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Abstract

We give new algorithms in the annotated data streaming setting—also known as verifiable data stream
computation—for certain graph problems. This setting is meant to model outsourced computation, where
a space-bounded verifier limited to sequential data access seeks to overcome its computational limitations
by engaging a powerful prover, without needing to trust the prover. As is well established, several
problems that admit no sublinear-space algorithms under traditional streaming do allow protocols using a
sublinear amount of prover/verifier communication and sublinear-space verification. We give algorithms
for many well-studied graph problems including triangle counting, its generalization to subgraph counting,
maximum matching, problems about the existence (or not) of short paths, finding the shortest path
between two vertices, and testing for an independent set. While some of these problems have been studied
before, our results achieve new tradeoffs between space and communication costs that were hitherto
unknown. In particular, two of our results disprove explicit conjectures of Thaler (ICALP, 2016) by giving
triangle counting and maximum matching algorithms for n-vertex graphs, using o(n) space and o(n2)
communication.

1 Introduction

A major philosophical message of theoretical computer science is that a computationally bounded entity
can greatly expand its space of tractable problems with access to a more powerful entity, without having to
trust the latter. The celebrated IP = PSPACE [28] and PCP Theorems [3, 4] are perhaps the best known such
results. In the realm of space-efficient computations on large data streams, there is a growing trend towards
results of this flavor [26]. In this case, the powerful entity (henceforth named Prover) is often thought of as a
cloud computing service that is free of the space limitations that the computationally bounded data streaming
process (henceforth named Verifier) is subject to. This work designs new algorithms for graph computations
on data streams in such Verifier/Prover models and proves some related complexity-theoretic results.

Early works on such “prover-enhanced data streaming algorithms” considered the annotated streams
model [10, 22], where Prover reads the input data stream together with Verifier and, during stream processing
and/or at the end, supplies Verifier with a proof (streamed to him) that convinces him of the correct answer to
what he wants to compute on the stream. Subsequent works [11, 14] considered a more general model of
streaming interactive proofs (SIPs), where the communication between Verifier and Prover is more general,
rather than one way. Several recent works in the annotated stream and the SIP models have focused on
basic algorithmic problems on graphs [2, 13, 29], often giving sublinear-space algorithms for problems that
provably do not admit sublinear solutions in the basic (sans prover) streaming setting.

In this work, we give new algorithms in the annotated streaming setting for certain graph problems,
including triangle counting, its generalization to subgraph counting, maximum matching, problems about the
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existence (or not) of short paths, finding the shortest path between two vertices, and testing for an independent
set. Two of our results provide “unexpected” new upper bounds, disproving published conjectures [29]
asserting that such bounds would be unattainable.

1.1 Our Results and Techniques

Background and Motivation. Suppose that we wish to compute a function f (σ) on an input stream σ

consisting of tokens from some universe. For instance, for a graph computation, σ could be a stream of vertex
pairs (u, v) specifying the input graph’s edges, or it could be a stream of edge insertions and/or deletions to
an evolving (multi)graph. Following established terminology [10], an online scheme is a protocol between
Prover and Verifier wherein they observe σ together and, after each token appears, Prover provides zero
or more bits of “help” to Verifier (as specified by the protocol). After σ is fully consumed, if Prover has
followed the protocol faithfully, Verifier is very likely to output f (σ); otherwise, he is very likely to “reject.”
If Verifier does all his work using at most O(v) bits of working memory and Prover sends at most O(h) bits
of help, we call this an (h, v)-scheme.1 A scheme is interesting if we can use h > 0 to achieve a value of v
asymptotically smaller than what is feasible or known for a basic streaming algorithm, where h = 0.

All interesting schemes from previous work in fact use the prover in a more restricted way: Verifier
processes all of σ on his own and then interacts with Prover. This work continues the tradition. There is
practical motivation for building this restriction into the model of computation. Think of a cloud computing
service where compute cycles are available only at certain times of day, or need to be booked in advance,
whereas the client needs to access and process the input earlier, when it is made available to him. In such a
setting, a scheme is most useful if the client can do its own processing first and wait for its time slot with the
cloud service to finalize its computation.

Further, we focus only on schemes, which feature a single streamed message from Prover to Verifier,
rather than the more general setting of SIPs, which allow rounds of interaction. This too is practically
motivated: the cloud service need not dedicate a chunk of time to interact with the client, but need only
promise that it will perform its portion of the computation by an agreed-upon deadline, at which time the
client will download the “proof” it has constructed. In view of this latter style of computation, we also
consider multi-pass schemes, where Verifier may use a “few” passes over its input σ and later receive a single
streamed message from Prover, after which he produces his output. Most of our schemes will be single-pass
(and we shall call them simply “schemes”), but in a few cases, we will give multi-pass schemes when they
can achieve provably better costs than single-pass schemes.

Setup and Terminology. All problems studied in this paper involve an input graph, multigraph, or digraph
G = (V, E) on the vertex set [n] := {1, 2, . . . , n}. We shall reserve the basic term “graph” for simple, undirected
graphs. The input is described either as a stream of edges (the default case) or as a stream of edge insertions
and deletions: the latter type of stream is called a dynamic or turnstile graph stream. For an (h, v)-scheme
to be interesting we at least require v = o(n2). If we also have h = o(n2), we call it a sublinear scheme. If
we have v = o(n) while h = o(n2), we call it a frugal scheme. This is an especially interesting setting of
parameters, because most interesting graph problems provably require Ω(n) space in the basic streaming
setting [15]. A frugal scheme shows that one can beat this space bound with the aid of only a sublinear-length
proof. Recall that while h � v is allowed, the proof must be processed using only O(v) space.

For an (h, v)-scheme we refer to h as its hcost (short for “help cost”) and v as its vcost (short for
“verification cost”). We use the notation [h, v]-scheme as a shorthand for an (Õ(h), Õ(v))-scheme.2 An
[n, n]-scheme is called a semi-streaming scheme.

1We will drop the qualifier “online” and simply call our protocols “schemes” because we will not be considering the more
powerful setting of “prescient schemes” [10] in this paper.

2The notation Õ(·) hides factors polynomial in log n.
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Subgraph Counting. The literature on graph streaming contains many works on the central problem of
triangle counting (henceforth, TriangleCount): given a multigraph G as a dynamic stream, compute T , the
number of triangles in G [6, 7, 18, 25, 29]. In Section 3, we study this and the more general problem of
subgraph-counting (SubgraphCountk) [7, 19, 20, 29], where the goal is to compute TH , the number of copies
of a fixed, k-sized graph H, where k is a constant. In the basic streaming model, computing T or TH exactly
is impossible in sublinear space and it becomes necessary to approximate. In contrast, we design a family of
(o(n2), o(n))-schemes for TriangleCount that give exact answers. Such a frugal scheme had been conjectured
not to exist [29]. We extend our ideas to give sublinear (o(n2), o(n2))-schemes for SubgraphCountk.

Maximum Matching. Determining α′(G), the cardinality of a maximum-sized matching in G, is a cen-
tral problem in graph algorithms and has received a lot of attention in the recent literature on streaming
algorithms [5, 12, 15, 16, 21, 24]. In Section 4, we consider this problem (henceforth, MaxMatching) for
multigraphs given by dynamic streams. As with TriangleCount, we give a frugal scheme for MaxMatching,
which had been conjectured to be impossible [29]. In the process, we present a frugal scheme for the
subproblem of verifying that the purported connected components of a graph are indeed disconnected from
each other, which might be of independent interest for future work on connectivity-related problems.

Independent Sets and Length-Three Paths. In Section 5, we study the independent set testing problem
(IndSetTest), where we are given a multigraph G and a set U ⊆ V (also streamed and interleaved with the
edge stream arbitrarily) and we must determine whether or not U is independent. We also study the st-3Path
problem, where G (which might be a digraph) has two designated vertices vs and vt and we must determine
whether G has a path of length at most 3 from vs to vt. By results from prior work, any (h, v)-scheme for
these problems must have total cost h + v = Ω(n). We therefore design two-pass schemes for these problems,
achieving h + v = Õ(n2/3). In fact, we obtain a more general tradeoff, giving a two-pass [t2, s]-scheme for any
parameters t, s with ts = n. Our schemes instantiate a protocol for the abstract problem CrossEdgeCount,
which asks for a count of the number of edges in G from U ⊆ V to W ⊆ V , where these sets U and W are
also streamed.

In each case, we can design ordinary (one-pass) schemes with the same complexity parameters under a
natural assumption on the way the stream is ordered, and these schemes still beat the space bound achievable
by basic (sans prover) streaming algorithms.

Short Paths and Shortest Path. Finally, in Section 6, we consider shortest path problems, perhaps the most
basic problem in classic graph algorithms. We study the st-kPath problem, which is to detect whether or not
G has a path of length at most k from vs to vt, where k, vs, and vt are prespecified. We first present a [kn, n]-
scheme for st-kPath. This gives a semi-streaming scheme for detecting short (of length polylogarithmic
in n) paths, which is optimal in terms of total cost. It also implies a [kn, n]-scheme for st-ShortestPath
problem—where k is the length of the shortest path from vs to vt—which is to find the shortest path between
vertices vs and vt, and output No if none exists. For directed graphs of small (polylogarithmic in n) diameter,
it implies a semi-streaming scheme for checking vs–vt connectivity. Note that these problems require Ω(n2)
space in the basic data streaming model, even for constant k or constant-diameter graphs [15].

Targeting a different cost regime, we generalize our result for st-3Path from Section 5 to obtain multi-pass
(h, v)-schemes for st-kPath with total cost h + v = o(n), for constant k. To be precise, we present a dk/2e-pass
[n1−1/k, n1−1/k]-scheme for st-kPath.

Our Techniques. Similar to past work in the area of streaming verification—indeed, hearkening back to
classic interactive proof protocols [23, 28]—our schemes make heavy use of “arithmetization,” i.e., they
recast the underlying problem in terms of evaluating certain polynomials and exploit the encoding properties
of polynomials (as captured in the Schwartz-Zippel Lemma) to protect the verifier from a cheating prover.
Also as in past work, we use what we call the shaping technique, where we conceptually shape a data vector
into an array with two or more dimensions. This seemingly innocuous trick allows us to consider input data
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as a table of values of a multivariate polynomial and we can use the “separation” afforded by these multiple
variables to divide up work between Verifier and Prover.

The novelty in our algorithms comes from a twist on the shaping technique that was hitherto unexploited.
At a high level, almost all earlier annotation schemes or SIPs for graph problems viewed the edge stream as
a flat vector (a characteristic vector in the case of graphs or a frequency vector in the case of multigraphs).
We crucially exploit the fact that the index set of this vector has additional structure: it consists of pairs of
vertices and these vertices are very meaningful entities in the context of graph problems. Simply put, we
exploit graph structure more fully in our use of the shaping technique.

Another novel feature of our schemes is that they involve Prover sending multivariate polynomials; their
correctness analysis then involves the full multivariate strength of the Schwartz-Zippel Lemma. In all past
work on interactive proofs and schemes, Prover only sent univariate polynomials (and the corresponding
analyses used the more basic statement that a nonzero, degree-d, univariate polynomial has at most d roots).
Thus, our scheme designs can be seen as exploiting the power of arithmetization more fully.

1.2 Related Work

The annotated data streaming model of computation was motivated in part by the need to develop a theory to
capture ideas such as the stream punctuations of Tucker et al. [30] and the stream outsourcing framework
of Yi et al. [31]. Chakrabarti et al. [10] formulated the model and provided the first theoretical results,
focusing largely on the traditional statistical problems of frequency moments and heavy hitters, but also
giving a handful of basic results for graph problems. Other early works in the same model include Klauck
and Prakash [22] and Chakrabarti et al. [9]. Cormode et al. [14] generalized the model to SIPs, which allow a
few interactive rounds of communication between Verifier and Prover; this generalized setting was studied
further in Chakrabarti et al. [11] and Abdullah et al. [2]. We refer the reader to the expository article of
Mitzenmacher and Thaler [26] for a more detailed survey of this area.

We turn to graph computations and the specific problems studied in this work. For simplicity, we state
complexities in terms of n alone, rather than using both m and n (m being the number of edges of the input
graph). Cormode et al. [13] gave annotated data stream algorithms (schemes, in our terminology) for many
canonical graph problems, often exploiting linear programming formulations of the problems. In particular,
they gave an [n2, 1]-scheme For MaxMatching. For a weighted version of st-ShortestPath, on simple graphs
(not multigraphs) they gave [h, v]-schemes with hv > dn2 and h > dn, where d is the maximum distance to
any node reachable from vs. Contrast this with our [kn, n]-scheme for unweighted multigraphs, where k is the
length of the shortest vs–vt path.

Thaler [29] studied the problems TriangleCount, MaxMatching, and SubgraphCountk. He gave semi-
streaming schemes for the first two. In the same paper, he explicitly conjectured that these two problems
would not admit frugal schemes: he imagined that achieving vcost = o(n) would bump up the hcost to Ω(n2).
Our results here disprove these conjectures. For SubgraphCountk, Thaler gave a [k3n, kn]-SIP with k − 2
rounds of interaction. We achieve sublinear cost with just a single Prover-to-Verifier message. Sublinear
schemes for SubgraphCountk were hitherto unknown for any k > 3.

For the TriangleCount problem, Chakrabarti et al. [10] gave an [h, v]-scheme for any h, v with hv = n3,
and also an [n2, 1]-scheme. For the same problem, Abdullah et al. [2] gave a (log2 n, log2 n)-SIP that uses
log n rounds of interaction, and a (n1/γ log n, log n)-SIP with γ = O(1) rounds of interaction. The latter paper
also studied MaxMatching, giving a (ρ + n1/γ′ log n, log n)-SIP with γ rounds of interaction, where γ′ is a
linear function of γ, and ρ is the weight of an optimal matching (weighted or unweighted).

Guruswami and Onak [17] show a space lower bound of Ω(n1+Ω(1/k)/kO(1)) for st-kPath (where k is even)
in k/2 − 1 passes in the basic streaming model. In contrast, our results show that, for any k, with the help of a
prover, one can get a total cost of Õ(n1−1/k) in dk/2e passes.
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2 Preliminaries

For a positive integer n, we denote the set {1, 2, . . . , n} by [n] and the set {−n,−n + 1, . . . , n − 1, n} by ~n�.
The ring of polynomials in variables X1, . . . , Xk with coefficients in the ring R is denoted by R[X1, . . . , Xk]. If
S is a finite set, we write r ∈R S to say that r is a random element drawn uniformly from S . In an undirected
graph G = (V, E), the ith neighborhood of a vertex v is the set of vertices u such that there is a walk of length
i from v to u. We denote this set by Ni(v). We put N(v) := N1(v) and N[v] := N1(v) ∪ {v}.

Following Chakrabarti et al. [10], an annotated data streaming algorithm, a.k.a. scheme, is a pair
A = (h,B), where h is a help function and B is a data stream algorithm that computes a function f of
an input x ∈ Um, whereU is some universe. We see h as an m-tuple (h1, . . . , hm), where hi : Ui → {0, 1}∗

is the annotation provided to B after the ith stream update xi, depending on the elements seen so far, i.e.
x1, . . . , xi. Thus, B sees the annotated stream xh := (x1, h1(x1), x2, h2(x1, x2), . . . , xm, hm(x1, . . . , xm)). Using
a random string R, it processes this annotated stream, giving an output out(B; xh,R). We say that A is a
δ-error scheme if

• (completeness) for all x ∈ Um: PrR[out(B; xh,R) , f (x)] 6 δ; and

• (soundness) for all x ∈ Um, h′ = (h′1, h
′
2, . . . , h

′
m) ∈ ({0, 1}∗)m: PrR[out(B; xh′ ,R) < { f (x),⊥}] 6 δ,

where “⊥” is a special symbol indicating that B rejects the annotation (proof) provided, having detected
cheating. When δ is left unspecified, we assume a default value of 1/3. The hcost (help cost) of A is
maxx∈Um

∑
i |hi(x)|, and the vcost (verification cost) is the space usage of B.

The scheme A is said to be an (h, v)-scheme (resp. [h, v]-scheme) if its hcost is O(h) (resp. Õ(h))
and its vcost is O(v) (resp. Õ(v)). The sum hcost + vcost is called the total cost of A. In the context of
problems on n-vertex graphs, an (o(n2), o(n2))-scheme is called a sublinear scheme, an [n, n]-scheme is called
a semi-streaming scheme and an (o(n2), o(n))-scheme is called a frugal scheme.

A multi-pass scheme—more precisely, a p-pass scheme with p > 2—is a schemeA = (h,B) where B
makes p − 1 passes over the input x followed by a final pass over the annotated stream xh. As discussed
in Section 1.1, all schemes and multi-pass schemes we design in this work have the feature that the entire
annotation h(x) arrives only after B is done processing the plain stream x. That said, the negative results in
this work do not require the scheme to be restricted in this way.

Let f be a k-dimensional array with dimensions (s1, . . . , sk) each of whose entries is an integer in ~M�.
Equivalently, we have a function f : [s1] × · · · × [sk] → ~M�. For a finite field F of sufficiently large
characteristic,3 we define the F-extension of f to be the unique polynomial f̃ (X1, . . . , Xk) ∈ F[X1, . . . , Xk]
such that

• for all (x1, . . . , xk) ∈ [s1] × · · · [sk], we have f̃ (x1, . . . , xk) = f (x1, . . . , xk), and

• for all i ∈ [k], we have degXi
f̃ 6 si − 1.

Note that f̃ can be described explicitly using Lagrange interpolation:

f̃ (X1, . . . , Xk) =
∑

(u1,...,uk)∈[s1]×···×[sk]

f (u1, . . . , uk) δu1,...,uk (X1, . . . , Xk) , where (1)

δu1,...,uk (X1, . . . , Xk) =

k∏
i=1

∏
xi∈[si]\{ui}

(ui − xi)−1(Xi − xi) . (2)

In particular, if f is built up from a stream of pointwise updates, where the jth update adds ∆ j to entry

3We need the characteristic to be at least max{s1, . . . , sk, 2M + 1} to avoid “wrap around problems,” i.e., to ensure that all integers
in each [si] as well as all integers in ~M� have distinct images under the ring homomorphism from Z to F.
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(u1, . . . , uk) j of the array, then

f̃ (X1, . . . , Xk) =
∑

j

∆ j δ(u1,...,uk) j(X1, . . . , Xk) . (3)

This leads to the following fact that we use in all our protocols. For details and a thorough discussion,
including implementation considerations, see Cormode et al. [14].

Fact 2.1. Given a point (p1, . . . , pk) ∈ Fk and a stream of pointwise updates to an array with dimensions
(s1, . . . , sk) that is initially all-zero, we can keep track of the value f̃ (p1, . . . , pk) using O(log |F|) space,
performing O(k) field arithmetic operations after each update. �

We record results proved in Chakrabarti et al. [9, 10] that can be seen as generalizing the Aaronson-
Wigderson protocol for Merlin-Arthur communication complexity of set disjointness [1].

Fact 2.2 (subset and intersection schemes; Prop. 4.1 of [10] and Thm. 5.3 of [9]). Consider a stream
consisting of elements of two sets S ,T ⊆ [N] interleaved arbitrarily. Then, for any h, v with hv > N, there
are [h, v]-schemes to compute |S ∩ T | and to determine whether S ⊆ T. For the latter problem, there is a
[`h, v]-scheme handling the more general setting where S and T are multisets updated dynamically by the
stream and the multiplicity of each element is at most `. �

Fact 2.3 (Schwartz-Zippel Lemma). For a nonzero polynomial P(X1, . . . , Xn) ∈ F[X1, . . . , Xn] of total degree
d, where F is a finite field, Pr(r1,...,rn)∈RFn [P(r1, . . . , rn) = 0] 6 d/|F|. �

3 Subgraph Counting

We begin by describing a frugal scheme for TriangleCount and then extend our ideas to obtain a sublinear
scheme for the more general problem SubgraphCount. Throughout, we assume that the input is an n-vertex
multigraph G = (V, E) with adjacency matrix A, built up through a stream of edge insertions and deletions.

3.1 Triangle Counting

Let T = T (G) be the number of triangles in G taking edge multiplicities into account, i.e., two triangles are
considered distinct iff their corresponding sets of edges are distinct. Then,

6T =
∑

v1,v2,v3∈V

Av1v2 Av2v3 Av3v1 . (4)

Let t and s be integer-valued parameters such that ts = n. Using a canonical bijection, we represent each
vertex v ∈ V by a pair of integers (x, y) ∈ [t] × [s]. This transforms the matrix A into a 4-dimensional array
a, given by a(x1, y1, x2, y2) = Av1v2 . Let ã be the F-extension of a for a sufficiently large finite field F to be
chosen later. Equation (4) now gives

6T =
∑

x1,x2,x3∈[t]

p(x1, x2, x3) , where (5)

p(X1, X2, X3) =
∑

y1,y2,y3∈[s]

ã(X1, y1, X2, y2) ã(X2, y2, X3, y3) ã(X3, y3, X1, y1) . (6)

Note that, for each i ∈ {1, 2, 3}, we have degXi
p 6 2t − 2. Thus, the number of monomials in p is at most

(2t − 1)3 6 8t3 and the total degree deg p 6 6t − 6 6 6t.
Our scheme for triangle counting operates as follows.
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Stream processing. Verifier starts by picking r1, r2, r3 ∈R F. As the edge stream arrives, he maintains
the three 2-dimensional arrays ã(r1,w, r2, z), ã(r2,w, r3, z), and ã(r3,w, r1, z), for all (w, z) ∈ [s] × [s]
(using Fact 2.1). At the end of the stream, he uses these arrays to compute p(r1, r2, r3), using eq. (6).

Help message. Prover sends Verifier a polynomial p̂(X1, X2, X3) that she claims equals p(X1, X2, X3);
in particular, for each i ∈ {1, 2, 3}, degXi

p̂ 6 2t − 2. She streams the coefficients of p̂ one at a time,
according to some canonical ordering of the possible monomials.

Verification and output. As p̂ is streamed in, Verifier computes the check value C := p̂(r1, r2, r3) and the
result value T̂ := 1

6
∑

x1,x2,x3∈[t] p̂(x1, x2, x3). If he finds that C , p(r1, r2, r3), he outputs ⊥. Otherwise,
he believes that p̂ ≡ p and accordingly, based on eq. (5), outputs T̂ as the answer.

The analysis of this scheme is along now-standard lines.

Error probability. Clearly, if Prover is honest (i.e., p̂ ≡ p), then the output is always correct. So
the scheme errs only when p̂ . p but Verifier’s check passes. This means that the random point
(r1, r2, r3) ∈ F3 is a root of the nonzero polynomial p̂ − p, which has total degree at most 6t. By the
Schwartz-Zippel Lemma (Fact 2.3), the probability of this event is at most 6t/|F| < 1/n, by choosing
|F| large enough.

Help and Verification costs. The number of bits used to describe the polynomial p̂ is the hcost. As noted,
the polynomial p̂ has O(t3) many coefficients, each of which is an element of F, and hence has size
O(log n). So the hcost is Õ(t3). The Verifier maintains three s × s arrays, where each entry is an
element of F. Hence, the vcost is Õ(s2). Therefore, we get a [t3, s2]-scheme for triangle counting, for
parameters t, s with ts = n. Setting t = nα for α ∈ (1/2, 2/3), we get a (o(n2), o(n))-scheme, which is
frugal.

The result in this section is captured in the theorem below.

Theorem 3.1. For any parameters t, s with ts = n, there is a [t3, s2]-scheme for TriangleCount. In particular,
there is an (o(n2), o(n))-scheme for TriangleCount. �

This disproves Thaler’s conjecture [29], which stated that TriangleCount has no frugal scheme.

3.2 Generalization to Counting Copies of an Arbitrary Subgraph

Now we consider the SubgraphCountk problem. Let H be a fixed k-vertex graph. The goal is to determine
TH = TH(G), the number of copies of H in the n-vertex multigraph G given by an input stream: n is growing
whereas k = O(1). As before, we take edge multiplicities into account.

Fix a numbering of the vertices of H as 1, 2, . . . , k. Write i ∼ j to denote {i, j} ∈ E(H) ∧ i < j. To
generalize eq. (4), note that the expression

∏
i∼ j Aviv j counts the number of copies of H occurring amongst

vertices v1, . . . , vk in G where i ∈ V(H) is mapped to vi ∈ V , provided that v1, . . . , vk are distinct. This
subtlety of explicitly requiring the vis to be distinct did not arise for TriangleCount because Av1v2 Av2v3 Av3v1

is zero unless v1, v2, v3 are distinct. To enforce the distinctness condition in our more general setting, define
an n × n Boolean matrix B by Buv = 1 iff u , v. Then, defining αH to be the number of automorphisms of H,

αHTH =
∑

v1,...vk∈V

∏
i∼ j

Aviv j


 ∏

i, j∈[k]

Bviv j

 . (7)
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As before, we shape V into [t] × [s] for parameters t and s with ts = n. This turns the 2-dimensional matrices
A, B into 4-dimensional arrays a, b, which in turn have F-extensions ã, b̃. Equation (7) gives

αHTH =
∑

x1,...,xk∈[t]

p(x1, . . . , xk) , where (8)

p(X1, . . . , Xk) =
∑

y1,...,yk∈[s]

∏
i∼ j

ã(Xi, yi, X j, y j)


 ∏

i, j∈[k]

b̃(Xi, yi, X j, y j)

 . (9)

For each i ∈ [k], degXi
p 6 2(k − 1)(t − 1) = O(t). So the total degree deg p = O(t) and p has at most O(tk)

monomials. This leads to a scheme for subgraph counting that naturally generalizes our earlier scheme for
triangle counting. We sketch the salient features and the analysis.

Stream processing. Verifier picks r1, . . . , rk ∈R F and maintains (using Fact 2.1) O(k2) = O(1) many s× s
arrays: ã(ri,w, r j, z) for each i ∼ j ∈ [k] and b̃(ri,w, r j, z) for each i , j ∈ [k], where (w, z) ∈ [s] × [s].
The b̃ arrays do not depend on the input stream and can be computed once and for all. At the end of
the stream, he computes p(r1, . . . , rk) with the help of these values, using eq. (9).

Help message. Prover sends a polynomial p̂(X1, . . . , Xk) that she claims to be p(X1, . . . , Xk). She streams
the O(tk) coefficients of p̂, using some canonical ordering of the monomials.

Verification and output. Verifier computes the check value C := p̂(r1, . . . , rk) and the result value T̂H :=
α−1

H
∑

x1,...,xk∈[t] p̂(x1, . . . , xk). He outputs ⊥ if C , p(r1, . . . , rk). Else, believing p̂ ≡ p, he outputs T̂H

as the answer, in view of eq. (8).

Error probability. By a Schwartz-Zippel Lemma (Fact 2.3) argument as before, the error probability is
at most deg p/|F| = O(t)/|F| < 1/n, by choosing |F| large enough.

Help and Verification costs. The hcost is Õ(tk), by the bound on the number of monomials in p̂. Verifier
stores O(1) many s × s arrays, leading to a vcost of Õ(s2).

In summary, we obtain a [tk, s2]-scheme for counting copies of a fixed k-vertex subgraph H, for all
choices of parameters t, s with ts = n. Setting t = n2/(k+2) and s = nk/(k+2) gives a scheme where both these
costs are Õ(n2k/(k+2)), which is o(n2) for constant k. Thus, we get the following theorem.

Theorem 3.2. For any parameters t, s such that ts = n, there is a [tk, s2]-scheme for SubgraphCountk, where
k is a constant. In particular, there is a sublinear scheme for SubgraphCountk with total cost Õ(n2k/(k+2)). �

4 Maximum Matching

We now turn to the MaxMatching problem, again giving a frugal scheme. Our input is an edge stream of an
n-vertex graph G = (V, E) and we would like to determine α′(G), the cardinality of a maximum matching
in G. We follow the broad outline of the semi-streaming scheme for MaxMatching by Thaler [29]. That
scheme has two parts. In the first part, Prover convinces Verifier that α′(G) > k, for some integer k. In the
second part, she convinces him that α′(G) 6 k. For the former, Prover simply provides a suitable matching
M and convinces Verifier that M ⊆ E using the subset scheme from Fact 2.2. For the latter, Prover uses the
Tutte-Berge formula [8], which states that

α′(G) =
1
2

min
U⊆V

(
|U | + |V | − odd(G \ U)

)
, (10)
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where odd(G \U) denotes the number of connected components in G \U with an odd number of vertices. The
most challenging part of the scheme is evaluating odd(G \ U), which involves the sub-problem of verifying
whether all the connected components of a graph (as claimed by the Prover) are disconnected from each other.
Thaler comments that this is the part that acts as a barrier in reducing the vcost to o(n) without increasing the
hcost to Ω(n2). We present a novel frugal scheme for this sub-problem. The rest of the protocol solves the
same sub-problems as the aforementioned paper. Most of their sub-schemes for these sub-problems, however,
were trivial for Õ(n) space. We need schemes for the same problems that use only o(n) space and hence
require more work. We describe our protocol below.

To convince the Verifier that the size of a maximum matching in G is k, Prover proves that it is (a) at least
k, and (b) at most k. For (a), she simply sends (as a stream) a set M of k edges that constitutes a matching
of G. Verifier can easily check using O(log n) space that the set has size k. Next, he needs to check that
M ⊆ E, and that M is indeed a matching. For the former, we can use the subset scheme (Fact 2.2) and get an
[h, v]-scheme, where v is the o(n) value we are aiming for and h = n2/v. To verify that M is a matching, we
check whether every vertex in M appears exactly once in this stream. Treating M as a stream of vertices, we
can do this as follows: First, compute F2, the second frequency moment of the stream, using an [h, v]-scheme
where v is the o(n) vcost we want, and h = n/v ([10], Theorem 4.1). Next, verify that it equals 2k (this
happens iff all 2k elements are distinct).

For (b), we apply eq. (10). Prover sends U∗ ⊆ V and claims that k = 1
2 (|U∗| + |V | − odd(G \ U∗)). To

check this, Verifier just needs to compute odd(G \ U∗). We do this in the following way.
Let [C] be the set of C connected components of G \ U∗. For c ∈ [C] and u ∈ G \ U∗, Prover sends an

array L of pairs (c, u) such that u ∈ c. The array L is sorted in non-decreasing order of c, i.e., she first sends
the vertices in connected component 1, followed by those in component 2, and so on. If L is indeed as Prover
claims, then odd(G \ U∗) is equal to the number of components c that arrive with an odd number of vertices
in L. Since L is sorted with respect to c, Verifier can count this number easily using O(log n) space. He can
verify that the vertices in the tuples of L constitute G \ U∗, and that no vertex u is repeated in different tuples
of L, using frugal schemes implied by the standard protocols mentioned above.

Thus, it only remains to verify that L is as claimed. For this, we need to check whether the following two
properties hold:

(i) For each c ∈ [C], the vertices in G \ U∗ that are claimed to be in component c are all connected
in G \ U∗.

(ii) For every pair (u, v) of vertices in G \ U∗ that are claimed to be in different components, we have
(u, v) < E.

For Property (i), Prover sends a spanning tree for each connected component c and Verifier can check
if all of them are valid using an [n1+α, n1−α]-scheme, for any α ∈ [0, 1] ([10], Theorem 7.7) so as to get the
desired o(n) vcost.

Checking Property (ii) is the most challenging part. We give a novel protocol for this part that uses o(n)
vcost and o(n2) hcost. Slightly abusing notation, consider the array L in the form of a C × |G \ U∗| matrix,
such that Lcu = 1 if u ∈ c, and Lcu = 0 otherwise. Denote the ones’ complement of this matrix by L. Let A be
the adjacency matrix of G \ U∗. Finally, let γ denote the total number of cross edges that go between two
connected components in G \ U∗. Then, we have

2γ =
∑

c∈[C]
u,v∈G\U∗

LcuLcvAuv . (11)

Property (ii) is satisfied iff γ = 0. Recalling that C = O(n) and |G \ U∗| = O(n), we note that eq. (11) has
a similar form as that of eq. (4). Thus, it can be exploited in essentially the same way as the [t3, s2]-scheme
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for TriangleCount, for parameters t, s with ts = n. Once again, setting t = nα for α ∈ (1/2, 2/3), we get a
frugal scheme.

The next theorem summarizes the result in this section.

Theorem 4.1. For any parameters t, s with ts = n, there is a [t3, s2]-scheme for MaxMatching. In particular,
there is an (o(n2), o(n))-scheme for MaxMatching. �

This disproves yet another conjecture of Thaler [29], which stated that MaxMatching has no frugal
scheme.

5 Counting Cross-edges and its Applications to Other Problems

Consider the problems IndSetTest and st-3Path defined in Section 1.1. The key task underlying these
problems is counting the number of edges crossing between two subsets U and W of V that arrive in some
adversarial streaming order along with the edges: for IndSetTest, U and W are the same set; for st-3Path,
they are (closed) neighborhoods of the designated vertices vs and vt. This is precisely the abstract problem of
CrossEdgeCount. Clearly, a scheme for this problem can be used as a subroutine to solve IndSetTest and
st-3Path.

Any one-pass (h, v)-scheme for CrossEdgeCount, IndSetTest, or st-3Path must have hv > n2 and hence,
total cost h + v = Ω(n). We therefore consider two-pass schemes for these problems. In particular, we
design such a scheme for CrossEdgeCount with total cost Õ(n2/3) and apply it to obtain similar bounds for
other graph problems. We also note that our schemes can be implemented in one pass each, under natural
assumptions on the way the stream is ordered; this is addressed in Section 5.3.

5.1 One-Pass Lower Bounds

We quickly review some relevant material from communication complexity. In the indexN problem, there
are two players: Alice, who holds a vector x ∈ {0, 1}N , and Bob, who holds an index k ∈ [N]. Their goal is
to output the bit xk. To prove lower bounds for one-pass schemes, we consider the Online Merlin–Arthur
(OMA) communication model.4 Here, in addition to Alice and Bob, there is a super-player, Merlin, who
knows both their inputs, but is not to be blindly trusted. Merlin sends a message to Bob; then Alice sends a
randomized message to Bob; finally, Bob either outputs either a bit or ⊥. If Merlin is honest, Bob should
output xk with probability at least 2/3; if he is dishonest, Bob should output ⊥ with probability at least 2/3.

The cost of an OMA protocol is the total number of bits communicated to Bob. The OMA complexity
of a communication game is the minimum cost of a correct OMA protocol for it. Chakrabarti et al. [10,
Theorem 3.1] showed that the OMA Complexity of indexN is Ω(

√
N). Our lower bounds follow from this

result, using simple reductions from indexN to the various graph problems.
Using a canonical bijection from [n]2 to [N], Alice rewrites her input vector x ∈ {0, 1}N as a matrix

(xi j)i, j∈[n], while Bob looks at his input index k ∈ [N] as (y, z) ∈ [n]2. Our reduction creates a graph G = (V, E)
on 2n vertices: the vertex set V is L ] R (here, ] denotes disjoint union), where |L| = |R| = n. We denote the
ith vertex of L (resp. R) by `i (resp. ri). The edge set E is given by {(`i, r j) : xi j = 1}. Now, by checking if
(`y, rz) is an independent set in G, or whether there’s a cross-edge between the sets {`y} and {rz}, or solving
st-3Path in the graph G′ = (V ∪ {vs, vt}, E ∪ {(vs, `y), (rz, vt)}), Bob can solve the indexN problem. Thus, a
one-pass scheme that solves any of these problems must have a total cost of Ω(n). We remark that Fact 2.2
implies matching semi-streaming upper bounds for each of them.

4Note that our semantics are slightly different from the usual definition of Merlin–Arthur where Bob is supposed “accept” each
1-input and reject each 0-input with probability at least 2/3.

10



5.2 Two-pass Scheme for CrossEdgeCount with Applications

We now design a two-pass scheme for CrossEdgeCount, aiming for total cost o(n).
Let γ = γ(U,W,G) denote the number of Cross-edges between U and W in a (directed or undirected)

graph G. Formally, it is the number of ordered pairs (u,w) ∈ U ×W such that (u,w) ∈ E. Note that, in an
undirected graph, γ counts an edge (u,w) with multiplicity 2 whenever u,w ∈ U ∩W. For some applications
(e.g., counting number of 3-walks in an undirected graph), we do need to count them with multiplicity. We
discuss later how we can remove this multiplicity if needed.

We describe a scheme that works even on turnstile graph streams, i.e., a stream of the vertices in U and
W intermixed with updates to edge multiplicities. Let L and F denote the characteristic vectors of the sets U
and W respectively and let A be the (weighted) adjacency matrix of G. Then,

γ =
∑

u∈U,w∈W

LuAu,wFw . (12)

Let t and s be integer parameters such that ts = n. As usual, using a canonical bijection, we represent
each vertex v ∈ V by a pair of integers (x, y) ∈ [t] × [s]. As a result, the vectors L, F transform into
2-dimensional arrays `, f given by `(x, y) = Lv and f (x, y) = Fv. As before, the adjacency matrix A turns
into a 4-dimensional array a, such that a(x1, y1, x2, y2) = Av1v2 . Let ˜̀, f̃ and ã be F-extensions of `, f and a
respectively, for a sufficiently large finite field F. Now, eq. (12) yields

γ =
∑

x1,x2∈[t]

p(x1, x2) , where (13)

p(X1, X2) =
∑

y1,y2∈[s]

˜̀(X1, y1) ã(X1, y1, X2, y2) f̃ (X2, y2) . (14)

For i ∈ {1, 2}, degXi
p = 2t − 2. Thus, it follows that the number of monomials in p is at most O(t2), and the

total degree of p is O(t).
We are now ready to design a two-pass scheme for CrossEdgeCount.

Stream processing. Verifier first chooses r1, r2 ∈R F. For y ∈ [s], define

g(y) :=
∑

y′∈[s]

ã(r1, y, r2, y′) f̃ (r2, y′) (15)

Thus,
p(r1, r2) =

∑
y∈[s]

˜̀(r1, y)g(y) . (16)

Pass 1. Only process the vertices in L and F in the stream. Maintain (using Fact 2.1) two s-dimensional
vectors: ˜̀(r1, y) and f̃ (r2, y), where y ∈ [s].

Pass 2. Only process the edges in the stream. We want to maintain the s-dimensional vector g(y) so
that we can compute p(r1, r2) using eq. (16). Suppose that the jth edge update (x1, y1, x2, y2) j adds ∆ j

to that edge’s multiplicity. This results in updates to several entries of ã, but we want to use only O(s)
space, so we cannot afford to maintain ã directly. Instead, for each j ∈ [m], let g j and ã j denote the
values of g and ã (respectively) after the jth stream update. Then

g j(y) =
∑

y′∈[s]

f̃ (r2, y′) ã j(r1, y, r2, y′)

=
∑

y′∈[s]

f̃ (r2, y′)
(
ã j−1(r1, y, r2, y′) + ∆ j δ(x1,y1,x2,y2) j(r1, y, r2, y′)

)
(17)

= g j−1(y) + h j(y) ,
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where eq. (17) follows from eq. (3) and

h j(y) :=
∑

y′∈[s]

f̃ (r2, y′) ∆ j δ(x1,y1,x2,y2) j
(r1, y, r2, y′) . (18)

Hence, after the jth update, the Verifier can compute h j(y) and maintain the vector g(y).

Help message. After the second pass, Prover sends a polynomial p̂(X1, X2) (as a stream of coefficients)
that she claims equals p(X1, X2).

Verification and output. At the end of the second pass, Verifier gets g(y)m = g(y) for each y. Now, he
uses eq. (16) to compute the check value p(r1, r2) and the result value γ̂ :=

∑
x1,x2∈[t] p̂(x1, x2). If he

finds that p(r1, r2) , p̂(r1, r2), he outputs ⊥. Otherwise, he believes that p̂ ≡ p and exploiting eq. (13),
outputs γ̂ as the answer.

Now, we analyze the correctness and complexity parameters of the scheme.

Error probability. The protocol errs only when p̂ . p, but Verifier’s check passes. Then, (r1, r2) ∈ F2

must be a root of the nonzero polynomial p̂ − p. We noted that its total degree is O(t). Thus, the
Schwartz-Zippel Lemma bounds the error probability by at most O(t)/|F| < 1/n, for large enough
choice of |F|.

Help and Verification costs. The polynomial p̂ has O(t2) monomials, and so, the hcost is Õ(t2). Verifier
stores constant many vectors of size s at a time and incurs a vcost of Õ(s).

Thus, we obtain a two-pass [t2, s]-scheme for CrossEdgeCount, for parameters t, s with ts = n. Setting
t = n1/3 and s = n2/3, we get a scheme with total cost Õ(n2/3).

Finally, we discuss how one can count cross-edges between U and W when they are defined as unordered
pairs. Define this problem as CrossEdgeCount-Uniq. Let γ′ be the number of edges that γ counts with
multiplicity 2, i.e., the number of undirected edges (u,w) ∈ U ×W such that u,w ∈ U ∩W. Then,

γ′ =
∑

u∈U,w∈W

LuFuAu,wLwFw . (19)

Hence, we modify the definitions of p(X1, X2) and g(y) as

p(X1, X2) :=
∑

y1,y2∈[s]

˜̀(X1, y1) f̃ (X1, y1) ã(X1, y1, X2, y2) ˜̀(X2, y2) f̃ (X2, y2) . (20)

g(y) :=
∑

y′∈[s]

ã(r1, y, r2, y′) ˜̀(r2, y′) f̃ (r2, y′). (21)

Then, proceeding as in CrossEdgeCount, we compute γ′. Thus, we can compute γ and γ′ in parallel and
finally output γ − γ′ as the answer to CrossEdgeCount-Uniq.

Theorem 5.1. For parameters t, s with ts = n, there are two-pass [t2, s]-schemes for CrossEdgeCount and
CrossEdgeCount-Uniq. In particular, there are two-pass schemes with total cost Õ(n2/3). �

Applications. Our scheme for CrossEdgeCount can be used as a black box for solving a number of other
problems. These include standard problems like IndSetTest and st-3Path, as well as their generalizations or
variations such as the following problems.

• InducedEdgeCount: Given a graph G = (V, E) and a subset U of V , find the number of edges in G that
are induced by U.
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• RootedTriangleCount: Given a (directed or undirected) graph G = (V, E) and a vertex vr ∈ V , find the
number of triangles in G that are rooted at vr.

Corollary 5.2. Let t and s be parameters such that ts = n. Then each of the problems InducedEdgeCount,
IndSetTest, st-3Path, and RootedTriangleCount admits a two-pass [t2, s]-scheme; in particular, each of
them admits a two-pass scheme with total cost Õ(n2/3).

Proof. For InducedEdgeCount, if the input graph is undirected, then considering U and W as the same set,
solve CrossEdgeCount-Uniq. (Alternatively, solve CrossEdgeCount and divide the answer by two.) If the
graph is directed, then solve CrossEdgeCount.

For IndSetTest, solve InducedEdgeCount on U and check whether the answer equals zero.
For st-3Path, use a scheme for CrossEdgeCount to find the number of cross-edges between the closed

neighborhoods N[vs] and N[vt] of vertices vs and vt. This actually solves the more general problem of
counting the number of walks of length at most 3 from vs to vt. Checking whether this number is non-zero
decides st-3Path.

Finally, for RootedTriangleCount, if the input graph is undirected, solve InducedEdgeCount on N(vr).
Otherwise, solve CrossEdgeCount on the out-neighborhood N+(vr) and in-neighborhood N−(vr) of vr. �

5.3 One-Pass Schemes for Certain Stream Orderings

Our two-pass solution to the CrossEdgeCount problem, as well as its corollaries, allowed the vertices and
edge updates to be arbitrarily intermixed in the input stream. That said, it is interesting to focus on a natural
restriction of these problems where the vertices are streamed first, followed by the edge updates. For the
st-3Path problem, the corresponding restriction is that the edges incident to vs and vt appear before any other
edges in the stream; for RootedTriangleCount, it is that the edges incident to vr appear first.

Under such a restriction on the stream ordering, our two-pass solutions naturally become one-pass, as we
now note.

Proposition 5.3. The schemes for CrossEdgeCount and CrossEdgeCount-Uniq in Theorem 5.1 and for
InducedEdgeCount, IndSetTest, st-3Path, and RootedTriangleCount in Corollary 5.2 can each be imple-
mented in one pass under a restricted stream ordering as noted above.

Proof. Consider the protocol described in Section 5.2. Note that the first pass processes only vertices and the
second pass processes only edges. This implies the claimed results for CrossEdgeCount, CrossEdgeCount-
Uniq, InducedEdgeCount, and IndSetTest. For st-3Path, note that requiring edges incident to vs and vt to
arrive first is equivalent to the vertex sets N(vs) and N(vt) arriving first. A similar consideration applies to
RootedTriangleCount. �

It is important to note that despite the restriction on the stream ordering, the schemes in Proposition 5.3
are nontrivial. Without Prover’s help, the problems remain hard, even with multiple passes. We give the
simple proof for the basic problem CrossEdgeCount.

Proposition 5.4. Any p-pass streaming algorithm for CrossEdgeCount, with vertices streamed before edges,
requires Ω(n/p) space, even for insertion-only streams.

Proof. We reduce from disjn, the set-disjointness communication problem on the universe [n]. Recall that,
in disjn, Alice holds a set x ⊆ [n] and Bob holds a set y ⊆ [n]. Their goal is to determine whether or not
x ∩ y = ∅. This problem has randomized communication complexity R(disjn) = Ω(n) [27].

Consider an (n + 1)-vertex graph G where V(G) = {0, . . . , n} and E(G) = {{0, i} : i ∈ y}. Let U = {0} and
W = x. Then the number of cross edges in G from U to W is non-zero iff x ∩ y , ∅. The result now follows
along standard lines. �
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6 Path Problems

In this section, we focus on path-related problems. Specifically, we study st-kPath for k > 3 and the
fundamental st-ShortestPath problem (defined in Section 1.1). Simple reductions from the indexN problem,
for N = n2, show that a one-pass algorithm for either of these problems would require Ω(n2) space in the
basic (sans prover) streaming model. They also show that a one-pass scheme would require a total cost
of Ω(n). We present a scheme for st-kPath for general k that can also be used to solve st-ShortestPath.
It is a semi-streaming scheme when k is polylogarithmic in n, and hence matches the lower bound (up to
polylogarithmic factors). Next, we explore if we can break the Ω(n) barrier for schemes for st-kPath at the
cost of allowing a few more passes over the input. We achieve this for constant k by generalizing the protocol
for st-3Path. We present all our schemes for undirected graphs, but they can easily be modified to work for
directed graphs as well.

6.1 A Single-Pass Semi-Streaming Scheme for Detecting Short Paths

For st-3Path, it is easy to obtain a semi-streaming scheme by checking (using Fact 2.2) whether the set
N[vs] × N[vt] and the edge set E are disjoint. For k > 3, things are not that direct and we require more work.
We describe the protocol below for a multigraph G.

Let A denote the adjacency matrix of the multigraph G and let Ã be the F-extension of A, for some large
finite field F. For u ∈ Ni+1(vs), let du,i be the number of (in-)neighbors of u in Ni(vs). It follows that

du,i =
∑

v∈Ni(vs)

A(v, u) . (22)

We are now ready to describe the protocol.

Stream processing. Verifier picks r ∈R F and stores Ã(v, r) for each v ∈ [n], maintaining them dynamically
as the stream arrives (using Fact 2.1). He also stores the set N1(vs).

Help message. At the end of the stream, Prover sends Verifier k − 1 polynomials p̂1, . . . , p̂k−1, and she
claims p̂i ≡ pi for each i ∈ [k], where

pi(U) =
∑

v∈Ni(vs)

Ã(v,U) . (23)

Verifier’s computation. Verifier iteratively constructs Ni(vs) for i ∈ [k]. Each time, after computing Ni(vs)
for a distance parameter i, he checks whether vt ∈ Ni(vs). If so, he stops and outputs Yes. Otherwise, he
proceeds to compute Ni+1(vs). If he finds that ∀i ∈ [k] : vt < Ni(vs), then he outputs No. The inductive
neighborhood computation is done as follows.

Assume that Verifier has the set Ni(vs) for some i ∈ [k − 1]; this holds initially, since he has stored
N1(vs). He computes pi(r) using Equation (23) and checks whether p̂i(r) = pi(r). If the check passes,
he believes that p̂i ≡ pi and evaluates p̂i(u) for each u ∈ V . By eq. (22), pi(u) equals du,i, which is
non-zero iff u ∈ Ni+1(vs). Hence, he sets Ni+1(vs) = {u : p̂i(u) , 0}.

Error probability. The protocol errs when we have p̂i . pi for some i, but Verifier’s check passes. This
implies that r is a root of the non-zero polynomial p̂i − pi. For a given i, the total degree of this
polynomial is at most 2n. Then, probability that r is a root is at most 2n/|F| < 1/n2, for large enough
choice of |F|. Taking a union bound over all i ∈ [k], we get that the probability that r is a root of p̂i − pi

for some i is at most 1/n.
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Help and Verification costs. Since the degree of each pi is 6 2n, the total hcost is Õ(kn). Verifier stores
Ã(v, r) for each v ∈ [n], which requires Õ(n) space. Additionally, to compute Ni+1(vs) for some i ∈ [k],
he needs only the set Ni(vs). Thus, we can store the Ni(vs) sets by reusing space repeatedly, and this
requires O(n) space. Hence, the total vcost of this protocol is Õ(n). Therefore, we get a [kn, n]-scheme
for checking for the existence of a path of length at most k from vs to vt.

Theorem 6.1. Given an n-vertex (directed or undirected) multigraph G(V, E) and specified vertices vs, vt ∈ V,
for any k 6 n − 1, there is a [kn, n]-scheme for st-kPath. In particular, there is a semi-streaming scheme for
st-kPath when k is polylogarithmic in n. �

Applications. Based on the scheme in Theorem 6.1, we have the following straightforward corollaries.
Contrast these results with Theorem 7 of Cormode et al. [13]. They give an [h, v]-scheme for a weighted
version of st-ShortestPath for any h, v such that hv > Dn2 and h > Dn, where D is the maximum distance
from vs to any other vertex reachable from it. A similar result holds for vs–vt connectivity in directed graphs
with diameter D. Their schemes work only for simple graphs, whereas ours naturally work for multigraphs;
on the other hand, we only solve the unweighted version of the problem. Notably, there is a significant
difference in the underlying techniques: their schemes are based on linear programming duality, while we
have a more directly algebraic approach.

Corollary 6.2. Given a (directed or undirected) multigraph G(V, E), with edge multiplicities polylogarithmic
in n, and specified vertices vs, vt ∈ V, there is a [kn, n]-scheme for st-ShortestPath, where k is length of the
shortest vs–vt path.

Proof. If there is no vs–vt path, Prover sends the connected component C that vs is in. Verifier first checks
that C is indeed connected ([10], Theorem 7.7). Next, he verifies that there is no edge going out from
C by checking whether the set C × (V \ C) and the edge set E are disjoint (Fact 2.2). Both of these are
[n, n]-schemes.

If there is a vs–vt path, and the shortest such path H has length k, then Prover sends it to Verifier, who
checks whether H is indeed a vs–vt path and whether H ⊆ E using an [n, n]-scheme, using the polylogarithmic
bound on the edge multiplicities (Fact 2.2). In parallel, he uses a [kn, n]-scheme to verify that there is no
vs–vt path of length at most k − 1 (Theorem 6.1). �

Corollary 6.3. Given a directed n-vertex multigraph G, with edge multiplicities polylogarithmic in n, there
is a [Dn, n]-scheme for checking vs–vt connectivity, where D is the maximum distance from vs to any other
vertex reachable from it. In particular, there is a semi-streaming scheme for checking vs–vt connectivity in a
directed multigraph with diameter polylogarithmic in n.

Proof. If there is a vs–vt path H, then Prover sends it to the Verifier, and he can check whether H ⊆ E using
an [n, n]-scheme, as edge multiplicity is polylogarithmic in n (Fact 2.2). If not, then we verify that there is no
vs–vt path of length at most D using a [Dn, n]-scheme (Theorem 6.1). �

6.2 A Multi-Pass Scheme for Detecting Short Paths

In Section 5, we obtained a scheme for st-3Path of total cost o(n) using two passes over the input. We
investigate if the same is true for st-kPath (for k > 3) if we allow “a few” more passes. For constant k, we
answer this in the affirmative as we generalize the scheme for st-3Path and obtain such a scheme for st-kPath
with dk/2e passes.

As usual, A denotes the adjacency matrix of the multigraph G. Let L and F be the characteristic vectors
of N[vs] and N(vt) respectively. Let κ = κ(G) denote the number of walks of length at most k from vs to vt in
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G. Then,

κ =
∑

u1,...,uk−1∈V

Lu1

k−2∏
i=1

Aui,ui+1

 Fuk−1 . (24)

Note that there is a path of length at most k from vs to vt iff κ > 0. Therefore, computing κ suffices.
Let h and v be integer parameters with hv = n. Again, using a canonical bijection, we represent each

vertex u ∈ V by a pair of integers (x, y) ∈ [h] × [v]. The vectors L and F become 2-dimensional arrays ` and
f , given by `(x, y) = Lu and f (x, y) = Fu. Again, the adjacency matrix A turns into a 4-dimensional array a,
such that a(x, y, x′, y′) = Auu′ . Let ˜̀, f̃ , and ã be F-extensions of `, f , and a respectively, where F is a finite
field of cardinality q and q is a prime chosen uniformly at random from [n3, n4]. Then eq. (24) gives

κ =
∑

x1,...,xk−1∈[h]

p(x1, . . . , xk−1) , where (25)

p(X1, . . . , Xk−1) =
∑

y1,y2∈[v]

˜̀(X1, y1)

k−2∏
i=1

ã(Xi, yi, Xi+1, yi+1)

 f̃ (Xk−1, yk−1) . (26)

For i ∈ [k − 1], degXi
p = 2h − 2. Therefore, the number of monomials in p is at most O(hk−1) and the total

degree is O(kh).
We present a dk/2e-pass protocol for st-kPath.

Stream processing. Verifier chooses r1, . . . , rk−1 ∈R F.

Pass 1. Process only the vertices in N1[vs] and N1(vt) in the stream. We maintain, for each y ∈ [v],
two vectors of size v: ˜̀(r1, y) and f̃ (rk−1, y), where y ∈ [s].

Pass i, for 2 6 i 6 dk/2e. Define g0(y) := ˜̀(r1, y) and gk(y) = f̃ (rk−1, y). For each y ∈ [v], compute
gi−1(y) :=

∑
y′∈[v] ã(ri−1, y, ri, y′)gi−2(y′) as well as gk−i+1(y) :=

∑
y′∈[v] ã(rk−i, y, rk−i+1, y′)gk−i+2(y′).

The g j(y) values are updated dynamically with the stream updates in a similar way as in the protocol
for CrossEdgeCount in Section 5.2.

Help message. At the end of the final pass, Prover sends a polynomial p̂(X1, . . . , Xk−1)—as a stream of
coefficients—that she claims equals p(X1, . . . , Xk−1).

Verification and output. After the final pass, Verifier computes
∑

y∈[v] gdk/2e(y)gdk/2e+1(y), which, by Equa-
tion (26), equals p(r1, . . . , rk−1). If he finds that it doesn’t equal p̂(r1, . . . , rk−1), he outputs⊥. Otherwise,
he believes that p̂ ≡ p and, following eq. (25), computes κ̂ :=

∑
x1,...,xk−1∈[h] p̂(x1, . . . , xk−1). He outputs

Yes if κ̂ > 0 and No otherwise.

Error probability. We err when p̂ . p, but Verifier’s check passes. In this case, (r1, . . . , rk−1) ∈ Fk−1

is a root of the nonzero polynomial p̂ − p. We noted that its total degree is at most O(kh). By the
Schwartz-Zippel Lemma (Fact 2.3), the probability of this event is at most O(kh)/|F| < 1/n. We err
also when κ̂ is non-zero, but the prime q divides κ̂, making κ̂ mod q = 0. But κ̂ can have value at most
2nn!, and so has at most O(n log n) distinct prime factors. Since we chose q uniformly at random within
[n3, n4], by the Prime Number Theorem, the probability that q equals one of the prime factors of κ̂ is at
most 1/n2. Hence, the total error is at most 1/n + 1/n2.

Help and Verification costs. The number of monomials of p̂ is O(hk−1), giving an hcost of Õ(hk−1).
Verifier reuses space and, during each pass, stores O(1) many v-dimensional vectors, each entry of
which is O(log n) bits long. Thus, the vcost is Õ(v).

This gives a dk/2e-pass [hk−1, v]-scheme for st-kPath, for parameters h, v with hv = n. Setting h = n1/k

and v = n1−1/k, we get a scheme with total cost Õ(n1−1/k).
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Theorem 6.4. There is a dk/2e-pass [n1−1/k, n1−1/k]-scheme for st-kPathCount in a (directed or undirected)
multigraph. In particular, for constant k, there is constant-pass scheme with total cost o(n). �

We note the contrast between this result and that of Guruswami and Onak [17]. They showed a lower
bound of Ω(n1+Ω(1/k)/kO(1)) for st-kPath in k/2 − 1 passes in the basic (sans prover) streaming model (for
even k). Our results show that using dk/2e passes, we can obtain a scheme for the same problem with total
cost of Õ(n1−1/k).
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