
Reversible Pebble Games and the Relation Between Tree-Like
and General Resolution Space

Jacobo Torán and Florian Wörz

Universität Ulm, Germany
{jacobo.toran,florian.woerz}@uni-ulm.de

July 4, 2019

Abstract

We show a new connection between the space measure in tree-like resolution and the
reversible pebble game in graphs. Using this connection we provide several formula classes
for which there is a logarithmic factor separation between the space complexity measure
in tree-like and general resolution. We show that these separations are almost optimal by
proving upper bounds for tree-like resolution space in terms of general resolution clause and
variable space. In particular we show that for any formula F , its tree-like resolution is upper
bounded by space(π) log

(
time(π)

)
where π is any general resolution refutation of F . This

holds considering as space(π) the clause space of the refutation as well as considering its
variable space. For the concrete case of Tseitin formulas we are able to improve this bound
to the optimal bound space(π) logn, where n is the number of vertices of the corresponding
graph.

1 Introduction
Resolution is one of the best-studied systems for refuting unsatisfiable propositional formulas.
This is due to its theoretical simplicity, as well as its practical importance since it is the
proof system at the root of modern SAT solvers. Several complexity measures for the analysis
of resolution refutations have been used in the last decades. In this paper, we will mainly
concentrate on space bounds, which measure the amount of memory that is needed in a refutation.
Intuitively, the clause space (CS) measures the number of clauses required simultaneously in a
refutation, while the variable space (VS) measures the maximum number of distinct variables
kept simultaneously in memory during this process. Experimental results have shown that space
measures for resolution correlate well with the hardness of solving formulas with SAT solvers in
practice [JMNŽ12].

Tree-like resolution is a special kind of resolution that is especially important since the
original DPLL algorithm [DP60, DLL62] on which many SAT solvers are based, is equivalent to
this restriction of the resolution system. Contrary to general resolution, in tree-like resolution, if
a clause is needed more than once in a refutation, it has to be rederived each time. It is known
that general resolution can be much more efficient than tree-like resolution in terms of length
(number of clauses in a refutation) [BEGJ98, BIW04]. In [BIW04], the authors give an almost
optimal separation between general and tree-like resolution. They show that for each natural
number n, there are unsatisfiable formulas in O(n) variables that have resolution refutations of
length L, linear in n, but for which any tree-like resolution refutation of the formula requires

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 97 (2019)

length exp
(
Ω(L

logL)
)
. They also give an almost matching upper bound of exp

(
O
(L log logL

logL
))

for the tree-like resolution length of any formula that can be refuted in length L by general
resolution.

Space separations between general and tree-like resolution are much more modest. It is known
from [ET01] that all space measures considered in this paper for a formula with n variables are
between constant and n+ 2. Also, it is not hard to see that variable space coincides in general
and tree-like resolution. Therefore, we only consider the clause space measure for the case of
tree-like resolution. The first space separation between general and tree-like resolution was given
in [ET03]. There, a family of formulas (Fn)∞n=1 was presented which require tree-resolution clause
space sn but has a general resolution refutation in clause space c · sn, for some constant c < 1,
where sn is logarithmic in the number of variables of the formulas. More recently, in [JMNŽ12],
the authors gave a family of formulas (Fn)∞n=1 with O(n) variables that can be solved in constant
clause space but require Θ(logn) tree-like resolution space thus showing that both measures are
fundamentally different.

In this paper, we present a systematic study of tree-like resolution space providing several
other separations and upper bounds for this measure, which show that the logarithmic factor
in the separation of [JMNŽ12] is basically optimal. Our main tools are several versions of
pebbling games played on graphs, which have been extensively used in the past for analysing
different computation models and in particular for analysing proof systems (see [Nor15] for an
excellent survey). We formally define these games in the preliminaries. Intuitively, the idea
of the pebble games is to measure the number of pebbles needed by a single player to place a
pebble on the sink of a directed acyclic graph following certain rules. Black pebbles can only
be placed on a vertex if it is a source or if all its direct predecessors already have a pebble,
but these pebbles can be removed at any time. White pebbles (modelling non-determinism)
can be placed on any vertex at any time but can only be removed if all its direct predecessors
contain a pebble. In the reversible pebble game, pebbles can only be placed or removed from a
vertex if all the direct predecessors of the vertex contain a pebble. Based on the pebble game,
a class of contradictory formulas, called pebbling formulas, was introduced in [BW01]. These
formulas have been extremely useful for analysing several proof systems. The reason for this is
that some of the pebbling properties of the underlying graphs are translated into parameters for
the complexity of their corresponding pebbling contradictions. Known results of pebbling can
therefore be translated into proof complexity results.

The formulas used for the separation between general and tree-like resolution space in [ET03]
are pebbling formulas. An examination of this result shows that it relies on the fact that
the graphs on which the formulas are based have a black-white pebbling price that is smaller
than their black pebbling number. With this observation and using existing separation results
for pebble games, the separation in [ET03] can be significantly improved. On the one hand,
in [BIW04] the authors implicitly show that for any graph G the tree-like clause space of the
pebbling contradiction associated with G is at least as large as the black pebbling number of the
graph. On the other hand, Nordström shows in [Nor12] that for most of the graph examples
existing in the literature with a difference between their black and back-white pebbling numbers,
the resolution clause space of a version of the pebbling contradictions based on the graphs1,
is upper bounded by the black-white pebbling number of the graphs. Putting these two facts
together, it follows that there are unsatisfiable formulas that have resolution clause space O(s)
(logarithmic in the number of variables of the formulas) while their tree-like resolution clause
space is lower bounded by Ω(s2). This is the largest separation that can be obtained using this
method since it is known that the difference between the black and black-white pebbling number

1More precisely, the second degree XORification of the pebbling contradiction over the graph as defined in the
Preliminaries.

2

of any graph is at most quadratic [Mey81], and can therefore not explain the logarithmic factor
in the separation in [JMNŽ12] where the (pebbling) formulas have constant general resolution
clause space.

Our main contribution is a new connection between tree-like resolution clause space and the
reversible pebble game. We show that for any graph G, the tree-like resolution space of (a slight
modification as in footnote 1 of) the pebbling contradiction of the graph is at least the reversible
pebbling number of G and at most twice this number. More interestingly, we show that for any
unsatisfiable formula F , the tree-like resolution clause space of a refutation of F is at most the
reversible pebbling number of any refutation graph of F , not necessarily a tree-like refutation.
This result adds one more connection to the rich set of interrelations between pebbling and
resolution [Nor15]. A central tool in the proofs of these results is the Raz–McKenzie game
[RM99], a two-player game on graphs, and the fact that this game is equivalent to reversible
pebbling in a precise sense [Cha13]. The clause space measure for any formula can be exactly
characterised in terms of the black pebble game on a refutation graph of the formula [ET01].
We find the fact that tree-like clause space is upper bounded by the reversible pebble game quite
surprising.

Using these bound and known results on reversible pebbling [CLNV15, Vin17], we show in
Section 4 that there are families of pebbling formulas (Fn)∞n=1 with O(n) variables, that have
general clause space O(s) and tree-like resolution space Ω(s logn) for any function s smaller
than n1/2−ε. This separation (as well as the one in [JMNŽ12]) is almost optimal. Using the
upper bound for reversible pebbling in terms of black pebbling [Krá04], we show that for any
pebbling formula F its tree-like clause space is at most minP

(
space(P) · log time(P)

)
where P is

a black pebbling of the underlying graph of F . This means that for graphs of size n where the
smallest black pebbling space is achieved in a one-shot pebbling strategy, that is, a strategy in
which every vertex in the graph is pebbled at most once, the logn factor in the separation is
optimal and the only room for improvement is with graph families in which the optimal black
pebbling space is not one-shot. It is possible that for one such family, the logn separation factor
can be improved to a log time(P) factor. We provide however a family of graphs for which
the minimum pebbling space is obtained in a strategy that is not one-shot, but for which the
clause space separation between general and tree-like resolution is also only a logn factor. We
conjecture that this is optimal, and this separation cannot be improved for other graph classes.
The question is closely related to proving optimal upper bounds for reversible pebbling in terms
of black pebbling. Another motivation for providing this new graph family is to increase the set
of examples of formulas with concrete resolution space bounds that can be used for the testing
of SAT solvers, as done for example in [JMNŽ12].

In Section 5, we prove upper bounds on the tree-like clause space for any unsatisfiable
formula F in terms of the variable space and clause space for general resolution of the for-
mula. We use the amortised space measures for resolution introduced by Razborov in [Raz18],
that penalise configurational proofs for being unreasonably long. In his paper he defined the
notations VS∗(F `�) := minπ:F `�

(
VS(π) · log L(π)

)
and CS∗(F `�) := minπ:F `�

(
CS(π) ·

log L(π)
)
, where L(π) is the length of the configurational proof π. We show the inequalities

Tree-CS(F `�) ≤ VS∗(F `�) + 2 and Tree-CS(F `�) ≤ CS∗(F `�) + 2. The first inequality
is especially interesting since it shows that clause space can be meaningfully bounded in terms of
variable space, a question posed by Razborov in [Raz18]. Again, from the separations in Sections
4 and 6, the only room for improvement in this upper bounds is to decrease the log L(π) factor
to a logn factor, where n is the number of variables in F .

Finally, in Section 6, we give optimal separations for the space in tree-like resolution
for the class of Tseitin formulas. We show that for any graph G with n vertices and odd
marking χ the inequalities Tree-CS

(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· logn + 2 as well as

3

Tree-CS
(
Ts(G,χ) `�

)
≤ VS

(
Ts(G,χ) `�

)
· logn+ 2 hold, thus improving the separation factor

from the previous sections from logarithmic in the resolution length down to a logn factor. We
also provide a class of formulas with a matching space separation showing that this is optimal.

2 Preliminaries
For a positive integer n we write [n] to denote the set of integers {1, 2, . . . , n}. The base of all
logarithms in this paper is 2. The size of a graph is the number of vertices of the graph. Given
a directed acyclic graph (DAG) G = (V,E), we say that a vertex u is a direct predecessor of a
vertex v, if there exists a directed edge from u to v. We denote by predG(v) the set of all direct
predecessors of v in G. The maximal in-degree of a graph G is defined to be maxv∈V | predG(v)|.
A vertex in a DAG with no incoming edges is called a source and a vertex with no outgoing
edges is called a sink.

2.1 Pebble Games
Black pebbling was first mentioned implicitly in [PH70], while black-white pebbling was intro-
duced in [CS76] and has been studied extensively during the 1980s.

Note, that there exist several variants of the (black-white) pebble game in the literature. In
this paper, we focus on the variant without sliding and requiring the sink of the graph to be
pebbled at the end. For differences between these variants, we refer to the survey [Nor15], from
which we borrowed most of our notation. For the following definitions let G = (V,E) be a DAG
with a unique sink vertex z.

Definition 1 (Black and black-white pebble games). The black-white pebble game on G is
the following one-player game: At any time i of the game, we have a pebble configuration
Pi := (Bi,Wi), where Bi ∩Wi = ∅ and Bi ⊆ V is the set of black pebbles and Wi ⊆ V is the
set of white pebbles, respectively. A pebble configuration Pi−1 = (Bi−1,Wi−1) can be changed
to Pi = (Bi,Wi) by applying exactly one of the following rules:
Black pebble placement on v: If all direct predecessors of an empty vertex v have pebbles

on them, a black pebble may be placed on v. More formally, letting Bi = Bi−1 ∪ {v} and
Wi = Wi−1 is allowed if v 6∈ Bi−1 ∪Wi−1 and predG(v) ⊆ Bi−1 ∪Wi−1. In particular, a
black pebble can always be placed on an empty source vertex s, since predG(s) = ∅.

Black pebble removal from v: A black pebble may be removed from any vertex at any time.
Formally, if v ∈ Bi−1, then we can set Bi = Bi−1 \ {v} and Wi = Wi−1.

White pebble placement on v: A white pebble may be placed on any empty vertex at any
time. Formally, if v 6∈ Bi−1 ∪Wi−1, then we can set Bi = Bi−1 and Wi = Wi−1 ∪ {v}.

White pebble removal from v: If all direct predecessors of a white-pebbled vertex v have
pebbles on them, the white pebble on v may be removed. Formally, letting Bi = Bi−1 and
Wi = Wi−1 \{v} is allowed if v ∈Wi−1 and predG(v) ⊆ Bi−1∪Wi−1. In particular, a white
pebble can always be removed from a source vertex.

A black-white pebbling of G is a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such that
P0 = (∅,∅), Pt =

(
{z},∅

)
, and for all i ∈ [t] it holds that Pi can be obtained from Pi−1 by

applying exactly one of the above stated rules.
A black pebbling is a pebbling where Wi = ∅ for all i ∈ [t].

Definition 2 (Pebbling time, space, and price). The time of a pebbling P = (P0,P1, . . . ,Pt) is
time(P) := t and the space of it is space(P) := maxi∈[t] |Bi ∪Wi|. The black-white pebbling price

4

(also known as the pebbling measure or pebbling number) of G, which we will denote by BW(G),
is the minimum space of any black-white pebbling of G. The (black) pebbling price of G, denoted
by Black(G), is the minimum space of any black pebbling of G.

Observation 3 (Trivial pebbling, [Nor15]). Any DAG G has a black pebbling in space at
most |V (G)| and time at most 2 · |V (G)| simultaneously.

Definition 4 (One-shot pebbling). A black or black-white pebbling is one-shot if each v ∈ V is
pebbled at most once.

Finally, we mention the reversible pebble game introduced in [Ben89]. In the reversible
pebble game, the moves performed in reverse order should also constitute a legal black pebbling,
which means that the rules for pebble placements and removals have to become symmetric.

Definition 5 (Reversible pebble game). The reversible pebble game is the following one-player
game: At any time i of the game, we have a pebble configuration Pi ⊆ V . A pebble configuration
Pi−1 can be changed to Pi by applying exactly one of the following rules:
Pebble placement on v: If all direct predecessors of an empty vertex v have pebbles on them,

a pebble may be placed on v. More formally, letting Pi = Pi−1 ∪ {v} is allowed if v 6∈ Pi−1
and predG(v) ⊆ Pi−1. In particular, a pebble can always be placed on an empty source
vertex s, since predG(s) = ∅.

Reversible pebble removal from v: If all direct predecessors of a pebbled vertex v have
pebbles on them, the pebble on v may be removed. Formally, letting Pi = Pi−1 \ {v} is
allowed if v ∈ Pi−1 and predG(v) ⊆ Pi−1. In particular, a pebble can always be removed
from a source vertex.

A reversible pebbling of G is a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such that
P0 = ∅, Pt = {z}, and for all i ∈ [t] it holds that Pi can be obtained from Pi−1 by applying
exactly one of the above stated rules.

Definition 6 (Reversible pebbling time, space, and price). The time of a reversible pebbling
P = (P0,P1, . . . ,Pt) is time(P) := t and the space of it is space(P) := maxi∈[t] |Pt|. The reversible
pebbling price of G, which we will denote by Rev(G), is the minimum space of any reversible
pebbling of G.

2.2 Resolution
A literal over a Boolean variable x is either x itself or its negation x. A clause C = a1∨· · ·∨a` is
a (possibly empty) disjunction of literals ai over pairwise disjoint variables. The set of variables
occurring in a clause C will be denoted by Vars(C). A clause C is called unit, if |Vars(C)| = 1.
We let � denote the contradictory empty clause (the clause without any literals). A CNF formula
F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. It is often advantageous to think of clauses and
CNF formulas as sets. Without loss of generality we will assume that all clauses are non-trivial
in the sense that they do not contain both a literal and its negation. The notion of the set of
variables in a clause is extended to CNF formulas by taking unions. A CNF formula is a k-CNF,
if all clauses in it have at most k variables. An assignment/restriction α for a CNF formula F is
a function that maps some subset of Vars(F) to {0, 1}. It is applied to F , which we denote by
F�α, in the usual way (see e. g. [BW01, ST13]). We denote the empty assignment with ∅.

The standard definition of a resolution derivation of a clause D from a CNF formula F
(denoted by π : F `D) is an ordered sequence of clauses π = (C1, . . . , Ct) such that Ct = D, and

5

each clause Ci, for i ∈ [t], is either an axiom clause Ci ∈ F or is derived from clauses Cj and Ck
with j, k < i by the resolution rule

B ∨ x C ∨ x
B ∨ C . (1)

In the resolution rule (1), we call B ∨ x and C ∨ x the parents and B ∨ C the resolvent. A
derivation π : F `� of the empty clause from an unsatisfiable CNF formula F is called refutation.
Note, that resolution is a sound and complete proof system for unsatisfiable formulas in CNF.

To study space in resolution, we consider the following definitions of the resolution proof
system from [ET01, ABRW02].

Definition 7 (Configuration-style resolution). A resolution refutation π : F `� of an unsatis-
fiable CNF formula F is an ordered sequence of memory configurations (sets of clauses) π =
(M0, . . . ,Mt) such that M0 = ∅, � ∈Mt and for each i ∈ [t], the configuration Mi is obtained
from Mi−1 by applying exactly one of the following rules:
Axiom Download: Mi = Mi−1 ∪ {C} for some axiom clause C ∈ F .
Erasure: Mi = Mi−1 \ {C} for some C ∈Mi−1.2

Inference: Mi = Mi−1 ∪ {D} for some resolvent D inferred from C1, C2 ∈Mi by the resolution
rule (1).

The proof π is said to be tree-like, if we replace the inference rule with the following rule [ET01]:
Tree-like Inference: Mi =

(
Mi−1∪{D}

)
\{C1, C2} for some resolvent D inferred from C1, C2 ∈

Mi by the resolution rule (1), i. e., we delete both parent clauses immediately.

To every configurational refutation π we can associate a refutation-DAG Gπ, with the clauses
of the refutation labelling the vertices of the DAG and with edges from the parents to the resolvent
for each application of the resolution rule (1). There might be several different derivations of a
clause C during the course of the refutation, but if so, we can label each occurrence of C with a
time-stamp when it was derived and keep track of which copy of C is used where. Using this
representation, if π is tree-like, then Gπ is a tree.

Definition 8 (Complexity measures for resolution). The length3 of a resolution refutation
π = (M0, . . . ,Mt) is defined to be L(π) := t.

The clause space of a memory configuration M is defined as CS(M) := |M|, i. e., the number
of clauses in M. The variable space of a memory configuration M is defined as VS(M) :=
|
⋃
C∈M Vars(C)|, i.e., the number of distinct variables mentioned in M.4
The clause space (variable space) of a refutation π = (M0, . . . ,Mt) is defined by CS(π) :=

maxi∈[t] CS(Mi) and VS(π) := maxi∈[t] VS(Mi), respectively.
Taking the minimum over all refutations of a formula F , we define L(F `�) := minπ:F `� L(π),

CS(F `�) := minπ:F `� CS(π) and VS(F `�) := minπ:F `� VS(π) as the length, clause space
and variable space of refuting F in resolution, respectively.

2In some publications, the authors allow for subsets of the previous memory configuration to be erased. We
will not allow this, since our version is more suitable when working with pebbling. Note, that not allowing
subset-erasures can at most double the amount of configurations in a refutation. See also footnote 3.

3Note, that in the literature, the length of a proof π is sometimes defined to be the total number of axiom
downloads and inferences made in π, i. e., the total number of clauses counted with repetitions. We, however,
also consider the amount of erasure steps, since this is more natural when working with pebbling. Counting the
erasure steps can, however, only increase the length measure by a factor of 2, since every clause being deleted has
to be downloaded or inferred prior to its deletion and thus was already counted once in the length measure.

4The term variable space was used for different concepts in proof complexity. Following the (now established)
definition, we refer to the total number of literals in a memory configuration counted with repetitions as total
space.

6

Razborov introduced amortised space measures for resolution in [Raz18], that penalise
configurational proofs for being unreasonably long.

Definition 9 (Amortised space measures for resolution). The amortised clause space (amortised
variable space) of a resolution refutation π = (M0, . . . ,Mt) is defined by CS∗(π) := CS(π)·log L(π)
and VS∗(π) := VS(π) · log L(π), respectively.

Taking the minimum over all refutations of a formula F , we define the measures CS∗(F `�) :=
minπ:F `� CS∗(π) and VS∗(F `�) := minπ:F `� VS∗(π).

The following proposition is immediately clear from the definition of the clause space measure
and was first mentioned in [ET01].

Proposition 10. Let F be an unsatisfiable formula. Then CS(π) = Black(Gπ) for all resolution
refutations π : F `�.

2.3 Formula Families
As we noted in Subsection 2.1, pebbling has primarily been studied during the 1980s. However,
in the last years, there has been renewed interest in pebbling in the context of proof complexity.
This is so, because pebbling results can be partially translated into proof complexity results
by studying so-called pebbling formulas [BW01, BN11]. These are unsatisfiable CNF formulas
encoding the pebble game played on a DAG G. We define them next.

Pebbling Formulas and Their XORification

Definition 11 (Pebbling formulas). Let G = (V,E) be a DAG with a set of sources S ⊆ V
and a unique sink z. We identify every vertex v ∈ V with a propositional logic variable v. The
pebbling contradiction over G, denoted PebG, is the conjunction of the following clauses:
• for all sources s ∈ S, a unit clause s, (source axioms)
• for all non-source vertices v, the clause

∨
u∈predG(v) u ∨ v, (pebbling axioms)

• for the unique sink z, the unit clause z. (sink axiom)

Often, it turns out, that the formulas in Definition 11 are a bit too easy to refute. A good
way to make them slightly harder is to substitute some suitable Boolean function f(x1, . . . , xd)
of arity d for each variable x and expand the result to CNF. This general case is discussed
in [Nor15]. We restrict ourselves to the special case of the second degree XORification.

For notational convenience, we assume that the formula F we are trying to make harder only
has variables x, y, z, et cetera, without subscripts, so that x1, x2, y1, y2, z1, z2, et cetera, are new
variables not occurring in F .

Definition 12 (Substitution formulas, [BN08]). For a positive literal x define the XORification
of x to be x[⊕2] := {x1 ∨ x2, x1 ∨ x2}. For a negative literal y, the XORification is y[⊕2] :=
{y1 ∨ y2, y1 ∨ y2}. The XORification of a clause C = a1 ∨ · · · ∨ ak is the CNF formula

C[⊕2] :=
∧

C1∈a1[⊕2]
· · ·

∧
Ck∈ak[⊕2]

(C1 ∨ · · · ∨ Ck)

and the XORification of a CNF formula F is F [⊕2] :=
∧
C∈F C[⊕2].

Remark 13. If G has n vertices and maximal in-degree `, then PebG[⊕2] is an unsatisfi-
able 2(`+ 1)-CNF formula with at most 22(`+1) · n clauses over 2n variables.

Definition 14 (Non-authoritarian function, [BN11]). A Boolean function f(x1, . . . , xd) is called
k-non-authoritarian if no restriction ρ to {x1, . . . , xd} of size |ρ| ≤ k can fix the value of f .

7

Tseitin Formulas

Tseitin formulas encode the combinatorial principle that for all graphs the sum of the degrees of
the vertices is even. This class of formulas was introduced in [Tse68] and has been extremely
useful for the analysis of proof systems.

Definition 15 (Tseitin formulas). Let G = (V,E) be a connected undirected graph and
let χ : V → {0, 1} be a marking of the vertices of G. A marking χ is called odd if it satisfies the
property

∑
v∈V χ(v) ≡ 1 (mod 2) otherwise it is called even. Associate to every edge e ∈ E a

propositional variable e. The CNF formula PARITYv,χ(v) states that the parity of the values of
the edges that have vertex v as endpoint, coincides with χ(v), i. e.,

PARITYv,χ(v) :=
∧{∨

e3v
xa(e)
e : a(e) ∈ {0, 1}, such that

⊕
e3v

(
a(e)⊕ 1

)
6≡ χ(v)

}
.

Then, the Tseitin formula associated to the graph G and the marking χ is the CNF formula
defined by Ts(G,χ) :=

∧
v∈V (G) PARITYv,χ(v).

Fact 16 ([ET01]). Let χ be an odd marking of the vertices of a connected undirected graph G.
Then Ts(G,χ) is unsatisfiable, but for every v ∈ V (G) there exists an assignment α with
PARITYv,χ(v)�α= 0, and PARITYw,χ(w)�α= 1 for all vertices w 6= v. If the marking χ is even,
then Ts(G,χ) is satisfiable.

For a partial truth assignment α of some of the variables, applying α to Ts(G,χ) corresponds
to the following simplification of the underlying graph: Setting a variable e = {u, v} to 0
corresponds to deleting the edge e in the graph, and setting it to 1 corresponds to deleting the
edge from the graph and toggling the value of χ(u) and χ(v) in G.

2.4 Combinatorial Games for Tree-Like Clause Space in Resolution
Important tools for our results are two two-player combinatorial games. The Prover-Delayer
game is played on formulas and was introduced in [PI00] in order to prove lower bounds for
tree-like resolution length. Later it was shown in [ET03] that the game exactly characterises
tree-like resolution space. The Raz–McKenzie game is played on DAGs and was introduced
in [RM99] as a tool for studying the depth complexity of decision trees for search problems.

Definition 17 (Prover-Delayer game). The Prover-Delayer game, as described in [PI00, ET03,
BIW04], is a combinatorial game between two players, called Prover, and Delayer. It is played
on an unsatisfiable CNF formula F . The goal of Prover is to falsify some initial clause of F ,
which he can always achieve, since the formula is unsatisfiable; however, Delayer tries to retard
this as much as possible. The game is played in rounds. Each round starts with Prover querying
the value of a variable. Delayer can give one of three answers: 0, 1, or ∗. If 0 or 1 is chosen by
Delayer, no points are scored by her and the queried variable is set to the chosen bit. If Delayer
answers ∗, then Prover gets to decide the value of that variable, and Delayer scores one point.
This is the only way in which points can be scored. The game finishes when any clause in F has
been falsified (all its literals are set to 0) by the partial assignment constructed this way. If this
is not the case, the next round begins. The aim of Delayer is to win as many points as possible,
while Prover aims to minimise this quantity.

Definition 18 (Game value of the Prover-Delayer game). Let F be an unsatisfiable CNF
formula. The game value of the Prover-Delayer game played on F , denoted by PD(F), is the
greatest number of points Delayer can score on F against an optimal strategy of Prover.

8

The Prover-Delayer game exactly characterises the tree-like clause space of a formula. The
constant of the original result in [ET03, Theorem 2.2] was slightly modified to match our
definitions of clause space and the pebble game (without so-called sliding).

Theorem 19 ([ET03]). Let F be an unsatisfiable CNF formula. Then

Tree-CS(F `�) = PD(F) + 2.

Definition 20 (Raz–McKenzie game). The Raz–McKenzie game is played on a single-sink DAG
G by two players, Pebbler and Colourer. The game is played in rounds, where Pebbler and
Colourer alternate. In the first round, Pebbler places a pebble on the sink and Colourer colours
the pebble red. In all subsequent rounds, Pebbler places a pebble on an arbitrary empty vertex
of G and Colourer colours this new pebble either red or blue. The game ends when there is a
vertex with a red pebble that is either a source vertex or all its direct predecessors in the graph
have blue pebbles.

Definition 21 (Raz–McKenzie price). The Raz–McKenzie price R-Mc(G) of a single sink
DAG G is the smallest number r such that Pebbler has a strategy to make the game end in at
most r rounds regardless of how Colourer plays.

In [Cha13] it was shown that the reversible pebbling price and the Raz–McKenzie price
coincide for any single-sink DAG.

Theorem 22 ([Cha13]). For any single-sink DAG G we have R-Mc(G) = Rev(G).

3 Separations From Known Pebbling Results
Using some known results, we show that a separation between the black and black-white pebbling
price of a graph can lead to a separation between the space in tree-like and general resolution
for the corresponding pebbling formulas. Then we present some pebbling results where these
separations are achieved.

In [BIW04], the following result for the ∨2 substitution formulas was proven (with a different
additive constant). It is not hard to see that the result also holds for the ⊕2 function.

Theorem 23. For any DAG G it holds Black(G)− 1 ≤ Tree-CS(PebG[⊕2] `�).

The next result is considered as folklore. The idea behind it is that the pebbling formula
can be resolved following the order in which the vertices of the graph are being pebbled. The
constant in the O-notation depends on the maximal in-degree of the graph.

Theorem 24. For any DAG G it holds CS(PebG[⊕2] `�) = O
(
Black(G)

)
.

For the examples of graph families stated bellow, for which separations between the black and
black-white pebbling prices are known, Nordström showed in [Nor12, Theorems 1.6 and 1.8] that
the clause space of their corresponding pebbling formulas is upper bounded by the black-white
pebbling price of the graphs.

Theorem 25 ([KS91]). There is a family (Gs)∞s=1 of bounded in-degree DAGS whose size is
polynomial in s such that BW(Gs) = O(s) but Black(Gs) = Ω

(s log s
log log s

)
.

Kalyanasundaram and Schnitger [KS91] improved this to a quadratic separation.

Theorem 26 ([KS91]). There is a family (Gs)∞s=1 of bounded in-degree DAGs whose size
is exp

(
Θ(s log s)

)
such that BW(Gs) ≤ 3s+ 1 but Black(Gs) ≥ s2.

9

Note, however, that the graphs yielding the optimal quadratic separation are not of size
polynomial in s, as opposed to the first result that holds for polynomial-size graphs. Nordström
showed that for the pebbling formulas of these graphs families, resolution has the strength of
black-white pebbling.

Theorem 27 ([Nor12]). For any graph G belonging to the two mentioned graph families from
Kalyanasundaram and Schnitger, CS(PebG[⊕2] `�) ≤ BW(G).

This means that for the mentioned graph examples, the black pebbling price is a lower bound
for the tree resolution space of the corresponding formula while the black-white pebbling price is
an upper bound for the general resolution clause space. Putting these results together we obtain:

Corollary 28. There is a family of unsatisfiable formulas (Fs)∞s=1 of size polynomial in s such
that CS(Fs `�) = O(s) but Tree-CS(Fs `�) = Ω

(s log s
log log s

)
.

Corollary 29. There is a family of unsatisfiable formulas (Fs)∞s=1 of DAGs of size exp
(
Θ(s log s)

)
such that CS(Fs `�) = O(s) but Tree-CS(Fs `�) = Ω(s2).

These are the best separations that can be obtained using this method, since it was proved
in [Mey81] that the difference between the black and black-white pebbling price of any DAG can
be at most quadratic. In the next sections we show better separations by using a new connection
between tree-like resolution clause space and the reversible pebble game.

4 Separations for Pebbling Formulas via the Raz–McKenzie Game
We will now establish a connection between tree-like clause space in resolution and the Raz–
McKenzie price. We simplify the proofs by following the intuition behind the game and identify
the colour blue with 1 and the colour red with 0.

Theorem 30. For any single-sink DAG G it holds

R-Mc(G) + 2 ≤ Tree-CS(PebG[⊕2] `�) ≤ 2 · R-Mc(G) + 2.

Proof. Let G be a fixed DAG with a unique sink. We prove that R-Mc(G) ≤ PD(PebG[⊕2]) and
PD(PebG[⊕2]) ≤ 2 · R-Mc(G). The results then follow from Theorem 19.
(1) We first show the inequality PD(PebG[⊕2]) ≤ 2 · R-Mc(G) =: 2r by giving a strategy for

Prover, such that Delayer can score at most 2r points. Prover basically simulates the
strategy of Pebbler in the Raz–McKenzie game: If Pebbler pebbles a vertex v of G, Prover
will query the variables v1 and v2 of PebG[⊕2] in this order. The Raz–McKenzie game ends
after at most r rounds. We will argue, that the Prover-Delayer game also ends after at
most 2r queries. Thus, Delayer only gets a chance to score 2r points (if a variable pair gets
queried for the first time, she can always answer ∗; only the second variable of the pair
matters due to the XORification). In case the second variable of a pair gets queried, the
best choice Delayer has is to follow the strategy of Colourer and to ensure that v1 ⊕ v2 is
true under her constructed assignment, if v is coloured 1; and false if v is coloured 0. At the
end of the Raz–McKenzie game either a source vertex s in G is coloured 0, or a vertex v
of G is coloured 0, while all its direct predecessors are coloured 1. In the first case, the
source s being coloured 0 leads to the falsification of the corresponding source axiom s[⊕2]
by Delayer. In the second case, Delayer will falsify a clause of the corresponding pebbling
axioms

(∧
u∈predG(v) u ∨ v

)
[⊕2].

10

(2) Next, we show the inequality PD(PebG[⊕2]) ≥ R-Mc(G) =: r by giving a strategy for Delayer,
such that under any strategy of Prover, she scores at least r points. By Definition 21,
there is a strategy of Colourer, such that Pebbler has to pebble r vertices to end the game.
Delayer will essentially copy this strategy: The first time a variable pair gets queried, she
can answer ∗. The second time, she can copy the response of Colourer. Thus, she scores at
least r points.

Note 31. Theorem 30 can easily be generalised to arbitrary k-non-authoritarian functions
(the second degree XORification only being a special case of a 1-non-authoritarian function):
If fd is a k-non-authoritarian function of arity d and G is DAG with a unique sink, then
R-Mc(G) ≤ PD(PebG[fd]) ≤ (k + 1) · R-Mc(G).

From the equivalence between the Raz–McKenzie game and reversible pebbling we get:

Corollary 32. It holds Rev(G) + 2 ≤ Tree-CS(PebG[⊕2] `�) ≤ 2 · Rev(G) + 2 for all graphs G
with a unique sink.

From this result and Theorem 24 it follows that for any graph G with a gap between its
black and reversible pebbling prices, the same separation can be obtained between the general
and tree-like clause space of the corresponding pebbling formula. We mention some examples
for which such a separation is known:
• The path graphs. Consider Pn to be a directed path with n vertices. Bennett [Ben89]

noticed that these graphs provide a separation between black and reversible pebbling
proving that Rev(Pn) = dlogne. It was shown in [JMNŽ12] using a direct proof that
CS(PebPn [⊕2] `�) = O(1) while Tree-CS(PebPn [⊕2] `�) = Θ(logn).
• The road graphs from [CLNV15] provide a class of graphs for which the black pebbling

price is non-constant and the reversible pebbling number is larger by a logarithmic factor.

Theorem 33 ([CLNV15]). For any function s(n) = O
(
n1/2−ε) with 0 < ε < 1

2 constant there is
a family of DAGs (Gn)∞n=1 of size Θ(n) with a single sink and maximal in-degree 2 such that
Black(Gn) = O

(
s(n)

)
and Rev(Gn) = Ω

(
s(n) logn

)
.

Corollary 34. For any function s(n) = O
(
n1/2−ε) with 0 < ε < 1

2 constant there is a family of
pebbling formulas (PebGn [⊕2])∞n=1 with Θ(n) variables such that CS(PebGn [⊕2] `�) = O

(
s(n)

)
and Tree-CS(PebGn [⊕2] `�) = Ω

(
s(n) logn

)
.

The logarithmic factor in the number of vertices is almost the largest separation that can be
obtained using this method since it is known that the reversible pebbling price can be upper
bounded in terms of black pebbling space and time:

Theorem 35 ([Krá04]). If a DAG G has a black pebbling of time t and space s, the graph G
has a reversible pebbling price of at most sdlog te.

By virtue of this result and Corollary 32 we obtain:

Corollary 36. For any DAG G with a unique sink vertex it holds

Tree-CS(PebG[⊕2] `�) = O
(

min
P

(
space(P) · log time(P)

))
,

where the minimum is taken over all black pebblings P of G.

11

This shows that the given separations cannot be improved for graphs for which the minimum
black pebbling space is obtained with a one-shot strategy as it is the case for the path and road
graphs, since the pebbling time for such a strategy is n. Such an improvement could potentially
happen in graph classes for which the best pebbling space strategy is not one-shot. We present
another graph class, the two-parameter graphs Ĝ(c, k), for which the best black pebbling strategy
is not one-shot. These are a simplified version the Carlson–Savage graphs [CS82], having fan-in 2
and a single sink. We do not obtain, however, any better separation for black and reversible
pebbling prices for this family than the logn factor obtained in the previous examples. We
conjecture that this is in fact optimal. Another interesting fact is that for the new graph class,
the range of functions s for which we can show that there is graph in the family with black
pebble price s and reversible price Ω(s logn) is also s = O

(
n1/2−ε), exactly as in Theorem 33.

We have depicted the graphs of the following definition in Figures 1 and 2. Note, that our
graphs Ĝ(c, k) are simplified versions of the original Carlson–Savage graphs [CS82]. Another
adaptation of the original graphs is the family Γ(c, r) studied in [Nor15], for which an upper
bound on the reversible pebble price was recently shown in [Rez19]. We have simplified the
graphs eliminating the original pyramids since we are not analysing the black-white pebbling
price, but our lower bound on reversible pebbling can be adapted to the original graphs or those
in the family

(
Γ(c, r)

)∞
c,r=1.

Definition 37 (Simplified Carlson–Savage graphs). The class of DAGs
(
G(c, k)

)∞
c,k=1 with

parameters c, k ≥ 1 is inductively defined in k. The base case G(c, 1) is the graph with one
source node connected to c sink nodes. The graph G(c, k + 1) is composed of the graph G(c, k)
and c spines. A spine is just a path of length 2c2k. The last node of each of the spines is a
sink for G(c, k + 1). A spine is divided into 2ck sections of c consecutive vertices each. For each
section and for each i with 1 ≤ i ≤ c, there is an edge from the i-th sink of G(c, k) to the i-th
vertex in the section. In order to have single sink graphs, for k ≥ 2 we also define Ĝ(c, k) exactly
as G(c, k) but with just one spine at the k-th level (all other levels have c spines). The last
vertex of this spine is the only sink of Ĝ(c, k). The graph Ĝ(c, 1) consists of just one edge.

Lemma 38. There is a two-parameter graph family
(
Ĝ(c, k)

)∞
c,k=1 such that for any c, k ≥ 1:

(i) Ĝ(c, k) has Θ(k2c3) vertices.
(ii) Black

(
Ĝ(c, k)

)
≤ k + 1, while

(iii) Rev
(
Ĝ(c, k)

)
≥ min

{
c, (k − 1) log c+ log(k!)

}
.

Proof. The first part follows easily by inductive counting.
For part (ii) of the lemma, we show inductively over k that any sink of G(c, k) can be pebbled

using k + 1 pebbles. The result follows since Ĝ(c, k) is a subgraph of G(c, k). This is trivial
for k = 1. For bigger values of k, the first vertex in any of the spines in G(c, k) can be pebbled
by placing a pebble on the corresponding sink of G(c, k − 1), removing all the pebbles except
this one, and then pebbling the first vertex in the spine. The following strategy can be used for
any other vertex v in the spine once its direct predecessor in the spine is pebbled: remove all
the pebbles in the graph except the one on the direct spine predecessor of v, pebble the sink
connected to v in G(c, k− 1), remove all the pebbles except the 2 on the direct predecessors of v
and then place a pebble on v. For this, by the induction hypothesis, at most k + 1 pebbles are
needed.

Part (iii) is more involved. We use the equivalence between reversible pebbling and the
Raz–McKenzie game and show, also by induction over k, that the number of rounds to finish a
game on Ĝ(c, k) starting from a configuration in which less than c vertices have been coloured

12

Figure 1: Base case G(3, 1) for the simplified Carlson–Savage graph with 3 spines and sinks.

G(c, k)

Figure 2: Inductive definition of the simplified Carlson–Savage graph G(3, k + 1) with 3 spines
and sinks.

13

blue, and no vertex in the unique spine Ĝ(c, k) (except the sink) is coloured, is at least
min

{
c, (k − 1) log c + log(k!)

}
. We give a strategy for Colourer obtaining this bound on the

number of rounds. The base case is trivial. For k ≥ 1, initially the only vertex coloured red is
the unique sink of Ĝ(c, k). Let us denote the unique spine from Ĝ(c, k) as the k-spine. The game
is divided in k stages (starting at stage k and finishing at stage 1). Stage k finishes when there is
a blue vertex in the k-spine at a distance less than 2c from a red vertex. In stage k, Colourer will
only give the red colour to some vertices in the k-spine. If some vertex in G(c, k − 1) is queried
by Pebbler, Colourer always answers with the blue colour. Because of this, the game cannot
finish before the end of stage k. For simplicity we may assume that the first vertex of the k-spine
has been coloured blue (for free, this can only make the strategy of Colourer harder), also for
the clarity of exposition let us say that the k-spine is directed from left to right. The strategy of
Colourer on the k-spine is to keep the gap between the rightmost blue vertex a (initially the
initial node of the spine) and the leftmost red vertex b (initially the sink) as large as possible.
That is, for any queried vertex v in the k-spine, if v lies at the left of a, it is coloured blue, if it
is at the right of b it is coloured red and otherwise (i. e., if v is between a and b) if the distance
from a to v is smaller that or equal to the distance from v to b, then v is coloured blue, otherwise
it is coloured red. This strategy is followed by Colourer as long as the gap between a and b is
at least 2c. Once it is smaller than 2c, stage k ends. If at this moment at least c vertices have
been queried, there have been at least c rounds and the result follows. Otherwise there has to
be a spine in G(c, k − 1) without any coloured vertex on it (there are c spines). Let us call t
the sink of this spine and t′ its rightmost uncoloured successor in the k-spine. We can suppose
that at this moment Colourer colours (for free) t, t′ as well as all uncoloured vertices to the right
of t′ in the k-spine with colour red, and all the uncoloured vertices to the left of t′ in the k-spine
with blue. Again this only makes the strategy of Colourer harder since we are not counting
these rounds. But now the game has been reduced to the instance of the graph Ĝ(c, k − 1)
containing the sink t. The number of rounds in stage k is at least log(2c2k

2c) = log c+ log k (this
would happen with a binary search strategy of Pebbler on the k-spine). If in all the stages
less than c vertices are queried, by induction, the rounds to finish the game on Ĝ(c, k − 1) are
at least (k − 2) log c + log

(
(k − 1)!

)
. Adding these rounds to those from stage k we get the

result.

Theorem 39. For any function s(n) = O
(
n1/2−ε) with 0 < ε < 1

2 constant there is a family of
pebbling formulas (PebGn [⊕2])∞n=1 with Θ(n) variables such that CS(PebGn [⊕2] `�) = O

(
s(n)

)
and Tree-CS(PebGn [⊕2] `�) = Ω

(
s(n) logn

)
.

Proof. We show that for any such function s there is a graph family
(
Ĝ
(
c(n), s(n)

))∞
n=1 with

the corresponding gap between its black and reversible pebbling prices. The result follows from
Corollary 32. For any such function s define the function c(n) =

(
n
s(n)

)1/3 and for any n consider
the graph Ĝ

(
c(n), s(n)

)
. By the previous Lemma, this graph has Θ(n) vertices, black pebbling

price O(s) and reversible pebbling price Ω(s logn).

5 Upper Bounds for Tree-CS for General Formulas
Next, we provide a generalisation of Corollary 36.

Theorem 40. For any unsatisfiable formula F it holds

Tree-CS(F `�) ≤ VS∗(F `�) + 2 = min
π:F `�

(
VS(π) · log L(π)

)
+ 2.

14

Proof. Consider a configurational refutation π = (M0, . . . ,Mt) of F . Let α be the current
partial assignment constructed in the Prover-Delayer game played on the formula F . At
the beginning we have α = ∅. We give a strategy for Prover that allows him to finish the
game with at most VS(π) · log L(π) points scored by Delayer regardless of her answers. The
strategy of Prover proceeds in bisection steps. Prover keeps as an invariant in these steps
an interval I = [a, b] ⊆ [0, t] such that π[a,b] �α:=

(
Ma �α, . . . ,Mb �α

)
is a configurational

refutation of F�α. Initially, the interval I is [0, t] and F�∅= F , thus π[0,t]�∅= π is obviously a
refutation of F�∅= F . In each bisection step, Prover starts querying the variables present in the
configuration Mm, with m = ba+b

2 c, that have not been assigned yet, in any order. If Delayer
answers ∗ to some variable, Prover will assign 0 to it (actually, Prover could assign any value).
In this way α is extended to all the variables in the configuration Mm. Prover then proceeds
according to the following cases:

(i) If after the assignment to the queried variables, a clause in the configuration Mm is falsified,
Prover continues with the upper half of the proof (i. e., he updates the interval to [a,m])
and proceeds with the next bisection step.

(ii) If after the assignment to the queried variables, all the clauses in Mm are satisfied, Prover
continues with the lower half of the proof (i. e., he updates the interval to [m, b]) and
proceeds with the next bisection step.

Prover queries at most VS(π) variables in each bisection step. It remains to show that the
invariant is indeed kept and that Prover wins the game by following this strategy. The invariant
is kept, i. e., after each step, I = [a, b] ⊆ [0, t] is such that (Ma�α, . . . ,Mb�α) is a configurational
refutation of F �α. In case (i) this is true by following the resolution restriction lemma (see
e.g. [ST13]) because Mm�α contains the empty clause and thus (Ma�α, . . . ,Mm�α) is a configura-
tional refutation of F�α. In case (ii) we have Ma�α= ∅ and Mb�α3 �, yet π was a refutation
for F . Hence, for i ∈ (a, b) the axioms contained in the memory configurations Mi�α must be
downloaded from F�α. Thus, (Ma�α, . . . ,Mb�α) is a legal refutation of F�α.

Prover has to win the game since for every bisection step of the interval I, the formula F�α
has a configurational refutation, namely πI�α, of length upper bounded by 1

2L(πI). The strategy
proceeds until F�α has a configurational refutation of length 1. Then, � ∈ F�α. In other words,
the assignment α falsifies a clause in F and Prover wins the game.

Summarising, Prover queries at most VS(π) variables in each bisection step. Since there are
at most dlog L(π)e configurations that get queried, Prover in total queries at most VS(π) · log L(π)
variables. Theorem 19 yields the desired inequality.

We prove now that Theorem 40 also works for clause space. For this we show that the
tree-like clause of a formula F is always upper bounded by the reversible pebble game played on
a refutation of F . Note, that the minimum in the Theorem is taken over all possible refutations
of F , not only over the tree-like ones.

Theorem 41. For any unsatisfiable formula F with n variables it holds

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2, and

min
π:F `�

Rev(Gπ) ≤ Tree-CS(F `�)(dlogne+ 1).

Proof. Let F be an unsatisfiable formula with n variables. For the first inequality, let π be
a resolution refutation of F with a refutation-graph Gπ and Rev(Gπ) =: k. We will give a
strategy for Prover in the Prover-Delayer game under which he has to pay at most k points.
Prover basically simulates the strategy of Pebbler in the Raz–McKenzie game, which coincides
with reversible pebbling. By doing so, a partial assignment α falsifying an initial clause of F

15

will be produced. The game is divided in stages. Initially the partial assignment is the empty
assignment. In each stage, if Pebbler chooses a clause C, Prover queries the variables in C not
yet assigned by α one by one, extending the partial assignment α with the answers of Delayer,
until either:

(i) the clause C is satisfied or falsified by α, or
(ii) a variable x in C is given value ∗ by Delayer.

In case (i), Prover moves to the next stage, simulating the strategy of Pebbler assuming Colourer
has given clause C the color C �α. In case (ii), Prover extends α by assigning x with the
value that satisfies C and moves to the next stage simulating the strategy of Pebbler assuming
Colourer has given clause C the colour 1. The game is played until α falsifies a clause in F .
After at most k stages the Raz–McKenzie games finishes and therefore Delayer can score
at most k points. It is only left to show that at the end of the game a clause in F is falsified
by α. When the Raz–McKenzie game finishes, either a source vertex in Gπ is assigned colour 0
by Colourer or a vertex with all its direct predecessors being coloured 1 is coloured 0. Since α
defines Colourer answers, the first situation corresponds to α falsifying a clause in F . The
second situation is not possible since for any partial assignment α it cannot be that α satisfies
two parent clauses in a resolution proof, while falsifying their resolvent. We obtain the final
inequality by applying Theorem 19.

For the proof of the second inequality, let k := Tree-CS(F `�). By Proposition 10 we know
that there is a refutation π of F whose underlying graph Gπ is a tree with black pebbling price k.
We can suppose that the refutation is regular, that is, in every path from the empty clause to a
clause in F in the refutation tree, each variable is resolved at most once [ET01]. This implies
that the depth of the tree is at most n. For any node v in the refutation tree let Tv be the
subtree of Gπ rooted at v.

We show by induction on k that for any vertex v in Gπ, if Black(Tv) = k then there is a
strategy for Pebbler in the Raz–McKenzie game on Tv with most kdlogne rounds. For the base
case k = 1, v must be a leaf node and the game needs only one round. For k > 1, the game starts
according to the rules by Pebbler querying the root v of the subtree and Colourer answering 0.
We consider two cases, depending on whether for both predecessors nodes v1 and v2 of v in Gπ,
Black(v1) = Black(v2) = k − 1 or not. If this is the case, Pebbler queries one of them, say v1. If
the answer is 0, he continues on Tv1 and otherwise continues on Tv2 . By induction, the number
of rounds in this case is at most 2 + (k − 1)(dlogne+ 1) ≤ k(dlogne+ 1). In case it is not true
that Black(v1) = Black(v2) = k− 1, since Black(v) = k, and Gπ is a tree, one of the predecessors
of v must have pebbling number k and the other one has pebbling number smaller than k.
Pebbler considers the path of nodes starting at v and going towards the leaves, having all the
nodes in the path pebbling number k, until a node u is reached, for which both predecessors
have pebbling number k − 1. Such a node u must exist because Gπ is a tree. Let u1 be one of
the predecessors of u. The length of the path from v to u1 is at most n since the refutation is
regular. Pebbler queries the vertices in the path between v and u1 in a binary search mode,
until a vertex t is found that is coloured with colour 0 by Colourer, while its predecessor in the
path v u1 has been coloured 1. At this point, Pebbler continues playing the game on the tree
rooted at the uncoloured predecessor of t. It is also possible that all the queried nodes in the
path from v to u1 (including u1) are coloured 0 by Colourer. In this case Pebbler continues
with Tu1 . In all situations at most 1 + dlogne vertices have been queried and the game has been
reduced to a subgraph with smaller pebbling number.

There are formulas F with constant tree-like resolution space for which minπ:F `� Rev(Gπ) =
Ω
(
logn

)
. For example the formula containing a clause with n negated variables and n unit clauses

containing one of the variables each, has constant tree-resolution space while the reversible

16

pebbling price for any refutation graph is logn. It is possible however that the gap between
tree-like resolution space and the best reversible pebbling price of any refutation graph from
Theorem 41 could be improved for formulas with non-constant tree-like resolution space.

Corollary 42. For any unsatisfiable formula F it holds

Tree-CS(F `�) ≤ CS∗(F `�) + 2 = min
π:F `�

(
CS(π) · log L(π)

)
+ 2.

Proof. From the above result we get Tree-CS(F `�) ≤ minπ:F `� Rev(Gπ)+2 and by Theorem 35
this is upper bounded by minP

(
space(P) · log time(P)

)
+ 2, where the minimum is taken over

all black pebblings P of Gπ. The result follows with (a slight adaption of) Proposition 10 since
every black pebbling P of Gπ defines a configurational refutation of F with clause space equal
to space(P) and length time(P).

6 Optimal Separations for Tseitin Formulas
In this section we prove optimal separations between tree-like clause space and clause space,
as well as variable space in the context of Tseitin formulas. It is noteworthy that we thereby
implicitly improve (for the stronger case of Tree-CS) the upper bound CS

(
Ts(G,χ) `�

)
≤

VS
(
Ts(G,χ) `�

)
log |V (G)|+ 1 recently discovered in [GTT18].

Theorem 43. For any connected graph G with n vertices and odd marking χ we have

Tree-CS
(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· logn+ 2, and

Tree-CS
(
Ts(G,χ) `�

)
≤ VS

(
Ts(G,χ) `�

)
· logn+ 2.

Proof. The proof is based on the one for the lower bound for CS of Tseitin formulas from [Tor99].
Let G = (V,E) be a connected graph with n vertices, χ an odd marking, and π = (M0, . . . ,Mt)
a refutation of Ts(G,χ) with CS(π) =: k. We use π to give a strategy for Prover in the Prover-
Delayer game for which he has to pay at most k logn points. We say that a partial assignment
α of some of the variables in Ts(G,χ) is non-splitting if after applying α to the formula, the
resulting graph still has a connected component with an odd marking (odd component) of size at
least

⌈ |V |
2
⌉

and the rest are components with even markings. Consider the last configuration Ms

in π for which there is a partial assignment α fulfilling:
(i) α simultaneously satisfies all clauses in Ms and
(ii) α is non-splitting.

This stage must exist since before the initial step the empty truth assignment is trivially a
non-splitting partial assignment satisfying the clauses in M0 = ∅. At the end, the set of clauses
in the refutation contains the empty clause which cannot be satisfied by any assignment. Stage
s must exist in between.

The only new clause in configuration Ms+1 must be an axiom of Ts(G,χ) since any other
clause that could be added to the list of clauses in memory at stage s+ 1 would be a resolvent
of two clauses from stage s, but in this case any partial assignment satisfying the clauses at
stage s would also satisfy those at s+ 1. For some vertex v in G, this axiom clause introduced
at stage s+ 1 belongs to the formula PARITYv,χ(v), and v is either in an even component or in
an odd connected component of size at least

⌈ |V |
2
⌉
. Because of this, if α is a partial assignment

satisfying the conditions at stage s, there is an extension α′ of α that satisfies all the clauses at
stage s+ 1 and therefore α′ must be splitting. Let α′ be a partial truth assignment of minimal
size satisfying the clauses at stage s+ 1. The assignment α′ assigns at most k variables (one for

17

(2, 1)

(1, 1)

(2, 20)

(1, 20)

Figure 3: The grid graph G2×20.

each clause in the stage) and it is a splitting assignment. Applying it to Ts(G,χ) it does not
leave any connected component (odd or even) larger than

⌊ |V |
2
⌋
.

Prover just has to query the variables assigned in α′ thus paying at most k points. For any
answer of Delayer, the maximum odd connected component has size at most

⌊ |V |
2
⌋

and therefore
he has reduced the initial problem to another in a graph with at most n

2 many vertices. After
repeating this process at most logn times, an initial clause is falsified.

The second part of the theorem follows by considering a configurational proof π of vari-
able space k. Everything in the proof works exactly in the same way, observing that the partial
assignment α′ satisfying all clauses in memory at stage s+ 1 needs to assign at most k variables
(all those included in the configuration).

Next, we show, that the upper bounds in Theorem 43 are tight by proving that there is
a family of Tseitin formulas that provide matching lower bounds. These are the formulas
corresponding to grid graphs with constant width (see Figure 3), which can be considered as the
Tseitin version of the path graphs.

Definition 44 (Grid graphs). For a natural number ` ≥ 1, the grid graphs G2×` as depicted in
Figure 3 are given by the vertex set V (G2×`) := [2]× [`] and the edge set

E(G2×`) :=
{{

(i, j), (i′, j′)
}

: i, i′ ∈ [2], j, j′ ∈ [`], and |i− i′|+ |j − j′| = 1
}

In the following we let ` ≥ 1 be fixed and χ` be an odd marking of Ts(G2×`, χ).

Theorem 45. For the family of Tseitin formulas
(
Ts(G2×`, χ`)

)∞
`=1 with 3`−2 variables it holds

Tree-CS
(
Ts(G`, χ`) `�

)
= Θ(log `), CS

(
Ts(G`, χ`) `�

)
= O(1), and VS

(
Ts(G`, χ`) `�

)
=

O(1).

By Theorem 19 it suffices to give a strategy for Delayer such that PD(G2×`) = Ω(log `) to
show the lower bound on tree-like clause space.

Definition 46. Let G′ be a subgraph of G2×`. We define

Block(G′) := max
{
b ∈ N : G2×b is an induced subgraph of G by V (G′)

}
.

Proof of Theorem 45. The strategy of Delayer is as follows, every time an edge e is queried:
(i) If the deletion of e does not increase the number of connected components in G, Delayer

should answer ∗.
(ii) If the deletion of e cuts the graphs and both endpoints of e are separated in different

connected components, Delayer should answer in a way, that from these two components,
the component G′ with largest Block(G′) receives the odd marking.

At the beginning of the Prover-Delayer game we have Block(G2×`) = `. After each assignment
of a variable in the game we have Block(G′) ≥ b1

2 Block(G)c, where we letG denote the underlying
graph before the assignment and G′ the graph after the assignment. The Block-value of the
underlying graphs only decreases in Case (ii) and Delayer’s strategy is constructed in such a
way, that the block number is at most divided by 2. If Delayer plays according to this strategy,

18

we must have Block(G) = 0 at the beginning of some round. This means that the Block-value,
starting the game with G2×`, has to change at least Ω(log `) times before the game can end.
However, each time the Block-value changes due to the deletion of an edge e, we can associate
another edge e′ to it, that must have been queried before e and Delayer has scored at least
one point. If e is a horizontal edge, e′ is its “partner” parallel edge. If e is a vertical edge and
Block(G) decreases after the deletion of e then some adjacent horizontal edge e′ has been queried
and deleted previously, ensuring that Delayer has already scored a point.

It is left to show that CS
(
Ts(G2×`, χ) `�

)
= O(1). Consider the variables (edges) ordered

(from left to right) with
{
(1, j), (2, j)

}
≺
{
(1, j), (1, j + 1)

}
≺
{
(2, j), (2, j + 1)

}
and edges with

lower j defined to be smaller (with respect to ≺) than those with higher j for 1 ≤ j ≤ ` − 1,
and consider a resolution refutation completely resolving the variables in decreasing order (from
right to left). That is, the clauses containing variable

{
(1, `), (2, `)

}
will be first resolved with all

clauses containing this variable in negated form (in case it is possible to resolve), and so on. Since
the graph has degree at most 3, there is a small number of clauses containing this variable. Also
observe that after resolving in this way the last three variables in the ordering, the set of derived
clauses plus the initial clauses contain a subset of clauses encoding the formula Ts(G2×(`−1), χ

′)
for some odd marking χ′. The set of new derived clauses in this subset has constant size,
and the number of clauses in all the resolution configurations until this point is also constant.
Continuing in this order with the complete resolution of all the variables, we obtain a refutation
of Ts(G2×`, χ) with constant clause space and constant variable space.

7 Conclusions and Open Problems
By introducing a new connection between tree-like resolution space and the reversible pebble
game, we have studied the connection between tree-like space and space measures for general
resolution, obtaining almost optimal separations between these measures. We conjecture that
these separations are optimal and that in fact the log

(
time(π)

)
factors in the upper bounds of

Theorems 35 and 40 and Corollaries 36 and 42 can be improved to a logn factor (n being the
number of graph vertices or formula variables, depending on the setting). We have been able to
prove this for the restricted case of the Tseitin contradictions.

We have seen that a source for obtaining space separations between tree-like and general
resolution are graph classes with a gap between their reversible and black pebbling prices and we
have provided a new class of such graphs. The range of space functions s for which these graphs
exhibit a logn factor separation is s(n) = O

(
n1/2−ε) as the graph families in [CLNV15]. An

interesting question is whether there exists a graph class with such a separation for a function s
larger than n1/2.

References
[ABRW02] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigder-

son. Space complexity in propositional calculus. SIAM Journal on Computing,
31(4):1184–1211, 2002. Preliminary version in STOC ’00. Cited on page(s) 6.

[BEGJ98] Maŕıa Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. Expo-
nential separations between restricted resolution and cutting planes proof systems.
In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’98), pages 638–647, November 1998. Cited on page(s) 1.

[Ben89] Charles H Bennett. Time/space trade-offs for reversible computation. SIAM Journal
on Computing, 18(4):766–776, August 1989. Cited on page(s) 5, 11.

19

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation
of tree-like and general resolution. Combinatorica, 24(4):585–603, September 2004.
Cited on page(s) 1, 2, 8, 9.

[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal
separation of space and length in resolution. In Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’08), pages 709–718,
October 2008. Cited on page(s) 7.

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity:
Separations and trade-offs via substitutions. In Proceedings of the 2nd Symposium
on Innovations in Computer Science (ICS ’11), pages 401–416, January 2011. Full-
length version available at http://eccc.hpi-web.de/report/2010/125/. Cited on
page(s) 7.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.
Cited on page(s) 2, 5, 7.

[Cha13] Siu Man Chan. Just a pebble game. In Proceedings of the 28th Annual IEEE
Conference on Computational Complexity (CCC ’13), pages 133–143, June 2013.
Cited on page(s) 3, 9.

[CLNV15] Siu Man Chan, Massimo Lauria, Jakob Nordström, and Marc Vinyals. Hardness
of approximation in PSPACE and separation results for pebble games (Extended
abstract). In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’15), pages 466–485, October 2015. Full-length version
in [Vin17]. Cited on page(s) 3, 11, 19.

[CS76] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial
time recognizable languages. Journal of Computer and System Sciences, 13(1):25–37,
1976. Preliminary version in STOC ’74. Cited on page(s) 4.

[CS82] David A. Carlson and John E. Savage. Extreme time-space tradeoffs for graphs
with small space requirements. Information Processing Letters, 14(5):223–227, 1982.
Cited on page(s) 12.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962. Cited on
page(s) 1.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960. Cited on page(s) 1.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, 2001. Preliminary versions of these results appeared in
STACS ’99 and CSL ’99. Cited on page(s) 2, 3, 6, 7, 8, 16.

[ET03] Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike
resolution space. Information Processing Letters, 87(6):295–300, 2003. Cited on
page(s) 2, 8, 9.

[GTT18] Nicola Galesi, Navid Talebanfard, and Jacobo Torán. Cops-robber games and the
resolution of Tseitin formulas. In Proceedings of the 21th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’18), volume 10929 of Lecture
Notes in Computer Science, pages 311–326. Springer, 2018. Cited on page(s) 17.

[JMNŽ12] Matti Järvisalo, Arie Matsliah, Jakob Nordström, and Stanislav Živný. Relating
proof complexity measures and practical hardness of SAT. In Proceedings of the 18th

20

http://eccc.hpi-web.de/report/2010/125/

International Conference on Principles and Practice of Constraint Programming
(CP ’12), volume 7514 of Lecture Notes in Computer Science, pages 316–331. Springer,
October 2012. Cited on page(s) 1, 2, 3, 11.

[Krá04] Richard Královič. Time and space complexity of reversible pebbling. RAIRO –
Theoretical Informatics and Applications, 38(02):137–161, April 2004. Cited on
page(s) 3, 11.

[KS91] Balasubramanian Kalyanasundaram and George Schnitger. On the power of white
pebbles. Combinatorica, 11(2):157–171, June 1991. Preliminary version in STOC ’88.
Cited on page(s) 9.

[Mey81] Friedhelm Meyer auf der Heide. A comparison of two variations of a pebble game on
graphs. Theoretical Computer Science, 13(3):315–322, 1981. Cited on page(s) 3, 10.

[Nor12] Jakob Nordström. On the relative strength of pebbling and resolution. ACM
Transactions on Computational Logic, 13(2):16:1–16:43, April 2012. Preliminary
version in CCC ’10. Cited on page(s) 2, 9, 10.

[Nor15] Jakob Nordström. New wine into old wineskins: A survey of some pebbling classics
with supplemental results. Manuscript in preparation. Current draft version available
at http://www.csc.kth.se/˜jakobn/research/PebblingSurveyTMP.pdf, 2015.
Cited on page(s) 2, 3, 4, 5, 7, 12.

[PH70] Michael S. Paterson and Carl E. Hewitt. Comparative schematology. In Record
of the Project MAC Conference on Concurrent Systems and Parallel Computation,
pages 119–127, 1970. Cited on page(s) 4.

[PI00] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for k-SAT
(preliminary version). In Proceedings of the 11th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA ’00), pages 128–136, January 2000. Cited on page(s) 8.

[Raz18] Alexander A. Razborov. On space and depth in resolution. Computational Complexity,
27(3):511–559, 2018. Cited on page(s) 3, 7.

[Rez19] Susanna F. de Rezende. Lower Bounds and Trade-offs in Proof Complexity. PhD
thesis, KTH Royal Institute of Technology, June 2019. Available at http://
kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1318061&dswid=-4968.
Cited on page(s) 12.

[RM99] Ran Raz and Pierre McKenzie. Separation of the monotone NC hierarchy. Combi-
natorica, 19(3):403–435, March 1999. Preliminary version in FOCS ’97. Cited on
page(s) 3, 8.

[ST13] Uwe Schöning and Jacobo Torán. The Satisfiability Problem: Algorithms and
Analyses, volume 3 of Mathematics for Applications (Mathematik für Anwendungen).
Lehmanns Media, 2013. Cited on page(s) 5, 15.

[Tor99] Jacobo Torán. Lower bounds for space in resolution. In Proceedings of the 13th
International Workshop on Computer Science Logic (CSL ’99), volume 1683 of Lecture
Notes in Computer Science, pages 362–373. Springer, 1999. Cited on page(s) 17.

[Tse68] Grigori Tseitin. The complexity of a deduction in the propositional predicate calculus.
Zapiski Nauchnyh Seminarov Leningradskogo Otdelenija matematicheskogo Instituta
im. V. A. Steklova akademii Nauk SSSR (LOMI), 8:234–259, 1968. In Russian. Cited
on page(s) 8.

[Vin17] Marc Vinyals. Space in Proof Complexity. PhD thesis, KTH Royal Insti-
tute of Technology, May 2017. Available at http://www.csc.kth.se/˜jakobn/
project-proofcplx/docs/MV_PhDthesis.pdf. Cited on page(s) 3, 20.

21
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

http://www.csc.kth.se/~jakobn/research/PebblingSurveyTMP.pdf
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1318061&dswid=-4968
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1318061&dswid=-4968
http://www.csc.kth.se/~jakobn/project-proofcplx/docs/MV_PhDthesis.pdf
http://www.csc.kth.se/~jakobn/project-proofcplx/docs/MV_PhDthesis.pdf

