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Abstract

We study goodness-of-fit of discrete distributions in the distributed setting, where samples
are divided between multiple users who can only release a limited amount of information
about their samples due to various information constraints. Recently, a subset of the authors
showed that having access to a common random seed (i.e., shared randomness) leads to a
significant reduction in the sample complexity of this problem. In this work, we provide a
complete understanding of the interplay between the amount of shared randomness available,
the stringency of information constraints, and the sample complexity of the testing problem
by characterizing a tight trade-off between these three parameters. We provide a general
distributed goodness-of-fit protocol that as a function of the amount of shared randomness
interpolates smoothly between the private- and public-coin sample complexities. We com-
plement our upper bound with a general framework to prove lower bounds on the sample
complexity of this testing problems under limited shared randomness. Finally, we instanti-
ate our bounds for the two archetypal information constraints of communication and local
privacy, and show that our sample complexity bounds are optimal as a function of all the
parameters of the problem, including the amount of shared randomness.

A key component of our upper bounds is a new primitive of domain compression, a tool
that allows us to map distributions to a much smaller domain size while preserving their
pairwise distances, using a limited amount of randomness.

∗Supported by NSF-CCF-1846300 (CAREER).
†Supported by a Motwani Fellowship.
‡Supported by NSF-CCF-CRII-1657471.
§Supported by a grant from Robert Bosch Center for Cyber Physical Systems (RBCCPS), Indian Institute of Science.

1

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 98 (2019)



1 Introduction

A prototypical example of statistical inference is that of goodness-of-fit, in which one seeks to
determine whether a set of observations fits a purported probability distribution. Considered
extensively in Statistics and, more recently, in computer science under the name of identity testing,
the goodness-of-fit question for discrete probability distributions is by now well-understood.

Most of the recent work has focused on the sample complexity of the problem (i.e., the
minimum number of observations required to solve the task), and sought to obtain sample-
optimal, time-efficient algorithms (see, e.g., [BFR+13, Pan08, ADK15, VV17, DGPP18]). In many
emerging settings, however, time or even sample considerations may not be the main bottleneck.
Instead, samples may only be partially accessible, or their availability may be subjected to strict
information constraints. These constraints may be imposed in form of the number of bits allowed
to describe each sample (communication constraints) or privacy constraints for each sample.

In this context, a recent line of work [ACT18, ACT19a] has provided sample-optimal algo-
rithms under such information constraints. An important aspect revealed by this line of work is
that shared randomness is very helpful for such problems – public-coin protocols have much
lower sample complexity than private-coin protocols. However, shared randomness used by the
distributed protocols may itself be an expensive commodity in practice. With an eye towards
practical algorithms for deployment of these distributed statistical inference algorithms, we
consider the question of randomness-efficient distributed inference algorithms.

Specifically, we consider public randomness as a resource. In our setting, n users get inde-
pendent samples from an unknown k-ary distribution, and each can send a message to a central
server in a one-way, non-interactive fashion. Those messages, however, have to comply with a
prespecified local information constraint, such as communication (each message can be at most
` bits long) or local privacy (loosely speaking, messages must not divulge too much about the
user’s observation.) The server uses the n messages to perform the goodness-of-fit test for the
unknown distribution.

Prior work considered two natural classes of protocols: private-coin, where users and server
are randomized independently; and public-coin, where all parties share ahead of time a common
random seed that they can leverage to coordinate their messages. Alternatively, one may view
shared randomness as the communication sent over the “downlink” channel by the server to
the users. In this paper, we significantly generalize prior results, by establishing a tight tradeoff
between the number of users n and the number of shared random bits s required for performing
inference under local information constraints.

A key component of our distributed protocols is domain compression, a new primitive we
introduce. Roughly speaking, domain compression allows one to (randomly) map a large domain
[k] to a much smaller domain of size L � k, while ensuring that pairwise distances between
probability distributions on [k] are (roughly) preserved when looking at their induced distributions
on [L]. This notion can then be leveraged to obtain testing protocols from “good” domain
compression mappings which use few bits of randomness.

We proceed to describe our results in the next section, before giving an overview of our
techniques in the subsequent section. To put our results in context, we then provide a brief
overview of prior and related work.
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1.1 Our Results

We first provide an informal overview of the setting and our results. We consider identity testing, a
classic example of goodness-of-fit, where one is given a reference distribution q over a known
domain of size k, as well as a parameter ε ∈ (0, 1). Upon receiving n i.i.d. samples X1, . . . , Xn

from an unknown distribution p over the same domain, one must then output accept with high
constant probability if p = q, and reject if the total variation distance between p and q is at least ε.

We study a distributed setting where theXi’s are distributed overn users who can only transmit
a limited amount of information about their samples to a central server, which then seeks to solve
the testing problem from the messages received (see Section 2 for the detailed setup, and Fig. 1
for a pictorial description). For simplicity, we focus on two main applications, communication
constraints and local privacy; we point out, however, that our results are more general, and can
be leveraged to obtain both upper and lower bounds for the more general class of information
constraints described in [ACT18].

The communication-constrained setting. In this setting, each user can communicate at most `
bits to the server. We establish the following.

Theorem 1.1 (Informal). For every k, ` ≥ 1, s ≥ 0, there exists a protocol for identity testing over [k]
with s bits of public randomness, ` bits communication per user, and

n = O

√k
ε2

√
k

2` ∨ 1

√
k

2s+` ∨ 1

 .
users. Moreover, this number of users is optimal, up to constant factors, for all values of k, s, `.

Note that for ` ≥ log k, we recover the centralized (unconstrained) sample complexity of
O(
√
k/ε2); for s = 0 and s ≥ log k, the expression matches respectively the public- and private-

coin sample complexities established in previous work.
An interesting interpretation of the sample complexity result mentioned above is that “one bit

of communication is worth two bits of public randomness.” Equivalently, if one interprets the
public randomness as an s bit random seed sent over the downlink channel to the users, who
then reply with their `-bit message, then improving the capacity of the downlink channel is only
half as effective as improving the user-to-server channel capacities.

The locally private setting. In this setting, there is no bound on the length of the message each
user can send to the server, but the randomized mechanism W used to decide which message y
to send upon seeing sample x has to satisfy %-local differential privacy (%-LDP):

max
x 6=x′

max
y

W (y | x)
W (y | x′) ≤ e

% . (1)

(Equivalently, the probability to send any given message y must stay roughly within a (1 ± %)
multiplicative factor, regardless of which x was observed.) We prove the following.

Theorem 1.2 (Informal). For every k ≥ 1, % ∈ (0, 1], s ≥ 0, there exists a protocol for identity testing
over [k] under %-LDP with s of public randomness, and

n = O

 k

ε2%2

√
k

2s ∨ 1

 .
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users. Moreover, this number of users is optimal, up to constant factors, for all values of k, s, and
% ∈ (0, 1].

Once again, for s = 0 and s ≥ log k, this recovers respectively the public- and private-coin sam-
ple complexities established in [ACFT19, ACT18]. In order to establish these upper bounds, along
the way we provide a sample-optimal private-coin %-LDP identity testing protocol (Lemma 4.7)
which only requires one bit of communication per user (improving in this respect on the sample-
optimal protocols of [ACFT19]), and may be of independent interest.

General local constraints. Both Theorems 1.1 and 1.2 illustrate the versatility of our approach. To
establish our algorithmic upper bounds, we rely on a new primitive we call domain compression
(on which we elaborate in the next subsection). Specifically, we show in Theorem 4.1 how to
combine as a blackbox this primitive with a private-coin protocol for identity testing under any
fixed type of local constraint to obtain a protocol for identity testing with s of public randomness,
under the same local constraints.

Our proofs of optimality, similarly, are corollaries of a general lower bound framework
(Lemma 5.4 and Theorem 5.5) we develop, and which extends that of [ACT18] to handle limited
public randomness. We believe that both techniques — the domain compression primitive,
and the general lower bound formulation – will find other applications in distributed statistical
inference problems.

1.2 Our Techniques

Our proposed scheme has a modular form and, in effect, separates the use of shared randomness
from the problem of establishing an information-constrained inference protocol. In particular,
we use shared randomness only to enable domain compression.

Domain compression. The problem of domain compression is to convert samples from an
unknown k-ary distribution p to samples from [L], while preserving the total variation distances
up to a factor of θ. Our main result here is a scheme that reduces the domain-size to roughly
L ≈ kθ2 while preserving the total variation distance up to a factor of θ. Furthermore, our
randomized scheme does this using the optimal 2 log(1/θ) + O(1) bits of randomness, which
will be crucial for our applications. Furthermore, as we will see later, this is the best possible
“compression” – the lowest L possible – for a given θ.

In order to come up with this optimal domain compression scheme, we establish first a one-
bit `2 isometry for probability vectors. Namely, we present a random mapping which converts
the domain to {0, 1}while preserving the `2 distances between pairs of probability vectors. We
apply this scheme to non-overlapping parts of our k-ary probability vector to obtain the desired
domain compression scheme. Underlying our analysis is a new anti-concentration bound for
sub-Gaussian random variables, which maybe of independent interest.

Domain compression to distributed testing. With this general domain compression algorithm
at our disposal, we use s bits of randomness to obtain a reduction of the domain size to roughly
k/2s, while shrinking the statistical distances by a factor of 1/

√
2s. Now that we have exhausted

all our shared randomness in domain compression, we apply the best available private-coin
protocol, but one working on domain of size (k/2s), with new distance parameter ε/

√
2s in place

of the original ε.
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Interestingly, when instantiating this general algorithm for specific constraints of communica-
tion, it is not always optimal to use all the randomness possible. In particular, when we have `
bits of communication per sample available, we should compress the domain to 2` and use the
best private-coin protocol for ` bits of communication per sample. We formally show that one bit
of communication is worth two bits of shared randomness. In particular, we should not “waste”
any available bit of communication from the users by using too much shared randomness.

However, this only gives us a scheme with failure probability close to 1/2 at best. To boost
the probability of error to an arbitrarily small δ, the standard approach of repeating the protocol
independently, unfortunately, is not an option, as we already have exhausted all available public
randomness to perform the domain compression. Instead, we take recourse to a deterministic
amplification technique [KPS85], which leverages the properties of expander graphs to achieve
this failure probability reduction without using any additional random bit.

Optimality. When we instantiate our general algorithm for communication and privacy con-
straints, we attain performance that is jointly optimal in the information constraint parameter
(bits for communication and the LDP parameter for privacy), the number of samples, and the
bits of shared randomness. We establish this optimality by showing chi-square fluctuation lower
bounds, a technique introduced recently in [ACT18]. This approach considers the interplay
between a difficult instance of the problem and the choice of the mappings satisfying information
constraints by the users. The main observation is that for public-coin protocols, the users can
choose the best mapping for any given instance of the problem by coordinating using shared
randomness, resulting in a minmax bottleneck. On the other hand, for private-coin protocols,
for each choice of mappings, the users must handle the least favorable instance, resulting in a
maxmin bottleneck. To obtain our lower bounds, we need to bridge between these two extremes
and provide bounds which seamlessly switch from maxmin to minmax bounds as the number
of bits of shared randomness increase. We term this significant generalization of chi-square
fluctuation bounds the semiminmax bound and use it obtain tight bounds for our setting.

1.3 Prior and Related Work

Goodness-of-fit has a long and rich history in Statistics, starting with the pioneering work of
Pearson [Pea00]. More recently, the composite goodness-of-fit question (where one needs to dis-
tinguish between the reference distribution, and all distributions sufficiently far in total variation
from it) has been investigated in the theoretical computer science community under the name
identity testing [GR00, BFR+13], with a focus on computational aspects and discrete distributions.
This line of work culminated in efficient and sample-optimal testing algorithms [Pan08, VV17,
ADK15, Gol16, DGPP18]; we refer the reader to the surveys [Rub12, Can15, BW18], as well as the
recent book [Gol17] (Chapter 11) for further details on identity testing, and the more general field
of distribution testing.

Recently, there has been a surge of interest in distributed statistical inference, focusing
on density or parameter estimation under communication constraints [HMÖW18b, HÖW18,
HMÖW18a, BHÖ19] or local privacy [DJW17, EPK14, YB18, KBR16, ASZ19, AS19]. The testing
counterpart, specifically identity testing, was studied in the locally differentially private (LDP)
setting by Gaboardi and Rogers [GR18] and Sheffet [She18], followed by [ACFT19]; and in the
communication-constrained setting in [ACT19c, ACT19b], as well as by (with a slightly different
focus) [FMO18]. The role of public randomness in distributed testing was explicitly studied
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in [ACT19c, ACT19b], which showed a quantitative gap between the sample complexities of
public- and private-coin protocols; those works, however, left open the fine-grained question of
limited public randomness we study here.

Related to identity testing, a recent work of [DGKR19] considers identity testing under both
memory and communication constraints. Their setting and results, however, are incomparable
to ours, as the communication constraints they focus on are global (i.e., the goal is to minimize
the total communication between parties), with no hard constraint on any given user’s message.

Our domain compression primitive, on the other hand, fits in the area of dimensionality
reduction, a term encompassing various notions whose common theme is the mapping of high-
dimensional objects into lower dimensions, while preserving (approximately) their relevant
geometric features. In our case, the objects are elements of the (k − 1)-dimensional probability
simplex, and the geometric features are the pairwise distances (mostly in `1 distance); this is,
especially in view of our use of an `2 isometry to achieve this goal, reminiscent of the celebrated
Johnson-Linderstrauss (JL) lemma and its many applications [JLS86, IM98]. The JL lemma,
however, is for general high-dimensional vectors, and does not necessarily map from nor into the
probability simplex.

Closest to our primitive is the work of Kyng, Phillips, and Venkatasubramanian [KPV10], which
considers a similar question for distributions over Rd satisfying a smoothness condition. However,
their results are not applicable to our setting of finite alphabet. Furthermore, we are interested in
preserving the total variation distance, and not Hellinger distance considered in [KPV10]. Finally,
our proposed algorithm is randomness efficient, which is crucial for our application. In contrast,
the algorithm in [KPV10] for domain compression requires a random mapping similar to the JL
lemma construction.

2 Notation and Preliminaries

In what follows, we denote by log and ln the binary and natural logarithms, respectively. For an
integer k ≥ 1, we write [k] for the set {1, . . . , k}, and ∆(k) for the (k − 1)-dimensional probability
simplex ∆(k) := {p : [k]→ [0, 1] :

∑
x∈[k] p(x) = 1} (where we identify a probability distribution

with its probability mass function). For p,q ∈ ∆(k), recall that dTV(p,q) := supS⊆[k] (p(S)− q(S))
is the total variation distance between p and q, which is equal to half their `1 distance. For
our lower bounds, we shall also rely on the chi-square distance between p and q, defined as
dχ2(p || q) :=

∑
x∈[k] (p(x)− q(x))2/q(x). We indicate by x ∼ p that x is a sample drawn from the

distribution p.
We will use standard asymptotic notationsO(f), Ω(f), Θ(f), as well as the (relatively) standard

Õ(f), which hides polylogarithmic factors in its argument.1 We will, in addition, rely on the
notation an . bn (resp. an & bn), to indicate there exists an absolute constant C > 0 such that
an ≤ C · bn (resp. an ≥ C · bn) for all n, and accordingly write an � bn when both an . bn and
an & bn. Finally, for a matrixM ∈ Rm×n, we denote by ‖M‖F and ‖M‖∗ the Frobenius and nuclear
norms of M , respectively, and by ρ(M) its spectral radius.

1Specifically, g = Õ(f) means that there exists some absolute constant c > 0 such that g = O(f logc f).
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2.1 Setting and problem statement

In the (k, ε, δ)-identity testing problem, given a known reference distribution q ∈ ∆(k), and given
i.i.d. samples from p, we seek to test if p equals q or if it is ε-far from q in total variation distance.
Specifically, an (n, ε, δ)-test is given by a (randomized) mapping T : [k]n → {0, 1} such that

Pr
Xn∼pn

[ T (Xn) = 0 ] > 1− δ if p = q,

Pr
Xn∼pn

[ T (Xn) = 1 ] > 1− δ if dTV(p,q) > ε.

That is, upon observing independent samples Xn, the algorithm should “accept” with probability
at least 1− δ if the samples come from the reference distribution q and “reject” with probability
at least 1 − δ if they come from a distribution significantly far from q. We will often fix the
probability of failure δ to be a small constant, say 1/12, and write (k, ε)-identity testing and (n, ε)-
test for (k, ε, 1/12)-identity testing and (n, ε, 1/12)-test, respectively.2 The sample complexity of
(k, ε)-identity testing is the minimum n such that we can find an (n, ε)-test, over the worst-case
reference distribution q.

X1 X2 . . . Xn−1 Xn

W1 W2 . . . Wn−1 Wn

Y1 Y2 . . . Yn−1 Yn

p

Server

output

Figure 1: The information-constrained distributed model. In the private-coin setting the channels
W1, . . . ,Wn are independent, while in the public-coin setting they are jointly randomized; in
the s-coin setting, they are randomized based on both a joint U uniform on {0, 1}s, and on n
independent r.v.’s U1, . . . , Un.

We work in the following distributed setting: n users each receive an independent sample
from an unknown distribution p ∈ ∆(k), and must send a message to a central server, in the
simultaneous-message-passing (SMP) setting. The local communication constraints are modeled
by a familyW of “allowed” (randomized) channels, such that each user must select a channel
W ∈ W and, upon seeing their sample x, send the message y = W (x) to the central server. Here,
we focus on s-coin SMP protocols, where the users have access to both private randomness, and

2Note that the specific choice of 1/12 is merely for convenience, and any constant less than 1/2 would do.
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a limited number of uniform public random bits. Formally, s-coin SMP protocols are described
as follows.

Definition 2.1 (s-coin SMP Protocols). Let U be an s-bit random variable distributed uniformly
over {0, 1}s, independent of (X1, . . . , Xn); and let U1, . . . , Un denote independent random vari-
ables, which are independent jointly of (X1, . . . , Xn) and U . In an s-coin SMP protocol, all users
are given access to U , and further user i is given access to Ui. For every i ∈ [n], user i selects
the channel Wi ∈ W as a function of U and Ui. The central server is given access to the random
variable U as well and its estimator and test can depend on U ; however, it does not have access to
the realization of (U1, . . . , Un).

In particular, for s = 0 we recover the private-coin setting, while for s =∞we obtain the public-
coin setting. We then say an SMP protocol Π with n users is an (k, ε)-identity testing s-coin
protocol usingW with n users (resp. public-coin, resp. private-coin) if it is an s-coin SMP protocol
(resp. public-coin, resp. private-coin) using channels fromW which, as a whole, constitutes an
(n, ε)-test.

The communication-constrained and LDP channel families. Two specific families of con-
straints we will consider throughout this paper are those of communication constraints, where
each user can send at most ` bits to the server, and those of %-LDP channels, where the users’
channels must satisfy the definition of local differentially privacy given in (1). We denote those
two families, respectively, byW` andW%:

W` := {W : [k]→ {0, 1}`}, W% := {W : [k]→ {0, 1}∗ : W satisfies (1)} .

A useful simplification. Throughout the paper, we will assume that the domain size k is a power
of two. This can be done without loss of generality and does not restrict the scope of our results;
we establish this reduction formally in Appendix B.

3 Domain Compression from Shared Randomness

We now introduce our main algorithmic tool – a new primitive called domain compression. We
believe that the application of domain compression will go beyond this work. At a high-level,
the domain compression problem requires us to convert statistical inference problems over
large domain size to those over a small domain size. This problem is an instance of universal
compression, since it is clear that we cannot assume the knowledge of the generating distribution
of the samples. We present a simple formulation which can have applications for a variety
of statistical tasks. Specifically, we require that pairwise distances be preserved between the
distributions induced over the smaller domain. For our work, we only formulate a specific
instance of the problem; it is easy to formulate a more general version which will have applications
beyond the identity-testing problem that we consider, e.g., to continuous distributions or other
distance measures.

For a mapping f : [k]→ [L] and p ∈ ∆(k), denote by pf the distribution of f(X) ∈ [L].

Definition 3.1 (Domain compression). For L < k, U := {0, 1}s, and a mapping Ψ: U × [k]→ [L],
denote by Ψu, u ∈ U , the mapping Ψu(x) = Ψ(u, x). For θ ∈ (0, 1), the mapping Ψ constitutes
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an (L, θ, δ)-domain compression mapping ((L, θ, δ)-DCM) for ∆(k) if for all p,q ∈ ∆(k) such that
dTV(p,q) ≥ ε, the mapping satisfies

Pr
[

dTV

(
pΨU ,qΨU

)
≥ θ · ε

]
≥ 1− δ, (2)

where the randomness is over U which is distributed uniformly over U . Furthermore, we say that
this domain compression mapping uses s bits of randomness.

In effect, we are asking that a DCM preserves separation in total variation distance up to a
loss-factor of θ while compressing the domain-size to L. For brevity, we shall say that such a DCM
compresses the domain-size to L with a loss-factor of θ.

Our main result in this section, stated below, shows that we can compress the domain-size to
kθ2 with a loss-factor of θ. Furthermore, we can do so using 2 log(1/θ) bits of randomness.

Theorem 3.2. Suppose k = 2t for some t ∈ N. Then, there exist positive constants c, δ0 and c0
such that, for every θ ∈ (

√
c/k,

√
c/2) and every L ≥ kθ2/2c, there is an an (L, θ, δ0)-DCM for ∆(k).

Furthermore, this domain compression mapping uses at most 2 log(1/θ) + c0 bits of randomness.

Stated differently, we have a DCM that compresses the domain-size to L with a loss-factor
of
√
L/k. In fact, this is the minimum loss-factor we must incur to compress the domain-size to

L. Indeed, by choosing L = 2`, we can use the output of an (L, θ, δ)-DCM to enable uniformity
testing using ` bits of communication. This output will be distributed over [2`] and the induced
distribution will be separated from the uniform distribution by at least θε in total variation
distance. Thus, using e.g., the (non-distributed) uniformity test of [Pan08], we can complete
uniformity testing using

√
2`/(θ2ε2) samples. But this must exceed the lower bound of k/(ε2

√
2`)

shown in [ACT18] for public-coin protocols. Therefore, θ must be less than
√

2`/k. We will
formalize this proof of optimality later (see Section 5), when we will show that the randomness
of 2 log(1/θ) bits that we use for attaining this corner-point of L versus θ tradeoff is optimal, too.
Note that we can only achieve a constant δ from our scheme, which suffices for our purpose. A
more general treatment of the domain-compression problem, with optimal tradeoff for all range
of parameters, is an intriguing research direction.

As described, the domain compression problem requires us to preserve distances in total
variation distance, which is equivalent to the `1 metric. We have setup this definition keeping
in view the application of domain compression in identity-testing. In general, we can consider
some other metrics. For instance, in place of Eq. (2) we can require

Pr
[
‖pΨU − qΨU ‖2 ≥ θ · ε

]
≥ 1− δ. (3)

This is a stricter requirement since ‖x‖1 ≥ ‖x‖2, and would imply Eq. (2). In fact, using a random
partition of the domain into [L] parts, it was shown in [ACT19a, Theorem VI.2] that a loss-factor
of roughly 1/

√
k can be attained for the definition of separation in Eq. (3). This in turn implies

a scheme to compress domain-size to L with a loss-factor of 1/
√
k, even for the definition of

separation in Eq. (2). Comparing this with the result of Theorem 3.2, we find that the performance
of this random partition based DCM is off by a

√
L factor from the loss-factor of

√
L/k attained by

our proposed DCM in this paper. However, there is a simple modification than can help: Instead
of applying this scheme to the entire domain, we can divide the domain into smaller parts and
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ensure `2 separation for each part. If we divide the domain [k] into equal parts and attain `2
separation loss-factor of θ for each part, this implies an overall loss-factor of θ in `1 as well.

To enable this approach, in the result below we establish a “one-bit isometry” for `2 distances
between distributions. That is, we show that a random mapping Ψ with one-bit output exists
such that the `2 distance between the distribution of output is at least a constant times the `2
distance between the distribution of input. Since the output is only binary, we can express the
result in terms of difference between probabilities of sets that map to 1. Note that we need this
isometry not only for distribution vectors p and q, but also for subvectors of distribution vectors.

Theorem 3.3 (One-bit isometry). There exist absolute constants α, δ0, c0 and subsets {Su}u∈U of
[2s] with |U| = 2s+c0 and such that for every p,q ∈ [0, 1]2s we have

Pr[ |p(SU )− q(SU )| ≥ α ‖p− q‖2 ] ≥ 1− δ0, (4)

where U is distributed uniformly over U and p(S) :=
∑
i∈S pi.

In other words, there is a randomized `2 isometry for distributions over [2s] that uses s+ c0 bits
of randomness. The most significant aspect of the previous result, which is the main workhorse
for this work, is that the sets {Su}u∈U , are fixed and do not depend on vectors p and q.

As outlined above, we want to apply our one-bit isometry to parts of domain. But there is one
difficulty still left in implementing this idea to obtain our desired DCM: the guarantees are only
for each part and the randomness requirement to make it work for all the parts simultaneously
maybe higher. The following simple, but useful, observation comes to the rescue.

Lemma 3.4 (Additivity of tails). Let a1, . . . , am ≥ 0, and Y1, . . . , Ym be non-negative random
variables such that for some c ∈ (0, 1), Pr[Yi ≥ ai ] ≥ c for every 1 ≤ i ≤ m. Then,

Pr
[
Y1 + . . .+ Ym ≥ c ·

a1 + . . .+ am
2

]
≥ c

2− c .

We defer the proof of this lemma to the appendix and of Theorem 3.3 to the end of this section.
For now, we complete the proof of Theorem 3.2, our main theorem, using these results.

Proof of Theorem 3.2. Consider distributions p and q from ∆(k). Set s =
⌈
log(c/θ2)

⌉
; then by

our assumption, s ≤ t. Further, denoting J := 2t−s, for 0 ≤ j ≤ J − 1 define the vectors pj and qj
in [0, 1]2s as pji := pj·2s+i and qji := qj·2s+i for all i ∈ [2s]. We apply Theorem 3.3 to pj and qj to get

Pr

 |pj(SU )− qj(SU )| ≥ α
√∑
i∈SU

(pji − qji )2

 ≥ 1− δ0, 0 ≤ j ≤ J − 1.

which together with the Cauchy–Schwarz inequality yields

Pr
[
|pj(SU )− qj(SU )| ≥ α · 1√

2s
·

2s∑
i=1
|pj·2s+i − qj·2s+i|

]
≥ 1− δ0, 0 ≤ j ≤ J − 1,

We apply the “additivity of tails” property (Lemma 3.4) to arrive at

Pr

 J−1∑
j=0
|pj(SU )− qj(SU )| ≥ 2α√

2s
· dTV(p,q)

 ≥ 1− δ0
1 + δ0

. (5)
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Consider the following function Ψ with range {0, . . . , 2J − 1}: For every u ∈ U = {0, 1}s+c0 and
i ∈ [k], let

Ψ(u, i) :=
{

2j, i− j · 2s ∈ Su,
2j + 1, i− j · 2s ∈ [2s] \ Su,

0 ≤ j ≤ J − 1.

Note that dTV

(
pΨu ,qΨu

)
equals

∑J−1
j=0 |pj(SU )− qj(SU )|. Then, Eq. (5) implies that Ψ constitutes

a (2J, 2α/
√

2s, 2δ0/(1 + δ0))-DCM. The proof is completed by setting θ :=
√

4α2/2s and noting
that 2J = kθ2/(2α2).

Proof of Theorem 3.3. Denote x := p− q and consider a subset S ⊆ [2s]. With these notations,
the event we seek to handle is (

∑
i∈S xi)2 ≥ α2‖x‖22. We associate with S a vector u ∈ {0, 1}2s with

ith entry given by 1{i∈S}. Then, our of interest can be expressed as xᵀ
(
uuᵀ

)
x ≥ α2‖x‖22, where ᵀ

denotes the transpose. Thus, we can associate a collection of vectors S1, . . . , Sm with a collection
u1, . . . , um. Then, our claim can be cast as the existence of u1, . . . , um such that

1
m

m∑
j=1

1{
xᵀ
(
uuᵀ
)
x<α2‖x‖22

} ≤ δ0.

Consider the set J of indices j ∈ [m] given by J := {j ∈ [m] : xᵀ
(
uju

ᵀ
j

)
x < α2‖x‖22}. It is easy to

see that by definition of J , we have xᵀ
(

1
|J |
∑
j∈J uju

ᵀ
j

)
x < α2‖x‖22, which further implies

λmin

( 1
|J |

∑
j∈J

uju
ᵀ
j

)
< α2. (6)

The main technical component of our proof is the following result.

Theorem 3.5 (Spectrum of outer products). For n ∈ N, there exist constants c0 ∈ N, c1, c2 ∈ (0, 1)
and vectors u1, . . . , um ∈ {0, 1}n with m = 2c0n such that for every J ⊆ [m] with |J | ≥ (1− c1)m
we must have

λmin

( 1
|J |

∑
j∈J

uju
ᵀ
j

)
≥ c2.

Specifically, we show that random binary vectors V1, . . . , Vm will do the job. The proof is quite
technical and requires a careful analysis of the spectrum of the random matrix

∑m
j=1 VjV

ᵀ
j . In

particular, effort is required to handle entries of Vj with nonzero mean; we provide the complete
proof in Appendix A.

We use vectors of Theorem 3.5, which implies that for vectors u1, . . . , um of Theorem 3.5
inequality (6) can hold only for |J | < (1− c1)m. Therefore,

1
m

m∑
j=1

1{
xᵀ
(
uju

ᵀ
j

)
x<c2‖x‖22

} ≤ c1,

whereby the claim follows for sets Si, i ∈ [m], given by Si = supp(ui) with δ0 := c1 and c2 := α2.
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4 Applications: Distributed Testing via Domain Compression

In this section, we show how the notion of domain compression developed in Section 3 yields
distributed protocols for identity testing under local information constraints. Specifically, we show
in Section 4.1 how to combine any private-coin identity testing protocol usingW with an s-coin
domain compression scheme to obtain an s-coin identity tester usingW . Then, in Sections 4.2
and 4.3, we instantiate this general algorithm withW =W` andW =W% to obtain s-coin identity
testing protocols under communication and local privacy constraints, respectively.

4.1 The General Algorithm

We establish the following result characterizing the performance of our general algorithm.

Theorem 4.1. LetW ⊆ {W : [k]→ Y} be a family of channels. Suppose there exists a (k, ε)-identity
testing private-coin protocol usingW with n(k, ε) players. Then, for every s0 < s ≤ log k − c0, there
exists a (k, ε)-identity testing s-public-coin protocol usingW with C · n(ck/2s, c′ε/2s/2) players,
where s0, c0, c, c

′ > 0 are absolute constants and C > 0 is a constant depending on the desired
probability of error.

A few remarks are in order. First, we may view (and we will illustrate this in the following
sections) this statement as saying that “an optimal private-coin testing protocol under local
constraints yields, as a blackbox, an optimal s-coin testing protocol under the same local con-
straints, using domain compression.” Second, in some cases (such as Section 4.2), it is beneficial
to use this blackbox method, with a number of public coins s strictly smaller than the number of
available public coins. Namely, we do better by ignoring some of the shared randomness resource.
This is seemingly paradoxical, but the following heuristic may help resolve this conundrum:
reducing the domain “too much” may prevent the private-coin tester from using fully what the
local constraints allow. Concretely, in the case of communication constraints where each player
can send ` bits, reducing the domain size below 2` means that some bits of communication
cannot be utilized. Third, and foremost, this theorem hints at the versatility of our notion of
domain compression and the simplicity of its use: (i) use public coins to reduce the domain while
preserving the pairwise distances; (ii) run a private-coin protocol on the induced distributions,
on the smaller domain.

Overview of the proof. Before delving into the details of the proof, we provide an outline of the
argument. Suppose we have an identity testing private-coin protocol Π usingW . Given s of public
randomness, we use the domain compression protocol from the previous section to reduce the
domain size from k toL ≈ k/2s, while shrinking the total variation distances by a factor θ ≈ 1/

√
2s.

This entirely uses the s bits of public randomness, after which it suffices to use the private-coin
Π to test identity of the induced distribution p′ ∈ ∆(L) to the induced reference distribution
q′ ∈ ∆(L) with distance parameter θ · ε ≈ ε/

√
2s. Note that q′ is known by all parties, as it is solely

a function of q and the public randomness; and the players, after the domain compression, hold
i.i.d. samples from p′. Since the only communication between the parties occur when running
the protocol Π (which by assumption uses channels fromW), the resulting protocol satisfies the
local constraints modeled byW .

This clean approach is indeed the main element of our algorithm. The issue, however, is that
the domain compression only guarantees distance preservation with some constant probability

12



δ0. Therefore, when p is ε-far from q, the approach above can only guarantee correctness of
the overall protocol with probability at most δ0. In other words, the proposed protocol has
low soundness. When p = q, however, the domain compression obviously yields p′ = q′ with
probability one, so the completeness guarantee holds. A standard approach to handle this would
be to amplify the success probability by independent parallel repetitions, costing only a small
constant factor overhead in the number of players. However, this is not an option for our setting,
since independent repetitions would require fresh public randomness, which we do not have
anymore. Further, dividing the public randomness in different random seeds and using these
disjoint seeds to run this amplification-by-repetition idea would be suboptimal, as d repetitions
would result in weaker domain compression – we will get domain of cardinality k/2s/d instead of
the desired k/2s.

To circumvent this issue, we use a different approach, that of deterministic amplification
introduced in [KPS85]. The idea is indeed to run the protocol several times, say d, to amplify the
probability of success, but carefully reusing the same s bit public randomness U = r for all the d
runs. Namely, we can find suitable mappings π1, . . . , πd : {0, 1}s → {0, 1}s such that upon running
a protocol separately for (correlated) random seeds π1(r), π2(r), . . . , πd(r) and aggregating the
results of the d distinct runs, we can amplify the success probability from 1/3 to ≈ 1 − 1/d.
Specifically, we rely on the deterministic amplification lemma below, which guarantees that we
can drive the error from any given constant to δ paying a factor Õ(1/δ) penalty in the runtime (i.e.,
the number of parallel runs of the protocol, and therefore also number of players), but without
using a single extra bit of public randomness.

Lemma 4.2 (Deterministic Amplification for One-Sided Error). For any s ∈ N and η, γ ∈ (0, 1),
there exist d = d(η, γ) and (time-efficiently computable) functions π1, . . . , πd : {0, 1}s → {0, 1}s
such that the following holds. Suppose X0 ⊆ X and A : X × {0, 1}s → Ω and E ⊆ Ω satisfy the
following:

(i) If x ∈ X0, Prσ∼{0,1}s [A(x, σ) ∈ E ] = 1; (Perfect completeness)

(ii) If x /∈ X0, Prσ∼{0,1}s [A(x, σ) /∈ E ] ≥ 1− η. (Low soundness)
Then, we have

(i) If x ∈ X0, Prσ∼{0,1}s [ ∀i ∈ [d], A(x, πi(σ)) ∈ E ] = 1; (Perfect completeness)

(ii) If x /∈ X0, Prσ∼{0,1}s [ ∃i ∈ [d], A(x, πi(σ)) /∈ E ] ≥ 1− γ. (High soundness)

Moreover, on can take d = Õ
(

η
(1−η)2γ

)
.

For completeness, we provide a self-contained proof of this result in Appendix C. Using the
lemma above, we can provide a straightforward algorithm to increase soundness: given public
randomness r ∈ {0, 1}s, we can divide the players in d disjoint groups for some suitable (constant)
d. Group i then runs the natural protocol we discussed, using πi(r) ∈ {0, 1}s as its public ran-
domness; and the server, upon seeing the outcomes of these d not-quite-independent protocols,
aggregates them to produce the final outcome.

Remark 4.3 (Universality of our algorithm). Our proposed algorithm is universal in that the players
are not required to know the reference distribution q (in contrast to previous work [ACT19a,
ACFT19], which relied on a reduction to uniformity testing). The same protocol for choosing W s
fromW works for any identity testing problem: the knowledge of q is only required for the center
to complete the test.
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We are now in position to provide the detailed proof of Theorem 4.1; the pseudocode of the
resulting protocol is given in Algorithm 2.

Proof of Theorem 4.1. We hereafter set the constants c0, c, δ0 to be as in the statement of The-
orem 3.2. Fix a reference distribution q ∈ ∆(k), and let PRIVATEIDENTITYTESTINGW be a (k, ε)-
identity testing private-coin protocol usingW with n(k, ε) players; with a slight abuse of notation,
we will use the same name to invoke it with probability of failure δ for any chosen δ ∈ (0, 1), using
n(k, ε, δ) := n(k, ε) ·72 ln(1/δ) players.3 Further, denote by Ψ: ∆(k)×{0, 1}s → ∆(L) the (L, θ, δ0)-
domain compression mapping from Theorem 3.2, where4 θ := 1/

√
2s−c0 and L := kθ2/2c.

By Lemma 4.2 invoked with η := 1 − δ0, γ = 1/24, there exist d = Θ(1) and (efficiently
computable) π1, . . . , πd : {0, 1}s → {0, 1}s satisfying the conclusion of the lemma. We will apply it
to the mapping A : ∆(k)× {0, 1}s → {0, 1} defined by

A(p, r) := 1{dTV(pΨr ,qΨr )≥θ·dTV(p,q)}

where the event E considered is E := {1}, i.e., the event that the domain compression mapping is
successful. Define δ′ := min(1− (11/12)1/d, 1/24) = Θ(1).

The protocol. Partition the n players into d groups Γ1, . . . ,Γd of N := n/d players, where by our
setting of n we have N ≥ n(L, θ · ε, δ′). Given the public randomness r ∈ {0, 1}s, the N players
in group Γi compute their “new” public randomness ri := πi(r), and use it to run the domain
compression Ψ. The N players in group i therefore obtain i.i.d. samples from a distribution
p(i) ∈ ∆(L); moreover, both players and server can compute the induced reference distribution
q(i) (obtained by running the domain compression Ψ on q and randomness ri). The players from
Γi then run the protocol PRIVATEIDENTITYTESTINGW on their samples from p(i), to test identity
to q(i), with parameters L, θ · ε and failure probability δ′. This results in d bits ν1, . . . , νd ∈ {0, 1} at
the server, where νi is 0 if the protocol run by group i returned accept. The server then outputs 0
(accept) if, and only if, all νi’s are equal to 0.

Correctness. First, observe that if p = q, then with probability one we have that p(i) = q(i) for all
i ∈ [d], and therefore the probability that all d protocols return 0 (accept) is at least (1−δ′)d ≥ 11/12.
This establishes the completeness.

Suppose now that dTV(p,q) > ε. By definition of the domain compression protocol and our
choice of A, η, we have that Prr∼{0,1}s [A(p, r) /∈ E ] ≥ δ0 = 1 − η. Lemma 4.2 then guarantees
that, with probability at least 1− γ = 23/24, there exists i∗ ∈ [d] such that dTV(p(i∗),q(i∗)) > θ · ε.
When this happens, for this i∗ the protocol run by the players in Γi∗ will output νi∗ = 1 (reject)
with probability at least 1− δ′, and therefore by a union bound the server outputs 1 (reject) with
probability at least 1− (1/24 + δ′) ≥ 1− 1/12.

Number of samples. The analysis above requires that N ≥ n(L, θ · ε, δ′) � n(L, θ · ε) log(1/δ′).
Recalling that n = d · N and that d, δ′ are constant,5 we have n � n(k/(2c2s−c0), ε/

√
2s−c0) as

claimed.
3This is possible by the standard amplification trick: running the protocol independently several times and taking a

majority vote. Crucially, this uses no shared randomness to perform as PRIVATEIDENTITYTESTINGW is private-coin.
4Recall that the conditions of Theorem 3.2 mandate 2− log c2 ≤ s− c0 ≤ log k− log c2, for some constants c0 and c.
5Specifically, if one aims for non-constant error probability δ ∈ (0, 1) instead of 1/12, we have d = Õ(1/δ) and

δ′ = Õ
(
δ2).
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Algorithm 1 Domain compression protocol DOMAINCOMPRESSION

Require: Parameters k > 1, s ≥ 1 with k a power of two; X1, . . . , Xn ∈ [k] distributed among n
players, random seed u ∈ {0, 1}s available to all players.

Ensure: All players compute values L, θ, and obtain independent samples X ′1, . . . , X
′
n ∈ [L]

1: Set σ ← s− c0, θ ← 1/
√

2σ, and L← kθ2/2c . c0, c are as in Theorem 3.2.
2: All players compute Ψ, the (L, θ, δ0)-DCM for ∆(k) guaranteed by Theorem 3.2.
3: for j ∈ [n] do . As 2s = c0 · 2σ, the players interpret u as a random seed for Ψ.
4: Player j maps their sample Xj ∈ [k] to X ′j ← ΨU (Xj) in [k].
5: return L ∈ N, θ ∈ (0, 1]

Algorithm 2 The full (k, ε, δ)-identity testing protocol
Require: Parameters k > 1, s ≥ 0 with k a power of two; ε, δ ∈ (0, 1)
Require: Private-coin protocol PRIVATEIDENTITYTESTINGW usingW with n(k, ε, δ) players
Ensure: This is a (k, ε, δ)-identity testing protocol as long as n ≥ Cδ · n(k, ε, δ)

1: Deterministic error reduction
2: Apply Lemma 4.2 to η := 3/4, γ = δ/2, to obtain mappings π1, . . . , πd : {0, 1}s → {0, 1}s
3: Partition the n players into d groups Γ1, . . . ,Γd ⊆ [n] of N ← n/d players
4: Set δ′ ← min(1− (1− δ)1/d, δ/2)
5: Domain compression
. The constants c0, c are as in Theorem 3.2.

6: if s > c0 then . Enough public coins are available.
7: All players agree on a uniformly random R ∈ {0, 1}s. . This uses s public coins.
8: for i ∈ [d] do . players in group i run the protocol on randomness πi(R)
9: (L, θ)← DOMAINCOMPRESSION(k, s, (Xj)j∈Γi , πi(R))

10: else . If too few public coins are available, use directly the private-coin protocol.
11: (L, θ)← (k, 1)
12: for j ∈ [n] do player j sets X ′j ← Xj . . Keep same sample

13: Private-Coin Tester
14: for i ∈ [d] do . Each group runs the private-coin identity testing protocol usingW
15: Let q(i) be the reference distribution induced by DOMAINCOMPRESSION run on πi(R).
16: νi ← PRIVATEIDENTITYTESTINGW(q(i), L, θ · ε, δ′, (X ′j)j∈Γi) . νi = 0 if the test accepts

17: return 0 (accept) if νi = 0 for all i ∈ [d], 1 (reject) otherwise

In the two next subsections, we will illustrate the versatility of Theorem 4.1 by applying it to
`-bit local communication constraints and %-local privacy constraints, respectively, to obtain
sample-optimal protocols.

4.2 Communication-Constrained Testing

In the communication-constrained setting each player can only send ` < log k bits to the server:
i.e.,W =W`, whereW` = {W : [k]→ {0, 1}`}. We establish the following theorem:
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Theorem 4.4. For any integers ` ≥ 1, s ≥ 0, there exists an `-bit communication protocol with s
bits of public randomness using

n = O

√k
ε2

√
k

2` ∨ 1

√
k

2s+` ∨ 1


players to perform (k, ε)-identity testing. In particular, for `+s ≤ log k, this becomesO

(
k

2`/2ε2

√
k

2s+`
)

.

As we shall see in Section 5, this is sample-optimal.

Proof of Theorem 4.4. We note first that for ` ≥ log k, the setting becomes equivalent to the
centralized setting, and the claimed expression becomes O(

√
k/ε2), the (known) tight centralized

sample complexity. Thus, it is sufficient to focus on 1 ≤ ` < log k, which we hereafter do.
To apply Theorem 4.1, we utilize the simulate-and-infer private-coin identity testing protocol
of [ACT19a]. Specifically, we invoke the following result from [ACT19a], which gives a sample-
optimal private-coin identity testing protocol Π` usingW`:

Theorem 4.5 ([ACT19a, Corollary IV.3]). For any integer ` ≥ 1, there exists a private-coin (k, ε, δ)-
identity testing protocol usingW` and

n = O

(
k

2`ε2

(√
k log 1

δ
+ log 1

δ

))

players. In particular, for constant δ this becomes n(k, ε) = O
(
k3/2

2`ε2
)

.

Armed with this protocol Π`, we proceed as follows. Set s̄ ← min(log(k) − `, s) to be the
“effective” number of usable public coins (intuitively, if more than log k − ` public coins are
available, it is not worth using them all, as compressing the domain below 2` would render some
of the ` available bits of communication useless).

• If s̄ ≤ c0 (where c0 is the constant from the statement of Theorem 3.2), then we simply run
the private-coin protocol Π`. This requires

n ≥ n(k, ε) � k3/2

2`ε2 =
√
k

ε2 ·

√
k

2` ·

√
k

2` �
√
k

ε2 ·

√
k

2` ·

√
k

2`+s ∨ 1,

since either s ≤ c0 (in which case k
2` �

k
2`+s ) or log(k)− ` ≤ c0 (in which case k

2`+s ≤
k
2` . 1).

• Else, we apply Theorem 4.1 with s̄ bits of public randomness and private-coin identity
testing protocol Π`. This can be done as long as

n ≥ C · n(ck/2s̄, c′ε/2s̄/2) � (k/2s̄)3/2

2`(ε/2s̄/2)2 = k3/2

2`ε22s̄/2
=
√
k

ε2 ·

√
k

2` ·

√
k

2`+s̄

=
√
k

ε2 ·

√
k

2` ·

√
k

2`+s ∨ 1,

where the last identity holds since s̄ = (log(k)− `) ∧ s.

This concludes the proof.
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4.3 Locally Differentially Private Testing

In this section, we consider the locally private channel family, where each player can only send a
message that is %-LDP. That is, recalling Eq. (1), we consider the channel family

W =W% = {W : [k]→ Y : ∀y ∈ Y,∀x1, x2 ∈ [k],W (y | x2) ≤ e%W (y | x1) } .

We establish the following result for performance of our proposed general algorithm for testing
under privacy constraints. It will be seen in the next section that, much like the communication-
constrained setting, for the privacy-constrained setting as well our general algorithm is optimal.

Theorem 4.6. For any integers k ≥ 1, s ≥ 0, and parameter δ ∈ (0, 1), % > 0, there exists a one-bit
communication %-LDP protocol with s bits of public randomness using

n = O

√k
ε2

√
k

%2

√
k

2s ∨ 1


players to perform (k, ε, δ)-identity testing. When s > log k, this becomes O

(
k

ε2%2

)
.

In [ACFT19], it was shown that the sample complexity for identity testing with %-local dif-
ferential privacy constraints is Θ(k3/2/(ε2%2)) using only private randomness and Θ(k/(ε2%2))
with (unlimited) public randomness.6 Theorem 4.6 matches these bounds in both cases. More-
over, we note here that for private-coin schemes, we can achieve the optimal sample complexity
with a one-bit communication protocol. This is in contrast with the private-coin protocols
of [ACFT19] which require Ω(log k) bits of communication per player. This also shows that, unlike
the communication-constrained setting, under LDP constraints there is no tradeoff between the
number of available bits of communication and sample complexity.

Proof. We will rely on the following lemma, which improves on the private-coin protocol of [ACFT19]
in terms of communication complexity (while achieving the same sample complexity). The proto-
col is inspired by that of [AS19], which provides a one-bit LDP protocol for distribution learning.

Lemma 4.7. There exists a one-bit communication private-coin %-LDP protocol that uses

n = O

(
k3/2

ε2%2 log 1
δ

)

players to perform (k, ε, δ)-identity testing. For constant δ this becomes n%(k, ε) = O
(
k3/2

ε2%2

)
.

We defer the proof for this intermediate result to Section 4.3.1, and continue the proof of the
theorem assuming the statement. Let us denote by Π% the protocol from Lemma 4.7; we then
proceed as follows:

• If s ≤ c0 (where c0 is the constant from the statement of Theorem 3.2), then we just run the
private-coin protocol Π%.

6Although, as the authors showed, their protocol could be made to work with O(log k) bits of public randomness.
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• Else, we apply Theorem 4.1 with s̄ = min(log k, s) bits of public randomness and private-coin
identity testing protocol Π%. This can be done as long as

n ≥ C · n%(ck/2s̄, c′ε/2s̄/2) � (k/2s̄)3/2

%2(ε/2s̄/2)2 = k3/2

%2ε22s̄/2
=
√
k

ε2 ·
√
k

%2 ·

√
k

2s ∨ 1

the last equality recalling that s̄ = (log k) ∧ s.

4.3.1 Proof of Lemma 4.7

It only remains to prove Lemma 4.7, our intermediary result giving a communication-efficient
private-coin protocol for identity testing under LDP. We emphasize that the main advantage of
this protocol is that we require only one bit of communication per player as compared to Ω(log k)
for those of [ACFT19], while in terms of sample complexity both protocols are optimal.

Proof of Lemma 4.7. We use the same response scheme as in [AS19]. The scheme is the following.
Let K := 2dlog2(k+1)e, which is the smallest power of two larger than k. Let HK be the K × K
Hadamard matrix. Without loss of generality, we assume K divides n (as otherwise we can ignore
the last (n−K

⌊
n
K

⌋
) players). Deterministically partition divide the players into K disjoint blocks

of equal size B1, B2, . . . , BK . Each player i ∈ Bj is assigned the jth column of the Hadamard
matrix. Let Cj be the location of +1’s on the jth column; the channel used by player i ∈ Bj is
given by

Wi(1 | x) =
{

e%

e%+1 , if x ∈ Cj ,
1

e%+1 , otherwise.
(7)

Then, following the same computations as in [AS19], we have that for all j ∈ [K],

pCj := Pr[Yi = 1 | i ∈ Bj ] = e% − 1
e% + 1p(Cj) + 1

e% + 1 .

Taking one player from each block and viewing the resulting collection of messages as a length-
K vector, we thus get n/K samples from a product distribution on {0, 1}K with mean vector
pC := (pC1 , . . . , pCK ). From a Parseval-based argument analogous to [ACFT19], we then know that

‖pC − qC‖22 = K(e% − 1)2

4(e% + 1)2 ‖p− q‖22 ,

where qC ∈ [0, 1]K is the mean vector obtained as above when the input distribution is q instead of
p. (Note that qC can be explicitly computed given knowledge of q.) Therefore, when dTV(p,q) > ε,

‖pC − qC‖22 > α := (e%−1)2

(e%+1)2 ε
2, while ‖pC − qC‖22 = 0 when p = q. Since, for product distributions

over {0, 1}K , the problem of testing whether the mean vector is either (i) a prespecified vector
µ ∈ RK or (ii) at `2 distance at least α from µ has sample complexity O

(√
K log(1/δ)/α2

)
,7 having

n/K &
√
K log(1/δ)/α2 suffices, i.e.,

n = O

(
k3/2 (e% + 1)2

4(e% − 1)2ε2 log 1
δ

)
= O

(
k3/2

ε2%2 log 1
δ

)
,

7This is more or less folklore; see e.g., [CDKS17, Section 2.1], or [CKM+19, Lemma 4.2].
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as claimed. Finally, the fact that this protocol does, indeed, satisfy the %-LDP constraints is
immediate from Eq. (7).

5 Lower Bounds

Our lower bounds consist of the following ingredients. In Section 5.1, we introduce the notion
of semimaxmin chi-square fluctuation of a family of channelsW , which will be central to our
results. In Theorem 5.5 we provide an upper bound on the semimaxmin chi-square fluctuation
as a function of ‖H(W )‖∗. We then, in the corresponding following sections, use Lemma 5.4, in
conjunction with the bounds on ‖H(W )‖∗ for communication-constrained and locally private
channels, to prove our lower bounds in those two settings and establish the lower bound part
of Theorems 1.1 and 1.2.

As we aim to prove a lower bound on the sample complexity of identity testing (for general
reference distribution q), it is enough to show a lower bound on its special case of uniformity
testing. This is a sensible choice, as the uniform distribution uk is the “hardest” instance of
identity testing (see e.g., [Pan08, Gol16]).

5.1 The General Formulation: Semimaxmin decoupled chi-square fluctuation

We build on the notions of maxmin and minmax decoupled chi-square fluctuations, introduced
in [ACT18] to prove lower bounds on the sample complexity of SMP protocols with and without
public randomness, respectively. The maxmin fluctuation results in a bottleneck for private-
coin protocols and the minmax for public-coin protocols. To obtain our lower bounds, we
generalize these and define the notion of semimaxmin decoupled chi-square fluctuation, which
interpolates between the maxmin and minmax fluctuations and captures the setting of limited
public randomness.

In order to do so, we first recall the definition of perturbations around a fixed distribution
q ∈ ∆(k).

Definition 5.1 ([ACT18, Definition IV.4]). Consider 0 < ε < 1, a family of distributions P =
{pz, z ∈ Z}, and a distribution ζ on Z. The pair Pζ = (P, ζ) is an almost ε-perturbation (around
q) if

Pr[ dTV(pZ ,q) ≥ ε ] ≥ α,
for some α ≥ 1/10. We denote the set of all almost ε-perturbations by Υε. Moreover, for α = 1 we
refer to P as a perturbed family.

For a channel W : [k] → Y , z ∈ Z, and a symbol y ∈ Y , we denote by qW the distribution
on Y induced by q and W (so that qW (y) =

∑
x∈[k]W (y | x)q(x)), and let δWz (y) := (pWz (y) −

qW (y))/qW (y). Also, for a family of channelsW , denote byW its convex hull. We now recall the
definition of decoupled chi-square fluctuation, and provide an operational meaning for it.

Definition 5.2 ([ACT18, Definition IV.3]). Consider a perturbed family P = {pz : z ∈ Z} and a
family of channelsW . The n-fold induced decoupled chi-square fluctuation of P for Wn ∈ Wn is
given by

χ(2) (Wn | P) := lnEZZ′
[
exp

(
n∑
i=1

〈
δWi
Z , δWi

Z′

〉)]
,
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where
〈
δWz , δ

W
z′

〉
= EY∼pW

[
δWz (Y )δWz′ (Y )

]
.

It was shown in previous work that χ(2) (Wn | P) is an upper bound on the chi-square distance
over the n channel output distributions induced by the almost ε-perturbation, and q; in particular,
for any testing protocol to be successful, this quantity must be bounded away from zero. After
these definitions, we are now in position to introduce the main tool underlying our randomness
tradeoff lower bound, the new notion of semimaxmin fluctuation:

Definition 5.3 (Semimaxmin Chi-square Fluctuation). For a family of channelsW and s ∈ N, the
(n, ε, s)-semimaxmin decoupled chi-square fluctuation forW is given by

χ(2)(Wn, ε, s) := sup
Ws⊆W̄n

|Ws|≤2s

inf
Pζ∈Υε

E
[
χ(2) (Wn | Pζ) ∧ 1

]
,

where the supremum is over all multisetsWs ofWn
of size at most 2s, the infimum is over all

almost ε-perturbations Pζ , and the expectation over the uniform choice of Wn fromWs.

One may observe that when s = 0 and s = ∞, respectively, replacing the expectation by a
supremum yields the maxmin and minmax formulations from previous work. Here, we consider
instead an inner expectation, as it makes it easier to bound the resulting quantity in practice –
while making the proof of Lemma 5.4 only slightly more technical. Note that in the definition
we take a supremum over 2s choices of Wn to capture the fact that there are s public bits which
determine the distribution over the channels. If only s bits of public randomness are available,
we will show that any test using channels fromW will err with large constant probability if the
above quantity χ(2)(Wn, ε, s) is upper bounded by a sufficiently small constant.

Lemma 5.4 (Semimaxmin decoupled chi-square fluctuation bound for testing). For 0 < ε < 1,
s ∈ N, and a k-ary reference distribution p, the sample complexity n = n(k, ε, s) of (k, ε)-identity
testing with s bits of public randomness usingW must satisfy

χ(2)(Wn, ε, s) ≥ c , (8)

for some constant c > 0 depending only on the probability of error.

Proof. The proof uses Le Cam’s two-point method. Consider an almost ε-perturbation Pζ : we
note first that, due the use of private coins, the effective channel used by each user is a convex
combination of channels fromW , namely it is a channel fromW . Thus, whenXn has distribution
either pn and pnz , respectively, Y n has distribution pWn

and pWn

z with Wn ∈ Wn
. The public

randomness then allow the users to jointly sample from any distribution onWn
which can be

sampled by s independent unbiased bits, that is from any uniform distribution on a multiset
Ws ⊆ W

n
of size (at most) 2s.

Now, for every choice of channels Wn = (W1, . . . ,Wn) ∈ Wn
, by Pinsker’s inequality and the

concavity of logarithm,

dTV

(
E
[
pWn

Z

]
,pWn

)2
≤ 1

2KL
(
E
[
pWn

Z

]
|| pWn

)
≤ 1

2 ln
(
1 + dχ2

(
E
[
pWn

Z

]
|| pWn

))
.
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Also, we have the trivial bound dTV

(
E
[
pWn

Z

]
,pWn

)2
≤ 1. Fix any multisetWs ⊆ W

n
. Over the

uniformly random choice of Wn
U ∈ Ws (using the public randomness U ), we then have using the

concavity of square roots,

EU
[
dTV

(
E
[
pW

n
U

Z

]
,pWn

U

)]2
≤ EU

[
1 ∧

√
1
2 ln

(
1 + dχ2

(
E
[
pW

n
U

Z

]
|| pWn

U

))]2

≤ EU
[
1 ∧ 1

2 ln
(
1 + dχ2

(
E
[
pW

n
U

Z

]
|| pWn

U

))]
.

We then bound the right-side further using [ACT18, Lemma III.V] with θ replaced by z, Qnϑ = pW
n
U

z

and Pi = pWn
U to get

EU
[
1 ∧ ln

(
1 + dχ2

(
E
[
pW

n
U

Z

]
|| pWn

U

))]
≤ EU

[
1 ∧ lnEZZ′

[
n∏
i=1

(1 +HU
i (Z,Z ′))

]]
≤ EU

[
1 ∧ lnEZZ′

[
e
∑n

i=1H
U
i (Z,Z′)

]]
= EU

[
1 ∧ χ(2) (Wn

U | Pζ)
]
,

since HU
i (Z,Z ′) =

〈
δ
WU,i

Z , δ
WU,i

Z′

〉
. That is, we have8

EU
[
dTV

(
E
[
pW

n
U

Z

]
,pWn

U

)]2
≤ EU

[
1 ∧ χ(2) (Wn

U | Pζ)
]
. (9)

Consider an (n, ε)-test T using a public-coin protocol. Denote by U the public randomness
and by Y1, . . . , Yn the messages from each user and by Z0 the set of z such that dTV(pz,p) ≥ ε.
Since Pζ is an almost ε-perturbation, Pr[Z ∈ Z0 ] ≥ α ≥ 1/10. Also, for the test T we have
PrXn∼pn [ T (U, Y n) = 1 ] ≥ 11/12 and PrXn∼pnz [ T (U, Y n) = 0 ] ≥ 11/12 for every z ∈ Z0. Thus, we
obtain

1
2 Pr
Xn∼pn

[ T (U, Y n) = 1 ] + 1
2 Pr
Xn∼E[pnZ ]

[ T (U, Y n) = 0 ] ≥ 11(1 + α)
24 ≥ 121

240 ,

where the last inequality relies on the fact that α ≥ 1/10. Equivalently,

1
2 Pr
Xn∼pn

[ T (U, Y n) 6= 1 ] + 1
2 Pr
Xn∼E[pnZ ]

[ T (U, Y n) 6= 0 ] ≤ 119
240 . (10)

An important remark here is that the distribution of Wn
U (that is, the choice ofWs ⊆ W

n
) does not

depend on Pζ . The left-hand-side of Eq. (10) above coincides with the Bayes error for test T for

the simple binary hypothesis testing problem of E
[
pW

n
U

Z

]
versus EU

[
pWn

U

]
, which must be at least

1
2
(
1− EU

[
dTV

(
E
[
pW

n
U

Z

]
,pWn

U

)])
.

Thus, we can findWs such that forWn
U distributed uniformly onWs and any almost ε-perturbations

Pζ
EU
[
dTV

(
E
[
pW

n
U

Z

]
,pWn

U

)]
≥ 1

120 ,

8Dropping the constant 1/2 for simplicity of the resulting bound.
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which along with Eq. (9) yields

EU
[
1 ∧ χ(2) (Wn

U | Pζ)
]
≥ c, (11)

where c = 1/14400. The result follows upon taking minimum over all almost ε-perturbations Pζ
and the maximum over all multisetsWs ∈ W

n
of size at most 2s.

In view of Lemma 5.4, it then suffices to come up with a particular reference distribution q of
our choosing, and, for any type of constraintW , to upper bound χ(2)(Wn, ε, s) as a function of
k, ε, s and (some quantity of)W . To do so, recalling the definition of semimaxmin decoupled chi-
square fluctuation (Definition 5.3), it suffices to do the following: for each fixedWs ⊆ W

n
of size at

most 2s, construct an almost ε-perturbation Pζ = (P, ζ) around our q such that E
[
χ(2) (Wn | Pζ)

]
is small enough. As previously mentioned, we will choose our reference distribution q to be
the uniform distribution uk. Our almost perturbations will consist of “small local perturbations”
around uniform, and be of the form

pZ = 1
k

(1 + Z1ε, 1− Z1ε, . . . , 1 + Zk/2ε, 1− Zk/2ε) , (12)

where Z is drawn for a suitably chosen distribution ζ on Rk/2. Note that taking ζ to be uniform on
{−1, 1}k/2, we retrieve the “Paninski construction” [Pan08], widely used to prove lower bounds
in the centralized, unconstrained setting. Unfolding the definition of decoupled chi-square
perturbation, the form chosen in (12) for our perturbation then naturally leads to the following
channel-dependent matrix H(W ), which will guide the choice of the “worst possible mixture ζ
over Z” for a given family of channels. For each channel W ∈ W , let the (k/2)-by(k/2) positive
semidefinite matrix H(W ) be defined as

H(W )i1,i2 :=
∑
y∈Y

(W (y | 2i1 − 1)−W (y | 2i1))(W (y | 2i2 − 1)−W (y | 2i2))∑
x∈[k]W (y | x) , i1, i2 ∈ [k/2] . (13)

This matrix will, loosely speaking, capture the ability of channel W to discriminate between even
and odd inputs, and thus to distinguish the reference uniform distribution from such a mixture of
perturbed distributions. Our bounds will rely on the nuclear norm ‖H(W )‖∗ of the matrix H(W ).
In effect, our results characterize the informativeness of a channel W for testing in terms of the
nuclear norm of H(W ). Channels with larger nuclear norms provide more information, and the
channel constraints impose a bound on the nuclear norms, which leads to our result:

Theorem 5.5. Given n ∈ N, ε ∈ (0, 1), s ∈ N, for a channel familyW the (n, ε, s)-semimaxmin
chi-square fluctuation is bounded as

χ(2)(Wn, ε, s) = O

(
n2ε4

k3 · 2
s · max

W∈W
‖H(W )‖2∗

)
,

whenever

n ≤ k3/2

Cε22s/2 maxW∈W ‖H(W )‖∗
, (14)

where C > 0 is a constant.
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The proof of this theorem is quite technical, and is provided in Appendix D. We here give an
outline of the argument.

Proof of Theorem 5.5 (Sketch). In view of the discussion above, we would like, given any multiset
Ws of 2s n-fold channelsWn, to design a suitable distribution for our perturbationZ which “fools”
all (or most) of the 2s channels. Loosely speaking, we would like to construct a distribution for
which (informally) most of variance falls in subspaces corresponding to small eigenvectors for
a large fraction of the matrices H(Wi). To do so, we proceed along the same lines as the proof
of [ACT18, Theorem IV.18] (hereafter denoted (?)), reducing the problem to finding a distribution
of the perturbation vector Z such that, for any fixed (multi)setWs ⊆ Wn of size at most 2s, the
expectation

EWn

[
lnEZZ′

[
e
β2n2ε2

k
ZᵀH̄(Wn)Z′

]]
(where β > 0 is a constant, and H̄(Wn) := 1

n

∑n
i=1H(Wi)), is small. Using a similar argument, it

suffices to find a matrix V such that (i) ‖V ‖2F & k, (ii) each row of V has 2-norm at most 1, and

(iii) the average (over Wn ∈ Ws) Frobenius norm EWn

[
‖V ᵀH(Wn)V ‖F

]
is small.

Since all the matrices H̄(Wn) (and therefore all V ᵀH̄(Wn)V ’s) are symmetric positive semi-
definite matrices, one can then show that

1
2s ‖V

ᵀ

 ∑
Wn∈Ws

H̄(Wn)

V ‖2F ≥ EWn

[
‖V ᵀH̄(Wn)V ‖F

]2
. (15)

Using a construction from (?) applied to H̃(Ws) :=
∑
Wn∈Ws

H̄(Wn), we obtain a matrix V
satisfying the above conditions (i) and (ii), and such that we have the following analogue of (iii):

‖V ᵀH̃(Ws)V ‖2F .
1
k
‖H̃(Ws)‖2∗ . (16)

Combining this inequality with (15) and the triangle inequality, this leads to

EWn

[
‖V ᵀH̄(Wn)V ‖F

]2
.

2s

k
max
W∈W

‖H(W )‖2∗ . (17)

From (17), we can finally derive the desired bound in a manner analogous to the end of (?). This
is however not entirely immediate, as (by our very construction), we can only guarantee small
Frobenius norms and spectral radius on average for the V ᵀH̄(Wn)V ’s. The original argument
of (?), however, crucially requires during its last step a pointwise guarantee; to conclude, we thus
must resort to a careful averaging argument over these spectral radii to ensure most of them are
under control, and handle the small remaining “bad” fraction separately. More specifically, this
last part hinges on the inner min in the definition of semimaxmin fluctuation: when bounding the
quantity EWn [χ(2) (Wn | Pζ) ∧ 1] in the end, we control the pointwise contribution of the “good”
Wn’s via the term χ(2) (Wn | Pζ) (which we show is then� 1), and the contribution of the “bad”
Wn’s via the term 1 (which, while large, is weighted by the fraction of “bad” channels, which is
itself small enough).
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5.2 Communication-Constrained and LDP Testing

We now instantiate the general lower bound result established in the previous section to the two
specific settings we consider, communication and local privacy constraints. For communication-
constrained and LDP channels the nuclear norms of the H matrices can be uniformly bounded
as follows.

Lemma 5.6 ([ACT18, Lemmas V.1 and V.5]). For ` ≥ 1, and % ∈ (0, 1], maxW∈W`
‖H(W )‖∗ ≤ 2`

and maxW∈W% ‖H(W )‖∗ = O(%2).

Using these bounds, we readily obtain our sample complexity results for both communication-
constrained and LDP channels.

Theorem 5.7. For 0 < ε < 1 and `, s ∈ N, the sample complexity of (k, ε)-uniformity testing with s
bits of public randomness usingW` is at least

Ω

√k
ε2

√
k

2` ∨ 1

√
k

2s+` ∨ 1

 .
Theorem 5.8. For 0 < % < 1, and s ∈ N the sample complexity of (k, ε)-uniformity testing with s
bits of public randomness usingW% is at least

Ω

√k
ε2

√
k

%2

√
k

2s ∨ 1

 .
Indeed, from Lemma 5.4, we get that χ(2)(Wn, ε, s) must be lower bounded by a constant for

n samples to be sufficient for testing. Plugging in the bounds from Lemma 5.6 in Theorem 5.5
yields the two above results.
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A Spectrum of outer products result

In this appendix we prove Theorem 3.5 and Lemma 3.4. Theorem 3.5 is restated below:
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Theorem A.1 (Spectrum of outer products). For n ∈ N, there exist constants c0 ∈ N, c1, c2 ∈ (0, 1)
and vectors u1, . . . , um0 ∈ {0, 1}n withm0 = 2c0n such that for everyJ ⊆ [m0] with |J | ≥ (1−c1)m0
we must have

λmin

( 1
|J |

∑
j∈J

uju
ᵀ
j

)
≥ c2.

Consider random, independent binary vectors V1, . . . , Vm0 ∈ {0, 1}n, with each Vi drawn uni-
formly from the set of all binary vectors of length n. We establish Theorem A.1 using probablistic
argument. It would be enough to show that:

Pr

∃J ⊆ [m0], |J | ≥ (1− θ)m0 s.t. λmin

 1
|J |

∑
i∈J

ViV
ᵀ
i

 < c2

 < 1.

First, for any J with |J | = m ≥ (1− θ)m0, we will derive an exponential upper bounds for the
probability,

Pr

λmin

 1
|J |

∑
i∈J

ViV
ᵀ
i

 < t

.
Without loss of generality, we can assume J = [m]. Since

λmin

 1
|J |

∑
i∈J

ViV
ᵀ
i

 = min
x
{

1
m

∑m
j=1 x

ᵀVjV
ᵀ
j x

‖x‖22
},

we first establish an exponential upper bound for

Pr

 1
m

m∑
j=1

xᵀVjV
ᵀ
j x < t‖x‖22

.
We derive this bound using a general anti-concentration bound for subgaussian random variables,
which may be of independent interest.

Theorem A.2 (An anti-concentration bound). Consider independent random variables Y1, . . . , Ym

such that each Yi is zero-mean and subgaussian with variance parameter σ2, i.e., E
[
eλYi

]
≤ eλ2σ2/2

for all λ ∈ R. Suppose further that, for all i, E
[
Y 2
i

]
≥ ησ2 for some η ∈ (0, 1). Then, there exist

positive constants c1 and c2 such that for every µ ∈ R,

Pr
[

1
m

m∑
i=1

(Yi + µ)2 ≥ c1η
2
(

min
1≤i≤m

E
[
Y 2
i

]
+ µ2

) ]
≥ 1− exp(−c2mη

4).

To prove this result, we take recourse to the following “clipped-tail” version of Hoeffding bound,
which allows us to obtain exponential anti-concentration bounds using anti-concentration
bounds.

Lemma A.3 (Clipped-tail Hoeffding bound). For t > 0, let X1, . . . , Xm be nonnegative, indepen-
dent random variables satisfying

Pr[Xi ≥ t ] ≥ α, 1 ≤ i ≤ m,
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Then,

Pr
[

1
m

m∑
i=1

Xi ≥
tα

2

]
≥ 1− exp

(
−mα2

2

)
.

Proof. Since Xis are nonnegative,
∑m
i=1Xi ≥ t

∑m
i=1 1{Xi>t}. It follows that

Pr
[

1
m

m∑
i=1

Xi ≤
tα

2

]
= Pr

[
1
m

m∑
i=1

1{Xi>t} ≤
α

2

]
,

where the right-side is bounded above further by exp(−mα2/2) using Hoeffding’s inequality and
the assumption of the lemma.

We use this bound to now complete the proof of Theorem A.2.

Proof of Theorem A.2. Let Y be zero-mean and subgaussian with variance parameter σ2. Then,
for X = Y + µ, we get E

[
X4] ≤ 8E

[
Y 4] + 8µ4. Also, since Y is subgaussian with variance

parameter σ2, it is easy to show that E
[
Y 4] ≤ 8σ2, whereby we get E

[
X4] ≤ 64σ4 + 8µ4. Since

by our assumption E
[
X2] = E

[
Y 2] + µ2 ≥ ησ2 + µ2, it follows that E

[
X2]2 ≥ η2σ4 + µ4. Upon

combining this with the previous bound, we obtain E
[
X4] ≤ 64

η2E
[
X2]2. We now invoke the

Paley–Zygmund inequality to get

Pr
[
X2 ≥ 1

2 (E
[
Y 2
]

+ µ2)
]
≥ η2

256 .

Finally, an application of Lemma A.3 yields

Pr
[

1
m

m∑
i=1

(Yi + µ)2 ≥ η2

1024
(

min
1≤i≤m

E
[
Y 2
i

]
+ µ2

) ]
≥ 1− exp

(
−mη

4

2562

)
,

which completes the proof.

Proof of Theorem A.1. Let 1 be the all one vector in Rn. We apply Theorem A.2 to Yi = xᵀVi −
(1ᵀx)/2, 1 ≤ i ≤ m, with µ = (1ᵀx)/2. Note that the Yi’s are zero-mean, and by Hoeffding’s
lemma, they are subgaussian with variance parameter ‖x‖22/4. Furthermore, it is easy to verify
that E

[
Y 2
i

]
= ‖x‖22/4. Thus, the condition of Theorem A.2 holds with η = 1, which gives

Pr
[

1
m

m∑
i=1

(xᵀVi)2 ≥ c1
‖x‖22 + (1ᵀx)2

4

]
≥ 1− exp (−c2m) . (18)

Denote by Am the random matrix 1
m

∑m
i=1 ViV

ᵀ
i . Our goal is to bound λmin(Am). It will be conve-

nient to introduce a new norm ‖·‖? on Rn: for x ∈ Rn,

‖x‖? :=
√
‖x‖22 + (1ᵀx)2.

Clearly, ‖·‖? is a norm, as ‖x‖? = ‖L(x)‖2 where L(x) := (x1, . . . , xn,
∑n
i=1 xi) ∈ Rn+1 is linear.

30



Now, if we can find an x such that xᵀAmx < λ‖x‖22, then y = x/‖x‖? has ‖y‖? = 1 and satisfies
yᵀAmy < λ. Therefore,

Pr
[

min
x:‖x‖2=1

xᵀAmx < λ

]
≤ Pr

[
min

y:‖y‖?=1
yᵀAmy < λ

]
(19)

We use Eq. (18) to obtain this bound, together with an appropriate netting argument. Specifically,
letN be a δ-net of the sphere { y ∈ Rn : ‖y‖? = 1 } in the norm ‖·‖?. We can find such a net with
|N | ≤ (1 + 2

δ )n ≤ e2n/δ (see, e.g., [Pis89, Lemma 4.16]), which is the net we use. By a union bound
applied to Eq. (18), we get

Pr
[

min
x∈N

xᵀAmx < c1
‖x‖22 + (1ᵀx)2

4

]
< exp

(2n
δ
− c2m

)
. (20)

We bound yᵀAmy for a y with ‖y‖? = 1 by relating it to xᵀAmx for a vector x ∈ N such that ‖x−y‖?.
While this is he standard netting argument, there is added complication since we need to work
with the norm ‖·‖?.

In particular, for a y such that ‖y‖? consider an x ∈ N satisfying ‖x − y‖? ≤ δ. Denoting
z := y − x, we decompose z = z‖ + z⊥, where z‖ ∈ spanR(1), and zᵀ⊥1 = 0. By definition,

z‖ = (zᵀ1)
n 1 and z⊥ = z − z⊥. Using the inequality (a+ b)2 ≥ a2/2− b2, for every i ∈ [m] we have

(V ᵀ
i y)2 = (V ᵀ

i x+ V ᵀ
i z)

2 ≥ 1
2(V ᵀ

i x)2 − (V ᵀ
i z)

2 ≥ 1
2(V ᵀ

i x)2 − 2(V ᵀ
i z‖)

2 − 2(V ᵀ
i z⊥)2.

Summing over i and using the expression for z‖, we get

yᵀAmy ≥
1
2 · x

ᵀAmx−
2(zᵀ1)2

n2 · (1ᵀAm1)− 2(zᵀ⊥Amz⊥). (21)

To proceed further, we derive bounds for random variables (1ᵀAm1) and (zᵀ⊥Amz⊥). For the first
term, we can show

Pr
[

(1ᵀAm1) > 5n2
]
≤ 2 exp(−m/2). (22)

We provide a proof at the end. For the second term, we observe that

zᵀ⊥Amz⊥ = 1
m

m∑
i=1

(zᵀ⊥Vi)
2 = 1

m

m∑
i=1

(
zᵀ⊥

(
Vi −

1
2 · 1

))2
.

Denote by V i a random variable which takes values 1/2 and−1/2 with equal probabilities, and by
Am the random matrix (1/m)

∑m
i=1 V iV

ᵀ
i , we get

zᵀ⊥Amz⊥ ≤ λmax(Am)‖z⊥‖22.

The next result, whose proof is standard and will be given later, provides a bound for λmax(Am).

Lemma A.4. There exist constants c2, c3 such that

Pr
[
λmax(Am) > c2

]
≤ exp

(
c3n−

m

2

)
.
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This result, together with Eq. (21) and Eq. (22), yields

Pr
[

min
y:‖y‖?=1

yᵀAmy ≥ t
]

≥ Pr
[

min
x∈N

xᵀAmx ≥ 2t+ 20(zᵀ1)2 + 4c2‖z⊥‖22
]
− 2 exp

(
−m2

)
− exp

(
c3n−

m

2

)
≥ 1− Pr

[
min
x∈N

xᵀAmx ≥ 2t+ c4δ
2
]
− 2 exp

(
−m2

)
− exp

(
c3n−

m

2

)
where we used ‖z‖2? ≥ ‖z⊥‖

2
2 + (zᵀ1)2. We set t = δ2 and note that for any x ∈ N we must have

‖x‖? ≤ 1 + δ. Therefore,

Pr
[

min
x∈N

xᵀAmx < 2t+ c4δ
2
]

= Pr
[
∃x ∈ N s.t. xᵀAmx < c5

δ2

(1 + δ)2 ‖x‖
2
?

]
.

Setting δ such that c5δ
2(1 + δ)2 = c2/4, it follows from Eq. (18) that

Pr
[

min
x∈N

xᵀAmx < 2t+ c4δ
2
]
≤ |N | exp(−c2m) ≤ exp

(2n
δ
− c2m

)
.

Upon combining the bounds above, we get

Pr
[

min
y:‖y‖?=1

yᵀAmy < δ2
]
≤ exp

(2n
δ
− c2m

)
+ 2 exp

(
−m2

)
+ exp

(
c3n−

m

2

)
where δ, c2, c3 are constants. Recalling Eq. (19), we have obtained

Pr
[
λmin

(
1
m

m∑
i=1

ViV
ᵀ
i

)
< δ2

]
≤ exp (c6n− c7m)

Finally, by a union bound of all subsets of [m0] with size larger than (1− θ)m0, we get

Pr

∃J ⊆ [m0], |J | ≥ (1− θ)m0 s.t. λmin

 1
|J |

∑
i∈J

ViV
ᵀ
i

 < δ2

 ≤ m02m0h(θ) exp (c6n− c7m0(1− θ)) ,

where h(·) denotes the binary entropy function, and we have used the fact that the number of
subsets of [m0] of cardinality greater than (1− θ)m0, θ ∈ (0, 1/2), is at most m02m0h(θ). The proof
is completed by ensuring that the exponent on right-side above is negative.

It only remains to prove Eq. (22) and Lemma A.4, which we do next.

Proof of Eq. (22). Consider random variables ξi := (V ᵀ
i 1), i ∈ [m]. Note that E[ξi] = n/2 and each

ξi is subgaussian with variance parameter n/4. Therefore, Pr
[

1
m

∑m
i=1 ξi > n

]
≤ exp(−mn/2).

Furthermore, since E
[
(ξi − n/2)2] = n/4, the random variable (ξi−n/2)2−n/4 is subexponential

with parameter 4n, which gives Pr
[

1
m

∑m
i=1(ξi − n/2)2 > 17n/4

]
≤ exp(−m/2). Thus,

Pr
[

1
m

m∑
i=1

ξ2
i >

3
4 · n

2 + 17
4 · n

]
≤ Pr

[
1
m

m∑
i=1

ξi > n

]
+ Pr

[
1
m

m∑
i=1

(ξi − n/2)2 > 5n/4
]

≤ 2 exp
(
−m2

)
,

which leads to the claimed bound.
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Proof of Lemma A.4. For a fixed x ∈ Rn, consider random variables ζi := (V ᵀ
x), i ∈ [m]. They are

all zero-mean and are subgaussian with variance parameter ‖x‖22/4. Furthermore, their second
moment E

[
ζ2
i

]
equals ‖x‖22/4. Therefore, the random variable ζ2

i − ‖x‖
2
2/4 is subexponential with

parameter 4‖x‖22, and we have Pr
[

1
m

∑m
i=1 ζ

2
i >

17
4 · ‖x‖

2
2

]
≤ exp

(
−m

2
)
.

Next, consider a δ-netN2 of the unit ball under ‖·‖2 of cardinality |N2| ≤ e2n/δ. For a y such
that ‖y‖2 = 1 and yᵀAmy = λmax(Am), consider the x ∈ N2 such that ‖y − x‖2 ≤ δ. Then, since
yᵀAmy = xᵀAmx+ 2(y − x)TAmy, we have

λmax(Am) = yᵀAmy ≤ xᵀAmx+ 2δλmax(Am),

which further gives
(1− 2δ)λmax(Am) ≤ max

x∈N2
xᵀAmx.

Also, every x ∈ N2 satisfies ‖x‖2 ≤ 1 + δ, a and so, by the tail-probability bound for
∑m
i=1 ζ

2
i that

we saw above, we get Pr
[

1
m

∑m
i=1 ζ

2
i >

17(1+δ)2

4

]
exp (2n/δ −m/2). Therefore, we obtain

Pr
[
λmax(Am) > 17(1 + δ)2

4(1− 2δ)

]
≤ exp

(
−m2

)
.

In particular, we can set δ = 1/4 to get the claimed result with c2 = 425/32 and c3 = 8.

We close with a proof of Lemma 3.4, which we recall below for easy reference.

Lemma A.5 (Additivity of tails Lemma 3.4, restated). Let a1, . . . , am ≥ 0, and suppose Y1, . . . , Ym
are non-negative random variables with Pr[Yi ≥ ai ] ≥ c for every 1 ≤ i ≤ m, for some c ∈ (0, 1).
Then,

Pr
[
Y1 + . . .+ Ym ≥ c ·

a1 + . . .+ am
2

]
≥ c

2− c .

Proof. Let a1, . . . , am ≥ 0 and Y1, . . . , Ym be as in the statement, and define Zi := ai1{Yi≥ai} for
i ∈ [m]. Then Z1, . . . , Zm satisfy the assumptions of the lemma as well, namely Pr[Zi ≥ ai ] ≥ c.
Further, Pr[Y1 + . . .+ Ym ≥ α ] ≥ Pr[Z1 + . . .+ Zm ≥ α ] for all α. Thus it suffices to prove the
statement for the Zi’s, which are supported on two points, which is what we do.

Let Z := Z1 + . . . + Zm. By the assumption, we have E[Z] ≥ c(a1 + . . . + am), and 0 ≤ Z ≤
a1 + . . .+ am. By Markov’s inequality applied to

∑m
i=1 ai − Z ≥ 0, for γ ∈ (0, 1),

Pr
[
Z < γc

m∑
i=1

ai

]
= Pr

[
m∑
i=1

ai − Z > (1− γc)
m∑
i=1

ai

]
≤
∑m
i=1 ai − E[Z]

(1− γc)
∑m
i=1 ai

≤ 1− c
1− γc = 1−(1− γ)c

1− γc .

Taking γ := 1/2 yields the claim.

B Miscellaneous: some useful lemmas

We provide in this appendix two simple results, mentioned in the preliminaries. We begin with a
simple proposition, which allowed us throughout the paper on to assume that one can partition
the domain [k] into any number L of equal-sized sets. Indeed, as shown below, when aiming
to perform (k, ε)-identity testing this can always be achieved at the cost of only a constant
multiplicative factor in the distance parameter ε (and only requires private randomness, as well
as knowledge of k and L, from the n users).
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Proposition B.1. Let k, L ≥ 1 be two integers with 1 ≤ L ≤ k, and define k′ := L dk/Le. There
exists an explicit mapping Φk,L : ∆(k)→ ∆(k′) such that (i) the uniform distribution is mapped to
the uniform distribution, i.e., Φk,L(uk) = uk′ ; and (ii) distances are approximately preserved: for
every p,q ∈ ∆(k),

dTV(Φk,L(p),Φk,L(q)) = k

k′
dTV(p,q) ≥ 1

2dTV(p,q) .

Further, there exists a randomized mapping Ψk,L such that, for every p ∈ ∆(k), Ψk,L(X) ∼ Φk,L(p)
whenever X ∼ p.

Proof. We define Φk,L as a mixture of the input and the uniform distribution on [k] \ [k′]: for any
p ∈ ∆(k), Φk,L(p) := k

k′p + k′−k
k′ u[k]\[k′] . Recalling that k ≤ k′ < k + L, is immediate to verify that

all the claimed properties hold.

Applying the above with L := 2blog kc, we in particular get the following:

Corollary B.2. Let k ≥ 1 be any integer, and define k′ := 2dlog ke ∈ [k, 2k). There exists an explicit
mapping Φk : ∆(k)→ ∆(k′) such that, for every p,q ∈ ∆(k),

1
2dTV(p,q) ≤ dTV(Φk(p),Φk(q)) ≤ dTV(p,q) .

Further, there exists a randomized mapping Ψk such that, for every p ∈ ∆(k), Ψk(X) ∼ Φk(p)
whenever X ∼ p.

In view of this corollary, we without loss of generality can assume throughout that k is a power of
two.

C Omitted proof: Deterministic Amplification

In this appendix, we provide for completeness a proof of Lemma 4.2, the “deterministic error
reduction” lemma we used in the argument of Theorem 4.1. The idea underlying this deterministic
error reduction for RP is well-known, and was introduced by Karp, Pippenger, and Sipser in
1985 [KPS85]. The gist is to see the random string σ as the index of a vertex is a d-regular graph on
2s vertices, and then run the algorithm on all d neighbors of this random vertex vr. If the graph
is a good enough expander, doing so will ensure not all d neighbors cause the algorithm to err.
(For more on deterministic amplification for RP (one-sided) and BPP (two-sided) algorithms,
as well as the related notion of exponential error amplification with few extra random bits, see,
e.g., [CW89, CG89], or [HLW06, Sections 1.3.3 and 3.3]).

We begin by recalling some definitions and a useful lemma. Fix n, d ∈ N and λ ≥ 0. We say
that a d-regular graph G = (V,E) on n vertices with (normalized) adjacency matrix A has spectral
expansion λ if λ(G) ≤ λ, where λ(G) := max(|λ2|, |λn|) and 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λn ≥ −1 are the
eigenvalues of A.

Theorem C.1 (Expander Mixing Lemma). Let G = (V,E) be a d-regular graph on n vertices with
spectral expansion λ. Then, for every S, T ⊆ V ,

| |e(S, T )|
dn

− |S|
n
· |T |
n
| ≤ λ

√
|S|
n
· |T |
n
,

where e(S, T ) = { (u, v) ∈ E : u ∈ S, v ∈ T }.
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We are now ready to prove Lemma 4.2, restated below.

Lemma C.2 (Deterministic Amplification for One-Sided Error (RP)). For any s ∈ N and η, γ ∈
(0, 1), there exist d = d(η, γ) and (time-efficiently computable) functions π1, . . . , πd : {0, 1}s →
{0, 1}s such that the following holds. Suppose X0 ⊆ X and A : X × {0, 1}s → Ω and E ⊆ Ω satisfy

(i) If x ∈ X0, Prσ∼{0,1}s [A(x, σ) ∈ E ] = 1 (Perfect completeness)

(ii) If x /∈ X0, Prσ∼{0,1}s [A(x, σ) /∈ E ] ≥ 1− η (Low soundness)
Then we have

(i) If x ∈ X0, Prσ∼{0,1}s [ ∀i ∈ [d], A(x, πi(σ)) ∈ E ] = 1 (Perfect completeness)

(ii) If x /∈ X0, Prσ∼{0,1}s [ ∃i ∈ [d], A(x, πi(σ)) /∈ E ] ≥ 1− γ (High soundness)

Moreover, on can take d = Õ
(

η
(1−η)2γ

)
.

Proof. Fix A as in the statement, and let G = (V,E) be a d-regular graph on n := 2s vertices
with spectral expansion λ ≤ (1− η)

√
γ/η, for some d. We define π1, . . . , πd as follows: fixing any

labeling of the vertices of G, we see r ∈ {0, 1}s as a vertex vr ∈ V and let π1(r), . . . , πd(r) be the
labels of the d neighbors of vr in G.

To see why the claimed properties hold, first note that whenever x ∈ X0, then as A has one-
sided error we have A(x, πi(σ)) ∈ E for all i with probability one. To establish the second item, fix
x /∈ X0, and define Bx ⊆ {0, 1}s as the set of “bad” random seeds, i.e., those on which A errs:

Bx := { σ ∈ {0, 1}s : A(x, σ) ∈ E } .

By assumption, |Bx| ≤ η · 2s. Now, consider the set B̃x of random seeds for which all neighbors
are bad seeds, that is those seeds for which A(x, πi(σ)) fails for all i ∈ [d]:

B̃x := { σ ∈ {0, 1}s : ∀i ∈ [d] , A(x, πi(σ)) ∈ E } .

Since every σ ∈ B̃x has d “bad” neighbors, we must have |e(B̃x, Bx)| ≥ d|B̃x|. Applying the
Expander Mixing Lemma (Theorem C.1), we get

|e(B̃x, Bx)|
dn

≤ |Bx|
n
· |B̃x|
n

+ λ

√
|Bx|
n
· |B̃x|
n

which implies, recalling the above bounds on both |B̃x| and |Bx|, d|B̃x|dn ≤ η · |B̃x|n + λ
√
η · |B̃x|n .

Rearranging,
|B̃x|
n
≤ λ2 η

(1− η)2

which is at most γ by our choice of λ. Therefore, for every x /∈ X0, Prσ
[
x ∈ B̃x

]
≤ γ, establishing

the high-soundness statement.
The bound on d, as well as the time efficiency statement, finally follow from the following

construction of expanders, due to Bilu and Linial:

Theorem C.3 ([HLW06, Theorem 6.12]). For every d ≥ 3, and every n ≥ 1, there exists an explicit
d-regular graph G on n vertices with spectral expansion λ = O((log3/2 d)/

√
d). Moreover, G can be

constructed in time polynomial in n and d.
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To achieve the desired bound on λ2, it therefore suffices to have d = Õ
(

η
(1−η)2γ

)
.

Remark C.4. By a probabilistic argument, for all n, d ≥ 1, and every constant δ > 0, there exist
d-regular graphs on n vertices with spectral expansion λ ≤ (2+δ)

√
d− 1/d (more precisely, almost

all d-regular graph onn vertices have spectral expansion at most (2+δ)
√
d− 1/d). Therefore, if one

does not insist on being able to efficiently construct such a graph, the bound on d in Lemma C.2
can be improved to d ≥ 4.1η

(1−η)2γ .

D Omitted proof: Proof of Theorem 5.5

In this appendix, we prove of Theorem 5.5, restated below.

Theorem D.1 (Theorem 5.5, restated). Given n ∈ N, ε ∈ (0, 1), s ∈ N, for a channel familyW the
(n, ε, s)-semimaxmin chi-square fluctuation is bounded as

χ(2)(Wn, ε, s) = O

(
n2ε4

k3 · 2
s · max

W∈W
‖H(W )‖2∗

)
,

whenever

n ≤ k3/2

Cε22s/2 maxW∈W ‖H(W )‖∗
, (23)

where C > 0 is a constant.

Proof. To obtain the desired bound for semimaxmin chi-square fluctuation, we fix an arbitrary
multisetWs ⊆ W̄n of size at most 2s, and bound the average (over Wn inWs) decoupled chi-
square fluctuation for a suitable almost ε-perturbation Pζ . With this in mind, suppose we have a
random variable Z = (Z1, . . . , Zk/2) taking values in [−1, 1]k/2 and with distribution ζ such that

Pr
[
‖Z‖1 ≥

k

β

]
≥ α (24)

for some constants α ≥ 1/10 and β > 0. For ε ∈ (0, β−1), consider the perturbed family around
uk consisting of elements pz, z ∈ [−1, 1]k/2, given by

pz = 1
k

(
1 + βεz1, 1− βεz1, . . . , 1 + βεzt, 1− βεzt, . . . , 1 + βεzk/2, 1− βεzk/2

)
. (25)

By our assumption on Z (Eq. (24)), pZ then satisfies dTV(pZ ,uk) = βε
k ‖Z‖1 ≥ ε with probability

at least α. Consider any Wn ∈ Wn
s . From the same steps as in [ACT18, Theorem IV.14], we get

χ(2) (Wn | Pζ) = lnEZZ′
[
exp

(
β2nε2

k
· ZᵀH̄(Wn)Z ′

)]
, (26)

whereZ,Z ′ are independent random variables with common distribution ζ, H̄(Wn) := 1
n

∑n
j=1H(Wj),

and H(Wj) is defined as in Eq. (13). Now, to bound the semimaxmin chi-square fluctuation, we
must handle EWn [χ(2) (Wn | Pζ)], for Wn drawn uniformly at random fromWs. We thus define
the new “aggregate” matrix

H̃(Ws) :=
∑

Wn∈Ws

H(Wn)

36



to which we apply a construction of Acharya, Canonne, and Tyagi, whose properties we summa-
rize below.

Lemma D.2 (Implicit in the proof of [ACT18, Theorem IV.18]). Let A ∈ R(k/2)×(k/2) be a p.s.d.
matrix. Then, there exists a matrix V ∈ R(k/2)×(k/4) such that the following holds.

(i) Each row vector of V has `2 norm at most 1, and V has Frobenius norm ‖V ‖F ≥
√
k/2.

(ii) Let Y = (Y1 . . . Yk/4) be a vector of i.i.d. Rademacher random variables. Then,9

Pr
[
‖V Y ‖1 ≥

k

12
√

2

]
≥ 1

9 .

(iii) We have ‖V ᵀAV ‖2F ≤
4
k‖A‖

2
∗.

We invoke this lemma on H̃(Ws), and denote by V ∈ R(k/2)×(k/4) the resulting matrix. Letting
ζ be the distribution of the random variableZ := V Y , where Y is a vector of k/4 i.i.d. Rademacher
random variables, item (ii) implies that ζ satisfies the condition from Eq. (24), for α := 1/9 and
c := 1/(12

√
2). Moreover, since all H(Wn) (and therefore all V ᵀH(Wn)V ’s) are symmetric p.s.d.

matrices, we have10

‖V ᵀ
∑

Wn∈Ws

H(Wn)V ‖2F ≥
∑

Wn∈Ws

‖V ᵀH(Wn)V ‖2F ,

or, equivalently, 2−s‖V ᵀH̃(Ws)V ‖2F ≥ EWn

[
‖V ᵀH(Wn)V ‖2F

]
. However, by item (iii), ‖V ᵀH̃(Ws)V ‖2F ≤

(4/k)‖H̃(Ws)‖2∗. Since, by the triangle inequality, we further have

‖H̃(Ws)‖∗ ≤ 2s max
Wn∈Ws

‖H(Wn)‖∗ ≤ 2s max
W∈W

‖H(W )‖∗

we obtain

EWn

[
‖V ᵀH(Wn)V ‖2F

]
≤ 4 · 2s

k
max
W∈W

‖H(W )‖2∗ . (27)

We can now boundEWn [χ(2) (Wn | Pζ)]. Let c > 0 be the constant from the statement of Lemma 5.4.
Setting λ := (β2nε2)/k and recalling our assumption (Eq. (23)) on n, we have

1 ≥ 16β2nε22s/2 ·maxW∈W‖H(W )‖∗
ck3/2 ≥ 8λ

c

√
EWn

[
‖V ᵀH(Wn)V ‖2F

]
≥ 8λ

c
EWn

[
‖V ᵀH(Wn)V ‖F

]
≥ 8λ

c
EWn

[
ρ(V ᵀH̄(Wn)V )

]
,

where the second inequality is Eq. (27) and ρ(A) denotes the spectral norm of matrix A. By
Markov’s inequality, we have that

Pr
Wn

[
ρ(V ᵀH̄(Wn)V ) > 1

4λ

]
≤ c

2 .

9We note that this second item is a consequence of the first, along with Khintchine’s inequality and an anticoncen-
tration argument; see [ACT18, Claim IV.21]. For clarity, we nonetheless explicitly state both here.

10This follows from the fact that TrAB ≥ 0 for two p.s.d. matrices A,B; and thus ‖A + B‖2F = Tr[(A + B)2] =
Tr[A2] + Tr[B2] + 2 Tr[AB] ≥ ‖A‖2F + ‖B‖2F .
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Let G ⊆ Ws (for “good”) be the multiset of Wn’s such that ρ(V ᵀH̄(Wn)V ) ≤ 1/(4λ), which by the
above has size at least (1− c/2) · 2s. Upon reorganizing, for any Wn ∈ G we have

λ2/(1− 4λ2ρ(V ᵀH̄(Wn)V )2) ≤ 4λ2/3 .

We can then apply the lemma below on the MGF of a Rademacher chaos to i.i.d. Rademacher
random variables Y and the symmetric matrix V ᵀH̄(Wn)V ∈ Rk/4×k/4:

Lemma D.3 ([ACT18, Claim IV.17]). For random vectors θ, θ′ ∈ {−1, 1}k/2 with each θi and θ′i
distributed uniformly over {−1, 1}, independent of each other and independent for different i’s.
Then, for a positive semi-definite matrix H ,

lnEθθ′
[
eλθ

ᵀHθ′
]
≤ λ2

2 ·
‖H‖2F

1− 4λ2ρ(H)2 , ∀ 0 ≤ λ < 1
2ρ(H) ,

where ‖·‖F denotes the Frobenius norm and ρ(·) the spectral radius.

This gives, for any Wn ∈ G,

EZZ′
[
exp

(
β2nε2

k · ZᵀH̄(Wn)Z ′
)]

= EY Y ′ [e
β2nε2
k

Y ᵀV ᵀH̄(Wn)V Y ′ ] ≤ e
2β4n2ε4

3k2 ‖V ᵀH̄(Wn)V ‖2F .

From there, by concavity and using Jensen’s inequality, we obtain

EWn [1 ∧ χ(2) (Wn | Pζ)] ≤ EWn [χ(2) (Wn | Pζ)1G(Wn) + 1Gc(Wn)]

≤ EWn [χ(2) (Wn | Pζ)1G(Wn)] + c

2

≤ EWn [ln(e
2β4n2ε4

3k2 ‖V ᵀH̄(Wn)V ‖2F )] + c

2

≤ ln(e
2β4n2ε4

3k2 EWn [‖V ᵀH̄(Wn)V ‖2F ]) + c

2 .

The above, along with Eq. (27), then finally yields

EWn [1 ∧ χ(2) (Wn | Pζ)] ≤
8β4n2ε42s

3k3 max
W∈W

‖H(W )‖2∗ + c

2 ,

which, invoking Lemma 5.4, completes the proof.
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