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Abstract

Existing proofs that deduce BPP = P from circuit lower bounds convert randomized
algorithms into deterministic algorithms with a large polynomial slowdown. We convert
randomized algorithms into deterministic ones with little slowdown. Specifically, assuming
exponential lower bounds against nondeterministic circuits, we convert any randomized al-
gorithm over inputs of length n running in time t ≥ n to a deterministic one running in time
t2+α for an arbitrarily small constant α > 0. Such a slowdown is nearly optimal, as, under
complexity-theoretic assumptions, there are problems with an inherent quadratic derandomiza-
tion slowdown. We also convert any randomized algorithm that errs rarely into a deterministic
algorithm having a similar running time (with pre-processing).

Our results follow from a new, nearly optimal, explicit pseudorandom generator fooling
circuits of size s with seed length (1 + α) log s, under the assumption that there exists a function
f ∈ E that requires nondeterministic circuits of size at least 2(1−α

′)n, where α = O(α′). The
construction uses, among other ideas, a new connection between pseudoentropy generators
and locally list recoverable codes.
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1 Introduction

1.1 Pseudorandom Generators and Derandomization

Randomized algorithms can outperform deterministic algorithms. We know randomized poly-
nomial time algorithms for problems such as polynomial identity testing, factoring polynomials
over large fields, and approximating the number of perfect matchings, where the best known
deterministic algorithms take exponential time. For other problems such as primality testing and
univariate polynomial identity testing, randomized algorithms offer a polynomial speedup over
the best known deterministic ones. Finally, property testing has problems that admit incredi-
bly efficient randomized algorithms [GGR98], in fact sublinear, but provably require linear time
deterministically. Informally, randomization owes its success to the prevalence of a seemingly
paradoxical phenomenon: most courses of action for an algorithm may be good, yet it might be
hard to pinpoint one good course of action.

On the other hand, there are upper bounds on the power of randomization. Assuming plausible
circuit lower bounds, any randomized algorithm running in time t on inputs of length n can be
simulated deterministically by an algorithm running in time polynomial in t and n [NW94, IW97].1

In other words, under plausible assumptions, BPP = P. Concretely2:

Theorem 1.1 (previously known derandomization [NW94, IW97]). For every positive integer n and a
constant α < 1, assume there exists a function f ∈ DTIME(Õ(2n)) that requires circuits of size 2(1−α)n.
Let A be a bounded-error probabilistic algorithm, accepting a language3 L, that on inputs of length n runs in
time t = t(n). Then, there exists a deterministic algorithm that accepts L and runs in time poly(t, n).

The runtime of the deterministic algorithm of Theorem 1.1 is a large polynomial, for reasons
inherent to the proof technique of Theorem 1.1, as we will explain shortly. There are other proofs
of Theorem 1.1 [SU05, Uma03] and they too yield a large polynomial running time. Our main
theorem gives a derandomization with running time t ·max {t, n}1+α for arbitrarily small constant
α > 0. It relies on a somewhat stronger assumption than that of Theorem 1.1, namely ruling out
certain nondeterministic circuits for f .

Theorem 1.2 (general derandomization, see Theorem 9.4). For every positive integer n and a small
enough constant α > 0, assume there exists a function f ∈ DTIME(Õ(2n)) that requires circuits with
FNP gates of size 2(1−α)n. Let A be a bounded-error probabilistic algorithm, accepting a language L, that
on inputs of length n runs in time t = t(n). Then, there exists a deterministic algorithm that accepts L and
runs in time t ·max {t, n}1+O(α).

Our derandomized running time is nearly tight for some examples above, such as those from
property testing (at least for black-box derandomization). To further illustrate the tightness, consider
the problem of univariate polynomial identity testing, in which we test the identity of two arithmetic
circuits with one variable, degree n, and O(n) wires, over a field of cardinality poly(n). Univariate
polynomial identity testing is solvable in Õ(n) randomized time and Õ(n2) deterministic time.
Williams [Wil16] showed that coming up with an n1.999-time algorithm, even a nondeterministic

1On first reading, it may be helpful to just consider the case t ≥ n.
2We rephrase from the usual statement, to better compare with our new result.
3Here, and throughout the paper, languages (decision problems) can be replaced by other problems, e.g., promise

problems or functions with non-binary output. Also, note that we consider algorithms in the Turing machine model.
Running times in other models, such as the RAM model, may differ, but one can change the hardness assumptions
accordingly.
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one, would refute NSETH4. Interestingly, the problem of multivariate identity testing also admits a
randomized Õ(n)-time algorithm. Thus, under the complexity-theoretic assumption of Theorem 1.2,
and assuming NSETH holds, the time complexity of both univariate and multivariate identity testing
is settled at roughly quadratic.

While our hardness assumption is not ideal, related and sometimes stronger complexity-
theoretic assumptions were used before to derandomize both deterministic and nondeterministic
classes, as well as to construct various pseudorandomness primitives. Specifically, hardness against
single-valued nondeterministic (SVN) circuits5 was used in [SU05, MV05], against nondeterministic
circuits in [AK97, MV05, SU06, SU07, BOV07, Dru13], against circuits with NP gates in [KvM02,
GW02] and even against circuits with PH gates in [TV00, AIKS16, AASY16, AS17].

Towards proving our main theorem, we also derandomize algorithms that err rarely, known as
quantified derandomization. First studied by Goldreich and Wigderson [GW14], these are algorithms
that err only on a small number of the possible randomness strings (their error probability is extremely
small). Our derandomization of such algorithms produces deterministic algorithms whose running
time is similar to the runtime of the randomized algorithm, up to a quadratic preprocessing step6.

Theorem 1.3 (quantified derandomization, see Corollary 5.3). There exists a constant c ≥ 1 such
that for every positive integer n and a small enough constant α the following holds. Assume there exists
a function f ∈ DTIME(Õ(2n)) that requires SVN circuits of size 2(1−α)n. Let A be a bounded-error
probabilistic algorithm, accepting a language L, that on inputs of length n runs in time t = t(n) and for
every input, errs on at most 2t

1−cα randomness strings.
Then, there exists a deterministic algorithm that accepts L and runs in time t ·max {t, n}O(α) + tP ,

where the tP = t2+O(α) term corresponds to a step that can be precomputed for all algorithms with running
time t.

Unconditional quantified derandomization has been successful for restricted classes of com-
putation, and also sufficiently-good quantified derandomization has been shown to imply circuit
lower bounds [GW14, Tel18, Tel19, CT19].

Like Theorem 1.1, we take the black-box approach for derandomization and prove Theorem 1.2
by constructing a pseudorandom generator. A pseudorandom generator (PRG) with error ε is a
function that maps a short seed to a t-bit string that is indistinguishable from uniform random
bits by any time t algorithm, up to error ε. We can derandomize an algorithm using a PRG by
enumerating over all possible seeds, and running the randomized algorithm on the output of
the generator on each seed. The number of possible seeds determines the slowdown7 of the
deterministic algorithm, and this number was poly(t, n) for a large polynomial prior to this work.

Non-explicitly, there exists a pseudorandom generator against all algorithms running in time
t on inputs of length n that uses only O(max {t, n}) seeds, but it is not necessarily efficiently
computable. In this work we construct an explicit PRG with only max {t, n}1+O(α) seeds.

Theorem 1.4 (pseudorandom generator, see Theorem 9.1). For every positive integer n and constants
0 < ε, α < 1, assume there exists a function f ∈ E that requires circuits with FNP gates of size 2(1−α)n.

4The Nondeterministic Strong Exponential-Time Hypothesis asserts that refuting unsatisfiable k-CNFs requires
nondeterministic 2n−o(n) time for unbounded k.

5SVN circuits can be seen as the nonuniform analogue of NP ∩ coNP. See Definition 2.1.
6The preprocessing step involves encoding the truth table of f . Computing the truth table may take quadratic time,

but can be made efficient if f admits fast batch evaluation.
7We say a derandomization has slowdown of S = S(n) if tdet/trand = S, where tdet = tdet(n) and trand = trand(n) are

the running times of the relevant deterministic and randomized algorithms on inputs of length n.
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Then, there exists an explicit PRG

G
f

: {0, 1}(1+O(α)) log s → {0, 1}s

with error ε, fooling circuits of size s = n1−O(α).

We consider f on roughly log s bits of input, so the truth table of f consists of roughly s bits.
The pseudorandom generator converts those s bits of (worst-case) hardness into s bits of pseudo-
randomness. Assuming f ∈ DTIME(Õ(2n)), our PRG is computable in time max {t, n}2+O(α).

Let us compare the parameters of Theorem 1.4 to the prior state-of-the-art PRG given by Umans
[Uma03]. There, the seed is of length cU log s for a large constant cU > 1, and s = nγU for a small
constant γU < 1. Consequently, derandomization using Uman’s PRG would incur a slowdown of at
least scU/γU in the running time, whereas in this paper we bring this factor down to s1+O(α). Roughly
speaking, we manage to transform almost all the hardness to pseudorandom bits (s = n1−O(α)),
and we manage to do so using a short seed. The downside of Theorem 1.4 compared to previous
works is that we assume f is hard for a seemingly stronger class of circuits.

An important milestone in constructing our PRG G
f is the construction of a pseudoentropy gener-

ator (PEG) with an especially small seed, from which Theorem 1.3, our quantified derandomization,
follows. In a PEG, the output distribution is computationally-indistinguishable, up to some error,
from some high min-entropy distribution8.

Theorem 1.5 (pseudoentropy generator, see Theorem 4.2). For every positive integer n and constants
0 < ε < 1, 0 < α < 1

8 , assume there exists a function f ∈ E that requires SVN circuits of size 2(1−α)n.
Then, there exists an explicit PEG

Gf : {0, 1}d → {0, 1}s

with error ε, d = 6α log n and s = n1−4α, outputting pseudoentropy k = n1−8α fooling circuits of size s.

For simplicity, we phrase and prove Theorem 1.4 and Theorem 1.5 for a constant error ε,
however we can also handle slightly sub-constant error (in particular, any ε = 1/ polylog n).

We note that pseudoentropy generators are analogous to randomness condensers in roughly
the sense that pseudorandom generators are analogous to randomness extractors, where the hard
function plays the role of a high min-entropy source [Tre01, TZ04].

Finally, our complexity-theoretic assumptions allow us to easily adapt existing techniques for
derandomizing AM and use our PRG from Theorem 1.4 in order to put AM in NP with a smaller
slowdown. See Section 9.1 for the details.

In the remainder of the introduction we describe the ideas behind the proofs of Theorem 1.4
and Theorem 1.5.

1.2 Beating the Hybrid Argument

Existing proofs of Theorem 1.1 can be viewed as first constructing a pseudorandom generator that
extends its seed by a single bit, and then converting it into a pseudorandom generator that outputs
t bits. Interestingly, Sudan, Trevisan, and Vadhan [STV01] constructed PRGs with small seed as in
Theorem 1.4 for the single bit case. They did this by using binary locally decodable codes to encode
the truth table of f . The pseudorandom generator outputs a random bit of the encoding, and hence
the number of seeds corresponds to the length of the encoding. Since there are locally decodable

8Indeed, our notion of computational entropy allows the high min-entropy distribution to depend on the distinguish-
ing algorithm. See Section 2.5 for the precise details.
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codes of linear length and a sub-linear number of queries (e.g., codes obtained from Reed-Muller
composed with Hadamard, or tensor codes [Yek12]), there are single bit PRGs with a small number
of seeds.

The large loss in time in Theorem 1.1 originates from the extension of a single bit output to t bits
of output. The loss has several manifestations in each of the existing proofs of Theorem 1.1. The
use of combinatorial designs in [NW94, IW97] inherently doubles the length of the seed. The use
of the Reed-Muller code in [SU05, Uma03] inherently limits the length of the generator’s output.
Moreover, the analyses of these constructions go through the infamously-hard-to-beat hybrid
argument [FSUV13], which incurs an additional multiplicative factor of at least t to the number of
seeds: For t bits to be indistinguishable from uniform, it must be that each bit is unpredictable
given the previous bits, and the prediction errors add up across the t bits. Hence, each prediction
error has to be smaller than 1

t . However, to produce a single bit that is 1
t -close to uniform one has

to multiply the number of seeds by a factor of at least t.9

In order to prove Theorem 1.4 we must beat the hybrid argument. We do that by first con-
structing a pseudoentropy generator as in Theorem 1.5, later to be transformed to a pseudorandom
generator. Since we no longer require uniform-looking bits, we no longer need an error of 1

t per bit.
Instead, we output a large number of (imperfect) bits with constant error, which can evidently be
done with a small number of seeds. Indeed, Barak, Shaltiel and Wigderson [BSW03] suggested that
paradigm, of achieving pseudoentropy as a stepping stone towards pseudorandomness as a way to
bypass the weakness of the hybrid argument, and here we fulfill this vision.

1.3 Locally Decodable Codes All the Way Down

As explained above, it was known that single bit pseudorandom generators follow from binary
locally decodable codes [STV01]. We show that pseudoentropy generators that output many bits
follow from locally decodable codes over a large alphabet.

More accurately, we consider locally list recoverable codes. In a list recoverable code C ⊆ Σn for
agreement ε, we are given oracle access to lists S1, . . . , Sn ⊆ Σ for which

∑n
i=1 |Si| ≤ `, and we

are guaranteed that there are at most L codewords c ∈ C satisfying ci ∈ Si for at least ε-fraction
of the i-s. We say C admits local list recovery if there exist circuits A1, . . . , AL with oracle access to
the lists S1, . . . , Sn, each Ai having at most Q oracle gates, such that for every codeword c = C(x)
satisfying ci ∈ Si for at least ε-fraction of the i-s, there exists j ∈ [L] such that x = Aj(·).10 Initially,
list recoverable codes were used as an intermediate step for constructing list decodable codes (e.g.,
in [GI01, GI02, GI03]) but have since gained independent interest, with several applications and
dedicated constructions (e.g., [HIOS15, HRZW17, HRZW17, HW18, RW18]). Moreover, many of
the recent list decoding algorithms are in fact algorithms for list recovery.

We prove that locally list recoverable codes give rise to pseudoentropy generators.

Theorem 1.6 (PEGs from locally list recoverable codes, see Theorem 4.1). Assume f ∈ {0, 1}t is a
truth table of a function requiring SVN circuits of size t1−α, and let α′ > α be any constant.

Let C : {0, 1}t → Σm be a locally list recoverable code for agreement ε > 0 and input lists size `, for
which each decoding circuit has size sC ≤ t1−α

′ and makes at most Q oracle queries to the lists. Then
Gf : [m]→ Σ, defined by

Gf (z) = C(f)z,

9The loss due to the hybrid argument is an inherent artifact when analyzing any reconstructive PRG, see e.g. [Sha04].
10Unlike in standard literature, where algorithmic aspects are crucial, we do not require (and will not achieve) uniform

generation of the Ai-s. Also, each query we make to a list Si gives us a single element of Si, and we do not get to iterate
over the entire list. For the exact definition, refer to Section 2.2.
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is a PEG with error ε, outputting k = log `
2 pseudoentropy fooling circuits of size t1−α

′

Q .

Note that in order to get a good PEG, the alphabet Σ of the list recoverable code C must be large,
and the lists size ` must be large as well. In fact, they both need to be exponential in t, while the
decoder should run in time smaller than t. It is atypical to require such a large `, and in standard
literature, where the decoder typically iterates over the lists, one requires `� m in order to get a
satisfactory bound on L. We will soon briefly discuss the construction of C and how we facilitate
efficient access to the lists.

A few words about our notion of pseudoentropy are in order. We say a random variable X ∼
{0, 1}n has k pseudoentropy fooling circuits of size s, up to ε error, if for every circuit D : {0, 1}n →
{0, 1} of size s there exists Y ∼ {0, 1}n with min-entropy k such that |E[D(X)] − E[D(Y )]| ≤ ε.11

This definition, coined metric pseudoentropy, was first studied by Barak et al. [BSW03] and later
in various works in cryptography [DP08, CKLR11, FR12, Wic13, Sko15, FOR15, SGP15]. Metric
pseudoentropy differs from the widely-used notion of HILL pseudoentropy [HILL99] where the
high min-entropy random variable does not depend on the distinguishing circuit. Although
seemingly weaker, this definition allows us to derandomize algorithms that err rarely, as random
variables with high metric pseudoentropy cannot have large weight on small sets (see Section 5 for
the details).

We prove Theorem 1.6 by drawing a connection between locally list recoverable codes and
compression-based pseudoentropy, or Yao pseudoentropy [Yao82]. We then utilize the fact that one
can get metric pseudoentropy from Yao pseudoentropy by allowing the distinguisher D to be an
SVN circuit (see Section 2.5.1). Briefly, we first show that if Gf (U), i.e. a random coordinate of C(f),
does not have sufficiently high Yao pseudoentropy, then we can replace each of the Q queries to
the lists S1, . . . , Sm in the decoding circuits A1, . . . , AL of C by queries to small circuits that encode
the lists. We then follow [BSW03] and use a hash function to map elements in (the large) Σ into a
universe of size roughly `. We use nonuniformity to point to the elements in the size-` universe, and
nondeterminism to guess the pre-image of the hash function. Setting the parameters accordingly,
we eventually get a small nondeterministic circuit computing f , thus contradicting its hardness.
The rest of the details are given in Section 4.

It is interesting to draw an analogy between Theorem 1.6 and its information-theoretic coun-
terparts (which we formally define in Section 2.4). The work of Ta-Shma and Zuckerman [TZ04],
following Trevisan [Tre01], shows the equivalence between extractors with multiple output bits
and soft-decision decoding, which we will not define here. Roughly speaking, if such codes are
equipped with an efficient local decoding procedure, they give rise to PRGs. Soft-decision decoding
generalizes list recoverable codes, and so every extractor can be used to construct a list recoverable
code with suitable parameters. We argue that this result interpolates for lower min-entropies too.
As already observed in [GUV09] under a somewhat different terminology, every list recoverable
code for agreement ε gives rise to a condenser condensing k = log L

ε min-entropy to k′ = log `
m

min-entropy with error O(ε), and each such k → k′ condenser with error ε implies a list recoverable
code for agreement O(ε) with ` = O(εm2k

′
) and L = 2k. For the formal statement and its proof, see

Appendix A. Thus, in a way, Theorem 1.6 is a computational manifestation of these connections.

11A random variable Y ∼ {0, 1}n has min-entropy k if for every y ∈ Supp(Y ), Pr[Y = y] ≤ 2−k.
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1.3.1 Constructing the List Recoverable Code C

We construct our locally list recoverable code C : {0, 1}t → Σm over a large alphabet from locally
decodable codes over a small alphabet, as follows. Let

CLDC : {0, 1}t → Ft̄q

be some locally decodable code having relatively high rate. Next, we pick a biregular sampler

Γ: [t̄]× [D]→ [m]

with right-degree a which is close to t. Given f ∈ {0, 1}t, each coordinate of C(f) corresponds to a
large pseudorandom subset of CLDC(f) determined by Γ. Namely, for every z ∈ [m],

C(f)z = CLDC(f)Γ−1(z) = CLDC(f)Γ−1(z,1) ◦ . . . ◦ CLDC(f)Γ−1(z,a).

Here Γ−1(z, i) denotes the i-th neighbor of z. Clearly, C is defined over a large alphabet. Also, we
have good samplers so m can be very small, roughly tα, which in turn implies that the seed length
of our PEG Gf is very small. But why does this construction admit a local list recovery procedure
for exponential-sized lists?

Consider the task of decoding some entry x ∈ [t] of f given lists S1, . . . , Sm, where we are
guaranteed that Cf (z) ∈ Sz for at least ε-fraction of the z-s. Recall that CLDC is itself equipped with
a local list decoding procedure, so in particular there exists a randomized circuit ALDC that locally
decodes f from a noisy version of it. How do we mimic a good enough noisy version of f?

• Run ALDC on the input x.

• Whenever ALDC wishes to query a certain coordinate of CLDC(f), say coordinate i ∈ [t̄], we
choose a random neighbor of i in Γ, say j ∈ [m].

• We now want to query the list Sj for the correct value of CLDC(f)i, and we use a hardwired
advice to pinpoint the specific entry in Sj to be read. From the list’s entry we can deduce a
guess for CLDC(f)i, i.e., a coordinate in the noisy version of f .

• Recall that there are also quite a few bad lists. Using the sampling property, we can guarantee
that with high probability, a sufficient number of queries will be made to good lists.

For the complete details, see Section 3. We stress that nonuniformity plays a crucial role here,
throughout the analysis. Also, since the lists S1, . . . , Sm are fixed (and in fact, determined by Gf ),
and Q ≈ m� t, we are allowed to fix the advice describing the pointers to all lists, each pointer is
of length roughly log `, and we do not have to worry about the possibly different query indices for
different x-s and different randomness strings. As our only bound on ` stems from the bound on
the decoding circuit size, m log ` ≈ t and so ` can be exponentially large.

We note that using expander- (or sampler-) based transformations in coding theory is quite
common, and can be found in several other works, e.g., in [ABN+92, AEL95, GI02, GI03, KMRZS17,
DHK+19].

1.4 From Pseudoentropy to Pseudorandom Bits

Finally, we construct our pseudorandom generator Gf from Theorem 1.4 by composing the pseu-
doentropy generator Gf of Theorem 1.5 with a new construction of an extractor with seed length
close to log n (for constant error), supporting n1−α min-entropy for any α < 1

2 .
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Theorem 1.7 (short seed extractor, see Theorem 8.4). There exists a constant c ≥ 1 such that the
following holds for any constant α < 1

2 . For every positive integer n and every ε ≥ cn−
1
2

+α, there exists
an explicit extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m with error ε, supporting min-entropy k ≥ n1−α,
where d = (1 + cα) log n+ c log 1

ε and m = 1
cn

1−2α.

This adds to the short list of extractors with almost the right dependence on n, currently
including [TZS06, Zuc07] and one-bit extractors coming from good list decodable codes. Our
construction essentially follows a construction given in [TZS06]; however, there it was analyzed for
smaller min-entropies. The construction and its analysis are given in Section 8.

The seed of the pseudorandom generator consists of the (very short) seed of the pseudoentropy
generator, as well as the seed of the extractor, which still gives us (1 + O(α)) log t. It is not
immediately clear why such a composition works, and indeed we make quite a few modifications
for our argument to go through, which we will discuss shortly.

Theorem 1.8 (composition, see Theorem 6.9). Assume there exists a function in E that requires
exponential-size circuits and suppose Ext : {0, 1}n × {0, 1}d → {0, 1}m is an extractor with error ε
supporting min-entropy k, computable by a circuit of size sExt.

Let X ∼ {0, 1}n be a random variable with pseudoentropy k fooling circuits of size s′ = O(s+ sExt),
up to ε error, where we allow the circuits to output real values in [0, 1] and have oracle gates to some fixed
function problem in FNP. Then, Ext(X,Ud) fools deterministic circuits of size s, up to error O(ε).

Note that we require more from the circuit class that we need X , the output distribution of our
PEG, to fool. Instead of fooling every small SVN circuit, we need X to have high pseudoentropy
against real-valued small circuits having FNP gates.

Previously, composition was known to work when the output of the PEG was indistinguishable
from a universal distribution with high min entropy. i.e., had high HILL pseudoentropy [BSW03].12

However, the definition of PEGs that we use allows for the high min-entropy random variable to
depend on the distinguisher, and the natural distinguisher for the composed construction invokes
the extractor. In this case, the high min-entropy random variable may depend on a specific seed of
the extractor, and some of the seeds of the extractors are destined to fail!

The above obstacle is where our stronger class of distinguishers enters the picture. Barak
et al. [BSW03] showed that one can move from HILL pseudoentropy to metric pseudoentropy
for real-valued distinguishers. Unfortunately, their argument suffers from a considerable loss in
circuits size which we cannot afford, and seems inherent. The idea to overcome this loss is to use
derandomized sampling to approximate some averaging of the extractor on all possible seeds. We
defer the rest of the details to Section 6.

The fact that we need a stronger pseudoentropy guarantee affects our paradigm of PEGs
from locally list recoverable codes. For example, we are no longer guaranteed access to small
lists S1, . . . , Sm ⊆ Σ for which C(f)z ∈ Sz for at least ε of the z-s. Instead, we ought to handle
weight functions S1, . . . , Sm : Σ→ [0, 1] having small expectation satisfying E[Sz(C(f)z)] ≥ ε, which
puts us in the soft-decision decoding regime. Luckily, the same PEG Gf still works, and only its
analysis needs to be modified. This is the content of Section 7. On the way, we extend the notion of
compression-based pseudoentropy to real-valued distinguishers (see Section 6.3).

1.5 Open Problems

Some challenges remain to be tackled. We list only a few of them.
12A notable example is [STV01], where they show that the Nisan-Wigderson PRG [NW94] outputs pseudoentropy

when f is only mildly hard.
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1. Can we achieve a nearly linear time quantified derandomization without any preprocessing?

2. Can we achieve similar results assuming f is exponentially-hard for deterministic – rather
than nondeterministic – circuits?

3. Can we construct a pseudoentropy generator with short seed outputting pseudoentropy
s1−o(1) or Ω(s)? This would allow us to very efficiently derandomize algorithms that err less
rarely.

4. Can we achieve lower error 1/no(1) ≤ ε � 1/ polylog n for the pseudorandom generator,
while still maintaining a short seed length?

5. Can we derandomize any algorithm that runs in time t on inputs of length n in time close
to tn, as opposed to t ·max {t, n}? This would match the runtime of Adleman’s nonuniform
derandomization [Adl78]. Note that for every fixed algorithm on input size n, independent of
its runtime, there exists a pseudorandom generator against this algorithm that has only O(n)
seeds.

2 Preliminaries

The density of a set B ⊆ A is µA(B) = |B|
|A| (when A is clear from context, we shall omit it). For a

positive integer A, we denote by [A] the set {1, . . . , A}. For a set A, by x ∼ A we mean x is drawn
uniformly at random from the uniform distribution over the elements of A.

For a function f : Ω1 → Ω2, we say f is explicit if there exists a deterministic procedure that
runs in time poly(log |Ω1|) and computes f . If Ω2 the contains 0, we denote by Supp(f) the set
{x ∈ Ω1 : f(x) 6= 0}. Finally, for f, g : N→ N, we say that f(n) = Õ(g(n)) if there exists a constant
k such that f(n) = O(g(n) logk g(n)). All the logarithms are in base 2.

2.1 Circuits, Nondeterministic Circuits and Worst-Case Hardness

The size of a Boolean circuit is the number of its wires. We will extensively use the fact that
DTIME(t(n)) ⊆ SIZE(O(t(n) log t(n))), where SIZE(t(n)) is the set of languages L ⊆ {0, 1}n for
which there exists a circuit family {Cn}n, such that each Cn is of size t(n), and for every x ∈ {0, 1}n
it holds that x ∈ L if and only if Cn(x) = 1 [PF79].

Definition 2.1 (SVN circuit, [SU05]). A single-valued nondeterministic (SVN) circuit C : {0, 1}n ×
{0, 1}w → {0, 1}m is a circuit that gets as inputs an input string x ∈ {0, 1}n and a witness string
y ∈ {0, 1}w and outputs C(x, y) with an additional flag C(x, y)check ∈ {0, 1}. We say that C computes
f : {0, 1}n → {0, 1}m if the following holds.

1. For every x ∈ {0, 1}n there exists y ∈ {0, 1}w such that C(x, y)check = 1.

2. For every x ∈ {0, 1}n and y ∈ {0, 1}w such that C(x, y)check = 1 it holds that C(x, y) = f(x).

Definition 2.2 (hardness against SVN circuits). We let sizeSV (f) to denote the smallest SVN circuit
that computes f . We say f : {0, 1}n → {0, 1} requires exponential-size SVN circuits if sizeSV (f) > 2δn

for some constant δ > 0.

SVN circuits can be viewed as the non-uniform analogue of NP ∩ coNP. Note that if
f : {0, 1}n → {0, 1} is computed by an SVN circuit then ¬f is computable by an SVN circuit
of the same size.
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We also give the definition for nondeterministic (and co-nondeterministic) circuits outputting
one bit.

Definition 2.3. A nondeterministic circuit C gets as input an input string x ∈ {0, 1}n and a witness
string y ∈ {0, 1}m, and we say C computes f : {0, 1}n → {0, 1} if it holds that f(x) = 1 iff there exists y
such that C(x, y) = 1. For f to be computed by a co-nondeterministic circuit C, we require that f(x) = 1
iff for every y, C(x, y) = 1.

As shown in [SU05], if f : {0, 1}n → {0, 1} is such that sizeSV (f) > s then there exists a
function f : {0, 1}n+1 → {0, 1} which cannot be computable by either nondeterministic circuits or
co-nondeterministic circuits of size O(s). We will also work with a stronger model of computation,
in which we allow oracle gates to fixed function problems in FNP. For part of our work we only
need oracle gates to fixed problems in FP.

Definition 2.4 (FP-circuit, FNP-circuit). A FP-circuit (or FNP-circuit) is a Boolean circuit which
can have gates for some fixed function problem in FP (or FNP, respectively) in addition to the usual ∧, ∨
and ¬ gates.

Definition 2.5 (hardness against FNP-circuits). We let sizeFNP(f) denote the smallest FNP-circuit
that computes f . We say f : {0, 1}n → {0, 1} requires exponential-size FNP-circuits if sizeFNP(f) >
2(1−α)n for some constant 0 < α < 1.

We will also consider circuits (and FNP-circuits) that output real values in [0, 1]. A circuit
D : {0, 1}n → [0, 1] is a Boolean circuit outputting multiple bits which are the binary representation
of the desired real value. Note that there is a technical difficulty in the fact that arbitrary real
numbers require an arbitrarily large number of bits to represent. However, for our purposes it
suffices to consider circuits D with a small number of output bits. Specifically, if a circuit D outputs
an arbitrary real value ε, we can instead consider the circuit that rounds ε to mini∈N |ε − i · 2−`|,
which can be encoded using ` bits. Doing so incurs an error of at most 2−`, which is acceptable for
our purposes. In fact any ` = ω(1) will be satisfactory, as our error guarantees will be constant.

2.2 Error Correcting Codes

A fundamental primitive in complexity theory is the error correcting code.

Definition 2.6 (relative distance). For some alphabet Σ, let x, y ∈ Σn. The relative distance of x, y,
denoted δ(x, y), is the fraction of coordinates on which x, y differ. That is, δ(x, y) = Pri∼[n][xi 6= yi].

Definition 2.7 (linear code). Let n, k, q be positive integers with q a prime power and 0 ≤ δ ≤ 1. We say
that C : Fkq → Fnq is an [n, k, δ]q code if C is a linear transformation and for all x, y ∈ Σk, δ(C(x), C(y)) ≥ δ.
By abuse of notation, we often use C to denote Im(C) ⊆ Σn.

Definition 2.8 (binary list-decodable codes). A code C ⊆ Σn is (τ, L) list decodable if for every w ∈ Σn,
| {c ∈ C : δ(w, c) ≤ τ} | ≤ L.

In our pseudoentropy generator construction, we make use of locally list decodable codes, and
their generalization – list recoverable codes.

Definition 2.9 (locally list decodable code, implicit model). Let C : Σk → Σn. Let Q,L, s be positive
integers and 0 < ε, ζ < 1. We say that C is (Q, ε, ζ, s, L) locally list decodable if there exist randomized
circuits A1, . . . , AL, each of size s that satisfy the following.

9



• Each Aj has oracle access to a received word r ∈ Σn, and makes at most Q oracle queries to coordinates
in r.

• For every codeword c = C(x) such that c agrees with r in at least ε places, there exists j ∈ [L] such
that for every i ∈ [k], we have Aj(i) 6= xi with probability at most ζ over the randomness used by Aj .

For convenience, we often say in words that C is an LLDC using Q queries, handling agreement of at least ε,
with failure probability ζ, circuit size s, and output list size L.

Definition 2.10 (list recoverable code). Let C : Σk → Σn. For positive integers `, L and ε > 0 we say
that C is (ε, `, L) list recoverable if the following holds. For every sequence of sets S1, . . . , Sn ⊆ Σ so that∑n

i=1 |Si| ≤ ` there are at most L codewords c ∈ C satisfying ci ∈ Si for at least ε fraction of the i-s.

We present a notion of list recoverable codes convenient for our purposes.

Definition 2.11 (locally list recoverable code, implicit model). Let C : Σk → Σn. For positive integers
`, L,Q, and 0 < ε < 1 we say that C is (Q, ε, `, s) list recoverable if there exist circuits A1, . . . , AL, each of
size s, that satisfy the following.

• Each Aj takes as input i ∈ [k] and also has oracle access to S̄ = (S1, . . . , Sn), where each Sz ⊆ Σ and∑n
z=1 |Sz| ≤ `. Aj uses at most Q oracle gates, and each oracle query constitutes a single probe to a

specific set. That is, each oracle gate takes as input a string y ∈ {0, 1}log ` and outputs a symbol in Σ.
Note here that we think of having a single oracle for S̄, where the input string to the oracle specifies
both the list and the index in the list.

• For every codeword c = C(x) satisfying cz ∈ Sz for at least ε fraction of the i-s, there exists j ∈ [L]
such that for every i ∈ [k], we have Aj(i) = xi.

For convenience, we often say in words that C is a LLRC using Q queries, handling agreement at least ε,
with circuit size s and input list size ` and output list size L.

Note that under the above definition of list recovery, we do not insist on a uniform generation of
the decoding circuits, and that unlike in our LLDC definition, the circuits are now deterministic.
We mention that in standard literature on locally list recoverable codes, the decoder is randomized
(and thus has some small probability of failure), and each query to the oracle is of the form “what
is the entire list of symbols for the z-th coordinate.” We deviate from the standard notion in our
work because we wish to efficiently handle lists of exponential size, and exhibit a deterministic
recovering circuit that contradicts our hardness assumption. Finally, the output list size L, which
is usually a notable parameter in this line of research, is only implicit here (i.e., the size of each
decoding circuit is bound to have size roughly Ω(logL)).

2.3 Random Variables, Min-Entropy

The support of a random variable X distributed over some domain Ω is the set of x ∈ Ω for which
Pr[X = x] 6= 0, which we denote by Supp(X).

The statistical distance between two random variables X and Y on the same domain Ω is defined
as |X − Y | = maxA⊆Ω(Pr[X ∈ A] − Pr[Y ∈ A]). If |X − Y | ≤ ε we say ε-close to Y and denote it
by X ≈ε Y . We denote by Un the random variable distributed uniformly over {0, 1}n. We say a
random variable is flat if it is uniform over its support.

For a function f : Ω1 → Ω2 and a random variable X distributed over Ω1, f(X) is the random
variable distributed over Ω2 obtained by choosing x according to X and computing f(x). For a
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set A ⊆ Ω1, f(A) = {f(x) : x ∈ A}. For every f : Ω1 → Ω2 and two random variables X and Y
distributed over Ω1 it holds that |f(X)− f(Y )| ≤ |X − Y |.

The min-entropy of a random variable X is defined by

H∞(X) = min
x∈Supp(X)

log
1

Pr[X = x]

For some ε > 0, we define the smooth min-entropy of X by

Hε
∞(X) = max

X′:X′≈εX
H∞(X ′).

A random variable X is an (n, k) source if X is distributed over {0, 1}n and has min-entropy
at least k. When n is clear from the context we sometimes omit it and simply say that X is a
k-source. Every k-source X can be expressed as a convex combination of flat distributions each
with min-entropy at least k.

Definition 2.12 (average conditional min-entropy). Let X,Y be two random variables. The average
conditional min-entropy is defined by

H̃∞(X|Y ) = − log
(
Ey∼Y

[
2−H∞(X|Y=y)

])
.

Lemma 2.13. LetX,Y be two random variables such that |Supp(Y )| ≤ 2`. Then, H̃∞(X|Y ) ≥ H∞(X)−
`.

2.4 Condensers, Extractors and Samplers

We start by defining extractors and condensers.

Definition 2.14 (extractor). A function

Ext : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, ε) seeded extractor if the following holds. For every (n, k) source X , Ext(X,Y ) ≈ε Um, where Y is
uniformly distributed over {0, 1}d and is independent of X . We say Ext is a strong (k, ε) seeded extractor if
(Ext(X,Y ), Y ) ≈ε (Um, Y ).

Indeed, whenever a source X has sufficient min-entropy and is independent of the seed Y ,
we are guaranteed that a strong seeded extractor Ext gives us (Ext(X,Y ), Y ) ≈ε (Um, Y ). The
following lemma shows that (Ext(X,Y ), Y ) is nearly independent of any random variableH, such
that X,Y are independent conditioned onH and X|H has sufficient min-entropy.

Lemma 2.15 ([DORS08, CS16]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a strong (k, ε) extractor. Let
X be distributed over {0, 1}n and letH be some random variable such that H̃∞(X|H) ≥ k + log 1

ε . Let Y
be uniformly distributed over {0, 1}d, independent of X conditioned onH. Then,

(Ext(X,Y ), Y,H) ≈2ε (Um, Y,H).

Definition 2.16 (condenser). A function

Cond : {0, 1}n × {0, 1}d → {0, 1}m

is a (k, k′, ε) condenser if the following holds. For every (n, k) source X , Hε
∞(Cond(X,Y )) ≥ k′, where Y

is uniformly distributed over {0, 1}d and is independent of X . We say Cond is a strong (k, k′, ε) condenser
if (Cond(X,Y ), Y ) is ε-close to some (D,Y ) having min-entropy d+ k′.
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We proceed by defining density samplers.

Definition 2.17 (sampler). Let Γ: [N ]× [D]→ [M ].

• We say x ∈ [N ] is ε-bad for B ⊆ [M ] if∣∣∣∣ Pr
y∼U[D]

[Γ(x, y) ∈ B]− µ(B)

∣∣∣∣ > ε.

• We say Γ is a (δ, ε) sampler if for every B ⊆ [M ] we have that

|{x ∈ [N ] : x is ε-bad for B}| < δN.

We often reason about samplers via their bipartite graph interpretation. That is, we interpret
the function Γ: [N ] × [D] → [M ] as a bipartite graph (V,E) on vertex set V = [N ] ∪ [M ], where
(i, j) ∈ E if and only if there exists k ∈ [D] such that Γ(i, k) = j. We refer to [N ] as the “left” vertex
set and [M ] as the “right” vertex set. Finally, by abuse of notation, we denote Γ(i) for i ∈ [N ] as the
set of vertices in [M ] connected to i in the bipartite graph. Similarly, we denote Γ−1(j) for j ∈ [M ]
as the set of vertices in [N ] connected to j. Finally, if the bipartite graph corresponding to Γ is
biregular with right degree a, we use Γ−1(j, `) for j ∈ [M ] and ` ∈ [a] to denote the `-th neighbor of
j (under an arbitrary ordering of [N ]).

Lemma 2.18 ([Zuc97]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε) extractor. Then, Ext is also a
(δ = 2k−n, ε) sampler.

2.4.1 The Random-Walk Sampler

When the min-entropy k we wish to support is very close to n, one can use the following simple
construction based on random walks on expanders. Before giving the construction, we will need
fully explicit expanders over any number of vertices. The following theorem is implied by the
constructions of [GG81, RVW02, MRSV19].

Definition 2.19 (expander graph). We say that an undirected regular graph G is a λ-expander if all
eigenvalues of the normalized adjacency matrix of G other than 1 are at most λ in absolute value.

Theorem 2.20. For every constant 0 < λ < 1 there exists a constant integer d = d(λ) such that the
following holds. For every positive integer n there exists a connected d-regular undirected graph which is a
λ-expander. Given a vertex x ∈ [n] and an edge label i ∈ [d], the i-th neighbor of x can be computed in time
polylog(n).

We are given m, t and ε > 0. Let G be a regular λ-expander over 2m vertices for some λ < 1
2 and

constant degree d = 2c. Let n = m+ c(t− 1) and consider the function Ext : {0, 1}n × [t]→ {0, 1}m
such that for x = (v1, i1, . . . , it−1) ∈ {0, 1}n and y ∈ [t], Ext(x, y) outputs the y-th vertex in the walk
v1 ∼i1 v2 ∼i2∼ . . . ∼it−1 vt over G. The fact that Ext is an extractor follows from the expander
Chernoff bound.

Theorem 2.21 ([Zuc07], following [Gil98, Hea08]). For every m and t, let n and Ext be as above. Then,
for every ε > 0 and k ≥ n− ε2t

8 , Ext is a (k, ε) extractor.

Using Lemma 2.18, the above theorem implies a sampler with good parameters when we aim
for relatively high δ and ε (say, both being constants).
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Corollary 2.22. There exists a constant c ≥ 1 such that the following holds. For every positive integer M
and ε, δ > 0 there exists a (δ, ε) sampler Γ: [N ] × [D] → [M ] where D = 8

ε2
log 1

δ and N = 2c(D−1)M .
Moreover, Γ is biregular (i.e., the corresponding bipartite graph has left-degree t and right-degree a = ND

M ).

For our application, we wish to fix N and fix the right-degree of Γ. Doing so requires us to
choose D such that D2c(D−1) = a. We note that this implies so log a

c −
log log a

c < D − 1 < log a
c , so we

have that M = N
2c(D−1) = O(N log a

a ). We record this result in the following corollary, together with a
bound on the time it takes to compute Γ and Γ−1.

Corollary 2.23. There exists a constant c ≥ 1 such that the following holds. For every positive integers
N and a ≤ N there exists a (δ, ε) sampler Γ: [N ] × [D] → [M ] whose corresponding bipartite graph is
biregular, with M = O(N log a

a ), left-degree D = O(log a) and right-degree a, whenever log a ≥ c
ε2

log 1
δ .

Moreover, for every x ∈ [N ] and i ∈ [D], Γ(x, i) is computable in time log a · polylog(N), and for every
z ∈ [M ] and j ∈ [a], Γ−1(z, j) is computable in time log a · polylog(N) as well.

2.5 Pseudoentropy

Next, we discuss computational notions of min-entropy, or, (min-) pseudoentropy. We start with the
standard, widely used, notion of pseudoentropy due to Håstad et al. [HILL99].

Definition 2.24 (HILL pseudoentropy). Let X be a random variable distributed over {0, 1}n, an integer
s and ε > 0. We say that HHILL

s,ε (X) ≥ k if there exists a random variable Y ∼ {0, 1}n with H∞(Y ) ≥ k
such that for every circuit D : {0, 1}n → {0, 1} of size s, |E[D(X)]− E[D(Y )]| ≤ ε.

A weaker notion, given by Barak, Shaltiel and Wigderson [BSW03] allows the random variable
having true min-entropy to depend on the distinguisher itself.

Definition 2.25 (metric pseudoentropy). Let X be a random variable distributed over {0, 1}n, an integer
s and ε > 0. We say that Hmetric

s,ε (X) ≥ k if for every circuit D : {0, 1}n → {0, 1} of size s there exists
Y ∼ {0, 1}n such that H∞(Y ) ≥ k and |E[D(X)]− E[D(Y )]| ≤ ε.

We say that HNmetric
s,ε (X) ≥ k if we allow D to be an SVN circuit.

We record the following standard fact in pseudorandomness.

Claim 2.26. If X ∼ {0, 1}n is a random variable such that Hε
∞(X) ≥ k then for every set D ⊆ {0, 1}n it

holds that Pr[X ∈ D] ≤ |D|
2k

+ ε.

Barak et al. also give such a result in the computational world, when we use metric pseudoen-
tropy.

Lemma 2.27 ([BSW03]). Let X be a random variable distributed over {0, 1}n, an integer s and ε > 0 so
that Hmetric

s,ε (X) ≥ k. Then, for every circuit D : {0, 1}n → {0, 1} of size s it holds that Pr[D(X) = 1] ≤
|Supp(D)|

2k
+ ε. The same statement holds when we consider SVN circuits.

2.5.1 Yao Pseudoentropy

A different definition for computational entropy was given by Yao [Yao82] who used compression
rather than indistinguishability.

Definition 2.28. For some integers n, s and D ⊆ {0, 1}n, we say that D ∈ CYao
`,s if there exist circuits

c : {0, 1}n → {0, 1}` and d : {0, 1}` → {0, 1}n, each of size s, such that D = {x : d(c(x)) = x}. We refer
to c as the compressing circuit and to d as the decompressing one.
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Definition 2.29 (Yao pseudoentropy). Let X be a random variable distributed over {0, 1}n, an integer s
and ε > 0. We say that HYao

s,ε (X) ≥ k if for every ` < k and D ∈ CYao
`,s , Pr[X ∈ D] ≤ 2`−k + ε.

We say that HNYao
s,ε (X) ≥ k if we allow each D to have SVN circuits for the compression and decompres-

sion.

It is not clear whether HYao
s,ε (X) ≥ k implies HHILL

s′,ε′ (X) ≥ k′ for some suitable k′, s′, ε′.13

However, Barak et al. [BSW03] showed that if one is considering hardness against polynomial-
sized circuits with NP gates, Yao pseudoentropy does imply metric pseudoentropy. We reprove
their result, and here we do it for SVN circuits.

Lemma 2.30 (following [BSW03]). There exists a constant 0 < γ < 1 such that the following holds. Let
X be a random variable distributed over {0, 1}n and ε > 0. There exists s0 = Õ(n) such that for every
s ≥ s0, HNYao

s,ε (X) ≥ k implies HNmetric
γs,ε (X) ≥ k

2 .

Proof: Assume towards a contradiction that HNmetric
γs,ε (X) < k

2 for some universal constant γ < 1 to
be determined later. Thus, by Lemma 2.27, there exists an SVN circuit D : {0, 1}n → {0, 1} of size
γs, with |Supp(D)| < 2k/2, for which

Pr[D(X) = 1] >
|Supp(D)|

2k/2
+ ε.

Denote t = log |Supp(D)| < k
2 and letH ⊆ {0, 1}n → {0, 1}2t be a two-universal family of hash

functions. We recall that a two-universal family of hash functionsH satisfies that for every distinct
x, y ∈ {0, 1}n and every σ1, σ2 ∈ {0, 1}2t, we have

Pr
h∼H

[h(x) = σ1 ∧ h(y) = σ2] =

(
1

22t

)2

.

For an efficient implementation of a small H, we can take it to be the set of all affine functions
over F = GF(2n), and so h?(x) amounts to computing ax + b over F for some fixed a, b ∈ F and
truncating the last n− 2t digits. Arithmetics in F can be done by circuits of size Õ(n).

For a random h ∼ H and distinct x, y ∈ {0, 1}n, let Ix,y be the indicator random variable which
is 1 if and only if h(x) = h(y). By the properties ofH,

E

 ∑
{x,y}⊆D

Ix,y

 ≤ (2t

2

)
Pr[Ix,y = 1] ≤

(
2t

2

)
2−2t < 1,

so there exists some h? ∈ H which is one to one on Supp(D).
Set ` = 2t, and let c : {0, 1}n → {0, 1}` be the compressing circuits, which simply computes

h?. For a decompressing circuit that gets z ∈ {0, 1}` as an input, we should find the unique
x ∈ Supp(D) such that h?(x) = z. Namely, consider the SVN circuit d : {0, 1}` × {0, 1}n → {0, 1}n
that simply returns d(z, x) = x and outputs d(z, x)check = 1 if and only if both D(x) = 1 and
h?(x) = z. Evaluating h?(x) can be done by a circuit of size s0 = Õ(n) and the constant γ can be set
so that both c and d are of size s.

Finally, note that
Pr[D(X) = 1] > 2t−

k
2 + ε > 2`−k + ε,

which contradicts the fact that HNYao
s,ε (X) ≥ k.

13Hsiao, Lu and Reyzin [HLR07] studied conditional versions of HILL and Yao pseudoentropies and proved that under
these definitions the above implication does not hold. Furthermore, they managed to extract more pseudorandom bits
using Yao pseudoentropy based techniques than seems possible from HILL pseudoentropy. Wee gave an oracle under
which the Yao pseudoentropy is larger than the HILL pseudoentropy by a factor of roughly 2 [Wee04].
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2.6 Pseudoentropy Generators and Pseudorandom Generators

We say that a distribution X ∼ {0, 1}n ε-fools a circuit D with n inputs if D(X) ≈ε D(Un). A
pseudorandom generator against a class C is a function whose output distribution fools any
function from C.

Definition 2.31 (PRG). Let C ⊆ {0, 1}n → {0, 1} be a class of functions. We say thatG : {0, 1}n → {0, 1}
ε-fools C (or, is an ε-PRG against C) if for every C ∈ C,

|E[C(G(Ud))]− E[C(Un)]| ≤ ε.

When C is the class of functions computable by circuits of size s, we say that G ε-fools circuits of size s.

In this work, we will also construct weaker variants. When the output of a generator is not pseu-
dorandom but does have high pseudoentropy, we say that the generator is a pseudoentropy generator.
Our pseudoentropy generators will output random variables having high metric pseudoentropy.

Definition 2.32 (metric PEG). We say that G : {0, 1}d → {0, 1}n is a (k, s, ε) metric pseudoentropy
generator (PEG) if

Hmetric
s,ε (G(Y )) ≥ k,

where Y is the uniform distribution over d bits. We say that G is a strong (k, s, ε) metric pseudoentropy
generator if Hmetric

s,ε (Y ◦ G(Y )) ≥ k. When the output has high Nmetric pseudoentropy, we say it is an
SVN pseudoentropy generator.

One can show that for k = n the above definition coincides with the standard definition of
PRGs [BRSW12].

3 A Locally List Recoverable Code From Local List Decoding

In this section, we construct locally recoverable codes useful for constructing a pseudoentropy
generator. For this purpose, for some sufficiently small constant α > 0 and any constant ε < 1,
we wish to construct a code C : {0, 1}n → Σm that is (Q, ε, `, sC) locally list recoverable for at most
Q = O(nO(α)) queries, list size ` = 2n

1−O(α)
, decoding circuit size sC ≤ n1−α, and alphabet size

|Σ| = 2n
1−O(α)

while maintaining a relatively high rate (specifically, m = nO(α)).
To this end, we utilize our nonuniform definition of list recovery and in fact construct a circuit

that takes as advice a pointer for each list S1, . . . , Sm, as these are independent of the specific
coordinate we wish to decode. The pointers then induce a string in Σm to which the circuit has
oracle access. Thus, the circuit we construct only needs to efficiently list decode the induced
string. Following [STV01], we apply the list decoding properties of the Reed-Muller code. More
specifically, we use the following theorem.

Theorem 3.1 ([STV01]). Let CRM denote the
[
qt,
(
t+d
d

)
, 1− d

q

]
q

Reed-Muller code. That is, the code

consisting of all t-variate polynomials of total degree d over Fq. Then for any constant 1 > ζ > 0, CRM
is locally list decodable using Q = Oζ(q

2) queries, handling 2
√

2
√

d
q fraction of agreement, with failure

probability ζ, circuit size s = poly(t, q), and output list size L = O(qt). For a constant t, one can achieve
s = Õt(q

4).
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To see why one can achieve s = Õt(q
4), we briefly touch upon the details in [STV01]. The decod-

ing circuit for the Reed-Muller code works by performing list decoding for univariate polynomials
along q lines in Ftq. The latter can be done by first solving a system of at most O(q) linear equations
in O(q) unknowns over Fq (which takes time O(q3)) to find a certain bivariate polynomial over Fq.
Next, the algorithm finds roots of the bivariate polynomial [Sud97]. Finding such roots requires
at most O(q) applications of factoring univariate polynomials, which takes time at most O(q2) by
fastest known results [KU11, ALRS98]. Thus overall, for constant t, the size of the decoding circuit
s is at most Õ(q(q3 + q3)) = Õ(q4).

3.1 The Construction

Our construction is a variant of an expander-based code by Alon et al. [ABN+92], except we use
samplers instead of expanders. Given a positive integer n and constants 0 < ε < 1 and 0 < α < 1

6 ,
we construct C : {0, 1}n → Σm that is locally list recoverable by a small circuit using Õ(nO(α))

queries, with input list size ` = 2n
1−O(α)

. The construction is as follows.

• In Theorem 3.1, set ζ = 1
6 , t = 1

α and q = 32
ε2
· d with d chosen so that n =

(
t+d
d

)
log q. Working

out the parameters, one can see that d = Õε,α(nα) and q = Õε,α(nα) (here, the ε, α subscripts
hide a 1

α and 1
ε2

factor respectively). The resulting code

CRM : {0, 1}n → Fn̄=cn
q

is a (
Q = Õε,α(n2α),

ε

2
, ζ =

1

6
, sRM = Õ(n4α), L = O(n)

)
locally list decodable code for c =

(
32
ε2α

) 1
α log n.

• Set a = n1−5α. For m = O
(
n̄ log a
a

)
= Õε,α(n5α), let

Γ: [n̄]× [D]→ [m]

be a biregular (1
3 ,

ε
8) sampler guaranteed to us by Corollary 2.23, with right-degree a and

left-degree D = ma
n̄ = O(log n).

We are now prepared to construct our desired list recoverable code. Define

C : {0, 1}n → Σm

where Σ = Faq , so that for every f ∈ {0, 1}n and z ∈ [m],

C(f)z = CRM(f)Γ−1(z,1) ◦ . . . ◦ CRM(f)Γ−1(z,a).

See also Figure 1. Note that the rate of C is given by n
ma log q = Ωα

(
1

log2 n

)
.

We note that we do not make use of any special property of the Reed-Muller code, and in fact
any efficient locally list decodable code that has relatively high rate and handles arbitrarily small
fraction of agreement will work just as well. In particular, we made no further attempt to reduce the
alphabet size q or the decoding runtime, which dictates how small we must take α to be. Moreover,
improving the dependence of Q on ε may lead to better results for non-constant ε.
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f ∈ {0, 1}n CRM(f) ∈ Fn̄q C(f) ∈
(
Faq
)m

z

a
CRM Γ−1(z, 1)

Figure 1: The construction of our locally recoverable code. The middle layer is the Reed-Muller
encoding of f with symbols in Fq. A symbol at coordinate z in our final code is an element of Faq ,
where the a elements of Fq are determined by Γ−1(z).

3.2 Analysis

Theorem 3.2. For any positive integer n, any constants 0 < ε < 1 and 0 < α ≤ 1
6 , the code C constructed

above is (Q, ε, `, sC) locally list recoverable for Q = Õ(n2α), ` = 2n
1−7α and sC = n1−α.

Proof: To describe our local list recovery algorithm, we give a family of circuits, indexed by advice,
one of which successfully decodes. We describe our decoding algorithm when given the correct
advice, which shows that one circuit successfully decodes.

Towards this end, fix any codeword C(f) for f ∈ {0, 1}n for which C(f)z ∈ Sz for at least
ε-fraction of z ∈ [m]. We begin by describing a randomized circuit for computing C(f). Consider

AS̄adv(x, r)

which takes as input x ∈ [n], uses randomness string r, has oracle access to lists S̄ = S1, . . . , Sm,
and aims to compute fx. The decoder circuit AS̄adv implements the following procedure.

1. We first set up some preliminaries.

• AS̄adv is hardwired with advice adv = (y1, . . . , ym,RM), where each yz ∈ {0, 1}log ` points
to some list entry in the z-th list. We assume the correct advice is given. Specifically, for
each z such that C(f)z ∈ Sz , let the correct yz point to C(f)z , otherwise let yz be arbitrary.
Note that the size of the advice is m log ` = Õ(n1−2α), and only depends on f and S̄ and
not on the input x.

• The rest of the advice RM points to a decoding circuit for the Reed-Muller code, and
we assume the correct circuit is given. That is, let ARM be the randomized circuit that
computes fx for every x, with probability at least 5

6 when given oracle access to a word
in Fn̄q with at most 1− ε

2 fraction of errors from CRM(f).

• Write the randomness string r as r = (rRM, rΓ) for rRM and rΓ independent from each
other. rRM denotes the randomness required by ARM. We let rΓ = (rΓ,1, . . . , rΓ,Q), where
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rΓ,j ∈ [D] for each j ∈ [Q]. This string denotes the additional randomness of our
decoding circuit.

2. Run the decoding circuit ARM(x, rRM). For every j ∈ [Q], supply the answer to the j-th oracle
query that ARM makes to some coordinate i ∈ [n̄] as follows:

(a) Let z = Γ(i, rΓ,j).
(b) Use the advice string yz and oracle access to S̄ to query the element ṽ = Sz(yz) ∈ Faq .
(c) Return the symbol ṽh ∈ Fq for h ∈ [a] such that Γ−1(z, h) = i as the guess for the i-th

coordinate for ARM.

3. Return the output of ARM(x, r).

First, we claim:

Claim 3.3. AS̄adv can be computed by a circuit of size

Õ(n1−2α)

which makes at most Q = Õ(n2α) oracle queries to S̄.

Proof: The inputs to the circuit are x ∈ {0, 1}logn and the randomness r. The number of queries
equals the number of queries of the local decoding algorithm ARM. Since ARM makes at most
Q = Õ(n2α) queries to [n̄], and for each such query we pick a random neighbor in Γ among
D = O(log n) neighbors, the total amount of randomness required for rΓ is Õ(n2α). The advice that
we hardwire to the circuit has length Õ(n1−2α).

Next, the size of ARM itself is Õ(n4α), and for each of the Q = Õ(n2α) queries, we compute a
neighbor in Γ which by Corollary 2.23 takes time log n̄ · polylog(n1−3α) (and hence requires a circuit
of size at most polylog n). Overall, the total size of the circuit is

log n+ Õ(n2α) + Õ(n1−2α) + Õ(n4α) + Õ(n2α) polylog n = Õ(n1−2α),

where we used the fact that α ≤ 1
6 .

We shall now prove the correctness of AS̄adv.

Lemma 3.4. Fix f and S̄ = S1, . . . , Sm as above. Then for every x ∈ [n]:

Pr
r∼R

[
AS̄adv (x, r) = f(x)

]
≥ 2

3
.

Proof: The idea is to show that the queries ARM are essentially queries to a word with agreement at
least ε

2 with CRM(f). To this end, first consider an alternate version of AS̄adv, denoted AS̄alt,adv, which
instead uses a randomness string r = (rRM, rΓ) where now rΓ = (rΓ,1, . . . , rΓ,n̄) for rj ∈ [D]. Instead
of picking a random neighbor in the sampler for each query made by ARM, the alternate version
first picks a random neighbor Γ(i) for every i ∈ [n̄]. Then, for any queries on coordinate i, the
answer to the query is supplied by using the neighbor rΓ,i. Notice that a fixed choice of rΓ induces
a message w ∈ Fn̄q in the natural way, where wi is the appropriate symbol of SΓ(i,rΓ,i)(yΓ(i,rΓ,i)).

We first prove that with probability at most 1
6 over rΓ = (r1, . . . , rn̄) the induced codeword

w(rΓ) has less than ε
2 agreement with CRM(f). Let G ⊆ [m] be the set of good lists, of density at

least ε, for which C(f)z is contained in Sz . That is:

G = {z ∈ [m] : C(f)z ∈ Sz}
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Observe that for any i ∈ [n̄] for which Γ(i, rΓ,i) ∈ G, the coordinate of the induced codeword, wi,
agrees with CRM(f)i (in other words ARM’s query on i will be correct). Now let B ⊂ [n̄] be the set of
bad coordinates of CRM, for which less than 7ε

8 of its neighbors are in G. Namely,

B =

{
i ∈ [n̄] : µΓ(i)(Γ(i) ∩G) <

7ε

8

}
.

By the sampler property, we know that µ(B) ≤ 1
3 . Now note that for any i 6∈ B, the probability that

Γ(i, RΓ,i) ∈ G is at least 7ε
8 . Since each RΓ,i is independent, by a Chernoff bound (over a sample

size at least 2
3 n̄), the probability that less than 3ε

4 fraction of i-s outside of B have wi = CRM(f)i is
at most 1

6 . Thus with probability at least 5
6 over the randomness rΓ, we have that w agrees with

CRM(f) in at least

(1− µ(B))
3ε

4
≥
(

1− 1

3

)
3ε

4
=
ε

2

fraction of coordinates.
This means that with probability at least 5

6 , ARM has oracle access to a word w with at least ε
2

agreement with CRM(f). In this case, by definition, the probability that ARM outputs an incorrect
symbol is at most 1

6 . and thus

Pr
r∼R

[
AS̄alt,adv (x, r) = f(x)

]
≥ 2

3
.

As a final observation, we note that the behavior of AS̄alt,adv and the original AS̄adv must be
identical. This is because the randomness rΓ,i for any query on coordinate i ∈ [n̄] can be supplied
when required, and that any rΓ,i for an index i that is not queried by the algorithm has no effect on
its outcome.

So far we constructed a randomized circuit that computes C(f) with high probability, so what
remains is constructing a deterministic counterpart. This follows from a standard amplification
argument. Lemma 3.4 tells us that the randomized circuit AS̄adv is incorrect with probability at
most 1

3 . We can thus construct a new circuit that makes M = O(log n) repeated runs of AS̄adv with
independent randomness and takes the majority vote. By Chernoff, the error probability of the new
amplified circuit is at most 1

2n and so there is a fixing of the randomness string so that the amplified
circuit computes f on all indices. Since the size of the unamplified circuit was Õ(n1−2α), the final
circuit is of size Õ(n1−2α ·M) ≤ n1−α. Moreover, the number of queries is Õ(n2α ·M) = Õ(n2α).

We finish this section with a calculation of the time required to compute a given coordinate of
our code C, which relates directly to the runtime of our final PRGs.

Claim 3.5. Given z ∈ [m], and f ∈ {0, 1}n, computing C(f)z can be done in time Õ(n2). Moreover, given
f ∈ {0, 1}n, computing the entire codeword C(f) can be done in time Õ(n2) as well.

Proof: In order to compute C(f)z , we compute the Reed-Muller code at n1−5ε points determined
by the sampler Γ. To do so, we first recover the coefficients of the Reed-Muller polynomial. Recall
that in the standard systematic Reed-Muller encoding, we interpret the message f ∈ {0, 1}n as
values of a polynomial on Ht ⊆ Ftq for some fixed H ⊆ Fq of size roughly |H| = d

t . We then write
the polynomial of degree at most d that agrees with the message f as

p(x1, . . . , xt) =
∑

(a1,...,at)∈Ht

∏
i∈[t]

δai(xi)
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for univariate polynomials δa : Fq → Fq, where for each a ∈ H ,

δa(x) =
∏

b∈H\{a}

x− b
a− b

.

We can write down the coefficients of each δa by first writing down δa in the form above and
expanding the polynomial. For any fixed a, we can do so in time Õ(|H|)2) = Õ(n2α) using a Õ(d)
time algorithm for multiplying two univariate polynomials of degree d. We can then can expand
and simplify the formula for p in O((Ht)2) = Õ(n2) time.

Once we have the coefficients of the Reed-Muller code, we can then compute Γ−1(z, i) ∈ Ftq
for every i ∈ [a] for the right-degree of the sampler a = n1−5α. Each computation of Γ−1 requires
O(polylog n) time. Given the coefficients of the Reed-Muller polynomial, and N = n1−5α points in
Ftq, we invoke the Kedlaya-Umans algorithm for fast multivariate multipoint evaluation [KU11]
running in time

O

(
t

(
d

t

t

+ qt +N

)
poly(log q)

)
= Õ(n).

In total, the runtime is dominated by the Õ(n2) time required to find the coefficients of the Reed-
Muller polynomial.14

In order to compute the entire code C(f), we can instead invoke the fast multivariate multipoint
evaluation on all n̄ = Õ(n) points in Ftq given the coefficients of the polynomial. We can then iterate
through every z ∈ [m] with m = Õ(n5α) and use the memoized values of the polynomial at every
point to compute the appropriate symbol C(f)z .

4 A Metric Pseudoentropy Generator From Worst-Case Hardness

In this section we show how to construct a metric pseudoentropy generator from a function f that
is hard for SVN circuits. The idea is to show that if a code C is locally list recoverable, then the
symbol at a random coordinate of C(f) has high Yao pseudoentropy. This then implies that it must
also have high metric pseudoentropy by Lemma 2.30.

Let f : {0, 1}logn → {0, 1} be such that every SVN circuit computing f has size at least n1−α0 for
some constant α0 <

1
6 . That is, sizeSV N (f) ≥ n1−α0 . Let

C : {0, 1}n → Σm

be some error correcting code. Define Gf : [m]→ Σ ≡ {0, 1}log |Σ| so that

Gf (z) = C(f)z,

where we identify f by its truth-table in {0, 1}n.

Theorem 4.1. Keeping the above notation, let ε, α be constants such that ε > 0 and α0 < α ≤ 1
6 . Assume

C is (Q, ε, `, sC) locally list recoverable so that sC = O(n1−α), and n1−α

Q ≥ s0 for some s0 = Õ(log |Σ|).

Then, Gf is a strong (k, s, ε) Nmetric PEG for k = log `
2 and s = O

(
n1−α

Q

)
.

14We note that a more efficient way to prepare a representation of the Reed-Muller polynomial for fast multipoint
evaluation would drastically improve the runtime of our encoding procedure.
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Proof: Let Z be the uniform distribution over [m]. We first show that

HNYao
s′,ε

(
Z ◦Gf (Z)

)
≥ k′

for s′ = n1−α

Q and k′ = log `.
Assume towards a contradiction that HNYao

s′,ε (Z ◦Gf (Z)) < k′. Then there exists a D ⊆ [m]× Σ,
with D ∈ CNYao

k′,s′ such that
Pr[Z ◦Gf (Z) ∈ D] > ε.

As D ∈ CNYao
k′,s′ , there exist compressing and decompressing SVN circuits c : [m] × Σ × {0, 1}w →

{0, 1}k
′

and d : {0, 1}k
′
× {0, 1}w → [m] × Σ of size s′ such that for every (y, σ) ∈ D we have

d(c(z, σ)) = (z, σ).
Consider the sets S1, . . . , Sm ⊆ Σ defined as follows:

Sz = {σ ∈ Σ : (z, σ) ∈ D}.

Notice that
∑

z∈[m] |Sz| = 2k
′

= `. Moreover, for at least ε fraction of z’s we know that C(f)z ∈ Sz .
Thus by definition of our list recoverable code, there exists a circuit A computing f that is of size at
most sC , and uses at most Q oracle queries to the lists Sz .

We can replace each oracle query in A with a circuit that computes the SVN decompressor
circuit on the appropriate string in {0, 1}k′ and appropriate witness string in {0, 1}w, and outputs
the resulting symbol. In all, the final SVN circuit will use {0, 1}wQ bits as a witness string, where
each block of w bits serves as the witness to d for one of the Q oracle queries. The resulting circuit
will output 1 as the check bit if and only if the check bit of all Q copies of the decompressing circuit
d is 1. Since the size of the decompressing circuit is at most s′, we have a final circuit of size

O(sC +Q · s′) = O(n1−α)

that computes f , which is a contradiction of the hardness of f .
Knowing that HNYao

s,ε

(
Z ◦Gf (Z)

)
≥ k′, and s′ = Ω̃(log |Σ|), applying Lemma 2.30 proves the

theorem.

Combining Theorem 3.2 with the above result gives the following.

Theorem 4.2. For a constant ε > 0 and every positive integer n the following holds. Assume

f : {0, 1}logn → {0, 1}

is such that sizeSV N (f) > n1−α0 for some constant α0 <
1
6 . Let α be any constant such that α0 < α ≤ 1

6 .
Then, there exists a function

Gf : {0, 1}d → {0, 1}m

that is a (k, s, ε) SVN metric PEG for k = n1−7α

2 , s ≥ n1−4α, d = 5α log n + O(log log n) and m =

Õ(n1−5α).
Given oracle access to f , the support of Gf takes Õ(n2) to compute. Moreover, if f ∈ DTIME(ncf ) for

some cf ≥ 1, the support of Gf can be computed in time Õ(ncf+1).

Proof: Let C : {0, 1}n → Σm′ with Σ = Fn1−5α

q , q = Õ(nα) and m′ = Õ(n5α), be the (Q, ε, `, sC)

locally list recoverable for Q = Õ(n2α), ` = 2n
1−7α

and sC = O(n1−α) that is guaranteed to us
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by Theorem 3.2. We note that n1−α

Q = Ω(n1−4α) ≥ Õ(log |Σ|) = Õ(n1−5α). Thus, by applying
Theorem 4.1, we get that

Gf : {0, 1}d → {0, 1}m

is a (k, s, ε) metric PEG with d = logm′ = 5α log n + O(log log n) and m = log |Σ| = Õ(n1−5α) for
k = Ω(n1−7α) and s = n1−α

Q ≥ n1−4α.
Finally, to compute the support of the PEG, we can first compute f at every point in time

O(ncf+1). We then essentially have oracle access to f , and so by Claim 3.5 we can compute the
support in time Õ(n2). Thus, overall the time to compute the support is Õ(ncf+1).

Note that an SVN metric PEG is also a metric PEG with the same parameters.

5 Derandomizing Algorithms That Err Rarely

In Theorem 4.2 we proved that Gf is a metric PEG. This is already useful by itself, e.g., since it
allows us to derandomize algorithms that err rarely.

Claim 5.1. Let C : {0, 1}n → {0, 1} be a circuit of size s for which there exists b ∈ {0, 1} such that
C evaluates to b on all but at most B = B(n) of its possible inputs. Let X ∼ {0, 1}n be such that
Hmetric
s,ε=1/8(X) ≥ k for k ≥ logB + 3. Then,

Pr[C(X) = 1− b] > 1

2
.

Proof: By Lemma 2.27,

Pr[C(X) = b] ≤ B

2k
+

1

8
≤ 1

4
,

so the claim follows immediately.

Quite surprisingly, since our PEG has a very short seed, we are able to derandomize with almost
no slowdown.

Lemma 5.2. There exists a constant c ≥ 1 such that the following holds. For positive integers n and
t ≥ n,15 let L ⊆ {0, 1}n and let A : {0, 1}n×{0, 1}t → {0, 1} be a probabilistic algorithm running in time
t for which there exists B = B(t) such that for every x ∈ {0, 1}n,

Pr
y∼Ut

[A(x, y) 6= L(x)] ≤ B

2t
.

Let G : {0, 1}d → {0, 1}t be a (k, s, ε = 1/8) metric PEG for s = ct log t and k ≥ logB + 3.
Then, there exists a deterministic algorithm AD : {0, 1}n → {0, 1} that accepts L and runs in time

2dt+ tP , where tP is for computing Supp(G) and can be precomputed for all algorithms with running time
t.

Proof: Fix some x ∈ {0, 1}n and let Cx : {0, 1}t → {0, 1} be the circuit that computes A(x, ·), of size
s. By our assumption on A, Cx outputs 1− L(x) on at most B of its inputs. By Claim 5.1, we know
that

Pr[Cx(G(U)) = L(x)] >
1

2
.

15From here onwards, we assume t ≥ n only for simplicity. When t < n, the circuit that computes A(x, ·) is of size
O(n logn) rather than O(t log t) and s is chosen accordingly.
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Hence, the standard way of constructing AD would be to first compute the set

I =
{
G(z) : z ∈ {0, 1}d

}
,

which is independent of C so can be though of as a preprocessing step for all circuits of a certain
size, and then run A(x, y) for every y ∈ I . AD would then return the majority vote.

Combining Lemma 5.2 and Theorem 4.2, we get the following corollary.

Corollary 5.3. There exist constants c̃ ≥ 1 such that the following holds for all positive integers n and
t ≥ n. Assume that for every positive integer m there exists a function f : {0, 1}m → {0, 1} computable in
time DTIME(2cfm) for some cf ≥ 1, for which sizeSV N (f) > 2(1−α0)m for some constant α0 <

1
c̃ . Fix

any α such that α0 < α ≤ 1
c̃ .

Let L ⊆ {0, 1}n and let A : {0, 1}n × {0, 1}t → {0, 1} be a probabilistic algorithm running in time t
such that for every x ∈ {0, 1}n,

Pr
y∼Ut

[A(x, y) 6= L(x)] ≤ 2−t+t
1−c̃α

.

Then, there exists a deterministic algorithm AD : {0, 1}n → {0, 1} that accepts L and runs in time
t1+c̃α + tP , where the tP = t1+cf+O(α) term corresponds to a step that can be precomputed for all algorithms
with running time t.

That is, the derandomization slowdown of every randomized algorithm running in time t which errs with
probability at most 2−t+t

1−O(α) , under our complexity-theoretic assumptions, is at most tO(α).

Proof: Set m = log(t1+cα) for c ≥ 1 soon to be determined, M = 2m, and let f : {0, 1}log t1+cα

→
{0, 1} be the guaranteed hard function. Let

Gf : {0, 1}d → {0, 1}t

be the (k, s, ε = 1/8) metric PEG given in Theorem 4.2 with d ≤ 6α log n. By Theorem 4.2, we know
the output of the PEG is of length Õ(M1−5α), so we set c such that Õ(M1−5α) = t which gives
5 < 5

1−5α < c < 6
1−6α , where we assume α < 1

6 . Set c̃ = 8c and set B = 2t
1−c̃α

. Note that

k =
M1−7α

2
=

1

2
t7cα

2 · t1−(c+7)α + 3 ≥ logB + 3.

Also,
s = M1−4α ≥ t1+(c−4)α−4cα2 ≥ t1+α−4cα2

= ω(t log t),

since 4cα2 = c̃α2

2 ≤ α
2 . Finally, observe that d ≤ c̃α log n and so the Corollary follows from

Lemma 5.2.

6 Pseudoentropy Fooling Real-Valued Distinguishers

Towards derandomizing general algorithms with only an almost-linear slowdown, we need to
extend our notion of pseudoentropy and handle distinguishers which output a value in [0, 1] rather
than a Boolean value.

The motivation for doing so is that in order to get a pseudorandom generator (rather than a
pseudoentropy generator), we want to apply a seeded extractor on top of our pseudoentropy
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generator. However, we only have a random variable with high metric pseudoentropy, which does
not seem sufficient for general extraction. More specifically, Barak et al. showed how to extract
from the stronger notion of HILL pseudoentropy (see Definition 2.24), or from Yao pseudoentropy,
however only in the case where the extractor is a reconstructive one (see [BSW03] and references
therein). Although our pseudoentropy generator from Section 4 does output a random variable
having high Yao pseudoentropy, it seems difficult to devise a reconstructive extractor having
nearly-optimal seed length.

Barak et al. [BSW03] show how one can get high HILL pseudoentropy from a random variable
having high metric pseudoentropy, but their argument has two disadvantages. First, it loses quite a
bit in parameters, which we cannot afford here. Second, it implicitly assumes metric pseudoentropy
for real-valued distinguishers. However, unlike HILL pseudoentropy, different notions of metric
pseudoentropy (randomized/deterministic distinguishers, {0, 1}/[0, 1]-valued distinguishers) do
not seem to be equivalent.16

We would like to extract pseudorandomness without significant loss in circuit size, and we
would like to do it by applying a (non-reconstructive) seeded extractor. Towards that goal, we:

1. Revisit, in this section, the notion of Yao and metric pseudoentropy, this time with respect to
real-valued distinguishers. We will prove that here too, Yao pseudoentropy implies metric
pseudoentropy, and that one can apply a seeded extractor on a random variable having high
metric pseudoentropy without losing too much in parameters. The caveat is that we would
have to assume stronger complexity-theoretic assumptions.

2. In Section 7, prove that our PEG can in fact output pseudoentropy fooling real-valued
distinguishers.

3. In Section 8, construct an explicit extractor having nearly optimal seed length (for a constant
error) and computable by circuits of nearly linear size.

4. Finally, in Section 9, combine all the above components to achieve an efficient derandomiza-
tion and prove Theorem 9.4.

6.1 Metric? Pseudoentropy

We begin with the generalized definition of metric pseudoentropy.

Definition 6.1 (metric? pseudoentropy, [DP08, FR12]). Let X be a random variable distributed over
{0, 1}n, a positive integer s and ε > 0. We say thatHmetric?

s,ε (X) ≥ k if for every circuitD : {0, 1}n → [0, 1]
of size s, there exists Y ∼ {0, 1}n such that H∞(Y ) ≥ k and |E[D(X)]− E[D(Y )]| ≤ ε.

We say that HPmetric?
s,ε (X) ≥ k if we allow D to be a FP-circuit, and HNmetric?

s,ε (X) ≥ k if we allow D
to be an FNP-circuit.

Similar to Definition 2.32, we define pseudoentropy generators that output random variables
having high metric? or its variants.

Definition 6.2 (metric? PEG). We say that G : {0, 1}d → {0, 1}n is a (k, s, ε) metric? pseudoentropy
generator (PEG) if

Hmetric?

s,ε (G(Y )) ≥ k,
16Later works address this issue explicitly and distinguishes between each notion of metric pseudoentropy (see, e.g.,

[CKLR11, FR12, FOR15, SGP15]).
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where Y is the uniform distribution over d bits. We say that G is a strong (k, s, ε) metric? pseudoentropy
generator if Hmetric?

s,ε (Y ◦ G(Y )) ≥ k. When the output has high Pmetric? pseudoentropy or Nmetric?

pseudoentropy, we say it is a Pmetric? or Nmetric? pseudoentropy generator, respectively.

We will need an alternative characterization of metric pseudoentropy due to Skorski [Sko15].

Theorem 6.3 ([Sko15]). For all positive integers s, n and every k and ε > 0 the following holds. Let
X be a random variable distributed over {0, 1}n. Then, Hmetric?

s,ε (X) ≥ k if and only every circuit
D : {0, 1}n → [0, 1] of size s satisfies

E[D(X)] ≤ E[D(Y ?)] + ε,

where Y ? is uniform over 2k values x corresponding the largest values of D(x). (Break ties arbitrarily.)

We now prove an analogue of Lemma 2.27, stating that the weight of a high metric pseudoen-
tropy random variable inside a set computable by a small circuit cannot be too large, and vice
versa.

Lemma 6.4. For all positive integers s, n and every k ≤ n and ε > 0 the following holds. Let X
be a random variable distributed over {0, 1}n for which Hmetric?

s,ε (X) < k. Then, there exists a circuit
D : {0, 1}n → [0, 1] of size O(s) such that E[D(Un)] ≤ 2k−n and E[D(X)] > 2n−kE[D(Un)] + ε.

Proof: Let D : {0, 1}n → [0, 1] be the distinguisher guaranteed by Theorem 6.3, so

E[D(X)] > E[D(Y ?)] + ε.

Let t? ∈ [0, 1] be the maximal value for which there exists an x? ∈ {0, 1}n such that

HD = {x ∈ {0, 1}n : D(x) ≥ t? ∧ x ≤ x?}

is of size exactly 2k. Simply put, HD contains the first 2k heaviest elements. Let Y ? be the uniform
distribution over the set HD (note that H∞(Y ?) ≥ k).

We construct D′ : {0, 1}n → [0, 1] as follows. For every x ∈ {0, 1}n,

D′(x) = max {D(x)− t?, 0} .

Note that D′ is of size s+O(m) = O(s), where m is the number of bits required to represent each
element in Supp(D). Now, observe that

E[D(Y ?)]− E[D′(Y ?)] =
∑

z∈Supp(Y ?)

Pr[Y ? = z](D(z)−D′(z)) =
∑

z∈Supp(Y ?)

Pr[Y ? = z]t? = t?,

and

E[D(X)]− E[D′(X)] =
∑

z∈Supp(X)

Pr[X = z](D(z)−D′(z)) ≤
∑

z∈Supp(X)

Pr[X = z]t? = t?,

so
E[D′(X)]− E[D′(Y ?)] ≥ E[D(X)]− E[D(Y ?)] > ε.

Next, note that |Supp(D′)| ≤ 2k, so E[D′(Un)] ≤ 2k−n. Also,

E[D′(Un)] = Pr[Un ∈ HD] · E[D′(Y ?)] + Pr[Un /∈ HD] · 0,

and thus E[D′(Y ?)] = 2n−kE[D′(Un)].
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The alternative characterization of Theorem 6.3 is oblivious to the gates used by the distinguisher.
We can thus also state a version of Lemma 6.4 for FNP-circuits.

Lemma 6.5. For every positive integers s, n and every k ≤ n and ε > 0 the following holds. Let X be a
random variable distributed over {0, 1}n for which HNmetric?

s,ε (X) < k. Then, there exists an FNP-circuit
D : {0, 1}n → [0, 1] of size O(s) such that E[D(Un)] ≤ 2k−n and E[D(X)] > 2n−kE[D(Un)] + ε.

Although we will not use it later, we next prove that the converse also holds and present a more
elementary proof that does not use Theorem 6.3.

Lemma 6.6. For every positive integers s, n and every k ≤ n and ε > 0 the following holds. Let
X be a random variable distributed over {0, 1}n for which Hmetric?

s,ε (X) ≥ k. Then, for every circuit
D : {0, 1}n → [0, 1] of size s, it holds that

E[D(X)] ≤ E[D(Un)]2n−k + ε.

The same holds for Nmetric? pseudoentropy and FNP-circuits.

Before proving the lemma, we will need a corresponding statement for high min-entropy
random variables.

Claim 6.7. Let Y be a random variable over {0, 1}n such that H∞(Y ) ≥ k, and let f : {0, 1}n → [0, 1] be
any function. Then, E[f(Y )] ≤ E[f(Un)]2n−k.

Proof:
E[f(Y )] =

∑
y∈{0,1}n

Pr[Y = y]f(y) ≤
∑

y∈{0,1}n
2−kf(y) = 2n−kE[f(Un)].

Proof of Lemma 6.6: Suppose towards a contradiction that there exists a circuit D : {0, 1}n → [0, 1]
of size s such that E[D(X)] > E[D(Un)]2n−k + ε. For every Y ∼ {0, 1}n with H∞(Y ) ≥ k we know,
by Claim 6.7, that

E[D(Y )] ≤ E[D(Un)]2n−k.

Thus, E[D(X)]− E[D(Y )] > ε.

6.2 Extracting Randomness From Metric? Pseudoentropy

Using the min-max theorem, [BSW03] show that for X ∼ {0, 1}n with Hmetric?
s,ε (X) ≥ k, it holds

that HHILL
s′,ε (X) ≥ k, albeit with s′ = O( sε

2

n ). The factor n loss in s′ is too costly for us. We show that
under our complexity-theoretic assumptions, by allowing FP gates we are able to directly apply
seeded extractors on random variables having high metric pseudoentropy and overcome the loss
in circuit size.

The main hurdle we wish to overcome by using FP gates is approximating the fraction of
accepting inputs to a circuit C to within an constant additive error of ε. We note that the original
Nisan-Wigderson generator fools circuits using a number of seeds polynomial in the size of the
circuit. Hence taking a sample average over all seeds of the generator yields a polynomial time
deterministic approximation of E[C(U)]. To utilize this fact, we define the function problem
DensityApprox as follows. An algorithm solving DensityApprox gets as input a circuit C and a
number ε > 0 and computes the canonical additive ε-approximation to E[C(U)] rounded to log 1

ε
bits. In light of Theorem 1.1 and the above discussion, we can record the following.
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Claim 6.8. Assume there exists a function in E that requires exponential-size circuits. Then we have that
DensityApprox ∈ FP.

We are now ready to prove that one can extract pseudorandomness from Pmetric? pseudoen-
tropy.

Theorem 6.9. Assume there exists a function in E that requires exponential-size circuits. Then, for all
positive integers s, t, n, k, d,m and a constant ε > 0 the following holds.

Suppose Ext : {0, 1}n×{0, 1}d → {0, 1}m is a (k, ε) extractor so that for every x ∈ {0, 1}n, Ext(x, ·) is
computable by a circuit of size t. LetX be a random variable distributed over {0, 1}n so thatHPmetric?

s′,ε (X) ≥
k for s′ = 2(s+ t). Then, Ext(X,Ud) 3ε-fools circuits of size s.

Proof: The following lemma will be the crux of the proof.

Lemma 6.10. For every distinguisher C : {0, 1}m → {0, 1} computable by a circuit of size s there exists a
random variable Z ∼ {0, 1}n with H∞(Z) ≥ k such that

|E[C(Ext(X,Ud))]− E[C(Ext(Z,Ud))]| ≤ 2ε.

Proof: Given any C : {0, 1}m → {0, 1}, we define DC : {0, 1}n → [0, 1] by

DC(x) = Ey∼Ud [C(Ext(x, y))].

Assume towards a contradiction that there exists C : {0, 1}m → {0, 1} computable by a circuit of
size s for which

|E[C(Ext(X,Ud))]− E[C(Ext(Z,Ud))]| > 2ε

for every Z ∼ {0, 1}n with H∞(Z) ≥ k. Notice that E[DC(X)] = E[C(Ext(X,Ud))] and likewise for
E[DC(Z)]. Thus, we have that |E[DC(X)]− E[DC(Z)]| > 2ε.

Next, we want to approximate DC by a small FP-circuit. Define Cx = C(Ext(x, ·)), and let
D′C : {0, 1}n → [0, 1] be the circuit using a DensityApprox gate, such that on input x:

• Compute the description of the circuit Cx, having size s+ t.

• Uses a DensityApprox gate on input (Cx,
ε
4) to compute an ε

4 -approximation to E[Cx(U)]
rounded to log 4

ε bits.

The circuit D′C is of size s+ t+ 2 log 4
ε +O(1) ≤ 2(s+ t). Moreover, for every x ∈ {0, 1}n, we have

an ε
4 -approximation to Cx rounded to the first log 4

ε bits. Hence we have

DC(x)− ε

2
≤ D′C(x) ≤ DC(x) +

ε

2

and so |E[DC(X)]− E[D′C(X)]| ≤ ε
2 and |E[DC(Z)]− E[D′C(Z)]| ≤ ε

2 . Recalling that |E[DC(X)]−
E[DC(Z)]| > 2ε, by the triangle inequality we get

|E[D′C(X)]− E[D′C(Z)]| > 2ε− ε = ε.

However, the above contradicts the fact that HPmetric?

s′,ε (X) ≥ k.

Now, let C : {0, 1}m → {0, 1} be any distinguisher. By the above lemma, there exists Z ∼ {0, 1}n
with H∞(Z) ≥ k such that

|E[C(Ext(X,Ud))]− E[C(Ext(Z,Ud))]| ≤ 2ε.

But we also know, by the extractor property, that Ext(Z,Ud) ≈ε Um, so

|E[C(Ext(X,Ud))]− E[C(Um)]| ≤ 3ε,

which proves the lemma.
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6.3 Yao? Pseudoentropy

We now extend the compression-based pseudoentropy notions to handle real-valued distinguishers.
This time, we allow for a lossy compression scheme, that disregards outputs below a certain
threshold.

Definition 6.11. For some positive integers n, s and D : {0, 1}n → [0, 1], we say that D ∈ CYao?

`,s,η if there
exist circuits c : {0, 1}n → {0, 1}` and d : {0, 1}` → {0, 1}n × [0, 1], each of size s, such that for every
x ∈ {0, 1}n with D(x) ≥ η it holds that d(c(x)) = (x,D(x)). We refer to c as the compressing circuit and
to d as the decompressing one. Moreover, we say D ∈ CNYao?

`,s,η if c and d are allowed to be FNP circuits.

Note that when D maps to {0, 1}, the above definition coincides with CYao
`,s for every η < 1 (see

Definition 2.29).

Definition 6.12 (Yao? pseudoentropy). Let X be a random variable distributed over {0, 1}n, a positive
integer s and ε, η > 0. We say that HYao?

s,ε,η (X) ≥ k if for every ` < k and D ∈ CYao?

`,s,η ,

E[D(X)] ≤ E[D(Un)]2n

| {x ∈ {0, 1}n : D(x) ≥ η} |
· 2`−k + ε.

We say that HNYao?
s,ε,η (X) ≥ k if we allow D ∈ CNYao?

`,s,η .

As one can hope, the above formulation allows us to relate Yao? pseudoentropy to metric?

pseudoentropy.

Lemma 6.13. For every positive integer n there exists s0 = Õ(n) such that for every positive integer
s ≥ s0 and ε, η > 0 the following holds. Let X be a random variable distributed over {0, 1}n such that
HNYao?
s,ε,η (X) ≥ k. Then, HNmetric?

γs,ε (X) ≥ k
2 −

1
2 log 1

η where γ < 1 is some universal constant.

Proof: Assume towards a contradiction that HNmetric?
γs,ε (X) < k

2 −
1
2 log 1

η for a constant γ < 1
to be determined later on. By Lemma 6.5 there exist a constant c1 ≥ 1 and an FNP-circuit

D : {0, 1}n → [0, 1] of size c1γ · s satisfying E[D(Un)] ≤ 2
−n+ k

2
− 1

2
log 1

η for which

E[D(X)] > E[D(Un)]2
n− k

2
+ 1

2
log 1

η + ε.

Denote
A = {x ∈ {0, 1}n : D(x) ≥ η} ,

and observe that |A| < 1
η2

k
2
− 1

2
log 1

η . Set t = log |A| < k
2 + 1

2 log 1
η . LetH ⊆ {0, 1}n → {0, 1}2t be the

two-universal family of hash functions described in Lemma 2.30, of cardinality 22n. Following
Lemma 2.30, we know there exists h? ∈ H, computable by a circuit of size s0 = Õ(n) that is one to
one on A.

Set ` = 2t. For a compressing circuit, c : {0, 1}n → {0, 1}` computes h?. Towards constructing a
decompressing FNP-circuit d : {0, 1}` → {0, 1}n × [0, 1], for i ∈ [n] consider the function problem
Decompress which on input (z,D, h?, η) returns an x for which h?(x) = z and D(x) ≥ η, where we
represent h? ∈ {0, 1}2n ≡ GF(2n)2. Clearly, L ∈ FNP so we can recover the desired x ∈ {0, 1}n.

Thus, d on input z ∈ {0, 1}` will use z, the encoding of the hardwiredD and hardwired encoding
of the good hash function h?, and a hardwired encoding of η to output x together with D(x). Note
that both c and d are of size c2c1γ · s for some constant c2 ≥ 1. Finally, note that

E[D(X)] > E[D(Un)]2
n− k

2
+ 1

2
log 1

η + ε > E[D(Un)]2n−t+`−k + ε,

which contradicts the fact that HNYao?
s,ε,η (X) ≥ k if we set γ = 1

c1c2
.
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7 A Metric? Pseudoentropy Generator From Worst-Case Hardness

In this section we show how to construct an Nmetric? pseudoentropy generator from a function
f that is hard for FNP circuits. In fact, the same generator from Section 4 used in the SVN case
works. Again, let f : {0, 1}logn → {0, 1} be such that every FNP-circuit computing f has size
at least n1−α0 for some constant α0 <

1
6 . That is, sizeFNP(f) ≥ n1−α0 . Again, we consider the

generator Gf : [m]→ Σ ≡ {0, 1}log |Σ| defined as

Gf (z) = C(f)z

for a locally list recoverable code
C : {0, 1}n → Σm.

Theorem 7.1. Keeping the above notation, let ε, α be constants such that ε > 0 and α0 < α ≤ 1
6 .

Assume C is
(
Q, (1− 1

m)ε, `, sC
)

locally list recoverable so that sC = O(n1−α), and n1−α

Q ≥ s0 for some

s0 = Õ(log |Σ|). Then, Gf is a (k, s, ε) Nmetric? PEG for k = log `
2 −

1
2 log m

ε and s = Ω
(
n1−α

Q

)
.

Proof: Let Z be the uniform distribution over [m]. We first show that

HNYao?

s′,ε,η

(
Z ◦Gf (Z)

)
≥ k′

for k′ = log `, s′ = n1−α

Q and η = ε
m .

Assume towards a contradiction thatHNYao?

s′,ε,η (Z ◦Gf (Z)) < k′. Then there must exist aD : [m]×
Σ→ [0, 1], with D ∈ CNYao?

k′,ε,η such that

E[D(Z ◦Gf (Z))] > ε

By an averaging argument, this means that for at most 1− ε(1− 1
m) fraction of z ∈ [m], we have

D(z, C(f)z) <
ε
m . Since D ∈ CNYao?

k′,ε,η , there exist compressing and decompressing FNP circuits

c : [m] × Σ → {0, 1}k
′

and d : {0, 1}k
′
→ [m] × Σ × [0, 1] such that for every (y, σ) ∈ [m] × Σ with

D(z, σ) > η = ε
m , we have d(c(z, σ)) = ((z, σ), D(z, σ)).

Consider sets S1, . . . , Sm ⊆ Σ defined as follows:

Sz = {σ ∈ Σ : ∃y ∈ {0, 1}k′ , γ ∈ [0, 1] s.t. d(y) = ((z, σ), γ)}.

Notice that by definition,
∑

z∈[m] |Sz| = 2k
′

= `. Moreover, for at least ε(1− 1
m) of z-s we know that

C(f)z ∈ Sz . Thus by definition of our list recoverable code, there exists a circuit A computing f that
is of size at most sC , that uses at most Q oracle queries to the lists Sz . We can replace each oracle
gate with a circuit that computes the decompressor circuit on the appropriate string in {0, 1}k′ , and
outputs the resulting symbol. Since the size of the decompressing circuit is at most s′, we have a
final circuit of size

O(sC +Q · s′) = O(n1−α)

that computes f , which is a contradiction of the hardness of f .
Knowing that HNYao?

s,ε,η

(
Z ◦Gf (Z)

)
≥ k′, and s′ = Ω̃(log |Σ|), applying Lemma 6.13 proves the

theorem.

Combining Theorem 3.2 with the above result immediately gives the following corollary.
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Corollary 7.2. For every positive integer n and a constant ε > 0 the following holds. Assume f : {0, 1}logn →
{0, 1} is such that sizeFNP(f) > n1−α0 for some constant α0 < 1

6 . Let α be any constant such that
α0 < α ≤ 1

6 . Then, there exists a function

Gf : {0, 1}d → {0, 1}m

that is a (k, s, ε) Nmetric? PEG for k = n1−7α

2 − O(log n), s ≥ n1−4α, d = 5α log n + O(log log n) and
m = Õ(n1−5α).

Given oracle access to f , the support of Gf takes Õ(n2) to compute. Moreover, if f ∈ DTIME(ncf ) for
some constant cf ≥ 1, the support of Gf can be computed in time Õ(ncf+1).

The proof is almost identical to that of Theorem 4.2.

8 Extractors With Near-Optimal Seed Length

We give an explicit strong seeded extractor with near-optimal (in n) seed that supports min-entropy
n1−α for every α < 1

2 . Specifically, for ε = n−o(1), our seed length is (1 +O(α)) log n, which gives a
left-degree of n1+O(α). A very similar construction was given in [TZS06], but there the analysis was
only done for a constant entropy rate. For our construction we will use three ingredients given in
the following theorems.

The first theorem, due to Ta-Shma, Zuckerman and Safra gives an extractor that achieves seed
length very close to log n; however, it only outputs a small portion of the min-entropy.

Theorem 8.1 ([TZS06]). For all positive integers n, k, m and ε ≤ 1
2 such that 3m

√
n log n

ε ≤ k ≤ n, there
exists an explicit strong (k, ε) extractor TZS : {0, 1}n × {0, 1}d → {0, 1}Ω(m) for d = log n+O(log 1

ε ) +
O(logm).

The next extractor is Trevisan’s, with improved analysis due to Raz, Reingold and Vadhan. We
use it to output a constant fraction of the min-entropy.

Theorem 8.2 ([Tre01, RRV02]). There exists a constant cTre ≥ 1 such that following holds. For all positive
integers n, k and ε > 0 there exists an explicit strong (k, ε) extractor Tre : {0, 1}n × {0, 1}d → {0, 1}m
for d = cTre log2 n

ε and m = k
4 .

Lastly, we will need the following condenser by Reingold, Shaltiel and Wigderson whose
purpose is to output a shorter string than the input source with the same entropy rate, using a very
short seed.

Theorem 8.3 ([RSW06]). There exist constants cRSW ≥ 1 and 0 < γRSW < 1 such that the following
holds. For all positive integers n, k, r and ε ≥ cRSW

√
r
k there exists an explicit strong (k, k′ = γRSW

k
r , ε)

condenser RSW : {0, 1}n × {0, 1}d → {0, 1}m for d = cRSW(log log n+ log r + log 1
ε ) and m = n

r .

Our construction, following [TZS06], proceeds along a familiar paradigm. The extractor TZS
uses a short seed but extracts relatively few bits, whereas the extractor Tre outputs a constant
fraction of the min-entropy but requires a long seed. We are able to utilize both advantages without
suffering the drawbacks by using RSW, with a very short seed, to condense the source X . The out-
put length of RSW will be only half the min-entropy, enabling us to use TZS to extract (from the same
X) a seed for Tre. Namely, our extractor outputs Ext(X,Y1 ◦ Y2) = Tre(RSW(X,Y1),TZS(X,Y2)),
where Y1 and Y2 are independent uniform seeds. Note that RSW(X,Y1) and TZS(X,Y2) can be
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dependent, however we will argue that they are close to being independent, and therefore we can
apply Tre.

We are now ready for the details. We are given a positive integer n, ε > 0, some constant α < 1
2

and k ≥ n1−α. As promised, we will make use of the following ingredients.

• The strong (k, γRSW
k
r , ε) condenser RSW : {0, 1}n × {0, 1}d1 → {0, 1}m1 for r = 2nα, where

m1 = 1
2n

1−α and d1 = cRSW(log log n+log(2nα)+log 1
ε ). We require ε ≥ cRSW

√
r
k = Ω

(
1

n
1
2−α

)
.

• The strong (k′, ε) extractor TZS : {0, 1}n × {0, 1}d2 → {0, 1}d3 where k′ = 1
4n

1−α, d3 =
cTre log2 m1

ε = O(log2 n
ε ) and d2 = log n + O(log 1

ε ) + O(log d3). Note that indeed k′ is large
enough.

• The strong (k′′, ε) extractor Tre : {0, 1}m1 × {0, 1}d3 → {0, 1}m for k′′ = γRSW
2 n1−2α and m =

k′

4 = γRSW
8 n1−2α.

Given x ∈ {0, 1}n, y1 ∈ {0, 1}d1 and y2 ∈ {0, 1}d2 , we outputs

Ext(x, y1 ◦ y2) = Tre(RSW(x, y1),TZS(x, y2)).

Theorem 8.4. There exists a constant c ≥ 1 such that the following holds for any constant α < 1
2 . The

function Ext : {0, 1}n × {0, 1}d → {0, 1}m above is an explicit strong (k, ε) extractor for every positive
integer n, k ≥ n1−α and ε ≥ cn−

1
2

+α, where d = (1 + cα) log n+ c log(1
ε ) and m = 1

cn
1−2α.

Proof: The proof will mimic block-source extraction techniques, but is self-contained. Denote
A = RSW(X,Y1) and B = TZS(X,Y2). By the properties of TZS, we know that

(B, Y2) ≈ε Ud3 × Y2.

By the properties of RSW, there exists A′, which is ε-close to A, for which H∞(Y1 ◦ A′) ≥ k′′ + d1

(note that A′ depends on Y1). By Lemma 2.13, and since X and Y1 are independent,

H̃∞(X|Y1 ◦A′) ≥ H∞(X)−m1 =
1

2
n1−α ≥ 1

4
n1−α + log

1

ε
.

Since X and Y2 are independent of each other and of Y1, and since A′ is independent of Y2, we
know that X , Y2 are also independent conditioned on Y1 ◦A′. Applying Lemma 2.15 on the strong
extractor TZS we get that

(A′, B, Y1, Y2) ≈2ε (A′, Ud3 , Y1, Y2).

Applying Tre, we deduce that

(Tre(A′, B), Y1, Y2) ≈2ε (Tre(A′, Ud3), Y1, Y2).

Now, Tre(A′, Ud3) ≈ε Um so by the triangle inequality,

(Tre(A′, B), Y1, Y2) ≈3ε (Um, Y1, Y2).

Accounting for the distance between A and A′, we finally get that

(Ext(X,Y1 ◦ Y2), Y ) ≈4ε (Um, Y ),

as desired. To conclude, observe that

d = d1 + d2 = (1 +O(α)) log n+O

(
log

1

ε

)
.

The explicitness follows from the explicitness of each component.
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8.1 Computing the Extractor by a Small Circuit

Usually, when constructing extractors, we require the computation to be done in polynomial time
or in linear space. In this work, we must exercise a more fine-grained analysis, since the size it takes
to compute Ext corresponds to the minimal circuit size we will be able to fool with a nearly-optimal
small slowdown (see Theorem 6.9 for the precise parameters). We prove that there exists a circuit
of nearly-linear size that computes Ext. But before doing so, we will need to argue that a few basic
pseudorandomness primitives are also computable in nearly-linear size.

8.1.1 Efficient Asymptotically-Good Codes

An asymptotically-good code is a family of binary codes having a constant rate and a constant
relative distance. An example is Justesen’s code [Jus72].

Lemma 8.5 (following [Jus72]). There exists a constant 0 < δ < 1 such that the following holds. For
every positive integer n there exists an explicit [n̄, n, δ]2 code CJus : {0, 1}n → {0, 1}n̄ of rate n

n̄ ≥ δ.
Moreover, for every positive integer n there exists a circuit Cn of size Õ(n) so that for every x ∈ {0, 1}n,

Cn(x) computes CJus(x).

Proof: The code is constructed as follows. For some n̄ = O(n) and m = O(log n), let Fq be a finite
field of cardinality q = 2m. Set k = n

m , k̄ = n̄
2m and let {α1, . . . , αk̄} be some distinct elements of F?q .

Given x ∈ {0, 1}n ≡ Fk1 , let px be the univariate polynomial px(α) =
∑k−1

i=0 xiα
i. Then, the encoding

is given by
CJus(x) = ((px(α1), α1px(α1)), . . . , (px(αn̄), αn̄px(αn̄))) ∈ {0, 1}n̄ ,

where we interpreted each element of F1 as a string in {0, 1}m. The fact that the Justesen’s code
is asymptotically good (i.e., that one can take such parameters and maintain a constant relative
distance) is by now standard [Jus72, GRS19], but we still need to justify that fact that the encoding
can be done via a small circuit.

For simplicity, consider hardwiring {α1, . . . , αk̄}, which takes mk̄ +O(1) = O(n) bits. Each bit
of CJus(x) is obtained by evaluating px on some αi, either multiplying by αi or not, and then taking
a specific coordinate in the resulting element’s binary encoding. For the evaluation step, we can use
fast univariate multi-point evaluation which can be done by a circuit of size k̄ · poly(log q) = Õ(n)
(see, e.g., [vzGG13, Section 10]). All other operations can be done, per output bit, by a circuit of
size poly(log q), so overall computing CJus(x) can be done by a circuit of size Õ(n).

8.1.2 Efficient List-Decodable Codes

Good binary list-decodable codes are implied by explicit construction of small ε-balanced codes
close to the Gilbert-Varshamov (GV) bound. We will not define these object explicitly, and just say
that they give rise to (1

2 − ε, ε
−2) list-decodable codes of length n

εc for some constant c ≥ 2. The
constant c, as well as achieving small rate with non-optimal dependence on n, has been subject to
an important research. Naor and Naor [NN93] obtain c = 3, and Ta-Shma [Ta-17] recently achieved
a near-optimal c = 2 + α for every constant α > 0. For our construction we use the following code
having c = 4 + α for every constant α > 0 (for simplicity, we state it for c = 5). The construction,
based on distance amplification via expander walks, is given in [Ta-17] and was inspired by an
unpublished result by Rozenman and Wigderson.
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Lemma 8.6 (following [Ta-17]). For every positive integer n and ε = ε(n) there exists a binary error
correcting code C : {0, 1}n → {0, 1}n̄ which is (1

2 − ε, ε
−2) list-decodable, for n̄ = O( n

ε5
), computable by a

circuit Cn of size Õ(n̄).

Proof: Let CJus : {0, 1}n → {0, 1}cn be Justesen’s code, given to us in Lemma 8.5, for some constant
c > 1. Let G = (V = [cn], E) be a Ramanujan λ-expander of degree D, where we take D to be a
large enough constant so that λ is half the bias of CJus.17 We think of every vertex v ∈ V as being
labeled with some row of the cn× n generating matrix AJus of CJus. We refer to that labelling by
l(v) ∈ {0, 1}n.

We now describe how one obtains each row of the n̄ × n generating matrix A of C. For
t = 5 logD

1
ε , each such row is the sum, modulo 2, of the codewords that appear along a length-t

walk over G. That is, each row out of the n̄ = n ·Dt = n
ε5

possible rows is indexed by some path
pi = vi0 ∼ . . . ∼ vit in G and its value is

t∑
j=0

l(vij) ∈ {0, 1}
n .

Thus, given x ∈ {0, 1}n, computing C(x) is done by outputting

Ax =

P
†
1
...
P †n̄

 ·AJus · x,

where Pi is the vector of length cn in which Pi(v) = 1 wherever v ∈ pi and 0 elsewhere.
For simplicity, consider hardwiring the encoding of each of the n̄ possible paths. That is, for

every i ∈ [n̄] we keep a string of length (t+ 1) log(cn) storing the vertices along pi. This hardwiring
takes Õ(n̄) bits overall. Now, given x ∈ {0, 1}n, computing AJus · x = CJus(x) is done once, which
by Lemma 8.5 can be computed with a circuit of size Õ(n). To get C(x) from CJus(x) we need to
sum, for each i ∈ [n̄], the t+ 1 coordinates in CJus(x) that corresponds to the path pi. As we have
those coordinates hardwired, it takes only Õ(tn̄) = Õ(n̄) size, and overall the lemma follows.

We note that if we insist on a uniform computation of C we can still work with good enough
explicit expanders and compute the vectors pi instead of fixing them (see Theorem 2.20). This would
take Õ( nεc ) time and possibly deteriorate the constant c by a bit.

8.1.3 Almost k-wise Independent Sample Spaces

Definition 8.7 (almost k-wise distribution). A distribution (X1, . . . , Xn) over {0, 1}n is (k, ε, p) inde-
pendent if for every subset {i1, . . . , ik} ⊆ [n], (Xi1 , . . . , Xik) is ε-close to the distribution over k-bit strings
where all bits are independent and each of them takes the value 1 with probability p.

Constructing almost k-wise distribution with optimal support size, at least for the p = 1
2 case, is

well-known. In what follows, we argue that sampling from the support of such a distribution can
be done by a small circuit. For simplicity, we restrict ourselves to the case of k = 2.

17By Ramanujan here we mean that λ is optimally related to the degree D, i.e., λ ≈ 2√
D

. We do not insist on having

λ ≤ 2
√
D−1
D

and do allow some slackness, and such graphs exist for every n [F+03].
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Lemma 8.8. For every positive integer n, ε = ε(n) and q = q(n) the following holds. Set ` = 4q2 log2(qn)
ε2

.
Then, there exists a circuit Cn : [`]→ {0, 1}n of size Õ(nq

ε2
) such that for every y ∈ [`], Cn(y) computes the

y-th element of a (2, ε, 2−q) independent sample space in some fixed order.

Proof: Constructing almost k-wise samples spaces for p = 1
2 is done by combining truly k-wise

independence and small-bias sample spaces. Following, e.g., [RSW06], we unfold the extension to
a general p = 2−q and argue that it can be done efficiently. Set h = 2q log(qn), and so ` = (hε )2. We
use the following two ingredients:

• Let B ⊆ {0, 1}h be an ε-biased sample space.18 Alon et al. [AGHP92] gives us a simple
construction with support size `.

• Let A be the nq × h generator matrix of a (2q, 0, 1
2) independent sample space. The matrix A

is some suitable Vandermonde matrix, converted to F2 in a canonical way.

Then, given y ∈ [`], we output the y-th element of the almost k-wise sample space as follows.

1. Let x ∈ {0, 1}h be the y-th element of B. As B is small (and of course, independent of y) we
can hardwire B into our circuit, and it takes only O(`h) bits.

2. Compute w = Ax ∈ {0, 1}nq. The matrix-vector multiplication can be done efficiently,
exploiting the special structure of A. Specifically, one can use discrete Fourier transform to
compute w by a circuit of size Õ(nq).

3. Partition w into n consecutive blocks W1, . . . ,Wn, each of length q. Output z ∈ {0, 1}n such
that zi = 1 if and only if all the bits in Wi are 1. This step can be implemented by a circuit of
size O(nq).

Overall, the three steps above can be implemented by a circuit of size Õ(nq) +O(`h) = Õ(nq
ε2

), as
required.

Again, a note about uniform computation is in order. Here too we have an algorithm running
in time Õ(n) · poly( qε ), by explicitly computing the y-th element of B. We skip the details.

8.1.4 Efficiently Computing Ext

Finally, we are ready to prove that Ext can be computed by a small circuit.

Lemma 8.9. There exists a constant c ≥ 1 such that the following holds. For some constant 0 < α < 1
2 ,

positive integer n and ε > 0, let Ext : {0, 1}n × {0, 1}d → {0, 1}m be the (k = n1−α, ε) strong extractor
given in Theorem 8.4. For any fixed x ∈ {0, 1}n, the function

Ext(x, ·) : {0, 1}d → {0, 1}m

can be computed by a circuit Cx of size Õ( nεc ), and it takes a circuit of size Õ( nεc ) to compute the encoding of
Cx.

Proof: We keep the same notation as in our construction.

18Namely, for any nonempty S ⊆ [h], we require that
∣∣Prb∼B [⊕i∈S bi = 1]− 1

2

∣∣ ≤ ε.
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• The extractor TZS : {0, 1}n × {0, 1}d2 → {0, 1}d3 from Theorem 8.1 is computed as follows.
For x ∈ {0, 1}n and y2 ∈ {0, 1}d2 , we view x as a bivariate polynomial fx : F2 → F of total
degree h ≈

√
n where |F| = h · poly(d3/ε). Then, for each i ∈ [d3],

TZS(x, y2)i = C(fx(a1 + i, a2))j ,

where y2 is interpreted as (a1, a2, j) ∈ F2 × [`] and C : F→ [`] is (1
2 − ρ, ρ

−1) list decodable for
ρ = Ω(ε2/d2

3). Given x ∈ {0, 1}n, evaluating fx on d3 inputs can be naively done by a circuit
of size d3 ·h2 ·polylog(|F|) = Õ(n log 1

ε ). Applying C, by Lemma 8.6 takes size Õ( n
ρ5 ) = Õ( n

ε10 ).

Thus, Õ( n
ε10 ) is also the size it takes to prepare the encoding of the circuit that computes

TZS(x, ·).

• The condenser RSW : {0, 1}n × {0, 1}d1 → {0, 1}m1 from Theorem 8.3 can be computed as
follows. Let CJus : {0, 1}n → {0, 1}n̄=O(n) be Justesen’s code from Lemma 8.5. Let{

Sy ∈ {0, 1}n̄ : y ∈ {0, 1}d1

}
be a (2, ε, p) independent sample space for p = Θ(m1

n̄ ), where we identify each Sy as a
subset of [n̄]. We also require that |Sy| = pn for every y. Although it is not guaranteed by
the construction of Lemma 8.8, [RSW06] show that enforcing this constraint by adding or
removing arbitrary indices from each set is good enough. For x ∈ {0, 1}n and y1 ∈ {0, 1}d1 ,
the construction is given by

RSW(x, y1) = C(x)Sy1 .

Computing the encoding of a circuit that computes RSW(x, ·) starts by computing C(x),
which can be done in size Õ(n) using Lemma 8.5. On input y1, computing C(x)Sy1 can be

implemented in size Õ( n̄ log(1/p)
ε2

) = Õ( n
ε2

), by Lemma 8.8. Thus, it takes Õ( n
ε2

) size to compute
the encoding of the circuit RSW(x, ·), which is also an upper bound on its size.

• The extractor Tre : {0, 1}m1 × {0, 1}d3 → {0, 1}m goes as follows. Let C : {0, 1}m1 → {0, 1}m1

be a (1
2 − ρ, ρ

−2) list decodable code, for ρ = Ω(ε/m). Let

{Si ⊆ [d3] : i ∈ [m]}

be a weak design, wherein each |Si| = log(m1) and for all i 6= j,
∑

j<i 2|Si∩Sj | ≤ 2m. Then,
given x ∈ {0, 1}m1 and y ∈ {0, 1}d3 , for each i ∈ [m] we have that

Tre(x, y)i = x̂(y|Si),

where we denoted x̂ = C(x). Given x ∈ {0, 1}m1 and y ∈ {0, 1}d3 , a circuit outputting Tre(x, y)
can be constructed as follows. The sets S1, . . . , Sm can be hard-coded to the circuit, which
takes m · d3 = O(n) bits. As m1 is large, we should not compute x̂ in full, but rather compute
y|S1 , . . . , y|Sm at first, and then proceed to computing x̂(y|S1), . . . , x̂(y|Sm).

Computing y|S1 , . . . , y|Sm is immediate once we have S1, . . . , Sm and can be done in size
O(md3) = O(n). For computing x̂(y|S1), . . . , x̂(y|Sm), we revisit the proof of Lemma 8.6. We
see that we can first compute CJus(x), by a circuit of size Õ(m1) = O(n), and then for every
z = y|Si ∈ {0, 1}

log(m1), we interpret z as a walk pz of length t = O(log m
ε ) over an expander

with fully-explicit neighbourhood function (see Theorem 2.20). This takes size polylog(n, 1
ε ).

From pz we can compute x̂(z) as described in the proof of Lemma 8.6. We conclude that a
circuit of size O(n) suffices to compute Tre.
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Overall, accumulating the sizes, the lemma follows.

Our extractor is also time-efficient.

Lemma 8.10. For some constant 0 < α < 1
2 , positive integer n and a constant ε > 0, let Ext : {0, 1}n ×

{0, 1}d → {0, 1}m be the (k = n1−α, ε) strong extractor given in Theorem 8.4. Then, given x ∈ {0, 1}n

and y ∈ {0, 1}d, Ext(x, y) is computable in time Õε(n).

We skip the details, and just note that to derive Lemma 8.10 from the above discussion, it
is left to verify that computing the weak design can be done efficiently. Indeed, inspecting the
construction of [RRV02], this can be done in time m · polylog(n) = O(n).

9 PRGs With Nearly Optimal Slowdown

All ingredients are now in place for our PRG transforming almost all the hardness to pseudorandom
bits using a nearly optimal seed length.

Theorem 9.1. There exists a constant c ≥ 7 such that the following holds for every positive integer n and a
constant ε > 0. Assume f : {0, 1}logn → {0, 1} with sizeFNP(f) > n1−α0 for some constant α0 <

1
c . Let

α be any constant such that α0 < α ≤ 1
c . Then, there exists a function

G
f

: {0, 1}(1+cα) log s → {0, 1}s

which is an ε-PRG against circuits of size
s = n1−cα.

The support of Gf can be computed in time s
2+cα
1−cα given oracle access to the truth table of f . Moreover,

if f ∈ DTIME(scf ) for some cf ≥ 1 then the support of Gf can be computed in time s
γ

1−cα for γ =
max{2 + cα, cf + 1}.

Proof: Set ε′ = ε
3 . Let

Gf : {0, 1}d1=6α(1+ 7
2
α) log s′ → {0, 1}m1

be the (k, s′, ε′) Nmetric? PEG guaranteed by Corollary 7.2, where s′ = n1− 7
2
α, m1 = n1−4α and

k = n1−8α. Let
Ext : {0, 1}m1 × {0, 1}d2 → {0, 1}m

be the (k, ε′) extractor guaranteed to us by Theorem 8.4, so that for every x ∈ {0, 1}m1 , Ext(x, ·) is
computable by a circuit of size t = Õε(m1) = o(s′). By Theorem 8.4, d2 = (1 + c2α) logm1 +Oε(1)
and m = m1−c2α

1 for some universal constant c2 ≥ 1. Let

G
f

: {0, 1}d=d1+d2 → {0, 1}m

be such that for (y1, y2) ∈ {0, 1}d1 × {0, 1}d2 ,

G
f
(y1, y2) = Ext(Gf (y1), y2).
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Denote X = Gf (Ud1). By the properties of the PEG, HNmetric?

s′,ε′ (X) ≥ k. This also means that
HPmetric?

s′,ε′ (X) ≥ k, and so by Theorem 6.9, there exists a constant c′ ≥ 1 such that Ext(X,Ud2)

3ε′-fools circuits of size s = 1
c′ s
′ − t ≥ 1

2c′ s
′. Note that m = n(1−4α)(1−c2α) ≤ s and

d = d1 + d2

= 6α

(
1 +

7

2
α

)
log s′ + (1 + c2α) logm1 +Oε(1)

≤ 6α

(
1 +

7

2
α

)
log s+ (1 + c2α)

(
1− 7

2
α

)
(1− 4α)(1 + 7α) log s+Oε(1)

≤
(

6α+
6 · 7

2
α2

)
log s+ (1 + 3α+ 4αc2) log s+Oε(1)

≤ 10α log s+ (1 + 3α+ 4αc2) log s

≤ (1 + 13α+ 4αc2) log s,

where we use the fact that α ≤ 1
7 . The first part of the theorem then holds with c = 4c2 + 13.

Finally, we address the time it takes to compute the support of Gf . If we are given oracle access
to f , it requires Õ(n2) = Õ(s

2
1−cα ) time to compute the support of the PEG Gf . If we assume

f ∈ DTIME(scf ), then it takes time ncf+1 = s
cf+1

1−cα to compute f at every input and so overall it
takes time

Õ

(
s
cf+1

1−cα

)
to compute the support of the PEG. By Lemma 8.10, the extractor takes time Õε(m1) on a single
seed. To compute the support of Gf , we compute the support of the PEG, and for every element of
the support, we run the extractor on every seed. This takes time

Õ(n5α) · 2d2 · Õε(m1) = Õε

(
n5αm2+c2α

1

)
= Õε

(
n5α+(1−4α)(2+c2α)

)
≤ s

2+cα
1−cα .

Thus overall, if we have oracle access to f , computing the support of Gf takes time s
2+cα
1−cα . If we

assume f ∈ DTIME(scf ), then it takes time s
γ

1−cα for γ = max{2 + cα, cf + 1}.

Remark 9.2. Inspecting the components of the proof of Theorem 9.1, one can see that we assume the
existence of a function which is hard for circuits having oracle gates to DensityApprox (see Theorem 6.9)
and Decompress (see Lemma 6.13). Clearly, these two function problems can be incorporated into a single
fixed function problem in FNP.

Remark 9.3. Observe that one can prove Theorem 9.1 using the alternative assumption that f : {0, 1}logn →
{0, 1} requires SVN circuits of size n1−α having a single DensityApprox gate.

Indeed, PRGs allow for a black-box derandomization, and ours allow for a black-box deran-
domization with only an almost linear slowdown.

Theorem 9.4. There exist a constant c̃ ≥ 1 such that the following holds. Let L ⊆ {0, 1}n andA : {0, 1}n×
{0, 1}t → {0, 1} be a probabilistic algorithm running in time t = t(n) ≥ n such that for every x ∈ {0, 1}n,

Pr
y∼Ut

[A(x, y) 6= L(x)] <
1

2
− ε
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for some constant ε > 0. Assume for every positive integer m there exists a function f : {0, 1}m → {0, 1}
computable in DTIME(2cfm) for some cf , for which sizeFNP(f) > 2(1−α0)m for some α0 <

1
c̃ . Let α be

any constant such that α0 < α ≤ 1
c̃ .

Then, there exists a deterministic algorithm AD : {0, 1}n → {0, 1} that accepts L and runs in time

t2+c̃α + tP ,

where the term tP = tγ(1+c̃α) for γ = max{2 + c̃α, cf + 1} corresponds to a step that can be precomputed
for all algorithms with running time t. That is, the slowdown of every randomized algorithm running in
time t, under our complexity-theoretic assumptions, is at most t1+O(α).

Proof: Let c be the constant guaranteed to us by Theorem 9.1 and set c′ = c+1
1−c2α > 0. Set m =

log(t1+c′α), M = 2m, and let f : {0, 1}log(t1+c′α) → {0, 1} be the guaranteed hard function. Let

G
f

: {0, 1}d=(1+cα) log s → {0, 1}s

be the ε-PRG fooling circuits of size s guaranteed to us by Theorem 9.1, with s = M1−cα. We
note that s ≥ t1+α = ω(t log t). Furthermore, we can see that d ≤ (1 + c′α) log t since d =
(1 + cα)(1− cα) logM < logM , and (1 + c′α) log t = logM .

Consider truncating the output length of Gf down to length t. Fix some x ∈ {0, 1}n and let
Cx : {0, 1}t → {0, 1} be the circuit that computes A(x, ·), of size s. By the properties of the PRG,∣∣∣Pr[Cx(Ut) = 1]− Pr[Cx(G

f
(Ud)) = 1]

∣∣∣ ≤ ε,
so for x ∈ L, Pr[Cx(G

f
(Ud)) = 1] > 1

2 and for x /∈ L, Pr[Cx(G
f
(Ud)) = 1] < 1

2 . Hence, the standard
way of constructing AD would be to first compute the set

I =
{
G
f
(z) : z ∈ {0, 1}d

}
,

which is independent of Cx so can be though of as a preprocessing step for all circuits of a certain
size, and then run A(x, y) for every y ∈ I . AD would then accept if and only if the majority of runs
returned 1. The parameters immediately follow.

The time tP represents the time it takes to compute the support of the PRG. As Theorem 9.1

states, computing the support of the PRG takes time s
γ′

1−cα = tγ
′(1+c′α), for γ′ = {2 + cα, cf + 1}.

The theorem holds by setting c̃ = max{c2, c′, 7}.

9.1 On Derandomizing AM

Our PEGs output pseudoentropy that fools certain classes of nondeterministic circuits. Hence, it
is natural to ask whether we can take advantage of that to derandomize AM. We recall that L ∈
AMTIME(t) for t = t(n) if there exists a deterministic TM M : {0, 1}n × {0, 1}t × {0, 1}t → {0, 1}
running in time t such that on input x ∈ {0, 1}L, if x ∈ L then

Pr
y∼Ut(n)

[
∃z ∈ {0, 1}t(n) ,M(x, y, z) = 1

]
≥ 2

3

and if x /∈ L then
Pr

y∼Ut(n)

[
∃z ∈ {0, 1}t(n) ,M(x, y, z) = 1

]
≤ 1

3
.
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And so, AM =
⋃
cAMTIME(nc).

Klivans and van Melkebeek [KvM02] showed that one can use a PRG fooling circuits with NP
gates to derandomize AM, putting it in NP. This adds to a line of research trying to find the
minimal conditions under which a derandomization of AM is possible (see also [AK97, MV05,
SU05]). We revisit their proof and show that our PRG from Section 9 can derandomize AM with a
smaller slowdown than was previously known. Note that since we allow nondeterminism, we can
relax our condition on f and allow it to be in NE ∩ coNE.

Theorem 9.5. There exists a constant c̃ ≥ 1 such that the following holds. Let n be a positive integer,
t = t(n), and assume that for every positive integer m there exists a function f : {0, 1}m → {0, 1}
computable in NTIME(Õ(2m)) ∩ coNTIME(Õ(2m)) that requires FPNP-circuits of size 2(1−α0)m for
some constant α0 <

1
c̃ . Fix any α such that α0 < α ≤ 1

c̃ . Then,

AMTIME(t) ⊆ NTIME
(
t4+3c̃α

)
.

Proof (sketch): Given L ∈ AMTIME(t) with a corresponding TM M , define

L′ =
{

(x, y) ∈ {0, 1}n × {0, 1}t : ∃z ∈ {0, 1}t ,M(x, y, z) = 1
}
,

and observe that x ∈ L implies that Pry∼Ut [y ∈ L′(x, ·)] ≥ 2
3 and x /∈ L implies that Pry∼Ut [y ∈

L′(x, ·)] ≤ 1
3 . SinceL′ ∈ NTIME(O(t)), by Cook’s theorem [Coo88] there exists a circuitC : {0, 1}n×

{0, 1}t → {0, 1} that computes L′, has size s = Õ(t) and has a single SAT gate. For every x ∈ {0, 1}n,
let Cx : {0, 1}t → {0, 1} be the circuit that is obtained by hardwiring x in C.

Next, we argue that there exists a PRG

G
f

: {0, 1}d → {0, 1}t

that 1
6 -fools Cx, with d = (1 + c̃α) log t. Towards that goal, we extend Claim 9.6.

Claim 9.6. Define DensityApproxSAT as before, but now where we allow C to have a SAT oracle gate.
Assume there exists a function in E that requires exponential-size nondeterministic circuits. Then, for every
constant ε > 0, DensityApproxSAT ∈ FPNP.

Thus, Theorem 6.9 also holds for the distinguisher Cx if we also allow FPNP gates rather than
only FP gates. Therefore, we can use the same Gf instantiated for Theorem 9.4 with the hard
function f : {0, 1}m → {0, 1}where m ≤ log(t1+c̃α).

The rest of the proof proceeds exactly as in [KvM02]. Using the fact that f ∈ NTIME(Õ(2m))∩
coNTIME(Õ(2m)), they show that in

NTIME
(
O
(

2d · t · T
))

one can decide whether or not Pr[Cx(G
f
(Ud)) = 1] > 1

2 by supplying the appropriate witnesses,

and T is the time it takes to compute, nondeterministically, a single bit of Gf . For our setting of
parameters, T = Õ(22m) and

Õ
(

2d · t · T
)

= Õ
(
t1+c̃α · t · t2(1+c̃α)

)
.

Remark 9.7. By strengthening our assumption to f ∈ DTIME(Õ(2m)) in the above theorem, rather than
f ∈ NTIME(Õ(2m))∩coNTIME(Õ(2m)), one can approximate Pr[Cx(G

f
(Ud)) = 1] deterministically,

as in Theorem 9.4, and obtain AMTIME(t) ⊆ NTIME
(
t2+O(α)

)
.
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A Condensers and List Recoverable Codes

In this section we continue the discussion of Section 1.3, proving the equivalence between strong
condensers and list recoverable codes.

Definition A.1. Given a function E : {0, 1}a × [n] → Σ, we denote CE : {0, 1}a → Σn as the code
mapping x ∈ {0, 1}a to

CE(x) = E(x, 1) ◦ . . . ◦ E(x, n).

Note that the rate of CE is a
n log |Σ| .

Theorem A.2. Let Cond : {0, 1}a × [n] → Σ be some function so that CCond is (ε, `, L) list recoverable.
Then, Cond is a strong (

k = log
L

ε
, k′ = log

`

n
, 2ε

)
condenser. Recall that `

n = 2k
′ is the average size of a list CCond can handle.

Proof: Assume towards a contradiction that Cond is not such a condenser, so there exists an (a, k)
sourceX for which Cond(X,Y )◦Y is not ε-close to having min-entropy k′+d, where Y is uniformly
distributed over [n]. By Claim 2.26 there exist sets S1, . . . , Sn ⊆ Σ satisfying

∑n
i=1 |Si| ≤ n · 2k

′
= `

such that
Pr

x∼X,i∼[n]
[Cond(X, i) ∈ Si] = Pr

x∼X,i∼[n]
[CCond(x)i ∈ Si] > 2ε.

By an averaging argument, there exists a set G ⊆ {0, 1}a of density larger than ε such that for every
x ∈ G,

Pr
i∼[n]

[C(x)i ∈ Si] ≥ ε.
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By the list recovery properties of CCond it must hold that |G| ≤ L, however |G| > ε · |Supp(X)| ≥
ε · 2k ≥ L, in contradiction.

Theorem A.3. Let Cond : {0, 1}a × [n]→ Σ be a strong (k, k′, ε) condenser. Then, CCond is(
4ε, ` = 2εn · 2k′ , L = 2k

)
list recoverable.

Proof: Let S1, . . . , Sn ⊆ Σ satisfy
∑n

i=1 |Si| ≤ `. Define the test T ⊆ Σ× [n] so that (z, i) ∈ T if and
only if z ∈ Si. Let

L =

{
u ∈ CCond : Pr

i∼[n]
[ui ∈ Si] ≥ 4ε

}
and assume towards a contradiction that |L| ≥ 2k = L. Note that the set L is in one-to-one
correspondence with the set

A =

{
x ∈ {0, 1}a : Pr

i∼[n]
[Cond(x, i) ∈ Si] ≥

`

n · 2k′
+ 2ε

}
.

Let Y be uniformly distributed over [n]. Then, on the one hand, Hε
∞(Cond(UA, Y ) ◦ Y ) ≥

k′ + log n so by Claim 2.26,

Pr[Cond(UA, Y ) ◦ Y ∈ T ] ≤ ε+ |T | · 2−k′−logn ≤ ε+
`

n · 2k′
.

On the other hand,

Pr[Cond(UA, Y ) ◦ Y ∈ T ] =
1

|A|
∑
x∈A

Pr
i∼[n]

[Cond(x, i) ∈ Si] ≥
`

n · 2k′
+ 2ε >

`

n · 2k′
+ ε,

in contradiction.
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