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Abstract

Lifting theorems are theorems that relate the query complexity of a function f : {0, 1}n → {0, 1} to
the communication complexity of the composed function f ◦gn, for some “gadget” g : {0, 1}b×{0, 1}b →
{0, 1}. Such theorems allow transferring lower bounds from query complexity to the communication
complexity, and have seen numerous applications in the recent years. In addition, such theorems can be
viewed as a strong generalization of a direct-sum theorem for the gadget g.

We prove a new lifting theorem that works for all gadgets g that have logarithmic length and
exponentially-small discrepancy, for both deterministic and randomized communication complexity. Thus,
we significantly increase the range of gadgets for which such lifting theorems hold.

Our result has two main motivations: First, allowing a larger variety of gadgets may support more
applications. In particular, our work is the first to prove a randomized lifting theorem for logarithmic-size
gadgets, thus improving some applications of the theorem. Second, our result can be seen as a strong
generalization of a direct-sum theorem for functions with low discrepancy.

1 Introduction

1.1 Background

In this work, we prove new lifting theorems for a large family of gadgets. Let f : {0, 1}n → {0, 1} and
g : {0, 1}b × {0, 1}b → {0, 1} be functions (where g is referred to as a gadget). The block-composed function
f ◦ gn is the function that takes n inputs (x1, y1), . . . , (xn, yn) for g and computes f ◦ gn as,

f ◦ gn ((x1, y1), . . . , (xn, yn)) = f(g(x1, y1), g(x2, y2), . . . , g(xn, yn)) .

Lifting theorems are theorems that relate the communication complexity of f ◦ gn to the query complexity
of f and the communication complexity of g.

More specifically, consider the following communication problem: Alice gets x1, . . . , xn, Bob gets y1, . . . , yn,
and they wish to compute the output of f ◦ gn on their inputs. The natural protocol for doing so is the
following: Alice and Bob jointly simulate a decision tree of optimal height for solving f . Any time the tree
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queries the i-th bit, they compute g on (xi, yi) by invoking the best possible communication protocol for g.
A lifting theorem is a theorem that says that this natural protocol is optimal.

We note that it is often desirable to consider the case where f is a search problem with an arbitrary
range rather than a boolean function (see Section Section 2 for the definition of search problems). Most of
the known results, as well as the results of this work, apply to this general case. However, for the simplicity
of presentation, we focus for now on the case where f is a boolean function.

Applications of lifting theorems. One important reason for why lifting theorems are interesting is that
they create a connection between query complexity and communication complexity. This connection, besides
being interesting in its own right, allows us to transfer lower bounds and separations from the from query
complexity (which is a relatively simple model) to a communication complexity (which is a significantly
richer model).

In particular, the first result of this form, due to Raz and McKenzie [RM99], proved a lifting theorem from
deterministic query complexity to deterministic communication complexity when g is the index function.
They then used it to prove new lower bounds on communication complexity by lifting query-complexity lower-
bounds. More recently, Göös, Pitassi and Watson [GPW15] applied that theorem to separate the logarithm of
the partition number and the deterministic communication complexity of a function, resolving a long-standing
open problem. This too was done by proving such a separation in the setting of query complexity and then
lifting it to the setting of communication complexity. This result stimulated a flurry of work on lifting
theorems of various kinds, such as: lifting for zero-communication protocols [GLM+16], round-preserving
lifting theorems with applications to time-space trade-offs for proof complexity [dRNV16], deterministic
lifting theorems with other gadgets [CKLM17, WYY17], lifting theorems from randomized query complexity
to randomized communication complexity [GPW17], lifting theorems for DAG-like protocols [GGKS18] with
applications to monotone circuit lower bounds, lifting theorems for asymmetric communication problems
[CKLM18] with applications to data-structures, a lifting theorem for the EQUALITY gadget [LM18], lifting
theorems for XOR functions with applications to the log-rank conjecture [HHL18], and lifting theorems
for applications to monotone formula complexity, monotone span programs, and proof complexity [GP18,
RPRC16, PR17, PR18]. There are also lifting theorems which lift more analytic properties of the function
like approximate degree due to Sherstov [She11] and independently due to Shi and Zhu [SZ09].

In almost all known lifting theorems, the function f can be arbitrary while g is usually a specific function
(e.g., the index function). This raises the following natural question: for which choices of g can we prove
lifting theorems? This question is interesting because usually the applications of lifting theorems work by
reducing the composed function f ◦ gn to some other problem of interest, and the choice of the gadget g
affects the efficiency of such reductions.

In particular, applications of lifting theorems often depend on the size of the gadget, which is the length b
of the input to g. Both the deterministic lifting theorem of Raz and McKenzie [RM99] and the randomized
lifting theorem of Göös et al. [GPW17] use a gadget of very large size (polynomial in n). Reducing the
gadget size to a constant would have many interesting applications.

In the deterministic setting, the gadget size was recently improved to logarithmic by the independent
works of [CKLM17] and [WYY17]. Moreover, [CKLM17, Koz18] showed the lifting to work for a class
of gadgets with a certain pseudorandom property rather than just a single specific gadget. A gadget of
logarithmic size was also obtained earlier in lifting theorems for more specialized models, such as the work
of [GLM+16]. However, the randomized lifting theorem of Göös et al. [GPW17] seemed to work only with
a specific gadget of polynomial size.

In this work, we prove a lifting theorem for a large family of gadgets, namely, all functions g with
logarithmic length and exponentially-small discrepancy (see Section 1.2 for details). Our theorem holds both
in the deterministic and the randomized setting. This allows for a considerably larger variety of gadgets:
in particular, our theorem is the first lifting theorem in the randomized setting that uses logarithmic-size
gadgets, it allows lifting with the inner-product gadget (previously known only in the deterministic setting
[CKLM17, WYY17]), and it is also the first lifting theorem that shows that a random function can be used
as a gadget.
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We would like point out that, although we reduce the gadget size to logarithmic in this work, it is not
enough to obtain the interesting applications a constant sized gadget would have yielded. Nevertheless, our
randomized lifting theorem still has some applications. For example, our theorem can be used to simplify
the lower bounds of Göös and Jayram [GJ16] on AND-OR trees and MAJORITY trees, since we can now
obtain them directly from the randomized query complexity lower bounds rather than going through conical
juntas. In addition, our theorem can be used to derive the separation of randomized separation from partition
number (due to [GJPW15]) for functions with larger complexity (compared to their input length).

Lifting theorems as a generalization of direct-sum theorems. Lifting theorems can also be moti-
vated from another angle, which is particularly appealing in our case: lifting theorems can be viewed as a
generalization of direct-sum theorems. The direct-sum question is a classical question in complexity theory,
which asks whether performing a task on n independent inputs is n times harder than performing it on
a single input. When specialized to the setting of communication complexity, a direct-sum theorem is a
theorem that says that the communication complexity of a computing g on n independent inputs is about
n times larger than the communication complexity of g. A related type of result, which is sometimes referred
to as an “XOR lemma”, says that computing the XOR of the outputs of g on n independent inputs is about
m times larger than the communication complexity of g.

The direct-sum question for communication complexity has been raised in [KRW91], and has since at-
tracted much attention. While we do not have a general direct-sum theorem for all functions, many works
have proved direct-sum theorems and XOR lemmas for large families of functions [FKNN95, Sha03, BPSW06,
LSS08, Kla10, BBCR10, BRWY13, Bra17] as well as provided counterexamples [FKNN95, GKR14, GKR16b,
GKR16a].

Now, observe that lifting theorems are natural generalizations of direct-sum theorems and XOR lemmas:
in particular, if we set f to be the identity function or the parity function, we get a direct sum theorem or an
XOR lemma for g, respectively. More generally, a lifting theorem says that the communication complexity
of computing any function f of the outputs of g on independent inputs is larger than the complexity of g
by a factor that depends on the query complexity of f . This is perhaps the strongest and most natural
“direct-sum-like theorem” for g that one could hope for.

From this perspective, it is natural to ask which functions g admit such a strong theorem. The previous
works of [RM99, GPW17] can be viewed as establishing this theorem only for the index function. The
work of [CKLM17, Koz18] have made further progress, establishing this theorem for a class of functions
with satisfy certain hitting property. However, the latter property is somewhat non-standard and ad hoc,
and their theorem holds only in the deterministic setting. In this work, we establish such theorems for all
functions g with low discrepancy, which is a standard and well-studied complexity measure, and we do so in
both the deterministic and the randomized setting.

1.2 Our results

In this work, we prove lifting theorems for gadgets of low-discrepancy. In what follows, we denote by Ddt and
Dcc the deterministic query complexity and communication complexity of a task respectively, and by Rdt

ε and
Rcc
ε the randomized query complexity and (public-coin) communication complexity with error probability ε

respectively. Given a search problem S and a gadget g : {0, 1}b × {0, 1}b → {0, 1}, it is easy to see that

Dcc(S ◦ gn) = O
(
Ddt(S) · b

)
Rcc
ε (S ◦ gn) = O

(
Rdt(S) · b

)
.

This upper bound is proved using the simple protocol discussed earlier: the party simulates the optimal
decision tree for S, and whenever a query is made, the parties compute g on the corresponding input in
order to answer the query (which can be done by communicating at most b+ 1 bits). Our main result says
that when g has low discrepancy and b is at least logarithmic, that this upper bound is roughly tight. In
order to state this result, we first recall the definition of discrepancy.
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Definition 1.1. Let Λ be a finite set, let g : Λ × Λ → {0, 1} be a function, and let U, V be independent
random variables that are uniformly distributed over Λ. Given a combinatorial rectangle R ⊆ Λ × Λ, the
discrepancy of g with respect to R, denoted discR(g), is defined as follows:

discR(g) = |Pr [g(U, V ) = 0 and (U, V ) ∈ R]− Pr [g(U, V ) = 1 and (U, V ) ∈ R]| .

The discrepancy of g, denoted disc(g), is defined as the maximum of discR(g) over all combinatorial rectan-
gles R ⊆ Λ× Λ.

Discrepancy is a useful measure for the complexity of g, and in particular, it is well-known that for ε > 0:

Dcc(g) ≥ Rcc
ε (g) ≥ log

1− 2 · ε
disc(g)

(see, e.g., [KN97]). We now state our main result.

Theorem 1.2 (Main theorem). For every η > 0 there exists c = O( 1
η2 · log 1

η ) such that the following holds:

Let S be a search problem that takes inputs from {0, 1}n, and let g : {0, 1}b×{0, 1}b → {0, 1} be an arbitrary
function such that disc(g) ≤ 2−η·b and such that b ≥ c · log n. Then

Dcc(S ◦ gn) = Ω
(
Ddt(S) · b

)
,

and for every ε > 0 it holds that

Rcc
ε (S ◦ gn) = Ω

((
Rdt
ε′ (S)−O(1)

)
· b
)
,

where ε′ = ε+ 2−η·b/8.

We note that our results are in fact more general, and preserve the round complexity of S among other
things. See Sections 4 and 5 for more details.

Remark 1.3. Note that our main theorem can be applied to a random function g : {0, 1}b×{0, 1}b → {0, 1},
since such a function has a very low discrepancy. As noted above, we believe that our theorem is the first
theorem to allow the gadget to be a random function.

Unifying deterministic and randomized lifting theorems. The existing proofs of deterministic lifting
theorems and randomized lifting theorems are quite different. While both proofs rely on information-theoretic
arguments, they measure information in different ways. In particular, while the randomized lifting theorem of
[GPW17] (following [GLM+16]) measures information using min-entropy, the deterministic lifting theorems
of [RM99, GPW15, CKLM17, WYY17] (following [EIRS01]) measure information using a notion known as
thickness (with [GGKS18] being a notable exception). A natural direction of further research is to investigate
if these disparate techniques can be unified. Indeed, a related question was raised by [GLM+16], who asked
if min-entropy based techniques could be used to prove (or simplify the existing proof of) Raz–McKenzie
style deterministic lifting theorems.

Our work answers this question affirmatively: we prove both the deterministic and randomized lifting
theorems using the same strategy. In particular, both proofs measure information using min-entropy. In
doing so, we unify both lifting theorems under the same framework.

1.3 Our techniques

We turn to describe the high-level ideas that underlie the proof of our main theorem. Following the previous
works, we use a “simulation argument”: We show that given a protocol Π that solves S ◦ gn with commu-
nication complexity C, we can construct a decision tree T that solves S with query complexity O(Cb ). The
decision tree T works by simulating the action of the protocol Π (hence the name “simulation argument”).
We now describe this simulation in more detail, following the presentation of [GPW17].
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The simulation argument. For simplicity of notation, let us denote Λ = {0, 1}b, so g is a function from
a “block” in Λ × Λ to {0, 1}. Let G = gn : Λn × Λn → {0, 1}n be the function that takes n disjoint blocks
and computes the outputs of g on all of them. We assume that we have a protocol Π that solves S ◦G with
complexity C, and would like to construct a decision tree T that solves S with complexity O(Cb ). The basic
idea is that given an input z ∈ {0, 1}n, the tree T simulates the action of Π on the random inputs (X,Y )
that are uniformly distributed over G−1(z). Clearly, it holds that S ◦G(X,Y ) = S(z), so this simulation, if
done right, outputs the correct answer.

The core issue in implementing such a simulation is the following question: how can T simulate the action
of Π on (X,Y ) ∈ G−1(z) without knowing z? The answer is that as long as the protocol Π has transmitted
less than ε · b bits of information about every block (Xi, Yi) (for some specific ε > 0), the distribution of
(X,Y ) is similar to the uniform distribution in a certain sense (that will be formalized soon). Thus, the
tree T can pretend that (X,Y ) are distributed uniformly, and simulate the action of Π on such inputs, which
can be done without knowing z.

This idea can be implemented as long as the protocol has transmitted less than ε · b bits of information
about every block (Xi, Yi). However, at some point, the protocol may transmit more than ε · b bits of
information about some blocks. Let I ⊆ [n] denote the set of these blocks. At this point, it is no longer
true that the distribution of (X,Y ) is similar to the uniform distribution. However, it can be shown that
the distribution of (X,Y ) is similar to the uniform distribution conditioned on gI(XI , YI) = zI . Thus, the
tree T queries the bits in zI , and can now continue the simulation of Π on (X,Y ) ∈ G−1(z) by pretending
that (X,Y ) are distributed uniformly conditioned on gI(XI , YI) = zI . The tree proceeds in this way, adding
blocks to I as necessary, until the protocol Π ends, at which point T halts and outputs the same output
as Π.

It remains to show that the query complexity of T is at most O(Cb ). To this end, observe that the query
complexity of T is exactly the size of the set I at the end of the simulation. Moreover, recall that the set I
is the set of blocks on which the protocol transmitted at least ε · b bits of information. Hence, at any given
point, the protocol must have transmitted at least ε · b · |I| bits. On the other hand, we know by assumption
that the protocol never transmitted more than C bits. This implies that ε · b · |I| ≤ C and therefore the
query complexity of the tree T is at most |I| ≤ C

ε·b = O(Cb ). This concludes the argument.

Our contribution. In order to implement the foregoing simulation argument, there are two technical
issues that need to be addressed and are relevant at this point:

• The uniform marginals issue: In the above description, we argued that as long the protocol has not
transmitted too much information, the distribution of (X,Y ) is “similar to the uniform distribution”.
The question is how do we formalize this idea. This issue was dealt with implicitly in several works
in the lifting literature since [RM99], and was made explicit in [GPW17] as the “uniform marginals
lemma”: if every set of blocks in (X,Y ) has sufficient min-entropy, then each of the marginals X,Y on
its own is close to the uniform distribution. In [GPW17], they proved this lemma for the case where
g is the index function, and in [GLM+16] a very similar lemma was proved for the case where g is the
inner product function.

• The conditioning issue: As we described above, when the protocol transmits too much information
about a set of blocks I ⊆ [n], the tree T queries zI and conditions the distribution of (X,Y ) on the
event that gI(XI , YI) = zI . In principle, this conditioning may reveal information on (X[n]−I , Y[n]−I),
which might reduce their min-entropy and ruin their uniform-marginals property. In order for the
simulation argument to work, one needs to show that this cannot happen, and the conditioning will
never reveal too much information about (X[n]−I , Y[n]−I).
In the works of [RM99, WYY17, GPW17] this issue was handled by arguments that are tailored
to the index and inner product functions. The work of [CKLM17] gave this issue a more general
treatment, by identifying an abstract property of g that prevents the conditioning from revealing too
much information. However, as discussed above, this abstract property is somewhat ad hoc, and only
works for deterministic simulation.
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Our contribution is dealing with both issues in the general setting where g is an arbitrary low-discrepancy
gadget. In order to deal with the first issue, we prove a “uniform marginals” lemma for such gadgets g:
this is relatively easy, since the proof of [GLM+16] for the inner product gadget turns out to generalize in a
straightforward way to arbitrary low-discrepancy gadgets.

The core of this work is in dealing with the conditioning issue. Our main technical lemma that says that
as long as every set of blocks in (X,Y ) has sufficient min-entropy, there are only few possible values of X,Y
that are “dangerous” (in the sense that they may lead the conditioning to leak too much information). We
now modify the simulation such that it discards these dangerous values before performing the conditioning.
Since there are only few of those dangerous values, discarding them does not reveal too much information
on X and Y , and the simulation can proceed as before.

1.4 Open problems

The main question that arises from this work is how much more general the gadget g can be? As was
discussed in Section 1.1, lifting theorems can be viewed as a generalization of direct-sum theorems. In the
setting of randomized communication complexity, it is known that the “ability of g to admit a direct-sum
theorem” is characterized exactly by a complexity measure called the information cost of g (denoted IC(g)).
In particular, the complexity of computing a function g on n independent copies is ≈ n · IC(g). [BBCR10,
BR14, Bra17]. This leads to the natural conjecture that a lifting theorem should hold for every gadget g
that has sufficiently high information cost.

Conjecture 1.4. There exists a constant c > 0 such that the following holds. Let S be any search problem
that takes inputs from {0, 1}n, and let g : {0, 1}b × {0, 1}b → {0, 1} be an arbitrary function such that
IC(g) ≥ c · log n. Then

Rcc
ε (S ◦ gn) = Ω

(
Rdt
ε′ (S) · IC(g)

)
.

Proving this conjecture would give us a nearly-complete understanding of the lifting phenomenon which,
in addition to being interesting its own right, would likely lead to many applications. In particular, this
conjecture implies our result, since it is known that log 1

disc(g) (roughly) lower bounds the information cost

of g [KLL+15].
Conjecture 1.4 is quite ambitious. As intermediate goals, one could attempt to prove such a lifting

theorem for other complexity measures that are stronger than discrepancy and weaker than information cost
(see [JK10, KLL+15] for several measures of this kind). To begin with, one could consider the well-known
corruption bound of [Yao83, BFS86, Raz92]: could we prove a lifting theorem for an arbitrary gadget g that
has a low corruption bound? A particularly interesting example for such a gadget is the disjointness function
— indeed, proving a lifting theorem for the disjointness gadget would be interesting in its own right and
would likely have applications, in addition to being a step toward Conjecture 1.4.

An even more modest intermediate goal is to gain better understanding of lifting theorems with respect
to discrepancy. For starters, our result only holds1 for gadgets whose discrepancy is exponentially vanishing
in the gadget size. Can we prove a lifting theorem for gadgets g with larger discrepancy? In particular, since
the randomized communication complexity of g is lower bounded by Ω(log 1

disc(g) ), the following conjecture

comes to mind.

Conjecture 1.5. There exists a constant c > 0 such that the following holds. Let S be any search problem
that takes inputs from {0, 1}n, and let g : {0, 1}b × {0, 1}b → {0, 1} be an arbitrary function such that
log 1

disc(g) ≥ c · log n. Then

Rcc
ε (S ◦ gn) = Ω

(
Rdt
ε′ (S) · log

1

disc(g)

)
.

Another interesting direction is to consider discrepancy with respect to other distributions. The definition of
discrepancy we gave above (Definition 1.1) is a special case of a more general definition, in which the random

1More accurately, our result can be applied to gadgets with larger discrepancy, but then the gadget size has to be larger
than logarithmic.
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variables (U, V ) are distributed according to some fixed distribution µ over Λ×Λ. Thus, our result works only
when µ is the uniform distribution. Can we prove a lifting theorem that holds for an arbitrary choice of µ?
While we have not verified it, we believe that our proof can yield a lifting theorem that works whenever µ is
a product distribution (after some natural adaptations). However, proving such a lifting theorem for non-
product distributions seems to require new ideas. We note that direct-sum theorems for discrepancy have
been proved by [Sha03, LSS08], and proving Conjecture 1.4 (and extending it to an arbitrary distribution µ)
seems like a natural extension of their results.

Yet another interesting direction is to consider the lifting analogue of strong direct product theorems.
Such theorems say that when we compute g on n independent inputs, then not only that the communication
complexity increases by a factor of n, but the success probability also drops exponentially in n (see, e.g.,
[Sha03, Kla10, Dru12, BRWY13]). A plausible analogue for lifting theorems is to conjecture that the success
probability of computing S ◦ gn drops exponentially in the query complexity of S. It would be interesting
to see a result along these lines.

Finally, it remains major open problem of the lifting literature to prove a lifting theorem that uses gadgets
of constant size.

Organization of the paper. In Section 2, we provide the required preliminaries. In Section 3, we set
up the lifting machinery that is used in both the deterministic and the randomized lifting results, including
our “uniform marginals lemma” and our main technical lemma. We prove the deterministic part of our main
theorem in Section 4, and the randomized part of our main theorem in Section 5.

2 Preliminaries

We assume familiarity with the basic definitions of communication complexity (see, e.g., [KN97]). For any

n ∈ N, we denote [n]
def
= {1, . . . , n}. Given a boolean random variable V , we denote the bias of V by

bias(V )
def
= |Pr [V = 0]− Pr [V = 1]| .

Given an alphabet Λ and a set I ⊆ [n], we denote by ΛI the set of strings of length |I| which are indexed
by I. Given a string x ∈ Λn and a set I ⊆ [n], we denote by xI the projection of x to the coordinates in I
(in particular, x∅ is defined to be the empty string). Given a boolean function g : X ×Y → {0, 1} and a set

I ⊆ [n], we denote by gI : X I × YI → {0, 1}I the function that takes as inputs |I| pairs from X × Y that

are indexed by I, and outputs the string in {0, 1}I whose i-th bit is the output of g on the i-th pair. In

particular, we denote gn
def
= = g[n], so the gn takes as inputs x ∈ Xn, y ∈ Yn and outputs the binary string

gn(x, y)
def
= (g(x1, y1), . . . , g(xn, yn)) .

For every I ⊆ [n], we denote by g⊕I : X I ×YI → {0, 1} the function that given x ∈ X I and y ∈ YI , outputs
the parity of the string gI(x, y).

Search problems. Given a finite set of inputs I and a finite set of outputs O, a search problem S is a
relation between I and O. Given z ∈ I, we denote by S(z) the set of outputs o ∈ O such that (z, o) ∈ S.
Without loss of generality, we may assume that S(z) is always non-empty, since otherwise we can set
S(z) = {⊥} where ⊥ is some special failure symbol that does not belong to O.

Intuitively, a search problem S represents the following task: given an input z ∈ I, find a solution
o ∈ S(z). In particular, if I = X × Y for some finite sets X ,Y, we say that a deterministic protocol Π
solves S if for every input (x, y) ∈ I, the the output of Π is in S(x, y). We say that a randomized protocol Π
solves S with error ε if for every input (x, y) ∈ I, the output of Π is in S(x, y) with probability at least 1−ε.

We denote the deterministic communication complexity of a search problem S with Dcc(S). Given ε > 0,
we denote by Rcc

ε (S) the randomized (public-coin) communication complexity of S with error ε (i.e., the
minimum worst-case complexity of a randomized protocol that solves S with error ε).

Given a search problem S ⊆ {0, 1}n ×O, we denote by S ◦ gn ⊆ (Xn ×Yn)×O the search problem that
satisfies for every x ∈ Xn and y ∈ Yn that S ◦ gn(x, y) = S(gn(x, y)).
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2.1 Decision trees

Informally, a decision tree is an algorithm that solves a search problem S ⊆ {0, 1}n × O by querying the
individual bits of its input. The tree is computationally unbounded, and its complexity is measured by the
number of bits it queried.

Formally, a deterministic decision tree T from {0, 1}n to O is a binary tree in which every internal node
is labeled with a coordinate in [n] (which represents a query), every edge is labeled by a bit (which represents
the answer to the query), and every leaf is labeled by an output in O. Such a tree computes a function
from {0, 1}n to O in the natural way, and with a slight abuse of notation, we denote this function also
as T . The query complexity of T is the depth of the tree. We say that a tree T solves a search problem
S ⊆ {0, 1}n ×O if for every z ∈ {0, 1}n it holds that T (z) ∈ S(z). The deterministic query complexity of S,
denoted Ddt(S), is the minimal query complexity of a decision tree that solves S.

A randomized decision tree T is a random variable that takes deterministic decision trees as values. The
query complexity of T is the maximal depth of a tree in the support of T . We say that T solves a search
problem S ⊆ {0, 1}n ×O with error ε if for every z ∈ {0, 1}n it holds that

Pr [T (z) ∈ S(z)] ≥ 1− ε.

The randomized query complexity of S with error ε, denoted Rdt
ε , is the minimal query complexity of a

randomized decision tree that solves S with error ε. Again, when we omit ε, it is assumed to be 1
3 .

2.1.1 Parallel decision-trees

Our lifting theorems have the property that they preserve the round complexity of protocols, which is useful
for some applications [dRNV16]. In order to define this property, we need a notion of a decision tree that
has an analogue of “round complexity”. Such a notion, due to [Val75], is called a parallel decision tree.
Informally, a parallel decision tree is a decision tree that works in “rounds”, where in each round multiple
queries are issued simultaneously. The “round complexity” of the tree is the number of rounds, whereas the
query complexity is the total number of queries issued.

Formally, a deterministic parallel decision tree T from {0, 1}n to O is a rooted tree in which every internal
node is labeled with a set I ⊆ [n] (representing the queries issued simultaneously at this round) and has

degree 2|I|. The edges going out of such a node are labeled with all the possible assignments in {0, 1}I , and
the every leaf is labeled by some output o ∈ O. As before, such a tree naturally computes a function that
is denoted by T , and it solves a search problem S ⊆ {0, 1}n × O if T (z) ∈ S(z) for all z ∈ {0, 1}n. The
depth of such a tree is now the analogue of the number of rounds in a protocol. The query complexity of T is
defined as the maximum, over all leaves `, of the sum of the sizes of the sets I that are labeling the vertices
on the path from the root to `. A randomized parallel decision tree is defined analogously to the definition
of randomized decision trees above.

2.2 Fourier analysis

Given a set S ⊆ [m], the character χS is the function from {0, 1}m to R that is defined by

χS(z)
def
= (−1)

⊕
i∈S zi .

Here, if S = ∅ then we define
⊕

i∈S zi = 0. Given a function f : {0, 1}m → R, its Fourier coefficient f̂(S) is
defined as

f̂(S)
def
=

1

2m

∑
z∈{0,1}m

f(z) · χS(z).

It is a standard fact of Fourier analysis that f can be written as

f(z) =
∑
S⊆[m]

f̂(S) · χS(z). (1)
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We have the following useful observation.

Fact 2.1. Let Z be a random variable taking values in {0, 1}m, and let µ : {0, 1}m → R be its density
function. Then, for every set S ⊆ [m] it holds that

|µ̂(S)| = 2−m · bias(
⊕
i∈S

Zi).

In particular, µ̂(∅) = 2−m.

Proof. Let S ⊆ [m]. It holds that

|µ̂(S)| = 2−m ·

∣∣∣∣∣∣
∑

z∈{0,1}m
µ(z) · χS(z)

∣∣∣∣∣∣
= 2−m ·

∣∣∣∣∣∣
∑

z∈{0,1}m
µ(z) · (−1)

⊕
i∈S zi

∣∣∣∣∣∣
= 2−m ·

∣∣∣∣∣∣
∑

z∈{0,1}m:
⊕
i∈S zi=0

µ(z)−
∑

z∈{0,1}m:
⊕
i∈S zi=1

µ(z)

∣∣∣∣∣∣
= 2−m ·

∣∣∣∣∣Pr

[⊕
i∈S

Zi = 0

]
− Pr

[⊕
i∈S

Zi = 1

]∣∣∣∣∣
= 2−m · bias(

⊕
i∈S

Zi),

as required. The “in particular” part follows by noting that in the case of S = ∅, the character χS is the
constant function 1, and recalling that the sum of µ(z) over all z’s is 1. �

2.3 Probability

Given two distributions µ1, µ2 over a finite sample space Ω, the statistical distance (or total variation distance)
between µ1 and µ2 is

|µ1 − µ2| = max
E⊆Ω
{|µ1(E)− µ2(E)|} .

It is not hard to see that the maximum is attained when E consists of all the values ω ∈ Ω such that
µ1(ω) > µ2(ω). We say that µ and µ2 are ε-close if |µ− µ2| ≤ ε. The min-entropy of a random variable X,
denoted H∞(X), is the largest number k ∈ R such that for every value x it holds that

Pr [X = x] ≤ 2−k.

Min-entropy has the following easy-to-prove properties.

Fact 2.2. Let X be a random variable and let E be an event. Then, H∞(X|E) ≥ H∞(X)− log 1
Pr[E] .

Fact 2.3. Let X1, X2 be random variables taking values from sets X1,X2 respectively. Then, H∞(X1) ≥
H∞(X1, X2)− log |X2|.

We say that a distribution is k-flat if it is uniformly distributed over a subset of the sample space of size at
least 2k. The following standard fact is useful.

Fact 2.4. If a random variable X has min-entropy k, then its distribution is a convex combination of k-flat
distributions.
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2.3.1 Vazirani’s Lemma

Vazirani’s lemma is a useful result which says that a random string is close to being uniformly distributed if
the XOR of every set of bits in the string has a small bias. We use the following variant of the lemma due
to [GLM+16].

Lemma 2.5 ([GLM+16]). Let ε > 0, and let Z be a random variable taking values in {0, 1}m. If for every
non-empty set S ⊆ [m] it holds that

bias(
⊕
i∈S

Zi) ≤ ε · (2 ·m)
−|S|

(2)

then for every z ∈ {0, 1}m it holds that

(1− ε) · 1

2m
≤ Pr [Z = z] ≤ (1 + ε) · 1

2m
.

Proof. Let µ : {0, 1}m → R be the density function of Z, and let z ∈ {0, 1}m. By Equation 1 it holds that

∣∣µ(z)− 2−m
∣∣ =

∣∣∣∣∣∣
∑
S⊆[m]

µ̂(S) · χS(z)− 2−m

∣∣∣∣∣∣
(µ̂(∅) = 2−m by Fact 2.1) =

∣∣∣∣∣∣
∑

S⊆[m]:S 6=∅

µ̂(S) · χS(z)

∣∣∣∣∣∣
(Since |χS(z)| is always 1) ≤

∑
S⊆[m]:S 6=∅

|µ̂(S)|

(Fact 2.1) = 2−m ·
∑

S⊆[m]:S 6=∅

bias(
⊕
i∈S

Zi)

= 2−m ·
∑

S⊆[m]:S 6=∅

bias(
⊕
i∈S

Zi)

(Inequality 2) ≤ 2−m ·
∑

S⊆[m]:S 6=∅

ε · (2 ·m)
−|S|

= ε · 2−m ·
m∑
i=1

(
m

i

)
· (2 ·m)

−i

≤ ε · 2−m ·
m∑
i=1

mi · (2 ·m)
−i

≤ ε · 2−m ·
m∑
i=1

2−i

≤ ε · 2−m,

as required. �

Lemma 2.5 says that if the bias of
⊕

i∈S Zi small for every S, then Z is close to being uniformly
distributed. It turns out that if the latter assumption holds only for large sets S, we can still deduce
something useful, namely, that the min-entropy of Z is high.

Lemma 2.6. Let t ∈ N be such that t ≥ 1, and let Z be a random variable taking values in {0, 1}m. If for
every set S ⊆ [m] such that |S| ≥ t it holds that

bias(
⊕
i∈S

Zi) ≤ (2 ·m)
−|S|

,
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then, H∞(Z) ≥ m− t logm− 1.

Proof. Observe that if m = 1 then the bound holds vacuously, so we may assume that m ≥ 2. Let
µ : {0, 1}m → R be the density function of Z, and let z ∈ {0, 1}m. By Equality 1 it holds that

µ(z) =
∑
S⊆[m]

µ̂(S) · χS(z)

(Since |χS(z)| is always 1) ≤
∑
S⊆[m]

|µ̂(S)|

(Fact 2.1) ≤ 2−m ·
∑
S⊆[m]

bias(⊕i∈SZi)

≤ 2−m ·

 ∑
S⊆[m]:|S|<t

bias(⊕i∈SZi) +
∑

S⊆[m]:|S|≥t

bias(⊕i∈SZi)


We now bound each of the two terms separately. The term for sets S whose size is at least t can be upper
bounded by 1 using exactly the same calculation as in the proof of Lemma 2.5. In order to upper bound the
term for sets whose size is less than t, observe that bias(⊕i∈SZi) ≤ 1 for every S ⊆ [m] and and therefore

∑
S⊆[m]:|S|<t

bias(⊕i∈SZi) ≤
t−1∑
i=0

(
m

i

)

≤
t−1∑
i=0

mi

=
mt − 1

m− 1

(Since m ≥ 2) ≤ mt − 1.

It follows that

µ(z) ≤ 2−m ·
[(
mt − 1

)
+ 1
]

= 2−(m−t·logm).

Thus, H∞(Z) ≥ m− t · logm as required. Note that this bound is a bit stronger than claimed in the lemma:
indeed, we only need the “−1” term in the lemma in order to deal with the case where m = 1. �

2.3.2 Coupling

Let µ1, µ2 be two distributions over sample spaces Ω1,Ω2. A coupling of µ1 and µ2 is a distribution ν over
the sample space Ω1×Ω2 whose marginal over the first coordinate is µ1 and whose marginal over the second
coordinate is µ2. In the case where Ω1 = Ω2 = Ω, the following standard fact allows us to use couplings to
study the statistical distance between µ1 and µ2.

Fact 2.7. Let µ1, µ2 be two distributions over a sample space Ω. The statistical distance between µ1 and µ2

is equal to the minimum, over all couplings ν of µ1 and µ2, of

Pr
(X,Y )←ν

[X 6= Y ] .

In particular, we can upper bound the statistical distance between µ1 and µ2 by constructing a coupling ν
in which the probability that X 6= Y is small.
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2.4 Prefix-free codes

A set of strings C ⊆ {0, 1}∗ is called a prefix-free code if no string in C is a prefix of another string in C.
Given a string w ∈ {0, 1}∗, we denote its length by |w|. We use the following simple version of Kraft’s
inequality.

Fact 2.8. Let C ⊆ {0, 1}∗ be a finite prefix-free code, and let W be a random string taking values from C.
Then, there exists a string w ∈ C such that Pr [W = w] ≥ 1

2|w|
.

Proof. Let n be the maximal length of a string in C, and let W ′ be a random string in {0, 1}n that is
sampled according to the following process: sample a string w from W , choose a uniformly distributed

string z ∈ {0, 1}n−|w|, and set W ′ = w ◦ z (where here ◦ denotes string concatenation).
By a simple averaging argument, there exists a string w′ ∈ {0, 1}n such that Pr [W ′ = w′] ≥ 1

2n . Since C
is a prefix-free code, there exists a unique prefix w of w′ that is in C. The definition of W ′ implies that

Pr [W ′ = w′] = Pr [W = w] · 1

2n−|w|
,

because the only way the string w′ could be sampled is by first sampling w and then sampling z to be the
rest of w′ (again, since C is a prefix-free code). Hence, it follows that

Pr [W = w] · 1

2n−|w|
≥ 1

2n

Pr [W = w] ≥ 1

2|w|
,

as required. �

2.5 Discrepancy

We start by recalling the definition of discrepancy.

Definition 1.1. Let Λ be a finite set, let g : Λ × Λ → {0, 1} be a function, and let U, V be independent
random variables that are uniformly distributed over Λ. Given a combinatorial rectangle R ⊆ Λ × Λ, the
discrepancy of g with respect to R, denoted discR(g), is defined as follows:

discR(g) = |Pr [g(U, V ) = 0 and (U, V ) ∈ R]− Pr [g(U, V ) = 1 and (U, V ) ∈ R]| .

The discrepancy of g, denoted disc(g), is defined as the maximum of discR(g) over all combinatorial rectan-
gles R ⊆ Λ× Λ.

Let g : Λ × Λ → {0, 1} be a function with discrepancy at most |Λ|−η. Such functions g satisfy the
following “extractor-like” property. In what follows, the parameter λ controls bias (g(X,Y )).

Lemma 2.9. Let X,Y be independent random variables taking values in Λ such that H∞(X) + H∞(Y ) ≥
(2− η + λ) · log |Λ|. Then,

bias (g(X,Y )) ≤ |Λ|−λ .

Proof. By Fact 2.4, it suffices to consider the case where X and Y have flat distributions. Let A,B ⊆ Λ

be the sets over which X,Y are uniformly distributed, and denote R
def
= A × B. By the assumption on the

min-entropies of X and Y , it holds that |R| ≥ |Λ|2−η+λ
.
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Let U, V be random variables that are uniformly distributed over Λ. Then, X and Y are distributed like
U |U ∈ A and V |V ∈ B respectively. It follows that

bias (g(X,Y )) = |Pr [g(X,Y ) = 0]− Pr [g(X,Y ) = 1]|
= |Pr [g(U, V ) = 0|(U, V ) ∈ R]− Pr [g(U, V ) = 1|(U, V ) ∈ R]|

=
discR(g)

Pr [(U, V ) ∈ R]

≤ |Λ|−η

Pr [(U, V ) ∈ R]

=
|Λ|−η

|R| / |Λ|2

≤ |Λ|−η

|Λ|−η+λ

= |Λ|−λ ,

as required. �

Using Lemma 2.9, we can obtain the following sampling property, which says that with high probability X
takes a value x for which bias (g(x, Y )) is small. In what follows, the parameter λ controls bias (g(x, Y )), the
parameter γ controls the error probability, and recall that η is the parameter that controls the discrepancy
of g (i.e., disc(g) ≤ 2−η·b).

Lemma 2.10. Let γ, λ > 0. Let X,Y be independent random variables taking values in Λ such that

H∞(X) +H∞(Y ) ≥ (2− η + γ + λ) · log |Λ|+ 1.

Then, the probability that X takes a value x ∈ Λ such that

bias (g(x, Y )) > |Λ|−λ

is less than |Λ|−γ .

Proof. For every x ∈ Λ, denote

px
def
= Pr [g(x, Y ) = 1] .

Using this notation, our goal is to prove that

Pr
X

[
pX /∈ 1

2
± 1

2
|Λ|−λ

]
< |Λ|−γ .

We will prove that the probability that pX > 1
2 + 1

2 |Λ|
−λ

is less than 1
2 · |Λ|

−γ
, and a similar proof can be

used to show that the probability that pX < 1
2 −

1
2 |Λ|

−λ
is less than 1

2 · |Λ|
−γ

. The required result will then
follow by the union bound.

Let E ⊆ Λ be the set of values x such that px >
1
2 + 1

2 |Λ|
−λ

. Suppose for the sake of contradiction that

Pr [X ∈ E ] ≥ 1
2 · |Λ|

−γ
. It clearly holds that

Pr [g(X,Y ) = 1|X ∈ E ] >
1

2
+

1

2
|Λ|−λ . (3)

On the other hand, it holds that

H∞(X|X ∈ E) ≥ H∞(X)− log
1

Pr [X ∈ E]

(By assumption on E and Fact 2.2) ≥ H∞(X)− γ · log |Λ| − 1
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This implies that

H∞(X|X ∈ E) +H∞(Y ) ≥ H∞(X) +H∞(Y )− γ · log |Λ| − 1

≥ (2− η) · log |Λ|+ λ · log |Λ| .

By Lemma 2.9, it follows that

Pr [g(X,Y ) = 1|X ∈ E ] ≤ 1

2
+

1

2
|Λ|−λ ,

which contradicts Inequality 3. We reached a contradiction, and therefore the probability that pX > 1
2 +

1
2 |Λ|

−λ
is less than 1

2 · |Λ|
−γ

, as required. �

We would like to prove results like Lemmas 2.9 and 2.10 for functions of the form g⊕I . To this end, we
use the following XOR lemma for discrepancy due to [LSS08].

Theorem 2.11 ([LSS08]). Let m ∈ N. Then,

(disc(g))
m ≤ disc(g⊕m) ≤ (64 · disc(g))

m
.

By combining Theorem 2.11 with Lemmas 2.9 and 2.10, we obtain the following results.

Corollary 2.12. Let λ > 0, n ∈ N and S ⊆ [n]. Let X,Y be independent random variables taking values
in ΛS such that

H∞(X) +H∞(Y ) ≥ (2 +
6

log |Λ|
− η + λ) · |S| · log |Λ| .

Then,

bias
(
g⊕S(X,Y )

)
≤ |Λ|−λ·|S| .

Corollary 2.13. Let γ, λ > 0, n ∈ N and S ⊆ [n]. Let X,Y be independent random variables taking values
in ΛS such that

H∞(X) +H∞(Y ) ≥ (2 +
7

log |Λ|
− η + γ + λ) · |S| · log |Λ| .

Then, the probability that X takes a value x ∈ Λ such that

bias
(
g⊕S(x, Y )

)
> |Λ|−λ·|S|

is less than |Λ|−γ·|I|.

3 Lifting Machinery

In this section, we set up the machinery we need to prove our main theorem, restated next.

Theorem 1.2. For every η > 0 there exists c = O( 1
η2 · log 1

η ) such that the following holds: Let S be a search

problem that takes inputs from {0, 1}n, and let g : {0, 1}b × {0, 1}b → {0, 1} be an arbitrary function such
that disc(g) ≤ 2−η·b and such that b ≥ c · log n. Then

Dcc(S ◦ gn) = Ω
(
Ddt(S) · b

)
,

and for every ε > 0 it holds that

Rcc
ε (S ◦ gn) = Ω

((
Rdt
ε′ (S)−O(1)

)
· b
)
,

where ε′ = ε+ 2−η·b/8.
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For the rest of this paper, we fix η > 0 and let c ∈ N be some sufficiently large parameter that will be
determined later such that c = O( 1

η3 ). Let n ∈ N, and let g : {0, 1}b × {0, 1}b → {0, 1} be a function such

that disc(g) ≤ 2−η·b and such that b ≥ c · log n. Note that when n = 1, the theorem holds trivially, so we

may assume that n ≥ 2. For convenience, we denote Λ
def
= {0, 1}b and G

def
= gn. Throughout the rest of this

section, X and Y will always denote random variables whose domain is Λn.
As explained in Section 1.3, our simulation argument is based on the idea that as long as the protocol did

not transmit too much information about the inputs, their distribution is similar to the uniform distribution.
The following definition, due to [GLM+16], formalizes the notion that the protocol did not transmit too much
information about an input X.

Definition 3.1. Let δX > 0. We say that a random variable X is δX-dense if for every I ⊆ [n] it holds that
H∞(XI) ≥ δX · b · |I|.

As explained there, whenever the protocol transmits too much information about a bunch of blocks (XI , YI)
(where I ⊆ [n]), the simulation queries zI and conditions the distribution on g(XI , YI) = zI . The following
definitions provide a useful way for implementing this argument: restrictions are used to keep track of which
bits of z have been queried so far, and the notion of structured variables expresses the desired properties of
the distribution of the inputs.

Definition 3.2. A restriction ρ is a string in {0, 1, ∗}n. We say that a coordinate i ∈ [n] is free in ρ if
ρi = ∗, and otherwise we say that i is fixed. Given a restriction ρ ∈ {0, 1, ∗}n, we denote by free(ρ) and
fix(ρ) the set of free and fixed coordinates of ρ respectively. We say that a string z ∈ {0, 1}n is consistent
with ρ if zfix(ρ) = ρfix(ρ).

Intuitively, fix(ρ) represents the queries that have been made so far, and free(ρ) represents the coordinates
that have not been queried yet.

Definition 3.3 (following [GPW17]). Let ρ ∈ {0, 1, ∗}n be a restriction, let τ > 0, and let X,Y be inde-
pendent random variables. We say that X and Y are (ρ, τ)-structured if there exist δX , δY > 0 such that
Xfree(ρ) and Yfree(ρ) are δX -dense and δY -dense respectively, δX + δY ≥ τ , and

gfix(ρ)
(
Xfix(ρ), Yfix(ρ)

)
= ρfix(ρ).

We can now state our version of the uniform marginals lemma of [GPW17], which formalizes the idea
that if X and Y are structured then their distribution is similar to the uniform distribution over G−1(z). In
what follows, the parameter γ controls the satistical distance from the uniform distribution, and recall that
η is the parameter that controls the discrepancy of g (i.e., disc(g) ≤ 2−η·b).

Lemma 3.4 (Uniform marginals lemma). There exists a universal constant h such that the following holds:
Let γ > 0, let ρ be a restriction, and let z ∈ {0, 1}n be a string that is consistent with ρ. Let X,Y be
independent random variables that are uniformly distributed over sets X ,Y ⊆ Λn respectively, and assume
that they are (ρ, τ)-structured where

τ ≥ 2 +
h

c
− η + γ.

Let (X ′, Y ′) be uniformly distributed over G−1(z) ∩ (X × Y). Then, X and Y are 2−γ·b-close to X ′ and Y ′

respectively.

Remark 3.5. Here, as well as in other claims in the paper, we denote by h some constant that is large
enough to make the proofs go through, and does not depend on any other parameter. The constant h can
be calculated explicitly, and we only refrain from doing so in order to streamline the presentation. In all the
cases where we use this constant, it can be chosen to be at most 50.

We defer the proof of Lemma 3.4 to Section 3.1, and move to discuss the next issue. Recall that in order
for X and Y to be structured, the random variables Xfree(ρ) and Yfree(ρ) have to be dense. However, as the
simulation progresses and the protocol transmits information, this property may be violated, and Xfree(ρ) or
Yfree(ρ) may cease to be dense. In order to restore the density, we use the following folklore fact.
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Proposition 3.6. Let X be a random variable, let δX > 0, and let I ⊆ [n] be maximal subset of coordinates
such that H∞(XI) < δX · b · |I|. Let xI ∈ ΛI be a value such that

Pr [XI = xI ] > 2−δX ·b·|I|.

Then, the random variable X[n]−I |XI = xI is δX-dense.

Proof. Assume for the sake of contradiction that X[n]−I |XI = xI is not δX -dense. Then, there exists a
non-empty set J ⊆ [n] − I such that H∞(XJ |XI = xI) < δX · b · |J |. In particular, there exists a value
xJ ∈ ΛJ such that

Pr [XJ = xJ |XI = xI ] > 2−δX ·b·|J|.

But this implies that
Pr [XI = xI and XJ = xJ ] > 2−δX ·b·|I∪J|,

which means that
H∞(XI∪J) < δX · b · |I ∪ J |.

However, this contradicts the maximality of I. �

Proposition 3.6 is useful in the deterministic setting, since in this setting the simulation is free to condition
the distributions of X,Y in any way that maintains their density. However, in the randomized setting, the
simulation is more restricted, and cannot condition the inputs on events such as XI = xI which may have
very low probability. In [GPW17], this issue was resolved by observing that the probability space can be
partitioned to disjoint events of the form XI = xI , and that the randomized simulation can use such a
partition to achieve the same effect of Proposition 3.6. This leads to the following lemma, which we use as
well.

Lemma 3.7 (Density-restoring partition [GPW17]). Let X be a random variable, let X denote the support
of X , and let δX > 0. Then, there exists a partition

X def
= X 1 ∪ · · · ∪ X `

where every X j is associated with a set Ij ⊆ [n] anda value xj ∈ ΛIj such that:

• XIj |X ∈ X j is fixed to xj.

• X[n]−Ij |X ∈ X j is δX-dense.

Moreover, if we denote p≥j
def
= Pr

[
X ∈ X j ∪ . . . ∪ X `

]
, then it holds that

H∞(X[n]−Ij |X ∈ X
j) ≥ H∞(X)− δX · b · |Ij | − log

1

p≥j
.

We turn to discuss the “conditioning issue” that was discussed in Section 1.3 and its resolution: As
mentioned above, the simulation uses Proposition 3.6 and Lemma 3.7 to restore the density of the inputs by
conditioning some of the blocks. Specifically, suppose, for example, that Xfree(ρ) is no longer dense. Then,
the simulation chooses appropriate I ⊆ free(ρ) and xI ∈ ΛI , and conditions X on the event XI = xI . At this
point, in order to make X and Y structured again, we need to remove I from free(ρ), so the simulation queries
the bits in zI , and update the restriction ρ by setting ρI = zI . Now, we to make sure that g(XI , YI) = zI . To
this end, the simulation conditions Y on the event g(xI , YI) = zI . However, the latter conditioning reveals
information about Y , which may have two harmful effects:

• Leaking: As discussed in Section 1.3, our analysis of the query complexity assumes that the protocol
transmits at most C bits of information. It is important not to reveal more information than that, or
otherwise our query complexity may increase arbitrarily. On average, we expect that conditioning on
the event g(xI , YI) = zI would reveal only |I| bits of information, which is sufficiently small for our
purposes. However, there could be values of xI and zI for which much more information is leaked. In
this case, we say the conditioning is leaking.
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• Sparsifying: Even if the conditioning reveals only |I| bits of information on Y , this could still ruin
the density of Y if the set I is large. In this case, we say that the conditioning is sparsifying.

This is the “conditioning issue”, and dealing with it is the technical core of the paper. As explained in
Section 1.3, the simulation deals with this issue by recognizing in advance which values of X are “dangerous”,
in the sense that they may lead to a bad conditioning, and discarding them before such conditioning may
take place. The foregoing discussion leads to the following definition of a dangerous value.

Definition 3.8. Let Y be a random variable taking values from Λn. We say that a value x ∈ Λn is leaking
if there exists a set I ⊆ [n] and an assignment zI ∈ {0, 1}I such that

Pr
[
gI(xI , YI) = zI

]
< 2−|I|−1.

Let δY , ε > 0, and suppose that Y is δY -dense. We say that a value x ∈ Λn is ε-sparsifying if there exists a
set I ⊆ [n] and an assignment zI ∈ {0, 1}I such that the random variable

Y[n]−I |gI(xI , YI) = zI

is not (δY − ε)-dense. We say that a value x ∈ Λn is ε-dangerous if it is either leaking or ε-sparsifying.

We can now state our main technical lemma, which says that X has only a small probability to take a
dangerous value. This allows the simulation to discard such values and resolve the conditioning issue. In
what follows, the parameter γ controls the error probability, and recall that η is the parameter that controls
the discrepancy of g (i.e., disc(g) ≤ 2−η·b).

Lemma 3.9 (Main lemma). There exists a universal constant2 h such that the following holds: Let 0 <
γ, ε, τ ≤ 1 be such that τ ≥ 2 + h

c·ε − η − γ and ε ≥ 4
b , and let X,Y be (ρ, τ)-structured random variables.

Then, the probability that Xfree(ρ) takes a value that is ε-dangerous for Yfree(ρ) is at most 2−γ·b.

3.1 Proof of the uniform marginals lemma

In this section we prove the uniform marginals lemma, restated next.

Lemma 3.4. There exists a universal constant h such that the following holds: Let γ > 0, let ρ be a
restriction, and let z ∈ {0, 1}n be a string that is consistent with ρ. Let X,Y be independent random variables
that are uniformly distributed over sets X ,Y ⊆ Λn respectively, and assume that they are (ρ, τ)-structured
where

τ ≥ 2 +
h

c
− η + γ.

Let (X ′, Y ′) be uniformly distributed over G−1(z) ∩ (X × Y). Then, X and Y are 2−γ·b-close to X ′ and Y ′

respectively.

In order to prove Lemma 3.4, we first prove the following proposition, which says that the string
gfree(ρ)(Xfree(ρ), Yfree(ρ)) is close to the uniform distribution in a very strong sense. In what follows, the
parameter γ controls the distance from the uniform distribution, and recall that η is the parameter that
controls the discrepancy of g (i.e., disc(g) ≤ 2−η·b).

Proposition 3.10 (Generalization of [GLM+16, Lemma 13]). There exists a universal constant h such that
the following holds: Let γ > 0. Let X,Y be random variables that are (ρ, τ)-structured for τ ≥ 2 + h

c − η+γ,

and let I
def
= free(ρ). Then, for every zI ∈ {0, 1}I it holds that

Pr
[
gI(XI , YI) = zI

]
∈ (1± 2−γ·b) · 2−|I|.

2See Remark 3.5 for further explanation on the constant h.
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Proof. Let h
def
= 8. We use Corollarys 2.12 to upper bound the biases of gI(XI , YI), and then apply

Vazirani’s lemma to show that it is close to the uniform distribution. Let S ⊆ I. By assumption, the
variables XI , YI are δX -dense and δY -dense for some δX , δY for which δX + δY ≥ 2 + 8

c − η + γ. Therefore,
it holds that

H∞(XS) +H∞(YS) ≥ (2 +
6

b
− η + γ +

2

c
) · b · |S|

and Corollarys 2.12 implies (with γ = γ + 2
c ) that

bias
(
g⊕S(XS , YS)

)
≤ 2−(γ+ 2

c )·b·|S| ≤ 2−γ·b · n−2·|S| ≤ 2−γ·b · (2 · |I|)−|S|.

Since the latter inequality holds for every S ⊆ I, it follows by Lemma 2.5 that

Pr
[
gI(XI , YI) = zI

]
∈ (1± 2−γ·b) · 2−|I|

for every zI ∈ {0, 1}I , as required. �

We turn to prove the uniform marginals lemma.

Proof of Lemma 3.4 Let h′ be the universal constant of Proposition 3.10 and let h
def
= h′+2. Let (X ′, Y ′)

be uniformly distributed over G−1(z)∩ (X ×Y), and let I
def
= free(ρ). We prove that X is 2−γ·b-close to X ′,

and a similar argument works for Y . Let E ⊆ X be any test event. We show that

|Pr [X ′ ∈ E ]− Pr [X ∈ E ]| ≤ 2−γ·b.

Without loss of generality we may assume that Pr [X ∈ E ] ≥ 1
2 , since otherwise we can replace E with its

complement. Since X and Y are (ρ, τ)-structured where

τ ≥ 2 +
h

c
− η + γ ≥ 2 +

h′

c
− η + γ +

2

b
,

Proposition 3.10 implies that

Pr
[
gI(XI , YI) = zI

]
∈ (1± 2−γ·b−2) · 2−|I|.

Moreover, since Pr [X ∈ E ] ≥ 1
2 , conditioning on E cannot decrease the density of X by too much, and

therefore X|E and Y together are (ρ, τ − 1
b )-structured, where

τ − 1

b
≥ 2 +

h′

c
− η + γ +

1

b
.

Hence, Proposition 3.10 implies that

Pr
[
gI(XI , YI) = zI |X ∈ E

]
∈ (1± 2−γ·b−1) · 2−|I|.

Now, it holds that

Pr [X ′ ∈ E ] = Pr [X ∈ E|G(X,Y ) = z]

(Bayes’ formula) =
Pr [G(X,Y ) = z|X ∈ E ]

Pr [G(X,Y ) = z]
· Pr [X ∈ E ]

(Since gfix(ρ)(Xfix(ρ), Yfix(ρ)) = zfix(ρ) by assumption) =
Pr
[
gI(XI , YI) = zI |X ∈ E

]
Pr [gI(XI , YI) = zI ]

· Pr [X ∈ E ]

≤
(
1 + 2−γ·b−2

)
· 2−|I|

(1− 2−γ·b−1) · 2−|I|
· Pr [X ∈ E ]

(Since
1

1− α
≤ 1 + 2α for every 0 < α ≤ 1

2
) ≤

(
1 + 2−γ·b−2

)
·
(
1 + 2 · 2−γ·b−1

)
· Pr [X ∈ E ]

≤ Pr [X ∈ E ] + 2−γ·b.
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A similar calculation shows that

Pr [X ′ ∈ E ] ≥
(
1− 2−γ·b−2

)
(1 + 2−γ·b−1)

· Pr [X ∈ E ]

≥ Pr [X ∈ E ]− 2−γ·b.

It follows that
|Pr [X ′ ∈ E ]− Pr [X ∈ E ]| ≤ 2−γ·b,

as required. �

3.2 Proof of the main technical lemma

In this section we prove our main technical lemma, which upper bounds the probability of a variable to take
a dangerous value. We first recall the definition of a dangerous value and the lemma.

Definition 3.8. Let Y be a random variable taking values from Λn. We say that a value x ∈ Λn is leaking
if there exists a set I ⊆ [n] and an assignment zI ∈ {0, 1}I such that

Pr
[
gI(xI , YI) = zI

]
< 2−|I|−1.

Let δY , ε > 0, and suppose that Y is δY -dense. We say that a value x ∈ Λn is ε-sparsifying if there exists a
set I ⊆ [n] and an assignment zI ∈ {0, 1}I such that the random variable

Y[n]−I |gI(xI , YI) = zI

is not (δY − ε)-dense. We say that a value x ∈ Λn is ε-dangerous if it is either leaking or ε-sparsifying.

Lemma 3.9. There exists a universal constant h such that the following holds: Let 0 < γ, ε, τ ≤ 1 be such
that τ ≥ 2 + h

c·ε − η− γ and ε ≥ 4
b , and let X,Y be (ρ, τ)-structured random variables. Then, the probability

that Xfree(ρ) takes a value that is ε-dangerous for Yfree(ρ) is at most 2−γ·b.

Let h be a universal constant that will be chosen to be sufficiently large to make the inequalities in the
proof hold. Let γ, ε, τ, ρ be as in the lemma, and assume that X,Y are (ρ, τ)-structured. For simplicity of
the presentation, we assume that all the coordinates of ρ are free — this can be assumed without loss of
generality since the fixed coordinates of ρ do not play any part in the lemma. Thus, our goal is to prove
an upper bound on the probability that X takes a value that is dangerous for Y . By assumption, there
exist some parameters δX , δY > 0 such that X and Y are δX -dense and δY -dense respectively, and such that
δX + δY ≥ 2 + h

c·ε − η − γ.
We start by discussing the high-level ideas that underlie the proof. We would like to prove an upper

bound on the probability that X takes a value that is either leaking or sparsifying. Proving the upper bound
for leaking values is relatively easy and is similar to the proof of Proposition 3.10: basically, since XI and YI
are sufficiently dense, the string gI(XI , YI) is multiplicatively close to uniform, which implies that most
values xI are non-leaking.

The more difficult task is to prove the upper bound for sparsifying values. Basically, a value x is sparsifying
if for some disjoint I, J ⊆ free(ρ), conditioning on the value of gI(xI , YI) decreases the min-entropy of YJ by
more than ε · b · |J | bits. Our first step is to apply Bayes’ formula to the latter condition, thus obtaining a
more convenient condition to which we refer as “skewing”: a value x is skewing if conditioning on the value
of YJ decreases the min-entropy of gI(xI , YI) by more than ε · b · |J | bits — in other words, the min-entropy
of gI(xI , YI) conditioned on YJ should be less than |I| − ε · b · |J | (roughly).

It remains to prove an upper bound on the probability that X takes a skewing value. This requires
proving a lower bound of roughly |I| − ε · b · |J | of on the min-entropy of gI(xI , YI)|YJ for most x’s. By
the min-entropy version of Vazirani’s lemma (Lemma 2.6), in order to prove this lower bound, it suffices to
prove an upper bound on the bias of gS(xS , YS)|YJ for every set S ⊆ I for which3 |S| ' ε · c · |J |.

3Recall that c is a large constant such that b ≥ c · logn.

19



To this end, we use the “extractor-like” property of gS : recall that by the discrepancy of g (Corol-
lary 2.13), the bias of gS(xS , YS)|YJ is small for most x’s whenever the min-entropy of XS and YS |YJ is
high. Furthermore, recall that the min-entropy of XS and YS is high since we assumed that X and Y are
dense. The key step is to observe that the min-entropy of YS |YJ is still high, since S is large compared to J .
Thus, the min-entropy of XS and YS |YJ is high, so the the bias of gS(xS , YS)|YJ is small, and this implies
the desired lower on the min-entropy of gI(xI , YI)|YJ .

The argument we explained above almost works, except for a small issue: We said that H∞(YS |YJ) is
still high, since S is large compared to J . Here, we implicitly assumed that conditioning on the value of YJ
decreases the min-entropy of YS by roughly |J | · b bits. This assumption is true for the average value of YJ ,
but may fail for values of YJ that have a very small probability. In order to deal with such values, we define
a parameter eyJ which measures the “excess entropy” of yJ , and keep track of it throughout the proof. The
key observation is that if we consider a value yJ that has a small probability, then the criterion of “skewing”
actually requires the min-entropy of gI(xI , YI) to decrease by roughly ε · b · |J |+ eyJ . Intuitively, this means
that the smaller the probably of yJ , the harder it becomes for x to be skewing. After propagating the
additional term of eyJ throughout our proof, we get that the set S can be assumed to satisfy

|S| ' ε · c · |J |+ eyJ
log n

.

This makes the set S sufficiently large compared to eyJ that we can still deduce that YS |YJ = yJ has high
min-entropy, which finished the argument. We now turn to provide the formal proof, starting with a formal
definition of the parameter eyJ and the criterion of “skewing”.

Definition 3.11. Recall that since Y is δY -dense, it holds that Pr [YJ = yJ ] ≤ 2−δY ·b·|J| for every J ⊆ [n]
and yJ ∈ ΛJ . We denote by eyJ ∈ R the (non-negative) number that satisfies

Pr [YJ = yJ ] = 2−δY ·b·|J|−eyJ .

We say that a value x ∈ Λn is ε-skewing if there exist disjoint non-empty sets I, J ⊆ [n] and a value yJ ∈ ΛJ

such that
H∞

(
gI(xI , YI)

∣∣YJ = yJ
)
< |I| − ε · b · |J | − eyJ + 1.

Next, we show that every dangerous value must be either leaking or skewing by applying Bayes’ formula.

Claim 3.12. Let x ∈ Λn be an ε-dangerous value that is not leaking for Y . Then x is ε-skewing.

Proof. Suppose that x is ε-dangerous for Y and that it is not leaking. We prove that x is ε-skewing. By
our assumption, x must be ε-sparsifying, so there exists a set I ⊆ [n] and an assignment zI ∈ {0, 1}I such
that the random variable

Y[n]−I |gI(xI , YI) = zI

is not (δY − ε)-dense. Thus, there exists a set J ⊆ [n]− I and a value yJ ∈ Λn such that

Pr
[
YJ = yJ |gI(xI , YI) = zI

]
> 2−(δY −ε)·b·|J|.

By Bayes’ formula, it holds that

Pr [YJ = yJ |g(xI , YI) = zI ] =
Pr
[
gI(xI , YI) = zI |YJ = yJ

]
· Pr [YJ = yJ ]

Pr [g(xI , YI) = zI ]

(Definition of eyJ ) =
Pr
[
gI(xI , YI) = zI |YJ = yJ

]
· 2−δY ·b·|J|−eyJ .

Pr [g(xI , YI) = zI ]

(Since x is not leaking for Y ) ≤
Pr
[
gI(xI , YI) = zI |YJ = yJ

]
· 2−δY ·b·|J|−eyJ .

2−|I|−1
.
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Hence, it follows that

Pr
[
gI(xI , YI) = zI |YJ = yJ

]
· 2−δY ·b·|J|−eyJ

2−|I|−1
> 2−(δY −ε)·b·|J|,

which implies that
Pr
[
gI(xI , YI) = zI |YJ = yJ

]
> 2−|I|+ε·b·|J|+eyJ−1.

This means that
H∞

(
gI(xI , YI)

∣∣YJ = yJ
)
< |I| − ε · b · |J | − eyJ + 1.

That is, x is ε-skewing, as required. �

As explained above, we will upper bound the probability of dangerous values by upper bounding the
biases of g(xS , YS)|YJ for every S ⊆ I. To this end, it is convenient to define the notion of a “biasing value”,
which is a value x for which one of the biases is too large.

Definition 3.13. We say that a value x ∈ Λn is biasing (for Y ) with respect to disjoint sets S, J ⊆ [n] and
an assignment yJ ∈ ΛJ if

bias
(
g⊕S(xS , YS)|YJ = yJ

)
>

1

2
· (2n)

−|S|
.

We say that x is ε-biasing (for Y ) with respect to a set S ⊆ [n] if there exists a set J ⊆ [n] − S and an
assignment yJ ∈ ΛJ that satisfy

|S| ≥ c · ε · |J |+ eyJ + 2

log n
(4)

such that x is biasing with respect to S, J , and yJ (if J is the empty set, we define eyJ = 0). Finally, we
say that x is ε-biasing (for Y ) if there exists a non-empty set S with respect to which x is ε-biasing.

We now apply the min-entropy version of Vazirani’s lemma to show that values that are not biasing are
not dangerous.

Claim 3.14. If a value x ∈ Λn is not ε-biasing for Y then it is not ε-dangerous for Y .

Proof. Suppose that x ∈ Λn is a value that is not ε-biasing for Y . We prove that x is not ε-dangerous
for Y . We start by proving that x is not leaking. Let I ⊆ [n] and let zI ∈ {0, 1}I . We wish to prove that

Pr
[
Pr
[
gI(xI , YI) = zI

]
≥ 2−|I|−1

]
.

Observe that, by the assumption that x is not ε-biasing, it holds for every non-empty set S ⊆ I that

bias
(
g⊕S(xS , YS)

)
≤ 1

2
· (2n)

−|S|

(this follows by substituting J = ∅ in the definition of ε-biasing and noting that in this case eyJ = 0). It
now follows from Lemma 2.6 that Pr

[
gI(xI , YI) = zI

]
≥ 2−|I|−1, as required.

We turn to prove that x is not ε-skewing. Let I, J ⊆ [n] be disjoint sets and let yJ ∈ ΛJ be an assignment.
We wish to prove that

H∞
(
gI(xI , YI)

∣∣YJ = yJ
)
≥ |I| − ε · b · |J | − eyJ + 1.

By Lemma 2.6, it suffices to prove that for every set S ⊆ I such that |S| ≥ ε·b·|J|+eyJ+2

logn it holds that

bias
(
g⊕S(xS , YS)|YJ = yJ

)
≤ (2n)

−|S|
.

To this end, observe that every such set S satisfies

|S| ≥ ε · c · |J |+ eyJ + 2

log n
,

and since by assumption x is not ε-biasing with respect to S, the required upper bound on the bias must
hold. It follows that x is neither leaking nor ε-skewing, and therefore it is not ε-dangerous, as required. �
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Finally, we prove an upper bound on the probability of X to take an ε-biasing value, which together with
Claim 3.14 implies Lemma 3.9. As explained above, the idea is to combine the discrepancy of g with the
observation that XS and YS have large min-entropy even conditioned on YJ = yJ (which holds since X,Y
are dense and S is large compared to |J | and eyJ ).

Proposition 3.15. The probability that X takes a value x that is ε-biasing for Y is at most 2−γ·b.

Proof. We begin with upper bounding the probability of X to take a value that is ε-biasing with respect
to specific choices of S, J , and yJ , and the rest of the proof will follow by applying union bounds over all
possible choices of S, J , and yJ . Let S, J ⊆ [n] be disjoint sets and let yJ ∈ ΛJ be an assignment such that
S, J , and yJ together satisfy Equation 4, i.e.,

|S| ≥ c · ε · |J |+ eyJ + 2

log n
,

For simplicity, we assume that J is non-empty (in the case where J is empty, the argument is similar but
simpler). Since we assumed that ε ≥ 4

b and that J is non-empty, and it holds that 1
2 · c · ε · |J | ≥

2
logn and

therefore

|S| ≥ 1

2
· c · ε · |J |+ eyJ

log n
.

In other words, it holds that

|S| · log n ≥ 1

2
· ε · b · |J |+ eyJ . (5)

By assumption, Y is δY -dense, so H∞(YS) ≥ δY · b · |S|. By Fact 2.2, it follows that

H∞(YS |YJ = yJ) ≥ δY · b · |S| − log
1

Pr [YJ = yJ ]

= δY · b · |S| − (δY · b · |J |+ eyJ )

≥ δY · b · |S| − (b · |J |+ eyJ )

≥ δY · b · |S| −
2

ε
·
(

1

2
· ε · b · |J |+ eyJ

)
(By Equation 4) ≥ δY · b · |S| −

2

ε
· |S| · log n

(Since b ≥ c · log n) ≥
(
δY −

2

c · ε

)
· b · |S|

Moreover, X is δX -dense and thus

H∞(XS) +H∞(YS |YJ = yJ) ≥
(
δX + δY −

2

c · ε

)
· b · |S| ≥

(
2 +

15

c · ε
− η − γ

)
· b · |S| ,

where the second inequality is made to hold for by choosing h to be sufficiently large. It follows by Corol-
lary 2.13 (with λ = 3

c·ε and γ = γ + 5
c·ε ) that the probability that XS takes a value xS ∈ ΛS for which

bias
(
g⊕S(α, YS)|YJ = yJ

)
>

1

2
· (2n)

−|S| ≥ 2−3 logn·|S| ≥ 2−
3
c·ε ·b·|S| (6)

is at most 2−(γ+ 5
c·ε )·b·|S|.

We turn to applying the union bounds. First, we show that for every S ⊆ [n], the probability that X

takes a value that is ε-biasing with respect to S is at most 2−(γ+ 2
c·ε )·b·|S| by taking upper bound over all

choices of J and yJ . Note that we only need to consider sets J ⊆ [n] for which |J | ≤ 1
c·ε · |S|. It follows that
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the probability that XS takes a value that satisfies Equation 6 for some J and yJ is at most∑
J⊆[n]:|J|≤ 1

c·ε ·|S|

∑
yJ∈ΛJ

2−(γ+ 5
c·ε )·b·|S|

≤
1
c·ε ·|S|∑
j=1

(
n

j

)
· 2b·j · 2−(γ+ 5

c·ε )·b·|S|+1

≤ n ·
(

n
1
c·ε · |S|

)
· 2 1

c·ε ·|S|·b · 2−(γ+ 5
c·ε )·b·|S|

≤ 2−(γ+ 5
c·ε )·b·|S|+

1
c·ε ·|S|·(logn+b)+logn

≤ 2−(γ+ 2
c·ε )·b·|S|,

where the last inequality follows since

1

c · ε
· |S| · (log n+ b) + log n ≤ 1

c · ε
· 2b · |S|+ b ≤ 3

c · ε
· b · |S| .

The above calculation showed that the probability that X takes a value that is ε-biasing with respect to a
fixed set S is at most 2−(γ+ 2

c·ε )·b·|S|. Taking a union bound over all non-empty sets S ⊆ [n], the probability
that X takes a value that is ε-biasing for Y is at most

∑
∅6=S⊆[n]

2−(γ+ 2
c·ε )·b·|S| ≤

n∑
s=1

(
n

s

)
· 2−(γ+ 2

c·ε )·b·s

≤
n∑
s=1

2−(γ+ 2
c·ε )·b·s−s·logn

(
b

c · ε
≥ log n) ≤

n∑
s=1

2−(γ+ 1
c·ε )·b·s

≤ 2−(γ+ 1
c·ε )·b+1

≤ 2−γ·b.

We have thus shown that the probability that X takes a value that is ε-biasing is at most 2−γ·b, as
required. �

4 The deterministic lifting theorem

In this section, we prove the deterministic part of our main theorem. In fact, we prove the following more
general result.

Theorem 4.1 (Deterministic lifting theorem). For every η > 0 there exists c = O( 1
η2 ) such that the

following holds: Let Π be a deterministic protocol that takes inputs in Λn ×Λn and that has communication
complexity C and round complexity r. Then, there exists a deterministic parallel decision tree T that that
on input z ∈ {0, 1}n outputs a transcript π of Π that is consistent with some pair of inputs (x, y) ∈ G−1(z),
and that has query complexity O(Cb ) and depth r.

Observe that this theorem implies the lower bound of the main theorem: Given a protocol Π that
solves S ◦G with complexity C, we use the theorem to construct a tree T that on input z outputs the output
of Π on some pair of inputs in G−1(z). This tree T clearly solves S, and the query complexity of T is O(Cb ).
This implies that Ddt(S) = O (Dcc(S ◦G)/b), or in other words, Dcc(S ◦G) = Ω

(
Ddt(S) · b

)
, as required.
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For the rest of this section, fix Π to be an arbitrary deterministic protocol that takes inputs in Λn ×Λn,
and denote by C and r its communication complexity and round complexity respectively. The rest of this
section is organized as follows: We first describe the construction of the parallel decision tree T in Section 4.1.
We then prove that the output of T is always correct in Section 4.2. Finally, we upper bound the query
complexity of T in Section 4.3.

4.1 The construction of T

Let h′ be the maximum among the universal constants of Proposition 3.10 and the main technical lemma
(Lemma 3.9), and let h be a universal constant that will be chosen to be sufficiently large to make the

inequalities in the proof hold. Let ε
def
= h

c·η , let δ
def
= 1− η

4 + ε
2 , and let τ

def
= 2 · δ − ε. The tree T constructs

the transcript π by simulating the protocol Π round-by-round, each time adding a single message to π.
Throughout the simulation, the tree maintains a rectangle X × Y ⊆ Λn × Λn of inputs that are consistent
with π (but not necessarily of all such inputs). In what follows, we denote by X and Y random variables
that are uniformly distributed over X and Y respectively. The tree will maintain the invariant that X and Y
are (ρ, τ)-structured, where ρ is a restriction that keeps track of the queries the tree has made so far. In fact,
the tree will maintain a more specific invariant: whenever it is Alice’s turn to speak, Xfree(ρ) is (δ− ε)-dense
and Yfree(ρ) is δ-dense, and whenever it is Bob’s turn to speak, the roles of X and Y are reversed.

When the tree T starts the simulation, the tree sets the transcript π to be the empty string, the restriction
ρ to {∗}n, and the sets X ,Y to Λn. At this point the invariant clearly holds. We now explain how T
simulates a single round of the protocol while maintaining the invariant. Suppose that the invariant holds
at the beginning of the current round, and assume without loss of generality that it is Alice’s turn to speak.
The tree T performs the following steps:

1. The tree conditions Xfree(ρ) on not taking a value that is ε-dangerous for Yfree(ρ) (i.e., the tree removes
from X all the values x for which xfree(ρ) is ε-dangerous for Yfree(ρ)).

2. The tree T chooses an arbitrary message M of Alice with the following property: the probability of
Alice sending M on input X is at least 2−|M | (the existence of M will be justified soon). The tree
adds M to the transcript π, and conditions X on the event of sending M (i.e., the tree sets X to be
the subset of inputs that are consistent with M).

3. Let I ⊆ free(ρ) be a maximal set that violates the δ-density of Xfree(ρ) (i.e., H∞(XI) < δ · b · |I|), and

let xI ∈ ΛI be a value that satisfies Pr [XI = xI ] > 2−δ·b·|I|. The tree conditions X on XI = xI (i.e.,
the tree removes from X all the values that are inconsistent with that event). By Proposition 3.6,
Xfree(ρ)−I is now δ-dense.

4. The tree queries zI , and updates ρ accordingly.

5. The tree conditions Y on gI(xI , YI) = ρI (i.e., the the tree sets Y to be the subset of values y for which
gI(xI , yI) = ρI). Due to Step 1, the variable Xfree(ρ) must take a value that is not ε-dangerous, and
therefore Yfree(ρ) is necessarily (δ − ε)-dense.

After those steps take place, it becomes Bob’s turn to speak, and indeed, Xfree(ρ) and Yfree(ρ) are δ-dense
and (δ − ε)-dense respectively. Thus, the invariant is maintained. When the protocol Π stops, the tree T
outputs the transcript π and halts. In order for the foregoing construction to be well-defined, it remains to
explain three points:

• First, we should explain why the set X remains non-empty after Step 1 (otherwise, the following steps
are not well-defined). To this end, recall that X and Y are (ρ, τ)-structured and observe that τ can

be made larger than 2 + h′

c·ε − η by choosing h to be sufficiently large (see Section 4.3 for a detailed
calculation). Hence, by our main lemma (Lemma 3.9), the variable Xfree(ρ) has a non-zero probability
to take a value that is not ε-dangerous for Yfree(ρ), so X is non-empty after this step.
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• Second we should explain why why the message M in Step 2 exists. To see why, observe that the set of
possible messages of Alice forms a prefix-free code — otherwise, Bob will not be able to tell when Alice
finished speaking and his turn starts. Hence, by Fact 2.8, it follows that there exists a message M with
probability at least 2−|M |.

• Third, we should explain why the set Y remains non-empty after Step 5. To this end, recall that X
must take a value that is not ε-dangerous for Y , and in particular, the value of X is necessarily not
leaking. This means that in particular that the string gI(xI , YI) has non-zero probability to equal ρI ,
so Y is non-empty after this step.

The depth of T . We now observe that the depth of T is equal to the round complexity of Π. Note that
in each round, the tree T issues a set of queries I simultaneously. Thus, T is a parallel decision tree whose
depth equals the maximal number of rounds of Π, as required.

4.2 The correctness of T

We now prove that when the decision tree T halts, the transcript π is consistent with some inputs (x, y) ∈
G−1(z). Clearly, the transcript π is consistent with all the inputs in the rectangle X ×Y. Thus, it suffices to
show that there exist x ∈ X and y ∈ Y such that G(x, y) = z. To this end, recall that when the tree halts,
the random variables X and Y are (ρ, τ)-structured. Since ρ is consistent with z, it holds for every x ∈ X
and y ∈ Y that

gfix(ρ)(xfix(ρ), yfix(ρ)) = zfix(ρ). (7)

It remains to deal with the free coordinates of ρ. Since τ can be made larger than 2 + h′

c − η by choosing h
to be sufficiently large (see Section 4.3 for a detailed calculation), it follows by Proposition 3.10 that

Pr
[
gfree(ρ)(xfree(ρ), yfree(ρ)) = zfree(ρ)

]
> 0.

In particular, there exist x ∈ X and y ∈ Y such that

gfree(ρ)(xfree(ρ), yfree(ρ)) = zfree(ρ). (8)

By combining Equations equation (7) and equation (8), we get that G(x, y) = z, as required.

4.3 The query complexity of T

We conclude by showing that the total number of queries the tree T makes is at most O(Cb ). To this end,
we define the deficiency of X,Y to be

2 · b · |free(ρ)| −H∞(Xfree(ρ))−H∞(Yfree(ρ)).

We will prove that whenever the protocol transmits a message M , the deficiency increases by O(|M |), and
that whenever the tree T makes a query, the deficiency is decreased by Ω(b). Since the deficiency is always
non-negative, and the protocol transmits at most C bits, it will follow that the tree must make at most
O(Cb ) queries. More specifically, we prove that in every round, the first two steps increase the deficiency by
|M |+ 1, and the rest of the steps decrease the deficiency by Ω(|I| · b), and this will imply the desired result.

Fix a round of the simulation, and assume without loss of generality that the message is sent by Alice.
We start by analyzing Step 1. At this step, the tree conditions Xfree(ρ) on taking dangerous values that are
not ε-dangerous for Yfree(ρ). We show that this step increases the deficiency by at most one bit. Recall that
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at this point X and Y are (ρ, τ)-structured, where

τ
def
= 2 · δ − ε

(by definition of δ) = 2 ·
(

1− η

4
+
ε

2

)
− ε

= 2− η

2

= 2 +
η

2
− η

(Since ε
def
=

h

c · η
) = 2 +

h

2 · c · ε
− η

≥ 2 +
h′

c · ε
− η +

1

b
,

where the last inequality can be made to hold by choosing h to be sufficiently large. Therefore, by applying
our main technical lemma (Lemma 3.9) with γ = 1

b , it follows that the probability that Xfree(ρ) is ε-dangerous

is at most 1
2 . By Fact 2.2, it follows that conditioning on non-dangerous values decreases H∞(Xfree(ρ)) by

at most one bit, and therefore it increases the deficiency by at most one bit.
Next, in Step 2, the tree conditions X on the event of sending the message M , which has probability at

least 2−|M |. By Fact 2.2, this decreases H∞(Xfree(ρ)) by at most |M | bits, which increases the deficiency by
at most |M | bits. All in all, we showed that the first two steps of the simulation increase the deficiency by
at most |M |+ 1.

Let I be the set of queries chosen in Step 3. . We turn to show that the rest of the steps decrease the
deficiency by at least Ω(b · |I|). Without loss of generality, assume that I 6= ∅ (otherwise the latter bound
holds vacuously). The rest of the steps apply the following changes to the deficiency:

• Step 3 conditions X on the event XI = xI , which has probability greater than 2−δ·b·|I| by the definition
of xI . Hence, this conditioning increases the deficiency by less than δ · b · |I|.

• Step 4 removes the set I from free(ρ). Looking at the definition of deficiency, this change decreases the
term of 2 · b · |free(ρ)| by 2 · b · |I|, decreases the term H∞(Yfree(ρ)) by at most b · |I| (by Fact 2.3), and
does not change the term H∞(Xfree(ρ)) (since at this point XI is fixed to xI). All in all, the deficiency
is decreased by at least b · |I|.

• Finally, Step 5 conditions Y on the event gI(xI , YI) = ρI . This event has probability at least 2−|I|−1

by the assumption that X is not dangerous (and hence not leaking). Thus, this conditioning increases
the deficiency by at most |I|+ 1.

Summing all those effects together, we get that the deficiency was decreased by at least

b · |I| − δ · b · |I| − (|I|+ 1) ≥ (1− δ − 2

b
) · b · |I| .

By choosing c to be sufficiently large, we can make sure that 1− δ− 2
b is a positive constant independent of

b and n, and therefore the decrease in the deficiency will be at least Ω(b · |I|), as required. To see it, observe
that

δ +
2

b
= 1− η

4
+
ε

2
+

2

b

(Since ε
def
=

h

c · η
) = 1− η

4
+

h

2 · c · η
+

2

b

(Since b ≥ c) ≤ 1− η

4
+

h+ 4

2 · c · η
.

Therefore, if we choose c > 2·(h+4)
η2 , the expression on the right-hand side will be a constant that is strictly

smaller than 1, as required.
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5 The randomized lifting theorem

In this section, we prove the randomized part of our main theorem. In fact, we prove the following more
general result.

Theorem 5.1 (Randomized lifting theorem). For every η > 0 there exists c = O( 1
η2 · log 1

η ) such that

the following holds: Let Π be a randomized (public-coin) protocol that takes inputs in Λn × Λn that has
communication complexity C ≤ 2 · b · n and round complexity r. Then, there exists a randomized parallel
decision tree T with the following properties:

• On input z ∈ {0, 1}n, the tree outputs a transcript π of Π, whose distribution is 2−
η
8 ·b-close to the

distribution of the transcripts of Π when given inputs that are uniformly distributed in G−1(z).

• The tree T has query complexity O(Cb + 1) and depth r.

We first observe that Theorem 5.1 indeed implies the lower bound of our main theorem.

Proof of Theorem 1.2 from Theorem 5.1. Let S : {0, 1}n → O be a search problem, and let ε > 0 and

ε′
def
= ε+ 2−

η
8 ·b. We prove that Rcc

ε (S ◦G) = Θ
(
Rdt
ε′ (S) · b

)
. Let Π be an optimal protocol that solves S ◦G

with complexity C
def
= Rcc(S ◦G), and observe that we can assume without loss of generality that C ≤ 2 ·b ·n

(since the players can solve any search problem by sending their whole inputs). By applying the theorem
to Π, we construct a tree T that on input z samples a transcript of Π as in the theorem, and outputs the
output that is associated with this transcript. It is not hard to see that the output of T will be in S(z) with
probability at least

1− ε− 2−
η
8 ·b ≥ 1− ε′,

and that the query complexity of T is O(Cb + 1). This implies that Rdt
ε′ (S) = O (Rcc

ε (S ◦G)/b+ 1), or in
other words, Rcc

ε (S ◦G) = Ω
((
Rdt
ε′ (S)−O(1)

)
· b
)
, as required. �

In the rest of this section we prove Theorem 5.1. We start the proof by observing that it suffices
to prove the theorem for the special case in which the protocol Π is deterministic. To see why, recall
that a randomized public-coin protocol is a distribution over deterministic protocols. Thus, if we prove the
theorem for deterministic protocols, we can extend it to randomized protocols as follows: Given a randomized
protocol Π, the tree T will start by sampling a deterministic protocol Πdet from the distribution Π, and will
then apply the theorem to Πdet. It is not hard to verify that such a tree T satisfies the requirements of
Theorem 5.1. Thus, it suffices to consider the case where Π is deterministic.

For the rest of this section, fix Π to be an arbitrary deterministic protocol that takes inputs in Λn ×Λn,
and denote by C and r its communication complexity and round complexity respectively. The rest of this
section is organized as follows: We first describe the construction of the parallel decision tree T in Section 5.1.
We then prove that the transcript that T outputs is distributed as required in Section 5.2. Finally, we upper
bound the query complexity of T in Section 5.3.

5.1 The construction of T

The construction of the randomized tree T is similar to the construction of the deterministic lifting theorem
(Section 4.1), but has the following differences in the simulation:

• In the deterministic construction, the tree chose the message M arbitrarily subject to having sufficiently
high probability. The reason we could do it is that it did not matter which transcript the tree would
output as long as it was consistent in G−1(z). In the randomized construction, on the other hand, we
would like to output a transcript whose distribution is close to the “correct” distribution. Therefore,
we change the construction such that the message M is chosen randomly according to the distribution
of the inputs.
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• Since the messages are now sampled according to the distribution of the inputs, we can no longer guar-
antee that the message M has sufficiently high probability. Therefore, the tree may choose messages M
that have very low probability, and such messages may reveal too much information about the inputs.
In order to avoid that, the tree maintains a variable K which keeps track of the amount of information
that was revealed by the messages. If at any point K becomes too large, the tree halts and declares
failure.

• In the deterministic construction, the tree restored the density of X by fixing some set of coordinates I
to some value xI (using Proposition 3.6). Again, this was possible since it did not matter which
transcript the tree would output. In the randomized construction, we cannot do it, since the transcript
has to be distributed in a way that is close to be correct. In order to resolve this issue, we follow
[GPW17] and use their “density-restoring partition” (Lemma 3.7). Recall that this lemma says that
the probability space of X can be partitioned into dense parts. The tree now samples one of those
parts according their probabilities and conditions X on being in this part. If this conditioning reveals
too much information, then the tree halts and declares failure.

We turn to give a formal description of the construction. Let h′ be the maximum among the universal
constants of the uniform marginals lemma (Lemma 3.4) and the main technical lemma (Lemma 3.9), and
let h be a universal constant that will be chosen to be sufficiently large to make the inequalities in the proof

hold. Let ε
def
= h·log c

c·η , and as before, δ
def
= 1 − η

4 + ε
2 , and τ

def
= 2 · δ − ε. As before, the parallel decision

tree T constructs the transcript π by simulating the protocol Π round-by-round, each time adding a single
message to π. Throughout the simulation, the tree maintains a rectangle X × Y ⊆ Λn × Λn of inputs that
are consistent with π (but not necessarily of all such inputs). In what follows, we denote by X and Y
random variables that are uniformly distributed over X and Y respectively. As before, the tree will maintain
the invariant that X and Y are (ρ, τ)-structured, and that moreover, they are (δ − ε)-dense and δ-dense
respectively in Alice’s rounds and the other way around in Bob’s rounds. As mentioned above, the tree will
also maintain a variable K from iteration to iteration, which will measure the information revealed so far.

When the tree T starts the simulation, the tree sets the transcript π to be the empty string, the restriction
ρ to {∗}n, the variable K to zero, and the sets X ,Y to Λn. At this point the invariant clearly holds. We
now explain how T simulates a single round of the protocol while maintaining the invariant. Suppose that
the invariant holds at the beginning of the current round, and assume without loss of generality that it is
Alice’s turn to speak. The tree T performs the following steps:

1. The tree conditions Xfree(ρ) on not taking a value that is ε-dangerous for Yfree(ρ) (i.e., the tree removes
from X all the values x for which xfree(ρ) is ε-dangerous for Yfree(ρ)).

2. The tree samples a message M of Alice according to the distribution induced by X. Let pM be the
probability of M . The tree adds M to the transcript, adds log 1

pM
to K, and conditions X on M (i.e.,

the tree sets X to be the the subset of inputs that are consistent with M).

3. If K > C + b, the tree halts and declares error.

4. Let Xfree(ρ) = X 1 ∪ . . . ∪ X ` be the density-restoring partition of Lemma 3.7 with respect to Xfree(ρ).
The tree chooses a random class in the partition, where the class X j is chosen with probability
Pr
[
Xfree(ρ) ∈ X j

]
. Let X j be the chosen class, and let Ij and xIj be the set and the value associ-

ated with X j . The tree conditions X on the event Xfree(ρ) ∈ X j (i.e., the tree sets X to be the subset
of inputs x such that xfree(ρ) ∈ X j). The variable Xfree(ρ)−Ij is now δ-dense by the properties of the
density-restoring partition.

5. Recall that
p≥j

def
= Pr

[
Xfree(ρ) ∈ X j ∪ . . . ∪ X `

]
,

(see Lemma 3.7). If p≥j <
1
8 · 2

− η8 · 1
2·n·b , the tree halts and declares error.

6. The tree queries the coordinates in Ij , and updates ρ accordingly.
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7. The tree conditions Y on gI(xIj , YIj ) = ρIj (i.e., the the tree sets Y to be the subset of values y for
which gI(xIj , YIj ) = ρIj ). Due to Step 1, the variable Xfree(ρ) must take a value that is not ε-dangerous,
and therefore Yfree(ρ) is necessarily (δ − ε)-dense.

After those steps take place, it becomes Bob’s turn to speak, and indeed, Xfree(ρ) and Yfree(ρ) are δ-dense
and (δ − ε)-dense respectively. Thus, the invariant is maintained. When the protocol Π stops, the tree T
outputs the transcript π and halts. The proof that the above steps are well-defined is similar to the proof
for the deterministic construction and is therefore omitted.

The depth of T . As in the proof of the deterministic lifting theorem, it is not hard to see that the depth
of T is equal to the round complexity of Π.

5.2 The correctness of T

In this section, we prove the correctness of the construction. Fix an input z ∈ {0, 1}n, let π be the (random)
transcript that T outputs when given z, and let π′ be a random transcript of Π when given inputs (X ′, Y ′)
that are uniformly distributed in G−1(z). We prove that π and π′ are 2−

η
8 ·b-close.

For convenience, we first prove the correctness of a modified tree T ∗, whose construction is the same as
that of T except that Step 3 is omitted. Let π∗ denote the (random) transcript that T ∗ outputs given z. We
will first prove that π∗ is ( 1

2 · 2
− η8 ·b)-close to π′. We will then prove that π is 2−b-close to π∗. Combining

the two results together, we will deduce that π is 2−
η
8 ·b-close to π′, as required.

π∗ is close to π′. We first prove that π∗ is ( 1
2 ·2
− η8 ·b)-close to π′. To this end, we construct a coupling of π∗

and π′ such that Pr [π∗ 6= π] ≤ 1
2 · 2

− η8 ·b. Essentially, we construct the coupling by going over the simulation
step-by-step and using the uniform marginals lemma to argue that at each step, X and X ′ are close and
can therefore be coupled (and similarly for Y and Y ′). We start by setting some notation: for every i ∈ [r],
let us denote by Xi × Yi be the rectangle X × Y at the end of the i-th round of the simulation of T ∗ (if T ∗

halts before the i-th round ends, set Xi×Yi to be the rectangle X ×Y at the end of the simulation). In our
proof, we construct, for every i ∈ [r]:

• A random rectangle X ′i ×Y ′i that is jointly distributed with X ′, Y ′ with the following property: condi-
tioned on a specific choice of X ′i ×Y ′i, the pair (X ′, Y ′) is uniformly distributed over (X ′i ×Y ′i)∩G−1(z).

• A coupling of Xi × Yi and X ′i × Y ′i such that Pr [Xi × Yi 6= X ′i × Y ′i] ≤ 1
2 · 2

− η8 ·b · i
2·n·b .

Observe that if can construct such rectangles and couplings, then it follows that π∗ and π′ are close. To
see it, observe that at any given point during the simulation, all the inputs in the rectangle X × Y are
consistent with the transcript π. Hence, if Xr ×Yr = X ′r ×Y ′r, it necessarily means that the inputs (X ′, Y ′)
are consistent with the transcript π, so π = π′. It follows that

Pr [π ≤ π′] ≤ Pr [Xr × Yr 6= X ′r × Y ′r]

≤ 1

2
· 2−

η
8 ·b · r

2 · n · b

≤ 1

2
· 2−

η
8 ·b · C

2 · n · b

≤ 1

2
· 2−

η
8 ·b,

as required.
It remains to construct the rectangles X ′i × Y ′i and the associated couplings. We construct them by

induction. Let i ∈ [r], and suppose we have already constructed X ′i−1 × Y ′i−1 and its associated couplings
(here, if i = 1 we set both Xi−1 × Yi−1 and X ′i−1 × Y ′i−1 to Λn × Λn). The i-th coupling first samples
Xi−1 × Yi−1 and X ′i−1 × Y ′i−1 from the (i − 1)-th coupling. If they are different, then we set X ′i × Y ′i
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arbitrarily and assume that the coupling failed (i.e., Xi × Yi and X ′i × Y ′i are different). Suppose now that
Xi−1×Yi−1 and X ′i−1×Y ′i−1 are equal, and condition on some specific choice of this rectangle. If the tree T ∗

has already halted by this point, we set X ′i × Y ′i = X ′i−1 × Y ′i−1. Otherwise, we proceed as follows.
Let (X,Y ) be a random pair that is uniformly distributed over Xi−1 × Yi−1, and recall that due to our

conditioning, the pair (X ′, Y ′) is uniformly distributed over (X ′i−1 × Y ′i−1) ∩G−1(z). We construct the rest
of the coupling by following the simulation step-by-step. For Step 1, with probability

Pr
[
X ′free(ρ) is ε-dangerous for Yfree(ρ)

]
we assume that the coupling failed and set X ′i × Y ′i arbitrarily. Otherwise, we condition both X and X ′ on
not taking a dangerous value. In order to analyze the probability of failure, recall that at the beginning of
this step, (X,Y ) are (ρ, τ)-structured, where

τ
def
= 2 · δ − ε

(by definition of δ) = 2 ·
(

1− η

4
+
ε

2

)
− ε

= 2− η

2

≥ 2 +
η

4
− η +

η

8

(Since ε
def
=

h · log c

c · η
) = 2 +

h · log c

4 · c · ε
− η +

η

8

≥ 2 +
h′

c · ε
− η +

η

8
+

3 log c

c
+

4

b
,

where the last inequality can be made to hold by choosing h to be sufficiently large. Hence, our main
technical lemma (Lemma 3.9) implies that the probability that Xfree(ρ) is ε-dangerous for Yfree(ρ) is at most

2−( η8 + 3 log c
c + 4

b )·b ≤ 1

8
· 2−

η
8 ·b · 1

2 · n · b
.

Moreover, the uniform marginals lemma (Lemma 3.4) implies that X ′ is
(

1
8 · 2

− η8 ·b · 1
2·n·b

)
-close to X and

therefore the probability that X ′free(ρ) is ε-dangerous for Yfree(ρ) is at most 2· 18 ·2
− η8 ·b · 1

2·n·b . Hence, the failure

probability at this step is at most 1
4 · 2

− η8 ·b · 1
2·n·b . Note that if the coupling does not fail, X is conditioned

on an event of probability at least 1
2 , and therefore after the conditioning X and Y are (ρ, τ − 1

b )-structured.
For Steps 2 and 4, let M and X j be the message and partition class that are distributed according to

the input X respectively. Let M ′ and X j ′ be the corresponding message and class of X ′, Since X and Y
are (ρ, τ − 1

b )-structured, it can again be showed by the uniform marginals lemma that X and X ′ are(
1
8 · 2

− η8 ·b · 1
2·n·b

)
-close, and therefore the pair (M,X j) is

(
1
8 · 2

− η8 ·b · 1
2·n·b

)
-close to the pair (M ′,X j ′). This

implies that there exists a coupling of (M,X j) and (M ′,X j ′) such that the probability that they differ is at

most 1
8 · 2

− η8 ·b · 1
2·n·b . We sample (M,X j) and (M ′,X j ′) from this coupling. If they differ, we assume that

the coupling failed, and set X ′i ×Y ′i arbitrarily. Otherwise, we condition both X and X ′ on being consistent
with the message M and the class X j , and denote by Ij , xIj the set and values associated with X j . Finally,

for Step 5, if p≥j ≤ 1
8 · 2

− η8 ·b · 1
2·n·b , then we assume that the coupling fails and set X ′i ×Y ′i arbitrarily (note

that this happens with probability at most 1
8 · 2

− η8 ·b · 1
n·b ).

At this point, we set X ′i = X j , and set Y ′i to be the set of inputs y ∈ Yi−1 for which g(xIj , yIj ) = zIj .
It is easy to see that this choice satisfies X ′i × Y ′i = Xi × Yi. To analyze the total failure probability of this
coupling, observe that by the induction assumption, the failure probability of the (i − 1)-th coupling is at
most 1

2 · 2
− η8 ·b · i−1

2·n·b , and the other failure events discussed above at to that a failure probability of at most(
1

4
+

1

8
+

1

8

)
· 2−

η
8 ·b · 1

2 · n · b
=

1

2
· 2−

η
8 ·b · 1

2 · n · b
.
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Hence, the failure probability of the i-th coupling is at most 3
4 · 2

− η4 ·b · i
n·b , as required.

It remains to show that conditioned on any specific choice of X ′i × Y ′i, the pair (X ′, Y ′) is uniformly
distributed over (X ′i ×Y ′i)∩G−1(z). In the cases where the coupling fails, we can ensure this property holds
by first sampling (X ′, Y ′) and then setting X ′i × Y ′i = {(X ′, Y ′)}. Suppose that the coupling did not fail.
Recall that by the induction assumption, it holds that conditioned on the choice of X ′i−1 × Y ′i−1, the pair
(X ′, Y ′) is uniformly distributed over (X ′i−1 ×Y ′i−1)∩G−1(z). Observe that all the i-th coupling changes in
the distribution of (X ′, Y ′) is to condition it on being in X ′i ×Y ′i. Thus, at the end of the i-th coupling, the
pair (X ′, Y ′) is uniformly distributed over (X ′i × Y ′i) ∩G−1(z), as required.

π is close to π∗. We turn to prove that π is 2−b-close to π∗. Let E denote the event that the tree T halts
in Step 3. It is not hard to see that the statistical distance between π and π∗ is exactly Pr [E ]. We show
that Pr [E ] < 2−b, and this will conclude the proof of correctness.

Intuitively, the reason that Pr [E ] < 2−b is that the tree halts only if the probability of the transcript up
to that point is less than 2−C−b: to see it, observe that the variable K measures (roughly) the logarithm of
the probability of the transcript up to that point, and recall that the tree halts when K > C + b. By taking
union bound over all possible transcripts, we get that the halting probability is less than 2−b.

Unfortunately, the formal proof contains a messier calculation: the reason is that the probabilities of the
messages as measured by K depend on the choices of the classes X j in Step 4, so the foregoing intuition
only holds for a given choice of these classes. Thus, the formal proof also sums over all the possible choices
of classes X j and conditions on those choices. However, while the resulting calculation is more complicated,
the idea is the same.

In order to facilitate the formal proof, we setup some useful notation. Let M1, . . . ,Mr be the messages
that are chosen in Step 2 of the simulation (so π = (M1, . . . ,Mr)), and let J = (j1, . . . , jr) be the indices
of the classes that are chosen in Step 4 (if the tree halts before the i-th round, set Mi to the empty string
and set ji = 1). Observe that the execution of T is completely determined by π and J , and in particular,
π and J determine whether the event E happens or not. With some abuse of notation, let us denote the
fact that a particular choice of (π, J) is consistent with E by (π, J) ∈ E . For any i ∈ [r], let us denote
π≤i = (M1, . . . ,Mi−1) and J≤i = (j1, . . . , ji). Observe that at the i-th round, the probability pMi

in Step 2
is determined by π<i and J<i, and let us denote by pMi|π<i,J<i this probability for a given choice of π<i and
J<i. We are now ready to prove the upper bound on Pr [E ]. It holds that

Pr [E ] =
∑

(π,J)∈E

Pr [π, J ]

=
∑

(π,J)∈E

Pr [M1] · Pr [j1|π≤1] · · ·Pr [Mr|π≤r−1, J≤r−1] · Pr [jr|π≤r, J≤r−1]

=
∑

(π,J)∈E

pM1 · pM2|π≤1,J≤1
· · · pMr|π≤r−1,J≤r−1

· Pr [j1|π≤1] · · ·Pr [jr|π≤r, J≤r−1] .

Next, observe that for every choice of (π, J), the corresponding value of K at the end of the simulation is

log
1

pM1

+ log
1

pM2|π<2,J<2

+ . . .+ log
1

pMr|π<r,J<r
.

In particular, if (π, J) ∈ E , then it holds that K > C + b, and therefore

pM1
· pM2|π<2,J<2

· · · pMr|π<r,J<r < 2−C−b.
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It follows that

Pr [E ] =
∑

(π,J)∈E

pM1 · pM2|π<2,J<2
· · · pMr|π<r,J<r

· Pr [j1|π≤1] · · ·Pr [jr|π≤r, J≤r−1]

<
∑

(π,J)∈E

2−C−b · Pr [j1|π≤1] · · ·Pr [jr|π≤r, J≤r−1]

≤
∑
(π,J)

2−C−b · Pr [j1|π≤1] · · ·Pr [jr|π≤r, J≤r−1]

≤ 2−C−b ·
∑
M1,j1

Pr [j1|π≤1] ·
∑
M2,j2

Pr [j2|π≤2, J≤1]

· · ·
∑
Mr,jr

Pr [j2|π≤2, J≤1]

= 2−C−b ·
∑
M1

1 ·
∑
M2

1 · · ·
∑
Mr

1 (9)

= 2−C−b ·
∑
π

1

≤ 2−b, (10)

as required. In the calculation above, Equality 9 follows since each sum goes over all the possible choices
of ji, and Inequality 10 follows since Π has at most 2C distinct transcripts.

5.3 The query complexity of T

The analysis of the query complexity here is similar to the analysis of the deterministic query complexity.
The main difference is the following: In the deterministic setting, the increase in the deficiency due to a
single message M was upper bounded by |M |, and therefore the total increase in the deficiency was upper
bounded by |C|. In the randomized case, the the increase in the deficiency due to a single message M is
upper bounded by log 1

pM
. Thus, we upper bound the total increase in the deficiency by K. Since K is never

larger than C + b due to Step 3, we conclude that the query complexity is at most O(C+b
b ) = O(Cb + 1).

Details follow.
As before, we define the deficiency of X,Y to be

2 · b · |free(ρ)| −H∞(Xfree(ρ))−H∞(Yfree(ρ)).

We prove that whenever the protocol transmits a message M , the deficiency increases by O(log 1
pM
|), and

that whenever the tree T makes a query, the deficiency is decreased by Ω(b). Since the deficiency is always
non-negative, and K is never more than C+b, it will follow that the tree must make at most O(C+b

b ) queries.
More specifically, we prove that in every round, the first two steps increase the deficiency by log 1

pM
+ 1, and

the rest of the steps decrease the deficiency by Ω(|Ij | · b), and this will imply the desired result.
Fix a round of the simulation, and assume without loss of generality that the message is sent by Alice.

We start by analyzing Step 1. At this step, the tree conditions Xfree(ρ) on taking dangerous values that
are not ε-dangerous for Yfree(ρ). Using the same calculation as in Section 5.2, it can be showed that the

probability of non-dangerous values is at least 1
2 . Therefore, this step increases the deficiency by at most

1 bit. Next, in Step 2, the tree conditions X on an event of choosing the message M , whose probability is
pM by definition. Thus, this step increases the deficiency by at most log 1

pM
bits. All in all, we showed that

the first two steps of the simulation increase the deficiency by at most log 1
pM

+ 1 bits.

Let X j be the partition class that is sampled in Step 4, and let Ij , xj be the set and value that are
associated with X j . We turn to show that the rest of the steps decrease the deficiency by Ω(b · |Ij |). Those
steps apply the following changes to the deficiency:

32



• Step 4 conditions X on the event Xfree(ρ) ∈ X j . By Lemma 3.7, this conditioning increases the

deficiency at most δ · b · |I|+ log 1
p≥j

. Recall that by Step 5, the probability p≥j can never be less than
1
8 · 2

− η8 ·b · 1
2·n·b . Thus, this step increases the deficiency by at most

δ · b · |I|+ η

8
· b+ log(2 · n · b) + 3 ≤ (δ +

η

4
+

6

c
) · b · |I| .

• Step 6 removes the set I from free(ρ). Looking at the definition of deficiency, this change decreases the
term of 2 · b · |free(ρ)| by at 2 · b · |I|, decreases the term H∞(Yfree(ρ)) by at most b · |I| (Fact 2.3), and
does not change the term H∞(Xfree(ρ)) (since at this point XI is fixed to xI). All in all, the deficiency
is decreased by at least b · |I|.

• Finally, Step 7 conditions Y on the event gI(xI , YI) = ρI . This event has probability at least 2−|I|−1

by the assumption that X is not dangerous (and hence not leaking). Thus, this conditioning increases
the deficiency by at most |I|+ 1.

Summing all those effects together, we get that the deficiency was decreased by at least

b · |I| − (δ +
η

8
+

6

c
) · b · |I| − (|I|+ 1) ≥ (1− δ − η

8
− 7

c
) · b · |I| .

By choosing c to be sufficiently large, we can make sure that 1− δ− η
8 −

7
c is a positive constant independent

of b and n, and therefore the decrease in the deficiency will be at least Ω(b · |I|), as required. To see it,
observe that

δ +
η

8
+

7

c
= 1− η

8
+
ε

2
+
η

8
+

7

c

(Since ε
def
=

h · log c

c · η
) = 1− η

8
+
h · log c

2 · c · η
+

7

c

≤ 1− η

8
+

(h+ 14) · log c

2 · c · η
.

Thus, if we choose c such that c
log c >

h+14
2·η2 , the expression on the right-hand side will be a constant that is

strictly smaller than 1. It is not hard to see that we can choose such a value of c that satisfies c = O( 1
η2 ·log 1

η ).
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