
Testing Isomorphism in the Bounded-Degree Graph Model

(preliminary version)∗

Oded Goldreich†

August 10, 2019

Abstract

We consider two versions of the problem of testing graph isomorphism in the bounded-degree
graph model: A version in which one graph is fixed, and a version in which the input consists
of two graphs. We essentially determine the query complexity of these testing problems in the
special case of n-vertex graphs with connected components of size at most poly(log n). This is done
by showing that these problems are computationally equivalent (up to polylogarithmic factors) to
corresponding problems regarding isomorphism between sequences (over a large alphabet). Ignoring
the dependence on the proximity parameter, our main results are:

1. The query complexity of testing isomorphism to a fixed object (i.e., an n-vertex graph or an

n-long sequence) is Θ̃(n1/2).

2. The query complexity of testing isomorphism between two input objects is Θ̃(n2/3).

Testing isomorphism between two sequences is shown to be related to testing that two distributions
are equivalent, and this relation yields reductions in three of the four relevant cases. Failing to reduce
the problem of testing the equivalence of two distribution to the problem of testing isomorphism
between two sequences, we adapt the proof of the lower bound on the complexity of the first problem
to the second problem. This adaptation constitutes the main technical contribution of the current
work.

Determining the complexity of testing graph isomorphism (in the bounded-degree graph model),
in the general case (i.e., for arbitrary bounded-degree graphs), is left open.

Keywords: Property Testing, Graph Properties, Graph Isomorphism, Sequence Isomorphism,

∗Partially supported by the Israel Science Foundation (grant No. 1146/18).
†Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:

oded.goldreich@weizmann.ac.il.

i

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 102 (2019)



Contents

1 Introduction 1
1.1 Testing isomorphism between graphs with small connected components . . . . . . . . . 1
1.2 Techniques: Testing isomorphism between sequences . . . . . . . . . . . . . . . . . . . . 2
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Graph Isomorphism versus Sequence Isomorphism 4
2.1 Reducing the graph problems to the sequence problems . . . . . . . . . . . . . . . . . . 4
2.2 A collection of graphs that are pairwise far from being isomorphic . . . . . . . . . . . . 6
2.3 Reducing the sequence problems to the graph problems . . . . . . . . . . . . . . . . . . 7
2.4 Implications for testing graph isomorphism . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 On the Complexity of Testing Isomorphism between Sequences 10
3.1 Testing isomorphism to a fixed sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Testing isomorphism between two input sequences . . . . . . . . . . . . . . . . . . . . . 11

4 Concluding Comments 17

Acknowledgements 17

References 17

i



1 Introduction

We consider the problem of testing graph isomorphism in the bounded-degree graph model (introduced
in [11] and reviewed in [9, Chap. 9])). We actually considered two versions of the problem: In one
version (called the fixed graph version) the input is a single graph and the task is testing whether
this graph is isomorphic to a fixed graph (which “massively parametrized” the property); in the other
version, one is given two input graphs and the task is testing whether they are isomorphic.1 (Both
versions of the problem were considered before, but in different testing models (see Section 1.3).)

The bounded-degree graph model. Recall that, in the bounded-degree graph model, graphs
are represented by their incidence functions and distances between graphs are measured accordingly.
Specifically, for a fixed degree bound d, a graphG = ([n], E) of maximum degree at most d is represented
by a function g : [n]× [d]→ [[n]], where [[n]] = {0, 1, ..., n} = [n] ∪ {0}, such that g(v, i) = u ∈ [n] if u
is the ith neighbor of v (in G), and g(v, i) = 0 if v has less than i neighbors.

The graph G = ([n], E) is said to be ε-far from the graph G′ = ([n], E′) if the symmetric difference
between E and E′ is larger than εdn/2 (equiv., if any representations g : [n] × [d] → [[n]] and g′ :
[n] × [d] → [[n]] of G and G′ differ on more than εdn entries (i.e., |{(v, i) : g(v, i) 6= g′(v, i)}| > εdn)).
Otherwise, the graphs are ε-close. The graph G = ([n], E) is said to be ε-far from a graph property Π
(i.e., a set of graphs that is closed under isomorphism) if G is ε-far from any graph in Π.

We say that an oracle machine is an ε-tester of Π if, when given oracle access to an incidence
function of the graph, it distinguishes between the case that the graph is in Π and the case that the
graph is ε-far from Π (i.e., it accepts with probability at least 2/3 in the first case and rejects with
probability at least 2/3 in the second case). When ε is unspecified (e.g., when saying that “testing Π
requires Q queries”), it is assumed to be some small positive constant.2 Indeed, testing isomorphism to
a fixed graph H is the task of testing the property that consists of the set of graphs that is isomorphic
to H (i.e., H is a massive parameter that specifies the property).3

1.1 Testing isomorphism between graphs with small connected components

With the foregoing preliminaries in place, we can state our first main result.

Theorem 1.1 (testing isomorphism to a fixed graph (in the bounded-degree graph model)): Sup-
pose that H is an n-vertex graph that consists of connected components that are each of size at most
poly(log n). Then, the query complexity of ε-testing isomorphism to H is at most Õ(n1/2/ε2) and at
least Ω̃(n1/2), where the upper bound holds for all H’s and the lower bound holds for almost all 3-regular
H’s.

Indeed, we leave open the question of what is the query complexity of testing isomorphism to H, in
the general case. The upper bound on the size of the connected components implies that the query
complexity is in the same ball-park as the number of connected components that the potential tester
visits. A logarithmic lower bound on the size will be used to guarantee that the connected components
may be pairwise non-isomorphic (and even pairwise far from being isomorphic, see Lemma 2.2). This
fact will be used when lower-bounding the query complexity of testing isomorphism.

Turning to the problem of testing isomorphism between two given graphs, we extend the testing
framework to the case in which the potential tester is given a pair of input oracles. Specifically, we say
that an oracle machine is an ε-tester for isomorphism between two graphs if, when given oracle access to

1The graphs G1 = ([n], E1) and G2 = ([n], E2) are isomorphic if there exists a bijection π : [n] → [n] (called an
isomorphism) such that {π(u), π(v)} ∈ E2 if and only if {u, v} ∈ E1.

2That is, saying “testing Π requires Q queries” means that for some ε > 0, any ε-tester of Π requires Q queries.
3See [9, Sec. 12.7.2] for a brief discussion of “massively parametrized” properties.

1



incidence functions of the two graphs, it distinguishes between the case that the graph are isomorphic
and the case that the first graph is ε-far from any graph that is isomorphic to the second graph.

Theorem 1.2 (testing isomorphism between two input graphs (in the bounded-degree graph model)):
Let Φ be the set of n-vertex graphs that consist of connected components that are each of size at most
poly(log n). The query complexity of ε-testing isomorphism between two graphs that are promised to be
in Φ is at most Õ(n2/3/ε2) and at least Ω̃(n2/3). Equivalently, the query complexity of ε-testing that two
graphs are both in Φ and are isomorphism to one another is at most Õ(n2/3/ε2) and at least Ω̃(n2/3).
Furthermore, the time complexity is also Õ(n2/3/ε2).

The stated equivalence is due to the fact that membership in Φ can be ε-tested in time O(ε−1 ·
poly(log n)). Again, we leave open the question of what is the query complexity of testing isomorphism
between two graphs, in the general case. We comment that in the context of one-sided error testing,
even the fixed-graph version requires linear query complexity (see Theorem 2.5).

1.2 Techniques: Testing isomorphism between sequences

Theorems 1.1 and 1.2 are proved by showing the computational equivalence of these two graph-testing
problems to corresponding problems of testing isomorphism between sequences (over a large alphabet).
We say that two sequences, σ = (σ1, ..., σn) and τ = (τ1, ..., τn), are isomorphic if there exists a bijection
π : [n] → [n] such that τπ(j) = σj for every j ∈ [n]. One corresponding problem refers to testing
isomorphism to a fixed sequence, and the other problem refers to testing isomorphism between two
sequences (equiv., two parts of a single sequence), where we say that two n-long sequences are ε-far if
they differ on more than εn symbols (hence, (σ1, ..., σn) and (τ1, ..., τn) are ε-far from being isomorphic
if |{j ∈ [n] : σj 6= τπ(j)}| > ε · n for every bijection π : [n] →][n]). Theorems 1.1 and 1.2 follow by
presenting reductions between the graph-testing tasks and the corresponding sequence-testing tasks,
and establishing the following results regarding the complexity of the sequence-testing tasks.

Theorem 1.3 (testing isomorphism to a fixed sequence): Fixing any Σ and n, for every σ ∈ Σn

and ε > 0, the query complexity of ε-testing isomorphism to σ is O(n1/2/ε2). On the other hand, if
|Σ| = Ω(n), then for almost all σ ∈ Σn, the query complexity of testing isomorphism to σ is Ω(n1/2).

Note that the lower bound requires a large alphabet (i.e., |Σ| = Ω(n)), whereas ε-testing isomorphism
to a fixed sequence over a constant-sized alphabet has query complexity O(1/ε2). The same holds with
respect to the following result.

Theorem 1.4 (testing isomorphism between two input sequences): Fixing any Σ and n, the time com-
plexity of ε-testing isomorphism between n-long sequences over Σ is O(n2/3/ε2), provided that symbols
in Σ can be compared in unit time. On the other hand, if |Σ| = Ω(n), then the query complexity of
testing isomorphism between n-long sequences over Σ is Ω(n2/3).

The proof of the lower bound of Theorem 1.4 is the main technical contribution of this work, but before
discussing it we briefly sketch the other three proofs.

On proving Theorem 1.3. Both directions are proved by observing that the sequence-testing prob-
lem is computationally equivalent to testing the identity of a given distribution to a fixed distribution,
where the distribution-tester is given samples of the tested distribution. The fixed distribution is
assigned the value v with probability |{i ∈ [n] : σi = v}|, and samples from the tested distribution
correspond to the value of the tested sequence at random location. The gap between sampling with
repetitions, which is available to the distribution-tester, and sampling without repetitions, which is

2



(w.l.o.g the only thing) available to the sequence-tester, can be ignored when establishing the Ω(n1/2)
lower bound. (Given these reductions, Theorem 1.3 follows from the results surveyed in [9, Sec. 11.2].)4

On proving Theorem 1.4. While the upper bound follows easily by reducing the sequence-testing
task to the distribution-testing task (very much as in the case of testing isomorphism to a fixed se-
quence), we failed to find a reduction in the opposite direction. The source of difficulty is the gap
between sampling with and without repetitions, where here we cannot ignore this gap because we are
considering ω(n1/2) random samples taken in the probability space [n]. The main technical contribution
of this work is overcoming this difficulty.

Instead of reducing the distribution-testing problem to the sequence-testing problem, we adapt
Valiant’s [18] proof of an Ω(n2/3) lower bound for the distribution testing problem to the sequence-
testing setting. The easy part is showing that it suffices to consider a “canonical” sequence-tester that
rules according to the pattern of collisions among the oracle answers, while ignoring both the locations
and values of the collisions. (This replaces an analogous statement regarding collisions in the samples
given to the distribution-tester.) Next, we show that, for some yes and no-instances, the pattern of
collisions seen by a o(n2/3)-query tester for the sequence problem are statistically close. This is shown
by “reducing” the analysis of the collision patterns seems by the sequence-tester to those analyzed (for
distribution-testing) by Valiant [18].

Specifically, we transform the probability space that underlies the samples that are considered
by Valiant (where random samples are drawn with repetitions) to a probability space that fits the
sequence-testing setting (where random samples are drawn without repetitions). This transformation
retains a tiny fraction of the original probability space and the resulting distribution of the collision
patterns is different from the original distribution of the collision patterns. Still, we show that, with
high probability, the difference does not occur in places that matter.

More concretely, Valiant [18] (following Batu et. al. [3]) considers pairs of probability distributions
with heavy and light elements such that in the no-case the distributions agree on heavy elements
but disagree on light elements.5 He shows that the collision pattern of the light elements (which is
significantly different in the two cases (i.e., the cases of yes-instances and no-instances)) is “masked” by
the collision pattern of the heavy elements. Our transformation has an analogous effect: It does change
the collision pattern of heavy elements, but does so in an identically manner in the two cases (and in a
way that is oblivious of the light elements); furthermore (with high probability), the transformation does
not affect the collision pattern of light elements at all. Hence, our transformation does not (significantly)
increase the statistical difference between the collision patterns seen (by the potential tester) in the
two cases (although in one case the tester has to accept and in the other case it has to reject).

1.3 Related work

The two versions of the graph isomorphism testing problem were considered before [8, 15], but in
different models.

Fischer and Matsliah [8] studied the query complexity of these testing problems in the dense graph
model (introduced in [10] and reviewed in [9, Chap. 8]). Interestingly, in all cases they considered, the
complexity is sublinear (in the number of vertex-pairs, but polynomially related to that number). In
particular, isomorphism between two n-vertex input graphs can be tested with one-sided error using
Õ(n3/2) queries, and (two-sided error) testing of isomorphism to a fixed n-vertex graph require Ω̃(n1/2)
queries.

Kusumoto and Yoshida [15] studied these testing problems in the “adjacency list model” (actually,
in the general graph model (introduced in [16, 14] and reviewed in [9, Chap. 10])). They considered

4For a list of credits, which starts with [12, 4], see [9, Sec. 11.5.1].
5Needless to say, the yes-instances consists of pairs of identical distributions.

3



the case that the graph are promised to be forests (or, alternatively, are required to be forests as part
of the property). They showed that in these case the query complexity is polylogarithmic in the size
of the graph.

The issue of sampling with versus without repetitions (a.k.a with versus without replacement)
arose also in the work of Raskhodnikova et. al. [17]. The context there was approximating the number
of distinct elements in a sequence, and in that context they presented a reduction of O(α)-factor
approximation based on O(s) samples with repetitions to α-factor approximation based on s samples
without repetitions.

1.4 Organization.

As stated in Section 1.2, our main results are proved by showing the computational equivalence of the
graph isomorphism testing problems and the corresponding problems of testing isomorphism between
sequences (over a large alphabet). This equivalence is shown in Section 2, and Section 3 focuses on
the complexity of the sequence isomorphism testing problems. In particular, the lower bound on the
complexity of testing isomorphism between two input sequences is proved in Section 3.2.

2 Graph Isomorphism versus Sequence Isomorphism

In this section we show the computational equivalence of the graph isomorphism testing problems to
corresponding problems of testing isomorphism between sequences (over a large alphabet). Specifically,
we shall focus on (n-vertex) graphs that have small connected components (i.e., each of poly(logn)-size)
and on n-long sequences over the alphabet [n]. The fact that the connected components are small will
be used when reducing the graph-testing problems to the corresponding sequence-testing problems.
Specifically, the overhead of the reduction (presented in Section 2.1) is linearly related to the size of
the connected components. When reducing in the opposite direction, we shall use a bijection between
[n] and a collection of n 3-regular O(log n)-vertex expander graphs that are pairwise far from being
isomorphic to one another. (Straightforwards constructions of such a collection of gadgets are spelled
out in Section 2.2.) Using this bijection we reduce the sequence isomorphism testing problems to the
graph isomorphism testing problems (see Section 2.3). Lastly, in Section 2.4 we fill-up a technical gap
(between equal-sized connected compenents and size-bounded connected components) and demonstrate
the uselessness of one-sided error testers for the various isomorphism problems.

2.1 Reducing the graph problems to the sequence problems

Our aim in reducing the graph problems to the sequence problems is making a step towards obtaining
algorithms (i.e., testers) for the graph problems.

Reductions in the context of property testing should preserve sublinear complexities as well as
distances between the objects and the corresponding properties. We refrain from presenting here an
adequate notion of a reduction, while regretting that the treatment in [9, Sec. 7.4] is not general
enough for the current application. Instead, we use the most generic notion possible, which merely
asserts that if one testing problem is solvable within some complexity then the other is solvable within
related complexity.

Proposition 2.1 (obtaining testers for the graph problems): Let Φ be the set of n-vertex graphs that
consist of connected components that are each of size s = s(n), and let d be the degree bound used in
the bounded-degree graph model. Then, for every ε > 0, the following holds.

1. If ε-testing isomorphism to a fixed (n/s)-long sequence has query complexity q, then ε-testing
isomorphism to a fixed n-vertex graph in Φ has query complexity d · q.

4



2. If ε-testing isomorphism between two (n/s)-long sequences has query complexity q, then ε-testing
isomorphism between two n-vertex graphs that are promised to be in Φ has query complexity d · q.
Furthermore, if the time complexity of the first problem is T , then the time complexity of the
seconbd problem is poly(s) · T .

The graph-testing problems refer to the bounded-degree model, and the sequence-testing problems can
be restricted to the alphabet [2n/s].

Since testing Φ is easy, we can remove the promise and test the property that consists of pairs of
isomorphic graphs that are both in Π. On the other hand, we can easily reduce testing m-long sequences
over [2m] to testing 2m-long sequences over [2m].

Proof: The fixed object case follows as a special case of the two-object case, when allowing free oracle
access to one of the objects. Focusing on the two-object case, we first assume that the sequences-tester
works for sequences over any alphabet.

The basic idea is viewing the connected components of the input graphs as symbols in corresponding
sequences, while noting that the locations of the symbols in a sequence are immaterial (for the sequence
isomorphism problem), just as the labels of vertices are immaterial for the graph-testing problem.
Hence, our graph-tester invokes the guaranteed sequence-tester and answers its queries by finding and
describing connected component that have not been used for that purpose before. Specifically, whenever
the sequence-tester makes a new query, we select uniformly at random a vertex that was not visited so
far, explore the connected component in which it resides, and answer the query with a description of
the corresponding graph (either as an unlabeled graph or as a canonically labeled graph with vertex
set [s]).6 We stress that isomorphic copies of the same s-vertex graph (potentially appearing as a
connected component in the tested graphs) are mapped to the same symbol.

The furthermore clause (of Item 2), referring to the running time of the resulting tester, is based on
the fact that canonical labeling of bounded-degree graphs can be found in polynomial-time [2]. That
is, the mapping of s-vertex connected components to symbols representing the set of all isomorphic
copies (of the corresponding graph) can be implemented in poly(n)-time.

The analysis boils down to noting that both problems reduce to testing equality between the number
of elements of each type that occur in the tested objects. In the case of graphs, these elements are the
connected components of the graph and the types are the isomorphism classes, whereas in the case of
sequences the elements are the different locations and the types are the symbols.

Note that the foregoing description refers to an alphabet that consists of all (unlabelled) s-vertex
graphs (of maximum degree d). We now show that the sequence testing problem for m-long sequences
over arbitrary alphabets reduces to the corresponding problem for the alphabet [2m]. Essentially,
we invoke the tester T for the special case and answer its queries by querying our own oracle and
maintaining the list of symbols viewed so far. When our oracle answers with a symbol that was not
viewed so far, we answer with a random value in [2m] that was not used by us so far, and record the
symbol and the selected value. (When our oracle answers with a symbol that was viewed before, we
answer with the same element of [2m] that was used at that time.) Hence, when given access to the
two m-long sequences over Σ (i.e., Σ is the set of symbols that actually occur in these sequences),
we effectively invoke T on corresponding sequences that are obtained by applying a random 1-to-1
mapping ψ : Σ → [2m] to the two original sequences (i.e., the sequence (σ1, ..., σm) is mapped to the
sequence (ψ(σ1), ..., ψ(σm))).

6All vertices in this explored connected component are marked as visited, and will not be selected when answering
subsequent queries.

5



2.2 A collection of graphs that are pairwise far from being isomorphic

As one may expect, a random collection of exp(Ω(k)) 3-regular k-vertex graphs will do for our purposes.
(In fact, we get an even larger collection, whereas a collection of exp(kΩ(1)) gadgets would have sufficed
too.)

Lemma 2.2 For every sufficiently large even k ∈ N, there exists a collection of exp(Ω(k log k)) 3-
regular k-vertex graphs that are pairwise Ω(1)-far from being isomoprohic. Furthermore, with over-
whelmingly high probability, a random collection of exp(Ω(k log k)) 3-regular k-vertex graphs satisfies
the property.

Recall that, with probability 1− o(1), a random 3-regular k-vertex graph is an expander; that is, every
set of k′ < k/2 vertices neighbors at least Ω(k′) vertices outside it [7].

Proof: Our starting point is Bollobas’s estimate for the number of labeled d-regular k-vertex graphs [6],
which is

Nd(k)
def
= e−c−c

2 · (dk)!

(dk/2)! · 2dk/2 · (d!)k
(1)

where c = (d− 1)/2 (and dk is even and d = o(log k)1/2). Using a rough approximation, we have

Nd(k) ≈ e−c−c
2 · (dk/e)dk

(dk/2e)dk/2 · 2dk/2 · (d!)k
(2)

= e−c−c
2 · (dk/e)dk/2

(d!)k
(3)

Hence, for any constant d ≥ 1, we have Nd(k) = Ω(k)dk/2.
We prove the existence of the claimed collection by using a greedy algorithm. For some small

constant ε > 0, at each step, we select an arbitrary graph that is not ε-close to being isomoprophic to
any of the graph already selected. The point is that the number of graphs that are ε-close to being

isomoprhic to a fixed k-vertex graph is at most Md(k)
def
= k! ·

(
dk
εdk

)
· kεdk � kk+(ε+o(1))·dk. Hence,

we can select Nd(k)/Md(k) graphs, and the claim follows, since N3(k)/M3(k) � kk/3 for ε < 1/18
and sufficiently large k. In fact, with overwhelmingly high probability, selecting a random set of kk/4

(d-regular k-vertex) graphs will do.

Remark 2.3 (large set expanders): The fact that, with very high probability, almost all the graphs
in the random collection that satisfies Lemma 2.2 are expanders suffices for our main results.7 We
get slightly more appealing results by observing that, with very high probability, a random collection of
exp(Ω(k)) 3-regular k-vertex graphs contains only large set expanders in which the expansion condition
holds for every set of k′ ∈ [Ω(k), k/2] vertices (rather than for every k′ ∈ [n/2]). The point is that
a random 3-regular k-vertex graph is a large set expander with probability 1 − exp(−Ω(k)), where the
hidden constant in the exception probability depends on the constant used in the definition of a large
set.8

7Specifically, it suffices for all results stated in the introduction with the exception that the lower bound of Theorem 1.1
holds only for graphs H selected from a distribution of extremely high min-entropy rather than for almost all such graphs.

8Specifically, fixing α, γ ∈ (0, 0.5), consider the probability that a 3-regular k-vertex graph contains a set of k′ ∈
[α ·k, 0.5 ·k] vertices that neighbors less than γ ·k′ vertices outside it. A crude upper bound for the number of such graphs
is given by

B(k) =
∑

k′∈[αk,0.5k]

(
k

k′

)
·N3(k′) ·N3(k − k′) ·

∑
k′′∈[[γk′]]

(
3k′

3k′′

)
·

(
3(k − k′)

3k′′

)

6



2.3 Reducing the sequence problems to the graph problems

Our aim in reducing the sequence problems to the graph problems is making a step towards obtaining
lower bounds on the complexity of the graph-testing problems.

In this case, the basic formalism of [9, Def. 7.13] suffices for capturing the relevant reductions.
Loosely speaking, a q-local (ε, ε′)-reduction of Π to Π′ is a mapping of objects of the first type (i.e.,
the type of Π) to objects of the second type (i.e., the type of Π′) that satisfies the following three
conditions:

1. Locality (local reconstruction): The value of an object at the image of the reduction at any point
is determined by the value of the preimage at q points; that is, if the reduction maps f to f ′,
then the value of f ′ at any point is determined by the value of f at q points.

2. Preservation of the properties: The reduction maps objects in Π to objects in Π′.

3. Partial preservation of distance to the properties: An object that is ε-far from Π is mapped to
an object that is ε′-far from Π′.

It follows that if Π′ can be ε′-tested within query complexity Q′, then Π can be ε-tested within query
complexity q ·Q′ (see [9, Thm. 7.14]). Indeed, q is the overhead of the reduction.

Proposition 2.4 (towards deriving lower bounds on the graph-testing problems): Let Φ be the set of
n · s-vertex graphs that consist of connected components that are each of size s = s(n) ≥ log n, and let
d ≥ 3 be the degree bound used in the bounded-degree graph model. Then, for every ε > 0, the following
holds.

1. Testing isomorphism to a fixed n-long sequence over [n] is 1-locally (ε,Ω(ε))-reducible to testing
isomorphism to a fixed 3-regular s · n-vertex graph in Φ.

Furthermore, for almost all 3-regular s · n-vertex graph H in Φ, testing isomorphism to the
sequence (1, 2..., n) is 1-locally (ε,Ω(ε))-reducible to testing isomorphism to H.

2. Testing isomorphism between two n-long sequences over [n] is 1-locally (ε,Ω(ε))-reducible to test-
ing isomorphism between two 3-regular s · n-vertex graphs in Φ.

The graph-testing problems refer to the bounded-degree model.

Proof: For some fixed constant δ > 0, let C be a collection of n graphs, each being a 3-regular
s-vertex expander9, that are pairwise δ-far from being isomorphic to one another. (The existence of
such a collection is guaranteed by Lemma 2.2 and [6].) Fixing a bijection ψ : [n]→ C, we spell out the
claimed reduction, while focusing on the case of two input-objects, and viewing the fixed-object case
as a special case (in which oracle access to the first object is for free).

�
∑

k′∈[αk,0.5k]

(
k

k′

)
·N3(k) ·

(
(k′/k)3k

′/2 · ((k − k′)/k)3(k−k
′)/2
)
·

(
3k

6γk′

)

≈
∑

k′∈[αk,0.5k]

2H2(k
′/k)·k ·N3(k) · 2−H2(k

′/k)·1.5k · 2H2(6γk
′/3k)·3k

=
∑

k′∈[αk,0.5k]

2−0.5·H2(k
′/k)·k+3·H2(2γk

′/k)·k ·N3(k),

where H2 is the binary entropy function. Using a sufficiently small γ > 0, the claim holds (for any α ∈ (0, 0.5]).
9Recall that an s-vertex graph is an expander if any set of s′ ≤ s/2 vertices in it neighbors at least Ω(s′) vertices

outside this set.

7



The reduction maps each n-long sequence over [n], viewed as a function σ : [n] → [n], to a graph
in Φ such that its ith connected component is isomorphic to ψ(σ(i)). The vertices of this connected
component are labeled (i−1) ·s+1, ..., i ·s. Hence, a query for the neighbor of vertex (i−1) ·s+j, where
i ∈ [n] and j ∈ [s], is answered by querying the ith symbol of σ, and determining the corresponding
neighbor of the jth vertex in ψ(σ(i)). That is, the sequence-tester obtains the value σ(i), applies the
mapping ψ to this value, considers the canonical labeling of the resulting s-vertex graph, and answers
according to the neighborhood of the jth vertex.

Note that if the input sequences are isomorphic, then the corresponding graphs are isomorphic.
On the other hand, as shown next, if the input sequences, denoted S1 and S2, are ε-far from being
isomorphic, then the corresponding graphs, denoted G1 and G2, are Ω(ε)-far from being isomorphic.

Suppose that the first graph is ε′-close to an isomorphic copy of the second graph, and let π′ :
[ns] → [ns] denote the mapping that witnesses this fact (i.e., π′(G1) is ε′-close to G2).10 Let us
assume first, for simplicity, that this “almost-isomorphism” π′ maps connected components of G1 to
connected components of G2. In such a case, there exists a bijection π : [n] → [n] such that for at
least (1 − (ε′/δ)) · n of the i ∈ [n] it holds that the ith connected component in G1 is δ-close to an
isomorphic copy of the π(i)th connected component in G2. (Indeed, π is the mapping of components
induced by π′.) Recalling that (1) all the connected components of G1 and G2 are in C, and that
(2) different graphs in C are δ-far from being isomorphic, it follows that the connected components
that are δ-close to being isomorphic are actually isomorphic copies of the same graph (in C). Thus, for
at least (1− (ε′/δ)) · n of the i ∈ [n], it holds that the ith connected component in G1 is isomorphic to
the π(i)th connected component in G2. Hence, S1 is (ε′/δ)-close to an isomorphic copy of S2 (by virtue
of the sequence relocation mapping π).

Recall that the foregoing analysis was based on the simplifying assumption that π′ maps connected
components of G1 to connected components of G2. This is not necessarily the case, but the fact that
the connected components are expanders can be used to show that this is essentially the case.

We say that a connected component of G1 is effectively preserved by π′ if at least 1−0.5δ of its vertices
are mapped by π′ to the same connected component of G2. Assume, for a moment, that at least a 1−γε′
fraction of the connected components of G1 are effectively preserved by π′, where the constant γ will be
determined later. Then, there exists a bijection π : [n]→ [n] such that for at least (1−γε′−(ε′/0.5δ)) ·n
of the i ∈ [n] it holds that the ith connected component in G1 is effectively preserved and is δ-close to
an isomorphic copy of the π(i)th connected component in G2. (This is the case because otherwise the
distance between G1 and its image under π′ is greater than (ε′/0.5δ)) · (δ− 0.5δ), where the first factor
accounts for the fraction of effectively preserved components that are δ-far from the corresponding
mapped components, and the second factor accounts for the fraction of mapped vertex-incidences in
which these components differ.)11 So it follows that for at least (1− (γ + (2/δ)) · ε′)) · n of the i ∈ [n]
it holds that the ith connected component in G1 is isomorphic to the π(i)th connected component in
G1. Hence, S1 is (γ + (2/δ)) · ε′-close to an isomorphic copy of S2 (again, by virtue of the sequence
relocation mapping π).

The foregoing analysis relied on the assumption that at least a 1 − γε′ fraction of the connected

10Indeed, π′(G1) denotes the graph obtained from G1 by relabeling the vertices according to π′; that is, {π′(u), π′(v)}
is an edge of π′(G1) if and only if {u, v} is an edge of G1.

11Indeed, π is any bijection that fits the preservation condition of π′ (i.e., the connected components of G1 that are
effectively preserved by π′ are mapped by π to the corresponding connected components of G2). Let I denote the set
of i’s such that the ith connected component in G1 is effectively preserved and is δ-far from an isomorphic copy of the
π(i)th connected component in G2. Assuming towards the contradiction that |I| > (ε′/0.5δ) · n, recall that for each i ∈ I
it holds that π′ maps at least 1− 0.5δ fraction of the vertices of the ith component of G1 to the π(i)th component of G2.
Hence, for each i ∈ I, the incidences of vertices in the ith component differ from the incidences of their image under π′ in
at least δ · 3s− 3 · 0.5δ · s entries (i.e., the number of incidence differences between the components minus the number of
incidences that belong to vertices of the ith component that were not mapped to the π(i)th component). It follows that,
under π′, the incidence functions of the two graphs differ in |I| · 3δs/2 > ε′ · 3ns entries, which contradicts the hypothesis
that π′ witnesses a distance of at most ε′.

8



components of G1 are effectively preserved by the witness mapping π′. However, this assumption is
actually a fact (i.e., it must hold), because otherwise expansion (w.r.t the non-preserved components)
implies that π′(G1) is γε′ ·Ω(δ)-far from G2, in contradiction to the hypothesis regarding π′ (provided
the constant γ is chosen to be sufficiently large). This establishes the main claims of the proposition
and leaves us with the furthermore claim of Part 1, which refers to the case that the fixed graph is
uniformly selected among the 3-regular graphs in Φ (i.e., that the fixed graph is uniformly selected
among all 3-regular graphs that have n connected components that is each of size s).

Recall that the furthermore claim refers to reducing from the problem of testing isomorphism to
the fixed sequence (1, 2, ..., n), whereas the instance produced by reduction refers to a fixed n · s-vertex
graph H that consists of the connected components ψ(1), ...., ψ(n). Recalling that ψ : [n] → C is a
bijection, it follows that a random H corresponds to a random collection C. Recall that such a random
collection contains n− o(n) expanders, whereas we have assumed that all graphs in C are expanders.12

However, a closer look at the foregoing argument reveals that it holds even if all graphs in C are only
large set extractors (in the sense defined in Remark 2.3). Since the latter condition holds with very
high probability, the furthermore claim follows.

2.4 Implications for testing graph isomorphism

Using the first (resp., second) part of Propositions 2.1 and 2.4, the claims of Theorem 1.1 (resp.,
Theorem 1.2) almost follow from Theorem 1.3 (resp., Theorem 1.4). The remaining gap is in the upper
bound, since Proposition 2.1 only handled graphs in which all connected components are of the same
size (whereas the upper bounds in Theorems 1.1 and 1.2 refer to n-vertex graphs in which all connected
components are of size at most poly(log n)).

The gap can be bridged by modifying the reduction used in the proof of Proposition 2.1 so that
n-vertex graphs (with connected components of size at most s) are associated with n-long sequences
(initially over [exp(Õ(s))])13 such that a connected component of size s′ ≤ s is associated with s′

locations in the sequence. The reduction itself is modified too: Whenever the sequence-tester makes a
new query, we answer it by selecting at random a vertex that was not selected before (rather than not
visited before), exploring the connected component in which it resides, and returning the corresponding
graph (either as an unlabeled graph or as a canonically labeled graph with vertex set [s]).

One-sided error testing. Recall that a one-sided error tester is required to always accept any object
that has the property (i.e., accept with probability 1 any such object), while rejecting with high
probability (i.e., with probability at least 2/3) any object that is far from the property, as a usual
tester. It is quite easy to see that all testing problems considered in this work have no ose-sided error
tester of sublinear query complexity. We prove this assertion for the problem of testing isomorphism
to a fixed graph (with very small connected components).

Theorem 2.5 (a lower bound on one-sided testers in the fixed-graph model): There exists a n-graph
H of degree bound two and connected components of size three such that, in the bounded-degree graph
model, any one-sided error tester of isomorphism to H requires Ω(n) queries.

Proof: Let H be composed of n/6 isolated triangles and n/6 isolated 2-paths, and assume (w.l.o.g.)
that the tester for isomorphism decides based on the number of isolated triangles and 2-paths that it

12Note that, with probability 1/poly(s), a random 3-regular s-vertex graph is not even connected, whereas we have
s = poly(logn).

13Recall that we latter reduce the problems regarding m-long sequences over arbitrary alphabet to the corresponding
problems regarding 2m-long sequences over [2m].

9



sees.14 Then, a one-sided error tester for isomorphism to H that makes at most n/6 queries must always
accept when seeing any proportion of isolated triangles and 2-paths, since such a proportion may occur
when querying a random isomorphic copy of H. It follows that such a tester (always) accepts when
inspecting a random graph composed on n/9 isolated triangles and 2n/9 isolated 2-paths, whereas such
a graph is Ω(1)-far from the property.

3 On the Complexity of Testing Isomorphism between Sequences

In this section we focus on the two versions ofi the sequence-testing problem, and establish Theorems 1.3
and 1.4. We shall often view n-long sequences over Σ as functions from [n] to Σ.

3.1 Testing isomorphism to a fixed sequence

We start with the problem of testing isomorphism to a fixed sequence, which serves as a good warm-up
towards our study of the complexity of testing isomorphism between two input sequences.

Theorem 3.1 (the query complexity of testing isomorphism to a fixed sequence (Theorem 1.3, re-
stated)):

1. For every ε > 0, the query complexity of ε-testing isomorphism to any fixed n-long sequence is
O(n1/2/ε2). Furthermore, the time complexity is the same if the tester can determine the number
of occurrences of a symbol in the fixed sequence in constant time.

2. Testing isomorphism of an n-long sequence over [n] to the sequence (1, 2, ..., n) requires Ω(n1/2)
queries. The same holds with respect to almost all n-long sequences over [n].

Of course, testing isomorphism to a fixed sequence may be easier in some cases (e.g., the all-1 sequence).
In fact, the following reduction that establishes the upper bound yields such results via the results of [19]
(see also [5]).

Proof: The upper bound follows by a reduction to testing identity to a corresponding fixed (n-
grained) distribution (where a distribution is called n-grained if all elements in its support appear with
probability that is a multiple of 1/n). Specifically, given a fixed sequence σ : [n] → Σ and access to
an input sequence τ : [n] → Σ, we define the fixed distribution D and the input distribution X such
that Pr[D= v] = |{i ∈ [n] : σ(i) = v}|/n and Pr[X = v] = |{i ∈ [n] : τ(i) = v}|/n for every v ∈ Σ. We
then invoke the guaranteed distribution-tester (for the distribution D which is determined by σ), and
provide it with samples of X in the obvious matter; that is, if we need to provide s samples, we select
uniformly and independently i1, ..., is ∈ [n], and use the values τ(i1), ..., τ(is). (The straightforward
analysis of this reduction is given in the first paragraph of the proof of Theorem 3.2.)

Using the known distribution-testers (see [9, Thm. 11.11]), the claimed upper bound follows. The
time bound (asserted in the furthermore clause) follows by observing that the reduction of testing
identity to a fixed n-grained distribution to testing that a distribution is uniform on [n] only requires
an evaluation oracle to the fixed distribution, and makes one query to this oracle per each example
obtained from the input distribution (see [9, Sec. 11.2.2.1]).

The lower bound regarding testing isomorphism to the fixed sequence (1, 2, ..., n) is proved by using
a reduction in the opposite direction; that is, by reducing testing that a distribution is uniform over
[n] to testing isomorphism to the sequence (1, 2, ..., n). Here we capitalized on the fact that we are
proving a lower bound of the form Ω(n1/2), since in that regime the difference between sampling indices

14This is analogous to a claim in [13]. Specifically, if the tester is guaranteed that the input is composed of connected
components that are each of size 3, then we may assume that it merely samples random vertices and inspects their
respective connected components.

10



in [n] without repetitions and sampling them with repetitions can be ignored. This is relevant since a
q-query sequence-tester can be assumed to query the input sequence at q random locations, but the set
of q locations is distributed uniformly among all q-subsets of [n] (i.e., it samples without repetitions).
In contrast, the distribution-tester obtains samples of some n-grained distribution X, which may be
thought of as being generated by selecting uniformly i ∈ [n] and outputting a value G(i) for a suitable
G : [n] → [n], but these samples are generated independently of one another (i.e., they are generated
with repetitions). Details follow.

We reduce testing whether an n-grained distribution X over [n] is uniform to testing isomorphism
to the sequence σ = (1, 2, ..., n). The point is that the input distribution X can be viewed as generated
by selecting at random i ∈ [n] and outputting the value G(i) for an adequate G : [n] → [n]; that is,
Pr[X = e] = |{i∈ [n] : G(i) = e}|/n. So testing whether X is uniform over [n] corresponds to testing
whether G viewed as a sequence is isomorphic to σ. (Recall that this distribution-testing problem has
complexity q = Ω(

√
n), even when restricted to n-grained distributions.) In the reduction, given a

tester T for isomorphism to the fixed sequence σ, we construct a distribution-tester that invokes T and
answers its (distinct, w.l.o.g.) queries by using the samples provided to it. That is, for every j ∈ [q],
the jth query is answered by the jth sample.

In the analysis, we think of the q samples given to our tester as being generated by selecting
i1, ..., iq ∈ [n] uniformly and independently (with repetitions), and being presented with G(i1), ..., G(iq).
In contrast, without loss of generality, we can think of T as selecting uniformly a sequence of q distinct
elements in [n] and querying its oracle for their value.15 That is, whereas T should be given the
answers G(i1), ..., G(iq) such that i1, ..., iq are selected uniformly in [n] without repetitions, we gave
it corresponding answers with respect to i1, ..., iq that are selected uniformly in [n] with repetitions.
However, the statistical difference between these two n-long samples is at most

(
q
2

)
/n, and we can

ignore this difference when establishing a lower bound of the form q = Ω(
√
n).

3.2 Testing isomorphism between two input sequences

We now turn to the problem of testing isomorphism between two input sequences, while adopting
slightly different notation than the one used so far. The first three paragraph recap ideas that were
already presented in Section 3.1.

Given two sequences S1, S2 ∈ Σn, presented as functions S1, S2 : [n]→ Σ, the sequence isomorphism
testing problem is to determine whether there exists a permutation π : [n] → [n] such that S1(j) =
S2(π(j)) for every j ∈ [n] (i.e., S1 = S2 ◦ π) or S1 is far from S2 ◦ π for every permutation π. This can
be captured as a property testing problem by considering S : {1, 2}× [n]→ Σ such that S(i, j) = Si(j).

Clearly, the sequence isomorphism testing problem is reducible the testing equality between distri-
butions, by considering random variables X1 and X2 such that Pr[Xi =σ] = |{j ∈ [n] : Si(j) =σ}|/n
for every σ ∈ Σ. Hence, the complexity of testing sequence isomorphism is upper-bounded by the com-
plexity of testing equality between distributions, which is O(1/ε2) · n2/3 (see [9, Sec. 11.3], presenting
the best result known, which in turn improves over earlier work of Batu et. al. [3]).

It is tempting to hope that a reduction in the opposite direction holds if we restrict the distributions
to be n-grained [9, Def. 11.7], where a distribution is n-grained if each element in its support is assigned
a probability mass that is a multiple of 1/n. Indeed, one can show that, without loss of generality, a
tester of sequence isomorphism queries the sequences at a random set of location, but the distribution-
tester obtains a sample that corresponds to a random multi-set of locations. That is, we face a gap
between sampling with and without repetitions, and this gap matters because we are interested in the
case that the number of samples is larger than the square root of the support size.

15Given an arbitrary tester T that tests τ : [n]→ [n], suppose that we answer its jth query with τ(ij), where (i1, ..., iq)
is uniformly distributed among all q-long sequences of distinct elements in [n]. Then, we actually emulate an execution
of T in which it is given access to a random isomorphic copy of τ (i.e., to the function τ ◦ π, where π : [n] → [n] is a
uniformly distributed bijection).

11



We were unable to show a reduction of the distribution-testing problem to the sequence-testing
problem, which would have allowed to infer a lower bound on the sequence-testing problem from a lower
bound on the distribution-testing problem; but we were able to adapt the proof of the known Ω(n2/3)
lower bound (of Valiant [18]) for the distribution-testing problem to thesequence-testing problem.

Theorem 3.2 (on the complexity of sequence isomorphism (Theorem 1.4, restated)):

1. For every ε > 0, the time complexity of ε-testing sequence isomorphism (for n-long sequences) is
O(n2/3/ε2), provided that symbols can be compared in unit time.

2. Testing sequence isomorphism for n-long sequences over [n] requires Ω(n2/3) queries.

Proof: The upper bound follows by the reduction outlined above; that is, given sequences S1, S2 :
[n]→ Σ, consider the random variables X1 and X2 such that Pr[Xi=σ] = |{j ∈ [n] : Si(j)=σ}|/n. If
S1 is isomorphic to S2, then X1 ≡ X2. On the other hand, if S1 is ε-far from being isomorphic to S2

(i.e., minπ∈Symn
{|{j ∈ [n] : S1(j) 6= S2(π(j))}|} > ε · n), then

∑
σ |#σ(S1) − #σ(S2)| > 2 · εn, where

#σ(S) denotes the number occurrences of σ in the sequence S (i.e., #σ(S) = |{j ∈ [n] : S(j)=σ}|).16

Hence, ε-testing of sequence isomorphism reduces to ε-testing of identity of distributions, by virtue
of invoking the distribution-tester and providing it with samples of X1 (resp., X2) by querying S1

(resp., S2) at random locations. Using the distribution-tester that works in time O(1/ε2) · n2/3 (see [9,
Sec. 11.3]), the theorem’s upper bound follows.

Turning to the lower bound, we adapt Valiant’s proof [18] of the lower bound for the distribution-
testing problem into a lower bound for the sequence-testing problem. We first mimic the relatively
easy argument showing that all that matters is the distribution of “histograms” seen by the tester.
Then, we show that the relevant histograms (of some yes and no-instances) seen by a o(n2/3)-query
tester for the sequence problem are statistically close. This is done by “reducing” the analysis to the
case analyzed by Valiant [18]. The histograms that we define next refer to a pair of sequences; these
sequences are not the input sequences (or distributions) but rather samples that the tester obtains
from these sequences (or samples). (Indeed, this generalizes the more basic notion of a historgram of
a single sequence.)17

Definition 3.2.1 (the relevant histograms): For a pair of m-long sequences ((s1, ..., sm), (s′1, ..., s
′
m)) ∈

Σm+m, the corresponding histogram is an (m+1)-by-(m+1) matrix H = (ht,t′)t,t′∈[[m]] such that ht,t′ is
the number of values that occur exactly t times in the first sequence and t′ times in the second sequence;
that is,

ht,t′ =
∣∣{σ∈Σ : #σ(s1, ..., sm) = t & #σ(s′1, ..., s

′
m) = t′

}∣∣ , (4)

where #σ(σ1, ..., σm) = |{j∈ [m] : σj =σ}|. (5)

(Indeed, we use the notation [[m]]
def
= {0, 1, ...,m}.)

Note that
∑

t,t′ ht,t′ = |Σ|, since each σ ∈ Σ contributes to exactly one ht,t′ , and
∑

t,t′ ht,t′ ·(t+t′) = 2m,
since each location j ∈ [m+m] (resp., occurrence of a symbol) is counted once in the sum.

Claim 3.2.2 (histograms are all that matters): If isomorphism of n-long sequences over Σ can be
tested within query complexity q = q(n,Σ, ε), then it can be tested by a canonical tester that obtains
the values of each of the two sequences in q random positions and rules according to the corresponding
histogram. In other words, when testing the sequences S1, S2 : [n]→ Σ, the tester rules according to the

16It may be easier to see that the distance of S1 from being isomorphic to S2 equals
∑
σ max(0,#σ(S1)−#σ(S2)).

17A histrogram of a sequence s = (s1, ..., sm) is a sequence (h0, h1, ..., hm) such that ht equals the number of elements
that occur exactly t times in s (i.e., ht = |{σ ∈ Σ : #σ(s) = t}|, where #σ(s1, ..., sm) = |{j∈ [m] : sj =σ}|).

12



histogram of ((S1(j1), ..., S1(jq)), (S2(k1), ..., S2(kq))), where (j1, ..., jq) and (k1, ..., kq) are distributed
uniformly and independently in the set of q-long sequences of distinct elements in [n].18

Proof: For sake of clarity, we proceed in two steps (where the first step details an argument already
used before (see Footnote 15)). Given an arbitrary tester T as in the hypothesis, and fixing (n,Σ, ε)
and q = q(n,Σ, ε), we first construct an algorithm T ′ that obtains, as input, a pair of q-long sequences,
denoted ((s1, ..., sq), (s

′
1, ..., s

′
q)), invokes T , while answering its jth query to the first (resp., second)

sequence with sj (resp., s′j), and outputs the verdict of T . When analysing T ′, we consider, for any
two sequences S1, S2 : [n] → Σ, what happens when selecting (j1, ..., jq) and (k1, ..., kq) uniformly and
independently among all possible q-long sequences of distinct elements in [n], and feeding T ′ with
((S1(j1), ..., S1(jq)), (S2(k1), ..., S2(kq))). In this case the output of T ′ is distributed identically to the
output of T when given oracle access to random isomorphic copies of S1 and S2 (i.e., to the oracles
S1 ◦π1 and S2 ◦π2, where π1 and π2 are uniformly and independently distributed permutations of [n]).
Hence, T ′ distinguishes between the case that S1 is isomorphic to S2 and the case that S1 is ε-far from
being isomorphic to S2.

Next, we present the desired canonical tester, denoted T ′′. On input a (valid) historam, denoted
H = (ht,t′))t,t′∈[[q]], algorithm T ′′ selects at random a pair of q-long sequences that fits the histogram
H, feeds it to T ′, and outputs its verdict. That is, T ′′ selects uniformly at random a pair of q-long
sequences ((s1, ..., sq), (s

′
1, ..., s

′
q)) ∈ Σq+q such that

|{σ∈Σ : #σ(s1, ..., sq) = t & #σ(s′1, ..., s
′
q) = t′}| = ht,t′

holds for every t, t′ ∈ [[q]], and outputs T ′((s1, ..., sq), (s
′
1, ..., s

′
q)). Then, for any two sequences S1, S2 :

[n] → Σ, the output of T ′′ when given a histogram of a sample of q distinct random values in S1

and q distinct random values in S2 equals the output of T ′ when given the corresponding samples
(themselves!) from ψ(S1) and ψ(S2), where ψ is a random permutation of Σ. Hence, T ′′ distinguishes
between the case that S1 is isomorphic to S2 and the case that S1 is ε-far from being isomorphic to S2.

(Indeed, our argument only relies on the fact that T distinguishes between the case that ψ ◦S1 ◦π1

is isomorphic to ψ ◦ S2 ◦ π1 and the case that ψ ◦ S1 ◦ π1 is ε-far from being isomorphic to ψ ◦ S2 ◦ π1,
where π1, π2 : [n]→ [n] and ψ : Σ→ Σ are random permutations (as above).)

The core of the proof. We wish to show that a canoncal sequence-tester must make Ω(n2/3 queries
in order to distinguish between the case that it is provided with a histograph that corresponds to a
yes-instance and the case that it is provided with a histograph that corresponds to a no-instance.
The yes-instance will consists two copies of the sequence S1, whereas the no-instance will consist of
the sequences S1 and S2, where S1 and S2 will correspond to the n-grained distributions analyzed by
Valiant [18], which we will denote X1 and X2.

Each of the distributions used in Valiant’s proof [18] has n/4 elements of individual probability
weight 2/n (called light), and n2/3 elements each of weight n−2/3/2 (called heavy). Furthermore, the
proof refers to no-instances that are pairs of distributions that agree on the heavy elements, but
are disjoint on their light elements. We deconstruct these n-grained distributions by detailing the
underlying probability space [n], and the way this space is mapped to values, which are either heavy
or light. The mapping goes through sets, denoted H and L, which correspond to the heavy and light
elements.

• Fixing two disjoint sets H and L such that |H| = n2/3 and |L| = n/4, we consider a mapping of the
probability space [n] to these sets such that each element inH is assigned n1/3/2 elements and each
element in L is assigned two elements. We denote this mapping by G : [n]→ H ∪ L; that is, for
each h ∈ H (resp., ` ∈ L) it holds that Prj∈[n][G(j)=h] = n−2/3/2 (resp., Prj∈[n][G(j)=`] = 2/n).

18That is, the set {(i1, ..., iq) ∈ [n]q : |{i1, ..., iq}| = q}}.

13



• Fixing a set L′ of size |L| that is disjoint of H ∪ L, we consider a bijection φ : H ∪ L → H ∪ L′
that is invariant on H (i.e., φ(H) = H and φ(L) = L′). We shall consider the random variables
(or distributions) X1 and X2 such that X1(j) = G(j) and X2(j) = φ(G(j)).19

(We shall later view X1 and X2 as values sampled from corresponding n-long sequences S1 and
S2, where S1(j) = G(j) and S2(j) = φ(G(j)). Note that Xi represents the value of a uniformly
distributed location in Si, and that the statistical distance between X1 and X2 equals the relative
Hamming distance between S1 and S2, which in turn equals 1/2 (since S1(j) 6= S2(j) if and only
if G(j) ∈ L, and |{j ∈ [n] : G(j) ∈ L}| = n/2).)

• For a fixed m = Θ(n2/3), we denote by Y a pair of m-long sequences, each consisting of m
independent samples of X1; that is, using [n]2m as an undelying probability space, we have

Y (j1, ..., jm, k1, ..., km) = ((X1(j1), ..., X1(jm)), (X1(k1), ..., X1(km))). (6)

(Indeed, here j1, ..., jm are distributred independently in [m], and ditto for k1, ..., km. This is the
setting that is suitable for distribution-testing, and it was analyzed in [18]. Our challenge would
be to move from this setting to the one in which j1, ..., jm are distict and ditto for k1, ..., km (as
is suitable for sequence-testing).)

Likewise, we denote by Z a pair of m-long sequences such that the first sequence consists of m
independent samples of X1 and the second sequence consists of m independent samples of X2;
that is,

Z(j1, ..., jm, k1, ..., km) = ((X1(j1), ..., X1(jm)), (X2(k1), ..., X2(km))). (7)

Hence, Y and Z differ only in the values assigned to light samples that occur in the second m-long
sequence; that is, the m+ `th element of Y (j1, ..., jm, k1, ..., km) differs from the m+ `th element
of Z(j1, ..., jm, k1, ..., km) if and only if G(k`) ∈ L.

• The histograms of Y = Y (j1, ..., jm, k1, ..., km) and Z = Z(j1, ..., jm, k1, ..., km) are denoted h(Y )
and h(Z), respectively. Recall that the (t, t′)th entry in h(Y ) (resp., h(Z)) is the number of
values σ that occur t times in ((X1(j1), ..., X1(jm)) and t′ times in (X1(k1), ..., X1(km)) (resp., in
(X2(k1), ..., X2(km))).

The crucial fact, proved in [18], is that, for a sufficiently small m = Ω(n2/3), the (random variables
representing the) histograms h(Y ) and h(Z) are statistically close (say, are at total variation distance
at most 0.1).

Our aim is to show that the foregoing fact continues to hold when the probability space (underlying
these random variables) is restricted to pairs of m-long sequences of distict elements. Note that this
restriction retains only a tiny portion of the original probability space, since m = Ω(n2/3)� O(n1/2);
nevertheless, we shall show that the corresponding histographs remain statistically close. In other
words, we modify the distributions Y and Z so that they fit the samples viewed by the sequence-tester.
Recall that the underling probability space for Y (and likewise for Z) is [n]2m, whereas here we wish
the underlying space to include only pairs of m-long sequences of distinct elements in [n]. We shall
extensively use the assumption that m = c · n2/3, for a sufficiently small constant c > 0.

Starting from two uniformly and identically distributed sequences (j1, ..., jm), (k1, ..., km) ∈ [n]m,
we first observe that, with probability at least 0.99, there are no three-way collisions in (j1, ..., jm).
Furthermore, with probability at least 0.99, there are at most 2 ·

(
m
2

)
· (1/n) < m2/n � n1/3 pairwise

collisions in (j1, ..., jm). Ditto for (k1, ..., km). Conditioned on the foregoing case, for each collision

19Following Batu et. al. [3], Valiant [18] uses H = [n2/3], L = [0.5n + 1, ..., 0.75n], and L′ = [0.75n + 1, ..., n]. This
choice is, of course, immaterial. Also note that, for simplicity, we use the elements of the intermediate sets H and L also
as final value (as reflected in the fact that φ is only applied in the generation of X2 and that φ(H) = H).

14



{jp, jq} (such that jp = jq), we re-select at random (i.e., re-randomize) one of the colliding indices
(where the index to be re-randomized is selected obliviously of the sequence (k1, ..., km)). Note that
the number of potential new collisions (between the re-randomized indices and all other indices) is

upper-bounded by m2

n · m � n. Hence, with probability 0.99, the re-randomization yields an m-
long sequence of distinct elements (which is uniformly distributed among all such sequences). We
do the same for the sequence (k1, ..., km). Let us denote the resulting pair of m-long sequences by
((j′1, ..., j

′
m), (k′1, ..., k

′
m)).

Recall that in the likely case in which there are no three-way collisions in (j1, ..., jm) (resp.,
(k1, ..., km)), with high probability, the resulting (j′1, ..., j

′
m) (resp., (k′1, ..., k

′
m)) is uniformly distributed

among all m-long sequence of distinct elements in [n], and in any case (j′1, ..., j
′
m) and (k′1, ..., k

′
m) are dis-

tributed independently of one another. Hence, with high probability, the indices ((j′1, ..., j
′
m), (k′1, ..., k

′
m))

are distributed as expected by the sequence-tester. The crucial fact is that the re-randomization of in-
dices does not change the statistical difference between the histograms of the modified Y and Z by
much, because such a change occurs only due to collisions of indices in G−1(L) whereas such collisions
are rare.20 The foregoing fact will be proved next, when using ∆(., .) to denote the statistical difference
(a.k.a. total variation difference) between distributions.

Claim 3.2.3 (the effect of re-randomization): For uniformly distributed (j1, ..., jm, k1, ..., km) ∈ [n]2m

and (j′1, ..., j
′
m, k

′
1, ..., k

′
m) as generated above, consider the random variables

• Y = Y (j1, ..., jm, k1, ..., km),

• Z = Z(j1, ..., jm, k1, ..., km),

• Y ′ = Y (j′1, ..., j
′
m, k

′
1, ..., k

′
m), and

• Z ′ = Z(j′1, ..., j
′
m, k

′
1, ..., k

′
m).

Suppose that m = c · n2/3, for a sufficiently small constant c > 0 (c = 1/20 will do). Then,
∆(h(Y ′), h(Z ′)) ≤ ∆(h(Y ), h(Z)) + 0.05.

Recalling that, for a sufficiently small constant c > 0, it holds that ∆(h(Y ), h(Z)) < 0.1 (cf. [18]), we
get ∆(h(Y ′), h(Z ′)) < 0.15.

Proof: The key observation is that h(Y ) and h(Z) (and likewise h(Y ′) and h(Z ′)) reflect the pattern
of collisions among Xi-values, where Y (resp., Y ′) contains only X1-values and Z (resp., Z) contains
also X2-values in its second part. Hence, only collisions between the X1-values of indices of the first
part (i.e., j1, ..., jm) and the Xi-values of indices of the second part (i.e., k1, ..., km) contribute to
∆(h(Y ), h(Z)).21 Furthermore, such a contribution (which arises from the difference between X2 and
X1) occurs only for indices in G−1(L), since indices in G−1(H) are always assign the value of X1. The
same consideration applies to j′1, ..., j

′
m and k′1, ..., k

′
m regarding their contribution to ∆(h(Y ′), h(Z ′)).

Hence, the difference between ∆(h(Y ), h(Z)) and ∆(h(Y ′), h(Z ′)) is due to re-randomization of indices
jp (resp., kp) that reside in G−1(L) either initally or after re-randomization, and to the collision of
their Xi-value with the Xi-value of some kq or k′q (resp., jq or j′q). Details follow.

Recalling that, with probability at least 0.98, there are no three-way collisions in (j1, ..., jm) and
at most m2/n pairwise collisions in it, we consider the re-randomization applied to one index in each
pair (jp, jq) ∈ [m2] such that jp = jq (and p 6= q). The same analysis is applied to (k1, ..., km). Suppose
that we re-randomized jp, replacing it by a uniformly distributed j′p. We consider four cases.

20Since less than m2/n indices get re-randomized, and collisions may occur only with the other O(m) indices, we get a
total of O(m3/n) collisions each occurring with probability 2/n (because these are collisions of indices in G−1(L)). This
yields a total difference of O(m3/n2) = O(c3), which can be made small enough by a suitable choice of c > 0.

21We stress that collisions inside each part do not contribute to ∆(h(Y ), h(Z)), regardless if they are in the first part
(i.e., between j1, ..., jm) or in the second part (i.e., between k1, ..., km).

15



1. If G(jp) ∈ H and G(j′p) ∈ H, then the replacing of jp by j′p does not affect the difference between
∆(h(Y ), h(Z)) and ∆(h(Y ′), h(Z ′)), because these statistical differences are only due to light
indices.

(Recall that X2(k) = X1(k) if G(k) ∈ H, whereas Y = (X1(j1), ..., X1(jm), X1(k1), ..., X1(km))
and Z = (X1(j1), ..., X1(jm), X2(k1), ..., X2(km)). Therefore replacing jp ∈ G−1(H) by j′p ∈
G−1(H) may change the pattern of X1-value collisions within the Y sequence, but the same
change will occur in the Z sequence (since G(jp) and G(j′p) have values in H). In other words,
h(Y ′) may differ from h(Y ) due to the replacement of jp by j′p, but exactly the same effect occurs
between h(Z ′) and h(Z), because in all cases we refer to collisions of X1-values.)

2. If G(jp) ∈ H and G(j′p) ∈ L, then the probability that G(j′p) hits {G(kq) : q∈ [m]} (equivalently,

hits {G(kq) : q∈ [m] & G(kq)∈L})22 is at most m· 2n = 2m/n, and otherwise this re-randomization
does not affect the difference between ∆(h(Y ), h(Z)) and ∆(h(Y ′), h(Z ′)). (That is, if G(jp) ∈ H
and G(j′p) ∈ L do not hit {G(kq) : q ∈ [m] & G(kq)∈L}, then the replacement of jp by j′p does
not affect the foregoing statistical difference.)23 Hence, recalling that there are at most m2/n
collisions among the jp-indices (i.e., pairs (jp, jq) such that jp = jq and p 6= q), it follows that the

total contribution of this case is at most m2

n ·
2m
n = 2m3

n2 < 0.001, by an appropriate choice of the

constant c > 0 (in m = c · n2/3).

3. If G(jp) ∈ L and G(j′p) ∈ H, then the probability that G(jp) hits {G(kq) : q ∈ [m]} is at most
2m/n, and otherwise this re-randomization does not affect the difference between ∆(h(Y ), h(Z))
and ∆(h(Y ′), h(Z ′)). So, again, the total contribution of this case is is at most 2m3/n2 < 0.001.

4. If G(jp) ∈ L and G(j′p) ∈ L, then the probability that either G(jp) or G(j′p) hits {G(kq) : q ∈ [m]}
is at most 2 · 2m/n, and otherwise this re-randomization does not affect the difference between
∆(h(Y ), h(Z)) and ∆(h(Y ′), h(Z ′)). So the total contribution of this case is is at most 4m3/n2 <
0.002.

To summarize: The only contribution of the re-randomization of the indices that form collisions in
(j1, ..., jm) to the difference between ∆(h(Y ), h(Z)) and ∆(h(Y ′), h(Z ′)) arises from indices jp that are
re-randomized to j′p such that either jp or j′p hits {G(kq) : q ∈ [m] & G(kq)∈L}. But the probability
of this event is small (i.e., smaller than O(m3/n2) < 0.005), since the number of re-randomized indices
is relatively small (i.e., smaller than m2/n) and the probability of each hit is small (i.e., at most
2m/n). Applying the an analogous analysis to (k1, ..., km), where here we consider collisions with
either {G(jq) : q ∈ [m] & G(jq) ∈ L} or {G(j′q) : q ∈ [m] & G(j′q) ∈ L}, the claim follows (because we
were considering an event that occurs with probability at least 0.96 and showed that in that case the
difference is smaller than 2 · 0.005).

Conclusion. The theorem follows by combining Claims 3.2.2 and 3.2.3, while recalling that (with high
probability) the sequences (j′1, ...., j

′
m) and (k′1, ...., k

′
m) are uniformly and independently distributed

among the m-long sequences of distinct elements in [n]. Specifically, with high probability, the canonical
tester is presented with histograms (of either Y ′ or Z ′) that are statistically close (i.e., ∆(h(Y ′), h(Z ′)) <
0.15), and so it cannot distinguish them. On the other hand, Y ′ represents answers tom distinct random
queries made to each of the two copies of the sequence S1, whereas Z ′ represents answers to m distinct
random queries made to the sequences S1 and S2, which are at distance 1/2 of one another.24 That is,

22Indeed, for G(j′p) ∈ L to hit {G(kq) : q ∈ [m]}, it must hit {G(kq) : q ∈ [m] & G(kq)∈L}, which has cardinality at
most m. This fact implies the probability bound of m · 2

n
.

23In particular, a possible collision of G(j′p) with a value in {G(j′q) : q ∈ [m]} does not contribute to ∆(h(Y ′), h(Z′)).
The same holds, of course, for the original collision of G(jp) with G(jq).

24Recall that S1 and S2 are n-long sequences (viewed as functions defined over [n]) such that S1(j) = G(j) and
S2(j) = φ(G(j)) for every j ∈ [n], whereas X1 and X2 are defined in the same manner but viewed as random variables

16



Y ′ (resp., Z ′) represents answers from a pair of sequences that should be accepted (resp., rejected) by a
tester with probability at least 2/3. It follows that for a sufficiently small constant c > 0, isomoprphism
between sequences cannot be tested using m = c · n2/3 queries.

4 Concluding Comments

The results in this paper determine the query complexity of both version of the problem of testing
graph isomorphism, in the bounded-degree graph model, up to a factor that is linear in the size of the
largest connected components. In fact, Theorems 1.1 and 1.2 are special cases of the following general
results (which are stated only for constant ε):

1. For every sufficiently small constant ε > 0, the query complexity of ε-testing isomorphism to a
fixed n-vertex graph that consists of connected components of size at most s is between O(s ·n)1/2

and Ω(n/s)1/2.

2. For every sufficiently small constant ε > 0, the query complexity of ε-testing isomorphism between
a pair of n-vertex graphs that consist of connected components of size at most s is between
O(s1/3 · n2/3) and Ω(n/s)2/3.

The proofs of these results employ graph theoretic arguments (i.e., the notion of an expander) only
in order to reduce the analysis to problems that ignore the graph theoretic origin. We believe that
determining the query complexity of testing graph isomorphism in the general case (e.g., for connected
graphs, let alone for expanders) may require some graph theoretic insights. Two concrete challenges
follow.

Open Problem 4.1 (sublinear complexity for testing isomorphism to a fixed graph): Is it possible to
0.01-test isomorphism to a fixed 3-regular graph in query complexity that is sublinear in the number of
vertices?

Note that such a tester must have two-sided error probability (cf. Theorem 2.5).

Open Problem 4.2 (higher lower bounds for testing isomorphism between two input graphs): Does
0.01-testing isomorphism between two n-vertex graphs (of bounded degree) require ω(n2/3) queries?

Acknowledgements

I am grateful to Noga Alon and Reut Levi for helpful discussions.

References

[1] N. Alon, E. Blais, S. Chakraborty, D. Garcia-Soriano, and A. Matsliah. Nearly Tight Bounds
for Testing Function Isomorphism. SIAM Journal on Computing, Vol. 42 (2), pages 459–493,
2013.

over [n]. Also recall that

Pr[X1 6= X2] = Prj∈[n][S1(j) 6= S2(j)] = Prj∈[n][G(j) ∈ L] = 1/2.

17



[2] L. Babai and E.M. Luks. Canonical Labeling of Graphs. In 15th ACM Symposium on the
Theory of Computing, pages 171–183, 193.

[3] T. Batu, L. Fortnow, R. Rubinfeld, W.D. Smith, P. White. Testing that Distributions are
Close. In 41st IEEE Symposium on Foundations of Computer Science, pages 259–269, 2000.

[4] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. Testing Random
Variables for Independence and Identity. In 42nd IEEE Symposium on Foundations of Com-
puter Science, pages 442–451, 2001.

[5] E. Blais, C.L. Canonne, and T. Gur. Distribution Testing Lower Bounds via Reductions from
Communication Complexity. In 32nd Computational Complexity Conference, pages 28:1–
28:40, 2017.

[6] B. Bollobas. A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled
Regular Graphs. European Journal of Combinatorics, Vol. 1, 311–316, 1980.

[7] B. Bollobas. The Isoperimetric Number of Random Regular Graphs. European Journal of
Combinatorics, Vol. 9, 241–244, 1988.

[8] E. Fischer and A. Matsliah. Testing Graph Isomorphism. SIAM Journal on Computing,
Vol. 38 (1), pages 207–225, 2008.

[9] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[10] O. Goldreich, S. Goldwasser, and D. Ron. Property Testing and its Connection to Learning
and Approximation. Journal of the ACM, pages 653–750, July 1998.

[11] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

[12] O. Goldreich and D. Ron. On Testing Expansion in Bounded-Degree Graphs. ECCC, TR00-
020, March 2000.

[13] O. Goldreich and D. Ron. On Proximity Oblivious Testing. SIAM Journal on Computing,
Vol. 40 (2), pages 534–566, 2011.

[14] T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness in General
Graphs. SIAM Journal on Computing, Vol. 33 (6), pages 1441–1483, 2004.

[15] M. Kusumoto and Y. Yoshida. Testing Forest-Isomorphism in the Adjacency List Model.
In Int. Colloquium on Automata, Languages and Programming, pages 763–774, LNCS 8572,
2014.

[16] M. Parnas and D. Ron. Testing the Diameter of Graphs. Random Structures and Algorithms,
Vol. 20 (2), pages 165–183, 2002.

[17] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong Lower Bounds for Approximating
Distribution Support Size and the Distinct Elements Problem. SIAM Journal on Computing,
Vol. 39 (3), pages 813–842, 2009.

[18] P. Valiant. Testing Symmetric Properties of Distributions, PhD Thesis, MIT, 2012.

[19] G. Valiant and P. Valiant. Instance-by-instance optimal identity testing. ECCC, TR13-111,
2013.

18

ECCC   ISSN 1433-8092 

https://eccc.weizmann.ac.il


