L : N → N, we say
that a PCP decoder D is a decodable probabilistically checkable proof (dPCP) system for LINΣ

with perfect completeness, soundness δ and list size L if the following completeness and soundness
properties hold for every system of linear equations C on n variables over Σ.

Completeness. For any y ∈ Σn that satisfies every equation in C, there exists a proof π ∈ σm,
also called a decodable PCP, such that

Pr
j,I,f

[f(πI) = yj] = 1,

where j ∈ [n] is chosen uniformly at random and I, f are distributed according to C, j, and the
verifier’s random coins.

Soundness. For any π ∈ σm, there is a list of 0 6 ` 6 L strings y1, . . . , y`, where each yi satisfies
all equations in C, such that

Pr
j,I,f

[f(πI) /∈ {⊥, y1
j , . . . , y

`
j}] 6 δ.

Robust soundness. We say that D is a robust dPCP system for LINΣ with robust soundness
error δ, if the soundness criterion above can be strengthened to the following robust soundness
criterion,

E
j,I,f

[agr(πI ,BAD(f))] 6 δ,

where
BAD(f) := {w ∈ σq : f(w) /∈ {⊥, y1

j , . . . , y
`
j}}.

The dPCP result we use is the following.

Theorem 3.6 (dPCP, Analog of [DH13, Theorem 6.5]). There exist constants α, γ > 0 such that
for every δ > n−α and input alphabet size Σ of size at most nγ, LINΣ has a linear robust decodable
PCP system with perfect completeness, robust soundness error δ > 0 and list size L 6 2/δ, query
complexity n1/8, proof alphabet σ of size nγ, proof length poly(n), and randomness complexity
O(log n).

9

The proof of this theorem is identical to that of [DH13, Theorem 6.5], except that the initial
starting point is LINΣ instead of Circuit SATΣ. Since the starting point is linear and all transfor-
mations are linear, the final object is also linear. The perfect completeness is also maintained. As
mentioned before, the dPCP constructed here does not imply any computational hardness unlike
in [DH13].

3.3 Composition

After having building blocks, Dinur and Harsha [DH13] show how to compose those blocks iter-
atively to reduce the query complexity and the alphabet size. Each composition involves several
other operations including alphabet and degree reductions. While the soundness analyses for them
are already proved in [DH13], we show that all of their operations preserve linearity and robust
completeness.

Efficient Composition ([DH13, Theorem 4.2]). In the composition, given a regular robust
linear PCP verifier V and a robust linear PCP decoder D, the composed verifier V ′ expects a
decodable PCP for each constraint of V . Recall that the linearity of V is equivalent to the fact
that each constraint of V is a system of linear equations over F2, which is exactly what D expects.
An informal description of the composed verifier is as follows:

1. Randomly choose a location i of the proof for V . Let C1, . . . , CD be the constraints of V
containing the location.

2. Using a (ε, ε2)-sampler ([D], [D], E) and a random s ∈ [D], choose a subset S ⊆ {1, . . . , D}
and run the inner PCP decoder D for each Cj with j ∈ S to decode the ith symbol in the
original proof.

3. Accept if all the values returned by the PCP decoders are the same.

For the second step above, we use (ε, ε2)-samplers given in [Gol11]. Theorem 4.2 of [DH13]
shows the soundness of the composed verifier V ′, yielding table 1 below (Table 4.2 in [DH13]).

V D V ′

proof alphabet Σ σ σ
randomness complexity R r logM + r + logD

query complexity Q q 4/ε4 · q
proof degree D d d
proof length M m 2R ·m

robust soundness error ∆ δ ∆L + 4Lε+ δ
list size - L -

Table 1: Parameters for Composition.

We check this composition preserves robust completeness and linearity.

• Linearity: Linearity (over F2) is preserved if both V and D are linear, since the only additional
check we perform is to check whether the returned values are equal.

10

• Robust completeness: Suppose that there exists a proof Π for V that achieves the robust
completeness of at least 1− ξ. Recall that the composed verifier expects, for each constraint
of the outer PCP, a satisfying assignment encoded by the inner dPCP. The proof for the
composed verifier is the concatenation of all these encodings. Consider the proof to the
composed verifier constructed by the honest encoding of the assignment that achieves the
robust completeness for the outer PCP verifier. We will show that this proof achieves robust
completeness 1− ξ.
Let i be a proof location in the outer PCP and C1, . . . , CD be the constraints involving i.
Furthermore, let ξi be the fraction of these constraints violated by the proof. Since Π is at
least (1− ξ)-robustly complete, we have Ei[ξ] ≤ ξ. For each sample s chosen in the sampler,
let ξi,s be the fraction of constraints in S (chosen by sampler) that are violated. By regularity
of sampler, we have Es[ξi,s] ≤ ξi.
A local view of the composed verifier (corresponding to i, s and the inner dPCP randomness)
comprises of the concatenation of the local views of the dPCP encodings corresponding to the
constraints in S. Since the the inner dPCP has perfect completeness we have the following.
Whenever the constraint is satisfied, the corresponding inner dPCP’s encodings satisfies all
constraints while we have no guarantee when the constraint is not satisfied. Since for each
(i, s), the fraction of violated constraints is ξi,s, we have that at least (1− ξi,s)-fraction of the
local inner views corresponding to (i, s) are satisfying and furthermore they all decode to the
same Π(i). Hence, the local view of the composed verifier corresponding to (i, s) is at least
(1− ξi,s)-close to a satisfying view. Hence, the robust completeness of this honest proof is at
least Ei,s[1− ξi,s] ≥ 1− ξ.

3.4 Label Cover Operations

After the composition, the alphabet reduction step is applied to ensure that the alphabet size is
polynomial in the query complexity and the inverse of the soundness. Also, since the basic robust
PCP given in theorem 3.2 is not necessarily regular, we also need to show how to make the initial
robust PCP regular. This subsection introduces various such operations and explains why they
preserve robust completeness and linearity.

Degree Reduction ([DH13, Theorem 5.1]). Given an instance of Label Cover G =
(A,B,E), the degree reduction makes the instance right-regular by appropriately duplicating right
vertices and each edge exactly the same number of times. Theorem 5.1 of [DH13] ensures that by
increasing robust soundness by 4µ additively, we can ensure that the right degree is 4/µ4 for all
right vertices. We check that this operation preserves linearity and robust completeness.

• Linearity: Linearity is obviously preserved, because there is no change in the constraint.

• Robust completeness: Since each edge is duplicated the same number of times, robust com-
pleteness does not decrease.

Alphabet Reduction ([DH13, Theorem 5.5]). Given an instance of Label Cover G =
(A,B,E) where ΣA and ΣB are the alphabet set of the left (bigger) side and the right (smaller)
side respectively, the alphabet reduction replaces ΣB by a smaller set σ by finding a suitable linear

11

code C : ΣB → σk and replacing each vertex b ∈ B by k vertices b1, . . . , bk. Then assigning x ∈ ΣB

to b corresponds to assigning (C(x))i to b1, . . . , bi. Theorem 5.5 of [DH13] ensures that if C has a
relative distance 1 − η3, this operation increases robust soundness by at most 3η additively. We
check that this operation preserves linearity and robust completeness.

• Linearity: Linearity over F2 is preserved if the code C : ΣB → σk is linear with σ = F2a as
the base field for some a ∈ N. The code used in Remark 5.4 of [DH13] is already linear.

• Robust completeness: If an edge (a, b) of the original Label Cover instance is preserved and
the new instance follows the honest encoding, all k edges of the new instance corresponding
to (a, b) will be satisfied. Therefore, robust completeness cannot decrease.

Flip Sides ([DH13, Section 5.3]). Given an instance of Label Cover G = (A,B,E) where
each right vertex b ∈ B has degree d, the flip side is achieved by flipping A and B, and assigning
each v ∈ B a label from Σd

A, which is supposed to denote the assignments to its neighbors in the
original instance. If v ∈ B has u1, . . . , ud ∈ A as neighbors, (v, ui) in the new instance is satisfied
(i) if the label (a1, . . . , ad) ∈ Σd

A for v has b ∈ ΣB such that the label pair (ai, b) satisfies the edge
(ui, v) in the old instance, and (ii) if ai is equal to the label assigned to ui. This obviously does not
change the robust soundness. We check that it also preserves linearity and robust completeness.

• Linearity: Linearity is preserved, because for each v ∈ B, the set of (a1, ..., ad) satisfying (i)
above is an affine subspace of (ΣA)d, and the new constraint is merely a projection.

• Robust completeness: Cannot decrease since if v ∈ B was assigned b ∈ ΣB in the original
instance, it can be assigned (a1, . . . , ad) ∈ ΣA such that (i) π(ui,v)(ai) = b, and (ii) ai was
assigned to ui if (ui, v) was satisfied in the original instance.

We use a combination of the above 3 operations to get a regular Label Cover instance, as
shown below.

Given an ε > 0, by using (O(ε), O(ε2))-samplers in the composition and doing the above
operations with η = O(ε), d = O(1/ε4), distance 1 − O(ε3), |σ| = O(1/ε6), k = O(1/ε6) · |Σ′| ≤
O(1/ε6) · q|Σ|, we can deduce the following lemma.

Lemma 3.7 ([DH13, Lemma 5.7]). For all ε : N → [0, 1], suppose L has a robust linear PCP
verifier V with randomness complexity r, query complexity q, proof length m, average proof degree
DB, robust completeness c, robust soundness error δ over a proof alphabet Σ. Then L has a regular
reduced linear robust PCP verifier, which we shall denote by regularε(V) with

• randomness complexity logm+ logDB,

• query complexity O(q log |Σ|/ε14),

• proof length O(q22r log |Σ|/ε10),

• proof degree O(1/ε4),

• proof alphabet σ of size at most O(1/ε6),

• robust completeness c,

• and robust soundness δ + ε.

12

Label Cover I Degree Flip Degree Alphabet
(Robust PCPs) Red. (→ d) Red. (→ d) Red. (→ σ)
left vertices n n mDB mDB mDB

(randomness)

right vertices m mDB n nDAd nDAdk
(proof length)

left degree D∗A dD∗A d d2 d2k
(query complexity)

right degree D∗B d DAd
∗ d d

(proof degree)

left alphabet ΣA ΣA Σd
A Σd

A Σd
A

(# accepting conf.)

right alphabet ΣB ΣB ΣA ΣA σ
(proof alphabet)

soundness error δ δ + 4µ δ + 4µ δ + 8µ δ + 8µ+ 3η
(rob. soundness error)

rob. completeness 1− ξ 1− ξ 1− ξ 1− ξ 1− ξ
(rob. completeness)

Table 2: Sequence of steps to regularize the Label Cover instance. * denotes irregular instances where

the number denotes the average degree.

13

3.5 Putting things together

Finally we prove theorem 1.8 on the hardness of Linear Label Cover. Let c > 0 be an arbitrary
constant. Let D be the PCP decoder from theorem 3.6 and V be the robust PCP from theorem 3.2
with robust completeness 1− δ with δ = logc n, robust soundness error ε = 1/logc0 n for some c0 > 1,
query complexity 1/εO(1), randomness complexity O(log n) and proof length poly(n).

Lemma 3.8 ([DH13, Lemma 6.6]). Let D, V, ε, δ be as defined above and set εi = (ε)1/3i. There
exist constants c0, c1, c3 > 0 such that for every i > 0 as long as εi < c0, the following holds.
Gap LIN(1 − δ, 0.9) has a regular linear robust PCP verifier Vi with query complexity 1/εc1i , ro-
bust completeness 1 − δ, robust soundness error 2εi, proof alphabet Σi of size c3/εi

6, randomness
complexity O(log n) and proof length poly(n).

Proof. The proof is similar to [DH13], and is a sequence of compositions. We start with the
regularized robust verifier given by applying the sequence of steps given in section 3.4 to the robust
PCP verifier given in theorem 3.2. In each subsequent step, we compose the robust verifier obtained
in the previous step with a dPCP, and apply the alphabet reduction (Theorem 5.5 of [DH13]) to
reduce the size of the alphabet to c3/ε

6
i+1. All the parameters remain the same as in [DH13], and

we only need to focus on the two additional properties we need, linearity and robust completeness.
Recall that a PCP with robust completeness 1− δ, when composed with a dPCP with perfect

completeness, yields a composed PCP with robust completeness 1 − δ. In each step the inner
PCP decoder has perfect completeness, therefore the robust completeness of the composed PCP is
preserved. Recall that the alphabet reduction step also doesn’t affect the perfect completeness.

Linearity is also preserved because all basic components are linear and all steps (e.g., composi-
tion, alphabet reduction, and regularization) preserve linearity as previously discussed.

The above lemma shows that we can iteratively reduce the query complexity until some absolute
constant while maintaining the soundness and the alphabet size polynomial in the query complex-
ity.(And the total size of the instance always remains polynomial in n.) Only a constant number

of iterations is needed until (proof alphabet size)(query complexity), an upper bound on the size
of alphabet in the equivalent Label Cover instance, becomes polynomial in n. This proves our
main theorem 1.8 for Linear Label Cover.

Proof of theorem 1.8. Set i from lemma 3.8 so that

(proof alphabet size)(query complexity) = (c3/ε
6
i)

1/ε
c1
i = exp

(
1

εc1i
· log

(c3

ε6
i

))
≤ poly(n).

This ensures that εi = 1/logc4 n for some c4 > 0. Using the equivalence between Label Cover and
robust PCP, we have a hardness of Label Cover where the number of vertices and the size of
label are bounded by poly(n), and the completeness is at least 1− 1/logc n, the soundness is 1/logc4 n.
Applying the parallel repetition of [DS14] O(c/c4) times to reduce the soundness to 1/logc n finishes
the proof.

4 Reduction from Linear Label Cover to 3LIN

In this section, we prove our main theorem 1.6 for 3-LIN. Recall that theorem 3.3 shows a ran-
domized polynomial reduction from 3-SAT to Gap Linear Label Cover(1 − logc n, logc n) for

14

any constant c > 0, where the number of vertices as well as the number of labels are bounded by
a polynomial. Therefore, the following theorem finishes the proof of theorem 1.6. The main idea
is to use Hadamard codes instead of long codes using the fact that the Label Cover instance is
linear. A similar argument was used in [Kho01].

Lemma 4.1. There is a polynomial time reduction from Gap Linear Label Cover(1− δ, s) to
Gap 3-LIN(1− δ, 1/2 +

√
s/2), where the size of the 3-LIN instance is polynomial in the number of

vertices and the size of label in the Label Cover instance.

Proof. Let G = (A,B,E), ΣA, ΣB, {πe}e∈E be an instance of Gap Linear Label Cover (1− δ,
s). Moreover, since the label cover is linear, let the labels to left hand side vertices come from F`2
and the right hand side vertices from Fr2, and the mapping on each edge is an affine mapping. Our
reduction is described by the following test.

Test

• Consider an edge (u, v). The labels x ∈ F`2, y ∈ Fr2 corresponding to the vertices have to
satisfy x = Ay + b.

• From the proof, we randomly sample the Hadamard code of x at location α, and that of y at
locations β and β + γ, where γ = AT · α.

• Check if 〈α, x〉+ 〈β, y〉+ 〈β + γ, y〉 = 〈α, b〉

Completeness. In the completeness case, if the labels x, y satisfy the edge in the Linear Label Cover,
then we can see that the test will pass.

〈α, x〉+ 〈β, y〉+ 〈β + γ, y〉
=〈α,Ay〉+ 〈α, b〉+ 〈β, y〉+ 〈β + γ, y〉
=〈α,Ay〉+ 〈α, b〉+ 〈ATα, y〉
=〈α, b〉

Therefore, if 1− δ edges are satisfiable in the linear Label Cover, at least 1− δ fraction of 3LIN
constraints are satisfied.

Soundness. Consider the case where at most s fraction of edges can be satisfied for any labeling
in the Linear Label Cover. Let the Hadamard code encoding function for the left vertices be
L and right vertices be R. Consider their Fourier transforms,

L(α) =
∑
x

L̂(x)χx(α)

R(β) =
∑
y

R̂(y)χy(β)

15

Let’s fix an edge, and analyze the probability that the test will accept. We switch to a -1,+1
notation for convenience.

Pr[Test accepts] = Pr
α,β

[〈α, x〉+ 〈β, y〉+ 〈β +ATα, y〉+ 〈α, b〉 = 0]

= Pr
α,β

[(−1)〈α,x〉+〈β,y〉+〈β+ATα,y〉+〈α,b〉 = 1]

=
1 + Eα,β

[
L(α)R(β)R(β +ATα)(−1)〈α,b〉

]
2

Consider the expectation on the right hand side of the above equation.

Eα,β

[
L(α)R(β)R(β +ATα)(−1)〈α,b〉

]
(3)

6
∑
x,y

L̂(x)R̂(y)2Eα,β

[
χx(α)χy(β)χz(β +ATα)(−1)〈α,b〉

]
6

∑
x,y,x=Ay+b

L̂(x)R̂(y)2

6
√ ∑
x,y,,x=Ay+b

R̂(y)2

√ ∑
x,y,x=Ay+b

L̂(x)2R̂(y)2

In the above equation, the first term is bounded by 1, and therefore,

(3) 6
√ ∑
x,y,,x=Ay+b

L̂(x)2R̂(y)2

Consider a random assignment where a left vertex gets a label x with probability L̂(x)2 and a
right vertex gets a label y with probability R̂(y)2. The probability that such a random assignment
would satisfy the edge, and therefore the expected fraction of edges satisfied, is exactly∑

x,y,x=Ay+b

L̂(x)2R̂(y)2

If at most s fraction of edges can be satisfied by any assignment, then

s >
∑

x,y,x=Ay+b

L̂(x)2R̂(y)2 > (2 · Pr[Test accepts]− 1)2

or

Pr[Test accepts] 6
1

2
+

√
s

2

Therefore, the expected fraction of 3LIN constraints satisfied is at most 1
2 +

√
s

2 .

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. J. ACM, 45(3):501–
555, May 1998. (Preliminary version in 33rd FOCS, 1992).

16

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-
tion of NP. J. ACM, 45(1):70–122, January 1998. (Preliminary version in 33rd FOCS,
1992).

[DH13] Irit Dinur and Prahladh Harsha. Composition of low-error 2-query PCPs using decod-
able PCPs. SIAM J. Comput., 42(6):2452–2486, 2013. (Preliminary version in 51st
FOCS, 2009).

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proc. 46th
ACM Symp. on Theory of Computing (STOC), pages 624–633, 2014.

[Gol11] Oded Goldreich. A sample of samplers: A computational perspective on sampling. In
Oded Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea on the
Interplay between Randomness and Computation, volume 6650 of LNCS, pages 302–332.
Springer, 2011.

[H̊as01] Johan H̊astad. Some optimal inapproximability results. J. ACM, 48(4):798–859, July
2001. (Preliminary version in 29th STOC, 1997).

[HV04] Johan H̊astad and Srinivasan Venkatesh. On the advantage over a random assign-
ment. Random Structures Algorithms, 25(2):117–149, 2004. (Preliminary version in
34th STOC, 2002).

[Kho01] Subhash Khot. Improved inaproximability results for maxclique, chromatic number
and approximate graph coloring. In Proc. 42nd IEEE Symp. on Foundations of Comp.
Science (FOCS), pages 600–609, 2001.

[Kho10] Subhash Khot. Inapproximability results for computational problems on lattices. In
Phong Q. Nguyen and Brigitte Vallée, editors, The LLL Algorithm - Survey and Appli-
cations, Information Security and Cryptography, pages 453–473. Springer, 2010.

[KN08] Subhash Khot and Assaf Naor. Linear equations modulo 2 and the L1 diameter of
convex bodies. SIAM J. Comput., 38(4):1448–1463, 2008. (Preliminary version in 48th
FOCS, 2007).

[Mos15] Dana Moshkovitz. The Projection Games Conjecture and the NP-hardness of lnn-
approximating Set-Cover. Theory Comput., 11:221–235, 2015. (Preliminary version in
15th APPROX, 2012).

[MR10] Dana Moshkovitz and Ran Raz. Two-query PCP with subconstant error. J. ACM,
57(5), 2010. (Preliminary version in 49th FOCS, 2008).

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Comput., 27(3):763–803, June 1998.
(Preliminary version in 27th STOC, 1995).

17

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

