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Abstract

We show a new connection between the space measure in tree-like resolution and the
reversible pebble game in graphs. Using this connection, we provide several formula classes
for which there is a logarithmic factor separation between the space complexity measure in
tree-like and general resolution. We show that these separations are not far from optimal by
proving upper bounds for tree-like resolution space in terms of general resolution clause and
variable space. In particular, we show that for any formula F , its tree-like resolution space is
upper bounded by space(π) log

(
time(π)

)
, where π is any general resolution refutation of F .

This holds considering as space(π) the clause space of the refutation as well as considering its
variable space. For the concrete case of Tseitin formulas, we are able to improve this bound
to the optimal bound space(π) logn, where n is the number of vertices of the corresponding
graph.

1 Introduction
Resolution is one of the best-studied systems for refuting unsatisfiable propositional formulas.
This is due to its theoretical simplicity, as well as its practical importance since it is the
proof system at the root of many modern SAT solvers. Several complexity measures for the
analysis of resolution refutations have been used in the last decades. In this paper, we will
mainly concentrate on space bounds, which measure the amount of memory that is needed
in a resolution refutation. Intuitively, the clause space (CS) measures the number of clauses
required simultaneously in a refutation, while the variable space (VS) measures the maximum
number of distinct variables kept simultaneously in memory during this process. Experimental
results have shown that space measures for resolution correlate well with the hardness of refuting
unsatisfiable formulas with SAT solvers in practice [ABLM08, JMNŽ12].

Tree-like resolution is a restricted kind of resolution that is especially important since the
original DPLL algorithm [DP60, DLL62] on which many SAT solvers are based, is equivalent to
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this restriction of the resolution system. Contrary to general resolution, in tree-like resolution, if a
clause is needed more than once in a refutation, it has to be rederived each time. It is known that
general resolution can be exponentially more efficient than tree-like resolution in terms of length
(number of clauses in a refutation) [BEGJ98, BIW04]. In [BIW04], the authors give an almost
optimal separation between general and tree-like resolution. They show that for each natural
number n, there are unsatisfiable formulas in O(n) variables that have resolution refutations of
length L, linear in n, but for which any tree-like resolution refutation of the formula requires
length exp

(
Ω( L

logL)
)
. They also give an almost matching upper bound of exp

(
O
(L log logL

logL
))

for the tree-like resolution length of any formula that can be refuted in length L by general
resolution.

In this paper we study space separations between general and tree-like resolution. Space
separations are much more modest than the ones for length. It is known from [ET01] that all
space measures considered in this paper for a formula with n variables are between constant
and n + 2. Also, it is not hard to see that variable space coincides in general and tree-like
resolution. Therefore, we only consider the clause space measure for the case of tree-like resolution.
The first space separation between general and tree-like resolution was given in [ET03]. There,
a family of formulas (Fn)∞n=1 was presented which require tree-resolution clause space sn but
has a general resolution refutation in clause space c · sn, for some constant c < 1, where sn is
logarithmic in the number of variables of the formulas. More recently, in [JMNŽ12], a family of
formulas (Fn)∞n=1 is presented with O(n) variables that can be refuted by general resolution in
constant clause space but requires Θ(logn) tree-like resolution space, thus showing that both
measures are fundamentally different.

In this paper, we present a systematic study of tree-like resolution space providing upper
bounds for this measure, which show that the logarithmic factor in the separation of [JMNŽ12]
as well as in other separations provided here are basically optimal. Our main tools are several
versions of pebbling games played on graphs, which have been extensively used in the past for
analysing different computation models and in particular for analysing proof systems (see [Nor15]
for an excellent survey). We formally define these games in the preliminaries. Intuitively, the idea
of the pebble games is to measure the number of pebbles needed by a single player in order to
place a pebble on the sink of a directed acyclic graph following certain rules. Black pebbles can
only be placed on a vertex if it is a source or if all its direct predecessors already have a pebble,
but these pebbles can be removed at any time. White pebbles (modelling non-determinism)
can be placed on any vertex at any time but can only be removed if all its direct predecessors
contain a pebble. In the reversible pebble game, pebbles can only be placed or removed from a
vertex if all the direct predecessors of the vertex contain a pebble. Based on the pebble game,
a class of contradictory formulas, called pebbling formulas, was introduced in [BW01]. These
formulas have been extremely useful for analysing several proof systems. The reason for this is
that some of the pebbling properties of the underlying graphs can be translated into parameters
for the complexity of their corresponding pebbling contradictions. Known results of pebbling
can therefore be translated into proof complexity results.

The formulas used for the separation between general and tree-like resolution space in [ET03]
are pebbling formulas. An examination of this result shows that it relies on the fact that
the graphs on which the formulas are based have a black-white pebbling price that is smaller
than their black pebbling number. With this observation and using existing separation results
for pebble games, the separation in [ET03] can be significantly improved. On the one hand,
in [BIW04] the authors implicitly show that for any graph G the tree-like clause space of the
pebbling contradiction associated with G is at least as large as the black pebbling number of the
graph. On the other hand, Nordström shows in [Nor12] that for most of the graph examples
existing in the literature with a difference between their black and back-white pebbling numbers,
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the resolution clause space of a version of the pebbling contradictions based on the graphs1,
is upper bounded by the black-white pebbling number of the graphs. Putting these two facts
together, it follows that there are unsatisfiable formulas that have resolution clause space O(s)
(logarithmic in the number of variables of the formulas) while their tree-like resolution clause
space is lower bounded by Ω(s2). This is the largest separation that can be obtained using this
method since it is known that the difference between the black and black-white pebbling number
of any graph is at most quadratic [Mey81], and can therefore not explain the logarithmic factor
in the separation in [JMNŽ12] where the (pebbling) formulas have constant general resolution
clause space.

Our main contribution is a new connection between tree-like resolution clause space and the
reversible pebble game. We show that for any graph G, the tree-like resolution space of a (certain
kind of) pebbling contradiction 2 of the graph is at least the reversible pebbling number of G and
at most twice this number. More interestingly, we show that for any unsatisfiable CNF formula F ,
the tree-like resolution clause space of a refutation of F is at most the reversible pebbling number
of any refutation graph of F , not necessarily a tree-like refutation. This result adds one more
connection to the rich set of interrelations between pebbling and resolution [Nor15]. A central
tool in the proofs of these results is the Raz–McKenzie game [RM99], a two-player game on
graphs, and the fact that this game is equivalent to reversible pebbling in a precise sense [Cha13].
The clause space measure for any formula can be exactly characterised in terms of the black
pebble game on a refutation graph of the formula [ET01]. We find the fact that tree-like clause
space is upper bounded by the reversible pebble game quite surprising.

Using these bound and known results on reversible pebbling [CLNV15, Vin17], we show in
Section 4 that there are families of pebbling formulas (Fn)∞n=1 with O(n) variables, that have
general clause space O(s) and tree-like resolution space Ω(s logn) for any function s smaller
than n1/2−ε. This separation (as well as the one in [JMNŽ12]) is almost optimal since we also show
that for any pebbling formula F , its tree-like clause space is at most minP

(
space(P)·log time(P)

)
,

where P is a black pebbling of the underlying graph of F . This means that for graphs of size n
where the smallest black pebbling space is achieved in a one-shot pebbling strategy, that is, a
strategy in which every vertex in the graph is pebbled at most once, the logn factor in the
separation is optimal and the only room for improvement is with graph families in which the space-
optimal black pebbling is not one-shot. It is possible that for one such family, the logn separation
factor can be improved to a log time(P) factor. We provide, however, for the first time a family
of graphs for which the minimum pebbling space is obtained in a strategy that is not one-shot,
but for which the clause space separation between general and tree-like resolution is also only
a logn factor. We conjecture that this is optimal, and that this separation cannot be improved
for other graph classes. This question is closely related to proving optimal upper bounds for
reversible pebbling in terms of black pebbling. Another motivation for providing this new graph
family is to increase the set of examples of formulas with concrete resolution space bounds that
can be used for the testing of SAT solvers, as done for example in [JMNŽ12].

In Section 5, we prove upper bounds on the tree-like clause space for any unsatisfiable
CNF formula F in terms of the variable space and clause space for general resolution of
the formula. We use the amortised space measures for resolution introduced by Razborov
in [Raz18], that penalise configurational proofs for being unreasonably long. In his paper he
defined the notations VS∗(F `�) := minπ:F `�

(
VS(π) · log L(π)

)
as well as CS∗(F `�) :=

minπ:F `�
(
CS(π) · log L(π)

)
, where L(π) is the length of the configurational proof π. We show

1More precisely, the second degree XORification of the pebbling contradiction over the graph as defined in the
Preliminaries.

2More precisely, the second degree XORification of the pebbling contradiction over the graph as defined in the
Preliminaries.
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the upper bounds Tree-CS(F `�) ≤ VS∗(F `�) + 2 and Tree-CS(F `�) ≤ CS∗(F `�) + 2.
The first inequality is especially interesting since it shows that clause space can be meaningfully
bounded in terms of variable space, a question posed by Razborov in [Raz18]: CS(F `�) ≤
VS∗(F `�) + 2. Again, from the separations in Sections 4 and 6, the only room for improvement
in this upper bounds is to decrease the log L(π) factor to a logn factor, where n is the size of
the formula F .

Finally, in Section 6, we give optimal separations for the space in tree-like resolution for the
class of Tseitin formulas. We show that for any graph G with n vertices and odd marking χ, the
inequalities Tree-CS

(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· logn+ 2 and Tree-CS

(
Ts(G,χ) `�

)
≤

VS
(
Ts(G,χ) `�

)
· logn+ 2 hold, thus improving the upper bound from the previous sections

from logarithmic in the resolution length down to a logn factor. We also provide a class of
formulas with a matching space separation showing that this is optimal.

2 Preliminaries
For a positive integer n we write [n] to denote the set of integers {1, 2, . . . , n}. The base of all
logarithms in this paper is 2. The size of a graph is the number of vertices of the graph. Given
a directed acyclic graph (DAG) G = (V,E), we say that a vertex u is a direct predecessor of a
vertex v, if there exists a directed edge from u to v. We denote by predG(v) the set of all direct
predecessors of v in G. The maximal in-degree of a graph G is defined to be maxv∈V | predG(v)|.
A vertex in a DAG with no incoming edges is called a source and a vertex with no outgoing
edges is called a sink.

2.1 Pebble Games
Black pebbling was first mentioned implicitly in [PH70], while black-white pebbling was intro-
duced in [CS76] and has been studied extensively during the 1980s.

Note, that there exist several variants of the (black-white) pebble game in the literature. In
this paper, we focus on the variant without sliding and requiring the sink of the graph to be
pebbled at the end. For differences between these variants, we refer to the survey [Nor15], from
which we borrowed most of our notation. For the following definitions, let G = (V,E) be a DAG
with a unique sink vertex z.

Definition 1 (Black and black-white pebble games). The black-white pebble game on G is
the following one-player game: At any time i of the game, we have a pebble configuration
Pi := (Bi,Wi), where Bi ∩Wi = ∅ and Bi ⊆ V is the set of black pebbles and Wi ⊆ V is the
set of white pebbles, respectively. A pebble configuration Pi−1 = (Bi−1,Wi−1) can be changed
to Pi = (Bi,Wi) by applying exactly one of the following rules:
Black pebble placement on v: If all direct predecessors of an empty vertex v have pebbles

on them, a black pebble may be placed on v. More formally, letting Bi = Bi−1 ∪ {v} and
Wi = Wi−1 is allowed if v 6∈ Bi−1 ∪Wi−1 and predG(v) ⊆ Bi−1 ∪Wi−1. In particular, a
black pebble can always be placed on an empty source vertex s, since predG(s) = ∅.

Black pebble removal from v: A black pebble may be removed from any vertex at any time.
Formally, if v ∈ Bi−1, then we can set Bi = Bi−1 \ {v} and Wi = Wi−1.

White pebble placement on v: A white pebble may be placed on any empty vertex at any
time. Formally, if v 6∈ Bi−1 ∪Wi−1, then we can set Bi = Bi−1 and Wi = Wi−1 ∪ {v}.

White pebble removal from v: If all direct predecessors of a white-pebbled vertex v have
pebbles on them, the white pebble on v may be removed. Formally, letting Bi = Bi−1 and
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Wi = Wi−1 \{v} is allowed if v ∈Wi−1 and predG(v) ⊆ Bi−1∪Wi−1. In particular, a white
pebble can always be removed from a source vertex.

A black-white pebbling of G is a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such that
P0 = (∅,∅), Pt =

(
{z},∅

)
, and for all i ∈ [t] it holds that Pi can be obtained from Pi−1 by

applying exactly one of the above-stated rules.
A black pebbling is a pebbling where Wi = ∅ for all i ∈ [t].

Definition 2 (Pebbling time, space, and price). The time of a pebbling P = (P0,P1, . . . ,Pt) is
time(P) := t and the space of it is space(P) := maxi∈[t] |Bi ∪Wi|. The black-white pebbling price
(also known as the pebbling measure or pebbling number) of G, which we will denote by BW(G),
is the minimum space of any black-white pebbling of G. The (black) pebbling price of G, denoted
by Black(G), is the minimum space of any black pebbling of G.

Observation 3 (Trivial pebbling, [Nor15]). Any DAG G has a black pebbling in space at
most |V (G)| and time at most 2 · |V (G)| simultaneously.

Definition 4 (One-shot pebbling). A pebbling is one-shot if each v ∈ V is pebbled at most
once.

Finally, we mention the reversible pebble game introduced in [Ben89]. In the reversible
pebble game, the moves performed in reverse order should also constitute a legal black pebbling,
which means that the rules for pebble placements and removals have to become symmetric.

Definition 5 (Reversible pebble game). The reversible pebble game on G is the following
one-player game: At any time i of the game, we have a pebble configuration Pi ⊆ V . A pebble
configuration Pi−1 can be changed to Pi by applying exactly one of the following rules:
Pebble placement on v: If all direct predecessors of an empty vertex v have pebbles on them,

a pebble may be placed on v. More formally, letting Pi = Pi−1 ∪ {v} is allowed if v 6∈ Pi−1
and predG(v) ⊆ Pi−1. In particular, a pebble can always be placed on an empty source
vertex s, since predG(s) = ∅.

Reversible pebble removal from v: If all direct predecessors of a pebbled vertex v have
pebbles on them, the pebble on v may be removed. Formally, letting Pi = Pi−1 \ {v} is
allowed if v ∈ Pi−1 and predG(v) ⊆ Pi−1. In particular, a pebble can always be removed
from a source vertex.

A reversible pebbling of G is a sequence of pebble configurations P = (P0,P1, . . . ,Pt) such that
P0 = ∅, Pt = {z}, and for all i ∈ [t] it holds that Pi can be obtained from Pi−1 by applying
exactly one of the above-stated rules.

Definition 6 (Reversible pebbling time, space, and price). The time of a reversible pebbling
P = (P0,P1, . . . ,Pt) is time(P) := t and the space of it is space(P) := maxi∈[t] |Pi|. The reversible
pebbling price of G, which we will denote by Rev(G), is the minimum space of any reversible
pebbling of G.

2.2 Resolution
A literal over a Boolean variable x is either x itself (also denoted as x1) or its negation x (also
denoted as x0). A clause C = a1 ∨ · · · ∨ a` is a (possibly empty) disjunction of literals ai over
pairwise disjoint variables. The set of variables occurring in a clause C will be denoted by
Vars(C). A clause C is called unit if |Vars(C)| = 1. We let � denote the contradictory empty
clause (the clause without any literals). A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of
clauses. It is often advantageous to think of clauses and CNF formulas as sets. The notion of
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the set of variables in a clause is extended to CNF formulas by taking unions. A CNF formula
is a k-CNF, if all clauses in it have at most k variables. An assignment/restriction α for a CNF
formula F is a function that maps some subset of Vars(F ) to {0, 1}. It is applied to F , which
we denote by F�α, in the usual way (see e. g. [BW01, ST13]). We denote the empty assignment
with ∅.

The standard definition of a resolution derivation of a clause D from a CNF formula F
(denoted by π : F `D) is an ordered sequence of clauses π = (C1, . . . , Ct) such that Ct = D, and
each clause Ci, for i ∈ [t], is either an axiom clause Ci ∈ F or is derived from clauses Cj and Ck
with j, k < i by the resolution rule

B ∨ x C ∨ x
B ∨ C . (1)

In the resolution rule (1), we call B ∨ x and C ∨ x the parents and B ∨ C the resolvent. A
derivation π : F `� of the empty clause from an unsatisfiable CNF formula F is called refutation.
Note, that resolution is a sound and complete proof system for unsatisfiable formulas in CNF.

To study space in resolution, we consider the following definitions of the resolution proof
system from [ET01, ABRW02].

Definition 7 (Configuration-style resolution). A resolution refutation π : F `� of an unsatis-
fiable CNF formula F is an ordered sequence of memory configurations (sets of clauses) π =
(M0, . . . ,Mt) such that M0 = ∅, � ∈Mt and for each i ∈ [t], the configuration Mi is obtained
from Mi−1 by applying exactly one of the following rules:
Axiom Download: Mi = Mi−1 ∪ {C} for some axiom clause C ∈ F .
Erasure: Mi = Mi−1 \ {C} for some C ∈Mi−1.3

Inference: Mi = Mi−1 ∪ {D} for some resolvent D inferred from C1, C2 ∈Mi by the resolution
rule (1).

The proof π is said to be tree-like, if we replace the inference rule with the following rule [ET01]:
Tree-like Inference: Mi =

(
Mi−1∪{D}

)
\{C1, C2} for some resolvent D inferred from C1, C2 ∈

Mi by the resolution rule (1), i. e., we delete both parent clauses immediately.

To every configurational refutation π we can associate a refutation-DAG Gπ, with the clauses
of the refutation labelling the vertices of the DAG and with edges from the parents to the resolvent
for each application of the resolution rule (1). There might be several different derivations of a
clause C during the course of the refutation, but if so, we can label each occurrence of C with a
timestamp when it was derived and keep track of which copy of C is used where (cf. [Nor15]).
Using this representation, if π is tree-like, then Gπ is a tree.

Definition 8 (Complexity measures for resolution). The length4 of a resolution refutation
π = (M0, . . . ,Mt) is defined to be L(π) := t.

3In some publications, the authors allow for subsets of the previous memory configuration to be erased. We
will not allow this, since our version is more suitable when working with pebbling. Note, that not allowing
subset-erasures can at most double the amount of configurations in a refutation. See also footnote 4.

4Note, that in the literature, the length of a proof π is sometimes defined to be the total number of axiom
downloads and inferences made in π, i. e., the total number of clauses counted with repetitions. We, however,
also consider the amount of erasure steps, since this is more natural when working with pebbling. Counting the
erasure steps can, however, only increase the length measure by a factor of 2, since every clause being deleted has
to be downloaded or inferred prior to its deletion and thus was already counted once in the length measure.
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The clause space of a memory configuration M is defined as CS(M) := |M|, i. e., the number
of clauses in M. The variable space of a memory configuration M is defined as VS(M) :=
|
⋃
C∈M Vars(C)|, i.e., the number of distinct variables mentioned in M.5
The clause space (variable space) of a refutation π = (M0, . . . ,Mt) is defined by CS(π) :=

maxi∈[t] CS(Mi) and VS(π) := maxi∈[t] VS(Mi), respectively.
Taking the minimum over all refutations of a formula F , we define L(F `�) := minπ:F `� L(π),

CS(F `�) := minπ:F `� CS(π) and VS(F `�) := minπ:F `� VS(π) as the length, clause space
and variable space of refuting F in resolution, respectively. We define Tree-CS(F `�) :=
minπ′:F `� CS(π′), where the minimum is taken over all tree-like refutations π′ of the formula F .

Proposition 9 ([ET01]). Let F be an unsatisfiable formula. Then it holds CS(F `�) =
minπ:F `� Black(Gπ).

Razborov introduced amortised space measures for resolution in [Raz18], that penalise
configurational proofs for being unreasonably long.

Definition 10 (Amortised space measures for resolution). The amortised clause space (amortised
variable space) of a resolution refutation π is defined by CS∗(π) := CS(π) · log L(π) and
VS∗(π) := VS(π) · log L(π), respectively.

Taking the minimum over all resolution refutations of a formula F , we define CS∗(F `�) :=
minπ:F `� CS∗(π) and VS∗(F `�) := minπ:F `� VS∗(π).

2.3 Formula Families
Pebbling Formulas and Their XORification

In the last years, there has been renewed interest in pebbling in the context of proof complexity.
This is so, because pebbling results can be partially translated into proof complexity results
by studying so-called pebbling formulas [BW01, BN11]. These are unsatisfiable CNF formulas
encoding the pebble game played on a DAG G. We define them next.

Definition 11 (Pebbling formulas). Let G = (V,E) be a DAG with a set of sources S ⊆ V
and a unique sink z. We identify every vertex v ∈ V with a Boolean variable v. The pebbling
contradiction over G, denoted PebG, is the conjunction of the following clauses:
• for all sources s ∈ S, a unit clause s, (source axioms)
• for all non-source vertices v, the clause

∨
u∈predG(v) u ∨ v, (pebbling axioms)

• for the unique sink z, the unit clause z. (sink axiom)

Often, it turns out, that the formulas in Definition 11 are a bit too easy to refute. A good
way to make them slightly harder is to substitute some suitable Boolean function f(x1, . . . , xd)
of arity d for each variable x and expand the result into CNF. This general case is discussed
in [Nor15]. We restrict ourselves to the special case of the second degree XORification.

For notational convenience, we assume that the formula F we are trying to make harder only
has variables x, y, z, et cetera, without subscripts, so that x1, x2, y1, y2, z1, z2, et cetera, are new
variables not occurring in F .

5The term variable space was used for different concepts in proof complexity. Following the (now established)
definition, we refer to the total number of literals in a memory configuration counted with repetitions as total
space.
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Definition 12 (Substitution formulas, [BN08]). For a positive literal x define the XORification
of x to be x[⊕2] := {x1 ∨ x2, x1 ∨ x2}. For a negative literal y, the XORification is y[⊕2] :=
{y1 ∨ y2, y1 ∨ y2}. The XORification of a clause C = a1 ∨ · · · ∨ ak is the CNF formula

C[⊕2] :=
∧

C1∈a1[⊕2]
· · ·

∧
Ck∈ak[⊕2]

(C1 ∨ · · · ∨ Ck)

and the XORification of a CNF formula F is F [⊕2] :=
∧
C∈F C[⊕2].

Remark 13 ([BN08]). If G has n vertices and maximal in-degree `, then PebG[⊕2] is an
unsatisfiable 2(`+ 1)-CNF formula with at most 2`+1 · n clauses over 2n variables.

Definition 14 (Non-authoritarian function, [BN11]). A Boolean function f(x1, . . . , xd) is called
k-non-authoritarian if no restriction ρ to {x1, . . . , xd} of size |ρ| ≤ k can fix the value of f .

Tseitin Formulas

Tseitin formulas encode the combinatorial principle that for all graphs the sum of the degrees of
the vertices is even. This class of formulas was introduced in [Tse68] and has been extremely
useful for the analysis of proof systems.

Definition 15 (Tseitin formulas). Let G = (V,E) be a connected undirected graph and
let χ : V → {0, 1} be a marking of the vertices of G. A marking χ is called odd if it satisfies the
property

∑
v∈V χ(v) ≡ 1 (mod 2) otherwise it is called even. Associate to every edge e ∈ E a

propositional variable e. The CNF formula PARITYv,χ(v) states that the parity of the values of
the edges that have vertex v as endpoint coincides with χ(v), i. e.,

PARITYv,χ(v) :=
∧{∨

e3v
ea(e) : a(e) ∈ {0, 1}, such that

⊕
e3v

(
a(e)⊕ 1

)
6≡ χ(v)

}
.

Then, the Tseitin formula associated to the graph G and the marking χ is the CNF formula
defined by Ts(G,χ) :=

∧
v∈V PARITYv,χ(v).

For a partial truth assignment α, applying α to Ts(G,χ) corresponds to the following
simplification of the underlying graph: Setting a variable e = {u, v} to 0 corresponds to deleting
the edge e in the graph, and setting it to 1 corresponds to deleting the edge from the graph and
toggling the value of χ(u) and χ(v) in G. We denote by G�α and by χ�α the remaining graph
and marking after applying α according to this process.

Fact 16 ([Tse68, Urq87, ET01]). Let χ be an odd marking of of a connected graph G and e
an edge in G that, when deleted divides G in two connected components G1 and G2. Then for
i ∈ {1, 2} there is a partial assignment αi of variable e so that χ�αi is an odd marking of Gi.

2.4 Combinatorial Games for Tree-Like Clause Space in Resolution
Important tools for our results are two two-player combinatorial games. The Prover-Delayer
game is played on formulas and was introduced in [PI00] in order to prove lower bounds for
tree-like resolution length. Later it was shown in [ET03] that the game exactly characterises
tree-like resolution space. The Raz–McKenzie game is played on DAGs and was introduced
in [RM99] as a tool for studying the depth complexity of decision trees for search problems.
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Definition 17 (Prover-Delayer game). The Prover-Delayer game, as described in [PI00, ET03,
BIW04], is a combinatorial game between two players, called Prover (he), and Delayer (she),
played on an unsatisfiable CNF formula F . The goal of Prover is to falsify some initial clause
of F , which he can always achieve, since the formula is unsatisfiable; however, Delayer tries to
retard this as much as possible. The game is played in rounds. Each round starts with Prover
querying the value of a variable. Delayer can give one of three answers: 0, 1, or ∗. If 0 or 1 is
chosen by Delayer, no points are scored by her and the queried variable is set to the chosen bit.
If Delayer answers ∗, then Prover gets to decide the value of that variable, and Delayer scores
one point. This is the only way in which points can be scored. The game finishes when any
clause in F has been falsified (all its literals are set to 0) by the partial assignment constructed
this way. If this is not the case, the next round begins. The aim of Delayer is to win as many
points as possible, while Prover aims to minimise this quantity.

Definition 18 (Game value of the Prover-Delayer game). Let F be an unsatisfiable CNF
formula. The game value of the Prover-Delayer game played on F , denoted by PD(F ), is the
greatest number of points Delayer can score on F against an optimal strategy of Prover.

The Prover-Delayer game exactly characterises the tree-like clause space of a formula. The
constant term of the original result in [ET03, Theorem 2.2] was slightly modified to match our
definitions of clause space and the pebble game (without sliding).

Theorem 19 ([ET03]). Let F be an unsatisfiable CNF formula. Then

Tree-CS(F `�) = PD(F ) + 2.

Definition 20 (Raz–McKenzie game). The Raz–McKenzie game is played on a single-sink DAG
G by two players, Pebbler and Colourer. The game is played in rounds. In the first round,
Pebbler places a pebble on the sink and Colourer colours the pebble red. In all subsequent
rounds, Pebbler places a pebble on an arbitrary empty vertex of G and Colourer colours this
new pebble either red or blue. The game ends when there is a vertex with a red pebble that is
either a source vertex or all its direct predecessors in the graph have blue pebbles.

Definition 21 (Raz–McKenzie price). The Raz–McKenzie price R-Mc(G) of a single sink
DAG G is the smallest number r such that Pebbler has a strategy to make the game end in at
most r rounds against an optimal strategy of Colourer.

In [Cha13] it was shown that the reversible pebbling price and the Raz–McKenzie price
coincide for any single-sink DAG.

Theorem 22 ([Cha13]). For any single-sink DAG G we have R-Mc(G) = Rev(G).

3 Separations From Known Pebbling Results
Using some known results, we show that a separation between the black and black-white pebbling
price of a graph can lead to a separation between the space in tree-like and general resolution
for the corresponding pebbling formulas. Then we present some pebbling results where these
separations are achieved.

In [BIW04], the following result for the ∨2 substitution formulas was proven (with a different
additive constant). It is not hard to see that the result also holds for the ⊕2 function.

Theorem 23. For any DAG G it holds Black(G)− 1 ≤ Tree-CS(PebG[⊕2] `�).
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The next result is considered as folklore. The idea behind it is that the pebbling formula
can be resolved following the order in which the vertices of the graph are being pebbled. The
constant in the O-notation depends on the maximal in-degree of the graph.

Theorem 24. For any DAG G it holds CS(PebG[⊕2] `�) = O
(
Black(G)

)
.

For the examples of graph families stated bellow, for which separations between the black and
black-white pebbling prices are known, Nordström showed in [Nor12, Theorems 1.6 and 1.8] that
the clause space of their corresponding pebbling formulas is upper bounded by the black-white
pebbling price of the graphs.

Theorem 25 ([KS91]). There is a family (Gs)∞s=1 of bounded in-degree DAGS whose size is
polynomial in s such that BW(Gs) = O(s) but Black(Gs) = Ω

( s log s
log log s

)
.

Kalyanasundaram and Schnitger [KS91] improved this to a quadratic separation.

Theorem 26 ([KS91]). There is a family (Gs)∞s=1 of bounded in-degree DAGs whose size
is exp

(
Θ(s log s)

)
such that BW(Gs) ≤ 3s+ 1 but Black(Gs) ≥ s2.

Note, however, that the graphs yielding the optimal quadratic separation are not of size
polynomial in s, as opposed to the first result that holds for polynomial-size graphs. Nordström
showed that for the pebbling formulas of these graphs families, resolution has the strength of
black-white pebbling.

Theorem 27 ([Nor12]). For any graph G belonging to the two mentioned graph families from
Kalyanasundaram and Schnitger, CS(PebG[⊕2] `�) ≤ BW(G).

This means that for the mentioned graph examples, the black pebbling price is a lower bound
for the tree resolution space of the corresponding formula while the black-white pebbling price is
an upper bound for the general resolution clause space. Putting these results together we obtain:

Corollary 28. There is a family of unsatisfiable formulas (Fs)∞s=1 of size polynomial in s such
that CS(Fs `�) = O(s) but Tree-CS(Fs `�) = Ω

( s log s
log log s

)
.

Corollary 29. There is a family of unsatisfiable formulas (Fs)∞s=1 of DAGs of size exp
(
Θ(s log s)

)
such that CS(Fs `�) = O(s) but Tree-CS(Fs `�) = Ω(s2).

These are the best separations that can be obtained using this method, since it was proved
in [Mey81] that the difference between the black and black-white pebbling price of any DAG can
be at most quadratic. In the next sections we show better separations by using a new connection
between tree-like resolution clause space and the reversible pebble game.

4 Separations Between Tree-Like and General Resolution Space for
Pebbling Formulas Using the Raz–McKenzie Game

We will now establish a connection between tree-like clause space in resolution and the Raz–
McKenzie price. We simplify the proof by following the intuition behind the game and identify
the colour blue with 1 and the colour red with 0.

Theorem 30. For any single-sink DAG G it holds

R-Mc(G) + 2 ≤ Tree-CS(PebG[⊕2] `�) ≤ 2 · R-Mc(G) + 2.
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Proof. Let G be a fixed DAG with a unique sink. We prove that R-Mc(G) ≤ PD(PebG[⊕2]) and
PD(PebG[⊕2]) ≤ 2 · R-Mc(G). The result then follows from Theorem 19.
(1) We first show the inequality PD(PebG[⊕2]) ≤ 2 · R-Mc(G) =: 2r by giving a strategy for

Prover, such that Delayer can score at most 2r points. Prover basically simulates the
strategy of Pebbler in the Raz–McKenzie game: If Pebbler pebbles a vertex v of G, Prover
will query the variables v1 and v2 of PebG[⊕2] in this order. The Raz–McKenzie game ends
after at most r rounds. We will argue, that the Prover-Delayer game also ends after at
most 2r queries. Thus, Delayer only gets a chance to score 2r points (if a variable pair
gets queried for the first time, she can always answer ∗; only the second variable of the
pair matters due to the XORification). In case the second variable of a pair gets queried,
the best choice Delayer has is to follow the strategy of Colourer (Colourer is following an
optimal strategy, thus, if Delayer had a better answer, this would correspond to a better
answer for Colourer) and to ensure that v1 ⊕ v2 is true under her constructed assignment
if v is coloured 1; and false if v is coloured 0. At the end of the Raz–McKenzie game
either a source vertex s in G is coloured 0, or a vertex v of G is coloured 0, while all its
direct predecessors are coloured 1. In the first case, the source s being coloured 0 leads to
the falsification of the corresponding source axiom s[⊕2] by Delayer. In the second case,
Delayer will falsify a clause of the corresponding pebbling axiom

(∧
u∈predG(v) u ∨ v

)
[⊕2].

(2) Next, we show the inequality PD(PebG[⊕2]) ≥ R-Mc(G) =: r by giving a strategy for Delayer,
such that under any strategy of Prover, she scores at least r points. By Definition 21,
there is a strategy of Colourer, such that Pebbler has to pebble r vertices to end the game.
Delayer will essentially copy this strategy: The first time a variable pair gets queried, she
can answer ∗. The second time, she can copy the response of Colourer. Thus, she scores at
least r points.

Note 31. Theorem 30 can easily be generalised to arbitrary k-non-authoritarian functions
(the second degree XORification only being a special case of a 1-non-authoritarian function):
If fd is a k-non-authoritarian function of arity d and G is DAG with a unique sink, then
R-Mc(G) ≤ PD(PebG[fd]) ≤ (k + 1) · R-Mc(G).

From the equivalence between the Raz–McKenzie game and reversible pebbling we get:

Corollary 32. It holds Rev(G) + 2 ≤ Tree-CS(PebG[⊕2] `�) ≤ 2 · Rev(G) + 2 for all DAGs G
with a unique sink.

From this result and Theorem 24 it follows that for any graph G with a gap between its
black and reversible pebbling prices, the same separation can be obtained between the general
and tree-like clause space of the corresponding pebbling formula. We mention some examples
for which such a separation is known:
• The path graphs. Consider Pn to be a directed path with n vertices. Bennett [Ben89]

noticed, that these graphs provide a separation between black and reversible pebbling,
proving that Rev(Pn) = dlogne. It was shown in [JMNŽ12], using a direct proof, that
CS(PebPn [⊕2] `�) = O(1) while Tree-CS(PebPn [⊕2] `�) = Θ(logn).
• The road graphs from [CLNV15] provide a class of graphs for which the black pebbling

price is non-constant and the reversible pebbling number is larger by a logarithmic factor.

Theorem 33 ([CLNV15]). For any function s(n) = O
(
n1/2−ε) with 0 < ε < 1

2 constant there is
a family of DAGs (Gn)∞n=1 of size Θ(n) with a single sink and maximal in-degree 2 such that
Black(Gn) = O

(
s(n)

)
and Rev(Gn) = Ω

(
s(n) logn

)
.
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Corollary 34. For any function s(n) = O
(
n1/2−ε) with 0 < ε < 1

2 constant there is a family of
pebbling formulas (PebGn [⊕2])∞n=1 with Θ(n) variables such that CS(PebGn [⊕2] `�) = O

(
s(n)

)
and Tree-CS(PebGn [⊕2] `�) = Ω

(
s(n) logn

)
.

The logarithmic factor in the number of vertices is almost the largest separation that can be
obtained using this method since it is known that the reversible pebbling price can be upper
bounded in terms of black pebbling space and time:

Theorem 35 ([Krá04]). If a DAG G has a black pebbling of time t and space s, the graph G
has a reversible pebbling price of at most sdlog te.

By virtue of this result and Corollary 32 we obtain:

Corollary 36. For any DAG G with a unique sink vertex it holds

Tree-CS(PebG[⊕2] `�) = O
(

min
P

(
space(P) · log time(P)

))
,

where the minimum is taken over all black pebblings P of G.

This shows that the given separations cannot be improved for graphs for which the minimum
black pebbling space is obtained with a one-shot strategy as it is the case for the path and road
graphs, since the pebbling time for such a strategy is n. We present the first graph class for
which the best pebbling strategy is not one-shot with a separation between black and reversible
pebbling space. We do not obtain, however, any better separation than the logn factor obtained
in the previous examples. We conjecture that this is in fact optimal. Our graphs Ĝ(c, k) are
simplified versions of the original Carlson–Savage graphs [CS82]. Another adaptation of the
original graphs is the family Γ(c, r) studied in [Nor15], for which an upper bound on the reversible
pebble price was recently shown in [dR19]. We have simplified the graphs, eliminating the
original pyramids since we are not analysing the black-white pebbling price, but our lower bound
on reversible pebbling can be adapted to the original graphs or those in the family

(
Γ(c, r)

)∞
c,r=1.

We have depicted the graphs of the following definition in Figures 1 and 2.

Definition 37 (Simplified Carlson–Savage graphs). The class of DAGs
(
G(c, k)

)∞
c,k=1 with

parameters c, k ≥ 1 is inductively defined in k. The base case G(c, 1) is the graph with one
source node connected to c sink nodes. The graph G(c, k + 1) is composed of the graph G(c, k)
and c spines. A spine is just a path of length 2c2k. The last node of each of the spines is a
sink for G(c, k + 1). A spine is divided into 2ck sections of c consecutive vertices each. For each
section and for each i with 1 ≤ i ≤ c, there is an edge from the i-th sink of G(c, k) to the i-th
vertex in the section. In order to have single sink graphs, for k ≥ 2 we also define Ĝ(c, k) exactly
as G(c, k) but with just one spine at the k-th level (all other levels have c spines). The last
vertex of this spine is the only sink of Ĝ(c, k). For all c, the graph Ĝ(c, 1) consists of just one
edge.

Lemma 38. The following claims hold:
(i) Ĝ(c, k) has Θ(c3k2) vertices,

(ii) Black
(
Ĝ(c, k)

)
≤ k + 1 for any c, k ≥ 1, while

(iii) Rev
(
Ĝ(c, k)

)
≥ min

{
c, (k − 1) log c+ log(k!)

}
for any c, k ≥ 1.

Proof. The first part follows easily by inductive counting.
For part (ii) of the lemma, we show inductively over k that any sink of G(c, k) can be pebbled

using k+ 1 pebbles. The result follows since Ĝ(c, k) is a subgraph of G(c, k). The claim is trivial
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Figure 1: Base case G(3, 1) for the simplified Carlson–Savage graph with 3 spines and sinks.

G(3, k)

Figure 2: Inductive definition of the simplified Carlson–Savage graph G(3, k + 1) with 3 spines
and sinks.
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for k = 1. For bigger values of k, the first vertex in any of the spines in G(c, k) can be pebbled
by placing a pebble on the corresponding sink of G(c, k − 1), removing all the pebbles except
this one, and then pebbling the first vertex in the spine. The following strategy can be used for
any other vertex v in the spine once its direct predecessor in the spine is pebbled: remove all
the pebbles in the graph except the one on the direct spine predecessor of v, pebble the sink
connected to v in G(c, k − 1), remove all the pebbles except the 2 on the direct predecessors
of v, and then place a pebble on v. For this, by the induction hypothesis, at most k + 1 pebbles
are needed.

Part (iii) is more involved. We use the equivalence between reversible pebbling and the
Raz–McKenzie game and show, also by induction over k, that the number of rounds to finish a
game on Ĝ(c, k) starting from a configuration in which less than c vertices have been coloured
blue, and no vertex in the unique spine of Ĝ(c, k) (except the sink) is coloured, is at least
min

{
c, (k − 1) log c + log(k!)

}
. We give a strategy for Colourer obtaining this bound on the

number of rounds. The base case is trivial. For k ≥ 2, initially the only vertex coloured red is
the unique sink of Ĝ(c, k). Let us denote the unique spine from Ĝ(c, k) as the k-spine. The
game is divided in k stages (starting at stage k and finishing at stage 1). Stage k finishes when
there is a blue vertex in the k-spine at a distance less than 2c from a red vertex. In stage k, if
Colourer gives the colour red to a vertex v, this vertex has to be in the k-spine. If some vertex
in G(c, k − 1) is queried by Pebbler, Colourer always answers with the blue colour. Because of
this, the game cannot finish before the end of stage k. For simplicity we may assume that the
first vertex of the k-spine has been coloured blue (for free, this can only make the strategy of
Colourer harder), also for the clarity of exposition let us say that the k-spine is directed from
left to right. The strategy of Colourer on the k-spine is to keep the gap between the rightmost
blue vertex a (initially the initial node of the spine) and the leftmost red vertex b (initially the
sink) as large as possible. That is, for any queried vertex v in the k-spine, if v lies at the left
of a, it is coloured blue, if it is at the right of b it is coloured red and otherwise (i. e., if v is
between a and b) if the distance from a to v is smaller that or equal to the distance from v to b,
then v is coloured blue, otherwise it is coloured red. This strategy is followed by Colourer as
long as the gap between a and b is at least 2c. Once it is smaller than 2c, stage k ends. If at
this moment at least c vertices have been queried, there have been at least c rounds and the
result follows. Otherwise there has to be a spine in G(c, k − 1) without any coloured vertex
on it (there are c spines). Let us call t the sink of this spine and t′ its rightmost uncoloured
successor in the k-spine. We can suppose that at this moment Colourer colours (for free) t, t′
as well as all uncoloured vertices to the right of t′ in the k-spine with colour red, and all the
uncoloured vertices to the left of t′ in the k-spine with blue. Again this only makes the strategy
of Colourer harder since we are not counting these rounds. But now the game has been reduced
to the instance of the graph Ĝ(c, k − 1) containing the sink t. The number of rounds in stage k
is at least log(2c2k

2c ) = log c+ log k (this would happen with a binary search strategy of Pebbler
on the k-spine). If in all the stages less than c vertices are queried, by induction, the rounds to
finish the game on Ĝ(c, k − 1) are at least (k − 2) log c+ log

(
(k − 1)!

)
. Adding these rounds to

those from stage k we get the result.

Theorem 39. For any function s(n) = Θ
(
n1/5−ε) with 0 < ε < 1

5 constant there is a family of
pebbling formulas (PebGn [⊕2])∞n=1 with O(n) variables such that CS(PebGn [⊕2] `�) = O

(
s(n)

)
and Tree-CS(PebGn [⊕2] `�) = Ω

(
s(n) logn

)
, and the best strategy for pebbling the graphs Gn is

not one-shot.

Proof. We show that for any such function s there is a graph family
(
Ĝ
(
c(n), ds(n)e

))∞
n=1 with

the corresponding gap between its black and reversible pebbling prices. The result follows from
Corollary 32.
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Given any such space function s(n) = Θ
(
n1/5−ε) with 0 < ε < 1

5 constant, we define
c(n) := ds(n) · logne. This allows us to consider the graphs Ĝ

(
c(n), ds(n)e

)
. By Lemma 38 (i),

this graph has O
(
c(n)3 · ds(n)e2

)
= O

(
s(n)5 · log3 n

)
= O

(
n1−5ε · log3 n

)
= O(n) vertices. By

Lemma 38 (ii), the graph has a black pebbling number upper bounded by ds(n)e+ 1 = O(s(n)).
It only remains to show, that the reversible pebbling number of the graph is asymptotically
lower bounded by s(n) logn. For this, we consider two cases.

Case 1: min
{
c(n),

(
s(n) − 1

)
log c(n) + log

(
s(n)!

)}
= c(n). In this case, Lemma 38 (iii)

implies, that the reversible pebbling number of the graph is lower bounded by c(n), which, by
definition, is greater than or equal to s(n) logn.

Case 2: min
{
c(n),

(
s(n) − 1

)
log c(n) + log

(
s(n)!

)}
=
(
s(n) − 1

)
log c(n) + log

(
s(n)!

)
. In

this case, one can notice, that already the first term, i. e.,
(
s(n)− 1

)
log c(n) is in

Ω
((
s(n)− 1

)
log

(
s(n) logn

))
= Ω

((
s(n)− 1

)
log

(
s(n)

)
+
(
s(n)− 1

)
log logn

)
= Ω

((
s(n)− 1

)(
1/5− ε

)
logn+

(
s(n)− 1

)
log logn

)
= Ω

(
s(n) logn

)
.

5 Upper Bounds for Tree-CS for General Formulas
Next, we provide generalisations of Corollary 36 for general formulas.

Theorem 40. For any unsatisfiable formula F it holds

Tree-CS(F `�) ≤ VS∗(F `�) + 2 = min
π:F `�

(
VS(π) · log L(π)

)
+ 2.

Proof. Consider a configurational refutation π = (M0, . . . ,Mt) of F . Let α be the current
partial assignment constructed in the Prover-Delayer game played on the formula F . At
the beginning we have α = ∅. We give a strategy for Prover that allows him to finish the
game with at most VS(π) · log L(π) points scored by Delayer regardless of her answers. The
strategy of Prover proceeds in bisection steps indexed with k. Prover keeps as an invariant
in these steps an interval Ik = [ak, bk] ⊆ [0, t] such that π[ak,bk]�α:=

(
Mak
�α, . . . ,Mbk

�α
)

is a
configurational refutation of F�α for all k. Initially, I0 := [0, t], thus π[0,t]�∅= π is obviously a
refutation of F�∅= F . In each bisection step, Prover starts querying the variables present in
the configuration Mmk

, with mk = bak+bk
2 c, that have not been assigned yet, in any order. If

Delayer answers ∗ to some variable, Prover will assign 0 to it (actually, Prover could assign any
value). In this way α is extended to all the variables in the configuration Mmk

. Prover then
proceeds according to the following cases:

(i) If after the assignment to the queried variables, a clause in the configuration Mmk
is falsified,

Prover continues with the upper half of the proof (i. e., he sets Ik+1 = [ak+1, bk+1] := [ak,mk])
and proceeds with the next bisection step.

(ii) If after the assignment to the queried variables, all the clauses in Mmk
are satisfied, Prover

continues with the lower half of the proof (i. e., he sets Ik+1 = [ak+1, bk+1] := [mk, bk]) and
proceeds with the next bisection step.

Prover queries at most VS(π) variables in each bisection step. It remains to show that the
invariant is indeed kept and that Prover wins the game by following this strategy.

First, we show inductively, that the invariant is kept, i. e., after each step, Ik+1 = [ak+1, bk+1] ⊆
[0, t] is such that (Mak+1�α, . . . ,Mbk+1�α) is a configurational refutation of F�α. In case (i) this is
true by following the Resolution Restriction Lemma (see e.g. [ST13]) because Mbk+1�α= Mmk

�α
contains the empty clause and thus (Mak+1�α, . . . ,Mmk

�α) is a configurational refutation of F�α.
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In case (ii) we have Mmk
�α= ∅ and Mbk

�α3 � by the induction hypothesis, yet π was a refutation
for F . Hence, for i ∈ (ak, bk) the axioms contained in the memory configurations Mi�α must be
downloaded from F�α. Thus, (Mak+1�α, . . . ,Mbk+1�α) is a legal refutation of F�α.

Prover has to win the game since for every k, the formula F�α has a configurational refutation,
namely πIk

�α, of length upper bounded by 1
2L(πIk−1). The strategy proceeds until F �α has

a configurational refutation of length 1. Then, � ∈ F �α. In other words, the constructed
assignment α falsifies a clause in F and Prover wins the game.

Summarising, Prover queries at most VS(π) variables in each bisection step and since
there are at most dlog L(π)e configurations that get queried, Prover in total queries at most
VS(π) · log L(π) variables. Theorem 19 yields the desired inequality.

We prove now that Theorem 40 also works for clause space. For this, we show that the
tree-like clause space of a formula F is always upper bounded by the reversible pebble game
played on a refutation of F . Note, that the minimum in the theorem is taken over all possible
refutations of F , not only over the tree-like ones.

The inequality in Theorem 41 works only in one direction. For example the formula with
a clause with n negated variables and n unit clauses containing one of the variables each, has
constant tree-resolution space while the reversible pebbling price for any refutation graph is
at least logn. It is possible however that the gap between tree-like resolution space and the
best reversible pebbling price of any refutation graph from Theorem 41 could be improved for
formulas with non-constant tree-like resolution space.

Theorem 41. For any unsatisfiable formula F with n variables it holds

Tree-CS(F `�) ≤ min
π:F `�

Rev(Gπ) + 2, and

min
π:F `�

Rev(Gπ) ≤ Tree-CS(F `�)
(
dlogne+ 1

)
.

Proof. Let F be an unsatisfiable formula with n variables.
For proving the first inequality, let π be a resolution refutation of F with a refutation-

graph Gπ and Rev(Gπ) =: k. We will use Theorem 19, as well as Theorem 22 applied to Gπ:
It suffices to give a strategy for Prover in the Prover-Delayer game played on F under which
he has to pay at most k points. Prover basically simulates the strategy of Pebbler in the
Raz–McKenzie game played on Gπ, which coincides with reversible pebbling. By doing so, a
partial assignment α falsifying an initial clause of F will be produced. The game is divided
in stages. Initially the partial assignment is the empty assignment. In each stage, if Pebbler
chooses a clause C ∈ V (Gπ), Prover queries the variables in C not yet assigned by α one by one,
extending the partial assignment α with the answers of Delayer, until either:

(i) the clause C is satisfied or falsified by α, or
(ii) a variable x in C is given value ∗ by Delayer.

In case (i), Prover moves to the next stage, simulating the strategy of Pebbler assuming Colourer
has given clause C the colour C �α. In case (ii), Prover extends α by assigning x with the
value that satisfies C and moves to the next stage, simulating the strategy of Pebbler, assuming
Colourer has given clause C the colour 1. The game is played until α falsifies a clause in F .
After at most k stages the Raz–McKenzie games finishes and therefore Delayer can score
at most k points. It is only left to show that at the end of the game a clause in F is falsified
by α. When the Raz–McKenzie game finishes, either a source in Gπ is assigned colour 0 by
Colourer, or a vertex with all its direct predecessors being coloured 1 is coloured 0. Since α
defines Colourer’s answers, the first situation corresponds to α falsifying a clause in F . The
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second situation is not possible since for any partial assignment α it cannot be that α satisfies
two parent clauses in a resolution proof, while falsifying their resolvent.

For the proof of the second inequality, let k := Tree-CS(F `�). By Proposition 9, we know
that there is a refutation π of F whose underlying graph Gπ is a tree with black pebbling price k.
We can suppose that the refutation is regular, that is, in every path from the empty clause to a
clause in F in the refutation tree, each variable is resolved at most once [ET01, Theorem 5.1].
This implies that the depth of the tree is at most n. For any node v in the refutation tree let
Tv be the subtree of Gπ rooted at v. For the sake of convenience, we refer to Black(Tv) as the
pebbling number of v.

We show by induction on κ that for any vertex v in Gπ, if Black(Tv) = κ then there is a
strategy for Pebbler in the Raz–McKenzie game on Tv with most κ(dlogne + 1) rounds. For
the base case κ = 1, the vertex v must be a leaf node and the game needs only one round.
For κ > 1, the game starts, according to the rules, by Pebbler querying the root v of the subtree
and Colourer answering 0. We consider two cases, depending on whether for both predecessors
v1 and v2 of v in Gπ, Black(Tv1) = Black(Tv2) = κ− 1 or not. In the former case, Pebbler queries
one of them, say v1. If the answer is 0, he continues on Tv1 and otherwise continues on Tv2 . By
induction, the number of rounds in this case is at most 2 + (κ− 1)(dlogne+ 1) ≤ κ(dlogne+ 1).
In case, it is not true, that Black(Tv1) = Black(Tv2) = κ− 1, since Black(Tv) = κ, and Gπ is a
tree, one of the trees Tv1 or Tv2 leading to v must have pebbling number κ and the other one
must have pebbling number smaller than κ. Pebbler considers the path of nodes starting at v
and going towards the leaves, having all the nodes in the path pebbling number κ, until a node u
is reached, for which both predecessors have pebbling number κ− 1. Such a node u must exist
because Gπ is a tree. Let u1 be one of the predecessors of u. The length of the path from v to u1
is at most n since the refutation is regular. Pebbler queries the vertices in the path between v
and u1 with binary search, until a vertex t is found that is coloured with colour 0 by Colourer,
while its predecessor in the path v  u1 has been coloured 1. At this point, Pebbler continues
playing the game on the tree rooted at the uncoloured predecessor of t. It is also possible that
all the queried nodes in the path from v to u1 (including u1) are coloured 0 by Colourer. In this
case Pebbler continues with Tu1 . In all situations at most 1 + dlogne vertices have been queried
and the game has been reduced to a subgraph with smaller pebbling number.

Corollary 42. For any unsatisfiable formula F it holds

Tree-CS(F `�) ≤ CS∗(F `�) + 2 = min
π:F `�

(
CS(π) · log L(π)

)
+ 2.

Proof. By Theorem 35, minπ:F `� Rev(Gπ) + 2 ≤ minP
(
space(P) · log time(P)

)
+ 2, where the

minimum is taken over all black pebblings P of Gπ. The result follows with (a slight adaption
of) Proposition 9 since every black pebbling P of Gπ defines a configurational refutation of F
with clause space equal to space(P) and length time(P).

6 Optimal Separations for Tseitin Formulas
In this section, we prove optimal separations between tree-like clause space and variable space, as
well as clause space in the context of Tseitin formulas. This complements the relations between
clause space and variable space of Tseitin formulas recently given in [GTT18].

Theorem 43. For any connected graph G with n vertices and odd marking χ we have

Tree-CS
(
Ts(G,χ) `�

)
≤ CS

(
Ts(G,χ) `�

)
· logn+ 2, and

Tree-CS
(
Ts(G,χ) `�

)
≤ VS

(
Ts(G,χ) `�

)
· logn+ 2.
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Proof. The proof is based on the one for the lower bound for CS of Tseitin formulas from [Tor99].
Let G = (V,E) be a connected graph with n vertices, χ an odd marking, and π = (M0, . . . ,Mt)
a refutation of Ts(G,χ) with CS(π) =: k. We use π to give a strategy for Prover in the
Prover-Delayer game for which he has to pay at most k logn points.

We say that a partial assignment α of some of the variables in Ts(G,χ) is non-splitting if
after applying α to the formula, the resulting graph still has a connected component with an odd
marking (odd component) of size at least

⌈ |V |
2
⌉
, and the rest are components with even markings.

Consider the last configuration Ms in π for which there is a partial assignment α fulfilling:
(i) α simultaneously satisfies all clauses in Ms, and
(ii) α is non-splitting.

This stage must exist since before the initial step the empty truth assignment is trivially
a non-splitting partial assignment satisfying the clauses in M0 = ∅. At the end, the last
configuration Mt in the refutation contains the empty clause which cannot be satisfied by any
assignment. Thus, stage s must exist in between.

The step from s to s+ 1 was no deletion step (otherwise this would be a contradiction to the
maximality of s). The only new clause in Ms+1 must be an axiom C of Ts(G,χ) since any other
clause that could be added to the list of clauses in memory at stage s+ 1 would be a resolvent of
two clauses from stage s, but in this case any partial assignment satisfying the clauses at stage s
would also satisfy those at s + 1. For some vertex v in G, this axiom clause C introduced at
stage s+ 1 belongs to the formula PARITYv,χ(v). Let α be a partial assignment of minimal size
satisfying the conditions at stage s. It is possible to extend α to satisfy the clause C�α since v
either belongs to an even component in (G�α, χ�α) or to the large odd component in this graph
and therefore C�α 6= �. Because of this, vertex v must belong to the unique odd component
since otherwise α could be extended in a non-splitting way.

Let C�α= (`1, . . . , `m), m ≥ 1, where the `i’s are literals corresponding to the edges with
endpoint v in G�α. Observe that deleting any of these edges ei in C �α cuts the connected
component of v in two pieces because otherwise assigning any value to the corresponding edge
would not modify the size of the connected components in C�α and there would be a non-splitting
way to extend α to e satisfying C. Also, any component remaining after assigning all the literals
in C�α must have size at most

⌊ |V |
2
⌋

since otherwise there would be a way to extend α satisfying C
and producing an odd marking for the largest such component (Fact 16), and this extension
would be non-splitting.

The strategy of Prover is to query the variables assigned in α thus paying at most k − 1
points and obtaining a partial assignment γ from Delayer. If at this point one of the connected
components of size at most

⌊ |V |
2
⌋

is odd then Prover moves to this component and starts playing
the game on it. Otherwise Prover queries the variables in C�γ one by one. If for a variable ei
Delayer answers with ∗, Prover just has to assign ei so that the smallest of the two components
that appear in G�γ after assigning ei is odd (not necessarily satisfying C�γ). This is always
possible because of Fact 16. If no ∗ is answered, Prover queries the next variable until no variable
in C�γ is left. Let γ′ be the assignment obtained this way. Either γ′ falsifies C and the game
ends, or it satisfies the clause and in this case all the components (odd or even) remaining after
applying γ′ have size at most

⌊ |V |
2
⌋
. In every case, after applying γ′ Prover wins the game or

there is an odd connected component of size at most half as large as the initial graph. The
original problem has been reduced to another in a graph with at most n

2 many vertices. Also
Prover has to pay at most k for obtaining γ′. After repeating this process at most logn times,
an initial clause is falsified.

The second part of the theorem is a little simpler and follows by considering a configurational
proof π of variable space k. Everything in the above proof works in the same way, observing
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(2, 1)

(1, 1)

(2, 20)

(1, 20)

Figure 3: The grid graph G2×20.

that the partial assignment α satisfying all clauses in memory at stage s, when extended to
all the variables in the new clause at stage s+ 1 needs to assign at most k variables (all those
included in the configuration) and is either splitting or falsifies the axiom. Observe that this
implies that in every configurational proof there is a point in which every assignment to the
variables in the configuration is spliting.

Next, we show, that the upper bounds in Theorem 43 are tight by proving that there is a
family of Tseitin formulas that provide matching lower bounds. These are formulas corresponding
to grid graphs with constant width (see Figure 3), which can be considered as the Tseitin version
of path graphs.

Definition 44 (Grid graphs). For a natural number ` ≥ 1, the grid graphs G2×` as depicted in
Figure 3 are given by the vertex set V (G2×`) := [2]× [`] and the edge set

E(G2×`) :=
{{

(i, j), (i′, j′)
}

: i, i′ ∈ [2], j, j′ ∈ [`], and |i− i′|+ |j − j′| = 1
}
.

Theorem 45. For the family of Tseitin formulas
(
Ts(G2×`, χ`)

)∞
`=1 with 3`−2 variables it holds

Tree-CS
(
Ts(G`, χ`) `�

)
= Θ(log `), CS

(
Ts(G`, χ`) `�

)
= O(1), and VS

(
Ts(G`, χ`) `�

)
=

O(1).

Proof. To show the lower bound on tree-like clause space with Theorem 19, we give a strategy for
Delayer such that he scores Ω(log `) points playing on G2×`. In the following, for a subgraph G′
of G2×`, we define

Block(G′) := max
{
b ∈ N : there is a subgraph of G′ that is isomorphic to G2×b

}
.

The strategy of Delayer is as follows:
(a) If an edge e in an even component is queried, Delayer should answer according to some

assignment satisfying this component.
(b) If an edge e in an odd component is queried, Delayer proceed as follows:

(i) If the deletion of e does not increase the number of connected components in G, Delayer
should answer ∗.

(ii) If the deletion of e cuts the graph and both endpoints of e are separated in different
connected components, Delayer should answer in a way, that from these two components,
the component G′ with largest Block(G′) receives the odd marking.

At the beginning of the Prover-Delayer game we have Block(G2×`) = `. After each assignment of
a variable in the game we have Block(G′) ≥ b1

2 Block(G)c, where we let G denote the underlying
graph before the assignment and G′ the graph after the assignment: Notice, that rule (b)(ii)
guarantees that the component with the largest Block-value always receives an odd marking.
If Delayer plays according to this strategy, we must have Block(G) = 0 at the beginning of
some round. This means that the Block-value, starting the game with G2×`, has to change at
least Ω(log `) times before the game can end. It is easy to see, that if the Block-value changes
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in a step, the number of connected components does not increase in this step. According to
rule (b) (i), Delayer has answered ∗ in this round and has scored a point.

For the second part, consider the variables (edges) ordered (from left to right) with{
(1, j), (2, j)

}
≺
{
(1, j), (1, j + 1)

}
≺
{
(2, j), (2, j + 1)

}
and edges with lower j defined to

be smaller (with respect to ≺) than those with higher j for 1 ≤ j ≤ ` − 1, and consider a
resolution refutation completely resolving the variables in decreasing order (from right to left).
That is, the clauses containing variable

{
(1, `), (2, `)

}
will be first resolved with all clauses

containing this variable in negated form (in case it is possible to resolve), and so on. Since the
graph has degree at most 3, there is a small number of clauses containing this variable. Also
observe that after resolving the last three variables in the ordering in this way, the set of derived
clauses plus the initial clauses contain a subset of clauses encoding the formula Ts(G2×(`−1), χ

′)
for some odd marking χ′. The set of newly derived clauses in this subset has constant size,
and the number of clauses in all the resolution configurations until this point is also constant.
Continuing in this order with the complete resolution of all the variables, we obtain a refutation
of Ts(G2×`, χ) with constant clause and variable space.

7 Conclusions and Open Problems
By introducing a new connection between tree-like resolution space and the reversible pebble
game, we have studied the relation between tree-like space and space measures for general
resolution, obtaining almost optimal separations between these measures. We conjecture that
these separations are optimal and that in fact, the log

(
time(π)

)
factors in the upper bounds of

Theorems 35 and 40 and Corollaries 36 and 42 can be improved to a logn factor (n being the
number of graph vertices or formula size, depending on the setting). We have been able to prove
this for the restricted case of the Tseitin contradictions.

We have seen that a source for obtaining space separations between tree-like and general
resolution are graph classes with a gap between their reversible and black pebbling prices and
we have provided a new class of such graphs. An interesting question is whether there exists a
graph class with such a separation for a space function larger than n1/2.
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[BEGJ98] Maŕıa Luisa Bonet, Juan Luis Esteban, Nicola Galesi, and Jan Johannsen. Expo-
nential separations between restricted resolution and cutting planes proof systems.
In Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’98), pages 638–647, November 1998. Cited on page(s) 2.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM Journal
on Computing, 18(4):766–776, August 1989. Cited on page(s) 5, 11.

[BIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation
of tree-like and general resolution. Combinatorica, 24(4):585–603, September 2004.
Cited on page(s) 2, 9.

20



[BN08] Eli Ben-Sasson and Jakob Nordström. Short proofs may be spacious: An optimal
separation of space and length in resolution. In Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’08), pages 709–718,
October 2008. Cited on page(s) 8.

[BN11] Eli Ben-Sasson and Jakob Nordström. Understanding space in proof complexity:
Separations and trade-offs via substitutions. In Proceedings of the 2nd Symposium
on Innovations in Computer Science (ICS ’11), pages 401–416, January 2011. Full-
length version available at http://eccc.hpi-web.de/report/2010/125/. Cited on
page(s) 7, 8.

[BW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple.
Journal of the ACM, 48(2):149–169, March 2001. Preliminary version in STOC ’99.
Cited on page(s) 2, 6, 7.

[Cha13] Siu Man Chan. Just a pebble game. In Proceedings of the 28th Annual IEEE
Conference on Computational Complexity (CCC ’13), pages 133–143, June 2013.
Cited on page(s) 3, 9.

[CLNV15] Siu Man Chan, Massimo Lauria, Jakob Nordström, and Marc Vinyals. Hardness
of approximation in PSPACE and separation results for pebble games (Extended
abstract). In Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’15), pages 466–485, October 2015. Full-length version
in [Vin17]. Cited on page(s) 3, 11.

[CS76] Stephen A. Cook and Ravi Sethi. Storage requirements for deterministic polynomial
time recognizable languages. Journal of Computer and System Sciences, 13(1):25–37,
1976. Preliminary version in STOC ’74. Cited on page(s) 4.

[CS82] David A. Carlson and John E. Savage. Extreme time-space tradeoffs for graphs
with small space requirements. Information Processing Letters, 14(5):223–227, 1982.
Cited on page(s) 12.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for
theorem proving. Communications of the ACM, 5(7):394–397, July 1962. Cited on
page(s) 1.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
Journal of the ACM, 7(3):201–215, 1960. Cited on page(s) 1.

[dR19] Susanna F. de Rezende. Lower Bounds and Trade-offs in Proof Complexity. PhD
thesis, KTH Royal Institute of Technology, June 2019. Available at http://
kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1318061&dswid=-4968.
Cited on page(s) 12.

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and
Computation, 171(1):84–97, 2001. Preliminary versions of these results appeared in
STACS ’99 and CSL ’99. Cited on page(s) 2, 3, 6, 7, 8, 17.

[ET03] Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike
resolution space. Information Processing Letters, 87(6):295–300, 2003. Cited on
page(s) 2, 8, 9.

[GTT18] Nicola Galesi, Navid Talebanfard, and Jacobo Torán. Cops-robber games and the
resolution of Tseitin formulas. In Proceedings of the 21th International Conference on
Theory and Applications of Satisfiability Testing (SAT ’18), volume 10929 of Lecture
Notes in Computer Science, pages 311–326. Springer, 2018. Cited on page(s) 17.

21

http://eccc.hpi-web.de/report/2010/125/
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1318061&dswid=-4968
http://kth.diva-portal.org/smash/record.jsf?pid=diva2%3A1318061&dswid=-4968
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