
On the AC0[⊕] complexity of Andreev’s Problem

Aditya Potukuchi ∗

July 23, 2019

Abstract

Andreev’s Problem asks the following: Given an integer d and a subset of S ⊆ Fq × Fq, is there
a polynomial y = p(x) of degree at most d such that for every a ∈ Fq, (a, p(a)) ∈ S? We show an
AC0[⊕] lower bound for this problem.

This problem appears to be similar to the list recovery problem for degree d-Reed-Solomon codes
over Fq which asks the following: Given subsets A1, . . . , Aq of Fq, output all (if any) Reed-Solomon
codewords contained in A1 × · · · ×Aq. For our purpose, we study this problem when A1, . . . , Aq are
random subsets of a given size, which may be of independent interest.

1 Introduction

For a prime power q, let us denote by Fq, the finite field of order q. Let us denote the elements of
Fq = {a1, . . . , aq}. One can think of a1, . . . , aq as some ordering of the elements of Fq. Let Pd = Pqd be
the set of all univariate polynomials of degree at most d over Fq. Let us define the problem which will
be the main focus of this paper:

Input: A subset S ⊂ F2
q, and integer d.

Output: Is there a p ∈ Pdq such that {(ai, p(ai)) | i ∈ [q]} ⊆ S?

The problem of proving NP-hardness of the above function seems to have been first asked in [Joh86].
It was called ‘Andreev’s Problem’ and still remains open. One may observe that above problem is closely
related to the List Recovery of Reed-Solomon codes. In order to continue the discussion, we first define
Reed-Solomon codes:

Definition 1.1 (Reed-Solomon code). The degree d Reed-Solomon over Fq, abbreviated as RS[q, d] is
the following set:

RS[q, d] = {(p(a1), . . . , p(aq)) | p ∈ Pqd}

Reed-Solomon codes are one of the most widely (if not the most widely) studied families of error-
correcting codes. It can be checked that RS[q, d] is a (d+ 1)-dimensional subspace of Fqq such that every
non-zero vector has at least q−d non-zero coordinates. In coding theoretic language, we say that RS[q, d]
is a linear code of block length q, dimension d+ 1 and distance q − d. The rate of the code is given by
d+1
q . The set of relevant facts about Reed-Solomon codes for this paper may be found in Appendix A.1

The List Recovery problem for a code C ⊂ Fnq is defined as follows:

Definition 1.2 (List Recovery problem for C).
∗Department of Computer Science, Rutgers University. aditya.potukuchi@cs.rutgers.edu. Research supported in

part by NSF grant CCF-1514164

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 96 (2019)

Input: Sets A1, . . . , An ⊆ Fq.

Output: C ∩ (A1 × · · · ×An)

Given the way we have defined these problems, one can see that Andreev’s Problem is essentially
proving NP-hardness for the List Recovery of Reed-Solomon codes where one just has to output a
Boolean answer to the question

C ∩ (A1 × · · · ×An) 6= ∅?

Indeed, let us consider a List Recovery instance where the code C is RS[q, d], and the input sets are
given by A1, . . . , Aq. Let us identify (A1, . . . , Aq) with the set

S =
⋃
i∈[q]

{(ai, z) | z ∈ Ai} ⊆ F2
q

and let us identify every codeword w = (w1, . . . , wq) ∈ C, with a set wset = {(ai, wi) | i ∈ [q]}. Clearly,
we have that w ∈ A1 × · · · × Aq if and only if wset ⊆ S. Often, we will drop the subscript on wset and
refer to w both as a codeword, and as the set of points it passes through. Further identifying F2

q with

[q2], and and parameterizing the problem by r = d
q , we view Andreev’s Problem as a Boolean function

APr : {0, 1}q×q → {0, 1}.
The main challenge here is to prove (or at least conditionally disprove) NP-hardness for Andreev’s

Problem, which has been open for over 30 years. Another natural problem one could study is the circuit
complexity for APr. This is the main motivation behind this paper, and we will study the AC0[⊕]
complexity of APr. We shall eventually see that even this problem needs relatively recent results about
the power of AC0[⊕] in our proof. Informally, AC0 is the class of Boolean functions computable by
circuits of constant depth, and polynomial size, using ∧, ∨, and ¬ gates. AC0[⊕] is the class of Boolean
functions computable by circuits of constant depth, and polynomial size, using ∧, ∨, ¬, and ⊕ (MOD2)
gates. The interested and unfamiliar reader is referred to [AB09] (Chapter 14) for a more formal
definition and further motivation behind this class. We show that APr cannot be computed by AC0

circuits for a constant r. This type of result is essentially motivated by a similar trend in the study of
the complexity of Minimum Circuit Size Problem. Informally, the Minimum Size Circuit Problem (or
simply MCSP) takes as input a truth table of a function on m bits, and an integer s. The output is 1
if there is a Boolean circuit that computes the function with the given truth table and has size at most
s. It is a major open problem to show the NP-hardness of MCSP. A lot of effort has also gone into
understanding the circuit complexity of MCSP. Allender et al. [ABK+06] proved a superpolynomial
AC0 lower bound, and Hirahara and Santanam [HS17] proved an almost-quadratic formula lower bound
for MCSP. A recent result by Golonev et al. [GII+19] extends [ABK+06] and proves an AC0[⊕] lower
bound for MCSP. Thus one can seek to answer the same question about APr.

We now state our main theorem:

Theorem 1.3 (Main Theorem). For any prime power q, and r ∈ (0, 1), we have that any depth h circuit

with ∧, ∨, ¬, and ⊕ gates that computes APr on q2 bits must have size at least exp
(

Ω̃
(
hq

c2

h−1

))
.

We make a couple of comments about the theorem. The first, most glaring aspect is that r ∈ (0, 1)

is more or less a limitation of our proof technique. Of course, as r gets very small, i.e., r = O
(

1
q

)
, one

can find depth 2 circuits of size qO(rq) = qO(1). But, we do not know that the case where, for example,

r = Θ
(

1
log q

)
is any easier for AC0. Secondly, we are not aware of a different proof of an AC0 (as

opposed to an AC0[⊕]) lower bound.

1.1 Some notation and proof ideas

For a p ∈ (0, 1), let X1, X2, . . . denote independent Ber(p) random variables. For a family of Boolean
functions f : {0, 1}n → {0, 1}, we use f (n)(p) to denote the random variable f(X1, . . . , Xn).

2

Definition 1.4 (Sharp threshold). For a monotone family of functions f , we say that f has a sharp
threshold at p if for every ε > 0, there is an n0 such that for every n > n0, we have that P(f (n)(p(1−ε)) =
0) ≥ 0.99, and P(f (n)(p(1 + ε)) = 1) ≥ 0.99.

Henceforth, we shall assume that q is a very large prime power. So, all the high probability events
and asymptotics are as q grows. Where there is no ambiguity, we also just use f(p) to mean f (n)(p) and
n growing.

One limitation of AC0[⊕] that is exploited when proving lower bounds (including in [GII+19]) for
monotone functions is that AC0[⊕] cannot compute functions with ‘very’ sharp thresholds. For a quanti-
tative discussion, let us call the smallest ε in the definition above the threshold interval. It is known that

AC0 (and therefore, AC0[⊕]) can compute (some) functions with threshold interval of O
(

1
logn

)
, for ex-

ample, consider the following function on Boolean inputs z1, . . . , zn: Let Z1t· · ·tZ` be an equipartition
of [n], such that each |Zi| ≈ log n− log log n. Consider the function given by

f(z1, . . . , zn) =
∨
i∈[`]

 ∧
j∈Zi

zj

 .

This is commonly known as the tribes function and is known to have a threshold interval of O
(

1
logn

)
.

This is clearly computable by an AC0 circuit. A construction from [LSS+18] gives an AC0 circuit (in

n inputs) of size nO(h) and depth h that has a threshold interval Õ
(

1
(logn)h−1

)
. A remarkable result

from [LSS+18] and [CHLT19] (Theorem 13 from [CHLT19] plus Lemma 3.2 in [Agr19]) says that this is
in some sense, tight. Formally,

Theorem 1.5 ([LSS+18] [CHLT19]). Let n be any integer and f : {0, 1}n → {0, 1} be a function with
threshold interval δ at 1

2 . Any depth h circuit with ∧, ∨, ¬, and ⊕ gates that computes f must have size

at least exp
(

Ω
(
h (1/δ)

1
h−1

))
.

This improves upon previous lower bounds by Shaltiel and Viola [SV10] who show a size lower bound

of exp
(

(1/δ)
1
h+2

)
. In [LSS+18], this was studied as the Coin Problem, which we will also define in

Section 2. Given the above theorem, a natural strategy suggests itself. If we could execute the following
two steps, then we would be done:

1. Establish Theorem 1.5 for functions with thresholds at points other than 1
2 .

2. Show that APr has a sharp threshold at q−r with a suitably small threshold interval, i.e., 1
poly q .

The first fact essentially reduces to approximating p-biased coins by unbiased coins in constant depth.
Though we are unable to find a reference for this, this is relatively straightforward, and is postponed to
Appendix D.2. Understanding the second part, naturally leads us to study APr(p) for some p = p(q).
Let A1, . . . , Aq ⊂ Fq be independently chosen random subsets where each element is included in Ai with
probability p. Let C be the RS[q, rq] code. We have |C| = qrq+1. Let us denote

X := |(A1 × · · · ×Aq) ∩ C|.

For w ∈ C, let Xw denote the indicator random variable for the event {w ∈ A1 × · · · ×Aq}. Clearly,

X =
∑
w∈C Xw, and for every w ∈ C, we have P(Xw = 1) = pq. We first note that for ε = ω

(
log q
q

)
, and

p = q−r(1− ε), we have, using linearity of expectation,

3

IE[X] =
∑
w∈C

IE[Xw]

= |C| · (q−r(1− ε))q

= qrq+1
(
q−r(1− ε

)
)q

= q · (1− ε)q

≤ q · e−εq

= o(1).

When p = q−r(1 + ε), using a similar calculation as above, we have

IE[X] = q · (1 + ε)q ≥ q.

To summarize, for ε = ω
(

log q
q

)
, and p = q−r(1− ε), IE[X]→ 0, and for p = q−r(1 + ε), IE[X]→∞.

Lemma 1.6. For ε = ω
(

log q
q

)
, we have

P(APr(q
−r(1− ε)) = 1) ≤ exp (−Ω(εq)) .

Proof. This is just Markov’s inequality. We have P(APr(p(1− ε)) = 0) = P(X ≥ 1) ≤ IE[X] ≤ q · e−εq =
exp (−Ω(εq)).

This counts for half the proof of the sharp threshold for APr. The other half forms the main technical
contribution of this work. We show the following:

Theorem 1.7. Let q be a prime power, r = r(q) and ε = ε(q) be real numbers such that q−r ≥ log q
q and

ε = ω
(

max
{
q−r,

√
qr−1 log (q1−r)

})
.

Let A1, . . . , Aq be independently chosen random subsets of Fq with each point picked independently
with probability q−r(1 + ε). Then

P((A1 × · · · ×Aq) ∩ RS[q, rq] = ∅) = o(1).

There is a technical condition on ε that can be ignored for now, and will be addressed before the
proof. The only relevant thing to observe is that when r is bounded away from 0 and 1, then ε = 1

poly(q)

suffices. The condition to focus on here is that q−r ≥ log q
q . Indeed, one can see that this condition is

necessary to ensure that w.h.p, all the Ai’s are nonempty. So, for example, if the dimension of C is q−1,
then setting p = q−1(1 + ε) is enough for IE[X] = ω(1) but this does not translate to there almost surely
being a codeword in A1 × · · · ×Aq.

Lemma 1.6 and Theorem 1.7 together give us that APr has a sharp threshold at max
{
q−r, log q

q

}
whenever 1 − 1

q ≥ r � 1
log p . For the sake of completeness one could ask if APr has a threshold for all

feasible values of r, and we show that the answer is yes. More formally,

Theorem 1.8 (Sharp threshold for list recovery). For every r = r(q), there is a critical p = p(r, q) such
that for every ε > 0,

1. P (APr(p(1− ε)) = 1) = o(1).

2. P (APr(p(1 + ε)) = 1) = 1− o(1).

The case that is not handled by Theorem 1.7 is when r = O
(

1
log q

)
(since in this case, Theorem 1.7

requires ε = Ω(1)). This corresponds to the case where q−r is a number bounded away from 0 and 1.

4

1.2 What doesn’t work, and why

One obvious attempt to prove Theorem 1.7 is to consider the second moment of X(= |C∩(A1×· · ·×Aq)|)
and hope that IE[X2] = (1 + o(1))IE2[X]. Unfortunately, IE[X2] is too large. Through a very careful
calculation using the weight distribution of Reed Solomon codes which we do not attempt to reproduce

here, we have IE[X2] = Ω
(
e

1
p IE2[X]

)
. So in the regime where, for example, p = q−Ω(1), this approach is

unviable.

To understand this (without the aforementioned involved calculation) in an informal manner, let us
fix p = q−r for some fixed constant r. Let us identify the tuple of sets (A1, . . . , Aq) with the single set
S = ∪i∈[q]{(ai, z) | z ∈ Ai}. So, we are choosing a random subset S ⊂ F2

q of size ≈ q2−r. On the other
hand, the objects we are looking for, i.e., codewords, have size q. This is much larger than the standard
deviation of |S|, which is of the order of q1−(r/2). Thus, conditioning on the existence of some codeword
w ⊂ F2

q, the distribution of S changes significantly. One way to see this is the following: Using standard

Chernoff bounds, one can check that the size of S is almost surely q2−r ± O
(
q1−(r/2) log q

)
. However,

conditioned on w ∈ A1 × · · · ×Aq, the size of S is almost surely q+ q−r(q2 − q)±O
(
q1−(r/2) log q

)
(the

additional q comes from the points that make up w). This is much larger than before when r is relatively
large. On the other hand, the main point behind (successful) applications of the second moment method
is that the distribution does not significantly change after such a conditioning.

One possible way to circumvent the above problem is to pick a uniformly random set S ⊂ F2
q of size

q2−r, instead of every point independently with probability q−r. This is a closely related distribution,
and it is often the case that Theorems in this model are also true in the above ‘i.i.d.’ model. This fact
can be also be made formal (see, for example [JuR00] Corollary 1.16). Here, when one conditions on
the existence of some codeword w, at least |S| does not change. Thus the second moment method is not
ruled out right at the start. However, it seems to be much more technically involved and it is unclear
if it is possible to obtain the relatively small threshold interval that is required for Theorem 1.3 in this
way.

1.3 What works and how

Here, we sketch the proofs of the Theorem 1.7 and Theorem 1.8, which can be considered the two main
technical contributions of this work.

1.3.1 Proof sketch of Theorem 1.7

The key idea in the proof of this theorem is to count the number of polynomials in the ‘Fourier basis’.
Let us consider f : Fqq → {0, 1} to be the indicator of C. For i ∈ [q], let gi : Fq → {0, 1} denote the
indicator of Ai.

For an extremely brief and informal discussion, what we what we want is essentially 〈f,
∏
i∈[q] gi〉,

which, by Plancharel’s identity (see Fact A.5) is
∑
α f̂ ·

∏̂
i gi(α). Since C is a vector space, we have that

f̂ is supported on C⊥. Moreover, ĝi(αi) is much larger when αi = 0 than when αi 6= 0 if Ai is random.
This combined with the fact that most points in C⊥ have large weight, and a bit more Fourier analysis
means that the inner product, 〈f,

∏
i gi〉 is dominated by f̂(0)

∏
i∈[q] ĝi(0) which is the expected number

of codewords in A1 × · · · ×Aq.
Now we give a slightly less informal overview. What we are trying to estimate is exactly

X = |C ∩ (A1 × · · · ×Aq)| =
∑

(x1,...,xq)∈Fq
f(x)

∏
i∈[q]

gi(xi)

 .

Using Fourier analysis over Fq, one can show that

5

qq

|C|
·X =

∑
(α1,...,αq)∈C⊥

∏
i∈[q]

ĝi(αi)

≥
∏
i∈[q]

ĝi(0)−

∣∣∣∣∣∣
∑

(α1,...,αq)∈C⊥

∏
i∈[q]

ĝi(αi)

∣∣∣∣∣∣ .
Using the fact that C is an RS[q, rq] code, one has (see Fact A.1) that C⊥ is an RS[q, q− rq− 1] code.

What will eventually help in the proof is that the weight distribution of Reed Solomon codes (and so in
particular, C⊥) is well understood (see Theorem A.2).

Now clearly, it suffices to understand the term
∑

(α1,...,αq)∈C⊥

(∏
i∈[q] ĝi(αi)

)
=: R. One way to

control |R| is to control |R|2 = RR. Here, one can use the fact that the Ai’s are randomly and
independently chosen to establish cancellation in many terms of IE[|R|2]. More formally, one can prove
that

IE[|R|2] =
∑

(α1,...,αq)∈C⊥\{0}

∏
i∈[q]

IE[|ĝi(αi)|2].

It is a more or less standard fact that if Ai is a uniformly random set of size pq =: t, then

IE[|ĝi(0)|2] ∼
(
t

q

)2

and

IE[|ĝi(αi)|2] ∼ t

q2

for αi 6= 0. This difference, will be the reason why |R| is typically much smaller than
∏
i∈[q] ĝi(0). To

continue, let us believe the heuristic that most polynomials over Fq of degree Θ(q) have very few (o(q))
zeroes, we can use the rough estimate:

IE[|R|2] ≈ |C⊥|
(
t

q2

)q−o(q)
≈ qq−rq

(
p

q

)q−o(q)
≈ q−rqpq−o(q).

And so, Markov’s Inequality gives that |R| is unlikely to be much greater than q
rq
2 p

q
2 +o(q). On the

other hand, with high probability, ∏
i∈[q]

ĝi(0) ≈
(
t

q

)q
≈ pq.

Thus if p ≥ q−r+o(1), we have that (qq/|C|) ·X ≥
∏
i∈[q] ĝi(0)− |R| > 0, and so in particular, X > 0.

The proof of Theorem 1.7 is essentially a much tighter, and more formal version of the above argument,
and is postponed to Appendix B.

6

1.3.2 Proof sketch of Theorem 1.8

The starting point of Thoerem 1.8 is noticing that the only case not covered by Theorem 1.7 is p ∈ (0, 1)

is some fixed constant, or equivalently r = O
(

1
log q

)
. Here we have a somewhat crude weight distribution

result for Reed Solomon codes (Proposition A.3) to compute the second moment. We first show that

IE[X2] = O
(
e

1
p IE2[X]

)
. Using, for example the Paley-Zygmund Inequality (3), this means that P(X >

0) ≥ Ω(e−
1
p). Thus we have that {X > 0} with at least some (possibly small) constant probability.

But what we need is that P(X > 0) ≥ 0.99. For this, we now use the fact that APr is monotone,
and transitive-symmetric, which informally means that any two variables of APr look the same (see
Definition A.8 for a formal definition). Standard applications of hypercontractivity for the Boolean

hypercube (see Theorem A.9) gives that for p′ = p+O
(

1
log q

)
, we have that P(APr(p

′) = 1) ≥ 0.99.

The details of this proof are postponed to Appendix C.

One thing to note is that our definition of sharp threshold only makes sense when the critical prob-
ability pr is bounded away from 1 (since otherwise trivially there is some function ε = ε(q) = o(1) such

that p · (1 + ε) = 1). So, we will restrict ourselves to the regime where r = Ω
(

1
log q

)
. Also, it is to be

understood that all the statements above (and below) only make sense when rq is an integer, and thus
we shall restrict ourselves to this case.

Finally, we address the question of random list recovery with errors as another application of Theo-
rem 1.7.

1.4 Random list recovery with errors

Given a random subset of points in S ⊆ F2
q, what is the largest fraction of any degree d = Θ(q) polynomial

that is contained in this set? Using the Union Bound, it is easy to see that no polynomial of degree d
has more than d log 1

p
q + o(q) points contained in S (formal details are given in Section 3). We show

that perhaps unsurprisingly, this is the truth. Formally,

Corollary 1.9. Let S be a randomly chosen subset of F2
q where each point is picked independently with

probability p. Then with probability 1− o(1),

max
w∈RS[q,d]

|w ∩ S| = d log 1
p
q −O

 q

log
(

1
p

)
 .

We restrict our attention to the case when d = Θ(q), where the above statement is nontrivial. This
is the content of Section 3. However, we believe that the statement should hold for all rates, and error

(in general) better than O
(

q
log q

)
.

We make two final comments before proceeding to the proofs: (1) In Theorem 1.7, each Ai is chosen
by including each point independently. However, the same proof works if Ai is a uniformly random set
with a prescribed size. (2) Although we only state the lower bound for AC0[⊕], one can check that all
the tools (and, therefore, the lower bound) still work when we replace the ⊕ gates with any ⊕p (MODp)
for any small prime p.

2 AC0[⊕] lower bound for APr

We prove the lower bound by showing that APr solves a biased version of the Coin Problem, and use
the lower bounds known for such kinds of functions, obtained by [LSS+18], [CHLT19].

Definition 2.1 ((p, ε)-coin problem). We say that a circuit C = Cn on n inputs solves the (p, ε)-coin
problem if

7

• For X1, . . . , Xn ∼ Ber(p(1− ε)),

P(C(X1, . . . , Xn) = 0) ≥ 0.99

• For X1, . . . , Xn ∼ Ber(p(1 + ε)),

P(C(X1, . . . , Xn) = 1) ≥ 0.99

The
(

1
2 , ε
)
-Coin Problem was explicitly introduced in [BV10]. We shall abbreviate the (p, ε)-Coin

Croblem on n variables as CPn(p, ε). We observe that a function f : {0, 1}n → {0, 1} solves CPn (p, ε)
if it has a sharp threshold at p with threshold interval at most ε. The one obstacle we have to overcome
in using Theorem 1.5 is that APr has a sharp threshold at p−c � 1

2 . However, we will show how to
simulate biased Bernoulli r.v’s from almost unbiased ones. Let C(s, d) to denote the class of functions on
n variables which have circuits of size O(s) = O(s(n)) and depth d = d(n) using ∧, ∨, ¬, and ⊕ gates.
Here, we make the following simple observation about the power of AC0[⊕] circuits to solve biased and
unbiased ε-coin problem. First, we observe that it is possible to simulate a biased coin using an unbiased
one.

Lemma 2.2. Let s be such that 1
2s ≤ p ∈ (0, 1), and ε ≤ 1

sK
for a large constant K. Then, there is a

CNF Fp on t ≤ s2-variables such that for inputs X1 . . . , Xt ∈ Ber
(

1
2 + ε

)
,

P (Fp(X1, . . . , Xt) = 1) = p(1 + Ω(εL))

and for inputs X1 . . . , Xt ∈ Ber
(

1
2 − ε

)
,

P (Fp(X1, . . . , Xt) = 1) = p

(
1 +

1

2Ω(
√
t)
− Ω(εL)

)
where L = blog2(1/p)c.

The idea is essentially that the AND of k unbiased coin is a 2−k-biased coin. However, some extra
work has to be done if we want other biases (say, (0.15) · 2k). The proof of this lemma is postponed to
the Appendix D.2. This lemma now gives us the following:

Lemma 2.3. Let z ∈ (0, 1) be a fixed constant. If CPn
(

1
nz , o(ε log n)

)
∈ Cn(s, h), then there is a

t ≤ log2 n such that CPnt
(

1
2 , ε
)
∈ Cnt(zs log n, h+ 2).

Proof. Let C be a circuit for CPn
(

1
nz , δ

)
-coin problem. Replace each input variable with the CNF F(1

nz)
from Lemma 2.2 on t = O(log4 n) independent variables. Call this circuit C′, on tn variables. If the
bias of each of these input variables is 1

2 + ε, then the guarantee of Lemma 2.2 is that output of the
and gate is 1 with probability at least 1

nz (1 + Ω(ε log n)). A similar computation gives that if the bias
of the inputs are

(
1
2 − ε

)
, then the bias of the output is at most 1

nz (1−Ω(ε log n)). Therefore, C′ solves

CPnt
(

1
2 , ε
)
, and has size at most s log n, and depth h+ 2.

Theorem 1.7 and Lemma 1.6, together, now give us the following corollary:

Corollary 2.4. Let q be a large enough prime power. Then APr on q2 inputs solves the (q−r, ε) coin

problem, for ε = ω
(

max
{
q−r, q

r−1
3

})
As a result, Theorem 1.5, and Lemma 2.2, and Lemma 2.3 together, give us the following bounded

depth circuit lower bound for APr:

Theorem (1.3, Restated). For any r ∈ (0, 1), and h ∈ N, we have that

APr 6∈ C
(

exp
{

Ω̃
(
hq

r2

h−1

)}
, h
)
.

8

3 Random list recovery with errors

In this section, we shall again consider Reed-Solomon codes RS[q, rq] where r is some constant between
0 and 1. Let us slightly abuse notation, as before, and think of a codeword w ∈ RS[q, rq] corresponding
to a polynomial p(X) as the set of all the zeroes of the polynomial Y = p(X). That is, for a codeword
w = (w1, . . . , wq) associated with polynomial p, we think of w as a subset {(ai, p(ai)) | i ∈ [q]} (recall
that F = {a1, . . . , aq}). For a set of points S ⊂ F2

q and a codeword w we say the agreement between
w and S to denote the quantity |w ∩ S|. For a code C, we say that the agreement between C and S to
denote maxw∈C |m ∩ S|.

We are interested in the following question: For a set S ⊂ F2
q. What is the smallest ` such that there

exists a w ∈ RS[q, rq] such that |w ∩ S| ≥ q − `? In other words, what is the largest agreement between
RS[q, rq] and S? This is (very close to) the list recovery problem for codes with errors. Naturally, we seek
to answer this question when S is chosen randomly in an i.i.d. fashion with probability p. Theorem 1.7
gives asymptotically tight bounds in a relatively straightforward way for constant error rate.

One can observe that the only properties about Reed-Solomon codes that was used in Theorem 1.7
was the weight distribution in the dual space of codewords. However, (see Appendix A.1) these are also
true for punctured Reed-Solomon codes codes. So, an analogus theorem also holds for punctured Reed
Solomon codes. Formally,

Theorem 3.1. Let q, n, d be integers such that q is a prime power and n = ω(log q), and q−
d
n ≥ logn

q

and let ε = ω

(
max

{
q−

d
n

√
q1− dn log

(
q1− dn

)})
. Let C be an RS[q, d]|n code.

Let A1, . . . , An be independently chosen random subsets of Fq with each point picked independently

with probability q−
d
n (1 + ε). Then

P((A1 × · · · ×An) ∩ C = ∅) = o(1).

We do not repeat the proof but is it the exact same as that of Theorem 1.7. Let Ea denote the event
that the agreement between S and RS[q, rq] is a. Union bound gives us that

P(Eq−`) ≤
(
q

`

)
qrq+1pq−`. (1)

So if ` is such that the RHS of 1 is o(1). Then the agreement is almost surely less than q − `. For the
other direction, we have the following corollary:

Corollary 3.2. Let ε ≥ max

{
10q−

d
q−` ,

√
q1− d

q−` · log q

}
. Let S be a randomly chosen subset of F2

q

with each point picked independently with probability at least q−
d
q−` (1 + ε), then with probability at least

1− o(1), the agreement between S and RS[q, d] is at least q − `.

Proof. For i ∈ [q − `], let us denote
Si := {j | (i, j) ∈ S}.

Let us use S′ := S1 × · · · × Sq−`. Let us denote C = RS[q, d]|q−`. Formally, for a codeword w ∈ RS[q, d],
denote pw to be the polynomial corresponding to m. We have

C = {(i, pw(i)) | i ∈ [q − `])}

We observe that the conditions in Theorem 1.7 hold, so

P(C ′ ∩ S′ = ∅) = o(1)

as desired.

9

Corollary (1.9, restated). Given a random subset S ⊆ F2
q where each point is picked with probability p,

then with probability at least 1− o(1), the largest agreement RS[q, d] with S is d log 1
p
q −O

(
q

log(1
p)

)
.

Proof. Let a be an integer that denotes the maximum agreement between S and RS(q, d). Suppose that
a ≤ d log 1

p
q, then setting ` = q − a, and noting that the conditions for Corollary 3.2 are satisfied, we

get that with probability at least 1 − o(1), there is a polynomial that agrees with the set S in the first
q − ` coordinates. On the other hand, if a ≥ d log 1

p
q + 4 q

log(1
p)

, again, setting ` = q − a, Union Bound

gives us:

P(Eq−`) ≤
∑
w∈C

∑
P⊂Fq
|P |=q−`

P(w|P ⊆ S)

=

(
q

`

)
qd+1pq−r

≤
(
e
q

`

)`
qd+1pq−`

≤ eqqd+1pq−`

� 1

q
.

And so we have that with probability at least 1− o(1), the agreement of RS(q, d) with S is d log 1
p
q−

O

(
q

log(1
p)

)
.

4 Conclusion

We started off by attempting to prove a bounded depth circuit lower bound for Andreev’s Problem.
This led us into (the decision version of the) random List Recovery of Reed-Solomon codes. Here we
show a sharp threshold for a wide range of parameters, with nontrivial threshold intervals in some
cases. However, one of the unsatisfactory aspects about Theorem 1.8 is that it is proved in a relatively
‘hands-off’ way possibly resulting in a suboptimal guarantee on ε. The obvious open problem that is the
following:

Open Problem: Is Theorem 1.8 with a better bound on ε?

If it is true with a much smaller ε, it would extend in a straightforward way to the AC0[⊕] lower
bound as well. Another point we would like to make is that the only thing stopping us from proving
Theorem 1.8 for general MDS codes is the lack of Proposition A.11

Acknowledgements I am extremely grateful to Amey Bhangale, Suryateja Gavva, and Mary Woot-
ters for the helpful discussions. I am especially grateful to Nutan Limaye and Avishay Tal for explain-
ing [LSS+18] and [CHLT19] respectively to me. I am grateful to Partha Mukhopadhyay for suggesting
the AC0[⊕] lower bound problem for list recovery. I am also extremely grateful to Swastik Kopparty
for the discussions that led to Corollary 1.9, and to Bhargav Narayanan for the discussions that led to
Theorem 1.8.

10

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY, USA, 1st edition, 2009.

[ABK+06] Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneb-
urger. Power from random strings. SIAM J. Comput., 35(6):1467–1493, 2006.

[Agr19] Rohit Agrawal. Coin theorems and the fourier expansion. CoRR, abs/1906.03743, 2019.

[BV10] J. Brody and E. Verbin. The coin problem and pseudorandomness for branching programs.
In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science, pages 30–39,
Oct 2010.

[CHLT19] Eshan Chattopadhyay, Pooya Hatami, Shachar Lovett, and Avishay Tal. Pseudorandom
generators from the second fourier level and applications to AC0 with parity gates. In 10th
Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019,
San Diego, California, USA, pages 22:1–22:15, 2019.

[EGS09] Martianus Ezerman, Markus Grassl, and Patrick Sol. The weights in mds codes. Information
Theory, IEEE Transactions on, 57, 08 2009.

[FK96] Ehud Friedgut and Gil Kalai. Every monotone graph property has a sharp threshold, 1996.

[GII+19] Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina
Kolokolova, and Avishay Tal. Ac0[p] lower bounds against MCSP via the coin problem.
Electronic Colloquium on Computational Complexity (ECCC), 26:18, 2019.

[HS17] Shuichi Hirahara and Rahul Santhanam. On the average-case complexity of mcsp and its
variants. In Proceedings of the 32Nd Computational Complexity Conference, CCC ’17, pages
7:1–7:20, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Joh86] David S Johnson. The np-completeness column: An ongoing guide. J. Algorithms, 7(2):289–
305, June 1986.

[JuR00] Svante Janson, Tomasz Luczak, and Andrej Rucinski. Random graphs. John Wiley, New
York, 2000.

[LSS+18] Nutan Limaye, Karteek Sreenivasaiah, Srikanth Srinivasan, Utkarsh Tripathi, and
S. Venkitesh. The coin problem in constant depth: Sample complexity and parity gates.
CoRR, abs/1809.04092, 2018.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, New York,
NY, USA, 2014.

[SV10] Ronen Shaltiel and Emanuele Viola. Hardness amplification proofs require majority. SIAM
J. Comput., 39(7):3122–3154, July 2010.

[TV06] Terence Tao and Van H. Vu. Additive Combinatorics. Cambridge Studies in Advanced
Mathematics. Cambridge University Press, 2006.

A More preliminaries

A.1 Properties of Reed-Solomon codes

The first fact we will use is that the dual vector space of a Reed-Solomon code is also a Reed-Solomon
code.

11

Fact A.1. Let C := RS[q, d]. Then C⊥ = RS[q, q − d− 1].

For t 6= 0, let Wt be the number of codewords of weight t in RS[q, d]. This is a relatively well
understood quantity.

Theorem A.2 ([EGS09]). We have:

|Wq−i| =
(
q

i

) d−i∑
j=0

(−1)j
(
q − i
j

)
(qd−i−j+1 − 1).

However, we just need the following slightly weaker bound that is easier to prove:

Proposition A.3. We have Wq−i ≤ qd+1

i! .

Proof. We have that C is a d + 1-dimensional subspace of Fq. Add i extra constraints by choosing
some set of i coordinates and restricting them to 0. As long as i < d, these new constraints strictly
reduce the dimension of C. There are exactly

(
q
i

)
ways to choose the coordinates, and the resulting

space has dimension d + 1 − i. Therefore, the number of codewords of weight at most q − i is at most

qd+1−i ·
(
q
i

)
· ≤ qd+1

i! .

The above bound is asymptotically only a factor of e away for small values of i.

A.1.1 Punctured Reed-Solomon codes

All of the statements above when instead of Reed-Solomon codes, one considers punctured Reed-Solomon
codes. For a w = (w1, . . . , wn) ∈ Fnq , and a set S ⊂ [n′], let us define

w|S = (wi)i∈S .

For a subset C ⊂ Fn′q , let us define
C|S := {w|S | w ∈ C}

We call RS[q, d]|S the S-punctured RS[q, d] code. Let C denote the RS[q, d]|n code. Since the prop-
erties we will care about are independent of the specific set S, let is just parametrize this by |S| =: n.
The following properties hold

1. C⊥ = RS[q, q − d− 1]n.

2. Let Wi be the number of codewords in C code of weight i. Then we have

Wn−i ≤
qk−ini

i!
.

Both facts can be easily checked.

A.2 Basic probability inequalities

We will use the standard (multiplicative) Chernoff bound for sums of i.i.d. Bernoulli random variables.
Let X1, . . . , Xn be independent Ber(p) random variables. Let X :=

∑
i∈[n]Xiand denote µ = IE[X] = np.

Then for any ε ∈ (0, 1), we have:

P (|X − µ| ≥ εµ) ≤ e
ε2µ
2 . (2)

We also have (a special case of) the Paley-Zygmund inequality, which states that for a nonnegative
random variable X,

P(X > 0) ≥ IE2[X]

IE[X2]
. (3)

12

A.3 Fourier analysis over Fq

For functions u, v : Fnq → C, we have a normalized inner product 〈u, v〉 := 1
qn

∑
s∈Fnq

u(s)v(s). Consider

any symmetric, non-degenerate bi-linear map χ : Fnq × Fnq → R/Z (such a map exists). For an α ∈ Fnq ,

the character function associated with α, denoted by χα : Fnq → C is given by χα(x) = e−2πiχ(α,x).

We have that for all distinct α, β ∈ Fq, we have that 〈χα, χβ〉 = 0, and every function f : Fq → C
can be written in a unique way as f(x) =

∑
α∈Fq f̂(α)χα(x). Here the f̂(α)’s are called the Fourier

coefficients, given by
f̂(α) = 〈f, χα〉.

We will state some facts that we will use in the proof of Theorem 1.7. The interested reader is
referred to the excellent book of Tao and Vu [TV06] (chapter 4) for further details.

Fact A.4. For Fnq 3 α 6= 0, we have:
〈1, χα〉 = 0.

Fact A.5 (Plancherel’s Theorem). For functions f, g : Fn → C, we have

〈f, g〉 =
∑
α

f̂(α)ĝ(α).

Fact A.6. Suppose g : Fnq → C can be written as a product g(x) =
∏
i∈[t] gi(x), then we have the Fourier

coefficients of g given by:

ĝ(α) = (ĝ1 ∗ · · · ∗ ĝt) (α)

=
∑

β1,...,βt−1

ĝ1(β1) · · · ĝt−1(βt−1)ĝt(α−
∑

i∈[q−1]

βi).

Fact A.7. If g : Fnq → C is the indicator of a linear space C, we have:

ĝ(α) =

{
|C|
|F|n , if α ∈ C⊥

0, otherwise.

A.4 Hypercontractivity and sharp thresholds

Here we state some tools from the analysis of Boolean function that we will use:

Definition A.8. We say that a function f : {0, 1}n → {0, 1} is transitive-symmetric if for every
i, j ∈ [n], there is a permutation σ ∈ Sn such that:

1. σ(i) = j

2. f(xσ(1), . . . , xσn) = f(x) for all x ∈ {0, 1}n.

Let f : {0, 1} → {0, 1} be a monotone function. We will state an important theorem by Friedgut and
Kalai, as stated in the excellent reference [O’D14], regarding sharp thresholds for balanced symmetric
monotone Boolean functions. This will be another important tool that we will use.

Theorem A.9 ([FK96]). Let f : {0, 1}n → {0, 1} be a nonconstant, monotone, transitive-symmetric
function and let F : [0, 1] → [0, 1] be the strictly increasing function defined by F (p) = P(f(p) = 1).
Let pcrit be the critical probability such that F (pcrit) = 1/2 and assume without loss of generality that
pcrit ≤ 1/2. Fix 0 < ε < 1/4 and let

η = B log(1/ε) · log(1/pcrit)

log n
,

13

where B > 0 is a universal constant. Then assuming η ≤ 1/2,

F (pcrit · (1− η)) ≤ ε, F (pcrit · (1 + η)) ≥ 1− ε.

We will use an immediate corollary of the above theorem.

Corollary A.10. Let f : {0, 1}n → {0, 1} be a nonconstant, monotone, transitive-symmetric function.
Let F : [0, 1] → [0, 1] be the strictly increasing function defined by F (p) = Pr(f(p) = 1). Let p be such

that F (p) ≥ ε, and let η = B log(1/ε) · log(1/pc)
logn . Then F (p(1 + 2η)) ≥ 1− ε.

In particular, in the above corollary, if for some ε ∈ (0, 1) we have that F−1(ε) ∈ (0, 1), then the
function f has a sharp threshold.

One easy observation that will allow us to use Theorem A.9 is the following:

Proposition A.11. The Boolean function APr : {0, 1}q×n → {0, 1} is transitive-symmetric.

Proof. For a pair of coordinates indexed by (i1, j1) and (i2, j2), it is easy to see that the map (x, y) 7→
(x + i2 − i1, y + j2 − j1) gives us what we need since the set of polynomials is invariant under these
operations.

B Proof of Theorem 1.7

First, we restate the theorem that we will prove in order to make a few more remarks:

Theorem (Theorem 1.7 restated). Let q be a prime power, and r = r(q) and ε = ε(q) be such that

q−r ≥ log q
q , and let ε ≥ ω

(
max

{
q−r,

√
qr−1 log (q1−r)

})
.

Let A1, . . . , Aq be independently chosen random subsets of F with each point picked independently
with probability least q−r(1 + ε). Then

P((A1 × · · · ×Aq) ∩ RS[q, rq] = ∅) = o(1).

Remarks Before we proceed to the proof, we first make some simple observations that hopefully make
the technical conditions on q, c, ε above seem more natural.

1. We need q to be a prime power for the existence of Fq.

2. If r is too large, i.e., if q−r ≤ log q
q (1 − δ), for some δ > 0, then we will almost surely not contain

any codeword. Indeed, we will almost surely have some i ∈ [n] such that Ai = ∅.

3. The reason for ε =
√
qr−1 log (q1−r) is more or less the same reason as above in that this helps

us prove that w.h.p., |A| is not much smaller than expected, as in Claim B.1. This is probably
not the best dependence possible, and we make no attempt to optimize. But as q−r gets closer to
log q
q , then this condition gets closer to the truth.

We now proceed to the proof.

Proof. Let us abbreviate F = Fq, denote the subspace C ≤ Fq to be the RS[q, rq] code. Let f : Fq → C be
the indicator of C, i.e., f(x) = 1 iff x ∈ C and 0 otherwise. Let Ai ⊂ F for i ∈ [n] and let gi : F→ {0, 1}
be the indicator for Ai. Let us slightly abuse notation and also think of gi : Fq → C which depends only
on the i’th variable.

We will estimate the quantity |C ∩ (A1 × · · · ×Aq) | = qq〈f, g〉. Setting |f̂(0)| =: ρ, standard steps
yield:

14

ρ−1〈f, g〉 = ρ−1
∑
α

f̂(α)ĝ(α)

=
∑
α∈C⊥

ĝ(α)

=
∑
α∈C⊥

∑
β1,...,βq−1

ĝ1(β1) · · · ĝn−1(βq−1)ĝq(α−
∑

i∈[q−1]

βi)

=
∑

β1,...,βq−1

ĝ1(β1) · · · ĝq−1(βq−1)
∑
α∈C⊥

ĝq(α−
∑

i∈[q−1]

βi)

=
∑

(α1,...,αq)∈C⊥

∏
i∈[q]

ĝi(αi)

≥
∏
i∈[q]

ĝi(0)−

∣∣∣∣∣∣
∑

(α1,...,αq)∈C⊥\{0}

∏
i∈[q]

ĝi(αi)

∣∣∣∣∣∣ . (4)

where the first equality is due to Plancherel’s identity, the third inequality is using Fact A.6, the and
last equality is because of the fact that ĝi(βi) is nonzero only if supp(βi) ⊆ {i}. Let us denote

R :=
∑

(α1,...,αq)∈C⊥\{0}

∏
i∈[q]

ĝi(αi)

 .

For α ∈ Fq, let us define M(α) =
∏
i∈[n] ĝi(αi), to be the ‘monomial’ corresponding to α. So, we

have R =
∑
C⊥\{0}M(α), and |R|2 =

∑
α,β∈C⊥\{0}M(α)M(β). By linearity of expectation, we have

IE[|R|2] =
∑

α,β∈C⊥\{0}

IE[M(α)M(β)]

=
∑

α∈C⊥\{0}

IE[M(α)M(α)] +
∑
α6=β

IE[M(α)M(β)].

For α 6= β, let t be a coordinate such that αt 6= βt. We have:

15

q2 · IE[ĝi(αi)ĝi(βi)] = IE

(∑
x∈F

gi(x)χαi(x)

)∑
y∈F

gi(x)χβi(y)

= IE

[∑
x,y

gi(x)gi(y)χαi(x)χβi(y)

]
=
∑
x,y

(
IE
[
gi(x)gi(y)χαi(x)χβi(y)

])
=
∑
x

(
IE
[
gi(x) χαi(x)χβi(x)

])
+
∑
x 6=y

(
IE
[
gi(x)gi(y)χαi(x)χβi(y)

])
= p ·

∑
x

(χαi−βi(x)) + p2 ·
∑
x 6=y

(
χαi(x)χβi(y)

)
= (p− p2) ·

∑
x

(χαi−βi(x)) + p2 ·
∑
x,y

(
χαi(x)χβi(y)

)
= (p− p2) ·

∑
x

(χαi−βi(x)) + p2

(∑
x

χαi(x)

)(∑
y

χβi(y)

)
= 0.

The last equality is because at least one of αi or βi is nonzero, and αi− βi is nonzero. Therefore, for
α 6= β, we have:

IE[M(α)M(β)] = IE

[(∏
i

ĝi(αi)

)(∏
i

ĝi(βi)

)]
=
∏
i

(
IE[ĝi(αi)ĝi(βi)]

)
= 0.

Where the second equality is because A1, . . . Aq are chosen independently. For α = β, it is easy to

see that IE[M(α)M(α)] =
∏
i∈[q] |ĝi(αi)|2. So, we have the identity:

IE[|R|2] =
∑

α∈C⊥\{0}

IE

∏
i∈[q]

|ĝi(αi)|2

=
∑

α∈C⊥\{0}

∏
i∈[q]

IE
[
|ĝi(αi)|2

]
. (5)

The following two identities are easy to check:

IE
[
|ĝi(0)|2

]
= p2 +

p(1− p)
q

(6)

IE
[
|ĝi(αi)|2

]
=
p(1− p)

q
for αi 6= 0. (7)

Equipped with 5, 6, 7, and Proposition A.3, we have:

16

IE
[
|R|2

]
=

q−1∑
i=0

Wq−ip
2i

(
1 +

1− p
pq

)2i

pq−i
(

1− p
q

)q−i

≤ ·
(

1− p
q

)q
·
q−1∑
i=0

qq−rq

i!
pq+i

(
q

1− p

)i(
1 +

1− p
pq

)2i

= ·
(

1− p
q

)q
· qq−rqpq

q−1∑
i=0

1

i!

(
pq

1− p

)i(
1 +

1− p
pq

)2i

≤ e · (1− p)q · qq−rq
(
p

q

)q
e(

2pq
1−p).

Markov’s inequality gives us:

P

(
|R| ≥

(
qe · qq−rq

(
p

q

)q
e(

2pq
1−p)(1− p)q

) 1
2

)
≤ 1

q
. (8)

On the other hand, we have:

Claim B.1. For q, c as given above, let ε = ω
(√

qr−1 log (q1−r)
)

, and p = q−r(1 + ε). Then we have:

P

∏
i∈[q]

ĝi(0) ≤ q−rq(1 + 0.9ε)0.9q

 = o(1).

The proof is postponed to the Appendix.

So, using 4, Claim B.1, and 8, and setting p = q−r(1 + ε) we have that with probability at least
1− o(1),

ρ−1〈f, g〉 ≥ q−rq(1 + 0.9ε)0.9q − q · eq−rq(1 + ε)
q
2 e

2pq
2(1−p) (1− p)

q
2

≥ q−rq(1 + ε)
q
2

(
(1 + (ε/2))0.4q − eq · e

2pq
2(1−p) (1− p)

q
2

)
.

Where the inequality follows from the fact that for x ∈ [0, 1],

(1 + 0.9x)0.9

(1 + x)0.5
≥ (1 + 0.5x)0.4.

It remains to check that if ε = ω (q−r), then ρ−1〈f, g〉 > 0, which completes the proof.

C Proof of Theorem 1.8

Here, we address the case when r = O
(

1
log q

)
. In this case, we observe that Theorem 1.7 does not give

us a sharp threshold for the random list recovery since in this case, p ∈ (0, 1). However, this case can
be handled by the second moment method and Theorem A.9.

Proof of Theorem 1.8. Let us use X to denote the number of codewords of RS[q, rq] contained in a
randomly chosen set S. Linearity of expectation gives us

17

IE[X] = qrq+1pq (9)

Again, we have that if p = q−r(1 − ε), we have that IE[X] = (1 − ε)q. And so, by Union Bound, we
have that with high probability X = 0. On the other hand, if p = q−r(1 + ε), we will show that with
high probability, X > 0. We start off by computing the second moment.

Lemma C.1. We have
IE[X2] ≤ IE[X] + e

1
p IE2[X]

Proof. Let us denote C = RS[q, rq]. For every w ∈ C, let us denote Xw for the indicator random variable
for the event {w ⊂ S}. We have:

IE[X2] =
∑
w∈C

IE[Xw] +
∑

w1,w2∈C
w1 6=w2

IE[Xw1Xw2]

= qrq+1pq +

rq+1∑
i=0

∑
w1,w2∈C

∆(w1,w2)=q−i

p2q−i

= qrq+1pq + qrq+1

n−rq∑
i=0

|Wq−i|p2q−i

≤ qrq+1pq + qrq+1

rq+1∑
i=0

qrq+1

i!
p2q−i

≤ qkpq + e
1
p
(
qrq+1pq

)2
= IE[X] + e

1
p IE2[X].

When IE[X] = ω(1), one can bound second moment by 2e
1
p IE2[X]. The Paley-Zygmund inequality 3

immediately gives:

P(X ≥ 0) ≥ 1

2e
1
p

.

Now, Corollary A.10 gives us that if p ≥ q−r
(

1 + ωp

(
1

log q

))
, then P(X > 0) = 1− o(1).

This, combined with Lemma 1.6 and Theorem 1.7 finishes the proof.

D Technical lemmas

D.1 Proofs from Section B

Proof of Claim B.1. For i ∈ [n], let define the indicator random variables

Yi = 1
[
{ĝi(0) < (1 + 0.9ε)q−r}

]
and

Zi = 1 [{ĝi(0) = 0}] .

18

Let Y =
∑
i Yi, and Z =

∑
i Zi. First off, Chernoff bound gives us that there is a constant C < 1

200

such that P(Yi = 1) ≤ e−Cε2pq, so we have IE[Y] ≤ ne−Cε2pq. Since all the Yi’s are independent, Chernoff
bound again gives us that

P
(
Y ≥ 2qe−Cε

2pq
)

= o(1). (10)

Moreover, since we have q−r ≥ log q
q , we have

P(Z > 0) = o(1) (11)

Let us abbreviate t = 2qe−Cε
2pq. Taking 10 and 11 into consideration, we have that with probability

at least 1− o(1),

∏
i∈[q]

ĝi(0) ≥ pq(1 + 0.9ε)q−te−t log q

≥ (1 + 0.9ε)q−t−
2t log q
ε

It remains to check that if ε�
√

log(pq)
pq , then t+ 2t log q

ε ≤ 0.1q. With this in mind, we compute

t+
2t log q

ε
≤ 3t log q

ε

≤ 6q · 1

(pq)ω(1)
· √pq log q

= o(q)

which finishes the proof.

D.2 Proofs from Section 2

Proof of Lemma 2.2. Consider the sequence of integers {ki}i∈N such that for every i, ki is the largest
such that

i∏
j=1

(
1− 1

2j

)kj
≥ p.

We make a basic observation:

Observation D.1. We have that k1 = blog2(1/p)c ≤ s and for all j ≥ 2, we have that kj ≤ 3.

Let ` be the largest such that k` > 0 and
∑
i∈[`] i · ki < s2. Let t =

∑
i∈[`] i · ki. Consider the CNF

given by

Cp =
∧
j∈[`]

∧
i∈kj

Cji

where the clause Cji is an ∨ of j independent variables. We first estimate p 1

2
:= P(Cp = 1) when

X1, . . . , Xn ∼ Ber
(

1
2

)
.

19

Using the fact that k1 ≤ s and Observation D.1, we have ` = Ω(
√
t). Therefore

p ≤ P(Cp = 1) ≤ p
(

1− 1

2`+1

)−4

≤ p
(

1 +
4

2Ω(
√
t)

)
.

And so for X1, . . . , Xn ∼ Ber
(

1
2 + ε

)
we bound

P(Cp = 1) =
∏̀
j=1

(
1−

(
1

2
− ε
)j)kj

=
∏̀
j=1

(
1− 1

2j
(1− 2ε)

j

)kj

≥
∏̀
j=1

(
1− 1

2j
(1− εj)

)kj
≥
∏̀
j=1

(
1− 1

2j

)kj (
1 + (εj/2j−1)

)kj
≥ p 1

2
(Cp = 1)

1 + ε
∑̀
j=1

jkj
2j−1

 ≥ p(1 + εk1).

Similarly, for X1, . . . , Xn ∼ Ber
(

1
2 − ε

)
:

P(Cp = 1) =
∏̀
j=1

(
1−

(
1

2
+ ε

)j)kj
=
∏̀
j=1

(
1− 1

2j
(1 + 2ε)

j

)kj

≤
∏̀
j=1

(
1− 1

2j
(1 + 4εj)

)kj
≤
∏̀
j=1

(
1− 1

2j

)kj (
1− εj

2j

)kj
≤ p 1

2
(Cp = 1)(1− Ω(k1ε)) ≤ p

(
1 +

1

2Ω(
√
t)
− Ω(εk1)

)
.

20 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

