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Abstract

We present a deterministic algorithm for reconstructing multilinear ΣΠΣΠ(k) circuits, i.e.
multilinear depth-4 circuits with fan-in k at the top + gate. For any fixed k, given black-box
access to a polynomial f ∈ F[x1, x2, . . . , xn] computable by a multilinear ΣΠΣΠ(k) circuit of size
s, the algorithm runs in time quasi-poly(n, s, |F|) and outputs a multilinear ΣΠΣΠ(k) circuit of
size quasi-poly(n, s) that computes f .

Our result solves an open problem posed in [GKL12] (STOC, 2012). Indeed, prior to our
work, efficient reconstruction algorithms for multilinear ΣΠΣΠ(k) circuits were known only for
the case of k = 2 [GKL12, Vol17].

1 Introduction

Reconstruction of arithmetic circuits is the following problem: given oracle access (a.k.a black-box
/ membership query access) to a polynomial computed by a circuit C of size s from some class
of circuits C, give an efficient algorithm for recovering C or some circuit C ′ that computes the
same polynomial as C. This problem is the algebraic analogue of exact learning in Boolean circuit
complexity [Ang88]. There are two types of reconstruction algorithms. If the output circuit belongs
to the same class C as the input circuit, then it is called proper learning. Otherwise it is improper
learning.

Reconstruction algorithms could be deterministic or randomized. As we will discuss later, even
with randomness, reconstruction is a highly nontrivial problem. A fundamental problem which
is inherently related with reconstruction is the problem of black-box Polynomial Identity Testing
(PIT for short). Just like in reconstruction we are given black-box access to a circuit, but here we
just have to decide if the polynomial computed by this is identically zero or not. It is easy to see
that, a deterministic reconstruction algorithm for a circuit class C will directly yield a black-box
PIT for C. Hence deterministic reconstruction is strictly harder than deterministic black-box PIT,
and we know that deterministic black-box PIT for any class C implies strong lower bounds for that
class [KI03, Agr05, HS80]. However, unlike reconstruction, we know there is an easy randomized
algorithm for black-box PIT, even for general arithmetic circuits [DL78, Zip79, Sch80].

Note that, any efficient (polynomial-time) reconstruction algorithm will naturally also yield
an approximation algorithm (up to polynomial factors) of the minimum (arithmetic) circuit size.
Thus reconstruction is expected to be an inherently hard problem. Moreover, there are a number
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of results showing hardness of reconstruction under various complexity-theoretic and cryptographic
assumptions [FK09, H̊as90, KS09c]. (For more details see Section 1.2).

Despite reconstruction being a very hard problem, there has been a lot of research focused on
efficient reconstruction for restricted (yet interesting) models. Many of these models are models for
which we already knew good structural results and/or efficient deterministic PIT algorithms. For
instance, for bounded-depth circuits we know efficient reconstruction algorithms in following cases:
depth-2 (ΣΠ) arithmetic circuits (a.k.a sparse polynomials) [BOT88, KS01], depth-3 (ΣΠΣ) cir-
cuits with bounded top fan-in [Sin16, KS09a], and set-multilinear depth-3 circuits [BBB+00, KS06].
Other models for which we have efficient reconstruction algorithms are read-once arithmetic for-
mulas [HH11, BB98, SV14], read-once oblivious branching programs (ROABP) [RS03, FS12] and
multilinear depth-4 (ΣΠΣΠ) circuits with top fan-in 2 [GKL12].

The focus of this work is on the class of multilinear depth-4 arithmetic ΣΠΣΠ circuits. A mul-
tilinear polynomial is a polynomial with individual degree of each variable bounded by 1. We say
that a circuit C is multilinear (or syntactically multilinear) if every gate in C computes a multilinear
polynomial. Many of the polynomials of importance/interest are multilinear (for instance Determi-
nant, Permanent, Iterated Matrix Multiplication), and hence multilinearity is a natural restriction
to study. Depth-4 arithmetic circuits are already computationally very powerful as was shown by
the surprising depth reduction result by Agrawal and Vinay [AV08], and later improved by Koiran
[Koi10] and Tavenas [Tav13]) who showed that any general (multilinear) arithmetic circuit of poly-
nomial size and polynomial degree has an equivalent depth-4 (multilinear) circuit of sub-exponential
size. Thus, a polynomial-time reconstruction algorithm for even depth-4 (multilinear) circuits will
yield a non-trivial (sub-exponential) reconstruction algorithm for general (multilinear) arithmetic
circuits.

We will study the model of multilinear depth-4 arithmetic circuits of top fan-in = k, which we
call multilinear ΣΠΣΠ(k) circuits. Formally, a ΣΠΣΠ(k) circuit C has four layers of alternating Σ
and Π gates and it computes a polynomial of the form

C(x̄) =
k∑
i=1

Fi(x̄) =
k∑
i=1

di∏
j=1

Pij(x̄)

where the Pij(x̄)-s are polynomials computed by the last two layers of ΣΠ gates of the circuit and
are the inputs to the Π gates at the second level. A multilinear ΣΠΣΠ(k) circuit is a ΣΠΣΠ(k)
circuit in which each multiplication gate Fi computes a multilinear polynomial.

As we mentioned before, most of the models for which we know efficient reconstruction al-
gorithms are classes for which we know how to do efficient polynomial identity testing, and often
times this is because we have some illuminating insight into the structure of circuits from that class.
One interesting example of such a structural result is the notion of “rank bounds” for depth-3 cir-
cuits of bounded top fan-in (ΣΠΣ(k) circuits) which led to very efficient deterministic PIT results
for this class, and then eventually led to efficient reconstruction algorithms. The rank bound re-
sults of [DS07, KS07, KS09b, SS09, SS10] essentially showed that under some mild conditions, any
ΣΠΣ(k) circuit which computes the identically zero polynomial must essentially be a polynomial
that is “low dimensional”.

Analogous to the rank bounds results for ΣΠΣ(k) circuits, we also know interesting structural
results for multilinear ΣΠΣΠ(k) circuit computing the zero polynomial. It was shown in [SV18]
that under similar mild conditions, any multilinear ΣΠΣΠ(k) circuit computing the zero polynomial
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must be such that every gate in it computes a sparse polynomial. This sparsity bound was then
used to design efficient deterministic black-box PIT algorithms for ΣΠΣΠ(k) circuits. It was a very
natural question to extend this result to design efficient reconstruction algorithms for the same
class. However, despite all the progress on PIT and reconstruction algorithms in the last few years
[GKL12, FS12, SV18, ST17, MV18, KS19], such an algorithm remained elusive for any value of k
that was greater than 2.

1.1 Our Result

We give an efficient reconstruction algorithm for multilinear ΣΠΣΠ(k) circuits for any top fan-in, k,
as long as it is bounded (for instance a constant). Our algorithm is deterministic and runs in time
quasipoly(n, s, d, |F|) and outputs a multilinear ΣΠΣΠ(k) circuit of size at most quasipoly(n, s, d)
as long as k is any constant. Our result solves an open problem posed in [GKL12]. Indeed, prior
to our work, reconstruction algorithms for multilinear depth-4 circuits were only known when the
top fan-in, k, is at most 2 [GKL12, Vol17]. We now state our main theorem formally below.

Theorem 1. Given n, s, k and black-box access to a multilinear ΣΠΣΠ(k) circuit C of size at most
s over a finite field F in n variables as input, there exist a deterministic algorithm which runs in

time |F|(log s)f(k) and outputs a multilinear ΣΠΣΠ(k) circuit C ′ of size at most 2(log s)f(k) such that

C ′ computes the same polynomial as C, where f(k)
∆
= 22k+1

.

Remark 1.1. We will need the field size to be large enough (something like 20kn3) for our algorithm
to work. If this is not the case, just as is usually done for PIT, we assume that for reconstruction
too, we are able to query the circuit on inputs that might come from an extension field. As long as
we can query on a field extension, we can do away with this assumption of largeness of field size,
size we can just take an extension of our field which is of size at least 20kn3 and work over that
field. Our output circuit C ′ however will be guaranteed to be over the same field as C.

Remark 1.2. Later, in Theorem 5.1 we restate this theorem with more refined parameters.

It would be very interesting to get an algorithm whose runtime is only polynomial (or quasi-
polynomial) in log(|F|). However, as was shown in [Vol16]: any proper learning algorithm for
multilinear ΣΠΣΠ(k) circuits over F (even for k = 2) will directly lead to an algorithm to compute
square roots in F. For a finite field F, computing square roots deterministically in time poly(log(|F|))
is a long standing open problem with all best known algorithms having polynomial dependence on
the field size [AM94, Bur57]. Therefore, any learning algorithm (that does not improve on the
time complexity of computing square roots) should either be randomized or run in time at least
poly(|F|). We could still hope to get more efficient run time with randomization.

Another thing we would like to note is that getting an efficient reconstruction algorithm for gen-
eral multilinear ΣΠΣΠ circuits (without the bound on top fan-in) is an enormously interesting and
likely a very difficult problem. Via the depth reduction results of [AV08, Koi10, Tav13, KdOS19]
which preserve the syntactic multilinear structure of the circuit, any subexponential-time recon-
struction algorithm for multilinear ΣΠΣΠ circuits would give a subexponential-time reconstruction
algorithm for general multilinear circuits.

1.2 Related Work

Reconstruction of multilinear ΣΠΣΠ(k) circuits has already received a fair amount of attention.
However till our work, we only knew efficient algorithms when the top fan-in, k, was at most 2.
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The case of k = 1 is equivalent to finding an efficient factorization algorithm for sparse multilinear
polynomials and was resolved in the work of Shpilka and Volkovich [SV10]. The case of k = 2 is
already highly nontrivial and very interesting and thus needed quite a few new ideas. Gupta et.
al [GKL12] gave a randomized poly(n, s) algorithm for multilinear ΣΠΣΠ(2) circuits (this works
over all fields). This work was later derandomized in [Vol17] over fields of characteristic zero and
polynomial sized finite fields. It was open for a while to extend these results to larger values of k,
specially since we already know efficient derandomized black-box polynomial identity testing results
for multilinear ΣΠΣΠ(k) circuits for any constant k [KMSV13, SV18]. Indeed, this question was
posed as an open problem in [GKL12].

Another closely related work to ours is that of Karnin and Shpilka [KS09a] which gave efficient
reconstruction algorithms for depth-3 (ΣΠΣ) circuits with bounded top fan-in. Their algorithm
is randomized and runs in time quasipoly(n, d, |F| , s). When the input is a multilinear ΣΠΣ(k)
circuit (a strict subclass of the class of circuits we consider in this paper), they gave a deterministic
poly(n, |F| , s) time proper learning algorithm for this class. However, for general ΣΠΣ(k) circuits,
their algorithm is randomized and their algorithm is not proper - it outputs an equivalent circuit
from the class of what they called “generalized” depth-3 circuit. Their algorithm, like ours also has
a quasi-polynomial dependence on |F|, and hence just works for finite fields. Our analysis at a very
high level has many similar notions to their analysis and we discuss these similarities a bit in the
next section. Over field of characteristic 0, the only efficient reconstruction algorithm we know for
ΣΠΣ circuits is when the top fan-in is 2 [Sin16] and this algorithm is randomized.

Indeed, in almost all cases for which we know efficient reconstruction algorithms, these were
preceded by deterministic PIT algorithms for the same class, and this is hardly surprising. It is easy
to see that any deterministic reconstruction algorithm for a class of circuits C is at least as hard
is derandomizing black-box PIT for C. Even randomized reconstruction almost always requires
some deep understanding of the structure of the underlying circuit class and in almost every case
we know, it seems harder than derandomizing PIT for that class. We list below some instances
for which we have efficient reconstruction algorithms, and in almost all cases we also have efficient
derandomized black-box PIT algorithms.

The class of circuits for which we understand reconstruction really well is the class of depth-2
(ΣΠ) arithmetic circuits (a.k.a sparse polynomials). We can properly learning sparse polynomials
(them) in deterministic poly(s, n, d) time over any field [BOT88, KS01]. Another class for which we
understand reconstruction reasonably well is the class of read-once oblivious branching programs
(ROABP). Raz and Shpilka [RS04] gave a randomized reconstruction (proper learning) algorithm
for which ran in time poly(n, d, s). This was later derandomized in [FS12] with time complexity
quasipoly(n, d, s). For depth-3 circuits, reconstruction algorithms for various restricted classes have
been studied. For instance, for set-multilinear depth-3 circuits [BBB+00, KS06] gave a randomized
poly(n,d,s) (improper) learning algorithm which outputs an ROABP.

Recently, there has been a flurry of activity in average case learning algorithms for various
arithmetic circuit classes [KS19, KNST17, KNS18, GKQ14, GKL11]. These results can be thought
of as worst case reconstruction, given some non-degeneracy condition holds for some implicit poly-
nomials (which are usually computed by intermediate gates). Interestingly, these results fall under
the umbrella of learning from natural lower bounds which is exciting area of research in arithmetic
as well as Boolean circuit complexity [CIKK16, KS19].
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Hardness Results

We also know various hardness results for polynomial reconstruction and we list below some of those
results that are interesting and relevant to this paper. Indeed, we see that polynomial reconstruction
even for depth-3 and depth-4 circuits is an extremely interesting and challenging problem. Firstly,
as we mentioned before, deterministic reconstruction for a circuit class C will directly yield a black-
box PIT for C. This implies that black-box PIT is a prerequisite for deterministic reconstruction.
(See also [Vol16] for more details.) Moreover, efficient algorithms for black-box PIT for a class C are
in turn known [HS80, Agr05] to imply super-polynomial lower bounds for circuits in C computing an
explicit polynomial. Thus deterministic reconstruction algorithms for any circuit class immediately
gives strong lower bounds for that class.

Another “hardness result”, as mentioned before, is that via the depth reduction results of
[AV08, Tav13, KdOS19] which preserve the syntactic multilinear structure of the circuit, any
sub-exponential-time reconstruction algorithm for (multilinear) ΣΠΣΠ circuits would give a sub-
exponential time reconstruction algorithm for general (multilinear) circuits. If these algorithms are
deterministic, this would imply new circuit lower bounds for general arithmetic circuits.

Even if allow randomization, [FK09] showed that a randomized polynomial-time reconstruction
algorithm for an arithmetic circuit class C implies the existence of a function in BPEXP that does
not have polynomial size circuits from C.

We also know some NP-hardness results for reconstruction, which essentially stems from hard-
ness of tensor decomposition. H̊astad [H̊as90] showed that reconstructing optimal size depth-3
set-multilinear circuits is already NP-hard. Finding the smallest depth-3 powering circuit com-
puting a given polynomial is also NP-hard [Shi16]; it amounts to computing the symmetric-tensor
rank. It might appear that the additional constraint of finding the optimal/smallest circuit might
be a reason for this hardness. However, most of the reconstruction algorithms we know (including
this result) satisfy some optimality condition [KS09a, GKL12]. In [KS09d], Klivans and Sherstov
showed hardness of reconstruction under cryptographic assumptions. Concretely, they proved that
assuming the hardness of the shortest vector problem (SVP) for quantum algorithms, no PAC
learning algorithm exists for ΣΠΣ circuits. We would like to remark that assumption of PAC
learning is stronger than the learning considered in this article, since input points for PAC learning
comes from an unknown distribution.

1.3 Organization

The paper is organized as follows: In Section 3, we recall some algebraic tools and algebraic
algorithms that will be useful for us. In Section 4, we formally introduce our model, give some
related definition and some structural results. We present and analyze the deterministic learning
algorithm in Section 5. We conclude with some open questions in Section 6.

2 Overview of Proof

Our techniques are inspired by the technique of Karnin and Shpilka for the reconstruction of ΣΠΣ(k)
circuits [KS09a]. At a high level, their algorithm first computes a projection of the circuit down to
a few variables, uses the notion of “rank bounds” for ΣΠΣ(k) circuits to show that the projection
will have a unique reconstruction, and it then attempts to “lift” the projection to recover the
original circuit. The structure of our algorithm is similar, though there are several new obstacles
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to deal with and the implementation of the various steps is quite different. We also take a certain
projection of the circuit down to a few variables. Instead of using rank bounds, we use “sparsity
bounds” proved by Saraf and Volkovich [SV18] in order to prove uniqueness of reconstruction of
the projected circuit, and then we lift the projection to recover the original circuit. Our lifting
step is inspired by some elements of the list-decoding algorithm of [STV01] and the factorization
algorithm of [KT90].

To demonstrate an overview of the proof, we will focus on the case when the top fan-in, i.e.
k, equals 2. The case of k = 1 has been studied and resolved in the past and it is equivalent to
finding an efficient factorization algorithm for sparse multilinear polynomials [SV10]. Recall that
for the case of k = 2, the work of Gupta et al. [GKL12] already gives an efficient randomized
polynomial-time algorithm which works over all fields. The work of Volkovich [Vol17] shows how
to derandomize this algorithm over small fields and fields of characteristic 0 1.

Our algorithm is the first efficient algorithm for larger values of k. It is deterministic and runs
in time that is quasi-polynomial in the field size and input circuit size, when k is any constant.

In the overview of proof, we will focus on the case k = 2. Restricted to this case, our algorithm
is quite different from the other algorithms mentioned before [GKL12, Vol17] and most importantly
it generalizes easily to larger values of k. Most of the ideas for handling general k already appear
in the case k = 2 and we now describe this case.

2.1 The case of top fan-in = 2

We are given black-box access to a polynomial P ∈ F[x1, x2, . . . , xn] computed by a multilinear
ΣΠΣΠ(2) circuit C(x̄) = F1(x̄) +F2(x̄) of size s, and the goal is to recover a multilinear ΣΠΣΠ(2)
circuit of a “comparable” size that computes P .

A distance measure Inspired by a similar notion of Karnin and Shpilka [KS09a], we define a
distance measure between the two multiplication gates F1 and F2. Roughly speaking, the distance
between them is the number of factors that appears in only one of the gates. We say that F1 and F2

are m-far if at least one of F1, F2 has at least m factors that do not appear in the other gate. (We
use this notion here for ease of exposition - later in the paper we just a slightly different notion,
which is very similar in spirit, but is more convenient for calculations).

The plan of proof will be the following. We will first reduce to the case where the two gates
are “far” from each other and then show that in this case the circuit can be learnt exactly, i.e. our
algorithm will learn F1 and F2. In order to show this, the main bulk of the work will be to simulate
query access to F1. Once we have this, then we can invoke the algorithm for the case k = 1 to
reconstruct F1 and then subtract off the value at F1 to obtain query access to F2 and then learn
F2.

A testing procedure One intermediate procedure that we will use often is a “testing” procedure.
Our algorithm will often iterate over some “small” number of choices and hence output a small
number of potential ΣΠΣΠ(2) circuits. Many of these might be spurious, yet there will be a
guarantee that at least one of the outputs is the correct one. Our algorithm will have to test
which one is the correct one. For instance, our algorithm will iterate over some “small” number

1More generally, the work of [Vol17] shows how to derandomize [GKL12] for all fields, given an oracle for computing
square roots.
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of choices over H ′ for a multiplication gate in C, such that only one of these choices might be
the right choice. We will have to detect what the right choice is. In order to do this, we run the
reconstruction algorithm on the “remaining part” i.e. C −H ′, for the various choices H ′ and then
let the output be their sum. We will then test if the output circuit computes the same polynomial
as C. This can be done by polynomial identity testing for multilinear ΣΠΣΠ(4) circuits. Since
one of the choices will ultimately work, we will eventually find a suitable reconstruction. The
randomized version of PIT for ΣΠΣΠ(4) circuits is easy and the deterministic version was given
in [KMSV13, SV18].

Reducing to the case of large distance between the gates Suppose that the distance be-
tween F1 and F2 at most m, where we will set m = O(log2(s)). Observe that if C is a circuit of
size s, then each irreducible factor of F1 and F2 is s-sparse. Therefore, in this case the polynomial
resulting after dividing out gcd(F1, F2) from C is a 2sm-sparse polynomial. Hence C can be repre-
sented as a multilinear ΣΠΣΠ(1) circuit of sparsity at most 2sm, and therefore can be learnt using
the reconstruction algorithm for such circuits in quasi-polynomial-time [SV10].

Thus from now on we will assume WLOG that F1 and F2 are at least m-far, where m =
Θ(log2(s)).

Projecting down to only polylogarithmically-many variables We will now show how to
find a suitable projection of the circuit which sets all but m variables to some constants in the
underlying field. Let the projections of F1 and F2 be F̂1 and F̂2, respectively. Our projection will
additionally have the property that one of the two gates, say F̂1 is a product of m univariate affine
forms, and the distance between F̂1 and F̂2 is at least m.

We first show that such a projection exists. Since F1 and F2 are at least m-far, at least one
of them, say F1, has at least m factors that do not appear in F2. Moreover, we can assume
that each such factor has at least 2 monomials. We will assume WLOG that all factors have at
least 2 monomials, because all single monomial factors can be multiplied with each other and then
absorbed into some other factor.

From each of these m factors of F1, we pick any single variable appearing in it to keep “alive”
(for more details see the next paragraph). Thus we get a collection of m alive variables. Let us
call this set of variables I. Now let ā = (a1, a2, . . . , an) be a suitably chosen (as described later)
element of Fn. For each xi that is not in I, we set xi = ai. From the projection, we will require
the property that F̂1 is a product of m affine forms (so each factor has 2 monomials), and that
gcd(F̂1, F̂2) is 1. It then will follow that the distance between F̂1 and F̂2 will be at least m.

It is easy to see that if ā was a uniformly random element of Fn then the projection has the
desired properties (if the field is large enough). Indeed, one can define a polynomial Φ of not too
large degree (see definition 4.3) such that any ā which is a nonzero of Φ will have the desired
properties. We do not know what Φ is, yet it turns out that Φ is a product of sparse polynomials
and hence we already have efficient black-box hitting sets for this class of circuits by the works of
[KS01, SV15, SV18] (See Lemma 3.7 for a formal statement). Hence we can efficiently construct a
small set of elements of Fn such that one of them will result in a good projection. Our algorithm
will then iterate over all possible choices of elements from this set and prune out the bad choices
at a later stage by the testing step.

Now we show how to pick the set I. Note that since we cannot “see” F1 or F2, we do not really
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know how to pick these m variables that comprise the set I. All we know is that such a set exists.
However, this will be enough, since our algorithm will just iterate over all possible

(
n
m

)
subsets of

variables of size m. As per the above discussion, at least one of these subsets will be a “good”
subset. All the “bad” choices we will be able to prune out by a testing step at a later stage (as
discussed earlier). Thus we can essentially assume for the rest of the algorithm that we know the
special set I of m variables to keep alive.

Note that we can simulate black-box query access to the projected circuit.

Learning the projected circuit Let Ĉ = F̂1 + F̂2. We claim that we can efficiently (and
exactly) reconstruct Ĉ. By this we mean that we can recover F̂1 and F̂2.

Recall that F̂1 is a product of m affine forms, each in one variable. The algorithm will try
to “guess” these affine forms by “guessing” each of the 2m coefficients of these affine forms. The
way it will do this is by iterating over all possible choices of the guess. There are only

( |F|
2m

)
many

possible choices, and this is only quasi-polynomial in the circuit size and the field size, so this
is a price we can pay. Notice that a crucial reason we wanted F1 to become a product of affine
forms was precisely for this guessing step. In general, a polynomial in m variables can have 2Ω(m)

many monomials. Therefore guessing all the coefficients can be too expensive. However, since we
have additionally ensured that F̂1 was a product of affine linear forms, we only have to guess 2m
coefficients2. Once we “guessed” the correct value for F̂1 then we can subtract it off from Ĉ and
obtain black-box query access to F̂2 and learn it as well.

One could hope that as before this is enough. That is, one of the guesses is the “correct” guess
and the rest can be pruned out by testing if the resulting reconstructed circuit is equivalent to Ĉ.
The trouble might be if Ĉ can be written as a sum of two products of variable disjoint multilinear
polynomials in more than one way. Suppose Ĉ = F̂1 + F̂2 = Ĝ1 + Ĝ2 where F̂1, F̂2, Ĝ1, Ĝ2 are all
distinct multilinear ΣΠΣΠ(1) circuits. In this case, because of the ambiguity of representation,
it will be very difficult to recover F̂1 given oracle access to Ĉ. Thankfully, this situation does
not occur. If F̂1 + F̂2 = Ĝ1 + Ĝ2 (where Ĝ1 and Ĝ2 have similar properties as F̂1 and F̂2) then
F̂1 + F̂2 − Ĝ1 − Ĝ2 ≡ 0. Since gcd(F̂1, F̂2) = 1, the circuit is “simple”, i.e. there is no factor
appearing in all the gates. If it is also minimal (i.e. no strict subset of the multiplication gates
sums to 0), then by the sparsity bound proved in [SV18], it will follow that each of the multiplication
gates must compute a “somewhat” sparse polynomial. Since F̂1 has at least 2m monomials, this
violates the sparsity bound and implies that the circuit F̂1 + F̂2− Ĝ1− Ĝ2 is not minimal. In other
words, up to renaming of the gates, the two representations of Ĉ must be equivalent. Therefore
since Ĉ has a unique representation as a small ΣΠΣΠ(2) circuit, the algorithm of guessing and
pruning out the bad guess will indeed recover F̂1 and F̂2.

There is still one small issue. The algorithm will return the set
{
F̂1, F̂2

}
. We may not know

which of the two polynomials is F̂1 (in the case when both end up being a product of m affine
forms). This will become a bit of an issue later on that we will see how to resolve. Let us call this
the “F1-F2 ambiguity” issue.

For now, if we are confused between the two gates, we arbitrarily pick one of them and call it
F̂1. (Another way of doing this is that we can iterate over both choices and one of them will be
correct). Thus for now let us assume that we know what F̂1 is.

2we actually end up combining all the leading coefficients into a single one, therefore we only have to guess m+ 1
parameters.
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Observe that by setting the m alive variables in F̂1 to the corresponding entries of ā (that was
sampled earlier for the projection step), we recover F1(ā).

Obtaining query access to F1 We will now show that for any b̄ ∈ Fn, there is an efficient
algorithm that will compute F1(b̄). Once we show this, this means that we get oracle access to F1

and hence can recover it via the algorithm for ΣΠΣΠ(1) circuits.

Pick any b̄ ∈ Fn. Consider the line through ā and b̄ given by `ā,b̄(t)
∆
= (1− t)ā+ tb̄. We already

know F1(ā). We want to compute F1(b̄). In order to to do this, we will recover F1 restricted to
`ā,b̄(t) to obtain a univariate polynomial in t. Evaluating at t = 1 will give us the desired value.
This strategy mirrors the list-decoding algorithm of [STV01] and the factorization algorithm of
[KT90],

Let F
(ā,b̄)
1 (t) be the univariate polynomial F1(`ā,b̄(t)). This is a polynomial in t of degree at

most n. Moreover, at t = 0, it evaluates to F1(ā). If we are able to successfully evaluate F
(ā,b̄)
1 (t) at

any n+ 1 distinct points then we can recover F
(ā,b̄)
1 (t) entirely by interpolation and then evaluate

it at t = 1 to get the value at b̄.
If we were happy with a randomized algorithm, we could then pick n+ 1 random points on the

line and show that with high probability we can successfully evaluate F
(ā,b̄)
1 on all these points. To

get a deterministic algorithm we will sample several more points, argue that the value at “most” of
these points can be accurately recovered and then use noisy polynomial interpolation (for instance
the Berlekamp-Welch algorithm, see e.g. [Sud98] for more details) to recover the entire polynomial

F
(ā,b̄)
1 (t).

Let t0 be any element of F. We will try to compute the correct value of F
(ā,b̄)
1 (t0). In other words,

we would like to be able to evaluate F1 at a point v̄
∆
= `ā,b̄(t0) = (1− t0)ā+ t0b̄. Recall that when

we evaluated F1 at ā, all we needed of the point ā was that it was a nonzero of some polynomial
Φ of degree d. Now consider Φ(`ā,b̄(t)). Since Φ(`ā,b̄(0)) = Φ(ā) is nonzero, this polynomial (in t)
is not identically zero and hence will evaluate to zero at at most d points. Thus if we query the

polynomial F
(ā,b̄)
1 on “sufficiently many” (say n + 2d + 1) points on the line, we will be able to

recover it by noisy polynomial interpolation.
There is one subtle issue, which is the aforementioned “F1-F2 ambiguity” issue. On any input

v̄ which is a nonzero of Φ, our algorithm will be able to return the value of F1 at v̄ and F2 at v̄ but
it will not know which evaluation came from F1 and which one came from F2. This is a bit of an
annoying issue, but thankfully one that is not too difficult to handle.

In order to resolve this issue, we do a hybrid argument. Instead of running the evaluation
procedure just on v̄, we run it on a sequence of elements γ0, γ1, . . . , γn, where γ0 = ā, γn = v̄ and
for every i, γi and γi+1 differ in just one coordinate. Thus it suffices to do the following: given
the evaluation of F1 at γi, compute the correct evaluation of F1 at γi+1, assuming both γi and
γi+1 are nonzeros of Φ. In order to do this, we will actually be asking for a bit more information
from our algorithm. We will not just ask for the evaluation of F1 at γi, we will instead ask for F1

(presented as a product of affine forms) after a partial evaluation, where only the variables outside
the special set I have been set to the corresponding coordinates of γi. Let us call this polynomial
F1|x̄[n]\I=γi

[n]\I
. It will suffice to show that given this polynomial we can compute F1|x̄[n]\I=γi+1

[n]\I
.

Notice that since F1 is multilinear and γi and γi+1 differ in just one coordinate, the two poly-
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nomials
F1|x̄[n]\I=γi

[n]\I
and F1|x̄[n]\I=γi+1

[n]\I

differ in at most one factor. Our algorithm will “guess” F1|x̄[n]\I=γi+1
[n]\I

(by iterating over all possible

factors of F1|x̄[n]\I=γi
[n]\I

, and all possible expressions that factor could change to) and then try to

verify whether that guess is correct. This can be done similar to as was done before when we had
to compute F1|x̄[n]\I=ā[n]\I (i.e. the projection corresponding to ā). However this time the F1-F2

ambiguity issue will not arise since it cannot be that both F1|x̄[n]\I=γi+1
[n]\I

and F2|x̄[n]\I=γi+1
[n]\I

share

most factors with F1|x̄[n]\I=γi
[n]\I

because otherwise then they would have have a common GCD.

2.2 The case of general k

At a high level, our argument for how to reconstruct ΣΠΣΠ(k) circuits for larger values of k is
very similar. We would like to somehow obtain oracle access to one of the gates (say F1) and hence
reconstruct it. We then subtract off that gate and get oracle access to a ΣΠΣΠ(k−1) circuit which
we assume can be reconstructed by induction on the top fan-in.

Thus the main goal will again be to evaluate F1 at any point. To this end, we again take a
projection so that the projected circuit only depends on polylogarithmic number of variables and
the projected F1 is a product of affine forms which we assume can be “guessed” and then the guess
verified. There are a few subtle issues that arise. Earlier (in the case of k = 2), we could subtract
off the projected F1, get query access to the projected F2 and hence learn it too. Knowing the
projected F2 was important in the lifting step, in particular in showing how to get query access to
F1, since we had to disambiguate between F1 and F2 when the algorithm wanted to evaluate F1 at
any point. In the case of larger k, after we subtract off the projected F1, and trying to learn the
remaining part of the circuit, we are not able to guarantee that the projected sum of remaining gates
has a unique way of recovering it, and the algorithm gets a bit delicate. Yet, despite not having a
unique representation, we are still able to show that when we use “minimal” representations while
trying to learn the remaining part of the circuit, we are still able to carry out the disambiguation
process and correctly evaluate F1 at any chosen point (we still need to do the hybrid argument).
For more details see Lemma 5.2.

3 Preliminaries

Let F denote a field, finite or otherwise, and let F denote its algebraic closure.

3.1 Polynomials

A polynomial f ∈ F[x1, x2, . . . , xn] depends on a variable xi if there are two inputs ᾱ, β̄ ∈ Fn

differing only in the ith coordinate for which f(ᾱ) 6= f(β̄). We denote by var(f) the set of variables
that f depends on. We say that f is g are similar and denote by it f ∼ g if f = αg for some
α 6= 0 ∈ F.

For a polynomial f(x1, . . . , xn), a variable xi and a field element α, we denote with f |xi=α the
polynomial resulting from substituting α to xi. Similarly given a subset I ⊆ [n] and an assignment
ā ∈ Fn, we define f |x̄I=āI to be the polynomial resulting from substituting ai to xi for every i ∈ I.

10



Definition 3.1 (Hybrids & Lines). Let ā, b̄ ∈ Fn and 0 ≤ i ≤ n. We define the i-th hybrid of ā, b̄

as γi(ā, b̄)
∆
= (b1, . . . , bi, ai+1, . . . , an). In particular, γ0(ā, b̄) = ā and γn(ā, b̄) = b̄.

We define a line passing through ā and b̄ as `ā,b̄ : F→ Fn, `ā,b̄(t)
∆
= (1− t) · ā+ t · b̄. In particular,

`ā,b̄(0) = ā and `ā,b̄(1) = b̄.

We state below a well known result by Berlekamp and Welch which gives an efficient algorithm
for noisy polynomial interpolation.

Lemma 3.2 (Berlekamp-Welch Algorithm (for a description see [Sud98])). Let P (t) be a univariate
polynomial of degree at most d. There exists a deterministic algorithm that given m evaluations of
P with at most e errors outputs P , provided that m− d > 2e+ 1.

For two vectors ā and b̄ ∈ Fn, let wH(ā, b̄) denote the Hamming distance between ā and b̄

3.2 Sparse Polynomials

In this section we discuss sparse polynomials, their properties and some related efficient algorithms
which leverage these properties.

Definition 3.3 (Sparsity, Split and Maximum Split). An s-sparse polynomial is polynomial with at
most s (non-zero) monomials. We denote by ‖f‖ the sparsity of f . A polynomial f ∈ F[x1, x2, . . . , xn]
is s-sparse-split if it can be written as a product of (not necessarily irreducible) s-sparse polynomi-
als.
We define λ(f) as the smallest non-negative integer s such that f is s-sparse-split.

It is easy to see that for any multilinear polynomials with sparsity s any factorization is s-
sparse-split, and this was studied in [SV10].

Lemma 3.4 ([SV10]). Let f be a multilinear polynomial and hg = f then ‖f‖ = ‖g‖ · ‖h‖.

We move on to an efficient reconstruction algorithm for sparse polynomials.

Lemma 3.5 ([KS01]). Let n, s, d ∈ N. There exists a deterministic algorithm that given n, s, d and a
black-box access to an s-sparse polynomial f ∈ F[x1, x2, . . . , xn] of degree d, uses poly(n, s, d, log |F|)
field operations and outputs f (in its monomial representation).

In [SV10], this algorithm was extended to multilinear sparse-split polynomials (which may not
necessarily themselves be sparse).

Lemma 3.6 ([SV10]). Let n, s ∈ N. There exists a deterministic algorithm that given n, s and a
black-box access to a multilinear s-split polynomial f ∈ F[x1, x2, . . . , xn], uses poly(n, s, log |F|) field
operations and outputs f (as a product of s-sparse polynomials).

As an easy corollary, Lemma 3.5, establishes the existence of an efficient hitting set for sparse
polynomials. The next lemma extends this result and shows the existence of an efficient hitting
set for a product of sparse polynomials. Indeed it was shown in [SV15] that if there is an efficient
hitting set for any class of polynomials, then one can construct an efficient hitting set for a product
of few polynomials from that class.
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Lemma 3.7 ([KS01, SV15]). There exists a deterministic algorithm that given n, s, d, k ∈ N outputs
a set SP(n,s,d,k) of size poly(n, s, d, k) such that any set of (at most) k non-zero s-sparse polynomials
f1, . . . , fk ∈ F[x1, x2, . . . , xn] of total degree at most d have a common non-zero in SP(n,s,d,k). In
other words, there exists ā ∈ SP(n,s,d,k) such that ∀i : fi(ā) 6= 0.

Inspired by a similar notion of [KS09a], we define a distance measure between multiplication
gates. This measure will play a crucial role in the analysis of our reconstruction algorithm. Roughly
speaking, the log to the base s (i.e. logs) of the distance between two polynomials, each of them
being s-sparse-split, is the number of factors that appear in only one of them.

Definition 3.8 (Distance). For f, g ∈ F[x1, x2, . . . , xn], we defined a distance function:

∆(f, g)
∆
=

max {‖f‖, ‖g‖}
‖gcd(f, g)‖

.

The following observation is immediate given Lemma 3.4:

Observation 3.9. If f and g are multilinear polynomials, then ∆(f, g) = max
{

‖f‖
‖gcd(f,g)‖ ,

‖g‖
‖gcd(f,g)‖

}
.

The next lemma lists the basic properties of the defined distance measure.

Lemma 3.10 (Properties). Let f, g, h be multilinear polynomials ∈ F[x1, x2, . . . , xn], then we
have that,

1. ∆(f, g) = ∆(g, f).

2. ∆(f, g) ≥ 1, moreover ∆(f, g) = 1 ⇐⇒ f ∼ g.

3. ∆(f, g) ≤ ∆(f, g, h) ≤ ∆(f, h) ·∆(g, h), where ∆(f, g, h)
∆
= max {‖f‖,‖g‖,‖h‖}

‖gcd(f,g,h)‖ .

4. ∆(g − f, f) ≤ 2 ·∆(f, g)

Proof. 1. Follows directly from the definition.

2. The property follows by noticing that gcd(f, g) is a factor of both f and g and using Lemma
3.4.

3. The first inequality directly follows from the noticing that gcd(f, g, h) | gcd(f, g) and Lemma
3.4.

For the second inequality, we can assume WLOG that ‖f‖ ≥ ‖g‖. Notice that, gcd(f, h) ·
gcd(g, h) | h · gcd(f, g, h).
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Thus,

‖gcd(f, h)‖ · ‖gcd(g, h)‖ ≤ ‖h‖ · ‖gcd(f, g, h)‖ (by Lemma 3.4)

1

‖gcd(f, g, h)‖
≤ max{‖h‖, ‖g‖}
‖gcd(f, h)‖ · ‖gcd(g, h)‖

(By rearranging)

max {‖f‖, ‖g‖, ‖h‖}
‖gcd(f, g, h)‖

≤ max{‖h‖, ‖g‖} ·max {‖f‖, ‖g‖, ‖h‖}
‖gcd(f, h)‖ · ‖gcd(g, h)‖

( Multiplying by max {‖f‖, ‖g‖, ‖h‖})

max {‖f‖, ‖g‖, ‖h‖}
‖gcd(f, g, h)‖

≤ max{‖h‖, ‖g‖} ·max {‖f‖, ‖h‖}
‖gcd(f, h)‖ · ‖gcd(g, h)‖

( Since, ‖f‖ ≥ ‖g‖ )

∆(f, g, h) ≤ ∆(f, h) ·∆(g, h)

4. Let h = gcd(f, g). We can write f = f ′h and g = g′h. Then

∆(g−f, f) = ∆(g′h−f ′h, f ′h) = ∆(g′−f ′, f ′) ≤ max
{
‖g′ − f ′‖, ‖f ′‖

}
≤ ‖g′‖+‖f ′‖ ≤ 2·∆(f, g)

3.3 The Operator Dj

This operator was previously used in [GKL12, KMSV13, SV18]. In this section we formally define
the operator and list some properties that immediately follow (and will be used later).

Definition 3.11. For j ∈ [n] let Dj(P,Q) be the polynomial defined as follows:

Dj(P,Q)(x̄)
∆
=

∣∣∣∣( P P |x`=0

Q Q|x`=0

)∣∣∣∣ (x̄) = (P ·Q|x`=0 − P |x`=0 ·Q)(x̄).

Note that Dj is a bilinear transformation. The following lemma lists several useful properties
of Dj that are easy to verify.

Lemma 3.12 ([GKL12, KMSV13, SV18]). Let P,Q,R ∈ F[x1, x2, . . . , xn] be multilinear polynomi-
als and let j ∈ [n]. Then the following properties hold:

1. Let R be such that j 6∈ var(R) then Dj(R ·Q,P ) = R ·Dj(Q,P ).

2. ‖Dj(Q,P )‖ ≤ ‖Q‖ · ‖P‖.

3. Let I ⊆ [n] be such that I 6= ∅. Then, if
∏
j∈[n]Dj(Q,P )(ā) 6= 0 then gcd(P,Q)|x̄[n]\I=ā[n]\I =

gcd(P |x̄[n]\I=ā[n]\I , Q|x̄[n]\I=ā[n]\I ).

Corollary 3.13. Let P,Q ∈ F[x1, x2, . . . , xn] be multilinear polynomials such that P =
∏
i∈[k] Pi

and Q =
∏
i′∈[k′]Qi. If j /∈ var(

∏k
i=2 Pi ·

∏k′

i′=2Qi′) then Dj(P,Q) = Dj(P1, Q1) ·
∏k
i=2 Pi ·

∏k′

i′=2Qi′.
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3.4 Partial Derivatives

The concept of a partial derivative of a multivariate polynomial and its properties (for example: P
depends on xi if and only if ∂P

∂xi
6≡ 0) are well-known and well-studied for continuous domains (such

as R and C). Here we use a well-known variant for polynomials over arbitrary fields. Namely, the
discrete partial derivatives. Discrete partial derivatives will play a useful role in the analysis of our
algorithms.

Definition 3.14. Let P (x̄) be an n variate polynomial over a field F. We define the discrete partial
derivative of P (x̄) with respect to xi as ∂P

∂xi
= P |xi=1 − P |xi=0.

Notice that if P is a multilinear polynomial then this definition coincides with the “analytical” one
when F = R or C. The following lemma is easy to verify and we will use it implicitly from now on.

Lemma 3.15 (See e.g. [SV15]). Let P ∈ F[x1, x2, . . . , xn] be a multilinear polynomial and let
i ∈ [n]. Then the following properties hold:

• xi ∈ var(P ) if and only if ∂P
∂xi
6≡ 0.

• ∀j 6= i ∂P
∂xi
|xj=a = ∂

∂xi

(
P |xj=a

)
.

• ‖ ∂P∂xi ‖ ≤ ‖P‖.

Since the above properties trivially hold, we will use them implicitly.

4 Depth-4 Multilinear Circuits

In this section, we formally present the model of depth-4 multilinear circuits and some related
definitions. Similar definitions were given in [GKL12, KMSV13, SV18].

Definition 4.1. A depth-4 ΣΠΣΠ(k) circuit C has four layers of alternating Σ and Π gates (the
top Σ gate is at level one) and it computes a polynomial of the form

C(x̄) =
k∑
i=1

Fi(x̄) =
k∑
i=1

di∏
j=1

Pij(x̄)

where the Pij(x̄)-s are polynomials computed by the last two layers of ΣΠ gates of the circuit and
are the inputs to the Π gates at the second level. A multilinear ΣΠΣΠ(k) circuit is a ΣΠΣΠ(k)
circuit in which each multiplication gate Fi computes a multilinear polynomial.

The requirement that the Fi-s compute multilinear polynomials implies that for each i ∈ [n]
the polynomials {Pij}j∈[di]

are variable-disjoint. Note that if the circuit is of size s then each Pij
is s-sparse. Indeed λ(Fi) ≤ s, for each i ∈ [k]. For every A ⊆ [k] we define the subcircuit CA of

C as CA
∆
=
∑

i∈A Fi. We define gcd(C)
∆
= gcd(F1, . . . , Fk). We say that the circuit C is simple if

gcd(C) = 1. We say that the circuit C is minimal if no proper subcircuit of C computes the zero
polynomial. That is, for every ∅ ( A ( [k] it holds that CA 6≡ 0. For two circuits C and C ′, we say
that C ≡ C ′ if both circuits compute the same polynomial.
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Definition 4.2 (Distant Circuits). Let C(x̄) =
k∑
i=1

Fi(x̄) be a multilinear ΣΠΣΠ(k) circuit. We

say that Fi and Fj are r-far, if ∆(Fi, Fj) ≥ r; Fi is r-distant, if for all j 6= i, Fi and Fj are r-far.
Finally we say that C is r-distant, if each pair of multiplication gates Fi and Fj is r-far.

Our first contribution is a structural result for distant circuits. Roughly speaking, we show that
we can project a circuit down to a “small” number of variables such that one of the multiplication
gates becomes to a depth-3 gate (a product of affine forms), while still being “sufficiently” distant.
To this end, we require the following definition.

Definition 4.3. Let C(x̄) =
k∑
i=1

Fi(x̄) be a multilinear ΣΠΣΠ(k) circuit. We define the polynomial

ΦC as follows:

ΦC
∆
=

∏
j,i : Dj(F1,Fi)6≡0

Dj(F1, Fi) ·
∏

i,j :
∂Fi
∂xj
6≡0

∂Fi
∂xj
·

∏
i,j : Fi|xj=0 6≡0

Fi|xj=0

We will need the following observation about ΦC , the proof of which is immediate from Lemma
3.12 and Corollary 3.13.

Observation 4.4. ΦC is non-zero polynomial in F[x1, x2, . . . , xn] which is a product of at most
3kn2, s2-sparse polynomials of degree at most 2n.

We now give the structural result.

Lemma 4.5. Let C be an r-distant circuit with λ(C) ≤ s. Suppose that F1 is the gate with
maximum sparsity i.e. ‖F1‖ ≥ ‖Fj‖ for j ≥ 2. Then there exists a subset I ⊆ [n] of size |I| ≤
k logs(r) such that for each ā ∈ Fn satisfying ΦC(ā) 6= 0: F1|x̄[n]\I=ā[n]\I is a product of affine linear

forms and is r1/ log s-distant in C|x̄[n]\I=ā[n]\I .

Proof. Note that for any j, since λ(C) ≤ s, the polynomial h
∆
= F1

gcd(F1,Fj)
will have at least logs r

many factors and sparsity of these factors is at least 2. In particular, F1 has at least logs r factors,
each with at least two monomials, which do not divide Fj . Taking the union of this set of factors
over each j between 2 and k, we get a set T of at most k logs r many factors of F1, such that for
each j 6= 1, there are at least logs r factors of sparsity at least 2 from this set that do no divide Fj .

Also, since, F1 is multilinear its factors will be variable disjoint. We arbitrarily pick one variable
from each factor of T and call that set of variables I. Then clearly, |I| ≤ k logs r. For each i /∈ I,
we will set xi to ai.

Since, ΦC(ā) 6= 0, Lemma 3.12 implies that,

gcd(F1, Fj)|x̄[n]\I=ā[n]\I = gcd(F1|x̄[n]\I=ā[n]\I , Fj |x̄[n]\I=ā[n]\I ) ∀j 6= 1. (1)

What the above statement is saying is that basically that since ΦC(ā) 6= 0, after restricting
some of the variables to the corresponding elements of ā we do not introduce any new terms in the
GCD of two multiplication gates. The proof of this fact just uses the nonzeroness first term in the
definition of ΦC . The nonzeroness of the second term will show that the restricted F1 still depends
on all the ‘alive” variables, and the nonzeroness of third term shows that none of the alive variables
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divides the restricted F1. This implies that F1|x̄[n]\I=ā[n]\I will be a product of affine linear forms,
each of sparsity exactly 2.

Once we have these facts it follows quite easily that F1 will still be distant in the projected
circuit, since

∆(F1|x̄[n]\I=ā[n]\I , Fj |x̄[n]\I=ā[n]\I ) ≥
‖F1|x̄[n]\I=ā[n]\I‖

‖gcd(F1|x̄[n]\I=ā[n]\I , Fj |x̄[n]\I=ā[n]\I )‖

=
‖F1|x̄[n]\I=ā[n]\I‖

‖gcd(F1, Fj)|x̄[n]\I=ā[n]\I‖
By (1)

=
∥∥∥ F1

gcd(F1, Fj)

∣∣
x̄[n]\I=ā[n]\I

∥∥∥ By (3.4)

Thus,

∆(F1|x̄[n]\I=ā[n]\I , Fj |x̄[n]\I=ā[n]\I ) ≥
∥∥∥ F1

gcd(F1, Fj)

∣∣
x̄[n]\I=ā[n]\I

∥∥∥ ≥ 2logs r = r1/ log s.

Next is an important but easy observation that shows that we can decrease the number of
multiplication gates, if a circuit is not distant.

Observation 4.6. Suppose C is not r-distant, then C has an equivalent (i.e. computing the same
polynomial) ΣΠΣΠ(k − 1) circuit C ′ with λ(C ′) ≤ max {s, 2r}.

Proof. By definition, there exists Fi, Fj such that ∆(Fi, Fj) < r. Then replace Fi + Fj with a new

single multiplication gate H ′
∆
= Fi + Fj which is formed by taking the GCD of the two gates and

then expanding out the remaining polynomial (which one would get after diving by the GCD) as
a single somewhat sparse multilinear polynomial.

We conclude this section with two results. The first is a structural result on multilinear
ΣΠΣΠ(k) circuits that compute the zero polynomial.

Lemma 4.7 (The Sparsity Bound - [SV18]). There exists an non-decreasing function ϕ(k, s) ≤ s5k2

such that if C(x̄) =
k∑
i=1

Fi(x̄) is a simple and minimal, multilinear ΣΠΣΠ(k) circuit computing the

zero polynomial with λ(C) ≤ s, then for each i ∈ [k] it holds that ‖Fi‖ < ϕ(k, s).

The following is immediate.

Corollary 4.8. Let C(x̄) =
k∑
i=1

Fi(x̄) be a minimal, multilinear ΣΠΣΠ(k) circuit computing the

zero polynomial with λ(C) ≤ s. Then for all i 6= j ∈ [k] : ∆(Fi, Fj) < ϕ(k, s).

The second result provides a deterministic black-box PIT (polynomial identity testing) algo-
rithm for multilinear ΣΠΣΠ(k) circuits.

Lemma 4.9 (Black-Box PIT for ΣΠΣΠ(k) circuits - [SV18]). Let k, n, s be integers. There is
an explicit set H of size nO(k) · sO(k3), that can be constructed in time nO(k) · sO(k3), such that
the following holds. Let P ∈ F[x1, x2, . . . , xn] be a non-zero polynomial computed by a multilinear
ΣΠΣΠ(k) circuit of size s on n variables. Then P |H 6≡ 0.
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5 The Reconstruction Algorithm

We now prove our main result. We first restate it below with more precise parameters. The result
below refers to Algorithm 1, which is our main algorithm. Algorithm 1 as a subroutine will invoke
Algorithm 3, which in turn will invoke Algorithm 2. These are all described in the coming pages.
At a high level Algorithm 1 gets as input black-box access to a multilinear ΣΠΣΠ(k) circuit C and
tries to reconstruct it. It first checks if C can be represented as a ΣΠΣΠ(k−1) circuit with slightly
larger size parameters. If not, then it knows that C must be a distant circuit. Now the algorithm
will try to obtain query access to F1 (and then learn F1) and for this, it will use Algorithm 3 as
a subroutine. In order to use Algorithm 3, Algorithm 1 iterates over all possible restrictions of
C to polylogarithmically-many variables. At least of these restrictions will have “nice enough”
properties which will allow Algorithm 3 to be effective. All the restrictions that were not good and
do not lead to the output being the correct circuit will be pruned out later by a PIT step. Once
F1 is learnt, the algorithm will subtract it off to get query access to a ΣΠΣΠ(k − 1) circuit which
can be then learnt recursively.

Input: n, k, s, black-box access to a ΣΠΣΠ(k) circuit C with λ(C) ≤ s
Output: ΣΠΣΠ(k′) circuit C ′ such that C ′ ≡ C with k′ ≤ k and λ(C ′) ≤ 2(log s)ν(k,k

′)

1 if k = 1 then
2 Invoke the reconstruction algorithm from Lemma 3.6;
/* k ≥ 2 */

3 r ← 2(log s)2
2k−1;

4 Invoke the algorithm recursively on C with k = k − 1 and s = 2r to obtain Ĉ;

5 if C ≡ Ĉ (using the black-box PIT algorithm from Lemma 4.9) then

6 return Ĉ
/* C is r-distant */

/* ‘‘guess’’ I and ā */

7 foreach I ⊆ [n] of size |I| ≤ k logs(r) and ā ∈ SP(n,s2,2n,3kn2) do

/* ‘‘guess’’ F1|x̄[n]\I=ā[n]\I */

8 foreach (u0, ūI) ∈ (F \ {0})× F|I| do
9 H0 ← u0 ·

∏
i∈I(xi − ui);

10 Invoke the reconstruction algorithm from Lemma 3.6 to obtain Ĥ. Simulate each
query point b̄ of the reconstruction algorithm by invoking Algorithm 3;

11 Invoke the algorithm recursively on C − Ĥ with k = k − 1 and s = s to obtain Ĉ ;

12 if C ≡ Ĉ + Ĥ (using the black-box PIT algorithm from Lemma 4.9) then

13 return Ĉ + Ĥ

14 return ⊥
Algorithm 1: Reconstruct.

Theorem 5.1. Given n, s, k and black-box access to a multilinear ΣΠΣΠ(k) circuit C over a finite

field F in n variables and with λ(C) ≤ s as input, Algorithm 1 runs in time |F|(log s)ν(k,1) and

outputs a ΣΠΣΠ(k′) circuit C ′ such that C ′ ≡ C with k′ ≤ k and λ(C ′) ≤ 2(log s)ν(k,k
′)

where

17



ν(k, k′)
∆
= 2(2k+1−2k

′+1).

Proof. The proof will be by induction on k. For k = 1 the claim follows from Lemma 3.6. Observe
that 2(log s)ν(k,k) = s. Now assume k ≥ 2. First, observe that due to the PIT tests, the algorithm
outputs ⊥ if and only if it could not find a circuit equivalent to C. We will argue now that the
algorithm always finds such a circuit. Consider two cases:

Suppose C is not r-distant. Then by Observation 4.6, it has an equivalent ΣΠΣΠ(k− 1) circuit
C ′ with λ(C ′) ≤ 2r. By the induction hypothesis, the algorithm will output a ΣΠΣΠ(k̂) circuit Ĉ
such that Ĉ ≡ C ′ ≡ C with k̂ ≤ k − 1 ≤ k and

λ(Ĉ) ≤ 2(log(2r))ν(k−1,k′)
=

(
2(log s)2

2k−1+1

)2(2
k−2k

′+1)

= 2(log s)ν(k,k
′)
.

Suppose C is r-distant. Assume WLOG that F1 is the gate with maximum sparsity in C (oth-
erwise we just relabel the gates so that the gate of maximum sparsity if called F1). By Observation
4.4 and Lemma 3.7, there exists ā ∈ SP(n,s2,2n,3kn2) such that ΦC(ā) 6= 0. Furthermore, by Lemma
4.5 there exists a subset I ⊆ [n] of size |I| ≤ k logs(r) such that F1|x̄[n]\I=ā[n]\I is a product of
univariates. Consequently, there exists H0 such that H0 = F1|x̄[n]\I=ā[n]\I . Given these, Algorithm

3 will simulate oracle access to F1 by computing F1(b̄) on any query point b̄ ∈ Fn (Lemma 5.4),
where the induction hypothesis provides the required reconstruction algorithm A.

Given oracle access to F1, the algorithm in Lemma 3.6 will reconstruct Ĥ ≡ F1. As C − F1 is
a ΣΠΣΠ(k − 1) circuits with λ ≤ s, by the induction hypothesis, the algorithm will reconstruct
Ĉ ≡ C − Ĥ and hence return Ĉ + Ĥ = C − Ĥ + Ĥ ≡ C.

Runtime Analysis: Let T (k, s) denote the runtime of the algorithm given k and s, respectively.
Based on the algorithm, we obtain that

T (k, s) ≤ max
{
T (k − 1, 2r) + poly(r) , nk logs r · |F|k logs r · n · |F|2 · T (k − 1, s) · poly(sk

3
)
}
.

Solving for k implies the answer.

5.1 Evaluation

In this section we will demonstrate how, given black-box access to a ΣΠΣΠ(k) circuit, to evaluate
a particular multiplication gate at a point of choice. Our algorithm will assume it has access to a
reconstruction algorithm for ΣΠΣΠ(k − 1) circuits.

More formally, given a black-box access to a multilinear ΣΠΣΠ(k) circuit C and b̄ ∈ Fn we
would like to compute F1(b̄). To this end, we apply Theorem 5.1 via the inductive hypothesis.
We assume that we are given as a subroutine a reconstruction algorithm A that given a black-box
access to a ΣΠΣΠ(m) circuit C with m ≤ k − 1 and λ(C) ≤ s, outputs a ΣΠΣΠ(m′) circuit

C ′ with m′ ≤ m and λ(C ′) ≤ 2(log s)ν(m,m
′)

. Additionally, we assume that we are given the set
I guaranteed by Lemma 4.5, an assignment ā ∈ Fn such that ΦC(ā) 6= 0 and the polynomial
H0 = u0 ·

∏
i∈I(xi − ui) = F1|x̄[n]\I=ā[n]\I .
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Given all this information, we first show how to evaluate F1 at a point b̄ which has the additional
properties that wH(ā, b̄) = 1 (where wH denotes Hamming distance), and Φ(b̄) 6= 0. This will be
accomplished by Algorithm 2, and we prove correctness of this statement in Lemma 5.2. Then in
Algorithm 3, it will be shown how to compute F1(b̄) without assuming wH(ā, b̄) = 1 and Φ(b̄) 6= 0.
In order to do this, Algorithm 3 will use Algorithm 2 as a subroutine. Correctness of Algorithm 3
is proved in Lemma 5.4.

Input: Reconstruction Algorithm A for reconstructing ΣΠΣΠ(k − 1) circuits
k, n, s ∈ N
Assignments: ā, b̄ ∈ Fn such that wH(ā, b̄) = 1
Subset: I ⊆ [n]
Polynomial: H0 = u0 ·

∏
i∈I(xi − ui)

Black-box access to a ΣΠΣΠ(k) circuit C
Output: Polynomial: H = u′0 ·

∏
i∈I(xi − u′i)

1 H ← ⊥,m← k;

2 Cb̄
∆
= C|x̄[n]\I=b̄[n]\I

;

/* ‘‘guess’’ F1|x̄[n]\I=b̄[n]\I
by trying to change one univariate factor of H0 at

a time */

3 foreach i′ ∈ I, u′0 ∈ F \ {0} and u′ ∈ F do
4 H ′ ← u′0 ·

∏
i∈I\{i′}(xi − ui) · (xi′ − u′);

/* Attempt to reconstruct the circuit Cb̄ −H ′ as a ΣΠΣΠ(k′) circuit with

k′ ≤ k − 1 */

5 for k′ ← k − 1 to 1 do
6 Invoke Algorithm A on Cb̄ −H ′ with k = k′ and s = s to obtain C ′.
7 Let m′ denote the top fan-in of C ′ ;
8 if C ′ 6= ⊥ and m′ < m then
9 H ← H ′;

10 m = m′;

11 return H /* Output H ′ for which the corresponding C ′ has the smallest top

fan-in */

Algorithm 2: Evaluate Distance 1

Lemma 5.2. Let k, n, s ∈ N and let r
∆
= 2(log s)2

2k−1. Then given:

1. k, n, s ∈ N

2. Black-box access to a ΣΠΣΠ(k) circuit C =
k∑
i=1

Fi satisfying Lemma 4.5

3. A reconstruction algorithm A that given a black-box access to a ΣΠΣΠ(m) circuit C with m ≤
k − 1 and λ(C) ≤ s, outputs a ΣΠΣΠ(m′) circuit C ′ with m′ ≤ m and λ(C ′) ≤ 2(log s)ν(m,m

′)
.

4. Assignments: ā, b̄ ∈ Fn such that wH(ā, b̄) = 1 and ΦC(ā) 6= 0,ΦC(b̄) 6= 0
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5. The subset I ⊆ [n] guaranteed by Lemma 4.5

6. Polynomial: H0 = u0 ·
∏
i∈I(xi − ui), where H0 = F1|x̄[n]\I=ā[n]\I

Algorithm 2 runs in time |F|(log s)ν(k,1) outputs H = F1|x̄[n]\I=b̄[n]\I
.

Proof. Let H be the output of the algorithm and let C ′ =
m∑
j=1

Gj be the corresponding circuit. In

addition, let H1
∆
= F1|x̄[n]\I=b̄[n]\I

. By Lemma 4.5, both H0 and H1 are products of univariates.

Moreover, since wH(ā, b̄) = 1, these products differ by at most one univariate factor. Therefore, one
of the H ′-s will be equal to H1, thus ensuring H 6= ⊥. Furthermore, observe that ∆(H1, H0) ≤ 2
and ∆(H,H0) ≤ 2. Therefore,

∆(H1 −H,H1) ≤ 2 ·∆(H,H1) ≤ 2 ·∆(H,H0) ·∆(H0, H) ≤ 8.

Let us now assume for contradiction that H 6= H1. By definition:

H1 +

k∑
i=2

Fi|x̄[n]\I=b̄[n]\I
−H = Cb̄ −H = C ′ =

m∑
j=1

Gj =⇒ (2)

(H1 −H) +

k∑
i=2

Fi|x̄[n]\I=b̄[n]\I
−

m∑
j=1

Gj ≡ 0. (3)

Therefore, we have a multilinear ΣΠΣΠ(k + m) circuit computing the zero polynomial with λ ≤
2(log s)ν(k−1,m)

. Let us consider the minimal component that contains (H1−H). By Lemma 4.5, for
i ≥ 2:

∆
(
H1, Fi|x̄[n]\I=b̄[n]\I

)
≥ r1/ log s

In addition, by Lemma 3.10:

∆
(
H1, Fi|x̄[n]\I=b̄[n]\I

)
≤ ∆(H1, H1 −H) ·∆

(
H1 −H,Fi|x̄[n]\I=b̄[n]\I

)
and hence

∆
(
H1 −H,Fi|x̄[n]\I=b̄[n]\I

)
≥ r1/ log s/8 ≥

(
2(log s)2

2k−1

)1/8 log s

≥ 2(log s)2
2k−1

.

On the other hand,

λ(C ′) ≤ 2(log s)ν(k−1,m) ≤ 2(log s)ν(k−1,1) ≤ 2(log s)2
2k−4

.

Therefore, by Corollary 4.8, this component cannot contain any such Fi|x̄[n]\I=b̄[n]\I
. Conse-

quently, it must be the case that

H1 −H −
∑
j∈A

Gj ≡ 0
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for some non-empty A ⊆ [m]. Subtracting from Equation 3 we obtain:

k∑
i=2

Fi|x̄[n]\I=b̄[n]\I
= Cb̄ −H1 =

∑
j∈[m]\A

Gj .

In other words, the circuit that corresponds to H ′ = H1 has fan-in m′ that is strictly smaller than m.
Therefore, the learning algorithm should have picked H ′ = H1, which leads to a contradiction.

By applying the lemma iteratively we can extend the algorithm to assignments with arbitrary
Hamming distance, yet under some technical conditions. This can be considered as a grass-hopper
jump.

Corollary 5.3. Let k, n, s ∈ N and let r
∆
= 2(log s)2

2k−1. Then given:

1. k, n, s ∈ N

2. Black-box access to a ΣΠΣΠ(k) circuit C =
k∑
i=1

Fi satisfying Lemma 4.5

3. A reconstruction algorithm A that given a black-box access to a ΣΠΣΠ(m) circuit C with m ≤
k − 1 and λ(C) ≤ s, outputs a ΣΠΣΠ(m′) circuit C ′ with m′ ≤ m and λ(C ′) ≤ 2(log s)ν(m,m

′)
.

4. Assignments: ā, b̄ ∈ Fn such that for all 0 ≤ i ≤ n, ΦC(γi(ā, b̄)) 6= 0.

5. The subset I ⊆ [n] guaranteed by Lemma 4.5

6. Polynomial: H0 = u0 ·
∏
i∈I(xi − ui), where H0 = F1|x̄[n]\I=ā[n]\I

runs in time |F|(log s)ν(k,1) outputs H = F1|x̄[n]\I=b̄[n]\I
.

Proof. Starting with ā = γ0(ā, b̄), apply Lemma 2 iteratively using the value on γi(ā, b̄) to compute
the value on γi+1(ā, b̄) until γn(ā, b̄) = b̄.

Now we show how to compute F1(b̄) without assuming Φ(b̄) 6= 0. In order to do this, we will
consider the line `ā,b̄(t) through ā and b̄ and show that most points v̄ on the line do satisfy the
condition that Φ(v̄) 6= 0. Once we have this, by Corollary 5.3, we will show that for most points v̄
on the line, F1(v̄) can be computed accurately. We then apply noisy polynomial interpolation (for
instance the Berlekamp-Welch algorithm for decoding Reed-Solomon Codes) to recover the entire
univariate polynomial which is F1 restricted to `ā,b̄(t), and from this we can recover F1(b̄).

Lemma 5.4. Let k, n, s ∈ N and let r
∆
= 2(log s)2

2k−1. Then given:

1. k, n, s ∈ N

2. Black-box access to a ΣΠΣΠ(k) circuit C =
k∑
i=1

Fi satisfying Lemma 4.5

3. A reconstruction algorithm A that given a black-box access to a ΣΠΣΠ(m) circuit C with m ≤
k − 1 and λ(C) ≤ s, outputs a ΣΠΣΠ(m′) circuit C ′ with m′ ≤ m and λ(C ′) ≤ 2(log s)ν(m,m

′)
.
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Input: Reconstruction Algorithm A for reconstructing multilinear ΣΠΣΠ(k) circuits
k, n, s ∈ N
Assignments: ā, b̄ ∈ Fn
Subset: I ⊆ [n]
Polynomial: H0 = u0 ·

∏
i∈I(xi − ui)

Black-box access to a ΣΠΣΠ(k) circuit C
Output: h1 ∈ F

1 Choose a subset V ⊆ F be of size |V | = 20kn3;
2 foreach t′ ∈ V do
3 Let Ht′ be the output of the algorithm in Corollary 5.3 for the input point `ā,b̄(t

′) ;

4 ht′ ← Ht′(b̄) ;
/* If `ā,b̄(t

′) satisfies the technical conditions of Corollary 5.3, then

ht′ = F1(`ā,b̄(t
′)); otherwise, ht′ can be arbitrary. */

5 Use noisy polynomial interpolation to recover P̂ (t) (Lemma 3.2);

6 return P̂ (1) ;

Algorithm 3: Evaluate.

4. Assignments: ā, b̄ ∈ Fn such that ΦC(ā) 6= 0

5. The subset I ⊆ [n] guaranteed by Lemma 4.5

6. Polynomial: H0 = u0 ·
∏
i∈I(xi − ui), where H0 = F1|x̄[n]\I=ā[n]\I

Algorithm 3 runs in time |F|(log s)ν(k,1) outputs h1 = F1(b̄).

Proof. Consider the following polynomials:

P (t)
∆
= F1(`ā,b̄(t)) , Q(t)

∆
=

n∏
i=1

ΦC

(
γi(ā, `ā,b̄(t))

)
.

By Corollary 5.3, if Q(t′) 6= 0 then ht′ = P (t′). We will now bound the number of roots of
Q(t). By Observation 4.4, Q(t) is a univariate polynomial of degree at most 6kn3. In addition,
observe that Q(0) = (ΦC(ā))n 6= 0. Consequently, Q(t) has at most 6kn3 roots. While P (t)
is is a univariate polynomial of degree at most n. By Lemma 3.2, P̂ (t) ≡ P (t). In particular,
P̂ (1) = P (1) = F1(b̄).

6 Open Questions

In this work we present the first efficient reconstruction algorithm for multilinear ΣΠΣΠ(k) cir-
cuits for arbitrary, yet fixed top fan-in k, thus solving an open problem posed in [GKL12]. The
algorithms is deterministic and runs in time quasi-poly(n, s, |F|). We conclude by discussing some
open problems.
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• Improve dependence on the field size: Perhaps the most immediate and natural ques-
tion is if we can have a learning algorithm for “larger” fields. In particular, reconstructing
ΣΠΣΠ(k) circuits over fields of characteristic 0? Or over finite fields with poly(log(|F|))
dependence in time complexity? Notice that for our algorithm the poly(|F|) dependence es-
sentially stems from the brute force step which is central to our approach. Thus, we have to
avoid that using some new techniques. Also, (as was mentioned before) any proper learning
algorithm that has poly(log(|F|)) dependence on the field size must be randomized, unless we
can compute square roots deterministically [Vol16].

• Handling larger (super-constant) top fan-in: It would be interesting to generalize our
results to multilinear ΣΠΣΠ(k) circuits, with k = Ω(1). Notice that, any learning algorithm
with polynomial dependence on k will directly yield a subexponential-time reconstruction
algorithm for general multilinear circuits via the depth reduction results of [AV08, Koi10,
Tav13, KdOS19]. This would be enormously interesting and very likely a difficult problem.
Also, on a technical note, the structural result (Sparsity Bound [SV18]) which is central to
the analysis of our algorithm will become will become trivial when k = Ω(

√
n/ log s).

Another interesting question is improving the running time of our algorithm. One technical
difficulty to overcome is projecting the circuit to constantly many variables and still main-
taining the structural properties of the circuit.
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