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Abstract

Over the last twenty years, an exciting interplay has emerged between proof systems and
algorithms. Some natural families of algorithms can be viewed as a generic translation from
a proof that a solution exists into an algorithm for finding the solution itself. This connection
has perhaps been the most consequential in the context of semi-algebraic proof systems and
basic primitives in algorithm design such as linear and semidefinite programming. The proof
system perspective, in this context, has provided fundamentally new tools for both algorithm
design and analysis. These news tools have helped in both designing better algorithms for
well-studied problems and proving tight lower bounds on such techniques.

This monograph is aimed at expositing this interplay between proof systems and efficient
algorithm design and surveying the state-of-the-art for two of the most important semi-
algebraic proof systems: Sherali-Adams and Sum-of-Squares.

We rigorously develop and survey the state-of-the-art for Sherali-Adams and Sum-of-
Squares both as proof systems, as well as a general family of optimization algorithms, stress-
ing that these perspectives are formal duals to one-another. Our treatment relies on in-
terpreting the outputs of the Sum-of-Squares and Sherali-Adams algorithms as generalized
expectation functions – a viewpoint that has been essential in obtaining both algorithmic re-
sults and lower bounds. The emphasis is on illustrating the main ideas by presenting a small
fraction of representative results with detailed intuition and commentary. The monograph
is self-contained and includes a review of the necessary mathematical background including
basic theory of linear and semi-definite programming.
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Chapter 1

Introduction

Proof complexity is the study of what can be proved efficiently 1 in a given formal proof
system. Algorithm analysis is the quest for efficient and accurate algorithms for optimization
problems, that can be rigorously analyzed. Over the last twenty years, there has been an
exciting interplay between proof complexity and algorithms which in a nutshell studies the
proof complexity of algorithm correctness/analysis. The main focus of this monograph is
on algebraic and semi-algebraic proof systems, and the story of how they became closely
connected to approximation algorithms. Indeed, we will argue that proof complexity has
emerged as the study of systematic techniques to obtain provably correct algorithms.

There are two high level themes underlying this connection. The first theme is that
proof system lower bounds imply lower bounds for a broad family of related algorithms. A
proof system, in a specific formal sense, corresponds to a family of efficient, provably correct
algorithms. Thus, lower bounds in specific proof systems (showing hardness of proving well-
definedness or other key properties of the function) rules out large classes of algorithms for
solving NP-hard optimization problems. The origins of this theme can be traced to a paper
aptly titled “Proving Integrality Gaps without Knowing the Linear Program” [ABLT06].
This paper considered broad classes of linear relaxations for NP-optimzation problems, and
proved nearly tight integrality gaps for several important problems (VertexCover, MaxSAT,
and MaxCut) for any linear relaxation from the class. The classes that they considered
correspond to the algorithms that underlie the semi-algebraic proof systems SA (Sherali-
Adams) and LS (Lovász-Schrijver).

Since then, there has been a huge body of work, proving integrality gaps for large fam-
ilies of linear programming and semidefinite programming based algorithms for a variety
of important NP-hard optimization problems. These integrality gaps are none other than
proof complexity lower bounds for specific families of formulas. Most notably are the proof
systems Polynomial Calculus (PC) which is gives rise to a family of algebraic algorithms,
Sherali-Adams (SA) which gives rise to a large family of linear programs, and Sum-of-Squares
(SoS), which gives rise to a large family of semidefinite programs. In another exciting line of

1The emphasis on efficiency, as opposed to existence, is what distinguishes proof complexity from classical
proof theory, and also what links proof complexity with complexity theory and algorithms.
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work, lower bounds for SA and SoS form the basis of exponential lower bounds on the size of
extended formulations (and positive semi-definite extended formulations) for approximating
MaxCut as well as for other NP-hard optimization problems.

The second theme is that proof system upper bounds can automatically generate efficient
algorithms. More specifically, a proof system is said to be automatizable if there is an
algorithm that can find proofs in that system efficiently, in the size of the shortest proof.
(So if there is a short proof in the system, then it can be found efficiently as well.) SA is
degree automatizable, in the sense that if there is a degree d proof, then it can be found
time nO(d). SoS is also practically degree automatizable, if we assume that the coefficients
have length bounded by a polynomial in n (or can be sufficiently well approximated). 2

In an automatizable proof system, an efficient proof certifying the existence of a solution
automatically implies an efficient algorithm for the problem. Using this theme, several
remarkable recent papers have obtained new algorithms for unsupervised learning problems
via efficient SoS proofs.

In the rest of this introduction, we give an brief tour of proof complexity including an
introduction to the algebraic and semi-algebraic proof systems that we will focus on in this
monograph, from the proof complexity point of view.

1.1 Proof Complexity Primer

Propositional proof systems refer to systems that either prove the unsatisfiability of a Boolean
formula, or equivalently prove that a Boolean formula is a tautology. Since any formula can
be efficiently converted into an equivalent formula in conjunctive normal form (CNF), we
will start by discussing propositional proof systems for k-CNF formulas. A k-CNF formula
over Boolean variables x1, . . . , xn is a conjunction of clauses, C1, . . . , Cm, where each clause
is a disjunction of k literals. We will often view a k-CNF formula as a set of clauses or
constraints. A set of clauses {C1, . . . , Cm} is satisfiable if there exists a Boolean assignment
α to the underlying variables such that every clause Ci evaluates to true under α; otherwise
the set of clauses are unsatisfiable.

Typical propositional proof systems are axiomatic, meaning that they are described by a
finite set of syntactic derivation rules, which describe how to derive new formulas from one
or two previous ones. In an axiomatic system, a proof that a set of formulas (over x1, . . . , xn)
is not simultaneously satisfiable, is just a sequence of formulas, where every formula in the
sequence is either one of the initial formulas, or is generated from previous formulas in the
sequence by one of the rules. The final formula in the sequence should be a minimal formula
that is obviously unsatisfiable. (For example, the formula ”0” or the formula x ∧ ¬x.)

Example. Resolution is a proof system for refuting CNF formulas, or in other words, for
proving that a set of clauses is not simultaneously satisfiable. There is only one rule (the
Resolution rule): (A ∨ x), (B ∨ ¬x)→ (A ∨ B), where A and B are clauses, and by A ∨ B
we mean the clause obtained by taking the disjunction of all literals occurring in A or B,

2See the discussion in Section 3.2.3.3.
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removing duplications. For example, we can derive (x1∨x2) from (x1∨x3) and (x1∨x2∨¬x3).
A Resolution refutation of a set of clauses C1, . . . , Cm is thus a sequence of clauses such that
every clause in the sequence is either an initial clause Ci, i ∈ [m], or follows from two
previous clauses by the Resolution rule, and such that the final clause is the empty clause.
Resolution is sound and complete: a CNF formula f has a Resolution refutation if and only
if f is unsatisfiable.

Proof Length. In order to discuss the efficiency of a proof, we first need to decide upon an
encoding of formulas and proofs in the proof system. For Resolution, if our initial formula
is a k-CNF formula, its length is polynomial in the number of underlying variables. We will
encode a Resolution refutation by encoding each clause in the sequence; since each clause has
length O(n), the number of clauses in the refutation is polynomially related to the bit-length
encoding. Thus, for simplicity we take the number of clauses to be the length of a Resolution
refutation, and we consider a refutation of a k-CNF over n variables to be efficient, if its
length is polynomial in n.

To study proof length asymptotically we are actually interested in understanding the
efficiency of uniformly generated {families} of k-CNF formulas, as n grows. As an example,
consider the family of propositional formulas, {INDn, n > 2} corresponding to the (uniform)
induction principle. We have n variables associated with INDn, x1, . . . , xn, and the following
clauses: (1) (x1); (2) For all i < n (¬xi ∨ xi+1); (3) (¬xn). For each n, INDn has size
polynomial in n and we say that INDn has efficient Resolution refutations if for n sufficiently
large, INDn has a Resolution refutation of polynomial size in n.

Cook-Reckhow Proof Systems. A formal definition of a propositional proof system was
given by Cook and Reckhow in their seminal paper introducing the key ideas behind the
field [45]. In their definition, proofs need not be axiomatic – what matters is that proofs can
be checked efficiently, and that they are sound and complete. Fix a standard encoding of
Boolean formulas, where f̂ denotes the encoding of the Boolean formula f .

Definition 1.1 (Propositional Proof System). A propositional proof system (for refuting
unsatisfiable Boolean formulas) is a function P : {0, 1}∗ → {0, 1}∗ such that the following
properties hold:

(1) (Efficiently checkable) the mapping P is polynomial time;

(2) (Soundness) For every f , if f is satisfiable then for all y, P(y) 6= f̂ ;

(3) (Completeness) For every unsatisfiable formula f , there exists a y such that P(y) = f̂ .

In other words, a propositional proof system is a polynomial-time function P that maps
(encodings of) proofs to (encodings of) formulas such that the range of P is exactly the class
of all unsatisfiable formulas.

Derivations versus Refutations. So far we defined proof systems as refutation systems,
for showing that a system of constraints is unsolvable. What if we want to consider instead
proofs of derivations, such as a proof that f1∧. . .∧fk → g. Of course we can always determine
if this implication is a tautology by obtaining a refutation of the negation of this implication.
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However, it will often be more convenient to work directly with proofs of derivations (for
example, when we want to study the proof complexity of approximation algorithms). To this
end, we define a proof system for derivations as a polynomial-time function P from strings
(encodings of derivations) to strings (encodings of implications of the form f1, . . . , fk → g),
with the property that the range of P is exactly the set of all tautological implications. The
special case of refutations corresponds to implications where g is the formula ”False”.

Definition 1.2 (Proof Size). For a proof system P , and an unsatisfiable formula f , sizeP(f)
is the size of the shortest P-proof of f ,

Definition 1.3 (Polynomially Bounded Proof System). P is polynomially bounded (or p-
bounded) if there exists a constant c such that for sufficiently large n, for all unsatisfiable
formulas f of size n, sizeP(f) 6 nc.

It is not too hard to see that there exists a polynomially bounded proof system for
unsatisfiable formulas if and only if NP = coNP. If there is a polynomially-bounded proof
system, then by definition, this gives an NP algorithm for unsatisfiability and thus NP =
coNP. On the other hand, if NP = coNP, then there is a nondeterministic polynomial-time
procedure for determining if a given formula is unsatisfiable. This procedure is, by definition,
a polynomial-bounded proof system.

Under the fairly widely held belief that NP 6= coNP, it follows that no proof system is
polynomially bounded. In other words, for any proof system there are families of tautologies
that require superpolynomial-length proofs. It is interesting to note that unlike in circuit
complexity where a simple counting argument establishes that most Boolean functions re-
quire large circuits, in proof complexity, no such counting argument is known. Thus, a major
goal of proof complexity is to prove superpolynomial lower bounds for standard proof sys-
tems, for some hard family of unsatisfiable formulas. As we will see, proving lower bounds
for specific families of formulas, such as those arising from natural optimization problems,
is even more interesting since it is tightly connected to understanding how well the problem
can be solved or approximated efficiently.

The next definition allows us to compare the relative strength of different proof systems.

Definition 1.4 (p-Simulation). Let P1 and P2 be two propositional proof systems (over the
same language). P∞ p-simulates P2 if there exists a polynomial q such that for sufficiently
large n, and for all unsatisfiable formulas f of size at least n, sizeP1(f) 6 q(sizeP2(f)). In
otherwords, P1 p-simulates P2 if for every unsatisfiable formula, the minimum proof length
in P1 is at most polynomially larger than the minimum proof length in P2. P1 and P2 are
p-equivalent if P1 p-simulates P2, and P2 also p-simulates P1.

The Resolution refutation system discussed above is one of the most well-known propo-
sitional proof systems and forms the basis for many well-known automated theorem provers
and SAT solvers. The other well-known type of propositional proof system, collectively re-
ferred to as Frege systems, are axiomatic systems typically presented in undergraduate logic
textbooks. Lines in a Frege system are propsitional formulas (usually over the standard basis
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{∧,∨,¬}). A Frege system is equipped with a finite set of axiom and rule schemas, and a
Frege proof is a sequence of formulas, starting with axioms, and inferring new formulas from
previous ones by applying these rules. Extended Frege systems are generalization of Frege
systems where lines are boolean circuits (rather than formulas). Cook and Reckhow showed
that standard propositional proof systems form a natural hierarchy, which mirrors the well-
known circuit class hierarchy. At the bottom are Resolution proofs, where lines are clauses
and thus they (roughly) correspond to depth-1 circuits; above that are bounded-depth Frege
systems where lines are bounded-depth formulas, and thus they correspond to bounded-depth
AC0 circuits. Similarly, Frege systems correspond to formulas (NC1 circuits) and Extended
Frege systems correspond to polynomial-size circuits. Thus as shown by Cook and Reckhow,
bounded-depth Frege p-simulates Resolution, Frege p-simulates bounded-depth Frege, and
Extended Frege p-simulates Frege.

ResolutionNullstellensatz

Sherali-AdamsPolynomial Calculus

Sum-of-Squares Cutting Planesbounded-depth Frege

Frege

Extended Frege

IPS

Figure 1.1: The hierarchy of common propositional proof systems. An arrow P1 → P2

indicates that P2 is strictly stronger than P1: P2 p-simulates P1 and there exists a formula
which has polynomial-size proofs in P2 but which requires super-polynomial size to prove in
P1. A dashed arrow from P1 to P2 implies that there is a formula which has short proofs in
P2 but not in P1, but it is unknown whether P2 p-simulates P1. A dashed line between P1

and P2 indicates that P1 and P2 do not p-simulate each other.

In terms of lower bounds, Haken famously proved exponential lower bounds for Resolution
(using the propsitional pigeonhole principle as the hard formulas) [64]. Another landmark
paper by Ajtai [1] proved superpolynomial lower bounds (again for the pigeonhole principle)
for Frege systems of bounded depth, and in [25] this was improved to truly exponential lower
bounds. It is a longstanding open problem to prove superpolynomial lower bounds for Frege
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systems. A comprehensive treatment of propositional proof complexity can be found in the
following surveys [26, 131, 122].

While proof size is important, it is also important to be able to find a proof quickly.
Given the likelihood that all propositional proof systems are not polynomially-bounded, we
should measure the complexity of finding a proof with respect to the size of the shortest
proof, which motivates the next definition.

Definition 1.5 (Polynomial Automatizibility). A proof system P is polynomially autom-
atizable if there exists an algorithm A that takes as input a k- formula f and returns a
P-refutation of f , if f is unsatisfiable, where the runtime of A is polynomial in sizeP (f) –
that is, the runtime is polynoimal in the size of the shortest P-refutation of f .

Shortly, we define algebraic proof systems where lines are polynomial equalities or in-
equalities. For algebraic systems, we are interested not only in proof size (which can be
measured in several different ways) as also in proof degree. Thus, we define the following
degree-based variant of automatizability.

Definition 1.6 (Degree Automatizibility). An algebraic proof system P is degree automa-
tizable if there is an algorithm A that returns a P-refutation of f in time nO(degP (f)), where
degP(f) is the minimal degree refutation of f in P .

Non-trivial proof-search algorithms have been discovered for several weak proof systems.
Ben-Sasson and Wigderson [28] showed that any Resolution proof can be found in time
nO(

√
n logS). This follows from the size-width trade-off [28] which shows that any Resolution

proof of size S can be converted into one in which every clause contains at most O(
√
n logS)

literals , together with the fact that any Resolution proof of width w can be found in time
at most nO(w) by simply generating, according to the resolution rule, all possible clauses of
width at most w (of which there are at most (2n)w). For tree-like Resolution, a variant of
Resolution which restricts the underlying graph of implications of any proof to be a tree,
the size-width trade-off is stronger and gives rise to an automating algorithm for tree-like
Resolution which runs in quasi-polynomial time. For weak algebraic proof systems, one can
often exploit similar ideas to obtain degree-automating algorithms. The general idea is as
follows: any degree d polynomial can contain at most nO(d) terms. Often one can employ
algorithms such as linear, or semi-definite programming to solve for the coefficients of these
terms in time nO(d).

For stronger proof systems, a line of work has sought to rule out their automatizability
assuming well-believed cryptographic assumptions. This began with the work of Kraj́ıcek
and Pudlák, who showed that Extended Frege is not automatizable unless RSA is not secure
against polynomial size circuits [92]. Building on these ideas, Bonet et al. showed non-
automatizability of Frege systems [33] and bounded-depth Frege [32] under the assumption
that computing the Diffie-Hellman function cannot be computed by polynomial and sub-
exponential size circuits respectively. For weaker proof systems, this approach seems less
hopeful as it is not clear how to use the limited reasoning of these weak proof systems to
break cryptographic assumptions, leaving, in particular, the polynomial automatizability of
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Resolution as a tantalizing open problem. In an important paper, Alekhnovich and Razborov
[2] showed that if Resolution, or even tree-like Resolution were polynomially automatizable,
then the hierarchy of parameterized complexity classes would collapse; that is, W[P] =
FPT. This was later extended by Galesi and Lauria [48] to include the Polynomial Calculus
proof system. In a recent groundbreaking work, Atserias and Müller settled the question
of automating Resolution proofs by showing that Resolution is not even sub-exponentially
automatizable unless P = NP [11].

Proof Systems for other NP Problems. The Cook-Reckhow definition above defined
proof systems specifically for the NP-hard problem . However, we can just as easily define
in the same way, proof systems for any discrete optimization problem. For example, below
we will consider the NP-hard optimization problem which takes as input a set of polynomial
inequalities (typically over a finite field or the integers), with underlying variables x1, . . . , xn,
and the problem is to determine whether or not the inequalities are simultaneously solvable.
A proof system in this setting would again be a polynomial-time algorithm P mapping
strings (encodings of proofs) to strings (encodings of a set of polynomial inequalities), with
the property that the range of P is exactly the set of all no instances (unsatisfiable polynomial
inequalities).

1.2 Algebraic and Semi-algebraic Proof Systems

In the rest of this monograph we will focus on proof systems that generalize propositional
proof systems. Instead of starting with a set of Boolean formulas or clauses, we will start
with a family of polynomials over x1, . . . , xn where now the variables can range over a field
or a ring. (Typically we will consider the variables to range over the integers, or over a finite
field.) In the case of algebraic proof systems, we start with polynomial equalities, and in
the case of semi-algeraic proof systems, we start with polynomial inequalities. Algebraic and
semi-algebraic systems generalize propositional proof systems as we can translate clauses
into either polynomial equations ((x1 ∨ ¬x2 ∨ x3) becomes (1 − x1)x2(1 − x3) = 0) or into
polynomial inequalities ((x1 ∨ ¬x2 ∨ x3) becomes x1 + x3 > x2.)

Nullstellensatz and Polynomial Calculus. We start by describing the algebraic proof
systems, Nullstellensatz (Nsatz) and the Polynomial Calculus (PC). These proof systems
are based on Hilbert’s Nullstellensatz which states that a system of polynomial equations
p1(x1, . . . , xn), . . . , pm(x1, . . . , xm) over a field F is unsatisfiable if and only if the ideal in the
ring F [x1, . . . , xn] generated by p1(x), . . . , pm(x) contains 1. In other words, if and only if
there exists polynomials q1(x), . . . , qm(x) such that

p1q1 + . . .+ pmqm = 1.

In our standard context where the variables xi range over the Boolean domain {0, 1}, we
can enforce this by adding x2

i − xi to the list of polynomial equations. Alternatively we can
just factor them out by working in the ring F [x1, . . . , xn]/(x2

1−x1, . . . , x
2
n−xn) of multilinear
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polynomials. Thus q1(x), . . . , qm(x) can be assumed to be multilinear and therefore of degree
at most n.

A Nullstellensatz refutation of p1(x), . . . , pm(x) is thus a set of polynomials q1, . . . , qm
such that

∑
i piqi = 1. it is clear that this proof satisfies the Cook-Reckhow definition: it

is easy to check that
∑

i piqi = 1, and soundness and completeness follow from Hilbert’s
Nullstellensatz.

The size of a Nullstellensatz refutation is the sum of the sizes of the qi(x)’s. Another
important measure for Nullstellensatz refutations is the degree, which is the maximal de-
gree of the pi(x)qi(x)’s. As mentioned above, the degree is at most linear. An important
property of Nullstellensatz refutations is that they are degree automatizable: If an initial
family p1(x), . . . , pm(x) of polynomials has a degree d Nullstellensatz refutation, then it can
be found in time nO(d) by simply solving a system of linear equations where the underlying
variables of the equations are the coefficients of the monomials in q1(x), . . . , qm(x).

The Polynomial Calculus (PC) is a dynamic version of Nullstellensatz that is rule-based.
The inference rules are: (i) from f = 0, g = 0 we can derive αf+βg = 0, and (ii) from f = 0
we can derive fg = 0. The size of a PC proof is the sum of the sizes of all polynomials in
the derivation, and the degree is the maximum degree of any line in the proof. Because this
system is dynamic, it is sometimes possible (through cancellations) to obtain a much lower
degree refutation than is possible using the static Nullstellensatz system. A great example
is the induction principle INDn mentioned above. It is not too hard to see that they have
degree 2 PC refutations; on the other hand, it has been shown that their Nsatz degree is
Θ(log n) [36]. Clegg, Edmonds and Impagliazzo [44] proved that, like Nsatz, PC refutations
are degree automatizable.

Stronger Algebraic Proof Systems. The Nullstellensatz and Polynomial Calculus proof
systems witness the unsolvability of a set P of polynomial equations by demonstrating that
1 lies in the ideal generated by P , where the measure of complexity of the proof is the
maximal degree. More generally proofs can be viewed as directed acyclic graphs, where
each line in the proof is either a polynomial from P , or follows from two previous lines by
taking a linear combination of two previous lines, or by multiplying a previous equation by
a variable, and where the final line is the identically 1 polynomial. Thus the entire proof can
be viewed more compactly as an algebraic circuit, with the leaves labelled by polynomials
from P , and constants, and where internal vertices are either plus or times gates. This proof
system (now called Hilbert-IPS) was introduced in [109] and is known to be quite powerful:
it can efficiently simulate proofs in all standard propositional proof systems. However, it
is not known to be a Cook-Reckhow proof system since proofs are not known to be be
verifiable in polynomial time. Determinining if a Hilbert-IPS circuit is a proof amounts to
determining if the polynomial that it computes is the identically-1 polynomial, and therefore
verifying a Hilbert-IPS proof amounts to solving PIT (polynomial identity testing), a problem
that admits a randomized (one-sided error) polynomial-time algorithm. A longstanding and
important problem is to prove (or disprove) that PIT has a deterministic polynomial time
algorithm.

A generalization of Hilbert-IPS called the IPS proof system (the Ideal Proof System) was
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introduced by Grochow and Pitassi [60]. IPS proofs have no rules – a proof of unsolvability
of P is simply an algebraic circuit C with two types of inputs, x1, . . . , xn and y1, . . . , ym, and
subject to the following properties (which can be verified by a PIT algorithm): (i) C with
zero substituted for each of the yi variables evaluates to the identically zero polynomial; (ii)
C with p1(x), . . . , pm(x) substituted for y1, . . . , ym, computes the identically 1 polynomial.
As for Hilbert-IPS, IPS are not known to be deterministically verifiable in polynomial time,
and can simulate all standard Frege and Extended Frege systems. Grochow and Pitassi
prove that superpolynomial lower bounds for IPS for any family of unsolvable polynomials
P would resolve the longstanding problem of separating V P from V NP , thus establishing
a connection between lower bounds in proof complexity and circuit lower bounds.

In [97] Tzemeret and Wang define a noncommutative version of IPS, and quite surpris-
ingly, they prove that it is equivalent to standard Frege systems. In different but related
work, Grigoriev and Hirsch [58] introduce an algebraic proof system with derivation rules
corresponding to the ring axioms; unlike the IPS systems, proofs in their system can be
verified in polynomial-time. (See [112] for a survey of algebraic proof systems.)

Cutting Planes. Cutting Planes is a semi-algebraic proof system over the integers, where
the inequalities are linear. It was originally devised as a method for solving integer linear
programs by relaxing them to fractional constraints (replacing xi ∈ {0, 1} by 0 6 xi 6 1,
and then deriving new inequalities from previous ones via the Cutting Planes rules, as a way
to tighten the relaxed polytope, to whittle away at non-integral points. There are two rules
for deriving new inequalities:

(i) Combination: From
∑

i aixi > γ and
∑

i bixi > δ, derive
∑

i(αai + βbi)xi > αγ + βδ,
for nonnegative integers α, β.

(ii) Division with rounding: From
∑

i aixi > γ, derive
∑

i
ai
c
xi > dγc e, provided that c

divides all ai.

Sherali-Adams and Sum-of-Squares. Sherali-Adams (SA) will be the focus of Chapter
2. Like Cutting Planes, it is a semi-algebraic proof system over the integers, where lines are
polynomial inequalities. Like Nsatz, it is a static proof system. Let p1(x), . . . , pm(x) be a set
of polynomial inequalities that includes that polynomial inequalities x2

i > xi, xi > x2
i for all

i ∈ [n]. A SA refutation of p1(x) > 0, . . . , pm(x) > 0 is a set of polynomials q1(x), . . . , qm(x)
such that each qi(x) is a non-negative combination of non-negative juntas, and such that∑

i piqi = −1. (A non-negative junta is a polynomial that corresponds to a conjunction of
Boolean literals – for example, x1(1− x2)x3 is a non-negative junta that corresponds to the
Boolean conjunction x1¬x2x3.)

Sum-of-Squares (SoS) is another static semi-algebraic proof system, and is the focus
of Chapter 3. Again let p1(x), . . . , pm(x) be a set of polynomial inequalities that includes
x2
i − xi = 0 for all i ∈ [n]. An SoS refutation of p1(x) > 0, . . . , pm(x) > 0 is a set of

polynomials q1(x), . . . , qm(x) such that each qi is a sum-of-squares – that is, qi(x) can be
written as

∑
j(ri,j(x))2 for some polynomials ri,j(x), and such that

∑
i piqi = −1. It is not
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hard to see that non-negative combinations of non-negative juntas are sum-of-squares, and
thus the SoS proof system extends SA.

Both SA and SoS are degree automatizable refutation systems, which makes them ex-
tremely useful for designing good approximation algorithms.

1.3 Connection between Algorithms and Proofs.

Having described the specific proof systems that will be the highlight of the connection
between proof complexity and algorithms, we will return to the two themes connecting proof
complexity with algorithms.

Suppose that you have a correct algorithm A for solving SAT (or some other NP-hard
optimization problem). By correct we mean that when run on a satisfiable instance, the
algorithm will always output ”satisfiable” and when run on an unsatisfiable formula, the
algorithm will always output ”unsatisfiable”. Since the algorithm is correct, on any unsat-
isfiable formula f , we can view the computation of the algorithm on input f as a proof of
the unsatisfiability of f . Furthermore, if A’s run on f is efficient (say polynomial-time),
then A provides us with a polynomial-length refutation that f is unsatisfiable. Moreover,
the same idea applies to approximation algorithms. That is, suppose that we have a correct
2-approximation algorithm for some optimization problem, such as independent set. That
is, for every graph G, it outputs an independent set of size at least half of the size of the
largest independent set in G. If we run the algorithm on some graph G and it returns an
independent set of size s, this is a proof that G does not contain an independent set of size
greater than 2s.

Now speaking somewhat informally, if A is correct, then there is a proof of A’s correctness.
This proof of correctness of A, when applied to each unsatisfiable f gives us a propositional
proof that f is unsatisfiable, in some Cook-Reckhow proof system, let’s call it PA. Therefore,
superpolynomial lower bounds for this proof system show that there can be no polynomial-
time algorithm whose proof of correctness is based on PA.

It turns out that efficient Frege or Extended Frege proofs capture the reasoning behind
proofs of correctness for nearly all known algorithms! Therefore, superpolynomial lower
bounds for Frege systems would essentially show that any efficient algorithm for an NP-hard
problem would have to involve a sophisticated, inefficient and unnatural proof of correctness.

Unfortunately, at present we do not know how to prove superpolynomial Frege lower
bounds. But luckily, it turns out that there are much weaker proof systems where we can
prove superpolynomial lower bounds, and that also capture a large and interesting family
of algorithms. In particular, we will develop the proof system Sherali-Adams (SA) from
an algorithmic point of view, and see that SA captures a large class of linear programming
relaxations. We will see, through the theory of linear programming duality, that SA deriva-
tions (a syntactic object) are dual to points in the corresponding LP polytopes (a semantic
object), thus linking the SA proof complexity of proving that a solution exists, to the al-
gorithmic complexity of finding such a solution. In a similar manner we will develop the
SoS system, and see that it captures semi-definite programming relaxations. Again, we will
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link SoS derivations to the points in the corresponding semi-definite cone, thus linking SoS
complexity of proving the existence of a solution to the algorithmic complexity of finding
such a solution.

In Chapter 5 we prove SoS and SA lower bounds for a particular family of 3XOR and
instances. Using the above connection, this implies in a precise sense that no linear program-
ming or semi-definite program based on low-degree SoS can approximate 3XOR or MaxSAT
better than the trivial approximation. That is, we see an exact instance where a proof
complexity lower bound implies lower bounds for a large class of approximation algorithms.

In the other direction, in Chapter 4 we will see how SoS upper bounds can lead to efficient
algorithms. 3 The high level idea is as follows. Start with some optimization problem such
as independent set. If we can manage to give a low degree SoS proof that for every graph G,
there exists a 2-approximation, then by the degree automatizability of SoS, this implies an
efficient algorithm for actually finding the solution. This idea is very powerful, and has been
applied to many problems in machine learning. The general approach is to obtain low-degree
SoS proofs of polynomial sample complexity bounds for the learning problem, and then by
degree-automatizability of SoS, this yields an efficient learning algorithm.

As a toy example to illustrate this connection, suppose that you are given samples from
an unknown Gaussian with mean µ and standard deviation one, and want to approximately
recover the true mean from these samples. A necessary condition for succeeding in poly-
nomial time are sample complexity bounds – that is, polynomially many samples must be
enough to approximate the true mean information theoretically. Now suppose that we can
formalize and prove this sample complexity bound with a low degree SoS proof. Then
by degree automatizability of SoS, this automatically gives a polynomial-time algorithm
for solving the learning problem! In Section 4.3, we discuss several instantiations of this
approach where state-of-the-art learning algorithms are obtained for: dictionary learning,
tensor decomposition, as well as learning mixtures of Gaussians.

3We remark that there is a long history of related results in logic, showing strong links between proofs
and programs. In particular, in restricted systems of arithmetic, programs/algorithms can be extracted from
proofs of existence.

13



Chapter 2

Sherali-Adams

2.1 Linear Programming

Linear programming describes a broad class of optimization problems in which both the
objective function that we are trying to optimize, and the constraints which the solutions
must satisfy are linear functions. Linear programs have the following canonical form, in
which we are optimizing an objective function c>x a set of linear constraints P ,

LP(P , c) := min
x∈P

c>x,

where P = {Ax > b, x >0},

for A ∈ Rm×n and c ∈ Rn. Geometrically, this corresponds to optimizing over the convex
polytope in Rn defined by the linear inequalities in P . Throughout this monograph we will
abuse notation and write P to refer to both the set of constraints, as well as the set of solutions
to those constraints (i.e. the convex polytope), relying on the context to differentiate between
the two interpretations. Linear programming was first shown to be solvable in polynomial
time by Khachiyan [75] using the ellipsoid method1, and it was later discovered to be complete
for P. Since then, significant work has focused on designing fast and efficient algorithms
for solving LPs efficiently in practice, resulting in linear programming being considered a
standard tool in a wide variety of fields.

Not only does solving an LP compute a feasible solution, but it also generates a short
proof of the optimality of that solution. This is a consequence of the duality theorem for
linear programs, and will be the focus of the rest of this section. We will call LP(P , c) the
primal LP; the dual LP is defined as

LPD(P , c) := LP(PD,−b) = max
x∈PD

b>y,

where PD = {A>y 6 c, y > 0},
1We review the ellipsoid method in Section 3.1.1 for solving semi-definite programs.
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Any solution to the dual LP is a lower bound on the minimum value that the primal can
attain. Furthermore, the duality theorem states that if feasible solutions to the primal and
dual both exist, then their optimal values coincide.

Theorem 2.1 (Linear Programming Duality). Let P = {Ax > b, x > 0} be a set of linear
inequalities and c ∈ Rn. Then, exactly one of the following cases holds

1. Neither LP(P , c) nor LPD(P , c) has a feasible solution,

2. LP(P , c) has solutions of arbitrarily small value, and LPD(P , c) is unsatisfiable.

3. LP(P , c) is unsatisfiable, and LPD(P , c) has solutions of arbitrarily large value.

4. Both LP(P , c) and LPD(P , c) have optimal solutions x∗ and y∗, and furthermore

c>x∗ = b>y∗.

In later sections we will prove similar duality theorems between the proof system and
the optimization views of Sherali-Adams and Sum-of-Squares. As a warm-up to this, we will
reformulate linear programming as a proof system and illustrate how this duality theorem
can be interpreted as showing a duality between the proof system and optimization views
of linear programming. Let P = {Ax > b, x > 0} be a set of linear inequalities, and c0 be
some feasible solution. By linearity, any feasible solution to a set of linear inequalities must
also be a solution to any non-negative linear combination of those inequalities. Therefore,
if there exists a non-negative linear combination of the inequalities in P ∪ {c0 > 0} which
equals −1 > 0 then this is a refutation of the claim that c0 is a feasible solution to P . In
general, we define a linear programming refutation as a certificate of infeasibility of a set of
linear inequalities as follows.

Definition 2.2 (Linear Programming Refutation). Let P be a set of linear inequalities
P = {Ax > b, x > 0}. A linear programming refutation of P is a non-negative linear
combination

λ>(Ax− b) + µ>x = −1,

for λ ∈ Rm, µ ∈ Rn, with λ, µ > 0.

Soundness and completeness of linear programming refutations follows from a well-known
corollary of the duality theorem, known as Farkas’ Lemma. In words, for any point lying
outside of a given polytope, Farkas’ Lemma guarantees the existence of a hyperplane sepa-
rating that point from the polytope. We will give a slightly different, but equivalent version
of Farkas’ Lemma which will be particularly useful throughout this monograph.

Lemma 2.3 (Farkas’ Lemma). Let P be a polytope described by a system of linear inequalities
{Ax > b, x > 0} for A ∈ Rn×m and b ∈ Rn. Then, P has no feasible solution over Rn if and
only if there exists λ ∈ Rm, µ ∈ Rn, λ, µ > 0 such that

λ>(Ax− b) + µ>x = −1,

for λ ∈ Rm, µ ∈ Rn, with λ, µ > 0.
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We can also define a derivational version of linear programming.

Definition 2.4 (Linear Programming Derivation). Let LP(P , c) be a linear program over
the set of constraints P = {Ax > b, x > 0}. A linear programming derivation of the
inequality c>x > c0 is a non-negative vector y∗ ∈ Rm such that (y∗)TA 6 c and (y∗)>b = c0.
This follows because c>x > (y∗)>Ax > (y∗)>b = c0.

That is, a Linear Programming Derivation is simply a feasible solution to the dual LP.
The soundness and completeness for linear programming derivations follow from the

duality theorem. It should be stressed that an LP attains a value c0 if and only if there
exists a linear programming derivation of c0 from P . Therefore, we have two equivalent
views of linear programming: one from the perspective of optimization, and the other from
the perspective of proof complexity. These dual views will be a central theme throughout
this monograph.

2.1.1 Variants of Linear Programming and Relaxations

Because linear programming is in P, solving any NP-hard optimization via a polynomial-
size LP is tantamount to proving P = NP. However, there has been significant success
in designing LP-based algorithms that produce sufficient approximate solutions for certain
NP-hard problems. One common technique for designing such approximate LPs is to first
express the problem as an equivalent integer-linear program (ILP), which augments linear
programming by allowing one to introduce integer-valued variables. The canonical form of
an ILP is

ILP(P , c) := min
x∈P

c>x

where P = {Ax > b, xi ∈Di},

where Di ⊆ Z. For example, a 0-1-linear program allows for constraints xi ∈ {0, 1}, which
corresponds to optimizing over the integer hull of P defined as

hull{0,1}(P) := conv (P ∩ {0, 1}n) ,

where conv(S)(S) is the convex hull of the set of points S ⊆ {0, 1}n.
It is straightforward to see that solving general ILPs, and even 0-1-LPs, is NP-complete.

Therefore, one typically attempts to find a good approximation to the ILP by relaxing the
constraints to those of an LP. This is generally done by replacing each discrete constraint
xi ∈ Di by the corresponding linear constraint min{Di} 6 xi 6 max{Di}. For example, the
0-1-LP constraint xi ∈ {0, 1} is replaced by the linear inequality 0 6 xi 6 1. The resulting
program is known as the LP relaxation of the ILP.

An alternative approach is to phrase the NP-hard problem as a polynomial optimization
problem (POP), which augments linear-programs by allowing super-linear constraints. For
example, constraining a variable xi to take value in {0, 1} can be done by introducing the
quadratic constraint x2

i − xi = 0. We can define a polynomial optimization problem as

POP(P , P ) := min
x∈P

P (x)
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where P = {P1(x) > 0, . . . , Pm(x) > 0}.

where P (x), P1(x), . . . , Pm(x) ∈ R[x]. Of course, optimizing over arbitrary polynomial con-
straints is NP-hard. Similar to the case of ILPs, one can hope to obtain a good approximate
solution to a POP by relaxing the polynomial constraints. To do this, one typically intro-
ducing a placeholder variable yI for every term

∏
i∈I xi. The POP is then linearized by

replacing every term in each of the original polynomials in the set P by their placeholder
variables. These linearizations are often augmented with additional constraints to force the
placeholder variables yI to behave similarly to the terms that they represent. We will see
examples of this style of relaxation when we discuss Sherali-Adams and Sum-of-Squares in
the following sections.

2.2 Sherali-Adams

2.2.1 Sherali-Adams as Lifting Linear Programs

In the typical setting for Sherali-Adams we are interested in finding {0, 1}-solutions that
maximize some discrete optimization problem. Towards this, a natural strategy is to try to
find a small LP that approximately describes the integer hull of the feasible solutions to the
optimization problem. To design such an LP, a standard approach is to begin with an ILP or
POP which describes the {0, 1}-solutions exactly and then take its LP relaxation. The hope
is that solving this relaxation will give us a good approximate solution. If this is the case,
then some appropriate rounding scheme can be applied in order to obtain a {0, 1}-solution
that well-approximates the optimal. Unfortunately, there are cases where optimizing over
the natural ILP or POP relaxation may result in extremely poor solutions. Consider for
example the MaxSAT problem.

Definition 2.5 (MaxSAT). Given a CNF formula f = C1(x) ∧ C2(x) ∧ . . . ∧ Cm(x), find an
assignment to x1, . . . , xn that maximizes the number of satisfied clauses.

MaxSAT can be easily formulated as an ILP as follows: For each clause Ci ∈ f , where
Ci =

∨
i∈I xi ∨

∨
j∈J x̄i, we can write that clause as sum C̃i =

∑
i∈I xi +

∑
j∈J(1− xj). The

ILP becomes

ILP
(
P ,
∑
i∈[m]

ci

)
:= max

(x,c)∈P

∑
i∈[m]

ci,

where P = {C̃1 > c1, . . . ,C̃m > cm, xi, cj ∈ {0, 1}}.

The LP relaxation of this ILP is obtained by replacing the constraints xi, cj ∈ {0, 1} by the
linear constraints 0 6 xi 6 1 and 0 6 ci 6 1.

Example 2.6. Consider the instance of MaxSAT where f = (x1 ∨ x2 ∨ x̄4)∧ (x1 ∨ x3)∨
(x! ∨ x̄2) ∨ (x̄1). The ILP and corresponding LP relaxation for this instance are:
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(ILP)

max c1 + c2 + c3 + c4

s.t. x1 + x2 + (1− x3) > c1

x1 + x3 > c2

x1 + (1− x2) > c3

(1− x1) > c4

xi, cj ∈ {0, 1}

(LP Relaxation)

max c1 + c2 + c3 + c4

s.t. x1 + x2 + (1− x3) > c1

x1 + x3 > c2

x1 + (1− x2) > c3

(1− x1) > c4

xi, cj > 0

xi, cj 6 1

Unfortunately, maximizing the LP relaxation in the previous example results in a poor
solution to the MaxSAT instance. Observe that, setting xi = 1/2 for all i ∈ [3] and cj = 1/2
for all j ∈ [4] satisfies all constraints, giving a value of 4 to the LP relaxation. However, the
optimal solution to the original instance f(x) is 3.

In situations where the LP relaxation is a poor approximation to the integer hull, the
relaxation can be tightened by introducing additional constraints. This may be done either
in an ad-hoc fashion, or in some systematic way. The standard systematic approaches for
doing this are known as lift-and-project procedures, in which some family of polynomial
constraints are added to the relaxation. The relaxation is then linearized by replacing every
term

∏
i∈I xi in each of these polynomials with a new placeholder variable yI for that term (as

is standard for linearizing POPs), thus lifting the relaxation to a higher dimension (Figure
2.1c). Typically, the purpose of this additional family of constraints is to help the resulting
LP retain the correlations between variables that are imposed by super-linear constraints.
This is done in conjunction with exploiting the fact that x2

i = xi for {0, 1}-solutions.
This lifted LP relaxation can then be optimized using standard methods for solving linear

programs, and the solutions to the lifted LP relaxation can be projected back to the original
dimension in order to obtain solutions to the original problem (Figure 2.1d). The high-level
idea is that, even if no small LP on n-variables exists that well-approximates the integer hull
of the problem, there may still be some higher-dimensional polytope with much fewer facets
whose projection is a good approximation to the integer hull of the problem.

(a) ILP (b) LP relaxation (c) Lift (d) Project

Figure 2.1: The generic form of a lift-and-project procedure. The circles represent the
solutions to the ILP. The two-dimensional polygons represent the polytopes in the original
variables, while the three-dimensional polyhedron represents the lift, whose two-dimensional
shadow is a tightening of the LP relaxation.
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A common theme among lift-and-project procedures is that they generate a hierarchy of
relaxations known as the levels of the procedure, converging to the integer hull,

P = P(0) ⊇ P(1) ⊇ . . . ⊇ P(`) = hull{0,1}(P),

where P(i) is the i-th level of the hierarchy, with the higher levels corresponding to raising the
relaxation to a higher dimension. Therefore, lift-and-project procedures are often referred
to as LP and SDP hierarchies. These hierarchies differ in the family of constraints they
introduce, as well as the type of convex program that the hierarchy produces.

Sherali-Adams [132] refers to the LP hierarchy whereby the original LP is lifted by in-
troducing a family of non-negative juntas.

Definition 2.7 (Non-negative Junta). A degree d non-negative junta is a polynomial of the
form

JS,T (x) :=
∏
i∈S

xi
∏
j∈T

(1− xi),

for S ∩ T = ∅ and |S ∪ T | 6 d.

Before defining the Sherali-Adams (SA) hierarchy in full generality, we will sketch the
process by constructing the level 2 SA relaxation for the MaxSAT instance from Example 2.6
in the following example. The level 2 SA relaxation augments the initial LP with (the lin-
earizations of) all non-negative juntas, and products of initial constraints with non-negative
juntas, of degree up to 2.

Example 2.8. Consider the MaxSAT instance from Example 2.6, whose constraints we
will denote by P . For ease of notation we will first rename the c-variables as follows:
c1 → x4, c2 → x5, c3 → x6, c4 → x7. The level 2 SA relaxation of P first introduces all
degree at most 2 polynomials from the family of non-negative juntas

xi > 0, (1− xi) > 0, ∀i ∈ [7], (2.1)

xixj > 0, xi(1− xj) > 0, ∀i ∈ [7], (2.2)

As well, it introduces all products of constraints in P with non-negative juntas which
have degree at most 2. For example, for the constraint x1 + (1− x2) > c3, we introduce

x1 + (1− x2) > x6, (2.3)

(xi)(x1 + (1− x2) > x6), ∀i ∈ [7] (2.4)

(1− xi)(x1 + (1− x2) > x6), ∀i, j ∈ [7], i 6= j, (2.5)

Next, we perform the lifting step, where the polynomial constraints are linearized by
replacing each monomial xixj with a new placeholder variable y{i,j}, and xi with y{i}.
Here, y{i,j} is intended to represent xixj, and y{i} = xi. The constraints (2.1) and (2.2)
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become

y{i} > 0, 1− y{i} > 0, ∀i ∈ [7],

y{i,j} > 0, y{i} − y{i,j} > 0, ∀i, j ∈ [7], i 6= j,

and the constraints (2.3) - (2.5) become

y{1} + 1− y{2} > y{6},

y{1,i} + y{i} − y{2,i} > y{4,i}, ∀i ∈ [7],

y{1} − y{1,i} + 1− y{2} − y{2} + y{2,i} > y{6} − y{6,i}, ∀i, j ∈ [7], i 6= j,

Completing this procedure for all of the constraints in P gives the level 2 SA relaxation
for this instance of MaxSAT.

The SA relaxation can be applied to POPs, as well as LPs. Because any LP is also a POP,
we will define SA in this more general setting, where the aim is to minimize a polynomial
P (x) over a family of polynomial inequalities P = {P1(x) > 0, . . . , Pm(x) > 0}. For this, it
will be convenient to introduce some terminology.

Definition 2.9 (Coefficient Vector). For any multilinear polynomial Pi(x) ∈ R[x], denote

by ~Pi the coefficient vector of the representation of Pi(x) as a sum of monomial. That is,

the I-th entry (~Pi)I is the coefficient of the monomial
∏

i∈I xi in Pi(x).

Let deg(Pi) be the degree of the polynomial Pi(x) ∈ R[x] and for a set of polynomial
inequalities P , define the degree of P as the maximum degree of any polynomial in P :

deg(P) := max
Pi(x)>0∈P

deg(Pi).

With these definitions in mind, we can now describe the SA relaxation of any polynomial
optimization problem as follows.

Definition 2.10 (Sherali-Adams Relaxation). Let P = {P1(x) > 0, . . . , Pm(x) > 0} be a
set of polynomial inequalities. For d > deg(P), the d-th level SA relaxation SAd(P) of the
set of polynomial inequalities P is obtained as follows:

1. Extend: For every constraint Pi(x) > 0 ∈ P ∪ {1 > 0} and every S, T ⊆ [n] with
|S ∪ T | 6 d and S ∩ T = ∅, such that deg(JS,T ) + deg(Pi) 6 d, introduce a new
constraint2

Pi(x)
∏
i∈S

xi
∏
j∈T

(1− xj) > 0. (2.6)

2Definitions of SA vary in the literature depending on whether they measure the degree of Pi(x) or
not. That is, whether they limit jS,T (x) · Pi(x) to be degree at most d or degree at most deg(Pi), for
Pi(x) > 0 ∈ P ∪{1 > 0}. When SA is discussed from the perspective of proof complexity it is most common
to count both the degree of the junta and the degree of the polynomial. We compare the consequences of
these two definitions further in the remark at the end of Section 2.2.2.3.
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2. Linearize: multilinearize each of the constraints introduced in the previous step by
replacing xci with xi for every c > 1. For every monomial

∏
i∈S xi occurring in (2.6),

introduce a new variable yS, and replace each occurrence of that monomial by yS.
Finally, add the constraint y∅ = 1.

The resulting relaxation, which we denote by SAd(P), consists of the following set of con-
straints

y∅ = 1, (2.7)∑
T ′⊆T

(−1)|T
′|yS∪T ′ > 0, ∀ S ∩ T = ∅, |S ∪ T | 6 d (2.8)

∑
T ′⊆T

(−1)|T
′|
( ∑
|I|6deg(Pi)

(~Pi)I yS∪I∪T ′

)
> 0, ∀ S∩T=∅, |S∪T |6d−deg(Pi),

∀ Pi(x)>0∈P . (2.9)

These formulas follow by inclusion/exclusion on the variables in T .
The variable y∅ is the placeholder for the monomial

∏
i∈∅ xi, the constant 1 term. There-

fore, we include Constraint (2.7) to ensure that the solutions that we obtain from optimizing
over the relaxation are correctly normalized; i.e. that y∅ indeed corresponds to the constant
1.

Example 2.11. Consider linearizing a non-negative junta JS,T (x) > 0 where S = {1, 2}
and T = {3, 4, 5}; that is, JS,T (x) = x1x2(1− x3)(1− x4)(1− x5). When expressed as a
sum of monomials, JS,T (x) becomes

x1x2 − x1x2x3 − x1x2x4 − x1x2x4 + x1x2x3x4 + x1x2x3x5 + x1x2x4x5 − x1x2x3x4x5 > 0.

This is linearized by introducing the placeholder variables for each term, producing

y{1,2} − y{1,2,3} − y{1,2,4} − y{1,2,5} + y{1,2,3,4} + y{1,2,3,5} + y{1,2,4,5} − y{1,2,3,4,5} > 0.

Example 2.12. Let LP(P , c) be an LP over a set of linear constraints P = {a>1 x >
b1, . . . , a

>
mx > bm}. The d-th level SA relaxation SAd(P) consists of th following set of

constraints:

y∅ = 1,∑
T ′⊆T

(−1)|T
′|yS∪T ′ > 0, ∀ S ∪ T = ∅, |S ∪ T | 6 d

∑
T ′⊆T

(−1)|T
′|
( n∑
i=1

a>i · yS∪T ′∪{i} − bi · yS∪T ′
)
> 0,

∀ S∩T=∅, |S∪T |6d−1,

∀ a>i x−bi>0∈P
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Solving the Sherali-Adams Relaxation After applying the SA relaxation, we want to
obtain an (approximate) solution to the original problem of minimizing a polynomial P (x)

over P . This can be done by linearizing the objective function P (x) to
∑

I(
~P )IyI , and

optimizing the resulting polytope SAd(P) over the linear objective function. That is, by
solving

LP(SAd(P), P (y)) := min
y∈SAd(P)

( ∑
|I|6deg(Pi)

(~P )IyI

)
.

In the case of where P (x) is a linear objective function c>x, this corresponds to solving
miny∈SAd(P)(

∑
i∈[n] ciy{i}).

The SA relaxation SAd(P) contains nO(d) variables and m · nO(d) constraints. Therefore,
LP(SAd(P), P (y)) can be solved in time (m · n)O(d) by standard linear programming algo-
rithms. The result of solving LP(SAd(P), P (y)) is a solution α in the lifted space over nO(d)

variables. A solution to the original optimization problem is obtained by projecting back to
the original variables over Rn. This is achieved by taking the orthogonal projection

proj[n](P) := {α �{y{1},...,y{n}}: α ∈ P}

to the variables {y{1}, . . . , y{n}} corresponding to the original variables x.
Observe that the solutions produced by the SA relaxation are at least as good of an

approximation as those produced by the standard LP relaxation. Indeed, the constraints
of the SA relaxation are a super-set those provided in the LP relaxation. Furthermore, the
solutions obtained from the d-th level SA relaxation have at least as good of an approximation
guarantee as those obtained from the (d − 1)-st level. That is, SAd(P) corresponds to
a tightening of SAd−1(P): it preserves all integral solutions while removing some of the
fractional solutions.

Lemma 2.13. Let P be any set of polynomial inequalities. Then, for any d > 0, the following
containments hold:

1. proj[n] (SAd(P)) ⊇ proj[n] (SAd+1(P)),

2. proj[n] (SAd(P)) ⊇ hull{0,1}(P).

Proof. (1) is immediate from the fact that the constraints of SAd(P) are a subset of the
constraints of SAd+1(P). To prove (2), we claim that any {0, 1}-solution to P can be extended
to a {0, 1}-solution to SAd(P). That is, SAd(P) preserves the integer hull of P . Let α ∈ P
such that α ∈ {0, 1}n, we extend α to an assignment β to the variables of SAd(P) as follows.
For every S ⊆ [n] such that yS is a variable of SAd(P), we define

βS =
∏
i∈S

αi.

Note that because αi ∈ {0, 1}, βS ∈ {0, 1}. Now, consider applying β to one of the constraints
of SAd(P), corresponding to the linearization of JS,T (x) · P (x), for some non-negative (d −
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deg(P ))-junta JS,T (x) and P (x) > 0 ∈ P . Because β is a {0, 1}-assignment consistent with
α, it behaves identically to α on JS,T (x) · P (x). Therefore,∑

T ′⊆T

(−1)|T
′|

( ∑
|I|6deg(Pi)

(~Pi)IβS∪I∪T ′

)
=

{
P (α) if JS,T (β) = 1

0 otherwise ,

where the equality follows because the outcome of any {0, 1}-assignment on a non-negative
junta is Boolean. Finally, because α satisfies the constraints of P , we have that P (α) > 0,
and so β ∈ SAd(P).

We will see in Section 2.2.2.3 that the degree O(n) SA relaxation suffices to derive the
integer hull of the original polytope. Together with Lemma 2.13, this implies that the SA
relaxations form a hierarchy of polytopes parameterized by their level, converging to the
integer hull:

proj[n] (SA1(P)) ⊇ proj[n] (SA2(P)) ⊇ . . . ⊇ proj[n]

(
SAO(n)(P)

)
= hull{0,1}(P)

This is known as the SA hierarchy.

2.2.2 Sherali-Adams as Locally Consistent Distributions

The SA hierarchy corresponds a sequence of ever-tightening polytopes converging to the
integer hull. For many problems, a high level of the SA hierarchy is necessary in order to
converge to the integral hull. High level SA relaxations contain a prohibitively large number
of constraints, and so optimizing over them is generally infeasible. Therefore, we want to
understand how well of how well of an approximation the d-th level SA relaxation is to the
integer hull.

In order to certify the approximation ratio provided by the d-th level, it will be useful
to understand the points occurring within the d-th level polytope SAd(P) (for some set
of polynomial inequalities P) and how they change as the level increases. A very elegant
constructive characterization of the points within the SA relaxation can be obtained by taking
a distributional view. As we will see, each point in the polytope of the SA relaxation can
be viewed as a local expectation function, a function which behaves like a true expectation
over some probability distribution when applied to polynomials of degree at most d. These
local expectation functions, known as pseudo-expectations, are in one-to-one correspondence
with points in the SA relaxation, and the necessary and sufficient conditions of pseudo-
expectations will gives straightforward method to construct points which exist within the
relaxation SAd(P).

It is natural to wonder whether there is a distribution-like object over which these pseudo-
expectations are being taken. After developing pseudo-expectations in Section 2.2.2.1, we
introduce the notion of a pseudo-distributions in Section 2.2.2.2 and show that these are the
distribution-analogue of pseudo-expectations. Finally, Section 2.2.2.3 we will characterize
the points that survive between levels of the SA hierarchy by characterizing the points in
the d-th level of the SA relaxation in terms of the points in the (d− 1)-st level.
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2.2.2.1 Pseudo-Expectations

Recall that each of the variables yS of the SA relaxation SAd(P) corresponds to a unique
mononial

∏
i∈S xi in the original variables. Rather than working with these placeholder y-

variables, we could instead work in the original variables x, treating each α ∈ SAd(P) as a
map that assigns to each multilinear monomial

∏
i∈S xi the value αS that α assigns to yS.

Definition 2.14 (multilinearizing Map). Denote by R[x] \ {(x2
i − xi)}i∈[n] the quotient

ring of R[x] modulo the ideal {(x2
i − xi)}. A multilinearizing map is a linear function

f : R[x] \ {(x2
i − xi)} → R. That is, f is a function on R[x] associating

f
(∑
j∈J

∏
i∈Ij

x
ci,j
i

)
=
∑
j∈J

f
(∏
i∈Ij

xi

)
,

for all Ij ⊆ [n] and ci,j ∈ N.

For each α ∈ SAd(P) we can define its corresponding multilinearizing map as

Ẽ
[∏
i∈S

xi

]
:= αS

for every S ⊆ [n] with |S| 6 d. We can then extend this linearly to all degree at most d
polynomials in the natural way. Note that α is an assignment to the monomials, rather than
the underlying variables. It treats each monomial independently regardless of whether the
monomials share a subset of their underlying variables. As we will see, consistency between
these related monomials is enforced by the constraints of the SA relaxation.

The constraints of the SA relaxation enforce that α, and therefore Ẽ, only assigns non-
negative values to non-negative juntas, as well as the product of juntas with an inequality in
P . These constraints have a natural distributional interpretation: we think of each monomial∏

i∈S xi as the event, denoted by 1S,∅, that xi = 1 for all i ∈ S. Furthermore, we interpret
the non-negative junta JS,T =

∏
i∈S xi

∏
j∈T (1 − xj) as the event 1S,T that xi = 1 for i ∈ S

and xj = 0 for j ∈ T . We can view the function Ẽ applied to JS,T as an expectation (taken
over some underlying distribution) that the event 1S,T occurs. Because the d-th level SA
relaxation can only enforce that products of at most d variables are non-negative, we only
require that Ẽ behaves like a expectation on polynomials of degree at most d. Such functions
Ẽ are known as pseudo-expectations. We define a pseudo-expectation abstractly as follows.

Definition 2.15 (Pseudo-Expectation for P). Let P be a set of polynomial inequalities. A
multilinearizing map Ẽ : R[x] \ {(x2

i − xi)} → R is a degree d pseudo-expectation for P if
the following hold:

1. Ẽ[1] = 1,

2. Ẽ[JS,T (x)] > 0 for every non-negative junta JS,T (x) with deg(JS,T ) 6 d,

3. Ẽ[JS,T (x)P (x)] > 0 for every P (x) > 0 ∈ P and every non-negative junta JS,T (x) with
deg(P ) + deg(JS,T ) 6 d.

We will denote by Ed(P) the set of all degree d pseudo-expectations for P .
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Example 2.16. Consider the polynomial P (x) = −x1x2x4 + x7 − 3x2x1, and let α ∈
SA3({P (x) > 0}), then α defines a degree 3 pseudo-expectation Ẽα which assigns to f
the value

Ẽα [P (x)] = −α{1,2,4} + α{7} − 3α{1,8}.

Theorem 2.17. Let P be a set of polynomial constraints, and for any α ∈ R( n6d) define the
multilinearizing map Ẽα : R[x] \ {(x2

i − xi)} → R as Ẽα
[∏

i∈S xi
]

:= αS, for every S ⊆ [n],

Ẽα[1] = 1. Extend Ẽα linearly to all degree d polynomials. Then, α ∈ SAd(P) if and only if
Ẽα ∈ Ed(P).

Proof. Let α ∈ SAd(P) and let Ẽα : R[x] \ {(x2
i − xi)} → R be defined as in the statement of

the theorem. That Ẽα satisfies property (1) of Definition 2.17 follows immediately. To see
that Ẽα satisfies (2) and (3), let JS,T (x) be a non-negative junta and P (x) > 0 ∈ P∪{1 > 0}
such that deg(JS,T ) + deg(Pi) 6 d, and denote by L(y) its multilinearization (in the sense of
the linearization step in Definition 2.10). Then,

Ẽα
[
P (x) · JS,T (x)

]
= L(α) > 0,

where the final inequality follows because L(y) is a constraint of SAd(P).
For the other direction, consider some Ẽ ∈ Ed(P). Define an assignment α to the variables

of SAd(P) as follows: for every S ⊆ [n] such that yS is a variable of SAd(P), let

αS := Ẽ
[∏
i∈S

xi

]
.

That α ∈ SAd(P) follows immediately from the definition of a pseudo-expectation. Again,
let L(y) be the multilinearization of the constraint JS,T (x) · P (x) > 0 ∈ SAd(P) where
P (x) > 0 ∈ P ∪ {1 > 0} and deg(Pi) + deg(JS,T ) 6 d. Then,

L(α) = Ẽ [JS,T (x)P (x)] > 0.

We end this section by showing how to construct a pseudo-expectation for an instance
of the Max Independent Set problem, and how to use this pseudo-expectation to certify
that the Sherali-Adams relaxation has yet to converge to the integer hull. Recall that Max
Independent Set problem is defined as follows.

Definition 2.18 (Max Independent Set). Given a graph G = (V,E), find the largest subset
I ⊆ V such that for all u, v ∈ I, (u, v) 6∈ E.
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Example 2.19 (Max Independent Set). Consider an instance of the Max Independent
Set problem on the following graph G = (V,E):

4

1

2

3

5

6

7

8

We can express this problem as an ILP with constraints xi ∈ {0, 1}, and xi + xj 6 1
for every (i, j) ∈ E. To obtain a solution we can solve the associated LP relaxation:

max
x∈P

∑
i∈[8]

xi

where P =



x1 + x2 6 1, x1 + x3 6 1, x1 + x4 6 1, x2 + x3 6 1,
x2 + x4 6 1, x3 + x4 6 1, x4 + x5 6 1, x5 + x6 6 1,
x5 + x7 6 1, x5 + x8 6 1, x6 + x7 6 1, x6 + x8 6 1,
x7 + x8 6 1, 0 6 x1 6 1, 0 6 x2 6 1, 0 6 x3 6 1,
0 6 x4 6 1, 0 6 x5 6 1, 0 6 x6 6 1, 0 6 x7 6 1,
0 6 x8 6 1


Because every vertex participates in one of two 4-cliques, the largest independent set
has size 2. On the other hand, this LP relaxation returns a value of at least 4, because
xi = 1/2 for all i ∈ [8] is a feasible solution.

Consider taking the level 2 SA relaxation SA2(P), given by the following constraints:

0 6 y{i} 6 1 ∀i ∈ [8] (2.10)

0 6 y{i,k} 6 y{k} ∀i, k ∈ [8] (2.11)

0 6 y{i} − y{i,k} 6 1− y{k} ∀i, k ∈ [8] (2.12)

y{i} + y{j} 6 1 ∀(i, j) ∈ E (2.13)

y{i,k} + y{j,k} 6 y{k} ∀(i, j) ∈ E, k ∈ [8] (2.14)

y{i} − y{i,k} + y{j} − y{j,k} 6 1− y{k} ∀(j, k) ∈ E, k ∈ [8] (2.15)

First, observe that the level 2 SA relaxation is a better approximation to the ILP: it
does not permit the all-1/2 point. To see this, suppose that y{i} = 1/2 for every i ∈ [8].
Observe that constraint (2.14) with k = i is equivalent to y{i,j} 6 0 for every edge
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(i, j) ∈ E. When combined with (2.11), this forces y{i,j} = 0 for every (i, j) ∈ E. Taking
constraint (2.15) on vertices 1, 2, 3, we have

y{1} − y{1,3} + y{2} − y{2,3} 6 1− y{3}.

Because the edges (1, 3), (2, 3) ∈ E, we are forced to set y{1,3} = y{2,3} = 0, and so the
above inequality becomes

y{1} − y{1,3} + y{2} − y{2,3} 6 1− y{3} ≡ 1/2 + 1/2 6 1− 1/2,

a contradiction. Therefore, the (1/2)n point does not appear in the level 2 SA re-
laxation. By convexity, we can conclude that the solution LP(SA2(P),

∑
i∈[8] xi) <

LP(P ,
∑

i∈[8] xi), certifying that the SA relaxation is an improvement on the LP relax-
ation.

Because of this, one might wonder if, for this instance of Max Independent Set, the
second level of the SA hierarchy is enough to converge to the integer hull. To show that
this is not the case, we will construct a degree 2 pseudo-expectation Ẽ witnessing that
the solution xi = 1/3 for all i ∈ [8] belongs to SA2(P). To construct such a pseudo-
expectation we must assign values to all monomials xixj for i 6= j ∈ [8] such that when
Ẽ[xi] = 1/3 the following constraints are satisfied:

1 > Ẽ[xi] > 0 ∀i ∈ [8] (2.16)

Ẽ[xixj] > 0 ∀i, j ∈ [8] (2.17)

Ẽ[xk(1− x1)] > 0 ∀i, k ∈ [8] (2.18)

Ẽ[(1− xk)(1− xi)] > 0 ∀i, k ∈ [8] (2.19)

Ẽ[1− xi − xj] > 0 ∀(i, j) ∈ E (2.20)

Ẽ[xk(1− xi − xj)] > 0 ∀(i, j) ∈ E, k ∈ [8] (2.21)

Ẽ[(1− xk)(1− xi − xj)] > 0 ∀(j, k) ∈ E, k ∈ [8] (2.22)

Note that (2.16) and (2.20) are already satisfied by our setting Ẽ[xi] = 1/3. Again
observe that (2.21) with k = i, together with (2.17) forces us to set Ẽ[xixj] = 0. For the
non-edges (i, j) 6∈ E we will set Ẽ[xixj] = 1/6. Under this setting Ẽ[xixk+xjxk] 6 Ẽ[xk],
and therefore (2.19) and (2.21) are satisfied. Furthermore, because Ẽ[x{i} + x{j}] < 1,

this assignment satisfies constraints (2.18), (2.19), and (2.21). Therefore, Ẽ is a degree
2 pseudo-expectation witnessing that the solution (1/3)[8] is valid for SA2(P), and that
the value produced by SDP(SA2(P),

∑
i∈[8] xi) is at least 8/3. On the other hand, the

optimal value of this instance of Max Independent Set is 2. Together this shows that
SA2(P) has yet to converge to the integer hull, and in particular

LP
(

hull{0,1}(P),
∑
i∈[8]

xi

)
< LP

(
SA2(P),

∑
i∈[8]

xi

)
< LP

(
P ,
∑
i∈[8]

xi

)
.
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2.2.2.2 Pseudo-Distributions

The term pseudo-expectation comes from the fact that Ẽ acts like an expectation on the set
of polynomials of degree up to d. It is natural to ask how the corresponding distribution-
like object, over which this expectation is being taken, behaves. For this, we will take a
distributional view of the SA relaxation. We will begin by focusing on the points within
hull{0,1}(P). Because hull{0,1}(P) is convex, any point α ∈ hull{0,1}(P) can be written as a
convex combination of the {0, 1}-points in hull{0,1}(P)

α =
∑

β∈{0,1}n
λβ · β,

such that λβ = 0 for all β 6∈ hull{0,1}(P). Because this is a convex combination, λβ > 0 and∑
β∈{0,1}n λβ = 1. Thus we can view the coefficients λβ in the convex combination as the

weights in a probability distribution over {0, 1}-solutions. That is, we can associate with α
a probability distribution µ(α) : {0, 1}n → R>0 given by

µ(α)(β) = λβ for all β ∈ {0, 1}n. (2.23)

Furthermore, the points with non-zero weight in this distribution satisfy P . Therefore, every
point in hull{0,1}(P) defines a distribution over solutions in {0, 1}n that satisfy P .

The constraints of the SA relaxation can be viewed as attempting to verify that each
point in SAd(P) defines a probability distribution over {0, 1}-assignments that satisfy P . Of
course, the points in SAd(P) \ hull{0,1}(P) cannot be expressed as a probability distribution
over points in {0, 1}n that satisfy the constraints of P , because by definition no such convex
combination exists. As we will see, the constraints enforced by low levels of the SA relaxation
are unable to fully verify that the points in SAd(P) define such a distribution, they are only
able to confirm that each point defines an object that behaves locally like a distribution over
{0, 1}-solutions by observing its low-degree marginal distributions.

For any α ∈ SAd(P), we will think of αS for |S| 6 d as the probability of the event 1S,∅,
that xi = 1 for all i ∈ S, over some underlying distribution µ(α) : {0, 1}n → [0, 1]. We will
denote this probability by Pµ(α) [1S,∅]. This can be written equivalently as

P
µ(α)

[1S,∅] =
∑

β∈{0,1}n:βi=1 ∀i∈S

P
µ(α)

[β] = µ
(α)
S [1S,∅].

That is, we are marginalizing to the variables S. If we denote by µ
(α)
S the marginal distribu-

tion of µ(α) to the variables S, then we can rewrite this as∑
β∈{0,1}n:βi=1 ∀i∈S

P
µ(α)

[β] = µ
(α)
S [1S,∅].

Because α assigns a value αT for every T ⊆ S, the marginal distribution µ
(α)
S is fully described

by

µ
(α)
S [1T,K ] =

(∑
K′⊆K

(−1)|J |αT∪K′

)
,
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for every T ∪K = S. The constraints of the SA relaxation, which are linearizations of non-
negative juntas JT,K(x) > 0, can be interpreted as enforcing that the marginal distributions
of µ(α) are true, consistent probability distributions. In particular, the linearizations of
JT,K(x) > 0 for all K ∪ T = S ensure that the marginal distribution µ

(α)
S is a probability

distribution over {0, 1}S (i.e. Boolean assignments to the variables {xi : i ∈ S}). To verify
this, we only need to check that the following properties of a distribution are satisfied: (i)

µ
(α)
S [1T,K ] > 0 for every T∪K = S, and (ii)

∑
T∪K=S µ

(α)
S [1T,K ]. First, (i) follows immediately

from the fact that SA enforces that the linearizations of JT,K(x) are non-negative K∪T = S,
provided |S| 6 d. For (ii), observe that∑

T∪K=S

µ
(α)
S (1T,K) =

∑
T∪K=S

(∑
K′⊆K

(−1)|J |αT∪K′

)
= 1.

Distribution

Pseudo-
Distribution

hull{0,1}(P)

SAd(P)

Figure 2.2: The points within hull{0,1}(SAd(P)) (blue) form true distributions over solutions
to P , while the points in SAd(P) for pseudo-distributions. The dark blue points indicate
integer solutions.

The d-th level of the SA hierarchy is only able to reason with non-negative juntas of degree
at most d. This limits the d-th level to only being able to observe the correlations between
subsets of at most d variables. Therefore, the d-th level of SA is unable to differentiate
between true distributions and degree d pseudo-distributions, objects which appear to be
true probability distributions when limited to only observing marginal distributions on at
most d variables. We will first state the definition of a pseudo-distribution independent of
the set of constraints P , and later specify the conditions necessary for a pseudo-distribution
can give rise to a pseudo-expectation for P .

Definition 2.20 (Pseudo-Distribution). A family of distributions µ := {µS}|S|6d is a degree
d pseudo-distribution if µS : {0, 1}S → R>0 and for every S ⊆ T ⊆ [n] with |T | 6 d, and
every assignment α ∈ {0, 1}S,

µS(α) =
∑

β∈{0,1}T
β�S=α

µT (β).
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The next lemma shows that a point lies in the degree d SA polytope if it defines a degree
d pseudo-distribution.

Lemma 2.21. Any degree d pseudo-expectation implies a degree d pseudo-distribution.

Proof. Let Ẽ be a degree d pseudo-expectation. Recall that we associate with every non-
negative junta JS′,S\S′(x) an event 1S′,S\S′ that xi = 1 for all i ∈ S ′ and xj = 0 for j ∈ S \S ′.
Define the distribution µS : {0, 1}S → R as follows: for every S ′ ⊆ S,

µS(1S′,S\S′) = Ẽ
[
JS′,S\S′(x)

]
.

Let µ be the collection of µS for every |S| 6 d. We verify that µS is indeed a probability dis-
tribution. First, observe that µS(1S′,S\S′) > 0 by definition of Ẽ. That

∑
S′⊆S µS(1S′,S\S′) = 1

follows because∑
S′⊆S

µS(1S′,S\S′) =
∑
S′⊆S

Ẽ
[
JS′,S\S′(x)

]
= Ẽ

∑
S′⊆S

[
JS′,S\S′(x)

]
= Ẽ[1] = 1.

Next, we will verify that the marginal distributions of µ are consistent. Let S ⊆ L ⊆ [n]
with |L| 6 d, then ∑

L′⊆L
S′⊆L′,L\L′⊆S\S′

µL
(
1L′,L\L′

)
=

∑
L′⊆L

S′⊆L′,L\L′⊆S\S′

Ẽ
[
JL′,L\L′(x)

]

= Ẽ
[ ∑

L′⊆L
S′⊆L′,L\L′⊆S\S′

JL′,L\L′(x)

]

= Ẽ
[
JS′,S′\S(x)

]
= µS(1S′,S′\S).

If we enforce that the expectation taken over such a pseudo-distribution must satisfy a
set of polynomial inequalities P , as well as to products of these polynomial inequalities with
non-negative juntas, then such a pseudo-distribution will fool SA into believing that the
pseudo-distribution is the set of marginals of some true distribution over solutions in {0, 1}n
that satisfy P . This leads us to an alternative, equivalent definition of a pseudo-expectation,
obtained by replacing conditions (1) and (2) in Definition 2.15 with the conditions of a
pseudo-distribution.

Definition 2.22 (Pseudo-Expectation for P). Let P be a set of polynomial inequalities. A
multilinearizing map Ẽ : R[x] \ {(x2

i − xi)} → R is a degree d pseudo-expectation for P if
there exists a degree d pseudo-distribution µ such that for every non-negative junta JS,T (x)
with deg(JS,T ) 6 d,

Ẽ[JS,T (x)] = µS∪T (1S,T ),

and Ẽ[JS,T (x) ·P (x)] > 0 for every P (x) > 0 ∈ P and every non-negative junta JS,T (x) with
deg(P ) + deg(JS,T ) 6 d.
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That is, a pseudo-expectation is exactly an expectation taken over a pseudo-distribution.
To see that this is equivalent to the original definition of a pseudo-expectation, note that one
direction follows from Lemma 2.21. For the other direction, simply observe that Ẽ defined
as in Definition 2.22, Ẽ[JS,T (x)] = µS∪T (1S,T ) > 0 and furthermore, that µ∅ = 1.

2.2.2.3 Evolution of the Sherali-Adams Relaxation

Psuedo-expectations give us a straightforward way to construct points that exist within the
d-th level SA relaxation. However, this does not immediately give a clean description of how
the points in the d-th level of SA hierarchy relate those in earlier levels. A characterization of
the points that survive from the d-th level to the (d+ 1)-st is a particularly natural question
when one wants to argue about the level of the SA hierarchy required to obtain a certain
approximation ratio. In what follows we show that the points α ∈ SAd−1(P) that survive
to SAd(P) are exactly the set of points that, for every i ∈ [n], can be written as a convex
combination of points in SAd−1(P) that are integer-valued in coordinate {i}. A consequence
of this characterization is an alternative (and more illuminating) construction of a pseudo-
distribution for SAd(P), as well as a proof that O(n) levels of the SA hierarchy are always
sufficient to derive the integer hull.3

Lemma 2.23. Let P be a set of polynomial inequalities. For every α ∈ SAd(P) and every

i ∈ [n] such that 0 < α{i} < 1, there exists β(0), β(1) ∈ SAd−1(P) such that β
(1)
{i} = 1, β

(0)
{i} = 0,

and
α ∈ conv

(
β(0), β(1)

)
4.

Proof. Let α ∈ SAd(P) and recall that α ∈ R( n6d) is indexed by subsets I ⊆ [n] with |I| 6 d.
Let i ∈ [n] be a coordinate such that 0 < α{i} < 1. Define points β(0), β(1) and non-negative
multipliers λ0, λ1 ∈ R as

β
(0)
S :=

αS − αS∪{i}
1− α{i}

, λ0 := 1− α{i},

β
(1)
S :=

αS∪{i}
α{i}

, λ1 := α{i},

for every S ⊆ [n] with |S| 6 d− 1. Observe that the following hold:

1. β
(0)
{i} = 0 and β

(1)
{i} = 1, and

2. λ0 ·β(0)
S +λ1 ·β(1)

S = (αS−αS∪{i})+αS∪{i} = αS, and therefore α is a convex combination
of β(0) and β(1).

3The proofs in this section follow the ideas of the proofs in the excellent notes of Rothvoß [126] on
Sum-of-Squares.

4To simplify our notation we are being somewhat sloppy with this statement. α is an
(

n
6d

)
-dimensional

vector and and β(i) is
(

n
6d−1

)
-dimensional vector, and we mean that α, when restricted to its first

(
n

6d−1
)

coordinates can be written as a convex combination of points in SAd−1(P)
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Next, we verify that β(0), β(1) ∈ SAd−1(P). Consider the multilinearization
∑

J⊆T (−1)|J |yS∪T
of some non-negative (d− 1)-junta JS,T (x). Evaluating this function on β(0), we have

∑
J⊆T

(−1)|J |β
(0)
S∪T =

∑
J⊆T (−1)|J |αS∪J −

∑
J⊆T (−1)|J |αS∪{i}∪J

(1− α{i})
,

=

∑
J⊆T∪{i}(−1)|J |αS∪J

(1− α{i})
> 0,

where the final inequality follows because α ∈ SAd(P) and therefore must satisfy the con-
straint

∑
J⊆T∪{i}(−1)|J |yS∪J > 0, the linearization the non-negative d-junta JS,T∪{i}(x) > 0.

Similarly, for β(1)

∑
J⊆T

(−1)|J |β
(1)
S∪T =

∑
J⊆T (−1)|J |αS∪{i}∪J

α{i}
> 0,

where the final inequality follows by considering the following two cases: either i 6∈ T ,
in which case

∑
J⊆T (−1)|J |yS∪{i}∪J is a non-negative d-junta, and so α assigns satisfies∑

J⊆T (−1)|J |yS∪{i}∪J . Otherwise, if i ∈ T , then
∑

J⊆T∪{i}(−1)|J |yS∪J is no longer a d-junta,

because S ∩ T 6= ∅. In particular,∑
J⊆T

(−1)|J |yS∪J =
∑

J⊆T :i 6∈J

(−1)|J |yS∪J +
∑

J⊆T :i∈J

(−1)|J |yS∪J

=
∑

J⊆T\{i}

(−1)|J |yS∪J +
∑

J⊆T\{i}

(−1)|J |+1yS∪J = 0,

where the second equality follows because S and T contain i, and so S ∪ {i} = S.
Finally, observe that the same argument goes through when we consider the multilin-

earization of JS,T (x) · P (x) for P (x) > 0 ∈ P and deg(JS,T ) + deg(P ) 6 d − 1. This
follows because α belongs to SAd(P) and therefore satisfies the multilinearizations of both
JS∪{i},T (x) · P (x) > 0 and JS,T∪{i}(x) · P (x) > 0.

The converse of this lemma holds as well. We leave the details of the proof as an exercise,
but note that it follows essentially by running the proof of the previous lemma in reverse.

Corollary 2.24. Let P be a set of polynomial inequalities, d > deg(P), and α ∈ R( n
6d+1).

If for every i ∈ [n] there exists β(0), β(1) ∈ SAd(P) with β
(0)
{i}, β

(1)
{i} ∈ {0, 1} such that αS =

λβ(1) + (1− λ)β(0) for λ ∈ [0, 1] and αS∪{i} = λβ
(1)
S , then α ∈ SAd+1(P).

We can iterate this construction and obtain a characterization of the points that survive
k-levels of the SA hierarchy. For every subset of S ⊆ [n] with |S| 6 k, these points can
be written as convex combinations of points in SAd−k(P) that are integer-valued within S.
To do this, it will be useful to define the SA hierarchy for d < deg(P). The constraints of
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SAd(P)

SAd−1(P)

β(0)

β(1)
α

Figure 2.3: Interpolating feasible solutions in SAd(P) from those in SAd−t(P).

SAd(P) are defined as usual, except that we will omit any constraint of degree greater than
d. That is, for d 6 deg(P), SAd(P) includes the multilinearizations of JS,T (x) for every non-
negative junta JS,T (x) of degree at most d, as well as the multilinearizations of JS,T (x) ·Pi(x)
for every Pi(x) > 0 ∈ P such that deg(JS,T ) + deg(Pi) 6 d.

Theorem 2.25. Let P be a set of polynomial inequalities, and 0 6 t 6 d. For every
α ∈ SAd(P), and every S ⊆ [n] with |S| = t,

α ∈ conv
(
β ∈ SAd−t(P) : β{i} ∈ {0, 1}, ∀i ∈ S

)
.

Proof. The proof is by induction on t. That it holds for t = 1 follows from Lemma 2.23.
Now, suppose that the theorem holds for t− 1. That is, for every S ⊆ [n] with |S| = t− 1,
every α ∈ SAd(P) can be written as a convex combination of β ∈ SAd−(t−1)(P) such that
β{i} ∈ {0, 1} for all i ∈ S. We will perform the following for every point β involved in this
convex combination: Let i ∈ [n]\S be such that 0 < β{i} < 1. If no such i exists then we are
done because β is a {0, 1}-solution to P . Otherwise, applying Lemma 2.23 to β and i allows

us to write β as a convex combination of points β(0), β(1) ∈ SAd−t(P) such that β
(0)
{i} = 0,

β
(1)
{i} = 1, and

β = λ0β
(0) + λ1β

(1),

where λ0 = (1− β{i}) and λ1 = β{i}.
Finally, we need to show that applying Lemma 2.23 preserves {0, 1}-coordinates; that

is, β
(0)
{j}, β

(1)
{j} ∈ {0, 1} for all j ∈ S. To prove this we will show that the order in which we

condition on the variables is irrelevant. To show this, we will give a general formula for
β

(0)
{j} and β

(1)
{j} in terms of the original point α. This shows that the order in which we apply

Lemma 2.23 to the coordinates in S ∪ {i} does not matter. Recall that from the proof of
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Lemma 2.23,

β
(0)
I :=

βI − βI∪{i}
1− β{i}

λ0 := 1− β{i}. (2.24)

β
(1)
I :=

βI∪{i}
β{i}

λ1 := β{i}

The point β is formed by iteratively applying Lemma 2.23 to our current point γ (originally
γ = α) and an index i ∈ [n], to split γ into two points. We will call the point labelled γ(0)

the negative point, and the point labelled γ(1) the positive point. These points were obtained
from the original point α by, at the k-th step of the recursion, applying Lemma 2.23 an
index ik ∈ [n] and either the corresponding positive or the negative point from the previous
step. Unrolling this recursion we obtain a sequence of t − 1 points and indices from which
we obtain β from α by applying Lemma 2.23,(

(α, i1), (γ(p2),2, i2), . . . , (γ(pt−1),t−1, it−1)
)

where i` ∈ [n] is an index and p` ∈ {0, 1} indicates whether the point γ(p`),` was either the
positive or negative point from the previous round. That is, β is obtained by an iterative
process where, at the `-th step, we apply Lemma 2.23 to the point γ(p`−1),`−1 and index i`−1

and then retain the positive point if p` = 1, and the negative point if p` = 0.
If we let K be the set of indices ij ∈ [t − 1] such that pij+1 = 1 (i.e. indices where we

retain the positive point), and T be the set of indices ij ∈ [t − 1] such that pij+1 = 0 (i.e.
indices where retain the negative point), then we can unroll Equation 2.24 to write

β
(0)
I =

∑
J⊆T∪{i}(−1)|J |αI∪K∪J∑
J⊆T∪{i}(−1)|J |αJ∪K

, λ0 =
∑
J⊆T

(−1)|J |αJ∪K∪{i}, (2.25)

β
(1)
I =

∑
J⊆T (−1)|J |αI∪K∪{i}∪J∑
J⊆T (−1)|J |αJ∪K∪{i}

, λ1 =
∑

J⊆T∪{i}

(−1)|J |αJ∪K .

This expression is the same regardless of the order we apply Lemma 2.23, and therefore, by
Lemma 2.23, implies that β

(0)
{j}, β

(1)
{j} ∈ {0, 1} for every j ∈ S ∪ {i}.

Observe that the converse of this theorem holds as well by repeated application of Corollary
2.24. In the remainder of this section we record some useful consequences of Theorem 2.25.

An Alternative Construction of Pseudo-Distributions. This theorem gives a neces-
sary condition for points to survive t levels of the SA hierarchy. From this, we can derive an
alternative construction of pseudo-distributions which give rise to pseudo-expectations for
P . To see this, let α ∈ SAd(P). For every S ⊆ [n] with |S| 6 d, Theorem 2.25 gives a set of
points BS ⊆ SAd−|S|(P) such that

α =
∑
β∈BS

λββ,
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where λβ > 0 and
∑

β∈BS λβ = 1. Using this, we can construct a distribution µS : {0, 1}S →
R>0 such that for every κ ∈ {0, 1}S,

µS(κ) :=

{
λκ if κ ∈ BS �S,

0 otherwise,

where BS �S= {β �S: β ∈ BS} is the set of assignments β restricted to the coordinates S.
Applying this procedure to every S ⊆ [n] with |S| 6 d gives us a family of distributions
µ = {µS}|S|6d. It can be checked that µ satisfies the definition of a degree d pseudo-
distribution – the marginals condition follows from Equation 2.25.

Finally, observe that the pseudo-expectation defined by this pseudo-distribution is
in fact a degree d pseudo-expectation for P . Define the pseudo-expectation over µ, as
Ẽµ[
∏

i∈S xi
∏

j∈T (1 − xj)] = µS∪T [1S,T ] for every |S| + |T | 6 d, and extended linearly to

polynomials. That Ẽµ is a degree d pseudo-expectation for P follows by observing that
Ẽµ[
∏

i∈S xi] = αS.

Convergence to the Integer Hull. As a second consequence of Theorem 2.25, we argue
that n+deg(P) levels of the SA hierarchy is always sufficient to converge to the integer hull.

Corollary 2.26. SAn+deg(P)(P) = hull{0,1}(P).

Proof. Theorem 2.25 with d = n + deg(P) allows us to write any point α ∈ SAn+deg(P)(P)
as a convex combination of points β ∈ SAdeg(P) such that for all i ∈ [n], β{i} ∈ {0, 1}.
Because deg(Pi) 6 deg(P) for each Pi(x) > 0 ∈ P , the projection of β to the original n
variables, proj[n] (β), must satisfy every constraint of P . Therefore, every α ∈ SAn+deg(P)

can be written as a convex combination of {0, 1}-solutions to P .

Remark. One might wonder why the the n-th level SA relaxation is not sufficient to derive
the integer hull. This is a somewhat annoying technicality that depends on the definition
of SA. Indeed, a degree n pseudo-distribution is a real probability distribution over {0, 1}n.
The issue is that even if the pseudo-distribution gives rise to a pseudo-expectation for P ,
we are not guaranteed that the points in {0, 1}n in the support of this distribution are
necessarily solutions to P . This is because level n SA can only enforce constraints of the
form Pi(x) ·JS,T (x) for non-negative juntas of degree at most n−deg(Pi) — in order to truly
enforce that a solution in {0, 1}n satisfies a constraint Pi(x), we require the (linearizations of)
constraints Pi(x) ·JS,T (x) for every junta of degree n. This can be seen by close examination
of the proofs of Lemma 2.23 and Theorem 2.25.

Because of this, SA has been defined in several different ways in the literature. In its
original form introduced by Sherali and Adams [132] the d-th level SA relaxation introduces
linearizations of non-negative JS,T (x) · Pi(x) where JS,T (x) is a degree d junta, ignoring the
degree of Pi(x). In this formulation, the n-th level of SA does indeed converge to the integer
hull. The version of SA that we discuss here is standard in the proof complexity literature.
From the perspective of proof complexity it is convenient to measure the degree as the
maximum degree of the polynomial introduced, rather than only measuring the degrees of
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the non-negative juntas. As well, this allows pseudo-distributions and pseudo-expectations
to line up nicely, as they are defined only for polynomials of degree at most d. Furthermore,
using polynomials of degree at most d is standard when discussing Sum-of-Squares from both
the optimization and proof complexity perspectives.

2.2.3 Sherali-Adams as a Proof System

A strength of convex programming is the connection between upper and lower bounds that
comes from duality. In the previous section we saw that the outcome of solving the SA
relaxation of a set of polynomials P is an object that behaves locally like a distribution over
{0, 1}-solutions to the constraints of P . However, if the SA relaxation is empty — i.e. the
SA relaxation has discovered that there are no feasible {0, 1}-solutions to P — then no such
pseudo-expectation exists. In this case, solving the SA relaxation will return a certificate
that the relaxation is empty; this is a consequence of LP-duality. These dual certificate have
a particularly nice algebraic structure which will be the focus of this section. We will develop
these dual certificates as proofs in a proof system, analogous to how the dual certificates for
LPs were defined in Section 2.1.

Suppose that we want to certify that a polynomial P (x) achieves a value of at least
c0 over the SA relaxation of SAd(P). By Farka’s Lemma (Lemma 2.3), it is enough to
show that P (x)−c0 is a non-negative linear combination of the constraints of the relaxation.
Indeed, because any solution must satisfy the constraints of the SA, this implies that P (x) >
c0 over SAd(P). In this setting it is standard to work over the original x-variables and
polynomial constraints, along with the additional axioms ±(x2

i − xi) > 0 which facilitate
multilinearizing5. Formally, a SA derivation is defined as follows.

Definition 2.27 (Sherali-Adams Derivation). A SA derivation Π of a polynomial inequality
P (x) > c0 from a set of polynomial inequalities P is a formula of the form

∑̀
i=1

ci
∏
j∈Si

xj
∏
k∈Ti

(1− xk)Pi(x) = P (x)− c0,

where ci ∈ R>0 and each Pi(x) > 0 ∈ P , or is one of the axioms of the form x2
i − xi > 0 or

xi − x2
i > 0 for i ∈ [n], or is 1 > 0, and Si, Ti ⊆ [n] are multisets.

The degree of the refutation is the maximum degree of the polynomials JS,T (x)Pi(x) involved
in the derivation,

deg(Π) := max
i∈[`]
{|Si|+ |Ti|+ deg(Pi)}.

Because the connection between the proof system and hierarchy perspectives of SA is param-
eterized only by the degree of the polynomials involved, the degree is the primary measure

5While the pre-linearized constraints along with the linearization axioms ±(x2i −xi) > 0 may appear to be
substantially stronger constraints than the multilinearizated SA constraints, we will see later in this section
that in terms of what can be derived by each set of constraints, they are equivalent. Using the original
variables and pre-linearized constraints is only a matter of convention.
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of complexity studied for SoS. Even so, from the perspective of proof complexity, it is also
natural to study the size of a derivation, size(Π), defined as the sum of the sizes of the
polynomials6 in the derivation.

In the case when there is no {0, 1}-solution to a set of polynomial inequalities, their
unsatisfiability can be witnessed by deriving the constant −1.

Definition 2.28 (Sherali-Adams Refutation). A SA refutation of a set of polynomial in-
equalities P is a derivation of the constant −1 from P .

Because SA derivations involve non-negative linear combinations of non-negative juntas
and inequalities in P , a derivation of −1 is only possible if P is infeasible.

Recall that in the definition of a SA derivation we allowed the sets of indices Si, Ti
to be multi-sets. This is because, rather than multilinearizing implicitly as we did in SA
relaxations, it is standard in the setting of proof complexity to use the axioms x2

i −xi = 0 to
explicitly multilinearize the polynomials in the derivation. The following claim shows that
the axioms ±(x2

i − xi) > 0 allow SA derivations to reproduce multilinearization without
increasing the degree. Thus, any derivation done with the linearized set of constraints can
be obtained as a SA derivation with the axioms ±(x2

i − xi) > 0.

Claim 2.29. If there is a non-negative linear combination of the constraints of SAd(P)
equalling c0 ∈ R, then there exists a degree d SA derivation of c0 from P.

The proof is fairly straightforward and therefore we defer it to the Appendix.

Example 2.30. The term −2x3
1x

2
2 is linearized by summing it with the following in-

equalities {
2(x2

1 − x1)x1x
2
2, 2(x2

1 − x1)x2
2, 2(x2

2 − x2)x1

}
.

2.2.3.1 Refutations of CNF Formulae and a Simulation of Resolution

Typically in proof complexity we are in refutations of unsatisfiable CNF formulas. Because
SA operates over polynomials, we will need a translation of CNF formulas into polynomial
inequalities in a way that preserves their semantics over {0, 1}n assignments. The standard
translation is as follows: Consider the CNF formula C = C1 ∨C2 ∨ . . .∨Cm. For each clause
Ci(I, J) :=

∨
i∈I xi ∨

∨
j∈J ¬xj, we introduce a polynomial

Pi(x) :=
∑
i∈I

xi +
∑
j∈J

(1− xj)− 1.

If we associate 1 with true and 0 with false, then it is straightforward to verify that the
set of {0, 1}-assignments that satisfy P = {P1(x) > 0, . . . , Pm(x) > 0} is exactly the set of
satisfying assignments to C.

6The size of a polynomial is the number of bits needed to represent that polynomial.
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Example 2.31 (Odd Cycle). Consider an instance of the Max Independent Set problem
defined on the following graph G = (V,E):

7

6

5

4

3

21

We can express the constraints of this Independent Set instance as an ILP with con-
straints xi ∈ {0, 1}, xi + xj 6 1 for every (i, j) ∈ E. To obtain a solution we can solve
the associated LP relaxation,

max
x∈P

∑
i∈[7]

xi

where P =


x1 + x2 6 1, x2 + x3 6 1, x3 + x4 6 1,
x3 + x4 6 1, x4 + x5 6 1, x6 + x7 6 1,
x7 + x1 6 1, 0 6 x1 6 1, 0 6 x2 6 1,
0 6 x3 6 1, 0 6 x4 6 1, 0 6 x5 6 1,
0 6 x6 6 1, 0 6 x7 6 1,


The optimum value of the of this instance of Independent Set is

( |cycle|−1
2

)
= 3. On the

other hand, the LP relaxation will return a value of at least 3.5, because xi = 0.5 for
i ∈ [7] is a feasible solution for P .

Now, consider the level 2 SA relaxation SA2(P), consisting of the following con-
straints:

0 6 y{i} 6 1 ∀i ∈ [7] (2.26)

0 6 y{i,k} 6 y{k} ∀i, k ∈ [7] (2.27)

0 6 y{i} − y{i,k} 6 1− y{k} ∀i, k ∈ [7] (2.28)

y{i} + y{j} 6 1 ∀(i, j) ∈ E (2.29)

y{i,k} + y{j,k} 6 y{k} ∀(i, j) ∈ E, k ∈ [7] (2.30)

y{i} − y{i,k} + y{j} − y{j,k} 6 1− y{k} ∀(i, j) ∈ E, k ∈ [7] (2.31)
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To see how this relaxation compares to the LP relaxation, we can attempt to derive an
upper bound on the value produced by this relaxation. Consider the following deriva-
tion, which we state over the y-variables, but by Claim 2.29 can be simulated in a SA
derivation.

Derive: By:

(a) y{1,2} 6 0 (2.30) with k = 1, and (i, j) = (1, 2)
(b) y{2} − y{1,2} + y{3} − y{1,3} (2.31) with k = 1, and (i, j) = (2, 3)
(c) y{1,3} + y{1,4} 6 y{1} (2.30) with k = 1, and (i, j) = (3, 4)
(d) y{4} − y{1,4} + y{5} − y{1,5} 6 1− y{1} (2.31) with k = 1, and (i, j) = (4, 5)
(e) y{1,5} + y{1,6} 6 y{1} (2.30) with k = 1, and (i, j) = (5, 6)
(f) y{6} − y{1,6} + y{7} − y{1,7} 6 1− y{1} (2.31) with k = 1, and (i, j) = (6, 7)
(g) y{1,7} 6 0 (2.30) with k = 1, and (i, j) = (1, 7)

Summing up (a) – (g) derives the following upper bound,

y{1} + y{2} + y{3} + y{4} + y{5} + y{6} + y{7} 6 3. (2.32)

Because any point that satisfies a set of linear inequalities must as well satisfy any non-
negative linear combination of those constraints, every point in SA2(P) must satisfy
(2.32). This upper bound matches the true optimal solution to this instance of Max
Independent Set, and therefore maximizing

∑
i∈[7] y{i} over the level 2 SA relaxation

returns the optimal solution to this instance of Independent Set.
Now, consider adding the constraint

(h)
∑
i∈[7]

xi > 3.5,

which causes P to become unsatisfiable. We will give a SA refutation of P∪{
∑

i∈[7] xi >
3.5}, this time over the original x-variables. Consider the constraints (a) - (h) before
linearization, as products of constraints and 1-juntas:

Linearization: Pre-linearization:

(a) y{1,2} 6 0 x1(x1 + x2 6 1)
(b) y{2} − y{1,2} + y{3} − y{1,3} (1− x1)(x2 + x3 6 1)
(c) y{1,3} + y{1,4} 6 y{1} x1(x3 + x4 6 1)
(d) y{4} − y{1,4} + y{5} − y{1,5} 6 1− y{1} (1− x1)(x4 + x5 6 1)
(e) y{1,5} + y{1,6} 6 y{1} x1(x5 + x6 6 1)
(f) y{6} − y{1,6} + y{7} − y{1,7} 6 1− y{1} (1− x1)(x6 + x7 6 1)
(g) y{1,7} 6 0 x1(x1 + x7 6 1)

(h)
∑7

i=1 y{i} > 3.5
∑7

i=1 xi > 3.5

Because P is unsatisfiable, by Farkas’ Lemma there exists a non-negative linear combi-
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nation of (a) - (h) equalling 1 6 0:

2x1(x1 + x2 − 1) + 2(1− x1)(x2 + x3 − 1) + 2x1(x3 + x4 − 1)

+2(1− x1)(x4 + x5 − 1) + 2x1(x5 + x6 − 1) + 2(1− x1)(x6 + x7 − 1)

+2x1(x1 + x7 − 1) + 4(x2
1 − x1) + 2(3.5− x1 − x2 − x3 − x4 − x5 − x6 − x7)

=1 6 0

This is a degree 2 SA refutation of P .
Unfortunately, as we saw in Example 2.19, there are instances of Independent Set

where level 2 SA performs very badly. Indeed, Tulsiani [139] showed that there exist in-
stances for which the SA, as well as the Sum-of-Squares relaxation obtains an integrality
gap of n/2Θ(

√
logn log logn even after 2Θ(

√
logn log logn levels.

We end this section by showing that SA is a non-trivial proof system by showing that SA
can p-simulate7 the Resolution proof system. Recall that the Resolution proof system was
defined in Section 1.1. The width of a Resolution refutation is maximum number of literals
occurring in an any clause in the refutation. We will show that any Resolution refutation of
width w can be transformed into a SA refutation of degree w + 2. Furthermore, the size of
the SA refutation will be polynomial in the size of the Resolution refutation, where the size
of an SA is simply measured as the number of bits needed to express the refutation. This
was originally observed by Dantchev et al. [46].

Lemma 2.32 (SA p-simulates Resolution). For any width-w and size-S Resolution refuta-
tion, there exists a degree (w+ 2) SA refutation of size at most poly(S) of the same formula.

Proof. Let C be an unsatisfiable CNF formula and recall that the clauses of C are given to
SA as a set of polynomial inequalities P , where C(S, T ) :=

∨
i∈S xi ∨

∨
j∈T ¬xj is encoded

as the polynomial P (x) :=
∑

i∈S xi
∑

j∈T (1−xj) > 1. Our proof will proceed in two steps.

(i) First, observe that an equivalent representation of each of the initial clauses
C(S, T ) :=

∨
i∈S xi ∨

∨
j∈T ¬xj is given by the degree d non-negative junta

−JT,S(x) > 0. We show that this non-negative junta can be derived in degree that is
bounded by the width of C(S, T ).

(ii) Second, we show that SA can simulate the Resolution rule, deriving a clause C(S ∪
S ′, T ∪ T ′) from clauses C(S ∪ {i}, T ) and C(S ′, T ′ ∪ {i}) in degree at most the width
of C(S ∪ S ′, T ∪ T ′). This step requires some care to ensure that repeated simulations
of the Resolution rule do not blow up the degree of the refutation.

To prove (i), consider an axiom Pi(x) :=
∑

i∈S xi +
∑

j∈T (1 − xj) − 1 > 0. Let ` ∈ T
be some distinguished variable. Multiply Pi(x) by the non-negative junta JT\{`},S(x),

Pi(x) · JT\{`},S(x) =
(∑
i∈S

xi −
∑
j∈T

xj + |T | − 1
)
· JT\{`},S(x)

7Recall that p-Simulation was defined in Definition 1.4.
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=
(
−
∑
j∈T

xj + |T | − 1
)
· JT\{`},S(x) +

∑
j∈T

(xj − x2
j) · JT\{`},S\{j}(x)

=
(
−
∑
j∈T

xj + |T | − 1
)
· JT\{`},S(x) + 0, (2.33)

where the final line used the fact that SA can derive x2
j −xj = 0. Now, isolating the variable

x` from the sum in (2.33), we have

= −x` · JT\{`},S(x)−
( ∑
j∈T\{`}

xj · JT\{`},S(x)
)

+ (|T | − 1) · JT\{`},S(x)

= −JT,S(x)−
(

(|T | − 1) · JT\{`},S(x)
)

+ (|T | − 1) · JT\{`},S(x) = −JT,S(x) > 0,

where the second equality used the fact that if j ∈ T \ {`}, then xj · JT\{`},S(x) = x2
j ·

JT\{`,j},S(x) = JT\{`},S(x). This takes advantage of the fact that SA can derive x2
j = xj.

Observe that the degree is at most the width of the initial clause, and we have only used a
linear number of additional polynomials, each with constant coefficients.

To prove (ii), suppose that we have already derived the hypotheses −JT∪{i},S(x) > 0 and
−JT ′,S′∪{i}(x), corresponding to the clauses C(S ∪ {i}, T ) and C ′(S ′, T ′ ∪ {i}). We derive
the resolvent −JT∪T ′,S∪S′(x) > 0 in two steps, first weakening the inequalities, and then
resolving on the complementary variable. This is done by deriving the following inequalities.

Weakening Inequalities:

{
JT∪{i},S(x)− JT∪{i}∪T ′,S∪S′(x) > 0

JT,S∪{i}(x)− JT∪T ′,S∪{i}∪S′(x) > 0

Resolution Inequality:
{
JT∪{i}∪T ′,S∪S′(x) + JT∪T ′,S∪{i}∪S′(x)− JT∪T ′,S∪S′(x) > 0

Once these inequalities have been derived, we can simply add them together with
−JT∪{i},S(x) > 0 and −JT ′,S′∪{i}(x) > 0 to derive the resolvent. Furthermore, the derivation
of weakening and resolution inequalities will not require us to use any of inequalities that we
have derived thus far (that is, they are simply linear combinations of non-negative juntas),
and therefore will not cause any blow-up in the degree of the proof.

The resolution inequality is straightforward to derive. First, observe that the Resolution
inequality can be expanded as

JT∪{i}∪T ′,S∪S′(x) + JT∪T ′,S∪{i}∪S′(x)− JT∪T ′,S∪S′(x)

=(xi + (1− xi)− 1) · JT∪T ′,S∪S′(x). (2.34)

Let ` ∈ T ∪ T ′ be some arbitrary index. Consider the following sum of non-negative juntas,

xi(1−xi)·JT∪T ′,S∪S′(x)+x`(1−x`)·JT∪T ′,S∪S′(x) = (xi−xi)·JT∪T ′,S∪S′(x)+(1−1)·JT∪T ′,S∪S′(x),

which by the expansion in (2.34) is the resolution inequality. Here we have used the fact
that SA can deduce that x` · JT∪T ′,S∪S′(x) = JT∪T ′,S∪S′(x), using x2

` = x`. Observe that the
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degree of this derivation is at most deg(JT∪T ′,S∪S′) + 2. Because the degree of JT∪T ′,S∪S′ is
exactly the width of the corresponding clause C(S ∪ S ′, T ∪ T ′), our bound on the width of
the refutation holds. Similarly, observe that only a linear number of polynomials have been
introduced, each with constant coefficients.

The derivation of the weakening inequalities follow from a similar argument. As they are
easier to believe, we leave their proof as an exercise.

2.2.3.2 Soundness, Completeness, and Duality

SA is a proof system in the traditional sense, meaning that the proofs that it produces are ef-
ficiently verifiable and that it is both sound and complete. Both soundness and completeness
follow from the duality between SA derivations and pseudo-expectations. Indeed, if the SA
relaxation is infeasible, then a certificate of this fact exists in the form of an SA refutation.
Conversely, if the relaxation is feasible, then a derivation of this fact can be found.

Theorem 2.33 (Soundness and Completeness of Sherali-Adams). Let P be a set of poly-
nomial inequalities. There exists a degree d SA refutation of P if and only if SAd(P) is
infeasible.

Proof. Let P = {P1(x) > 0, . . . , Pm(x) > 0} be a set of polynomial inequalities. Suppose
that there is a degree d SA refutation of P ,

∑̀
i=1

ci · JSi,Ti(x) · Pi(x) = −1,

where Pi(x) > 0 ∈ P , or Pi(x) is one of the axioms x2
i − xi, or xi − x2

i , or the constant 1,
JSi,Ti(x) is a d-junta, and ci ∈ R>0. For contradiction, suppose that SAd(P) is non-empty.
Let α ∈ SAd(P), and let Ẽα be the pseudo-expectation defined by α: Ẽα[

∏
i∈S xi] = αS for

every S ⊆ [n] with |S| 6 d. Applying Ẽα to both sides of the SA refutation,

Ẽα[−1] = Ẽα
[∑̀
i=1

ci(JSi,Ti(x) · Pi(x))

]
,

which, by linearity of expectation, and the requirement that Ẽ[1] = 1, this is equivalent to

−1 =
∑̀
i=1

ci · Ẽα
[
JSi,Ti(x) · Pi(x)

]
> 0.

The final inequality follows because α ∈ SAd(P).
For the converse, suppose that SAd(P) is empty. We will use this to derive a degree d

refutation of P . By Farkas’ Lemma (Lemma 2.3) there exists a non-negative linear combi-
nation of the inequalities that define SAd(P) equalling −1. By Claim 2.29, this implies that
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there is a SA derivation of −1,

∑̀
i=1

λi · (Pi(x) · JSi,Ti(x)) = −1

where λi > 0 are the coefficients in the non-negative combination, Pi(x) ∈ P ∪ {1 > 0, x2
i −

xi > 0, xi − x2
i > 0} and JS,T is a d-junta. This is a degree d SA refutation of P .

In fact, SA is derivationally complete as well, meaning that any inequality P (x) > c0

that is logically implied8 by P can be derived in SA. This is a consequence of the fact that
degree d SA proof system and the d-th level SA relaxation are LP duals of each other. To
show this, we will phrase the task of finding a degree d SA derivation of P (x) > c0 as a linear
program: For each product JS,T (x) · Pi(x) of a non-negative junta with an axiom of degree
at most d, introduce a variable cS,T,Pi representing the coefficient of this polynomial. The
task of finding a SA derivation derivation of P (x) > c0 is equivalent to solving the following
LP,

P (x)− c0 =
∑

S,T⊆[n],
Pi(x)>0∈P∪{±(x2i−xi)>0, 1>0}

deg(JS,T )+deg(Pi)6d

cS,T,Pi · Pi(x) · JS,T (x), (2.35)

cS,T,Pi > 0 ∀S, T, Pi.

Here the coefficients cS,T,Pi are the variables of the LP, while the variables x of the polynomials
are treated as constants. The following theorem proves that this LP is the dual to SAd(P), as
well as establishes derivational completeness for the SA proof system. For ease of notation,
we will phrase this theorem in the language of pseudo-expectations9.

Theorem 2.34 (Duality and Derivational Completeness of Sherali-Adams). Let P =
{P1(x) > 0, . . . , Pm(x) > 0} be a set of polynomial inequalities. For any P (x) ∈ R[x]
with deg(P ) 6 d,

min
{
Ẽ[P (x)]|Ẽ ∈ Ed(P)

}
= max {c0|∃ a degree d SA derivation of P (x) > c0 from P} .

Proof. Let c0 be the maximum value such that there exists a degree d SA derivation of
P (x) > c0 from P ,

∑̀
i=1

ci · JSi,Ti(x) · Pi(x) = P (x)− c0, (2.36)

8We say that a polynomial P (x) > c is logically implied by P if for every α ∈ P ∩ {0, 1}n, it holds that
P (α) > c.

9Recall that Ed(P) is the set of all degree d pseudo-expectations for P and that each Ẽ ∈ Ed(P) corresponds
to a feasible solution in SAd(P).
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where Pi(x) > 0 ∈ P or Pi(x) is one of the axioms ±(x2
i − xi) > 0, or 1 > 0, JSi,Ti(x) is a

(d− deg(Pi))-junta, and ci > 0. Let Ẽ be the pseudo-distribution in Ed(P) that assigns the
minimum value to P (x). If Ẽ[P ] = c0 we are done, so suppose that Ẽ[P ] < c0. Applying Ẽ
to both sides of the derivation, we have∑̀

i=1

ci · Ẽ [JSi,Ti(x) · Pi(x)] = Ẽ [P (x)]− c0.

Because Ẽ is a degree d pseudo-distribution for P , the left-hand side evaluates to > 0. On
the other hand, Ẽ [P (x)]− c0 < 0 by assumption; a contradiction.

For the converse, suppose that the minimum Ẽ ∈ Ed assigns Ẽ[P (x)] = c0. Then, for
any ε > 0, SAd(P) ∪ {P (x) 6 c0 − ε} is unsatisfiable. Let L(y) be the multilinearization of
P (x) over the lifted variables y. By Farkas’ Lemma (Lemma 2.3) there exists a non-negative
linear combination of the inequalities in SAd(P)∪{L(y) 6 c0− ε} evaluating to −1 > 0. By
Claim 2.29, this non-negative combination can be mimicked by a SA derivation of degree at
most d,

λ(P (x)− c0 + ε) +
∑̀
i=1

λi · Pi(x) · JSi,Ti(x) = −1,

where λi > 0 are the coefficients in the convex combination, Pi(x) > 0 ∈ P∪{1 > 0, ± (xi−
x2
i ) > 0}, and each JSi,Ti(x) is a degree (d − deg(Pi)) non-negative junta. Setting ε = 1/λ,

this equals ∑
Pi(x)∈P

λi · Pi(x) = λ (P (x)− c0) .

Thus,
∑

Pi(x)∈P
λi
λ
Pi(x) = P (x)− c0 is a degree d SA derivation of P (x) > c0.

A consequence of Theorem 2.33, together with the proof of Theorem 2.33 is that any
polynomial inequality P (x) > c0 that is logically implied by a set of polynomial inequalities
P has an SA derivation of degree at most n.

2.2.3.3 Automatizability

A key feature of SA, that results from its tight connection with linear programming, is that
low-degree SA proofs can be found efficiently.

Lemma 2.35 (Degree-Automatizability of Sherali-Adams). Let P be any set of m polynomial
inequalities over n variables. Any degree d SA derivation can be found in time (m · n)O(d).

Proof. Recall that in (2.35) in the previous section we saw how to phrase the task of finding
a SA derivation as an LP. There are at most

(
2n
d

)
possible d-juntas, and therefore at most

O(nm
(

2n
d

)
) inequalities of the form JS,T (x) · Pi(x) with Pi(x) > 0 ∈ P ∪ {±(x2

i − xi) >
0, 1 > 0}. Therefore, this LP has at most (m · n)O(d) variables and constraints, and so can
be solved by standard linear programming algorithms in time (m · n)O(d). The outcome of
this program is a SA derivation of P (x) > c0 over P .
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It should be stressed that this does not imply that SA is polynomially automatizable in
the traditional sense of Definition 1.5.

Size Automatizability. Given that the connection between the SA hierarchy and the SA
proof system depends only on the degree of the proof, it is not surprising that the bulk
of work has focused on the degree-automatizability of SA. Even so, in the context of proof
search, it is perhaps equally as natural to study the size automatizability of SA. In particular,
whether high-degree SA proofs can be efficiently provided that they have small size.

It is known that both Resolution and Polynomial Calculus are not automatizable under
strong complexity-theoretic assumptions [11, 2, 48]. However, for SA it remains unknown
whether proofs can be found in polynomial, or even sub-exponential time in the size of the
shortest proof. Indeed, the best known upper-bound for finding a SA proof is of size S is
(m · n)O(

√
n logS). This follows from the size-degree tradeoff for SA. Define the monomial

size Sm of a SA proof Π to be the number of monomials in the proof Π when it is expanded
as a sum of monomials before any cancellations occur. Monomial size differs from the our
standard notion of size as it does not take into account the size of the coefficients that occur
in the proof.

Lemma 2.36 (Size-Degree Tradeoff for Sherali-Adams [111]). Any SA derivation of mono-
mial size Sm implies a derivation of degree O(

√
n logSm).

Given that a primary reason for studying SA is that its proofs can be found efficiently in
the degree of the proof, it remains an in interesting question whether the same can be said
for size.

Open Problem 2.37. Prove or disprove: SA is polynomially automatizable.
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Chapter 3

Sum-of-Squares

3.1 Semidefinite Programming and PSD Matrices

Recall that a generic linear program is defined as:

LP(P ,c) = min
x∈P

c>x

where P ={Ax = b, x > 0},

over variables x = {x1, . . . , xn}. We can assume without loss of generality that the only
inequalities occurring in P are in the non-negativity constraints x > 0 by introducing addi-
tional slack variables. Geometrically the linear program LP(P , c) corresponds to optimizing
over a polytope, the intersection of an affine space Ax = b and the convex cone of {x : x > 0}.

Definition 3.1 (Convex Cone). Let V be a vector space and C ⊆ V . Then C is a convex
cone if for every x, y ∈ C and α, β ∈ R>0, (αx+ βy) ∈ C.

A semidefinite program relaxes the non-negativity constraint x > 0 to only require that
the variables, when arranged as a matrix, are symmetric positive semidefinite.

Definition 3.2 (Positive Semidefinite Matrix). An n × n matrix A is positive semidefinite
(PSD) if for every vector u ∈ Rn,

u>Au > 0.

If this inequality is strictly positive, we say that A is positive definite.

We will denote by A � 0 that the matrix A is both symmetric and positive semidefinite,
and by A � 0 that A is symmetric and positive definite.

Proposition 3.3. If A1, . . . , A` ∈ Rn×n are symmetric PSD matrices, then for any
c1, . . . , c` ∈ R>0,

(c1A1 + . . .+ c`A`) � 0.

That is, the set of positive semidefinite matrices forms a cone in Rn×n.
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−C

X � 0

Ai •X = bi

Figure 3.1: A semidefinite program minimizing C ·X over the spectahedron formed from the
intersection of the cone X � 0 with the affine subspace Ai ·X = bi for i ∈ [m].

A semidefinite program is an optimization problem over the intersection of a set of linear
constraints and the convex cone of symmetric PSD matrices. Let X = {x1,1, . . . , xn,n} be
the set of variables over which we are working. We will think of X as arranged as an n× n
matrix where Xi,j = xi,j. For two n×n matrices A and B, denote by A •B the inner product

A •B =
∑
i,j

Ai,jBi,j.

Definition 3.4. (Semidefinite Program) A semidefinite program (SDP) is a mathematical
program of the form

SDP(S, C) := min
X∈S

C •X

where S := {A1 •X = b1, . . . , Am •X =bm, X � 0},

where C,Ai ∈ Rn×n are symmetric, and bi ∈ R.

Geometrically, an SDP corresponds to optimizing a linear objective function over a spec-
tahedron S, the intersection of a convex cone of symmetric PSD matrices X � 0 with an
affine subspace Ai •X = 0. This is shown in figure 3.1. It is not hard to see that a convex
polytope is a spectahedron; indeed, we will show that linear programming is formally a spe-
cial case of semidefinite programming. Given a linear program LP(P , c), where (possibly
after introducing slack variables)

P = {a>1 x = b1, . . . , a
>
mx = bm, x > 0},
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we can define a semidefinite program SDP(S, C), where the spectahedron S consists of the
following constraints

Ai •X = bi for i ∈ [m],

Xi,j = 0 for i 6= j and i, j ∈ [n],

X � 0.

The matrices Ai and C are defined as follows

Ai =


ai,1 0 . . . 0
0 ai,2 . . . 0
...

...
. . .

...
0 0 . . . ai,n

 C =


c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . cn

 ,

where ai,j is the j-th entry of the vector ai. The final step is to prove that the constraints
of S force X > 0. For this, it suffices to show that the following claim.

Claim 3.5. The diagonal entries of any PSD matrix are non-negative.

Proof. Let A by a PSD matrix and suppose that the i-th diagonal entry Ai,i < 0. Let e be
the vector where i-th entry is 1 and the remaining entries are 0. Then e>Ae = Ai,i < 0,
contradicting that A is PSD.

Therefore, any linear program can be phrased as a semidefinite program with at most a
quadratic blowup in the number of variables.

3.1.1 The Ellipsoid Method

Unlike LPs, no polynomial-time algorithm is known for solving general SDPs exactly. Fur-
thermore, there are examples of small SDPs for which every solution requires an exponential
number of bits to express [78, 119]. However, if we can tolerate certain structural restrictions
on the spectahedron, as well as a small additive error, techniques for solving LPs, such as
the ellipsoid method and interior point methods, can be adapted to efficiently solve SDPs.
We will briefly describe the ellipsoid method and what is needed to adapt it to SDPs. For
a more rigorous treatment, as well as proofs of the theorems in this section, we recommend
the excellent book by Grötschel et al. [62].

The ellipsoid method was originally developed by Shor [135], and Iudin and Nemirovskii
[72] as a method for solving non-linear non-differentiable optimization problems. Khachiyan
[77] first observed that the ellipsoid method could be adapted to solve linear programs in
polynomial time. In full generality the ellipsoid method can be applied to any convex set
that admits an efficient separation oracle.
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Definition 3.6 (Efficient Separation Oracle). For a convex set S ⊆ Rn an efficient separation
oracle for S is a polynomial-time in n and size(S) procedure which, given α ∈ Rn, either
returns that α ∈ S, or if α 6∈ S returns a separating hyperplane a>x > b such that for all
β ∈ S, a>β > b and a>α < b.

Here, size(·) gives the bit complexity to specify its argument.

Feasibility. Before describing how the ellipsoid method can be used to solve optimization
problems, we focus on the simpler feasiblility problem: Given a convex set S, find a point
α ∈ S or decide that S is empty.

At a high level, the ellipsoid method begins with some initial ellipsoid that contains
S. The volume of this ellipsoid is repeatedly shrunk until the center of the ellipsoid lands
within S, or until we have exceeded a specified bound on the number of iterations. At every
iteration in which the center of the current ellipsoid falls outside of S, the ellipsoid is refined
by querying the separation oracle to obtain a hyperplane separating the center from S. An
ellipsoid with smaller volume is then constructed, such that it contains the half-ellipsoid, the
intersection between an ellipsoid and the separating hyperplane. In fact, (see for example
[62]) it is straightforward to explicitly calculate the ellipsoid with the smallest volume that
contains a given half-ellipsoid. To formally state the ellipsoid method, let Ball(r, c) denote
a Euclidean ball with radius r and center c.

Algorithm 3.7 (The Ellipsoid Method for Feasibility).

Given: A convex set S with separation oracle O. A number num ∈ N of iterations.

Output: A point x∗ ∈ S if one exists.

Operation:

1. Let E = Ball(0, R) for some R ∈ R such that S ⊆ E .

2. Repeat num times:

(a) Let x∗ ∈ Rn be the center of E .

(b) Query O whether x∗ ∈ S.

(c) If x∗ ∈ S then halt and return x∗, otherwise continue.

(d) Let a>x∗ > b be the separating hyperplane obtained from O such that
a>x∗ < b and S ⊆ E ∩ {a>x > b}.

(e) Set E ← E ∩ {a>x > b}.
3. Return null.

The ellipsoid method constructs a sequence of ellipsoids E (0), E (1), E (2), . . . with decreasing
volume, where E (t) is the ellipsoid in the t-th repetition. The key to its efficiency is that the
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E (i)

E (i+1)

Figure 3.2: A single step of the ellipsoid method.

decrease in volume between each successive ellipsoid is sufficiently large. In particular, we
can guarantee the following relationship between the volume of successive ellipsoids:

V ol(E (t+1))

V ol(E (t))
6 exp

(
− 1

2(n+ 1)

)
.

Therefore, the runtime of the ellipsoid algorithm is proportional to the structure of the
feasible set S. Indeed, if the set S is not dense within the original ellipsoid E (0) := Ball(0, R),
or if R is too large, then the algorithm may take a long time to converge. In a landmark work,
Grőtschel, Lovász and Schrijver [61] showed that the ellipsoid method solves the feasibility
problem in polynomial time, provided S is not too small within E0 and R is not too large,
thus giving a sufficient bound on num.

Theorem 3.8 (Grőtschel, Lovász, Schrijver [61]). Let S be a convex set with efficient sepa-
ration oracle O. Let R, r > 0 be such that Ball(c, r) ⊆ S ⊆ Ball(0, R) = E (0) for some c ∈ Rn.
Then, the ellipsoid method solves the feasibility problem in time poly(n, size(S)) log(R/r).

Note that requiring that S ⊆ Ball(0, R) ensures that the set of solutions in S have
bit-length bounded by log(R).

Optimization. It is straightforward to adapt the algorithm for feasibility to one for op-
timization, provided that we tolerate a small additive error ε > 0. In particular, suppose
that we are trying to optimize c>x over a convex set S. We will show how the ellipsoid
method can be used to obtain an ε-approximate optimal solution α∗, a solution satisfying
c>α∗ > max{c>x : x ∈ S} − ε. The high-level idea is to reduce optimization to feasibil-
ity by repeatedly asking for a better solution. This will be done by iterating the following
subroutine: First, the ellipsoid method will be run to find a feasible point α ∈ S. Then,
the constraint c>x > c>α will be added to S, requiring that the next solution found by the
ellipsoid method must be an improvement on the solutions that were previously found. The
ellipsoid method will then be re-run. If the current convex set becomes empty, then the
previous solution we found must have been the optimal solution. Unfortunately, this process
may take prohibitively long to converge to the true optimum. However, if we allow for a
small ε-error, then this method can be seen to converge in polynomial-time. This technique
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is known as the sliding objective function method and was first introduced by Shor [135] and
Iudin and Nemirovskii [72].

−c

x(t)

c>x > c>x(t)

c>x > c>x(t−1)

Figure 3.3: A single step of the sliding objective function method.

One issue that must be addressed is that the original separation oracle O for S may no
longer be valid once we introduce the constraint c>x > c>α. Luckily, it is straightforward to
construct an oracle O′ for S ∩{c>x > c>α} from O. For a point β ∈ Rn, O′ asks O whether
β ∈ S, then

1. If β 6∈ S, then β 6∈ S ∩ {c>x > c>α} and the separating hyperplane provided by O is
a valid separating hyperplane for S ∩ {c>x > c>α}.

2. If β ∈ S, if c>β > c>α, return β. Otherwise, c>x > c>α is a separating hyperplane.

We will denote the separation oracle for the set S ∩ {c>x > c>α} by O ∩ {c>x > c>α}.

Algorithm 3.9 (The Ellipsoid Method for Optimization).

Given: A convex set S with separation oracle O, and an objective function c>x. A
precision parameter ε > 0. A number of iterations num ∈ N.

Output: A solution α∗ ∈ S.

Operation:

1. Let E = Ball(0, R) for some R ∈ R such that S ⊆ E , and let α∗ = null.

2. Repeat num times:

(a) Let x∗ ∈ Rn be the center of E .

(b) Query O whether x∗ ∈ S.

(c) If x∗ ∈ S then

i. Set α∗ ← x∗.

ii. Set S ← S ∩ {c>x > c>α∗} and O ← O ∩ {c>x > c>α∗}.
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(d) Otherwise

i. Let a>x > b be the separating hyperplane obtained from O such that
a>x∗ < b and S ⊆ E ∩ {a>x > b}.

ii. Set E to be the smallest ellipsoid containing the half-ellipsoid E ∩
{a>x > b}.

3. Return α∗.

With these modifications the ellipsoid method can be used to obtain an ε-approximate
optimal solution in time polynomial in r, R, and ln(1/ε) (see, for example, Exercise 8.4. in
[31]), giving us a sufficient bound for num.

Theorem 3.10 (Khachiyan [77]). Let S be a convex set with efficient separation oracle O,
objective function c>x, and precision parameter ε > 0. Let R, r > 0 be such that there exists
a c ∈ R such that Ball(c, r) ⊆ S ⊆ Ball(0, R). Then the ellipsoid method will either output an
ε-approximate optimal solution, or determine that S = ∅ in time poly(n, size(S)) log(R/rε).

Solving Semi-Definite Programs. In order to solve SDPs using the ellipsoid method we
must show that SDPs admit efficient separation oracles. The canonical separation oracle
for a linear program {a>i x > bi : i ∈ [m]} is straightforward: simply determine whether the
given point α satisfies each of the constraints a>i x > bi. This can be done in polynomial time
in the bit complexity of ai and bi. If α falsifies any of these constraints then that constraint
constitutes a valid separating hyperplane. To adapt this to an efficient separation oracle for
SDPs, it remains to show that we can efficiently test whether α � 0, and if not, obtain from
it a separating hyperplane.

Lemma 3.11 (Separation Oracle for SDPs). Given the constraints of an SDP S = {A1 •

X = b1, . . . , Am • X = bm, X � 0}, there exists a separation oracle for S running in time
poly(m,n, size(Ai), size(bi)) (for i ∈ [m]).

In order to prove this Lemma we will require some additional properties of semidefinite
matrices which we will develop in the following section. Because of this, we will defer the
construction of the separation oracle until Section 3.1.2.1.

Provided that a separation oracle exists, the only remaining issue preventing us from
solving an SDP with the ellipsoid method is that we must ensure that our convex set S =
{A1 • X = b1, . . . , Am • X = bm, X � 0} contains a full-dimensional ball of some non-zero
radius r within it. Observe that this is almost always false whenever m > 0 as the constraints
Ai •X = bi may restrict our feasible set to a subspace. In order to apply the ellipsoid method,
we thus relax the constraints Ai •X = bi to |Ai •X − bi| < ε for small error parameter ε > 0.
It is not too hard to show now that there exists a ball of radius Ω(εn/ ‖A‖nF ) inside our
convex set, where A = A1 ◦A2 ◦ . . . ◦Am is the concatenation of the matrices Ai, and ‖ · ‖F
is the Frobenius norm.

Finally, notice that for small enough δ, δI is feasible for our relaxed SDP above. Thus,
without hurting the optimum of our relaxed SDP, we can upper bound ‖X∗‖2

F 6 δ2n. for
any feasible solution X∗ ∈ Rn×n. That gives an upper bound of n on the radius of a ball
enclosing our convex set.
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We can thus apply ellipsoid method to obtain the following result:

Corollary 3.12 (Solving SDPs in Polynomial Time). Given C ∈ Rn×n, A1, . . . , Am ∈
Rn×n, and b ∈ Rn and any ε > 0, there is an algorithm running in time
poly(m,n, size(Ai), size(C), size(bi), log (1/ε)) (for all i) that finds X that maximizes C • X
satisfying X � 0 and Ai •X = bi for every i ∈ [m], up to an additive error ε.

3.1.2 Positive Semidefinite Matrices

This section is dedicated to reviewing several properties and characterizations of PSD ma-
trices which will be necessary for later sections. We will use the task of constructing a
separation oracle for SDPs as a motivating example. The main technical challenge in con-
structing such an oracle is designing a method to efficiently test whether a matrix A is PSD;
of course it is computationally infeasible to test whether u>Au > 0 for every u ∈ Rn directly.
Our separating oracle will instead rely on the following equivalent definition of a PSD matrix.

Theorem 3.13. A matrix A ∈ Rn×n is a symmetric PSD if and only if its n eigenvalues
are non-negative.

The proof of this theorem requires several decompositions of PSD matrices which will be
crucial when discussing Sum-of-Squares. Therefore we defer the proof of Theorem 3.13 until
these have been developed.

Theorem 3.14. Let A be an n× n symmetric PSD matrix, then A has the following equiv-
alent decompositions.

• Cholesky Decomposition: A = U>U , where U is the unique upper-triangular ma-
trix.

0



0




• LDL Decomposition: A = LDL>, where L is a lower-triangular matrix whose diag-

onal is all 1s, and D is a diagonal matrix whose entries are non-negative. Furthermore,
both D and L are unique.

1 0
. . .

1




a1 0

. . .

0 an




1

. . .

0 1




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• Non-Negative Spectral Value Decomposition: A = QΛQ>, where Q is an or-
thogonal matrix (i.e. the rows qi of Q are orthonormal vectors) and Λ is a non-negative
diagonal matrix whose entries are the eigenvalues of A. This decomposition is not
unique.

q1

...

qn




λ1 0

. . .

0 λn



 q1 . . . qn




Proof. We begin by proving the LDL decomposition by induction on n. Suppose that the
LDL decomposition holds for all symmetric PSD matrices of dimension (n − 1) × (n − 1)
and let A ∈ Rn×n be a symmetric PSD matrix. Because A is symmetric it has the following
form:

A =

b v>

v C




where b ∈ R is some constant, v is a vector of length (n− 1) and C is an (n− 1)× (n− 1)
submatrix. Note that, by Claim 3.5, we know that b > 0. We can decompose A as follows,[

1 ~0
v
b
I

] [
b ~0
~0 C − vv>

b

] [
1 v

b
~0 I

]
,

where I is the (n − 1) × (n − 1) identity matrix. Finally, we need to show that the matrix

B := C − vv>

b
is symmetric PSD. Let u ∈ Rn−1 be any vector, and define the vector

x> =

[
− u>v

b
, u>

]
.

Multiplying B by u, we have
u>Bu = x>Ax > 0

this follows because −u>v
b

has the effect of zero-ing out the first row and the first column of
A.

The Cholesky decomposition is a straightforward consequence of the LDL decomposition.
Consider the LDL decomposition of a symmetric PSD matrix,

A = L>DL.
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Using that D is diagonal, we can write

(L>D1/2)(D1/2L) = (LD1/2)>(LD1/2).

Letting U = (LD1/2), we have the desired decomposition A = U>U .
To see that the converse holds as well, we will show that if A has an LDL decomposition

then it is PSD. Suppose that A has an LDL decomposition, then by what we proved above
it has a Cholesky decomposition A = U>U as well. Let u ∈ Rn be any vector and observe
that

u>Au = u>U>Uu = (u>U>)2 > 0.

Therefore A is PSD.
Finally, we argue that a matrix is PSD if and only if it has a spectral value decomposition

in which the matrix Λ is non-negative. First, we will prove that every symmetric matrix has
a (not necessarily non-negative) spectral value decomposition.

Lemma 3.15 (Spectral Value Decomposition). Every symmetric matrix A can be written
as A = QΛQ>, where Q is an orthogonal matrix and Λ is a (not-necessarily non-negative)
diagonal matrix whose entries are the eigenvalues of A.

Proof. The spectral value decomposition follows from two properties of symmetric matrices:

Claim 3.16. The eigenvectors corresponding to distinct eigenvalues of a symmetric matrix
are orthonormal.

Proof. To see this, let u and v be eigenvectors of a symmetric matrix A, with distinct
eigenvalues λu and λv respectively. Then,

u>Av = λuu
>v,

and
v>Au = λvv

>x = λvu
>v,

which follow from the symmetry of A. Therefore,

λuu
>v = λvu

>v =⇒ λu = λv,

which is a contradiction. Finally, note that each eigenvector can be made unitary by nor-
malizing.

Claim 3.17. Every eigenvalue of a real symmetric matrix is real.

Proof. Let A be a symmetric matrix, and let u be an eigenvector of A with eigenvalue λu.
Then

(Au)>Au = u>A>Au = AuAu = λ2
u|u|2,

and so

λ2
u =

(Au)>Au

|u|2
> 0.

Therefore, the eigenvalues of A must be real.
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With these claims in hand, we are ready to derive the spectral value decomposition. Let
A be a symmetric matrix, and let λ1, . . . , λk be the eigenvalues of A. For each λi, let vi
be a corresponding unit eigenvector. By Claims 3.16 and 3.17, these vectors are real and
orthonormal. Construct the n×n matrix Q, where the i-th column of Q is the vector vi, and
the diagonal matrix Λ, where the i-th diagonal entry is λi. By Theorem 3.13, we know that
the eigenvalues are non-negative. If k < n, let tk+1, . . . , tn be a completion of v1, . . . , vk to an
orthonormal basis for Rn. Form the remaining n − k columns of Q with these vectors, and
let the remaining n− k diagonal entries of Λ be 0. Because vi is an eigenvector, Avi = λivi,
and so,

AQ = ΛQ.

Because Q is an orthogonal matrix, Q>Q = 1, and so Q−1 = Q>. Therefore,

A = QΛQ>.

Finally, the claim that a matrix is PSD if and only if has a Non-Negative spectral value
decomposition follows from the spectral value decomposition, along with Theorem 3.13,
asserting that a matrix is PSD iff its eigenvalues are non-negative. Therefore, to complete
this proof it is enough to prove Theorem 3.13.

Proof. (of Theorem 3.13) Let A � 0 and v ∈ Rn some vector. By the spectral value
decomposition of A we have A = QΛQ>, where Λ is a diagonal matrix whose entries are the
eigenvalues of A. Then,

v>Av = v>QΛQ>v =
n∑
i=1

λi(v
>Q)2

i > 0,

where λi is the i-th diagonal entry of Λ, the i-th eigenvalue of A. In particular, this implies
λi > 0 for all i ∈ [n].

Conversely, let A be a real symmetric matrix whose n eigenvalues are non-negative. The
proof proceeds in the same manner as the proof of the spectral value decomposition. By
Claims 3.16 and 3.17, the eigenvectors are orthonormal, and eigenvalues are real. To complete
the proof, arrange the eigenvalues and eigenvectors to form a spectral value decomposition
as we did in the proof of Theorem 3.14, concluding that A � 0.

Theorem 3.13 together with the spectral value decomposition (Lemma 3.15) implies that
a matrix is PSD if and only if it has a Non-Negative spectral value decomposition.

Although the Thoerem 3.13, along with the LDL Decomposition is enough to construct
a separation oracle for SDPs, we defer its description until the end of this section in order
to cover two final characterizations of PSD matrices which will be necessary later in this
monograph. These characterizations are in terms of how PSD matrices interact with each
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other; the first of which describes PSD matrices in terms of their inner product1 with other
PSD matrices.

Lemma 3.18. A symmetric matrix A ∈ Rn×n is PSD if and only if A •B > 0 for all B � 0
with B ∈ Rn×n.

The proof of this lemma will rely on several properties of the matrix trace, where the
trace of an n× n matrix A is the sum of its diagonal entries,

Tr[A] =
n∑
i=1

Ai,i

Fact 3.19. For A,B ∈ Rn×n the following identities hold:

1. Tr[AB] = Tr[BA],

2. A •B = Tr[A>B].

Furthermore, if A and B are symmetric, then Tr[A>B] = Tr[AB].

Proof. (Of Lemma 3.18) Let A,B � 0. Applying the spectral value decomposition to A, we
can write A = QΛQ>. Then,

A •B = Tr[AB] = Tr[QΛQ>B] = Tr[ΛBQQ>],

which follows from applying Fact 3.19. Because Q is an orthogonal matrix, QQ> = I. Then,

Tr[ΛB] =
n∑
i=1

Λi,iBi,i > 0, (3.1)

which follows because Λi,i are the eigenvalues of A and therefore by Theorem 3.13, they are
non-negative. As well, the diagonal entries Bi,i are non-negative, because B � 0.

For the other direction, suppose that A •B > 0 for every B � 0, but A is not PSD. That
is, there exists u ∈ Rn such that u>Au < 0. Let B = uu>, and observe that B � 0; indeed,
for any v ∈ Rn,

v>uu>v = (v>u)2 > 0.

Then,

u>Au =
∑
i,j∈[n]

uiAi,juj =
∑
i,j∈[n]

Ai,j(uiuj) = A •B < 0,

contradicting our assumption.

An immediate corollary is a similar characterization for symmetric positive definite ma-
trices which will be useful in the following section.

1Recall that the inner product A •B between matrices A and B is defined as
∑

i,j Ai,jBi,j .
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Corollary 3.20. For any matrix A � 0, A •B > 0 for every B � 0, B 6= 0.

This follows directly from the proof of Lemma 3.18 along with the fact that positive
definite matrices admit a spectral value decomposition such that the n eigenvalues are all
positive. Using this fact, Equation 3.1 holds with a strict inequality when A is a positive-
definite matrix.

Our final characterization, known as Sylvester’s Criterion, characterizes SDP matrices in
terms of their sub-matrices. Before stating it, it will be useful to first understand under what
conditions we can guarantee that a submatrix of a symmetric PSD matrix is itself symmetric
PSD; this is a natural question in its own right. Immediately we can rule out non-square
sub-matrices and sub-matrices formed by deleting any subset of rows and columns, as neither
of these are guaranteed to be symmetric. One natural class of sub-matrices which preserve
symmetry are principal submatrices, formed by deleting the same set I of rows and columns
of the original matrix.

Lemma 3.21. The principal sub-matrices of any symmetric PSD matrix are themselves
symmetric PSD.

Proof. Let A ∈ Rn×n be a symmetric PSD matrix. Let I ⊆ [n] and let B be a principal
submatrix obtained by deleting the rows and columns of A with indices in I. That B is
symmetric follows from the symmetry of A. Finally, we want to show for any u ∈ Rn−|I|,
that u>Bu > 0. Let v ∈ Rn be u extended to assign 0 to all coordinates in [n] \ I. Then,

u>Bu = v>Av > 0.

Sylvester’s Criterion characterization PSD matrices by the determinants of their sub-
matrices.

Lemma 3.22 (Sylvester’s Criterion). Let A be a symmetric matrix over R. Then, A � 0 if
and only if the determinant of every principal submatrix is non-negative.

We will only prove the forward direction of Sylvester’s criterion. The converse is signifi-
cantly more involved and will not be needed.

Proof. Suppose that A � 0. By Lemma 3.21, every principal submatrix A′ of A is a sym-
metric PSD matrix. Therefore, by the Cholesky Decomposition, we can write A′ = U>U ,
where U is upper triangular. Then,

det(A′) = det(U>U) = det(U>) det(U) = (det(U))2 > 0.
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3.1.2.1 A Separation Oracle for SDPs

We end this section with the construction of an efficient separation oracle for SDPs, com-
pleting the proof of Lemma 3.11. Recall that our task is to test whether a given solution
α ∈ Rn×n satisfies the constraints of our SDP, and if not, construct a separating hyperplane.
The main challenge is to handle the constraint X � 0.

Lemma 3.23. There exists an efficient algorithm that tests whether α � 0, and if not,
outputs c ∈ Rn such that c>αc < 0.

Proof. We can assume without loss of generality that α is symmetric by operating only
over d(n + 1)/2e variables, using the same variable for both Xi,j and Xj,i. By the spectral
value decomposition (Lemma 3.15) we can α = QΛQ> where Λ is a diagonal matrix whose
entries are the eigenvalues of α, and the rows of Q are the corresponding eigenvectors. This
decomposition can be computed in polynomial time using standard algorithms for obtaining
eigenvalue decompositions. By Theorem 3.13, the eigenvalues of α are non-negative if and
only if α is PSD. This provides an easy method for testing whether α is PSD: Let ei be the
i-th standard basis vector. For i = 1, . . . , n, test whether e>i Λei = Λi,i > 0. If this test fails
then Λ has a negative entry and we construct a separating hyperplane using Q as follows.
Suppose that Λi,i < 0. The vector c = Q−1ei witnesses that α is not PSD. Indeed,

c>αc = e>i (Q−1)>αQ−1ei = e>i Λi,iei < 0.

Lemma 3.23 gives us a polynomial-time test for PSD-ness. Furthermore, if α is not PSD
then the vector c output by the algorithm provides a separating hyperplane: Let H = (cc>),
then

H • α = cc>α = c>αc < 0.

As well, for any β ∈ S, because β � 0, it holds that c>βc > 0. Thus H •X > 0 is a separating
hyperplane for α.

We can use this separation oracle along with Theorem 3.8 to approximately solve SDPs
in polynomial time. We sketch the details and then note this consequence as a corollary
here. Recall that a generic SDP minimize C •X subject to S = {A1 •X = b1, . . . , Am •X =
bm, X � 0}. Here, X,Ai, and C are n × n matrices. We assume that Ai, C, and b consist
of real entries specified by polynomially many bits. To apply the ellipsoid method, we need
an efficient separation oracle for the convex set consisting of Ai •X = bi and X � 0. Given
any α ∈ Rn×n, we can check if Ai •X = bi by solving linear inequalities

Ai • α 6 bi and Ai • α > bi

in polynomial time. Notice that this requires that A be specified by polynomially many bits.
If either of these fails, then the falsified halfspace can be used as a separating hyperplane.
Next, we can check X � 0 by applying the separation oracle above. Thus, altogether,
we have a polynomial time separation oracle for testing feasibility in our convex set. This
completes the proof of Lemma 3.11.
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3.1.3 Semidefinite Programming Duality

Until now, we have been working with the primal form of semidefinite programs SDP (P , C),
where P = {A1 •X = b1, . . . , Am •X = bm, X � 0} and C,Ai ∈ Rn×n, and bi ∈ R. Analogous
to linear programming, every SDP admits a dual, defined as

Primal: Dual:

minX C •X maxy b>y
Ai •X = bi ∀i ∈ [m] C −

∑
i∈[m] yiAi � 0

X � 0

The dual SDP can be written in the standard form of the primal, as a single SDP
constraint along with a set of linear equality constraints. To see this, introduce an n × n
matrix of additional slack variables S. The dual can then be rewritten as

SDPD(SD, b) := max
y∈SD

b>y,

where SD =

{
C −

m∑
i=1

yiAi = S, S � 0

}
.

As in the case of LPs, the optimal solutions to the primal and dual are closely related. Any
solution to the dual SDP is an lower bound on the minimum value that the primal can attain.

Theorem 3.24 (Weak Duality for Semidefinite Programs). If α is any feasible solution to
the primal SDP(S, C) and β is any feasible solution to the dual SDPD(SD, b), then

C • α > b>β.

Proof. Let α be a feasible solution to SDP(S, C) and β be a feasible solution to the dual
SDPD(SD, b). Then,

C • α =

(
m∑
i=1

βiAi + S

)
• α, (C −

∑m
i=1 yiAi = S)

=
m∑
i=1

βi(Ai • α) + (S • α),

=
m∑
i=1

βibi + (S • α). (Ai •X = bi)

Since S, α � 0, by Lemma 3.18 we have S • α > 0. Therefore,

C • α− b>β = S • α > 0,

and so C • α > b>β.
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This duality theorem is considerably weaker than the duality theorem for linear programs
(Theorem 2.1). Unlike for linear programming, we cannot ensure that if both the primal and
dual SDPs are feasible then there will be no duality gap, (i.e. that their optima coincide).
Such a strong duality theorem does not hold for semidefinite programs. The following counter
example is due to Lovász [101].

Lemma 3.25. There exists an SDP such that both the primal and dual have feasible solu-
tions, but their optima do not coincide.

Proof. Consider the following SDP,

min y1,

s.t.

 0 y1 0
y1 y2 0
0 0 y1 + 1

 � 0. (3.2)

Note that this can be transformed into an SDP in the standard primal form by introducing
slack variables. Since the (1, 1)-entry of the matrix is 0, the semidefinite constraint forces
y1 = 0. To see this, suppose that y1 6= 0, let M be the matrix in (3.2), and let u ∈ R3 be
the vector u = [y2/y1,−1, 0]. Then,

u>Mu < 0.

Because the diagonal must be non-negative, the feasible solutions satisfy (y1 = 0, y2 > 0).
Therefore, the optimal solution of the primal is 0.

To find the dual, we rewrite the constraint of the primal SDP (3.2) as0 0 0
0 0 0
0 0 1

+ y1

0 1 0
1 0 0
0 0 1

+ y2

0 0 0
0 1 0
0 0 0

 � 0.

The dual SDP becomes

max −x3,3

s.t. x1,2 + x2,1 + x3,3 = 1,

x2,2 = 0,

X � 0.

As was the case for the primal SDP, the PSD constraint on X along with x2,2 = 0 forces
x1,2 = x2,1 = 0. Therefore, any feasible solution must have x3,3 = 1. In particular, this
implies that the optimal value of the SDP is −1. This is an SDP with a gap of 1 between
the optimal value of the primal and dual.

Although it does not hold in general, it turns out that strong duality can be made to hold
if we impose certain robustness conditions on the SDP. The standard sufficient conditions
are known as Slater’s Conditions and are conditions (1) and (2) in the following theorem.
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Theorem 3.26 (Strong Duality for Semidefinite Programs). Let SDP(S, C) be an SDP
and SDPD(SD, b) be its dual. Let S = {A1 • X = b1, . . . , Am • X = bm, X � 0}, and so
SD = {C−

∑
i∈[m] yiAi � 0}. Then both SDP(S, C), and SDPD(SD, b) have optima α∗ and

β∗ such that
C • α∗ = b>β∗

if either

1. The spectahedron S 6= ∅ and there exists β such that
∑

i∈[m] βiAi − C � 0, or

2. The spectahedron SD 6= ∅ and there exists α � 0 such that A • α = bi for all i ∈ [m].

We will prove this theorem in the following section. For now, we state a corollary that will
be useful when working over bounded domains; a proof can be found in [138, 118]. Here, we
interpret S both as a set of constraints and as the set of all points satisfying the constraints
in S.

Corollary 3.27. Both SDP(S, C) and SDPD(SD, b) have optima α∗ and β∗ such that
C • α∗ = b>β∗, if either

1. The set of optimal solutions for SDP(S, C) is non-empty and bounded, or

2. The set of optimal solutions for SDPD(SD, b) is non-empty and bounded.

3.1.3.1 A Proof of Strong Duality

The key ingredient in the proof of Theorem 3.26 is an extension of Farkas’ Lemma to semidef-
inite programs. This extension follows from the Hyperplane Separation Theorem due to
Hermann Minkowski.

Theorem 3.28 (Hyperplane Separation Theorem). Let C1, C2 ⊆ Rn be two disjoint non-
empty convex sets. There exists v, t ∈ Rn, v 6= 0 such that for every α ∈ C1 and β ∈ C2,

v>α > t and v>β 6 t.

Furthermore, if either C1 or C2 is a cone, the theorem holds for t = 0.

Using the hyperplane separation theorem one can prove a version of Farkas’ Lemma
(Lemma 2.3) for SDPs, which will simplify the proof of the strong duality theorem consid-
erably.

Lemma 3.29 (Farkas’ Lemma for SDPs). For symmetric matrices A1, . . . , Am ∈ Rn×n, the
constraint

∑m
i=1 yiAi � 0 has no feasible solution if and only if there exists X � 0, with

X 6= 0 such that
Ai •X = 0 ∀i ∈ [m].
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Notice that this lemma characterizes positive-definite systems that have no feasible solu-
tions, it says nothing about positive semi-definite systems. That this lemma does not hold
for PSD systems follows from the fact that strong duality does not hold for general SDPs.
To prove Lemma 3.29, we follow the standard proof of Lovasz [99].

Proof. If we suppose that
∑m

i=1 yiAi � 0 is infeasible then, viewing each matrix as a vector in

Rn2
, the cone of positive-definite matrices {Y : Y � 0} is disjoint from {

∑m
i=1 yiAi : yi ∈ R}.

By the Hyperplane Separation Theorem there exists X such that for every symmetric PSD
matrix Y , Y •X > 0 and

∑m
i=1 yiAi •X 6 0 for all y1, . . . , ym ∈ R. Suppose that Ai •X 6= 0

for some fixed i ∈ [m]. Consider the vectors y(+), y(−) ∈ Rm, defined as y
(+)
i = 1, y

(−)
i = −1

and y
(+)
j = 0 = y

(−)
j for all j 6= i. Then,

m∑
j=1

y
(+)
j Aj •X = y

(+)
i Ai •X = Ai •X, and

m∑
j=1

y
(−)
j Aj •X = y

(−)
i Ai •X = −Ai •X.

The only solution satisfying both constraints is Ai •X = 0. All that remains is to show that
X � 0. This follows from the fact that Y •X � 0 for every Y � 0 and Lemma 3.18.

For the other direction, suppose that there there exists X � 0, X 6= 0 such that Ai •X = 0
for all i ∈ [m], and furthermore suppose that there is some y ∈ Rm such that

∑m
i=1 yiAi � 0.

By Lemma 3.20, because X � 0 and
∑m

i=1 yiAi � 0, we have( m∑
i=1

yiAi

)
•X > 0,

contradicting the fact that Ai •X = 0 for all i ∈ [m].

Furthermore, we can extend this to non-homogeneous systems leading to a derivational
version of Farkas’ Lemma for SDPs.

Lemma 3.30 (Derivational Farkas’ Lemma for SDPs). For symmetric matrices
A1, . . . , Am, C, the constraint

∑m
i=1 yiAi − C � 0 has no feasible solution if and only if

there exists X � 0, X 6= 0 such that

Ai •X = 0 ∀i ∈ [m], and C •X > 0.

Proof. Suppose that
∑m

i=1 yiAi − C � 0 is infeasible, and observe that this constraint is
satisfiable if and only if {

m∑
i=1

yiAi − ym+1C � 0, ym+1 > 0

}
(3.3)

is satisfiable. In particular, for any solution y ∈ Rm+1 to (3.3), because ym+1 > 0, the vector
y′ ∈ Rm defined as y′i = yi/ym+1 for all i ∈ [m] is a solution to

∑m
i=1 yiAi − C � 0. We
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can formulate (3.3) as a single positive-definite constraint
∑m+1

i=1 yiA
′
i � 0 by defining the

matrices

A′1 =

(
A1 0
0 0

)
, . . . , A′m =

(
Am 0
0 0

)
, A′m+1 =

(
−C 0
0 1

)
.

Note that the bottom-right entry in the matrix A′m+1, along with the positive-definiteness

constraint force ym+1 > 0. Because
∑m+1

i=1 yiA
′
i � 0 is infeasible, by Lemma 3.29 there exists

X ′ � 0, X ′ 6= 0 such that A′i •X
′ = 0 for all i ∈ [m+ 1]. If we let X be the upper-left n× n

submatrix of X ′, then Am+1 •X
′ = (−C) •X +X ′n+1,n+1 = 0, and Ai •X = 0 for all i ∈ [m].

We make the following observations:

i) X 6= 0: Suppose that X = 0. We claim that this implies that X ′n+1,n+1 > 0, contra-
dicting the fact that (−C) • X + X ′n+1,n+1 = 0. Indeed, because X ′ 6= 0, there must
exists some i ∈ [n+1] such that X ′i,n+1 = X ′n+1,i 6= 0, where the equality holds by sym-
metry. Define the vector v ∈ Rn+1 as vn+1 = 1, vi = −sign(X ′n+1,i), and vj = 0 for all
j 6= i. Then, because X = 0, vTX ′v = −2|X ′n+1,i|+X ′n+1,n+1, and furthermore because
X ′ � 0, this sum must be non-negative, implying that X ′n+1,n+1 > 2|X ′n+1,i| > 0.

ii) X • C > 0: Since X • C = X ′n+1,n+1 it suffices to show that that X ′n+1,n+1 > 0, which
follows by Claim 3.5 stating that the diagonal entries of any symmetric PSD matrix
are non-negative.

This completes the proof of the forward direction. The proof of the reverse direction is
identical to the proof in Lemma 3.29.

With these lemmas in hand, we are prepared to prove strong duality for SDPs. We will
follow the standard proof strong duality due to Lovasz [99].

Proof. (of Theorem 3.26) We will prove (1). Consider SDP(S, C), where S = {A1 • X =
b1, . . . , Am •X = bm, X � 0}. Suppose that S 6= ∅ and that

∑
i∈[n] yiAi−C � 0 is feasible2.

Now, if β∗ is the optimal value of the dual SDP SDP(SD, b), then the set of constraints

b>y > β∗,

C −
∑
i∈[m]

yiAi � 0.

is infeasible. We will use this to define a solution to the primal which is at least the value
of b>β∗. We can write this as a single positive-definite constraint C ′ −

∑
i∈[m] yiA

′
i � 0 by

defining the matrices

A′1 =

(
A1 0
0 −b1

)
, . . . A′m =

(
Am 0
0 −bm

)
, C ′ =

(
C 0
0 −β∗

)
,

2Recall that we interpret S both as the set of constraints S and as the set of feasible solutions to S using
context to differentiate
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The infeasibility of {b>y > β∗, C −
∑

i∈[m] yiAi � 0} implies that C ′ −
∑

i∈[m] yiA
′
i � 0

is infeasible as well. Therefore, applying Lemma 3.30 guarantees the existence of a matrix
X ′ � 0, X ′ 6= 0 such that

A′i •X
′ = 0 ∀i ∈ [m] and C •X ′ > 0.

Let X be the upper-left n× n submatrix of X ′, then we have

A′i •X
′ = Ai •X −Xn+1,n+1bi = 0 ∀i ∈ [m], and C •X −X ′n+1,n+1β

∗ > 0.

All that is left is to show that X ′n+1,n+1 > 0, in which case 1
X′n+1,n+1

X will be a feasible

solution to the primal and satisfy 1
Xn+1,n+1

X • C > b>β∗. First, observe that X ′n+1,n+1 > 0

because X � 0 and the diagonal entries of a PSD matrix are non-negative. Suppose that
X ′n+1,n+1 = 0, then

A1 •X = 0, . . . , Am •X = 0, X • C = 0, X � 0.

has a solution. According to Lemma 3.30, this implies that there is no feasible solution to∑m
i=1 yiAi−C � 0, which contradicts our initial assumption. Therefore, 1

X′n+1,n+1
X •C > b>β∗.

That 1
X′n+1,n+1

X • C 6 b>β∗ follows from weak duality (Theorem 3.24).

The proof of (2) follows by a similar argument.

3.1.4 Sum-of-Squares Polynomials and Semidefinite Programs

As an example of the usefulness of SDPs we will discuss how they can help answer the
following fundamental questions: How can one determine whether a polynomial P (x) ∈ R[x]
is non-negative over R? Perhaps the simplest way to witness non-negativity is by showing
that the polynomial can be written as a sum-of-squares:

P (x) =
m∑
i=1

Q2
i (x),

forQ1, . . . , Qm ∈ R[x]. This gives a concise certificate of the negativity of P (x). Furthermore,
such a certificate can be found algorithmically: there exists efficient semidefinite programs
for determining whether or not a polynomial has a sum-of-squares factorization. In order to
describe this SDP, it will be convenient to define the notion of a monomial vector over the
variables x.

Definition 3.31 (monomial vector). A monomial vector of degree d is a
(
n
6d

)
-dimensional

vector vd(x) indexed by sets S ⊆ n, |S| 6 d, where the entry vd(x)S is the monomial

vd(x)S :=
∏
i∈S

xi.
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The following lemma will allow us to phrase the task of finding a sum-of-squares repre-
sentation as an SDP.

Lemma 3.32. Let P (x) ∈ R[x] be a polynomial of degree at most 2d and let vd(x) be the
degree d monomial vector. Then, P (x) can be written as a sum-of-squares if and only if there
exists a matrix C � 0 such that

P (x) = vd(x)>Cvd(x)

In particular, the SDP has constraints P (x) = vd(x)>Cvd(x) and C � 0. The variables of
the SDP are the entries of the coefficient matrix C, while the monomials in vd(x) are treated
as constants.

Proof. Let C � 0 be such that vd(x)>Cvd(x) = P (x). Applying the Cholesky decomposition,
we can write C = U>U , where U is an upper-triangular matrix. Therefore,

P (x) = vd(x)>Cvd(x) = vd(x)>U>Uvd(x) = ‖Uvd(x)‖2
2 =

∑
i∈( n6d)

(Uvd(x))2
i > 0.

Recalling that vd(x) is a vector of monomials, define the polynomials gi(x) := (Uvd(x))i.
This gives us a representation of P (x) as the polynomial

∑
i gi(x)2. Note that the number

of unique gi(x)’s is the equal to the rank of C.
For the other direction, suppose that we have a decomposition P (x) =

∑
i gi(x)2. Because

the highest-degree terms in the gi(x)’s cannot cancel, each gi(x) has degree at most 2d. For
each gi(x), let ~gi be the vector formed by the coefficients of the monomials appearing in gi(x)
such that gi(x) = ~gi · vd(x). Construct the matrix U by letting the i-th row of U be the
coefficient vector ~gi. Then we have

vd(x)>U>Uvd(x) =
∑
i

(Uvd(x))2
i =

∑
i

g2
i (x) = P (x).

This tight connection between semidefinite programming and sum-of-squares polynomials
will be a recurring theme in the rest of this monograph. In the following example, we will
show how this SDP can be used to extract a sum-of-squares representation for a polynomial.

Example 3.33. Consider P (x) = 2x4+2x3y−x2y2+5y4. Because P (x) is homogeneous,
if it can be written a a sum-of-squares, then the polynomials in the sum-of-squares
representation must all have degree 2. Therefore, it is enough to consider (for simplicity)
the monomial vector v = [x2, y2, xy].

[
x2 y2 xy

] c1,1 c2,1 c3,1

c1,2 c2,2 c3,2

c1,3 c2,3 c3,3

x2

y2

xy

 =
∑
i,j∈[3]

ci,jvivj,

where v1 = x2, v2 = y2, v3 = xy. Expanding this sum, and using the fact that C is
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symmetric, gives∑
i,j∈[3]

ci,jvivj = c1,1v
2
1 + c2,2v

2
2 + c3,3v

2
3 + 2c1,2v1v2 + 2c2,3v2v3 + 2c1,3v1v3

= c1,1x
4 + c2,2y

4 + c3,3x
2y2 + 2c1,2x

2y2 + 2c2,3xy
3 + 2c1,3x

3y

= c1,1x
4 + c2,2y

4 + (c3,3 + 2c1,2)x2y2 + 2c2,3xy
3 + 2c1,3x

3y.

Recall that the entries of C are the coefficients (treated as the unknowns of the SDP)
of the terms in the sum-of-squares representation of P (x), and therefore this gives us a
system of constraints. The existence of such a symmetric PSD matrix C, and therefore,
whether P (x) can be represented as a sum-of-squares, is equivalent to the feasibility of
the following SDP:

C � 0

s.t. c1,1 = 2, c2,2 = 5, 2c1,3 = 2, 2c2,3 = 0, c3,3 + 2c1,2 = −1

Solving this results in the following matrix:

C =

 2 −3 1
−3 5 0
1 0 5

 .
This matrix is rank-2, and therefore P (x) is a sum of two squares. In order to uncover
the description of these squares, we will follow the forward direction of the proof of
Lemma 3.32. Applying the Cholesky factorization,

C = U>U =
1√
2

2 −3 1
0 1 3
0 0 0

> 1√
2

2 −3 1
0 1 3
0 0 0

 .
We can write P (x) =

∑
i(Uv)2

i , where

Uv =
1√
2

2 −3 1
0 1 3
0 0 0

x2

y2

xy

 =

[
1√
2
(2x2 − 3y2 + xy)

1√
2
(y2 + 3xy)

]
,

and so P (x) can be written as the following sum-of-squares

P (x) =

(
1√
2

(2x2 − 3y2 + xy)

)2

+

(
1√
2

(y2 + 3xy)

)2

.

Unfortunately, it is not the case that every non-negative polynomial can be written as a
sum-of-squares, and the question of when a non-negative polynomial over R[x] has a sum-
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of-squares representation has a long history dating back to Minkowski and Hilbert in 1885
[129]. At the end of this chapter (Section 3.3.2.1) we give an abridged history of this question
and how it relates to Sum-of-Squares.

Hilbert [66] provided the first proof that, in general, non-negativity of a polynomial is not
equivalent to having a representation as a sum-of-squares. His proof was non-constructive,
and relied on tools from the theory of algebraic curves. It was not until 1967 that Theodore
Motzkin [105] gave the first explicit counter example. His counter example,

M(x, y) := 1 + x4y2 + x2y4 − 3x2y2,

became known as the Motzkin polynomial. Although we omit the proof that it cannot be
represented as a sum-of-squares (see for example [125]), it will be illustrative to prove its
non-negativity. To do so, we will show that it can be written as a sum-of-squares of rational
functions.

Claim 3.34. The Motzkin polynomial is non-negative.

Proof. It can be checked that multiplying M(x, y) by (x2 + y2)2 > 0 can be written as

(x2 + y2)2M(x, y) =

(x3y + xy3 − 2xy)2 + x2(x3y + xy3 − 2xy)2 + y2(x3y + xy3 − 2xy)2 + (x2 − y2)2

Rearranging, we have

M(x, y) =
(x3y + xy3 − 2xy)2(1 + x2 + y2) + (x2 − y2)2

(x2 + y2)2
,

which is a sum-of-squares of rational functions, and therefore must always be non-negative.

Along with his proof that in general, non-negativity is not equivalent to having a repre-
sentation as a sum-of-square, Hilbert characterized the subclasses of polynomials for which
this equivalence does hold. They are:

1. Univariate polynomials,

2. Degree 2 polynomials,

3. Bivariate, degree 4 polynomials,

4. Functions over the Boolean hypercube P : {0, 1}n → R.

The most notable is that non-negative functions over the Boolean hypercube P : {0, 1}n → R
are equivalent to sum-of-squares polynomials. Furthermore, degree 2n is always sufficient.

Lemma 3.35. Every non-negative function P : {0, 1}n → R can be written as a degree 2n
sum-of-squares polynomial.
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Proof. Let g : {0, 1}n → R be the unique multilinearizing-map function3 that agrees with√
P on the hypercube. Then, P = g2 over {0, 1}n and furthermore has degree at most

2n.

We can characterize sum-of-squares polynomials over {0, 1}n in terms of symmetric PSD
matrices in the same way that we did for sum-of-squares polynomials over Rn in Lemma 3.32.
Unfortunately, for polynomials over the Boolean hypercube, the degree of the sum-of-squares
representation is no-longer bounded by the degree of the original polynomial.

Theorem 3.36. For a function P : {0, 1}n → R, the following are equivalent

1. P (x) is a non-negative function.

2. P (x) can be written as a sum-of-squares polynomial.

3. There exists a matrix C � 0 such that vd(x)>Cvd(x) = P (x), where vd(x) is the
monomial vector of degree n.

Proof. The equivalence of (1) and (2) follows from Lemma 3.35. The proof of the equivalence
with (3) follows by the same proof as in Lemma 3.32, except that now we are unable restrict
to polynomials of degree at most the degree of P (x). This is because, over {0, 1}n, we have
the identity x2

i = xi, and so we can no longer assume that the highest-degree terms do not
cancel. Therefore, monomial vectors of degree n are necessary.

This gives us an algorithm for obtaining sum-of-squares representations of non-negative
polynomials over {0, 1}n: find a feasible solution to the SDP

P (x) =
∑

I,J⊆[n]

CI,Jvn(x)Ivn(x)J ,

C � 0,

where the variables of this SDP are the CI,J for I, J ⊆ [n]. This is the same form as the SDP
that we saw in Example 3.33. Unfortunately, because vn(x) is degree n monomial vector, C
is
(
n
6n

)
×
(
n
6n

)
-dimensional, and so this SDP has O(nn

2
) variables. This begs the question of

whether degree n monomial vectors are indeed necessary in general, and if so, in what special
cases are smaller degree monomial vectors sufficient. Unfortunately, it turns out that there
exist constant-degree polynomials that require degree Ω(n) sum-of-squares representations.
We will prove this for the 3XOR function in Section 5.1. This shows that, degree n monomial
vectors are necessary in general. The latter question will be a focus of the remainder of this
manuscript.

3Recall that a multilinearizing-map, as defined in Definition 2.14, is a linear function f : R[x] \ {(x2i −
xi)}i∈[n] → R such that f(

∏
i∈I x

ci
i ) = f(

∏
i∈I xi).
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3.2 Sum-of-Squares

3.2.1 Sum-of-Squares as Lifting Semidefinite Programs

Sherali-Adams gave us a systematic way of creating a hierarchy of LP relaxations converging
to the integer hull. Shor [134], Parillo [107, 108], and Lasserre [95, 94] showed how to extend
this idea to SDPs. In this section we study the SDP hierarchy proposed by Lasserre, which
has come to be known as the Sum-of-Squares hierarchy. To describe it, we will use the
MaxCut problem as a running example.

Definition 3.37 (MaxCut). Given a graph G = (V,E) with weights wi,j for all (i, j) ∈ E,
find a bipartition of the edges into S and V \S that maximizes the weight of edges the edges
crossing between the two sets,

MaxCut(G) := max
S⊆V

∑
i∈S,j∈V \S

wi,j

MaxCut can be expressed naturally as a quadratic integer program,

max
∑
i<j

wi,j (xi − xj)2 , (3.4)

s.t. xi ∈ {0, 1} ∀i ∈ [n].

Of course, solving quadratic programs is NP-hard and so we will instead look for a tractable
approximation, this time by a hierarchy of SDPs. A quadratic integer program can be relaxed
to an SDP in much the same way as taking the LP relaxation. The difference is that instead
of replacing the {0, 1}-constraints on the variables with non-negativity constraints, they are
replaced with a symmetric PSD constraint.

To relax the quadratic program (3.4), first replace each product of variables xixj with
a placeholder variable y{i,j}. In fact, we will introduce variables yI for every I ⊆ [n] with
|I| 6 2. Let M2(y) be the

(
n
62

)
×
(
n
62

)
matrix, obtained by arranging the variables yI into

a matrix. The rows and columns are labeled by sets I ⊆ [n], with |I| 6 2, and the entry
M2(y)I,J = yI∪J . For n = 2, M2(y) is:


∅ {1} {2} {1,2}

∅ y∅ y{1} y{2} y{1,2}
{1} y{1} y{1} y{1,2} y{1,2}
{2} y{2} y{1,2} y{2} y{1,2}
{1,2} y{1,2} y{1,2} y{1,2} y{1,2}

 (3.5)

Rather than constrain the entries ofM2(y) to be non-negative as we would have done for the
LP relaxation, we instead enforce thatM2(y) is symmetric PSD. Finally, in order to ensure
that every solution is correctly normalized, we include the constraint that y∅ = 1, where y∅
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represents the product
∏

i∈∅ xi. Putting this together gives the following SDP relaxation of
(3.4):

max
∑
i<j

i,j∈[n]

wi,j
(
y{i} − 2y{i,j} + y{j}

)
, (3.6)

s.t. M2(y) � 0, y∅ = 1

(3.7)

This relaxation is the first level Sum-of-Squares relaxation applied to the MaxCut problem.
The symmetric PSD constraint effectively relaxes the feasible region from the feasible region
{0, 1}n of the quadratic program to be within the interval [0, 1]n. To see this, recall that by
Lemma 3.22, the determinant of every principal submatrix of Y is non-negative. Let S ⊆ [n]
with |S| 6 2, and compute the determinant of the principal submatrix obtained fromM2(y)
by deleting all rows and columns except for those indexed by ∅ and S,

det

([
y∅ yS
yS yS

])
= yS(y∅ − yS) = yS(1− yS) > 0, (3.8)

which holds if and only if yS ∈ [0, 1].
At this point, it is worth comparing the constraints of this relaxation with the constraints

of the 2nd level Sherali-Adams relaxation of (3.4), which consist of

y{i,j} > 0, y{i} − y{i,j} > 0, 1− y{i} − y{j} + y{i,j} > 0 ∀i 6= j ∈ [n],

y{i} > 0, 1− y{i} > 0, ∀i ∈ [n],

y∅ = 1.

We have already seen that all of these constraints except for 1− y{i} − y{j} + y{i,j} > 0 and
y{i} − y{i,j} > 0 are enforced by M2(y). To see that these final constraints are enforced as

well, define the vector u ∈ R( n62), indexed by sets S ⊆ [n] with |S| 6 2 as u∅ = u{i,j} = 1,
u{i} = u{j} = −1, and let uS = 0 for every other coordinate. Then,

u>M2(y)u = y∅ − y{i} − y{j} + y{i,j} > 0

where the final inequality holds because M2(y) � 0, and so u>M2(y)u > 0. Similarly,

letting u′ ∈ R( n62) be defined as u′{i} = u′{i,j} = 1 and u′S = 0 for all other coordinates, we

have u′>M2(y)u′ = y{i}− y{i,j} > 0. Therefore, such relaxations are at least as expressive as
the relaxations produced by the 2nd level of the SA hierarchy.

In fact, relaxations of this form are potentially much more expressive. Charikar et al. [41]
showed that the Sherali-Adams relaxation of degree Ω(n) cannot achieve an approximation
ratio better than 1/2 + ε, for MaxCut. On the other hand, in Section 4.1 we will see that the
semidefinite relaxation (3.6) achieves the same approximation ratio as the famous Goemans
and Williamson SDP for MaxCut. Unfortunately, it is not always the case that an SDP
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relaxation of the form (3.6) results in a reasonable approximation ratio. For such cases,
we can develop a theory of lifting like we did for Sherali-Adams. Rather than having the
matrixM2(y) contain only variables representing terms that occur in the constraints of the
quadratic program, we can include representations of higher-degree terms. This leads to a
hierarchy of lifts, parameterized by the degree of variables that we introduce, known as the
Sum-of-Squares (SoS) or Lasserre hierarchy.

To describe the SoS relaxation in full generality, suppose that we are trying to solve the
following {0, 1}-polynomial optimization problem:

min
x∈hull{0,1}(P)

P (x),

where P = {P1(x) > 0, . . . , Pm(x) > 0}.

Definition 3.38 (Sum-of-Squares Relaxation). Let d > deg(P)/2. The d-th level of the SoS
hierarchy for P , which we denote by SOSd(P), is defined as follows:

1. Extend: Define matrices (Xd)|I|,|J |6d) :=
∏

i∈I,j∈J xixj, and
((Pi, X)d)|I|,|J |6d−deg(Pi)/2 := P (x)

∏
i∈I,j∈J xixj, for every Pi(x) > 0 ∈ P . In-

troduce the constraints

Xd � 0, (3.9)

(Pi, X)d � 0, for every Pi(x) > 0 ∈ P (3.10)

2. Linearize: Multilinearize each of the constraints introduced in the previous step by
replacing xci by xi for every c > 1. Replace each monomial

∏
i∈S xi occurring in (3.9)

and (3.10) by a variable yS and denote the resulting matrices by

Md(y)|I|,|J |6d := yI∪J , and Md(y, Pi)|I|,|J |6d−deg(Pi)/2 :=
∑
K

(~Pi)K · yI∪J∪K ,

where (~Pi)K is the coefficient of the term
∏

i∈K xi in Pi(x). Finally, add the normalizing
constraint y∅ = 1.

The resulting spectahedron SOSd(P) is defined by the set of constraints:

Md(y) � 0,

Md(y, Pi) � 0 ∀i ∈ [m],

y∅ = 1.

The resulting program is defined on
(
n
62d

)
variables yS with |S| 6 2d. The variable y∅ is

intended to represent
∏

i∈∅ xi, the constant 1 term. Therefore, we include the constraint
y∅ = 1 is included to ensure that any solution we obtain from optimizing over this relaxation
is correctly normalized. For clarity, the matrix Md(y) can be seen in Figure 3.4.
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Md(y) =



∅ {1} {2} {1,2} ... J ...

∅ 1 y{1} y{2} y{1,2} . . . yJ . . .
{1} y{1} y{1} y{1,2} y{1,2} . . . yJ∪{1} . . .
{2} y{2} y{1,2} y{2} y{1,2} . . . yJ∪{2} . . .
{1,2} y{1,2} y{1,2} y{1,2} y{1,2} . . . yJ∪{1,2} . . .

...
...

...
...

...
. . .

I yI yI∪{1} yI∪{2} yI∪{1,2} yI∪J
...

...
...

...
...

. . .


Figure 3.4: The moment matrix Md(y) of the d-th level of the SoS hierarchy.

Example 3.39. Let ILP(P , c) be an ILP over constraints P = {a>1 x > b1, . . . , a
>
mx >

bm} and variables xi ∈ {0, 1}. The d-th level SoS relaxation of P consists of the following
constraints

(yI∪J)|I|,|J |6d � 0,( n∑
j=1

ai,j · yI∪J∪{j} − bi · yI∪J
)
|I|,|J |6d−deg(Pi)/2

� 0 ∀i ∈ [m],

y∅ = 1

Solving the SoS Relaxation. A solution to the original optimization problem can be
obtained from the SoS-relaxation by solving the SDP,

SDP(SOSd(P), P ) := min
α∈SOSd(P)

∑
|I|6deg(P )

~PIαI ,

where ~P ∈ R( n
62d) is the coefficient vector of P (x) such that ~PI is the coefficient of the term∏

i∈I xi in P (x). Using the ellipsoid method, and in particular Corollary 3.12, this SDP
can be solved up to an additive ε-error in time proportional to nO(d), provided that the
coefficients of the constraints in P and P are polynomial in nd.

Corollary 3.40. Let P be a set of polynomial inequalities. Then SDP(SOSd(P), P ) can be
solved, up to an additive error ε, in time poly(m,nd, size(P ), size(P)) · log ε−1.

One might object that SOSd(P) is not in the standard form of an SDP that we saw
in Definition 3.4; indeed, it contains several PSD constraints. By arranging these PSD
constraints as a single block-diagonal matrix we can re-write SOSd(P) in the standard form
of a dual SDP. This transformation is described explicitly in Section 3.3.1.1.
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Moment Matrices The matricesMd(y) andMd(y, Pi) are known as the moment matrices
of the SoS relaxation SOSd(P). This name comes from a distributional view of SoS, which we
will explore in Section 3.2.2, where we view the entries of these matrices as the moments of
some probability distribution. Intuitively, the moment matrices ensure that the linearizations
of the constraints are satisfied while enforcing that the variables yI,J behave consistently with
the products

∏
i∈I∪J xi that they are intended to represent. Formally, the moment matrices

satisfy the following useful properties, some of which were already discussed for M2(y) in
the introduction.

Lemma 3.41. For any set of polynomial inequalities P = {P1(x) > 0, . . . , Pm(x) > 0},
SOSd(P) satisfies the following properties:

1. 0 6 yJ 6 yI 6 1 for every I ⊆ J ⊆ [n] with |J | 6 d.

2.
∑

J⊆T (−1)|J |yS∪J > 0 for every non-negative d-junta JS,T (x).

3. If α ∈ {0, 1}n satisfies every Pi(x) > 0 ∈ P, then α ∈ proj[n] (SOSd(P)) 4 for every
d > deg(P).

The proof of this Lemma can be found in the Appendix, and follows by arguments similar
to the proof that this held for degree 2 SoS at the beginning of this subsection. Property (2)
shows that the moment matrix constraints are at least as restrictive as non-negative juntas:
any solution to the level d SoS relaxation satisfies every non-negative d-junta. It follows that
the SoS relaxation is a tightening of the Sherali-Adams relaxation5.

Corollary 3.42. Let P be a set of polynomial inequalities. For every d,

SOSd(P) ⊆ SAd(P)

Proof. By Lemma 3.41, any solution to SOSd(P) satisfies every d-junta. It is left to show
that any solution to SOSd(P) also satisfies the linearization of JS,T (x) · Pi(x) > 0 for every
Pi(x) > 0 ∈ P and (d − deg(Pi)/2)-junta. This follows by an almost identical argument
to the proof of property (2) in Lemma 3.41, instead using the matrix Md(y, Pi) in-place of
Md(y).

Hierarchy of Relaxations Because SA forms a hierarchy of polytopes converging to the
integer-hull, Corollary 3.42 suggests that the same is true for SoS. Indeed, we will show that
any feasible solution to SOSd+1(P) will also satisfy SOSd(P). That is, the levels of the SoS
hierarchy form a sequence of tightening spectahedron converging to the integer hull.

Lemma 3.43. Let P = {P1(x) > 0, . . . , Pm(x) > 0}, then the following hold:

4Recall that proj[n] (P) =
{
α �y{1},...,y{n} : α ∈ P

}
, the orthogonal projection of P to the first n variables.

5It is worth noting that the d-th level of the SoS relaxation introduces the y-variable representations of
monomials of degree up to 2d, while degree d Sherali-Adams only allows representations of degree up to d
monomials.
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1. SOSd(P) ⊇ SOSd+1(P) for any d > deg(P),

2. SOSd(P) ⊇ hull{0,1}(P),

3. proj[n]

(
SOSn+deg(P)/2

)
= hull{0,1}(P).

Proof. For (1), let α ∈ SOSd(P), and so Md(α) � 0 and Md(α, Pi) � 0. Observe that
Md−1(y) is the principal submatrix of Md(y) obtained by removing all rows and columns
indexed by I with |I| = d. The same is true for Md−1(y, Pi) with respect to Md(y, Pi). By
Lemma 3.21, the principal sub-matrices of any PSD matrix are themselves PSD. Therefore
Md(α),Md(α, Pi) � 0.

To prove (2), because SOSd(P) is convex, it suffices to show that every α ∈ {0, 1}n ∩
hull{0,1}(P) satisfies the constraints of SOSd(P). Define α̃ ∈ R( n6d) as

α̃I :=
∏
i∈I

αi ∀I ⊆ [n], |I| 6 d.

Note that because α̃I ∈ {0, 1} for all I, (α̃I)
2 = α̃I . Therefore, we can write Md(α̃) = α̃α̃>.

Consider any v ∈ R( n6d), then we have

v>Md(α̃)v = v>α̃α̃>v = (α̃>v)2 > 0,

and so Md(α̃) � 0. Similarly, consider Pi(x) > 0 ∈ P , and recall that Md(y, Pi)I,J is the
linearization of (Pi ·XI,J)|I|,|J |6d, where (Pi ·XI,J) = Pi(x)

∏
i∈I,j∈J xixj. Because α ∈ {0, 1}n,

Md(α̃, Pi) = (Pi(α) ·X(α)I,J)|I|,|J |6d

=
(
Pi(α)

∏
i∈I,j∈J

αiαj

)
|I|,|J |6d

= Pi(α)
(
α̃I α̃J

)
|I|,|J |6d

= Pi(α)α̃α̃>.

Because α is a solution to P , Pi(α) > 0. Let v ∈ R( n
6d−deg(Pi)/2

). Then,

v>Md(α̃)v = v>Pi(α)α̃α̃>v = Pi(α)v>α̃α̃>v = Pi(α)(α̃>v)2 > 0.

To prove (3), we will need some additional machinery which is developed in the following
section. In particular, the proof of (3) is given in Corollary 3.53. For now, we note that the
weaker bound, SOSn+deg(P) = hull{0,1}(P), follows from (2) along with Corollary 3.42 and the
fact that SAn+deg(P)(P) = hull{0,1}(P).

By Lemma 3.43, the SoS relaxations forms a sequence of nested spectahedron, converging
to the integer hull,

proj[n]

(
SOSdeg(P)(P)

)
⊇ proj[n]

(
SOSdeg(P)+1(P)

)
⊇ . . . ⊇ proj[n]

(
SOSO(n)

)
= hull{0,1}(P).

This is known as the Sum-of-Squares hierarchy.
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3.2.2 Sum-of-Squares as Locally Consistent Distributions

The SoS hierarchy corresponds to an ever-tightening sequence of spectahedrons converging to
the integer hull. Unfortunately, as the level of the hierarchy increases, so does the running
time required to optimize over the resulting spectahedron. Therefore, we would like to
understand how well of an approximation a tractable level of the hierarchy achieves. In
order to do so, it is necessary to understand the points that lie within the d-th level SoS
spectahedron.

3.2.2.1 Pseudo-Expectations

For Sherali-Adams we had a nice way of describing the feasible points as locally consistent
expectation functions. We will construct a similar distributional representation of the point
within the SoS relaxation. Recall that every point α ∈ hull{0,1}(P) can be represented as
a probability distribution µ(α) over {0, 1}n as follows. Because α ∈ hull{0,1}(P), it can be
expressed as a convex combination of the {0, 1}-solutions to P ,

α =
∑

β∈{0,1}n
λβ · β,

such that λβ = 0 if β does not satisfy the constraints of P . The probability distribution
µ(α) : {0, 1}n → [0, 1] is defined as µ(α)(β) = λβ.

Minimizing a polynomial P (x) over hull{0,1}(P) can be phrased in this distributional
language as minimizing the expectation of P (x) over the space of all such distributions,

min
µ
{Eµ[P (x)] : µ is supported on {0, 1}-solutions to P } = min

E∈E(P)
[E[P (x)]] ,

where E(P) is the set of expectation functions defined on {0, 1}-distributions for P ,
E(P) := {Eµ : µ is a distribution supported on {0, 1}-solutions to P}. Of course, it takes
an exponential amount of space to describe a distribution over {0, 1}n in general. Therefore,
this optimization problem is typically intractable. Instead, we settle for only optimizing over
the relaxation SOSd(P). This corresponds to relaxing the requirements on the expectations
in the set E(P) to only require that they look like true expectations over {0, 1}-solutions to
P to the constraints of SOSd(P). We will denote by Ẽ : R[x]→ R such a pseudo-expectation.

We now develop the properties that Ẽ must satisfy in order to fool the d-th level of SoS
into thinking that Ẽ is a true expectation defined only on {0, 1}-solutions to P . First, because
Ẽ pretends to be an expectation over a probability distribution supported only {0, 1}n, it
should associate xci = xi for every i ∈ [n], and therefore be a multilinearizing map6. Next,
because SOSd(P) introduces only the multilinearizations of degree at most 2d polynomials,
as we will see, this corresponds to only requiring that Ẽ be consistent with the at most
2d-th moments of a true probability distribution over {0, 1}n. Indeed, because every point
α ∈ SOSd(P) satisfies Md(α) � 0, and because these pseudo-expectations are intended to

6In the sense of Definition 2.14.
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be a distributional view of these points α, we should enforce that any pseudo-expectation Ẽ
satisfies

Ẽ[Xd] � 0,

where Ẽ is applied component-wise to Xd, recalling that (Xd)i∈I,j∈J :=
∏

i∈I∪J xi. This is

equivalent to requiring that for every vector v ∈ R( n6d),

Ẽ[v>Xdv] > 0.

We can rephrase this as

Ẽ[v>Xdv] = Ẽ
[ ∑
|I|,|J |6d

vIvJ
∏
i∈I∪J

xi

]

= Ẽ
[(∑
|I|6d

vI
∏
i∈I

xi
)( ∑
|J |6d

vJ
∏
j∈J

xj
)]
,

= Ẽ
[(∑
|I|6d

vI
∏
i∈I

xi
)2
]
.

If we interpret v as the coefficient vector of (the multilinearization) of a polynomial Q(x) ∈
R[x] this is equivalent to the condition that for every Q(x) ∈ R[x] of degree at most d,

Ẽ[Q2(x)] > 0.

Similarly, the condition that Md(y, Pi) enforces that Ẽ[Pi(x)Q2(x)] > 0, for every Q(x) ∈
R[x] with deg(Q) 6 d − deg(Pi)/2, and Pi(x) > 0 ∈ P . This leads us to define a pseudo-
expectation for SoS as any function that satisfies these properties.

Definition 3.44 (Pseudo-Expectation for P). Let P be a set of polynomial inequalities. A
multilinearizing map7 Ẽ : R[x] \ {(x2

i − xi)} → R is a degree 2d (level d) pseudo-expectation
for P if the following hold:

1. Ẽ[1] = 1,

2. Ẽ[Q2(x)] > 0 for every polynomial Q ∈ R[x] with deg(Q) 6 d,

3. Ẽ[Q2(x) · Pi(x)] > 0 for every Pi(x) > 0 ∈ P and every Q ∈ R with deg(Q) 6
d− deg(Pi)/2.

Denote by E2d(P) the set of all degree 2d pseudo-expectations for P . As we will see next,
the set E2d(P) is equivalent to SOSd(P).

7Recall that a multilinearizing map, as defined in Definition 2.14, is a linear function f : R[x]\{(x2i−xi)} →
R such that f

(∑
j∈J

∏
i∈Ij x

ci,j
i

)
=
∑

j∈J f
(∏

i∈Ij xi

)
.
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Theorem 3.45. Let P be a set of polynomial constraints, and for any α ∈ R( n
62d) define the

multilinearizing map Ẽα : R[x] \ {(x2
i − xi)} → R as

Ẽα
[∏
i∈S

xi

]
:= αS,

for every S ⊆ [n], Ẽα[1] = 1, and extend Ẽα linearly. Then, α ∈ SOSd(P) if and only if
Ẽα ∈ E2d(P).

Proof. Suppose that α ∈ SOSd(P), then α assigns a value αS to every variable yS with
|S| 6 2d. Define the multilinearizing map Ẽα as in the statement of the theorem. For terms
of higher degree, Ẽ can be defined arbitrarily. To see that Ẽα satisfies (1), observe that
Ẽα[1] = Ẽα[

∏
i∈∅ xi] = y∅ = 1. For (2) and (3), let P (x) > 0 ∈ P ∪ {1 > 0} and Q(x) ∈ R[x]

with deg(Q) 6 d− deg(P )/2. Recalling that Ẽα is a multilinearizing map, let ~P , ~Q ∈ R( n6d)

be the coefficient vectors of the multilinearization of P (x) and Q(x) respectively (that is,

applying the transformation xci = xi) such that ~QI , ~PI are the coefficients of the term
∏

i∈I xI .

Ẽα
[
P (x)Q2(x)

]
=

∑
|I|,|J |6d−deg(Pi)/2

Ẽα

[
P (x) ~QI

~QJ

∏
i∈I∪J

xi

]

=
∑

|I|,|J |6d−deg(Pi)/2,
|K|6deg(Pi)

Ẽα

[
~PK ~QI

~QJ

∏
i∈I∪J∪K

xi

]

=
∑

|I|,|J |6d−deg(Pi)/2,
|K|6deg(Pi)

~QI
~QJ

(
~PK · yI∪J∪K

)
= ~Q>M(P, α) ~Q > 0,

where the final inequality follows because α ∈ SOSd(P) and so M(P, α) � 0.
For the other direction, suppose that Ẽ ∈ E2d(P). Let P (x) > 0 ∈ P ∪ {1 > 0}, and

define M(P, y) as

M(P, y)|I|,|J |6d−deg(P )/2 = Ẽ

[
P (x)

∏
i∈I∪J

xi

]
.

Let Q(x) ∈ R[x] be any polynomial of degree at most d − deg(P )/2, and let ~P , ~Q ∈ R( n6d)

be the coefficient vector of the multilinearization of P (x) and Q(x) respectively. Then

~Q>M(P, y) ~Q =
∑

|I|,|J |6d,K

~QI
~QJ

(
~PK · yI∪J∪K

)

=
∑
|I|,|J |6d

~QI
~QJ Ẽ

[∑
K

~PK
∏
i∈K

xi
∏
i∈I∪J

xi

]
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= Ẽ

P (x)
∑
|I|,|J |6d

~QI
~QJ

∏
i∈I∪J

xi


= Ẽ[P (x)Q2(x)] > 0.

Using Theorem 3.45 together with Corollary 3.12, we can find pseudo-expectations that
approximately satisfy constraints in polynomial time. Formally, we can obtain the following
corollary:

Corollary 3.46. Let P be a set of polynomial constraints on Rn. Then, for any d, there is
an nO(d) time algorithm to find a pseudo-expectation Ẽ : R[x] \ {(x2

i − xi)} → R such that
for any P (x) > 0 ∈ P and polynomial Q(x) of degree at most d− deg(P ),

Ẽ[P (x)Q(x)] > −2−n
d
( ∑
S⊆[n]

~P 2
S

)( ∑
S⊆[n]

~Q2
S

)
.

3.2.2.2 Pseudo-Distributions

Instead of working with a pseudo-expectation, we could work directly with the underlying
pseudo-distribution. Analogous to SA, each pseudo-expectation induces a family of consistent
marginal distributions. Recall from the previous section that every point α ∈ hull{0,1}(P)
can be viewed as a distribution µ(α) over solutions in {0, 1}n to P . This distribution induces

a family of marginal distributions {µ(α)
S : S ⊆ [n]}, where µ

(α)
S is the marginal distribution

on {0, 1}S 8. Like Sherali-Adams, the constraints of SoS can be viewed as attempting to
verify that these marginal distributions are consistent probability distributions. Unfortu-
nately, sub-linear levels of the SoS hierarchy are unable to fully verify each of these marginal
distributions. For example, by Lemma 3.41 SOSd(P) can only guarantees that yS ∈ [0, 1] for
|S| 6 d. This corresponds to d-th level of the SoS hierarchy only being able to verify that, for
|S| 6 d, µS(β) ∈ [0, 1] where β ∈ {0, 1}S. Therefore, for a point to lie within the d-th level
of the SoS hierarchy, it only needs to be consistent with a relaxed version of a distribution.
In fact, it makes sense to reuse the notion of a pseudo-distribution from Definition 2.20. The
difference between a pseudo-distribution for Sherali-Adams and one from SoS will emerge in
the different properties that the pseudo-expectations over these pseudo-distributions must
satisfy.

Lemma 3.47. Let P be a set of polynomial inequalities, then any degree 2d pseudo-
expectation for P defines a degree d pseudo-distribution 9.

8Recall that {0, 1}S is the set of Boolean assignments to the variables {xi : i ∈ S}.
9One might wonder why a degree 2d pseudo-expectation defines only a degree d pseudo-distribution. One

answer is that a degree n pseudo-distribution is a true distribution over {0, 1}n. A more enlightening answer
is that Lemma 3.41 only guarantees that the values assigned by a degree 2d pseudo-expectation are within
the range [0, 1] monomials of degree up to d. Indeed, the values assigned to terms of degree > d may be
negative, and therefore would not form a valid distribution.
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Proof. For Ẽ ∈ E2d(P), let S ⊆ [n] with |S| 6 d. Define the function µS : {0, 1}S → R as
follows: for every S ′ ⊆ S, the event 1S′,S\S′ corresponding to xi = 1 for all i ∈ S ′ and xj = 0
for all j ∈ S \ S ′ is assigned probability

µS(1S′,S\S′) = Ẽ
[∏
i∈S′

xi
∏

j∈S\S′
(1− xj)

]
,

and let µ = {µS}|S|6d. By Lemma 3.41 and the equivalence between pseudo-expectations
and the points α ∈ SOSd(P), it follows that µS(β) ∈ [0, 1] for every β ∈ {0, 1}S. That µS
is indeed a true probability distribution over {0, 1}S follows from the consistency between
these marginal distributions, and is identical to the proof of Lemma 2.21.

The family of marginal distributions {µS}|S|6d are consistent with each other, and so
they appear to SoS to be the marginal distributions up to subsets of d variables of some
true probability distribution over {0, 1}n. If we add the additional constraints that the
expectation taken over this pseudo-distribution satisfies the constraints of SOSd(P), then the
pseudo-distribution fools SoS into believing that it is true distribution over {0, 1}-solutions
to P .

Definition 3.48 (Pseudo-Expectation for P). Let P be a set of polynomial inequalities. A
multilinearizing map Ẽ : R[x] \ {(x2

i − xi)} → [0, 1] is a degree 2d pseudo-expectation for P
if there exists a degree 2d pseudo-distribution µ such that for every polynomial S ⊆ [n] with
|S| 6 2d,

Ẽ
[∏
i∈S

xi

]
= µ(1S,∅),

and Ẽ[P (x) · Q2(x)] > 0 for every P (x) > 0 ∈ P ∪ {1 > 0} and every Q(x) ∈ R[x] with
deg(Q) 6 d− deg(P )/2

Remark. Occasionally in the literature an alternative definition of a pseudo-expectation is
used. Here, a degree 2d pseudo-distribution for P is defined as a function µ : {0, 1}n → R
satisfying that the expectation over by µ is a degree 2d pseudo-expectation. This differs from
a true probability distribution by allowing the marginals of degree higher than d to assign
negative probabilities. This definition of a pseudo-distribution is simply the extension of the
standard definition of pseudo-distribution for P (Definition 3.48) to have moments up to n
by assigning the marginals on > d variables to arbitrary values, with the only requirement
being that the marginals are consistent.

3.2.2.3 Evolution of the Sum-of-Squares Relaxation

Pseudo-expectations allow us to characterize the points that exist within each level of the
SoS hierarchy. We can take a more fine-grained view and ask how the set of feasible points
change between levels of the hierarchy. That is, under what conditions does a point in the
d-th level survive to the (d+ 1)-st?
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Lemma 3.49. Let P be a set of polynomial inequalities. For every α ∈ SOSd(P), and every

i ∈ [n] with 0 < α{i} < 1, there exists β(0), β(1) ∈ SOSd−1(P) such that β
(1)
{i} = 1, β

(0)
{i} = 0,

and
α ∈ conv

(
β(0), β(1)

)
10.

Proof. This argument is due to Rothvoß [126]. Let α ∈ SOSd(P) and i ∈ [n] be an index

such that 0 < α{i} < 1. Define the points β(0), β(1) ∈ R( n6d), and non-negative multipliers
λ0, λ1 ∈ R as

β
(0)
S :=

αS − αS∪{i}
1− α{i}

, λ0 := 1− α{i},

β
(1)
S :=

αS∪{i}
α{i}

, λ1 := α{i},

for every S ⊆ [n] with |S| 6 2(d− 1). Observe that the following hold:

1. β(0) = 0 and β(1) = 1, and

2. λ0 · β(0)
S + λ1 · β(1)

S = (αS −αS∪{i}) +αS∪{i} = αS. Therefore α is a convex combination
of β(0) and β(1).

Next, we verify that Md−1(β(0)),Md−1(β(1)) ∈ SOSd−1(P). To begin, observe that

β
(0)
∅ =

α∅ − α{i}
1− α{i}

= 1, and, β
(1)
∅ =

α{i}
α{i}

= 1.

Because Md(α) � 0, by the Cholesky decomposition, we can write Md(α) = U>U where
U is an upper-triangular matrix. Denote the columns of U by uI for I ⊆ [n], |I| 6 d, and
observe that

〈uI , uJ〉 =Md(α)I∪J = αI∪J .

To prove thatMd−1(β(0)) � 0 andMd−1(β(1)) � 0, we show that they both admit a Cholesky
decomposition.

We will begin with β(0). Note that it is enough to show that (1 − α{i})Md−1(β(0)) � 0
because PSD matrices are closed under conic combinations, and by Lemma 3.41 it follows
that α{i} ∈ [0, 1]. Define the vectors u

(0)
I := (uI − uI∪{i}) for every |I| 6 d − 1. Letting

I, J ⊆ [n] with |I|, |J | 6 d− 1, observe that

〈u(0)
I , u

(0)
J 〉 = 〈uI , uJ〉 − 〈uI∪{i}, uJ〉 − 〈uI , uJ∪{i}〉 − 〈uI∪{i}, uJ∪{i}〉

= αI∪J − αI∪J∪{i}
= (1− α{i})β(0)

I∪J

10To simplify our notation we are being somewhat sloppy with this statement. α is an
(

n
6d

)
-dimensional

vector and and β(i) is
(

n
6d−1

)
-dimensional vector, and we mean that α, when restricted to its first

(
n

6d−1
)

coordinates can be written as a convex combination of points in SOSd(P)
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= (1− α{i})Md−1(β(0)).

Form the matrix U (0) whose columns are u
(0)
I for every I 6 d − 1, and so (U (0))>U (0) =

(1 − α{i})Md−1(β(0)). Because U is upper-triangular, and U (0) = (u
(0)
I )|I|6d−1, then U (0)

is upper triangular as well and so (U (0))>U (0) is a Cholesky decomposition of Md−1(β(0)).
By Theorem 3.14, the equivalence between the existence of a Cholesky decomposition and
positive semidefiniteness, we can conclude that Md−1(β(0)) � 0.

Next, let Pi(x) > 0 be any polynomial inequality in P ; we aim to show that
(1 − α{i})Md−1(β(0), Pi) � 0. The proof is similar to the previous argument. Because
Md(α, Pi) � 0 it admits a Cholesky decomposition U>PiUPi for some upper-triangular matrix

UPi , with columns uPiI for I ⊆ [n], |I| 6 d. Observe that by definition we have

〈uPiI , u
Pi
J 〉 =Md(α, Pi)I,J .

Define u
(0),Pi
I := (uPiI − u

Pi
I∪{i}) for all I ⊆ [n], |I| 6 d − 1. Then, for every I, J ⊆ [n] with

|I|, |J | 6 d− 1,

〈u(0),Pi
I , u

(0),Pi
J 〉 = 〈uPiI , u

Pi
J 〉 − 〈u

Pi
I∪{i}, u

Pi
J 〉 − 〈u

Pi
I , u

Pi
J∪{i}〉+ 〈uPiI∪{i}, u

Pi
J∪{i}〉,

=Md(α, Pi)I,J −Md(α, Pi)I∪{i},J −Md(α, Pi)I,J∪{i} +Md(α, Pi)I∪{i},J∪{i},

=Md(α, Pi)I,J −Md(α, Pi)I∪{i},J ,

=
(
1− α{i}

)
Md−1(β(0), Pi)I,J ,

where the third equality follows because Md(α, Pi) is symmetric and Md(α, Pi)I,J∪{i} =

Md(α, Pi)I∪{i},J =Md(α, Pi)I∪{i},J∪{i} by definition of Md(α, Pi). Form the matrix U
(0)
Pi

:=

(u
(0),Pi
I )|I|6d−1, and observe that (U

(0)
Pi

)>U
(0)
Pi

= Md−1(β(0), Pi). By the same argument as

above, U
(0)
Pi

is upper-triangular, and therefore we have given a Cholesky decomposition of

(1− α{i})Md−1(β(0), Pi) � 0, and so Md−1(β(0), Pi) � 0.
Finally, for β(1) we prove that α{i} · Md−1(β(1)) � 0. As usual, consider the Cholesky

decomposition Md(α) = U>U . Let u
(1)
I = uI∪{i}, then for every I, J ⊆ [n] with |I|, |J | 6 d,

〈u(1)
I , u

(1)
J 〉 = 〈uI∪{i}uJ∪{i}〉 = αI∪J∪{i} = α{i}β

(1)
I∪J = α{i}Md−1(β(1)).

Define U (1) := (u
(1)
I )|I|6d−1, then (U (1))>U (1) =Md−1(β(1)). Because U is upper-triangular

and the columns of U (1) are an ordered subset of the columns of U , we can conclude that
U (1) is upper-triangular. Therefore, this is the Cholesky decomposition of α{i}Md−1(β(1)),
and so α{i}Md−1(β(1)) � 0, and Md−1(β(1)) � 0. The proof that Md−1(β(1), Pi) � 0 for
every Pi(x) > 0 ∈ P is similar, and is left as an exercise.

The converse of this Lemma holds as well. We will leave the proof as an exercise, noting
that it follows by essentially running the proof of the previous lemma in reverse.
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Corollary 3.50. Let P be a set of polynomial inequalities, d > deg(P), and α ∈ R( n
6d+1).

If for every i ∈ [n] there exists β(0), β(1) ∈ SOSd(P) with β(0), β(1) ∈ {0, 1} such that αS =

λβ(1) + (1− λ)β(0) for λ ∈ [0, 1] and αS∪{i} = λβ
{1}
S , then α ∈ SOSd+1(P)

We can iterate the previous lemma to obtain a characterization of the points contained
in SOSd(P) as a convex combination of points contained in SOSt(P), for t < d. For this, it
will be useful to define the SoS hierarchy for t < deg(P)/2. The constraints of SOSt(P) are
defined as usually except that we omit any constraint of degree greater than t. That is, if
deg(Pi)/2 > t for Pi(x) > 0 ∈ P , we do not include the constraint Mt(y, Pi) � 0.

Theorem 3.51. Let P be a set of polynomial inequalities, and let 0 6 t 6 d. For any
α ∈ SOSd(P) and every S ⊆ [n] with |S| = t,

α ∈ conv ({β ∈ SOSd−t(P) : βi ∈ {0, 1},∀i ∈ S}) .

Proof. The proof is identical to the proof of Theorem 2.25, except that we replace every
application of Lemma 2.23 with Lemma 3.49.

It is interesting to note that for any α ∈ SOSd(P) and any subset of indices S ⊆ [n] with
|S| = t, the proof of Theorem 3.51 allows us to write α ∈ SOSd(P) as the following convex
combination of points in SOSd−t(P),

α =
∑

K∪T=S
K∩T=∅

λ(K,T )β(K,T ),

where λ(K,T ) ∈ R>0 and β(K,T ) ∈ SOSd−t(P) are defined as,

β
(K,T )
I =

∑
J⊆T (−1)|J |αI∪K∪J∑
J⊆T (−1)|J |αJ∪K

, and λ(K,T ) =
∑
J⊆T

(−1)|J |αJ∪K .

The converse of Theorem 3.51 holds as well, giving a characterization of the evolution of
points between levels in the SoS hierarchy. A consequence of this theorem is an alternative
construction of a pseudo-distribution over which the expectation is a pseudo-expectation for
P .

Corollary 3.52. Let P be a set of polynomial inequalities and α ∈ SOSd(P) for any d > 0.
Then α defines a degree d pseudo-distribution, over which the expectation is a degree d
pseudo-expectation for P.

Proof. Let α ∈ SOSd(P). For any S ⊆ [n] with |S| 6 d, applying Theorem 3.51 with t = |S|
gives us a set of points {βi} ∈ SOSd−t(P) such that

α =
∑
β∈{βi}

λββ,
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for some λβ > 0, such that
∑

β∈{βi} λβ = 1. From this, we can construct a distribution

µS : {0, 1}S → R is defined as follows. Let {βi �S} = {β �S: β ∈ {βi}} 11, and for every
κ ∈ {0, 1}S, define

µS(κ) :=

{
λκ if κ ∈ {βi �S},
0 otherwise.

Performing this process for every S ⊆ [n] with |S| 6 d, gives a family of distributions
µ := {µS}. Define the expectation taken over µ as

Eµ
[∏
i∈S

xi
∏
j∈T

(1− xj)
]

= µS∪T (1S,T ),

for every |S|+ |T | 6 d, and extended linearly. We prove that µ is both a pseudo-distribution
and that Eµ is a degree d pseudo-expectation for P by showing that for every I ⊆ S ⊆ [n]
with |S| 6 d,

Eµ
[∏
i∈I

xi

]
= αI .

Indeed, by the definition of the multipliers λ0, λ1 from the proof of Theorem 3.51,

Eµ
[∏
i∈I

xi

]
=
∑

I⊆J⊆S
T=S\J

∑
H⊆T

(−1)|H|αJ∪H = αI .

Therefore, all µS ∈ µ are consistent, and so µ is a pseudo-distribution. Furthermore, because
Eµ is the pseudo-expectation defined from α and α ∈ SOSd(P), Eµ is a degree d pseudo-
expectation for P .

As a consequence of Theorem 3.51, we argue that level n+ deg(P)/2 SoS is sufficient to
converge to the integer hull for all P12.

Corollary 3.53. For any set of polynomial inequalities P, SOSn+deg(P)/2(P) = hull{0,1}(P).

Proof. Applying theorem 3.51 with d = n + deg(P)/2 allows us to write each point α ∈
SOSn+deg(P)/2(P) as a convex combination of the points β ∈ SOSdeg(P)/2(P) such that for
all i ∈ [m], β{i} ∈ {0, 1}. The projection of β to the original n variables must satisfy
every constraint of P , and therefore every α ∈ SOSn+deg(P)/2(P) can be written as a convex
combination of {0, 1}-solutions to P .

11Recall that β �S is the vector β restricted to the coordinates in the set S ⊆ [n].
12We refer to the remark at the end of Section 2.2.2.3 for a discussion as to why level n + deg(P)/2 is

necessary, rather than level n, to converge to the integer hull.
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3.2.3 Sum-of-Squares as a Proof System

The previous sections have focused on SoS as a method for producing approximate solutions
to polynomial optimization problems. Suppose that we want to guarantee that the d-th level
of the SoS hierarchy applied to a set of constraints P produces solutions that are sufficiently
close to the integer hull of P . That is, we would like to show that the SoS relaxation achieves
an approximation ratio of some factor r. To do this, we will explore a dual view of SoS which
produces certificates of the approximation ratio achieved by the relaxation.

To be concrete, suppose that we are trying to minimize a polynomial P (x) over the {0, 1}-
solutions to a set of polynomial inequalities P . Because hull{0,1}(P) ⊆ SOSd(P), showing
that the relaxation achieves a r-approximation amounts to proving that

r · opt 6 min
α∈SOSd(P)

∑
I

PIαI ,

where opt = minx∈hull{0,1}(P) P (x). This is equivalent to showing that d-th level of SoS can
verify that the set of polynomial inequalities P ∪ {P (x) 6 r · opt + ε} contains no {0, 1}-
solutions, for 0 < ε� 1. In order to show this, it be convenient to take a dual view of SoS
as a proof system for refuting unsatisfiable systems of polynomial inequalities. Recall that a
point α is contained within the level d SoS spectahedron, if and only if the associated degree
2d pseudo-expectation Ẽα satisfies Ẽα[Pi(x)Q2(x)] > 0 for every Pi(x) > 0 ∈ P ∪ {1 > 0}
and Q(x) ∈ R[x] with deg(Q) 6 d− deg(Pi)/2. For simplicity of notation, denote the set of
degree at most 2d sum-of-squares polynomials as

Σ2
2d := {Q(x) ∈ R[x] : Q(x) is a sum-of-squares polynomial, deg(Q) 6 2d} ,

and let Σ2 :=
⋃
d>0 Σ2

d be the set of all sum-of-squares polynomials. Then, of course,

Ẽα
[
Q0(x) +

m∑
i=1

Pi(x)Qi(x)

]
> 0,

for Pi(x) > 0 ∈ P and every Qi(x) ∈ Σ2
2d−deg(Pi)

and Q0(x) ∈ Σ2d. It follows that the d-th
level of the SoS hierarchy can be defined as

SOSd(P) =

{
α ∈ R( n

62d) : Ẽα
[
Q0(x) +

m∑
i=1

Pi(x)Qi(x)
]
> 0, Pi(x) > 0 ∈ P , Qi ∈ Σ2

2d−deg(Pi)

}
.

(3.11)

Because we require Ẽα to be a multilinearizing map, this is equivalent to including the axioms
x2
i = xi and for every i ∈ [n] in the set of polynomials P . Define the convex cone generated

from P and the set of degree at most d sum-of-squares polynomials as

Σ2
2d(P ∪ {x2

i = xi}) :={
Q0(x) +

∑̀
i=1

Pi(x)Qi(x) : Pi(x) > 0 ∈ P ∪ {±(x2
i − xi) > 0}, Qi(x) ∈ Σ2

2d−deg(Pi)

}
.

We can define a degree 2d SoS derivation as any polynomial that lies within this cone.
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Definition 3.54 (Sum-of-Squares Derivation). A degree 2d SoS derivation of a polynomial
inequality P (x) > c0 from a set of polynomial inequalities P is a representation of P (x)− c0

as a sum-of-squares:

P (x)− c0 = Q0(x) +
∑̀
i=1

Pi(x)Qi(x),

where Pi(x) > 0 ∈ P ∪ {±(x2
i − xi) > 0}, and Q0(x) ∈ Σ2

2d and Qi(x) ∈ Σ2
d−deg(Pi)

are
sum-of-squares polynomials.

A degree 2d SoS derivation of P (x) > c0 from P is a proof that the minimum value
achieved by P (x) over all x ∈ SAd(P) is at lower bounded by c0; we will prove this fact later
in Theorem 3.61. In the case when there is no {0, 1}-solution to P , the unsatisfiability of P
over {0, 1}n can be witnessed by a SoS derivation of any negative constant from P . Because
SoS derivations involve non-negative linear combinations of products of square polynomials,
a derivation of a negative constant can only exist if P is infeasible.

Definition 3.55 (Sum-of-Squares Refutation). A degree d SoS refutation of a set of poly-
nomial inequalities P is a degree d derivation of the constant −1 from P .

Because the connection between the proof system and hierarchy perspectives of SoS is
parameterized only by the degree of the polynomials involved, the degree is the primary
measure of complexity studied for SoS. Even so, from the perspective of proof complexity,
it is also natural to study the size of a SoS derivation, defined as the sum of the sizes of the
polynomials in the derivation.

Refutations of CNF Formulas. Proof complexity is typically interested in the length of
refutations of CNF formulas. Therefore, we need a suitable encoding of CNF formulas as
a set of linear or polynomial inequalities, and the encoding as we used for SA will suffice.
Namely, we will represent a clause C(I, J) =

∨
i∈I xi∨

∨
j∈J ¬xj by the polynomial inequality∑

i∈I xi +
∑

j∈J(1− xj)− 1 > 0.
SoS is a surprisingly powerful proof system, and it admits short proofs of many of the

standard unsatisfiable formulas used to prove lower bounds. We will give several examples
of this phenomenon, the first is by showing that SoS can prove the induction principle.

Example 3.56. Consider the induction principle INDn defined by the following set of
clauses: (1) (x1); (2) (¬xi ∨ xi+1) for all i ∈ [n − 1]; (3) (¬xn). We can encode these
clauses as a set of polynomials:

(x1 − 1) > 0, (3.12)

xi(xi+1 − 1) > 0 ∀i ∈ [n− 1], (3.13)

(−xn) > 0. (3.14)

To see that this is unsatisfiable (over {0, 1}-assignments), observe that the first inequality
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forces x1 = 1, the intermediate inequalities force xi = 1 for i ∈ [n], and the final
inequality requires that xn = 0.

SoS can refute this system in degree 4 by deriving for each i ∈ [n− 1] the constraint

xi+1(1− xi) > 0, (3.15)

which can be obtained by multilinearizing the square polynomial (xi+1(1−xi))2; we claim
that SoS can perform this multilinearization, and show how to complete the refutation.
Adding together (3.13) with (3.15),

xi(xi+1 − 1) + xi+1(1− xi) = xi+1 − xi, ∀i ∈ [n− 1]. (3.16)

Finally, summing every inequality in (3.16) gives∑
i∈[n−1]

(xi+1 − xi) = xn − x1, (3.17)

which together with (3.12) and (3.14) completes the SoS refutation,

(x1 − 1) + (xn − x1) + (−xn) = −1 > 0. (3.18)

Finally, we show that (x2
i+1(1 − xi))2 can be multilinearized without increasing the

degree. Adding the SoS inequalities (xi+1−x2
i+1) > 0, and x2

i+1(xi−x2
i ) > 0 to (xi+1(1−

xi))
2 = x2

i+1 − 2xix
2
i+1 + (xixi+1)2 gives

(x2
i+1 − 2xix

2
i+1 + (xixi+1)2) + (xi+1 − x2

i+1) + (x2
i+1(xi − x2

i )

=(xi+1 − 2xix
2
i+1 + (xixi+1)2) + (x2

i+1(xi − x2
i ) = xi+1 − xix2

i+1. (3.19)

Next, to multilinearize xix
2
i+1, sum the inequalities 1

2
(xi+1−x2

i+1)(1−xi)2 > 0, 1
2
(x2

i+1−
xi+1) > 0, and 1

2
(x2

i+1 − xi+1)x2
i > 0,

1

2
(xi+1 − x2

i+1)(1− xi)2 +
1

2
(x2

i+1 − xi+1) +
1

2
(x2

i+1 − xi+1)x2
i

=
1

2

(
(xi+1 − x2

i+1)(1− 2xi + x2
i )− (xi+1 − x2

i+1)− (xi+1 − x2
i+1)x2

i

)
=xi(x

2
i+1 − xi+1). (3.20)

Adding (3.20) to (3.19) completes the linearization, (xi+1−xix2
i+1) + (xi(x

2
i+1−xi+1)) =

xi+1 − xixi+1.
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The INDn was the first formula shown to require super-constant degree Nullstellensatz
refutationsa. This example (along with the fact that SoS can simulate the refutations
produced by Nullstellensatz) shows that SoS is strictly more expressive than the Null-
stellensatz proof system.

aRecall that Nullstellensatz refutations were defined in Section 1.2

In the previous example SoS was able to make use of the axioms ±(xi − x2
i ) > 0 in

order to multilinearize polynomials without increasing the degree. This is in fact a general
phenomenon.

Claim 3.57. Any degree d polynomial P (x) of size S can be multilinearized in Sum-of-
Squares in degree 2d and size poly(S).

Proof. multilinearization can be done by repeating the following procedure for each monomial
T (x) in P (x). Denote by deg(T, xi) the degree of the variable xi in T (x), and let cT ∈ R be
the coefficient of T (x). Repeat the following until every variable in T has degree 1:

1. Let i be such that deg(T, xi) > 1, and let E and O be the set of indices of variables
with even and odd degree in T (x).

2. Add the valid SoS inequalities

cT
2

(x2
i − xi)

(
x

deg(T,xi)/2−1
i

)2( ∏
j∈E∪O\{i}

(
x

deg(T,xj)/2
j

)2(
1−

∏
j∈O

xj

)2

> 0, (3.21)

cT
2

(xi − x2
i )
(
x

deg(T,xi)/2−1
i

)2( ∏
j∈E∪O\{i}

x
deg(T,xj)/2
j

)2

> 0, (3.22)

cT
2

(xi − x2
i )
(
x

deg(T,xi)/2−1
i

)2( ∏
j∈E∪O\{i}

x
deg(T,xj)/2
i

)2(∏
j∈O

xj

)2

> 0. (3.23)

Note that if cT is negative, these still remain valid SoS inequalities because the negative
sign can be absorbed into the (x2

i − xi) term, flipping its value to (xi − x2
i ), which is

also a valid axiom of SoS. The result is to reduce the degree of xi by 1 in T (x).

3. Set T (x) to T (x) with the degree of xi reduced by 1, and repeat the process.

Each term has degree at most d, and therefore this process completes after at most d
iterations. Each iteration introduces a linear number of monomials. Therefore, P (x) can be
multilinearized in size poly(d · S) = poly(S) and degree 2d.

Example 3.58. Consider multilinearizing x3y2. The first round of the algorithm intro-
duces

1

2
(x2 − x)y2(1− x)2 +

1

2
(x− x2)y2 +

1

2
(x− x2)y2x2 = x2y2 − x3y2. (3.24)
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The following round introduces

1

2
(x2 − x)y2 +

1

2
(x− x2)y2 +

1

2
(x− x2)y2 = xy2 − x2y2, (3.25)

and then

1

2
(y2 − y)(1− x)2 +

1

2
(y − y2) +

1

2
(y − y2)x2 = xy2 − xy. (3.26)

Adding Equations 3.24, 3.25, and 3.26 to x3y2 gives the linearization xy.

We end by showing that SoS has low-degree proofs of perhaps the most famous unsatis-
fiable formula in proof complexity, the pigeonhole principle. This was the original formula
shown to be exponentially hard for Resolution [64] and bounded-depth Frege [25], and to
require linear degree for Sherali-Adams [46] and the Polynomial Calculus [121]. The pigeon-
hole principle PHPnn−1 is typically defined over a set of boolean variables xi,j for i ∈ [n] and
j ∈ [n−1] representing whether pigeon i is mapped to hole j. The clauses of PHPnn−1 enforce
that this mapping is injective,

Pigeon Axioms: xi,1 ∨ . . . ∨ xi,n−1,
∑

k∈[n−1]

xi,k − 1 > 0, ∀i ∈ [n]

Hole Axioms: ¬xi,k ∨ ¬xj,k, 1− xi,k − xj,k > 0, ∀i, j ∈ [n], k ∈ [n− 1].

Claim 3.59. The pigeonhole principle PHPnn−1 has a degree 4 SoS refutation of polynomial
size.

Proof. First, from the hole axioms, we derive the inequality 1 −
∑

i∈[n] xi,k > 0 for every

k ∈ [n− 1], which says that the k-th hole has at most one pigeon mapped to it. This can be
done by summing the following inequalities which are valid for SoS,∑

i,j∈[n],i 6=j

(
1− xi,k − xj,k

)
x2
i,k +

(
1−

∑
i∈[n]

xi,k
)2

= 1−
∑
i∈[n]

xi,j > 0,

where the equality follows by multilinearizing using Claim 3.57. Summing these inequalities
for all k ∈ [n− 1] together with the pigeon axioms∑

k∈[n−1]

(
1−

∑
i∈[n]

xi,k

)
+
∑
i∈[n]

( ∑
k∈[n−1]

xi,k − 1
)

= −1 > 0, (3.27)

which completes the refutation.

The remainder of this section is organized as follows. In Section 3.2.3.1 we will discuss the
relationship between the SoS as a proof system and as a method of generating a hierarchy of
relaxations. In particular, how a degree (2d+ deg(P)) SoS refutation of a set of polynomials
P is equivalent to a proof that SOSd(P) spectahedron is empty. In fact, we will see that
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the level d SoS relaxation of a set of polynomials P is the formal SDP dual of a degree
2d SoS derivation over P . From this will follow a proof of the soundness and completeness
of SoS as a proof system. Furthermore, by the fact that level n + deg(P)/2 is sufficient
for SoS to derive the integer hull of any set of polynomial inequalities P , it will follow
that any set of polynomial inequalities P that are unsatisfiable over {0, 1}n have a degree
at most 2n + deg(P) refutation in SoS. The weaker result, that degree 2n + 2 deg(P) is
sufficient for any SoS refutation can be argued simply by showing that any SA proof can be
converted into a proof in SoS with at most twice the degree. In Section 3.2.3.2 we will prove
this conversion and discuss the relationship between SoS, SA and other prominent algebraic
proof systems. Finally, in Section 3.2.3.3, we discuss under what conditions SoS proofs can
be found efficiently.

3.2.3.1 Soundness and Completeness

SoS is a proof system in the traditional sense, meaning that the proofs that it produces are
polynomial-time verifiable, and that it is both sound and refutationally complete. We will
argue that the latter holds by showing that the existence of a pseudo-expectation implies the
non-existence of any SoS refutation. Furthermore, SOS is derivationally complete as well.
This is a consequence of the duality between the optimization and proof complexity views
of SoS.

Theorem 3.60 (Soundness and Refutational Completeness of SoS). Let P be a set of poly-
nomial inequalities. There exists a degree 2d SoS refutation of P if and only if the following
equivalent conditions hold:

1. The level d SoS spectahedron SOSd(P) is empty.

2. There is no degree 2d pseudo-expectation for P.

Proof. We will follow the argument presented in [23]. Suppose that there is a degree 2d SoS
refutation Π of P ,

Q0(x) +
∑̀
i=1

Pi(x)Qi(x) = −1.

As well, suppose that there exists a degree 2d pseudo-expectation Ẽ for P . Applying Ẽ to
Π, we have

Ẽ[−1] = Ẽ

[
Q0(x) +

∑̀
i=1

Pi(x)Qi(x)

]

= Ẽ [Q0(x)] +
∑̀
i=1

Ẽ [Qi(x)Pi(x)] > 0,

which follows by linearity of Ẽ. On the other hand,

Ẽ[−1] = −1 · Ẽ[1] = −1.
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For the other direction, suppose that there is no degree 2d SoS refutation of P , and so
the convex cone Σ2

d(P ∪ {x2
i = xi}) does not contain the constant −1, where we interpret

each polynomial P (x) as its coefficient vector ~P . By the Hyperplane Separation Theorem

(Theorem 3.28), there exists a vector ~E such that for every P (x) ∈ Σ2
d(P ∪ {x2

i = xi}),

〈~P , ~E〉 > 0, and 〈−1, ~E〉 6 0,

where 1 is the all 1s vector. It remains to prove that 〈−1, ~E〉 6= 0 and that 〈1, ~E〉 = 1.

Suppose that 〈−1, ~E〉 = 0, that is, −1 lies on the boundary of Σ2
d(P ∪ {x2

i = xi}). We will
show that this implies that −1 lies in the interior of this cone as well by arguing that it is a
conic combination of the elements of Σ2

d(P ∪ {x2
i = xi}).

Because Σ2
d(P ∪ {x2

i = xi}) is a convex cone, there exists a polynomial P̂ (x) ∈ Σ2
d(P ∪

{x2
i = xi}) such that

λP̂ (x)− 1 ∈ Σ2
d(P ∪ {x2

i = xi})

for every scalar λ > 0. Furthermore, because of the axioms ±(xi−x2
i ) > 0, Σ2

d(P∪{x2
i = xi})

contains every inequality of the form
∏

i∈I xi 6 1. It follows that, for every polynomial
P (x) ∈ Σ2

d(P ∪ {x2
i = xi}), we have a polynomial of the form P (x) 6 r for some r ∈ R.

In particular there exists an r′ ∈ R such that r′ − P̂ (x) > 0 is contained within this cone.
Combining this with λP̂ (x)− 1 > 0, we have

(λP̂ (x)− 1) + λ(r′ − P̂ (x)) = −1 + λr′.

Setting λ < 1/r′ implies that −1 + λr′ < 0, and so −1 is a conic combination of elements of

Σ2
d(P ∪ {x2

i = xi}), contradicting the assumption that 〈−1, ~E〉 = 0.

Therefore, we can conclude that 〈1, ~E〉 > 0. Furthermore, by scaling ~E, we can assume

that 〈1, ~E〉 = 1. If we interpret ~E as a linear function Ẽ : R[x]→ R, where Ẽ[P (x)] = 〈 ~E, ~P 〉
for every P (x) ∈ R[x] with deg(P ) 6 2d, then Ẽ satisfies the definition of a degree 2d pseudo-
expectation for P .

Like SA, SoS satisfies derivational completeness as well. Any polynomial inequality that
is logically implied by P has a SoS derivation. This is a consequence of the duality between
SoS as a hierarchy of SDP relaxations and as a proof system. This surprising duality is the
cornerstone reason why one is able to leverage analysis about SoS proofs in order to derive
algorithms and impossibility results about the corresponding hierarchy of SDPs. Formally,
this duality says that a polynomial inequality is valid for the degree d SoS relaxation (i.e.
that is satisfies every Ẽ ∈ Ed(P)) if and only if it has a degree d SoS derivation from P . This
is summarized in the following theorem.

Theorem 3.61 (Derivational Completeness and Strong Duality for SoS). Let P = {P1(x) >
0, . . . , Pm(x) > 0} be a set of polynomial inequalities. For any P (x) ∈ R[x] with deg(P ) 6 d,

min
{
Ẽ[P (x)] : Ẽ ∈ Ed(P)

}
= max {c0 : ∃ a degree d SoS derivation of P (x) > c0 from P} .
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It will be convenient to prove strong duality for a generalization of SoS as a proof system
over the real numbers, which we will discuss in Section 3.3.1. Therefore we will postpone
the proof of Theorem 3.61 until Section 3.3.1.1, where we show that these are indeed formal
SDP duals of one-another.

An immediate consequence of Theorems 3.61 along with Corollary 3.53 is an upper bound
on the degree required in any SoS derivation.

Corollary 3.62. If P (α) > c0 holds for every α ∈ P ∩ {0, 1}n, then P (x) > c0 has a degree
2n+ deg(P) SoS derivation from P.

3.2.3.2 Comparison With Sherali-Adams and Algebraic Proof Systems

Having argued that SoS is a formal proof system, it is natural to ask how SoS compares
to other proof systems. That is, we are interested in how expressive low-degree (and also
low-size) SoS refutations are compared to those of other proof systems.

To begin, it is straightforward to see that degree 2d SoS can p-simulate13 degree d SA.

Lemma 3.63 (SoS p-simulates Sherali-Adams). Let P be a set of polynomial inequalities. If
P (x) > c0 has a degree d and size S Sherali-Adams derivation from P, then it has a degree
2d and size poly(S) derivation in Sum-of-Squares.

Proof. To prove Lemma 3.63, it is enough to show that any product of a non-negative
d − deg(Pi)-junta with an inequality Pi(x) > 0 ∈ P ∪ {0 > 1}, Pi(x) · JS,T (x) > 0, has a
degree 2d and size poly(n · d) Sum-of-Squares proof. This follows because

Pi(x) · (JS,T (x))2 > 0

has degree at most 2d, and by Claim 3.57 can be multilinearized without increasing the
degree.

Therefore, SoS captures the reasoning power of SA. In fact, SoS proofs are strictly more
expressive than the proofs produced by SA; there exists unsatisfiable systems of polynomial
inequalities which have constant-degree refutations in SoS, but require degree Ω(n) to
refute in SA. The standard example is the pigeonhole principle PHPnn−1, the propositional
encoding that there is no injective map from [n] to [n − 1]. Dantchev et al. [46] showed
that any SA refutation of PHPnn−1 must have degree at least n − 1. On the other hand, we
argued in Claim 3.59 that SoS can prove PHPnn−1 in constant degree and small size.

Nullstellensatz: In Example 3.56 we saw a low-degree SoS proof of the induction principle
INDn, a family of formulas that are known to require degree Θ(log n) to refute in Nullstel-
lensatz [36]. Buresh et al. [34] observed that a stronger separation can be obtained by
looking at the pebbling contradictions, an unsatisfiable formula based on the black pebbling
game. They showed that these formulas require degree Ω(n/ log n). On the other hand,

13Recall that p-simulation was defined in Definition 1.4.
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these formulas have small degree and size refutations in SA, and therefore in SoS as well.
Furthermore, it is not difficult to see that degree d SA p-simulates degree d Nullstellensatz;
any derivation of degree d and size S in Nullstellensatz can be transformed into a degree
O(d) and size poly(S) derivation in SA. Taken together, this shows that Nullstellensatz is a
strictly weaker system than SA.

Polynomial Calculus: Recall that the Polynomial Calculus is a dynamic (rule-based)
version of Nullstellensatz14. Razborov [121] proved that the pigeonhole principle requires
linear degree to refute PC. Together with Claim 3.59, this already separates PC from SoS
in terms of degree. Furthermore, it is well known that there exists families of unsatisfiable
formula that require degree Ω(n) and size 2Ω(n) for PC to refute, but which have constant-
degree and polynomial-size SA (and therefore SoS) refutations; a simple example is the
formula,

∑n
i=1 xi = n + 1 [71]. Because of this, along with the fact that PC is dynamic,

it was thought that SoS and PC were incomparable. In a surprising result, Berkholz [30]
showed that SoS can in fact simulate PC.

Theorem 3.64 (Berkholz [30]). For any unsatisfiable set of linear inequalities P, if P has
a degree d and size S refutation in PC, then it has a refutation of degree 2d and size poly(S)
in SoS.

This means that the cancellations of terms allowed between inferences in a PC refutation
can be simulated in a one-shot SoS refutation. In the same work, Berkholz exhibits a
formula that admits constant degree and polynomial size PC refutations, but for which any
SA refutation requires proofs of size 2Ω(n/ logn) and degree Ω(n), showing that PC and SA are
incomparable proof systems. This completes the picture of the relationships between these
proof systems, which can be seen in Figure 3.5. For a more comprehensive discussion of the
comparisons between the algebraic proof systems discussed so far, we refer the reader to the
lovely exposition of Berkholz [30].

3.2.3.3 Automatizability

It is a common misconception that low degree SoS derivations can always be constructed
efficiently, to high accuracy. Formally the claim is that if there exists a degree d derivation
of P (x) from a polynomial-size set inequalities P , then there exists a deterministic algorithm
running in time nO(d) that will construct such a derivation up to some small additive error.
That is, it is claimed that SoS is degree-automatizable. The reasoning behind this is as
follows: As we will see in Section 3.3.1.1, finding a degree d SoS derivation can be phrased as
an SDP of size nO(d). If the coefficients of the polynomials in P and P (x) have polynomial
bit-length, then it is claimed that the ellipsoid method or interior point methods will solve
this SDP in time nO(d) and recover a valid derivation, up to some small additive error, if one
exists.

Unfortunately this overlooks some of the subtleties of the ellipsoid method. Recall that
the run-time of the ellipsoid method is polynomial so long as the spectahedron S is contained

14The Polynomial Calculus was defined in Section 1.2.
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Nullstellensatz

Sherali-Adams Polynomial Calculus

Sum-of-Squares

Figure 3.5: The relationship between SoS, SA, PC, Nullstellensatz. An arrow P → Q
indicates that a proof in proof system P of size S and degree d can be converted into a proof
of size poly(S) and degree O(d), and that the converse does not hold. A dashed line between
P and Q indicates that these proof systems are incomparable.

within some ball of radius R, where R is at most exponential in the size of the SDP. In
other words, this constraint says that in order to ensure that a derivation can be found
in polynomial time, it is not enough for such a derivation to exist, we need to guarantee
that a derivation exists with polynomial bit-length. This is not always true; although both
P (x) and P have small coefficients, this does not guarantee any bound on the coefficients
of the polynomials in a SoS derivation of P (x) from P , even for low-degree SoS derivations.
O’Donnell [106] showed this in a strong sense by exhibiting a set of degree 2 polynomials
P and P (x) with constant coefficients such that any degree 2 derivation of P (x) from P
requires coefficients with exponential bit-length, even allowing for an additive error term
in the conclusion. O’Donnell’s proof holds even when the set of solutions to this SDP is
explicitly bounded or Archimedean, a condition that implies that the SoS SDP has no duality
gap15. Therefore, there exist well-behaved systems of polynomials which require exponential
time for the ellipsoid method to even write down an approximate SoS derivation; the same
issues plague interior point methods as well.

While O’Donnell’s example does not admit a small degree 2 derivation, a degree 4 deriva-
tion with very small coefficients does exist. Therefore, this does not rule out the possibility
that a slight increase in the degree could be sufficient to guarantee a derivation with small co-
efficients. Raghavendra and Weitz [117] extended O’Donnell’s result, giving a set of quadratic
polynomials that admit a degree 2 SoS derivation, but for which there is no derivation of
degree o(

√
n) that has coefficients with polynomial bit-length. Like O’Donnell’s example,

their family of polynomials is Archimedean.
Along with their negative example, Raghavendra and Weitz [117] provide a set of sufficient

conditions for guaranteeing that a set of polynomials P admits a degree d SoS derivation
with small bit-length of a polynomial P (x). Luckily, this set of conditions are satisfied by
many of the applications of SoS, including, but not limited to MaxCSP, MaxClique, and

15The Archimedean condition and it’s relationship with the duality of SoS will be discussed in Section
3.3.1.1.
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BalancedSeparator. This extends an earlier result by O’Donnell [106], which shows that SoS
derivations of polynomials have polynomial bit-length if the set of polynomials P contains
only the Boolean axioms ±(x2

i − 1) > 0.
It should be stressed that degree automatizability does not imply polynomial automati-

zability16 in the traditional sense. Little is known about whether SoS proofs can be found
efficiently in the size of the shortest proof. Indeed, the only known result is the trivial
(m · n)O(n)-algorithm obtained by running the degree 2n SoS SDP.

Open Problem 3.65. Prove or disprove that SoS is polynomially (or even sub-
exponentially) automatizable.

In the case when the bit-length of a derivation is guaranteed to be bounded (for example,
derivations from a set P that satisfies the conditions of Raghavendra and Weitz [117]), the
(m · n)O(n) size upper bound can be slightly improved to (m · n)O(

√
n logSm+deg(P)) by a size-

degree trade-off for SoS. Define the monomial size Sm of a SoS proof to be the number of
monomials in the proof expanded as a sum of monomials before any cancellations occur.

Lemma 3.66 (Size-Degree Trade-off for Sum-of-Squares [10]). Any SoS derivation of mono-
mial size Sm implies a derivation of degree O(

√
n logSm + deg(P).

3.3 Generalizations of Sum-of-Squares

3.3.1 Sum-of-Squares over R
So far we have only considered SoS as a proof system over the Boolean cube, enforced by
including the axioms x2

i = xi. It is natural (and often advantageous) to define SoS over
other finite domains. This can be achieved by replacing the Boolean axioms x2

i = xi with
axioms corresponding to this other domain (the most common being {±1}n, obtained by
including x2

i = 1). However, we could consider a more general system where we omit these
domain-restricting axioms altogether and instead define SoS as a proof system over the
reals. That is, as a proof system for certifying that a family of polynomial inequalities share
a common solution in R. As we will see, this more general definition of SoS is closely related
to the questions of Hilbert and Minkowski about the non-negativity of polynomials and their
representation as a sum-of-squares polynomial that we discussed in Section 3.1.4.

A SoS derivation over R of a polynomial inequality P (x) > c0 from a set of polynomial
inequalities P is a proof that P (x) − c0 is non-negative over every solution α ∈ R that
satisfies P . That is, it is a degree SoS derivation where we omit the axioms x2

i = xi; it is a
derivation of the form

P (x)− c0 = Q0(x) +
m∑
i=1

Pi(x)Qi(x),

16Recall that in Definition 1.5, polynomial automatizability is terms of the size of the proof, rather than
the degree.
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for Pi(x) > 0 ∈ P and Q0(x), Qi(x) ∈ Σ2. We remark that over R, it is no longer the case
that linear degree is sufficient to refute any unsatsfiable system of polynomials. Grigoriev
and Vorobjov [59] showed that the system of quadratic polynomials, known as the “telescopic
system”

1− x0x1 = 0, x2
1 − x2 = 0, x2

2 − x3 = 0, . . . , x2
n−1 − xn = 0, xn = 0 (3.28)

requires degree 2n−1 to refute in SoS over R.
Analogous to the Boolean case, we can define a pseudo-expectation for P as any linear

operator that is non-negative over polynomials generated from sum-of-squares polynomials
and the polynomials in P . The only difference is that in this setting we no longer enforce
that x2

i = xi. Thus a pseudo-expectation over R for P is defined by relaxing the restriction
that Ẽ is a multilinearizing map, to only requiring that it is a linear map in Definition 3.44.
Denote by ERd (P) the set of all degree d pseudo-expectations for P over R.

The degree 2d pseudo-expectations over R can be re-interpreted as points belonging to
an nd + 1 spectahedron. Analogous to the Boolean case, the variables of this spectahedron
represent terms of degree at most d in the original variables x. The difference is that we are
no longer associating xci = xi, and therefore, we must have a variable yI for every multi-set
I ⊆ [n] with |I| 6 d. This spectahedron is defined by (nd+1)×(nd+1)-dimensional moment
matrices, indexed by multi-sets |I| 6 d, where

(MR
d (y))|I|,|J |6d := yI∪J ,

MR
d (y, Pi)|I|,|J |6d−deg(Pi)/2 :=

∑
|K|6deg(Pi)

PKyI∪J∪K ,

where I ∪ J is now multi-set union. Optimizing a polynomial P (x) over P can be ap-

proximated by solving the SDP with objective function
∑
|K|6deg(P )

~PKyK , and constraints

SOSR
d (P) defined by this spectahedron.

Remark 3.67. Using this general framework, we can define SoS over other domains by
imposing restrictions on this general form. The most common domain, besides the {0, 1},
is to work over {±1}. This can be done by including the axioms ±(x2

i > 1) in the set
of inequalities. The resulting moment matrix is of dimension

(
n
6d

)
×
(
n
6d

)
, where mul-

tilinearization is done by assocaiting x2
i with the constant 1, and so the (I, J)-th entry is yI4J .

3.3.1.1 Duality, Completeness, and Convergence

When discussing SoS over the Boolean cube it was fairly straightforward to show complete-
ness for both the refutational and SDP perspectives of SoS. In particular, we showed that
the SoS SDP is guaranteed to converge after taking a high enough lift. Unfortunately, for
this more general system, completeness is not known to hold in general. Fortunately, under
mild assumptions on the set P of initial inequalities, completeness can be made to hold.
The proof in this general case is much more involved, and we will cover it in length over the
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following two sub-sections. First, we show that SoS as a proof system and SoS as a hierarchy
of SDPs are in fact formal SDP dual of one another. Furthermore, under an assumption
on the structure of P , strong duality holds. Combined with the fact that the SoS hierarchy
over the Boolean cube is guaranteed converges to the integer hull, this immediately implies
the derivational completeness of SoS over the Boolean cube. To prove convergence and com-
pleteness for SoS over R we will instead rely on a theorem from semialgebraic geometry, a
variant of the Positivstellensatz discovered by Putinar [114].

Weak Duality The first step in our proof of completeness is to show duality between
the proof system and optimization views of SoS. Throughout this sub-section, we will be
working with SoS over R. Therefore, unless stated otherwise, all sets of indices S ⊆ [n]
should be assumed to be multi-sets. First, we show that the task of coming up with a degree
2d SoS refutation of a set of polynomials P amounts to solving a corresponding SDP, and
furthermore that this SDP is the formal dual of the level d SoS hierarchy applied to P . This
immediately establishes a weak duality between SoS proofs and the SDPs generated by the
SoS hierarchy.

Theorem 3.68. For a polynomial P (x) and a set of polynomial inequalities P = {P1(x) >
0, . . . , Pm(x) > 0}, the following programs are a formal SDP primal/dual pair:

Dual: Primal:

miny
∑

I PIyI maxλ
y∅ = 1 P (x)− λ =

∑m
i=1Qi(x)Pi(x)

MR
d (y, Pi) � 0 ∀i ∈ [m] Pi(x) > 0 ∈ P

MR
d (y) � 0 Qi(x) ∈ Σ2

d−deg(Pi)

Proof. To begin, we will rewrite the d-th level of the SoS hierarchy in the standard form of
a dual SDP by rephrasing the constraints as a single matrix inequality. First, replace every
constant term c occurring in an entry ofMR

d (y) andMd(y, Pi) by c · y∅. For example, if one
of the entries in the matrix MR

d (y, Pi) is yJ + yI + 5, we replace it by yJ + yI + 5 · y∅. This
is an equivalent reformulation, because we have enforced that y∅ = 1. As well, we can write
y∅ = 1 as a matrix inequality. Define the 2× 2 matrix M∅ as

M∅ :=

(
−1 0
0 1

)
+ y∅

(
1 0
0 −1

)
. (3.29)

Constraining y∅ = 1 is equivalent to requiring that M∅ � 0, because the diagonal entries of
any PSD matrix are non-negative.

The standard form of a dual-SDP contains only a single constraint. Therefore, create the
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following block diagonal matrix F :

F :=


M∅ 0 0 0 0
0 MR

d (y) 0 0 0
0 0 MR

d (y, P1) 0 0

0 0 0
. . . 0

0 0 0 0 MR
d (y, Pm)


Observe that F � 0 if and only if each of the diagonal blocks are symmetric PSD. Therefore,
F � 0 is equivalent to enforcing the constraints of SOSR

d (P). We will now decompose the
matrix F as

F = Fc +
∑
|I|62d

yIFI ,

where the yI are variables as usual and the FI are matrices whose entries are all constant.
Here, Fc accounts for any additive constants in F . Note that Fc is only non-zero within the
submatrix of F corresponding to M∅ because we replaced constants c with c · y∅ in MR

d (y)
and MR

d (y, Pi). With this, we can restate the SoS SDP in the standard form of an SDP
dual,

min
y

∑
I

~PIyI ,

s.t. Fc +
∑
|I|62d

yIFI � 0.

Taking the dual of this SDP, we obtain the primal

max
Z

− Fc • Z

s.t. FI • Z = ~PI ∀|I| 6 2d (3.30)

Z � 0.

It remains to show that we can rewrite this SDP as a degree d SoS refutation. First, observe
that because F is a block diagonal matrix, so are the FI . Because of this, we can assume
w.l.o.g. that Z is a block diagonal matrix of the same form. Break Z, FI and Fc into
sub-matrices, one corresponding to each block. Denote these sub-matrices Z−1, . . . , Zm,

F
(−1)
I , . . . , Z

(m)
I , and F

(−1)
c , . . . , F

(m)
c .

FI :=


F

(−1)
I 0 0 0

0 F
(0)
I 0 0

0 0
. . . 0

0 0 0 F
(m)
I

 Z :=


Z−1 0 0 0

0 Z0 0 0

0 0
. . . 0

0 0 0 Zm


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Using this block decomposition, we can write (3.30) equivalently as

max
Z−1,...,Zm

−
m∑

i=−1

F (i)
c

• Zi,

s.t. F
(−1)
I

• Z−1 +
m∑
i=0

F
(i)
I

• Zi = ~PI ∀|I| 6 2d, (3.31)

Zi � 0 ∀i ∈ {−1, 0, . . . ,m}.

Because F = Fc +
∑
|I|62d yI · FI , we have M(y, Pi) =

∑
|J |62d yJ · F

(i)
J . Recall that by

definition M(y, Pi)|S|,|T |6d−deg(Pi)/2 =
∑
|K|6deg(Pi)

~PK · yS∪T∪K . For ease of notation, we will

denote by M(y, P0) the matrix M(y) where P0(x) := 1. Therefore,

F
(i)
I

• Zi =
∑

|S|,|T |6d−deg(Pi)/2, |K|6deg(Pi)
S∪T∪K=I

(~Pi)K(Zi)S,T , (3.32)

for all i 6= −1. For i = −1, because y∅ is the only variable occurring in M∅, the matrices
F

(−1)
I = 0 for all I 6= ∅. Furthermore, by the definition of M∅ (3.29),

F
(−1)
∅ =

(
1 0
0 −1

)
and so F

(−1)
∅ • Z−1 =

(
1 0
0 −1

)(
Z{1,1} Z{2,1}
Z{1,2} Z{2,2}

)
= Z{1,1} − Z{2,2} (3.33)

where Z{i,j} is the {i, j}-th entry of the matrix Z.

Next, we rephrase the objective function −
∑m

i=−1 F
(i)
c •Zi. Recall that Fc is zero outside

of the block F
(−1)
c corresponding to the matrix M∅. Combining this with (3.33) we have

−
m∑

i=−1

F (i)
c

• Zi = F (−1)
c

• Z−1 = −
(
−Z{1,1} + Z{2,2}

)
, (3.34)

Putting together (3.32), (3.33), and (3.34), we can rewrite the primal SDP (3.31) as

max
Z0,...,Zm,Z{1,1},Z{2,2}

Z{1,1} − Z{2,2}

s.t. Z{1,1} − Z{2,2} +
m∑
i=0

(
(~Pi)∅(Zi)∅

)
= ~P∅ (3.35)

m∑
i=0

( ∑
|S|,|T |6d−deg(Pi)/2, |K|6deg(Pi)

S∪T∪K=I

(~Pi)K(Zi)S,T

)
= ~PI ∀ 0 < |I| 6 2d

Zi � 0 ∀ i ∈ {0, . . . ,m}
Z{1,1}, Z{2,2} > 0.

Because the only constraints involving Z{1,1}, Z{2,2} are the ~P∅ constraint and the non-
negativity constraints, we can replace Z{1,1} − Z{2,2} by a single unconstrained variable λ.
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Letting e be the unit vector where e∅ = 1 and eI = 0 for all I 6= ∅ allows us to write (3.35)
as

max
Z0,...,Zm,λ

λ

s.t. ~PI − λeI =
m∑
i=0

( ∑
|S|,|T |6d−deg(Pi)/2,|K|6deg(Pi)

I∪J∪K=S

(~Pi)K(Zi)S,T

)
∀|I| 6 2d (3.36)

Zi � 0 ∀i ∈ {0, . . . ,m}

For every I ⊆ [n] with |I| 6 2d, multiply both sides of the corresponding constraint in (3.36)
by
∏

i∈I xi. This results in

~PI
∏
i∈I

xi − λeI
∏
i∈I

xi =
m∑
i=0

( ∑
|S|,|T |6d−deg(Pi)/2,|K|6deg(Pi)

S∪T∪K=I

(~Pi)K(Zi)S,T
∏
i∈I

xi

)
, (3.37)

for all |I| 6 2d. Recall that eIλ = 0 unless I = ∅. Sum the equations in (3.37), and note
that the constraint that results is equivalent to the set of equations in (3.36) because the
variables occurring in the equation for each I ⊆ [n] are distinct.

P (x)− λ =
m∑
i=0

( ∑
|S|,|T |6d−deg(Pi)/2,
|K|6deg(Pi)

(~Pi)K(Zi)S,T
∏

i∈S∪T∪K

xi

)
,

=
m∑
i=0

( ∑
|K|6deg(Pi)

(~Pi)K
∏
i∈K

xi

)( ∑
|S|,|T |6d−deg(Pi)/2

(Zi)S,T
∏

j∈S∪T

xj

)
,

=
m∑
i=0

Pi(x)

( ∑
|S|,|T |6d−deg(~Pi)/2

(Zi)S,T
∏

j∈S∪T

xj

)
.

Let vk(x) be the degree at most k monomial vector, where vk(x)I =
∏

i∈I xi for all |I| 6 d,
and denote d− deg(Pi)/2 by di. Then, this becomes

P (x)− λ =
m∑
i=0

~Pi(x)vdi(x)>Zivdi(x).

Because Zi � 0 it admits a Cholesky decomposition, Zi = U>i Ui, giving

P (x)− λ =
m∑
i=0

Pi(x)vdi(x)>U>i Uivdi(x) =
m∑
i=1

Pi(x)(Uivdi(x))2.

Define the polynomial Qi(x) := (Uivdi(x))i, then,

P (x)− λ =
m∑
i=0

Pi(x)vdi(x)>U>i Uivdi(x),

100



= Q2(x) +
m∑
i=1

Pi(x)Q2
i (x),

where the final line follows because we defined P0(x) = 1. Note that deg(Q) 6 d and
deg(Qi) 6 d− deg(Pi). This completes the proof that degree 2d SoS derivations over P are
the dual objects to SOSR

d (P).

The same argument can be used to show that degree 2d SoS derivations over {0, 1} and
SOSd(P) are dual objects. It follows immediately that weak duality holds for SOS.

Corollary 3.69 (Weak Duality for SOS). Let P be a set of polynomial inequalities. For any
P (x) ∈ R[x],

min
{
Ẽ[P (x)] : Ẽ ∈ ERd (P)

}
> max

{
c0 : ∃ a degree d SoSR derivation of P (x) > c0 from P

}
.

Strong Duality Recall that strong duality for SDPs holds only if certain robustness condi-
tions, (Theorem 3.26), are satisfied by the SDP. Unfortunately, SoS is in a similar situation.
Strong duality and completeness holds only when certain compactness conditions are satis-
fied. Luckily these conditions hold vacuously for SoS over the Boolean cube. The standard
criteria for ensuring that strong duality holds for SoS is that the initial set of polynomials
P (including any axioms such as x2

i = xi) as is Archimedean.

Assumption 3.70 (Archimedean). The set of polynomials P contains a constraint of the
form

r2 −
n∑
i=1

x2
i > 0.

In words, this condition requires that the set of feasible solutions {α ∈ Rn : Pi(α) >
0, ∀Pi(x) > 0 ∈ P} is contained within a Euclidean ball of radius r. It is not hard to
see that this criteria is equivalent to enforcing that the set of feasible solutions is compact.
Observe that SoS over both {0, 1} and {−1, 1} trivially satisfies the Archimedean condition.
Josz and Henrion [73] proved that strong duality holds for SoS under the Archimedean
assumption. For completeness, we repeat their proof here.

Theorem 3.71 (Strong Duality for SoS over R). Let P = {P1(x) > 0, . . . , Pm(x) > 0} be
an Archimedean set of polynomial inequalities. Then, for any P (x) ∈ R[x],

min
{
Ẽ[P (x)]|Ẽ ∈ ER2d(P)

}
= max

{
c0| ∃ a degree 2d SoSR derivation of P (x) > c0 from P

}
.

Proof. For simplicity we will assume that SOSR
d (P) is non-empty, as Theorem 3.60 handles

the case when it is empty over SoS over the Boolean cube. We refer the reader to [73] which
handles the case when SOSR

d (P) = ∅. Corollary 3.27 states that if the set of optimal solutions
to SOSR

d (P) is non-empty and bounded then strong duality holds. By the Archimedean
assumption, the solutions to P are contained within a Euclidean ball of radius r2. We claim
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that this implies that SOSR
d (P) is contained within a Euclidean ball of radius R = rO(d).

Assuming that this claim holds, because SOSR
d (P) is bounded and the objective function∑

|I|62d
~PIyI is linear, the set of optimal solutions to SOSd(P) is non-empty and bounded.

By Corollary 3.27, strong duality holds for SoS.
To prove the claim, we show that every solution α ∈ SOSd(P) satisfies ‖(αI)|I|6d‖2 6 R,

a Euclidean ball of radius R. Observe that

‖(yI)|I|62d‖2 =

√∑
|I|62d

yI 6
∑
|I|62d

yI = Tr[Md(y)].

Therefore, it is sufficient to bound Tr[Md(y)], noting that becauseMd(y) � 0, the diagonal
entries of Md(y) are non-negative by Claim3.5. Let ` 6 d and let A(x) := r2 −

∑n
i=1 x

2
i >

0 ∈ P be the constraint guaranteed by the Archimedean assumption. Then,

M`(y, A) =

( ∑
|K|62

( ~A)K · yI∪J∪K

)
|I|,|J |6`−1

=

(
r2 · yI∪J −

∑
i∈[n]

yI∪J∪{i,i}

)
|I|,|J |6`−1

.

Now, observe that

Tr[M`−1(y, A)] =
∑
|I|6`−1

(
r2 · yI∪I −

∑
i∈[n]

yI∪I∪{i,i}

)
,

= r2
∑
|I|6`−1

yI∪I −
∑

|I|6`−1,|J |=1

yI∪I∪J∪J ,

= r2Tr [M`−1(y)] + y∅ −
(∑
|I|6`

yI∪I + y∅

)
,

= r2Tr [M`−1(y)] + 1− Tr [M`(y)] ,

where the final line follows because we enforce y∅ = 1. Rearranging the above equation, we
have

Tr [M`(y)] = r2Tr [M`−1(y)] + 1− Tr [M`−1(y, A)] ,

6 r2Tr [M`−1(y)] + 1.

We can express Tr[M`(y)] in terms of R alone by unrolling this expression,

Tr[M1(y)] 6 r2 + 1, Tr[M2(y)] 6 r4 + r2 + 1, . . . ,Tr[Md(y)] 6
d∑
i=0

r2d.

Therefore, letting R :=
∑d

i=0 r
2d, we have ‖(yI)|I|62d‖2 6 R.
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Completeness and Convergence This strong duality theorem is already enough to com-
plete the proof of derivational and refutational completeness for SoS over the Boolean cube
(Theorem 3.61). Indeed, observe that the Archimedean condition is already satisfied by the
axioms x2

i = xi. For SoS over R, completeness as and convergence follow from a special case
of the Positivstellensatz, a fundamental theorem in semi-algebraic geometry. This special
case was discovered by Putinar [114].

Theorem 3.72 (Putinar’s Theorem). Let P be a set of polynomial inequalities that satisfy
the Archimedean condition and P (x) ∈ R[x]. Then P (α) > 0 for all α ∈ P 17 if and only if
there exists there exists sum-of-squares polynomials Q0(x), Q1(x), . . . , Qm(x) ∈ Σ2 such that

P (x) = Q0(x) +
m∑
i=1

Pi(x)Qi(x). (3.38)

Putinar’s Theorem establishes refutational completeness for SoS over R. To see this,
observe that if P is unsatisfiable, then any polynomial, including −1, is positive over P .
Putinar’s Theorem implies that −1 can be written as

−1 = Q0(x) +
m∑
i=1

Pi(x)Qi(x),

for sum-of-squares polynomials Q0(x), . . . , Qm(x) ∈ Σ2.
As observed by Lasserre [95], Putinar’s Theorem immediately implies the convergence of

the SoS SDP hierarchy to the true optimal solution.

Corollary 3.73 (Convergence of SoS over R). Let P = {P1(x) > 0, . . . , Pm(x) > 0 be an
Archimedean set of polynomial inequalities and let P (x) ∈ R[x] be any polynomial. Then

lim
d→∞
SDP(SOSR

d (P), P ) = min
α∈P

P (α).

Proof. Let α∗ ∈ P be such that P (α∗) := minα∈P P (α). Then Pi(α
∗) > 0 for all P (x) > 0 ∈

P . Let ε > 0, and define the polynomial P (x)−P (α∗)+ε. Observe that P (α)−P (α∗)+ε > 0
for every α ∈ P . By Putinar’s Theorem there exists an integer d > 0 and sum-of-squares
polynomials Q0(x), . . . , Qm(x) ∈ Σ2

2d−deg(Pi)
such that

P (x)− P (α∗) + ε = Q0(x) +
m∑
i=1

Pi(x)Qi(x).

In particular this implies that P (α∗)− ε is a feasible solution to the SoS primal SDP

maxλ

17Recall that we are abusing notation and associating P with the set of polynomial inequalities it contains,
as well as with the set of points α ∈ Rn for which Pi(α) > 0 for every polynomial inequality Pi(x) > 0 ∈ P.
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P (x)− λ =
m∑
i=1

Qi(x)Pi(x) s.t. Pi(x) > 0 ∈ P , Qi(x) ∈ Σ2
2d−deg(Pi)

.

Denote by αprim the optimal solution to this SDP; we have that αprim > P (α∗)− ε. Because
P is Archimedean, strong duality holds, and so SDP(SOSR

d (P), P ) = αprim > P (α∗) − ε is
also a feasible solution to SOSd(P). Taking ε→ 0 completes the proof.

3.3.2 Positivstellensatz

3.3.2.1 Positivstellensatz Refutations

When the set of polynomial inequalities is non-Archimedean it is known that Putinar’s
Theorem no longer holds. Furthermore, Scheiderer [128] shows that there are fundamental
obstructions to having such sum-of-squares representations in the non-Archimedean case.
Although we are typically only concerned with sets where the Archimedean assumption is
trivially satisfied (such as the Boolean cube or {±1}n) this is still an unfortunate circum-
stance, and one might wonder how much the structure of these refutations must be general-
ized before we are able to have completeness for any set of polynomials that are unsatisfiable
over R.

The Positivstellensatz, a generalization of Hilbert’s Nullstellensatz that was discovered
by Krivine [93] and Stengle [136], shows that in order to obtain a proof system that is
complete over R, it is enough to allow products of the initial polynomials. Below, we state
a refutational version of the Positivstellensatz.

Theorem 3.74 (Refutational Positivstellensatz). Let P = {P1(x) > 0, . . . , Pm(x) > 0} be
a set of polynomial inequalities. Then, P is unsatisfiable if and only if there exists sum-of-
squares polynomials Q`(x) for ` ∈ {0, 1}m such that

−1 =
∑

`∈{0,1}m
Q`(x)P `1

1 (x) · · ·P `m
m (x). (3.39)

Therefore, if we allow products of the initial polynomials as well as square polynomials
we obtain a proof system which is complete over R. This was proposed as a propositional
proof system by Grigoriev and Vorobjov [59].

Although this proof system may appear to be significantly more expressive than SoS,
lower bounds on the degree of Positivstellensatz refutations for several formulas are known.
In their initial work, Grigoriev and Vorobjov [59] showed that the telescopic system (3.28)
requires Positivstellensatz refutations of degree at least 2n−1. Building on earlier ideas of
Buss et al. [35], Grigoriev [57] showed that the degree required to refute any unsatisfiable
family of F2 linear equations is at least the minimum width of any Resolution refutation of
these equations. Applying this, he showed that several natural families of polynomial-size
CNF formulas, including the Tseitin tautologies and random 3XOR, require Positivstellensatz
refutations of degree Ω(n). We describe this proof in full detail in Section 5.1 for SoS.
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Parillo [107, 108] and Lasserre [94, 95], building on the earlier ideas of Shor [134], observed
that the task of finding bounded degree Positivstellensatz refutations can be phrased as an
SDP. This is done by rephrasing

−1 =
∑

`∈{0,1}m
Q`(x)P `1

1 (x) · · ·P `m
m (x)

as an SDP in much the same way as was done for SoS in Section 3.3.1.1. As usual, the
variables of this SDP are the coefficients of the polynomials. However, a drawback is that
general Positivstellensatz refutations involve 2m terms, one for each ` ∈ {0, 1}m, and therefore
result in unfortunately large SDPs. To overcome this issue, Lasserre proposed to instead use
Putinar’s variant of the Positivstellensatz, resulting in the SoS hierarchy.

3.3.2.2 Positivstellensatz Certificates

So far we have only discussed Positivstellensatz as a refutational system. In fact, the Pos-
itivstellensatz was studied from a derivational pers pective, beginning with the question of
how to certify the non-negativity of a single polynomial over the reals. Recall from Section
3.1.4, that Hilbert and Motzkin disproved the conjecture that every non-negative polynomial
over R can be written as a sum-of-squares. Indeed, Motzkin gave an explicit counter example
of a polynomial that cannot be written as a sum-of-squares, but which is non-negative over
R. Motzkin’s counter example already shows that, unlike Positivstellensatz refutations, if
we are to have a derivational form of the Positivstellensatz it is not enough to allow square
polynomials as well as products of the initial polynomial inequalities.

The proof that the Motzkin polynomial is non-negative (Claim 3.34) involved expressing
it as a sum-of-squares of rational functions. Motivated by this observation, in 1900 Hilbert
asked as his 17th problem to the Congress of Mathematicians.

Hilbert’s 17th Problem: Can any non-negative polynomial P (x) ∈ R[x] be written as a sum
of squares of rational functions?

That is, for every non-negative polynomial P (x) ∈ R[x], does there exist polynomials
P1(x), . . . , Pk(x), Q1(x), . . . , Qk(x) ∈ R[x] such that

P (x) =
k∑
i=1

(
Pi(x)

Qi(x)

)2

.

In 1927, Emil Artin [8] settled the question.

Theorem 3.75 (Artin’s Theorem). If P (x) ∈ R[x] is non-negative over R then P (x) can be
written as a sum-of-squares of rational functions

This result was later extended by Krivine [93] and Stengle [136] from the non-negativity
of a polynomial over R to non-negativity over semi-algebraic sets, resulting in what has come
to be known as the Positivstellensatz. As usual, we will abuse notation and denote by P a set
of polynomial inequalities, as well as the set of points {α ∈ Rn : P (α) > 0, ∀P (x) > 0 ∈ P}.
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Theorem 3.76 (Positivstellensatz). Let P = {P1(x) > 0, . . . , Pm(x) > 0} be a set of
polynomial inequalities and P (x) ∈ R[x], then

1. P (α) > 0 for all α ∈ P if and only if there exists k ∈ N, and sum-of-squares polyno-
mials Q`(x) and Q′`(x) for (`1, . . . , `m) = ` ∈ {0, 1}m such that

P (x) =

(
P (x)2k +

∑
`∈{0,1}m Q`(x)P `1

1 (x) . . . P `m
m (x)∑

`∈{0,1}m Q
′
`(x)P `1

1 . . . P `m
m (x)

)
. (3.40)

2. P is unsatisfiable if and only if there exists sum-of-squares polynomials Q`(x) for ` ∈
{0, 1}m such that

−1 =
∑

`∈{0,1}m
Q`(x)P `1

1 (x) · · ·P `m
m (x). (3.41)

Observe that setting P = {1 > 0} in Theorem 3.40 recovers Artin’s Theorem. In
particular, the Positivstellensatz derivation given in (3.41) is a generalization of sum-of-
squares of rational functions.

The Positivstellensatz can be interpreted as follows: either a polynomial P (x) is non-
negative over P , in which case there is a derivation of P (x) of the form (3.41), or P∪{P (x) >
0} has no common solution, in which case there is a Positivstellensatz refutation. The
Positivstellensatz derivations are of a more general form than the refutations; the Motzkin
polynomial shows that this generality is indeed necessary for completeness.
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Chapter 4

Upper Bounds via Sum-of-Squares

In this chapter, we will present a glimpse of the algorithmic applications of the SoS proof
system. Classical proof complexity has focused on studying proof systems that restrict NP in
various ways. This opens the door to establishing lower bounds that can verify conjectured
complexity class separations such as P 6= coNP in a restricted setting. The realization that
the proof complexity perspective could be useful in obtaining new algorithmic results is a
much more recent and modern development. We start with a brief overview of some of the
major lines of research inquiries in this direction.

Algorithmically, the SoS method simply relies on the observation that degree d pseudo-
expectations in n variables can be (approximately) computed in nO(d) time. For a host of
natural combinatorial problems, the special case of degree 2 turns out to be a well-studied
and simple SDP relaxation. While such semidefinite programs were already used in clever
combinatorial arguments (see for e.g. [100]), they led to an algorithmic renaissance with the
celebrated work of Goemans and Williamson [52] that gave an algorithm to compute a 0.878
approximate MaxCut in any graph. In doing so, they introduced the hyperplane rounding
technique. This technique was used and extended upon in a burgeoning body of results that
derived improved algorithms for several combinatorial optimization problems [39, 3, 9, 12,
96].

The use of higher degree SoS relaxations first appeared in a breakthrough work of Arora,
Rao and Vazirani [6] that gave an efficient algorithm for computing O(

√
logn) approximation

for least expanding sets in graphs. Their algorithm uses a semi-definite programming relax-
ation proposed by Goemans and Linial [51, 98] that is closely related to (and captured by)
the level 2 SoS relaxation combined with a new rounding technique inspired by the theory
of low-distortion metric embeddings.

Starting with the work of Khot, Kindler, Mossell and O’Donnell [82], a deep connec-
tion was discovered between algorithms based on such SDPs and Khot’s Unique Games
Conjecture (UGC) [79]. This sequence of works culminated in a famous result of Raghaven-
dra [115] that showed that a natural analog of Goemans-Williamson’s algorithm is optimal,
in the worst-case, for all constraint satisfaction problems, assuming the UGC.

In a surprising twist, Arora, Barak and Steurer [4] discovered a sub-exponential time
algorithm for the Unique Games problem itself. Soon after, in independent works, Barak,
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Raghavendra and Steurer [22] and Guruswami and Sinop [63] gave a principled view of this
algorithm as an instance of degree nδ SoS. This relied on developing the global correlation
rounding method that in turn led to new subexponential algorithms for several related prob-
lems. In the following years, Barak, Kelner and Steurer [18] and Barak, Kothari, Steurer [20]
gave new rounding methods that used higher degree SoS algorithms to obtain new results
for polynomial optimization problems arising in quantum information.

In the last few years, a large part of the algorithmic excitement in this area has been due
to the development of a new rounding paradigm that is tailored to average-case problems.
Crucial to this paradigm is viewing pseudo-expectations as formal relaxations of expectations
(hence the terminology!) that can pass off as expectations for all polynomial inequalities that
have an SoS proof.

Beginning in the work of Barak, Kelner and Steurer [19] on dictionary learning, this
paradigm has been refined and used to give better algorithms for several average case prob-
lems including tensor decomposition [102], tensor completion [21, 113], outlier-robust mo-
ment estimation [91], clustering mixture models [69, 90], robust linear regression [86] and at-
tacking cryptographic pseudorandom generators [16, 13]. The only prior usage of semidefinite
programming in average-case setting was a celebrated line of work on the matrix completion
problem [123, 37].

In this chapter, we will pick two vignettes to illustrate some of the main ideas in this
area. We will present the famous MaxCut algorithm of Goemans and Williamson first as
a introduction to the usage of the sum-of-squares method in worst-case algorithm design.
We will then illustrate the applications to average-case problems by presenting a recently
discovered [90] algorithm for clustering mixtures of isotropic Gaussians.

4.1 Max-Cut

MaxCut was among the first problems proved to be NP-hard [76], motivating the search for
efficient approximation algorithms for this problem. Erdős [127] observed that a random
bipartition of the graph cuts half of the edges in expectation. This immediately gives an
1
2
-approximation in expectation for MaxCut. In fact, until 1994, this algorithm was the

best polynomial-time approximation for MaxCut. Subsequent work has shed light on the
challenges of improving on this simple algorithm. Indeed, many standard approaches to
designing approximation algorithms cannot yield better than an 1

2
-approximation for MaxCut.

Charikar et al. [41] proved that no SA lift of degree Ω(n) can obtain better than an (1
2

+ ε)-
approximation. Kothari et al. [87], improving on the work of [38], showed that this result can
be extended to any linear program which admits a linear projection to the MaxCut polytope.

In a breakthrough, Goemans and Williamson [52] showed that the approximation ratio
for MaxCut could be improved to 0.878 using an SDP together with their hyperplane rounding
technique. This was in fact the first approximation algorithm based on an SDP, catalyzing
the study of SDPs as a tool for obtaining better approximation algorithms. In this section
we will show that the Goemans and Williamson SDP is captured by the first level of the SoS
hierarchy.
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MaxCut can be naturally phrased as the following quadratic program for a given graph
G on n vertices and edge weights w:

max
1

4

∑
i<j

wi,j(xi − xj)2, (4.1)

s.t. x2
i = 1, ∀i ∈ [n].

The constraints force x to be a ±1-valued indicator of the partition of the vertices defining
a cut in the graph. We will study how the 1st level of the SoS relaxation behaves on this
quadratic program; for this it will be simpler to work with SoS over {±1} where we associate
x2
i = 1 rather than x2

i = xi, as described in Section 3.3.1. Maximizing the first level of the
SoS relaxation of the quadratic program 4.1 gives a degree 2 pseudo-expectation Ẽ that
maximizes Ẽ[

∑
i<j wi,j(xi − xj)2] subject to the constraints x2

i = 1 for every i.
Let (G,w) be an instance of MaxCut, and denote the value obtained from solving this SDP

by optSOS1(MaxCut(G,w)) = Ẽ[1
4

∑
i<j wi,j(xi − xj)

2]. Similarly, define opt(MaxCut(G,w))
to be the true optimal value of the MaxCut instance. Note that because the SoS relax-
ation is obtained by relaxing the quadratic program it holds that optSOS1(MaxCut(G,w)) >
opt(MaxCut(G,w)). We will show that this relaxation, along with a clever rounding proce-
dure, achieves a 0.878-approximation in expectation.

Theorem 4.1 (Goemans and Williamson [52]). Let (G,w) be an instance of MaxCut. There
exists a randomized polynomial-time algorithm that finds a solution α∗ ∈ {0, 1}n such that
in expectation,

opt(MaxCut(G,w)) > 0.878 · 1

4

∑
i<j

wi,j
(
α∗i − α∗j

)2
.

The rounding algorithm, in retrospect, is quite natural and simple. To motivate it, it is
helpful to imagine (falsely) that the pseudo-distributions corresponding to the solutions of
the SoS relaxation are instead true probability distributions. In this view, we are given a
probability distribution over cuts, that, in expectation achieves a large weighted cut value.
If we could simply sample from this distribution, we would have found a cut that has value
optSOS1(MaxCut(G,w)). There is an obvious issue with this plan – we only have access
to degree 2 moments of the distribution. Thus, we can ask the following question: given
degree 2 moments of a distribution supported on {−1, 1}n, can we sample from a probability
distribution on {−1, 1}n with those moments?

This turns out to be a hard question. Indeed, even verifying that a purported set of
degree 2 moments correspond to a distribution on {−1, 1}n is NP-hard. Nevertheless, it
turns out that given the degree 2 moments of a pseudo-distribution, we can sample from a
distribution on Rn with those moments.

Lemma 4.2 (Gaussian Sampling). Let µ ∈ Rn and Σ ∈ Rn×n be positive semidefinite. Then,
there is a Gaussian distribution N (µ,Σ) with mean µ and covariance Σ. Further, given µ,Σ,
we can sample from N (µ,Σ) in polynomial time in n.
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Proof. Consider the random variable Y on Rn where each coordinate of Y is independently
distributed as N (0, 1) – the standard Gaussian distribution with mean 0 and variance 1.
Then, E[Y Y >] = I. Standard techniques allow efficiently sampling from the distribution of
Y .

We can transform Y to have any given mean and covariance as follows. Let Σ1/2 be the
square root of Σ so that Σ = Σ1/2Σ1/2. Let Z = µ + Σ1/2Y . Then Z is a random variable
with mean E[Z] = µ and

E[(Z − µ)(Z − µ)>] = Σ1/2E[Y Y >]Σ1/2 = Σ1/2IΣ1/2 = Σ.

Further, we can sample from Z by simply drawing a sample from Y and applying the
transformation Z = µ+ Σ1/2Y . This completes the proof.

Given a degree two pseudo-expectation Ẽ, we can use the Gaussian sampling lemma to
sample U ∈ Rn×n with mean Ẽ[x] and 2nd moment Ẽ[xx>]. This, however, does not resolve
our problem since we still need to find a cut and the coordinates of U are not Boolean in
general. The key idea is to apply a simple “rounding” procedure that takes the vector u and
outputs a Boolean vector that we explain and analyze in the lemma below. The analysis of
our rounding will rely on the following elegant geometric fact.

Lemma 4.3 (Sheppard’s Lemma). Let g, h ∼ N (0, 1) be jointly Gaussian with E[gh] = ρ.
Then,

E[(sign(g)− sign(h))2] > αGWE[(g − h)2] ,

where αGW = 4 arccos(ρ)
π

.

Proof. Let ρ = E[gh]. Using Lemma 4.2, there are vectors vg, vh ∈ R2 of unit length so that
for some r = (r1, r2) with independent coordinates r1, r2 ∼ N (0, 1) such that g and h have
the same distribution as 〈r, vg〉 and 〈r, vh〉 respectively.

Then, observe that for r′ = r/‖r‖2, sign(〈r, vg〉) = sign(〈r′, vg〉) and sign(〈r, vh〉) =
sign(〈r′, vh〉). Further, sign(〈r′, vg〉) 6= sign(〈r′, vh〉) if and only if vg and vh lie on oppo-
site sides of r′. Now, by rotational symmetry of the standard Gaussian random variable, r′

is uniformly distributed over the unit circle in R2. Thus, the probability that r′ separates
vg and vh is exactly θ

π
where θ = arccos(ρ) is the acute angle between the vectors vg and vh.

Thus,
E[(sign(g)− sign(h))2] = 4P[sign(g) 6= sign(h)] = 4 arccos(ρ)/π.
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Figure 4.1: The random hyperplane r′ separating vg and vh.

Lemma 4.4. Let (G,w) be an instance of MaxCut. There is a randomized polynomial-time
algorithm that, given a degree 2 pseudo-expectation Ẽ for the first-level SoS relaxation of
(4.1), returns a solution α∗ ∈ {−1, 1}n, such that

opt(MaxCut(G,w)) > E
[

1

4

∑
i<j

wi,j
(
α∗i − α∗j

)2
]
> 0.878 · optSOS1(MaxCut(G,w)).

Proof. First, without loss of generality, we can assume that Ẽ satisfies Ẽ[x] = 0. This
is because if Ẽ doesn’t satisfy this condition, then, we can simply define a new pseudo-

expectation Ẽ′ defined by Ẽ′[P (x)] = 1
2
(Ẽ[P (x)] + Ẽ[P (−x)]). Since the objective function

for our MaxCut program is invariant under negations, Ẽ′ has the same value as Ẽ. Thus, we
will assume that Ẽ[x] = 0 in the following.

Our rounding itself is extremely simple. We use the Gaussian sampling lemma to sample
g ∼ N (0, Ẽ[xx>]), where Ẽ[xx>] is the matrix (Ẽ[xx>])i,j := Ẽ[xixj]. We then output
α∗ ∈ {±1}n defined by α∗i = sign(gi) for every i.

Fix any edge {i, j} and let E[gigj] = Ẽ[xixj] = ρ. Then, E[(gi − gj)2] = 2(1− ρ). Using
Lemma 4.3,

E(α∗i − α∗j )2 >
arccos(ρ)

π
E[(gi − gj)2] =

2 arccos(ρ)

π(1− ρ)
. (4.2)

Via elementary calculus, one can show that for every ρ ∈ [−1, 1], arccos(ρ)
2π(1−ρ)

> 0.878. This
completes the proof.

By Corollary 3.12 we can find a degree 2 pseudo-expectation Ẽ satisfying the first level
SoS relaxation of (4.1) up to an additive error ε, which can be taken to be exponentially small
in n. Combining this with Lemma 4.3 shows that SoS recovers Goemans and Williamson’s
result up to an additive error o(1).

Naturally, one might ask whether Goemans and Williamson’s algorithm can be improved
upon. Indeed, the approximation ratio 0.878 seems somewhat arbitrary, and a-priori there
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is little reason to suspect that it is tight. In terms of hardness results, Bellare, Goldreich,
and Sudan [27] showed that it was NP-hard to approximate MaxCut to within a factor of
0.988. This was later improved by Hȧstad [65] to an approximation ratio of 0.941. This is
far from the approximation achieved by the Goemans-Williamson algorithm, and yet despite
significant effort, there has been no subsequent improvements on either side. Part of the
reason for this could be explained by the fact that in order to improve the approximation
ratio for MaxCut, one would need to refute the Unique Games Conjecture [82].

4.2 The Unique Games Conjecture and Sum-of-

Squares

The advent of the PCP Theorem [7, 5] was a major breakthrough for hardness of approxima-
tion. It gave a new definition of NP-completeness that led to a multitude of results showing
that for many NP-hard problems, computing an approximate solution is as difficult as solving
the problem exactly. However, for several notorious NP-hard problems such as VertexCover
and MaxCut, the PCP theorem was not enough to settle their approximability. In 2002, Khot
[79] proposed his Unique Games Conjecture (UGC) which, if true, would settle the case for
most of these outstanding optimization problems.

Informally, the Unique Games Conjecture states that finding a good approximate solution
to a Unique Game is NP-hard.

Definition 4.5 (Unique Game). A unique game consists of a graph G = (V,E) as well as
a set of permutations π(u,v) : [q] → [q] for all (u, v) ∈ E and q ∈ N, defining a constraint
π(u,v)(xu) = xv. The aim is assign a value to each vertex xu so as to maximize the number
of satisfied constraints.

One can think of a unique game as a restriction of the q-Coloring problem: given a graph,
the aim is to assign one of q colors to each vertex so that no two adjacent vertices share
the same color. A Unique Game is a restriction of the q-Coloring problem, enforcing that
each assignment of a color to a vertex uniquely determines the colors of its neighbours. This
restriction allows for Unique Games to be solved exactly in linear time: because connected
components can be colored independently, we will assume without loss of generality that
there is only a single component. Pick a vertex arbitrarily and assign to it a color. By the
uniqueness property, this dictates the color of every other vertex in the graph. Repeating
this procedure for all q possible colors will find a satisfying assignment if one exists.

On the other hand, the Unique Games Conjecture states that it is NP-hard to determine
whether a Unique Game is approximately satisfiable.

Unique Games Conjecture. For every pair of constants ε, δ > 0, there is a constant
q(ε, δ) such that it is NP-hard to distinguish between the case when at least 1− ε fraction of
the constraints of a Unique Game are satisfiable, and the case when at most δ are satisfiable.
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While on its own this conjecture does not look particularly interesting, it turns out that
it is easy to encode many problems of interest as Unique Games. Indeed, this conjecture has
been shown to imply tight hardness of approximation results for problem such as MaxCut [81],
VertexCover [84], and SparsestCut [42, 85], which have eluded hardness via the PCP theorem.
Unlike conjectures such as P 6= NP, there is no consensus on the validity of the UGC.
The state-of-the-art polynomial-time algorithms for Unique Games are given by Chlamtac,
Makarychev, and Makarychev [43] and Charikar, Makarychev, and Makarychev [40] which,
given an instance in which (1 − ε) constraints are satisfiable, find solutions satisfying a
1−O(ε

√
log n log q) and a 1−O(

√
ε log q) fraction of the constraints respectively.

To better understand the UGC it is crucial to understand what the easy and potentially
difficult instances of Unique Games are. Towards this goal, it has been particularly useful to
work with an abstraction of the UGC known as the Small Set Expansion Hypothesis (SSEH).

For a d-regular graph G = (v, E), define the expansion of a set S ⊆ V as ex(S) = |E(S,S\V )|
d|S| ,1

the fraction of edges crossing the boundary between S and V \ S.

Small Set Expansion Hypothesis. For every constant ε > 0 there exists δ > 0 such that
it is NP-hard to distinguish between the case when there exists a set S ⊆ V with |S| = δ|V |
where ex(S) 6 ε, and the case when every set S ⊆ V with |S| := δ|V | has ex(S) > 1− ε.

Raghavendra and Steurer [116] gave a highly non-trivial reduction showing that the
SSEH implies the UGC. Furthermore, these problems have long been conjectured to be
equivalent. Indeed, all known upper and lower bounds for Unique Games hold also for the
Small Set Expansion problem. Therefore, this problem gives a conceptually simpler testing
ground for studying the UGC, and has inspired many of the algorithmic results on the UGC.
For example, using this connection, Arora, Barak, and Steurer [4] gave an exp(no(1))-time
algorithm for Unique Games, ruling out the existence of any exponentially-hard instance of
Unique Games2.

Regardless of the outcome, the fate of the UGC and SSEH appear to be intimately tied
to Sum-of-Squares; much of the evidence for and against the UGC and SSEH is captured by
the SoS hierarchy. Barak, Brandão and Harrow [14] showed that a constant level of the SoS
hierarchy was sufficient to solve all of the candidate hard instance for the UGC. Furthermore,
under the UGC, the approximation ratios of a large class of problems are tied to the first
level of the SoS hierarchy. In a breakthrough result, Raghavendra [115] showed that the
UGC implies hardness of approximation for every Constraint Satisfaction Problem (CSP),
and furthermore that these approximation ratios are matched by the first level of the SoS
hierarchy.

Definition 4.6 (Constraint Satisfaction Problem). A CSP ∆ is defined by a set of m predi-
cates P1, . . . , Pm : Σn → {0, 1} over finite alphabet Σ. The objective is to find an assignment
α ∈ Σn that satisfies the maximum number of constraints in ∆.

1Here E(S, V \ S) denotes the set of edges with one endpoint in S and the other in V \ S.
2This algorithm is also captured by the SoS hierarchy.
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Recall from Section 3.2.3.3 that Raghavendra and Weitz [117] showed that CSP instances
admit proofs with small coefficients, and therefore any CSP instance which has a degree d
proof can be found in time (m · n)O(d).

Theorem 4.7 (Raghavendra [115]). Assuming the UGC, for every CSP ∆ and every con-
stant ε > 0, there is a polynomial time rounding procedure that, given as input the solution
computed by SOS1(∆), outputs a solution which is within an additive ε of the solution output
by the optimal polynomial time algorithm for this problem.

If true, the UGC would imply that for one of the most studied class of problems, there
is a single algorithm achieving the best-possible approximation ratio of any polynomial time
algorithm. Rather than constructing tailor-made algorithms for each CSP, we could simply
appeal to this one-size-fits-all algorithm. An interesting technicality is that Raghavendra’s
result would not tell us what the optimal approximation ratio is for each CSP, only that
SOS will match this ratio up to any small error factor. In fact, it is not even clear what the
complexity of determining these approximation ratios is.

In a breakthrough result, Khot, Minzer, and Safra [83] positively resolved a weak form of
the UGC known as the 2-to-2 Conjecture (with imperfect completeness). This was a major
step towards positively resolving the UGC in a strong sense: it implies that the UGC is true
when δ > 0 and ε > 1/2. Even with this breakthrough, the truth of the full UGC remains a
tantalizing open problem. A resolution, regardless of whether it is positive or negative, must
lead to new advances in approximation algorithms and inapproximability. Additionally, due
to its connection to SoS, a resolution to the UGC will likely have significant consequences
for SoS. For more on the UGC we suggest the surveys by Khot [80] and Trevisan [137].

4.3 Average-Case Algorithm Design via SoS

In this section, we introduce a general approach that uses the SoS method to design al-
gorithms for average-case parameter-estimation problems. These form a subclass of search
problems: problems where we are interested in uncovering some hidden structure in the
given data. The average-case nature of these problems shows up in modeling how the hidden
structure is encoded in the observed input/data. Let us briefly make the notion of parameter
estimation problems a bit more formal before proceeding.

Specifically, we imagine that the hidden structure is encoded by some vector valued
hidden parameter Θ ∈ Rp. The observed input/data is modeled as some collection of points
x1, x2, . . . , xn ∈ Rd in some (typically high dimensional) Euclidean space. For each problem
(such as clustering mixtures of Gaussians), we have an associated family of probability
distributions {pΘ} over Rd indexed by the parameter Θ ∈ Rp. Samples x1, x2, . . . , xn are
then generated by choosing n independent samples from pΘ for some unknown Θ. We intend
to design an algorithm that uses (as few as possible) samples x1, x2, . . . , xn to come up with
an estimate of Θ (accurate enough w.r.t. some relevant notion of distance). That is, the
algorithm’s goal is to approximately invert the above generating process3.

3Actually, the framework we present applies to slightly more general parameter-estimation problems
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Such problems abound in theoretical machine learning with examples ranging from clus-
tering mixture models, learning dictionaries to matrix completion and compressive sensing.
Many interesting problems in average-case computational complexity theory and cryptogra-
phy such as recovering planted cliques, recovering community structures in stochastic block
models, and understanding the security properties of various notions of pseudorandom gen-
erators also conform to this general theme.

The SoS method offers a single prescription for designing efficient algorithms for such
average-case parameter estimation problems. We will use the problem of clustering mixtures
of isotropic Gaussians to illustrate it in this section.

4.3.1 Clustering Mixtures of Gaussians

We first describe the result that we will prove in detail in this section. Let’s start by
describing the algorithmic problem first. We will use the notation introduced here throughout
this section.

We are given n samples with an unknown partition into k equal size “clusters”
C1, C2, . . . , Ck such that each Ci is an i.i.d. sample of size n/k from N (µi, Id) - Gaus-
sian distribution with mean µi and covariance Identity in d dimensions. Here, the k means
or centers µi are also unknown. We call the partition C1 ∪ C2 ∪ . . . ∪ Ck the ground-truth
clustering of the given sample and each Ci a true cluster.

Our goal is to recover a partition Ĉ1∪ Ĉ2∪ . . .∪ Ĉk of the samples into k equal parts that
is as close as possible to the true unknown partition. In order to understand approximation,
we will say that the clustering above is δ-accurate if:

min
π:[k]→[k]

max
i6k

k

n
· |Ci ∩ Ĉπ(i)| > 1− δ .

Given a δ-accurate clustering, standard methods can be used to recover good approximations
to the unknown µis.

Observe that if for some i 6= j, µi = µj, then clearly one cannot distinguish between
the corresponding clusters. In general, thus, we expect that the success of any algorithm
will depend on the separation parameter ∆ = mini 6=j‖µi − µj‖2, where ‖ · ‖2 is the standard
2-norm.

We are now ready to state the main theorem we will prove.

Theorem 4.8. For every integer t > 2, there is an algorithm, running in time dO(t2), that
takes input X = C1 ∪C2 ∪ · · ·Ck where Ci is an i.i.d. sample of size n� Θ(k)/δ2 log (d)d2t

drawn according to N (µi, I) for each i and with probability at least 1−1/d, outputs a partition
of Ĉ1, Ĉ2, . . . , Ĉk of [n] into k equal pairwise disjoint subsets such that:

min
π:[k]→[k]

max
i6k

k

n
· |Ci ∩ Ĉπ(i)| > 1− δ

where the data may be generated by some more complicated probabilistic process. This is not necessary to
appreciate the ideas in this chapter so we omit a discussion on such “probabilistic generative models”.
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for δ = ∆−2t(512t)tk3 and ∆ = mini 6=j ‖µi − µj‖2.

Remark (Quantitative Implications). To understand the quantitative implication of the
theorem, let us fix δ = 0.01. Thus, we are interested in recovering a 99-percent accurate
clustering. Then, we want to choose t so that (512

√
t/∆)2t < 0.01/k3. Observe that this is

only possible if ∆ > C
√

log k for some constant C > 0. For ∆ = 104
√

log k for e.g., we need
to choose t ∼ log k to make this happen. The theorem above thus gives a quasi-polynomial
time (in k) algorithm.

As yet another parameter setting, fix some ε > 0, and suppose that ∆ > 104kε/
√
ε. Then

we need to choose t = 3/ε to ensure that (512
√
t/∆)2t < 0.01/k3. In this case, the theorem

yields a ∼ dO(1/ε2) time algorithm.

The above remark shows that the theorem gives no interesting guarantees when the sep-
aration parameter ∆ �

√
log k. It turns out that this is inherent. Regev and Vijayragha-

van [124] showed that when ∆�
√

log k, any algorithm requires an dΩ(k) samples (and thus
also running time) to solve the clustering problem. In the same work, they also showed an
inefficient algorithm that succeeds in separating mixtures of k Gaussians using polynomially
many samples in k and d whenever ∆�

√
log k. The theorem above gives a (quasi)-efficient

algorithm to match their information theoretic result. The running time of the algorithm
above at the “statistical threshold” of ∆�

√
log k is quasi-polynomial. It is an open prob-

lem to give a polynomial time algorithm in this regime or prove an impossibility of such a
result based on a standard average-case hardness assumption.

Remark (Generalizations). The above theorem handles the problem of clustering an equi-
weighted mixture of k isotropic Gaussians. The proof, however, easily extends in various
ways: i) the clusters need not be equi-weighted, ii) the clusters need only have a covariance
with bounded operator norm and iii) the components need only follow an arbitrary strongly
log-concave distribution instead of being Gaussian. Further, the running time of the algo-
rithm can be improved to dO(t) time, instead of dO(t2). To keep our discussion simple, we will
not discuss these corollaries or improvements in this chapter.

4.3.2 Algorithm Design Via SoS: a bird’s eye view

A Proof Complexity Approach to Algorithm Design At a high-level, the algorithm-
design approach we follow is rooted in proof complexity. Suppose we are interested in
designing algorithms for a certain search problem. From a complexity theoretic perspective,
we might want to do due diligence and first ask - given a purported solution, can we verify
it? More specifically, can we verify some certificate of correctness of a good solution? Of
course, in general, we do not expect P = NP and thus a method to certify correctness of a
good solution doesn’t imply (or even help!) an efficient algorithm.

The key idea in our approach is the following. If we restrict ourselves to finding certificates
of correctness that can be verified in a restricted automatizable proof system (instead of the
all encompassing NP), then we get an efficient algorithm to find a solution along with a
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certificate whenever it exists! Our choice of the automatizable proof system will be low-
degree SoS.

From an algorithm design perspective, this method is useful because it turns out that
in several broad situations of interest, it is much easier to think of and analyze certifying
algorithms than come up with search algorithms and their analyses.

Algorithms from Certifiability Let’s now discuss the approach in the specific context of
clustering Gaussian mixtures. As our discussion above suggests, the key idea is to consider
first the task of certifying a good solution separately from that of designing an efficient
algorithm. Eventually, the algorithm design step will become a problem-independent and
almost mechanical translation from our certifiability method.

What does a certifying algorithm do? In the present situation, it gets as input the
samples from unknown the mixture of Gaussian model. It also gets, in addition, a purported
clustering of the samples. Our goal is to come up with a method to verify if this given
clustering is close to the unknown true clustering.

Certifiability as Solution Testing We will accomplish this by developing a “certifiability
test” that makes some simple checks on the given clustering. These checks must be designed
so that the true clustering always passes them. This can be thought of as the “completeness”
of the test. Equally importantly, these checks should be “sound”: whenever some clustering
passes the test, it must be close to the true clustering. In the context of average-case problem,
our checks must succeed on all “typical” samples. That is, whenever any sample satisfies some
fixed deterministic condition (somewhat unimaginatively, we will call such samples “good”),
the test should be complete and sound for all possible purported clusterings. Further, the
deterministic condition should hold for a (large enough) i.i.d. sample with high probability
over the draw from the underlying distribution.

Identifiability from Certifiability Given a certifiability test, we immediately get an
inefficient algorithm. Fix a good sample (i.e., a sample that satisfies the above mentioned
deterministic condition). We can then go over all possible (exponentially many) purported
clusterings and run our certifiability test on each. Whenever we find one that passes our
test, we are sure that we have an approximately correct clustering. This idea is referred to
as information-theoretic unique identifiability in statistics and machine learning. Informally,
identifiability means that a small finite sample (whp) uniquely determines the hidden pa-
rameter we intend to estimate from it. Identifiability is an information-theoretic idea and
characterizes the sample complexity of the average-case parameter estimation problem but
doesn’t usually shed any light on its computational complexity. From what we discussed,
certifiability immediately implies information-theoretic unique identifiability.

Simple Certifiability and Efficient Algorithms To obtain an efficient algorithm, we
ask for a little more from our certifiability test. First, that the test be phrased as checking
if for every (purported) cluster (seen as a subset of samples), it’s indicator vector satisfies
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a fixed set of polynomial inequalities. Similarly, the conclusion of the soundness property
must be phrased as another polynomial inequality in the indicator vector of the subsample
associated with the purported cluster. Second, the soundness property, when seen as a
statement that a given system of polynomial inequalities (those checked for in the test)
imply another polynomial inequality (the one in the conclusion) should have a low-degree
SoS proof.

We can think of the above two conditions as some notion of simplicity of our certifiability
test. The upshot is that whenever our certifiability test is simple in the above sense, we
can obtain an efficient algorithm for recovering the clustering right from the certifiability
statement in essentially black-box manner.

Natural certifiability tests are often simple The approach above would not be very
useful if it is difficult to come up with simple certifiability test. The key reason behind the
success of this approach is that fortunately, many natural proof strategies used in certifia-
bility tests are actually already simple. This is because such arguments routinely rely on
basic inequalities for e.g., triangle inequality, the Cauchy-Schwarz inequality and Hölder’s
inequality and their compositions. It turns out that all of these inequalities (and many
more, including some deep geometric results such as isoperimetric inequalities) happen to
have low-degree SoS proofs! Thus, whenever our soundness analysis of the certifiability test
builds on a composition of such simple inequalities, we are automatically guaranteed a simple
certifiability test in the sense above.

To summarize: algorithm design in this framework reduces to coming up with a simple
certifiability test. That’s exactly what we will do for designing our algorithm for separating
Gaussian mixtures.

Certifying Good Clusterings

In this section, we will develop the key step of certifying clusterings in designing our algorithm
for clustering Gaussian mixtures. To allow geometric intuition and minimal notation, we will
first develop the test in 1D and then generalize to higher dimensions.

4.3.2.1 Certifying Good Clusterings: The 1D Case

Given a set of points X = x1, x2, . . . , xn ∈ R that is produced by a disjoint union of
C1, C2, . . . Ck where each Ci is an i.i.d. sample of size n/k distributed as N (µi, 1), our
goal is to build a test, that takes a subset of points, with indices in S ⊆ [n], and checks
if it is δ-close (in Hamming distance) to some true cluster Ci. In particular, since each Ci
consists of i.i.d. samples from a Gaussian with an arbitrary mean, our test must check some
property that is true of (large enough) i.i.d. samples of Gaussians but not of any mixture of
at least two Gaussians.

A visual inspection reveals a class of tests that seem to work, at least in a qualitative
sense. A true cluster has the points in it huddled closely around the empirical mean. While
a subset of points that intersects substantially with more than one cluster will have points
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that are more spread out around the empirical mean. This qualitative reasoning suggests
that our test should be some measure of how spread out a given subset of points is, around
its empirical mean. We will use a fairly natural one – the empirical centralized moments of
the given subset of points.

red cluster green cluster

“bad” cluster

∆

Figure 4.2: A mixture of two well-separated Gaussians in 1D with red/green points. And a
blue “fake” cluster.

Definition 4.9 (Empirical Moments). For a set of points Y = y1, y2, . . . , yn ∈ R, we define
the t-th centralized moment of Y as:

mt(Y ) =
1

n

n∑
i=1

(yi − µ(Y ))2t

where µ(Y ) = 1/n
∑n

i=1 yi, the empirical mean of Y .

Empirical moments give a measure of the deviation from the empirical mean of the set
of points Y . We now want to understand how these empirical moments behave for a true
cluster in order to figure out a quantitative version of a test based on the t-th moments that
can distinguish true clusters from fake ones.

Let us first define a good sample X as one that has its empirical t-th moments close to
the distributions t-th moment.

Definition 4.10 (Good 1D Sample). An n-sample X partitioned into clusters C1∪C2∪. . . Ck
of equal sizes is (t,∆)-good if µ̂i = k

n

∑
j∈Ci xi satisfy |µ̂i − µ̂j| > ∆ for every i 6= j and

k
n

∑
j∈Ci(xj − µ̂i)

2t 6 (16t)t.

Proposition 4.11 (Convergence of Moments). Let X = C1 ∪ C2 ∪ . . . Ck where each Ci is
a i.i.d. sample of size n/k from N (µi, 1) satisfying |µi − µj| > ∆ whenever i 6= j. Then, X
is a (t,∆− δ)-good sample whenever n > k

δ2
Θ(log(k/η)) with probability at least 1− η.

We will use the following simple inequality in the proof:

Proposition 4.12 (Almost Triangle Inequality). For any a, b, (a+ b)2t 6 22t−1(a2t + b2t).

Proof. Apply Jensen’s inequality to obtain (a+b
2

)2t 6 1
2
(a2t + b2t) and rearrange.
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Proof of Proposition 4.11. We will show that each of the two properties hold with probability
1− η/2 whenever n > k

δ2
Θ(log(k/η)). The proof then follows by a union bound.

Let µ̂i = k
n

∑
j∈Ci xj for every i. Then, µ̂i is a Gaussian random variable with mean µi

and variance k
n
. Thus, P[|µi − µ̂i| > δ] 6 exp(−Θ(nδ2/k)). Choosing n > Θ( 1

δ2
k log (k/η))

and doing a union bound over 1 6 i 6 k, we thus have |µi− µ̂i| > ∆− δ with probability at
least 1− η/2.

Next, for any i, by Proposition 4.12,

k

n

∑
j∈Ci

(xj − µ̂i)2t = 22t−1 k

n

∑
j∈Ci

(xj − µi)2t + 22t−1 k

n

∑
j∈Ci

(µ̂i − µi)2t).

Further,

(µ̂i − µi)2t =

(
k

n

∑
j∈Ci

(xj − µi)
)2t

6

(
k

n

∑
j∈Ci

(xj − µi)2t

)
.

Thus, k
n

∑
j∈Ci(xj − µ̂i)

2t 6 22t k
n

∑
j∈Ci(xj − µi)

2t.

Let zi,j = (xj − µi)2t. Then,

E[z2t
i,j] = Eg∼N (0,1)[g

2t] = (2t− 1)!! 6 (2t)t.

Let zi = k
n

∑
j∈Ci zi,j. Thus, by Hoeffding’s inequality, with probability at least 1 − η/k,

P[zi > q] 6 2−Cn/kq
2/(4t)2t for some large enough constant C. Choosing q = 2(2t)t and

n = Θ(log(k/η)) this ensures that P[zi > 2(2t)t] < η/2k. By a union bound over 1 6 i 6 k,
with probability at least 1− η/2, k

n

∑
j∈Ci(xj − µi)

2t 6 2(2t)t.
Thus, with probability at least 1 − η/2 over the draw of X, for each 1 6 i 6 k,

k
n

∑
j∈Ci(xj − µ̂i)

2t)] 6 22t+1(2t)t 6 (16t)t.

We can now design a simple test for true clusters based on checking t-th moments.

Algorithm 4.13 (1D Test for True Clusters).

Given: X = {x1, x2, . . . , xn} = C1 ∪ C2 ∪ . . . ∪ Ck ⊆ R and a subset S ⊆ [n]

Output: Yes iff |S ∩ Ci| > δ|Ci| for some 1 6 i 6 k.

Operation:

1. Let µ(S) = k
n

∑
i∈S xi.

2. Output yes iff (i) |S| = n/k, and (ii) k
n

∑
i∈S(xi − µ(S))2t 6 (16t)t.

It is important to observe that the test itself is deterministic. The only randomness is
over the draw of the sample. The completeness of the test is immediate from the definition
of a good sample.
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Fact 4.14 (Completeness). For any (t,∆)-good sample X, every Ci passes the test.

The soundness of the test is more interesting. Such a result must show that any S
that passes this test must be close to being a true cluster. Said differently, passing the test
provides a certificate that the given set S is close to being a true cluster.

Lemma 4.15 (Certifying a good solution in 1D). Let X = C1 ∪ C2 ∪ · · ·Ck be (t,∆)-good
sample. Suppose w ∈ Rn satisfies:

1. Set Indicator: for each i 6 n, w2
i = wi. That is, wi ∈ {0, 1} and thus indicates a

subsample of X,

2. Set Size:
∑n

i=1wi = n/k. That is, w indicates a subsample of size n/k, and,

3. Bounded Centralized Moment: for µ(w) = k
n

∑
iwixi,

k
n

∑n
i=1wi(xi − µ(w))t 6

(16t)t. That is, the empirical centralized moment of the set indicated by w is as small
as that of a true cluster.

Then, for w(Cr) = k
n

∑
i∈Cr wi and δ = k∆−2t256ttt,

k∑
r=1

w2(Cr) > 1− δ .

In particular,

max
r
w(Cr) >

k∑
r=1

w2(Cr) > 1− δ .

That is, the set indicated by w must intersect one of the true clusters in 1− δ fraction of the
points.

Proof. We start from the basic fact that
∑

r w(Cr) = 1. Squaring this we obtain that∑
r,r′ w(Cr)w(Cr′) = 1. Thus, it is enough to show that

∑
r 6=r′ w(Cr)w(Cr′) 6 δ to complete

the proof.
In the following, we use µ(w) = k

n

∑
i xiwi. We write µC(i) to denote the “true mean of

the true cluster that contains xi”. That is, µC(i) = µr for r such that i ∈ Cr.
Since |µr − µr′| > ∆ for every r 6= r′, we must have:∑

r 6=r′
w(Cr)w(Cr′) 6

1

∆t

∑
r 6=r′6k

w(Cr)w(Cr′)(µr − µr′)2t .

By the almost triangle inequality (Proposition 4.12),∑
r 6=r′

w(Cr)w(Cr′) 6
22t−1

∆2t

∑
r 6=r′6k

w(Cr)w(Cr′)
(
(µr − µ(w))2t + (µ(w)− µr′)2t

)
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=
22t

∆t

∑
r6k

w(Cr)(µr − µ(w))2t .

Substituting w(Cr) =
∑

i∈Cr wi and applying the almost triangle inequality again, we have:∑
r 6=r′

w(Cr)w(Cr′) 6
22t

∆t

k

n

n∑
i=1

wi(µC(i) − µ(w))2t

6
22t

∆t
· k22t−1

n

n∑
i=1

wi
(
(xi − µC(i))

2t + (xi − µ(w))2t
)
.

Using wi 6 1, we can conclude:∑
r 6=r′

w(Cr)w(Cr′) 6 k
24t−1

∆2t

(
1

n

n∑
i=1

(xi − µC(i))
2t +

1

n

n∑
i=1

wi(xi − µ(w))2t

)
.

Since X is a good sample, 1
n

∑n
i=1

(
(xi − µC(i))

2t
)
6 (16t)t. And since w satisfies our test,

1
n

∑n
i=1 wi ((xi − µ(w))2t) 6 (16t)t. Thus,∑

r 6=r′
w(Cr)w(Cr′) 6 k

24t

∆2t
(16t)t .

4.3.2.2 Certifying Good Clusterings: The Higher Dimensional Case

We can generalize the test from the previous section to higher dimensions with little to
change the overall idea. As such, the main dimension-dependent part of the test is the test
of low deviation via “small-centralized-moments”. We will replace this check by a small-
centralized-moment test for the 1D samples obtained by projecting the given sample into all
possible directions.

In notation, if y is distributed as N (µ, I), then, for any v ∈ Rd, 〈y − µ, v〉 is a 1 di-
mensional Gaussian random variable with mean 0 and variance ‖v‖2

2. Thus, disregarding
the computational feasibility, we can simple apply the “small-centralized-moment” test to
〈y − µ, v〉 for every unit vector v ∈ Rd. This gives us the following test:

Algorithm 4.16 (Higher Dimensional Test for True Clusters).

Given: X = {x1, x2, . . . , xn} = C1 ∪ C2 ∪ . . . ∪ Ck ⊆ Rd and a subset S ⊆ [n]

Output: Yes iff |S ∩ Ci| > δ|Ci| for some 1 6 i 6 k.

Operation:

1. Let µ(S) = k
n

∑
i∈S xi.
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2. Output yes iff (i) |S| = n/k, and (ii) k
n

∑
i∈S〈xi−µ(S), v〉2t 6 (16t)t for every

unit vector v.

Definition 4.17 (Good Sample). A k-partitioned X = C1∪C2∪ . . .∪Ck ⊆ Rd into clusters
of equal sizes is a (t,∆)-good sample if for µ̂i = k

n

∑
j∈Ci xj and every v ∈ Rd, we have

‖µ̂i − µ̂j‖2 > ∆ whenever i 6= j and for every j 6 k,

k

n

∑
i∈Cj

〈xi − µ̂j, v〉2t 6 (16t)t‖v‖2t .

As before, we by using Hoeffding’s inequality, we can prove that a large enough i.i.d.
sample is (t,∆)-good with high probability.

Proposition 4.18 (Convergence of Directional Moments). Let X = C1 ∪ C2 ∪ . . . Ck where
each Ci is a i.i.d. sample of size n/k from N (µi, Id) satisfying ‖µi − µj‖2 > ∆ whenever
i 6= j. Then, X is a (t,∆− δ)-good sample whenever n > d2t k

δ2
Θ(log(k/η)) with probability

at least 1− η.

This immediately implies the completeness as in the 1D case.

Proposition 4.19 (Completeness). For any (t,∆)-good sample X, every Ci passes the test.

The soundness proof just needs one additional step on top of the ideas in the 1D case.
Let Aw be the following system of quadratic constraints that captures the checks on the
indicator of the given purported cluster S made in the test above.

Aw :



∑n
i=1wi =

n

k
∀i ∈ [n] , w2

i = wi

∀v ∈ Rd s.t. ‖v‖2 = 1 ,
k

n

∑
i6n

wi〈xi − µ̂, v〉2t 6 (16t)t

k

n

∑
i6n

wixi = µ̂


(4.3)

Lemma 4.20 (Certifying a good solution in high dimensions). Let X = C1 ∪ C2 ∪ . . . ∪ Ck
be a (t,∆)-good sample. Suppose w ∈ Rn satisfies Aw. Then, for w(Cr) = k

n

∑
i∈Cr wi and

δ = ∆−2tk3(16t)t,
k∑
r=1

w2(Cr) > 1− δ .

In particular,

max
r
w(Cr) >

k∑
r=1

w2(Cr) > 1− δ .
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Proof. As in the proof of Lemma 4.15, we will focus on proving
∑

r 6=r′ w(Cr)w(Cr′) 6 δ. We
will write µC(i) to denote the “true mean” of the cluster that contains xi. That is, µCi = µr
for r such that i ∈ Cr.

We can repeat the argument in the proof of Lemma 4.15 to obtain for any v ∈ Rd,

1

∆2t

∑
r 6=r′

w(Cr)w(Cr′)〈µr−µr′ , v〉2t 6 ‖v‖2tk
22t

∆2t

(
1

n

n∑
i=1

〈xi − µC(i), v〉2t +
1

n

n∑
i=1

wi〈xi − µ(w), v〉2t
)
.

Now, since X is (t,∆)-good, 1
n

∑n
i=1〈xi − µC(i), v〉2t 6 (16t)t‖v‖2t. And since w satisfies the

bounded moment constraint, 1
n

∑n
i=1wi〈xi − µ(w), v〉2t 6 (16t)t‖v‖2t. Thus,

1

∆2t

∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t 6 ‖v‖2tk∆−2t(256t)t (4.4)

To finish, we observe that for any r, r′,
∑

i,j6k〈µr − µr′ ,
µi−µj
‖µi−µj‖〉

2t > ∆2t. This is in fact

the contribution due to just i = r, and j = r′.
Thus, letting V be the collection of

(
k
2

)
unit vectors

µi−µj
‖µi−µj‖ for i 6= j, we have:

∑
r 6=r′

w(Cr)w(Cr′) 6
∑
v∈V

1

∆2t

∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t .

Combining this with (4.4) completes the proof.

4.3.3 Inefficient Algorithm from Certifiability

In Section 4.3.2, we discussed that given a complete and sound certifiability test, simply
going over all possible clusterings and applying our test gives an inefficient algorithm to find
an approximate clustering of the input sample. In this section, we will give a different and
seemingly more complicated inefficient algorithm to accomplish the same task. The upshot is
that we will be able to make this into an efficient algorithm with one change and essentially
the same analysis.

Rounding Maximum Entropy Distributions In this different version of the inefficient
algorithm, we imagine that we are given low-degree moments of a probability distribution D
over points w ∈ Rn that pass the checks done in Test 4.16. Since each point in the support
of D passes these checks, by Lemma 4.20, D is supported on ws that indicate a subset of
samples that are close to some (not necessarily the same) true cluster. Can we recover the
true clusters given such a distribution D?

To begin with, D may not have information about all clusters since it may just be
supported on a proper subset of them. We can force D to be informative about all clusters
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by forcing it to use each sample at most 1/k fraction of the times. That is, if you randomly
draw a w ∼ D, then wi = 1 with probability 1/k. Equivalently, we force ED[wi] = 1/k for
every i. Clearly such a distribution exists (namely, the uniform distribution on true clusters)
so this is not a vacuous requirement.

Now, if (by some stroke of luck) we acquired the ability to generate samples distributed
according to D, we can just take k log k samples w ∼ D and obtain a full (approximate)
clustering of the sample. However, we don’t expect to be able to sample from a distribution
D given only its low-degree moments. Thus, the above problem, however artificial it might
appear at this point, is at least non-trivial.

We now make a simple observation that allows us to use only low-degree moments of D
and obtain a good w.

Lemma 4.21. Let X be a (t,∆)-good sample and let D be a distribution supported on w
satisfying Aw. Further, suppose Ew∼D[wi] = 1/k for each i ∈ [n]. Then M = Ew∼D[ww>]
satisfies:

1. for each i, j, 0 6Mi,j 6 1
k
,

2. For any r ∈ [k] and for any i ∈ Cr, Ej∼[n][Mi,j] = 1
k2

, and,

3. For every r ∈ [k], Ei∼Cr,j 6∈Cr [Mi,j] 6 kδ.

Proof. Let’s derive two simple consequences from the hypothesis that w satisfies the con-
straints generated by the checks in Test 4.16. Every such w satisfies w2

i = wi for each i.
Thus, every wi > 0 and so for every pair i, j, wiwj > 0. Taking expectations w.r.t. D yields
that M is a non-negative matrix.

Let us now upper bound any entry of the matrix M . Using the Cauchy-Schwarz inequality
and that w2

i = wi for every i, we have that for any i, j,

E[wiwj] 6
√

E[w2
i ]
√

E[w2
j ] =

√
E[wi]

√
E[wj] = 1/k.

Finally, for any i ∈ Cr, (
∑

j∈[n] wiwj) = wi
n
k
. Taking expectations with respect to D yields

that
∑

jMi,j = Ew∼D[wi] = 1
k2

. Next, every w ∈ Rn satisfies k
n

∑n
i=1 wi = 1. Squaring yields:

k2

n2

∑
i,j wiwj = 1, and taking expectations with respect to D implies that Ei,j∼[n][Mi,j] = 1

k2
.

Finally, since every w in the support of D satisfies the checks in Test 4.16, it must satisfy
the conclusion of the Lemma 4.20. Thus, for every w in the support of D, we must have:

k∑
r=1

(w(Cr))
2 > 1− δ

where δ = ∆−2t210tk2(2t)t and w(Cr) = k
n

∑
iwi.

Taking expectations with respect to D, we obtain:

Er∼[k]Ei,j∼Cr [Mi,j] >
1

k2
(1− δ)
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Equivalently,
Er∈[k] [Ei∈Cr,j 6∈Cr [Mi,j]] 6 δ .

Thus, for every r ∈ [k], Ei∈Cr,j 6∈Cr [Mi,j] 6 kδ.

Why is this observation helpful? Observe that M = Ew∼D[ww>] is the (scaled) 2nd (and
thus, low-degree) moment matrix of the distribution D.

From the above lemma, the entries of M are non-negative, and average up to 1/k2.
Further, the average of entries of M that correspond to pairs i, j in different clusters is
at most 1

k2
(1 − δ). Thus, most of the “mass” of M comes from pairs that belong to the

same cluster so it appears that we have some non-trivial information about the true clusters
if we just look at the 2nd moment matrix M . We can then hope to recover the clusters
approximately by looking at the large entries in M .

Let’s formalize this next and obtain a “rounding” algorithm that takes distributions D
as above and outputs an approximate clustering of X.

Algorithm 4.22 (Rounding Algorithm for Distributions).

Given: A (t,∆)-good sample X with true clusters C1, C2, . . . , Ck. A distribution D
satisfying Aw and EDwi = 1

k
for every i.

Output: A partition of X into an approximately correct clustering Ĉ1, Ĉ2, . . . , Ĉk.

Operation: For M = Ew∼D[ww>], repeat for 1 6 ` 6 k:

1. Choose a uniformly random row i of M .

2. Let Ĉ` be the largest n
k

entries in the i-th row of M .

3. Remove the rows and columns with indices in Ĉ`.

Lemma 4.23. Let X, D satisfy the hypothesis of Lemma 4.21. Fix any η > 0. Choose
t = O(log(k) + log(1/η)) so that δ < η2

k6
. Then, with probability at least 0.99, Algorithm finds

a collection of k subsets C ′1, C
′
2, . . . , C

′
k so that for each r ∈ [k], |Cr ∩ C ′r| > (1− η)|Cr|.

Proof. Fix any cluster Cr. Call an entry of M “large” if it exceeds η
k2

. We will analyze
where the large entries in a typical row i ∈ Cr of M come from. Using part (1) and (2) of
Lemma 4.21, we obtain that for any η > 0, the fraction of entries in the i-th row that exceed
η/k2 is at least (1− η)/k. Thus, each row of M has at least (1− η)/k fraction of its entries
large.

On the other hand, using part (3) of Lemma 4.21 along with Markov’s inequality, we
obtain that with probability at least 1− 1/k2 over the choice of a uniformly random choice
of i ∈ Cr, Ej 6∼i[Mi,j] < k3δ. Call all i ∈ Cr for which this holds “good” rows. Since δ is
chosen so that k3δ < η2/k3, for each good row, again by Markov’s inequality, the fraction of
j 6∼ i such that Mi,j > η/k2 is at most η/k. Thus, for any good row in Cr, if we take the
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indices j corresponding to the largest n
k

entries (i, j) in M , then, at most η fraction of such
j are not from Cr. Thus, if we pick a uniformly random row in Cr and take the largest n

k

entries in that row, then, we obtain a subset of n
k

points that intersects with Cr in (1 − η)
fraction of the points.

It’s now easy to finish the analysis of the rounding algorithm. Our rounding algorithm
chooses a random row of M , collects n

k
largest entries in that row and returns this set as

a cluster. It then repeats the process on remaining rows. By the above argument, each
iteration succeeds with probability 1− 1/k2. Thus, by a union bound, all iterations succeed
with probability at least 1− 1/k.

4.3.4 Efficient Algorithms via SoS-ized Certifiability

We are now finally ready to obtain an efficient algorithm for finding approximate clustering
of Gaussian mixture data. In the previous section, we relied only on the existence of a
certifiability test in order to give an inefficient algorithm. Here, we will use that the soundness
of the certifiability test has a low-degree SoS proof in order to get an efficient version of the
algorithm presented in the previous section.

While this part is relatively technical, it is important to note that it is not problem-
specific and thus applicable more generally to average-case algorithm design. Indeed, most
of the ideas appearing in this section are employed in most (if not all) known results that
use the SoS method for average-case algorithm design.

Pseudo-distributions satisfying Aw In order to start out, let’s observe the key inefficient
piece in the previous section’s algorithm is that it is hard to find a distribution (even its
low-degree moments) supported on w satisfying Aw. We will relax this step and instead
find a low-degree pseudo-distribution satisfying Aw instead. In Section 3.2.2.2, we showed
that unlike distributions, finding low-degree pseudo-distributions approximately satisfying a
system of polynomially many constraints can be done in polynomial time.

Unfortunately, Aw actually has an infinitely large number of bounded moment con-
straints, of the form one for each v ∈ Rd! Here, we will rely on an important and generally
applicable idea that allows replacing such infinitely many constraints by polynomially many
by relying on the existence of low-degree SoS proofs for the constraint system itself.

Certifiable Subgaussianity In the present context of bounded moment inequalities, this
idea requires that the underlying distribution (Gaussian for us) satisfy a certain concentration
property called as certifiable subgaussianity .

Definition 4.24 (Certifiably SubGaussian Distributions). A distribution D on Rd is said
to be k-certifiably C-subGaussian, if there is a degree k SoS proof of the following uncon-
strained polynomial inequality in variables v1, v2, . . . , vd: ED〈x, v〉k 6 (Ck)k/2(ED〈x, v〉2)k/2.

In notation, we write: k

v {ED〈x, v〉k 6 (Ck)k/2(ED〈x, v〉2)k/2
}

.
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Certifiable subgaussianity asserts that the empirical k-th moments of D are bounded a la
subGaussian distributions and that this bound has a SoS proof of degree k. Observe that the
definition is invariant under linear transformations – that is, if an Rd-valued random variable
X has a k-certifiably C-subGaussian distribution, then so does any linear transformation AX
of it for any matrix A ∈ Rd×d.

Conveniently for us, a large enough sample of D inherits certifiable subgaussianity of D.

Lemma 4.25 (Certifiable Subgaussianity Under Sampling). Let D be k-certifiably C-
subGaussian. Let Y be an i.i.d. sample from D of size n > Θ(dk). Then, the uniform
distribution on Y is k-certifiably 2C-subGaussian.

Multivariate Gaussian distributions are k-certifiably 1-subGaussian for all k.

Lemma 4.26 (Certifiable Subgaussianity of Gaussians). For every k and any positive
semidefinite Σ ∈ Rd×d,

k

v {EN (0,Σ)〈x, v〉k 6 kk/2(EN (0,Σ)〈x, v〉2)k/2
}
.

Proof. First observe that EN (0,Σ)〈x, v〉k = αk(EN (0,Σ)〈x, v〉2)k/2 for αk = k!! < kk/2 for all
even k (and 0 otherwise). The proof then follows by noting that all polynomial identities of
degree k have degree k SoS (or even Sherali-Adams) proofs.

More generally, certifiable subgaussianity is satisfied by a much broader family of dis-
tributions including all discrete product distributions with subGaussian marginals and all
distributions that satisfy a Poincaré inequality (see [90]). This latter class, in particular, in-
cludes all strongly log-concave distributions. We will omit this discussion in this monograph.

Succint Representation of Aw via Certifiable Subgaussianity Certifiable subgaus-
sianity allows us to compress the infinitely many bounded moment constraints in (4.3). The
key idea is that whenever a family of constraints are expressible as a single polynomial
inequality that has a SoS proof, then we can write down an equivalent system of polyno-
mially many (with the degree of the polynomial depending on the degree of the SoS proof)
constraints at the cost of introducing polynomially many additional variables.

While we will largely stick to our current application, this technique is an important
idea in algorithm design based on SoS. It can be seen as a principled way to convert “for
all” quantified statements into “there exist” quantified statements and thus can be seen as
a limited version of quantifier elimination within SoS.

We will start by describing a special case that is easily understandable before discussing
the version needed for our algorithm.

Lemma 4.27 (Quantifier Elimination for Quadratic Forms). Let

F = {A ∈ Rd×d|A = A> and ∀v ∈ Rd, v>Av 6 ‖v‖2
2} ,

and
B = {A|A = A> and ∃Q ∈ Rd×d, I − A = QQ>} .

Then, B = F .
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Before giving the simple proof of this fact, let’s clarify what it states. First, observe
that F is a system of constraints with a “for all” quantifier while B, a single constraint with
a “there exists” quantifier. Next, observe that B, as a constraint system, has an extra d2

variables (each entry of the matrix Q). And finally, observe that I −A = QQ> is a equality
of matrices and opens up into a system of d2 polynomial equalities, one for each entry of the
matrix. Each such inequality is a quadratic equation in the variables Q. Thus, the lemma
immediately gives a way to replace an infinitely many constraints in F by d2 constraints in
B by introducing d2 extra variables.

Proof. The proof uses some elementary linear algebra. First, observe that v>Av> + v>(I −
A)v = ‖v‖2. If v>Av 6 ‖v‖2 for all v, then, v>(I − A)v > 0 for all v and thus, I − A is
positive semidefinite. Thus, we can write the Cholesky decomposition I − A = QQ> for
some d× d matrix A. Rearranging yields:

‖v‖2 − v>Av = ‖Qv‖2 =
∑
i6d

〈qi, v〉2 , (4.5)

where qi are the rows of Q.
By the above reasoning, we have: F = {A | ∃Q ∈ Rd×d ∀v ∈ Rd ‖v‖2 − v>Av = ‖Qv‖2}.

A priori, the RHS above appears to have made no progress - we have introduced an extra d2

variables Q and seem to still retain infinitely many constraints – one for each v ∈ Rd. Observe
however that the RHS of (4.5) states that the quadratics polynomials ‖v‖2−v>Av and ‖Qv‖2

are equal for all v. This is possible iff the two polynomials have the same coefficients. The
equality of coefficients then allows us to eliminate v and obtain an equivalent system of(
d
2

)
+ d different equality constraints.
In the present case, we can do this explicitly and obtain the matrix equality I−A = QQ>

that translates into
(
d
2

)
+ d equality (for each entry of the matrices up to symmetry). This

yields B and completes the proof.

To generalize the above idea, observe that (4.9) is an SoS proof of the non-negativity of
the polynomial ‖v‖2 − v>Av. Whenever there is an SoS proof, we can simply convert this
inequality constraint into a equality of two matrices which then translates into a system of
equality constraints, one for each entry of the corresponding matrices. Thus, an SoS proof
allows us to eliminate the vectors v and obtain a succinct representation of constraint system
of the form ∀v ∈ Rd, p(v) > 0.

In the present situation, our polynomial p(v) = (16t)t‖v‖2t − k
n

∑
iwi〈xi − µ̂, v〉2t. When

w indicates a true cluster Ci, the set indicated by it is an i.i.d. sample from a Gaussian
distribution. From Lemmas 4.26 and 4.25, uniform distribution on Ci is k-certifiably 2-
subGaussian. Thus, when w indicates a true cluster, we know that there’s a SoS proof of

non-negativity of p(v). Such a proof is of the form: p(v) =
∑d2

i=1〈qi, v⊗t〉2. We can now repeat
the argument above to introduce variables for qi and eliminate v to obtain polynomially many
constraints that capture the moment bounds.
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We now make the above discussion concrete. First, let’s introduce the following new
constraint system.

Bw,Q :



∑n
i=1 wi =

n

k
∀i ∈ [n] , w2

i = wi
k

n

∑
i6n

wi〈xi − µ̂, v〉2t + ‖Qv⊗t‖2 = (16t)t

k

n

∑
i6n

wixi = µ̂


(4.6)

Observe that even though we have infinitely many constraints in the above, we can eliminate
v and replace them by 6 d2t equality constraints. We do not do this explicitly for the sake
of readability. Thus, Bw,Q is a system of constraints in d2t + n variables and d2t + poly(n)
constraints as we desired.

Feasibility of Bw,Q Before proceeding, we must ensure that the true cluster indicators are
solutions to Bw,Q. For Aw, we established this when we proved the completess of Test 4.16.
Here, we will prove a similar result for Bw,Q.

First, we will make our notion of (t,∆)-good samples a bit more strict.

Definition 4.28 (Certifiably Good Sample). A k-partitioned X = C1 ∪ C2 ∪ . . . ∪ Ck ⊆ Rd

into clusters of equal sizes is a (t,∆)-certifiably good sample if for µ̂i = k
n

∑
j∈Ci xj, we have

‖µ̂i − µ̂j‖2 > ∆ whenever i 6= j and for every j 6 k,

k

v

k

n

∑
i∈Cj

〈xi − µ̂j, v〉2t 6 (16t)t‖v‖2t

 .

Using Lemma 4.25 and 4.26, we immediately have:

Lemma 4.29 (Certifiable Convergence of Moments). Let X = C1∪C2∪. . . Ck where each Ci
is a i.i.d. sample of size n/k from N (µi, Id) satisfying ‖µi−µj‖2 > ∆ whenever i 6= j. Then,
X is a (t,∆ − δ)-certifiably good sample whenever n > d2t k

δ2
Θ(log(k/η)) with probability at

least 1− η.

The above immediately implies that Bw,Q is feasible – in that, true clusters satisfy the
constraints in Bw,Q. This can be thought of as SoS version of our completeness statement
from before.

Sum-of-Squares Proof of Certifiability Finally, in order to construct an analog of the
analysis of the inefficient algorithm 4.22, we need a SoS version of the soundness statement.
Towards this, we will first phrase the certifiability as a statement about a polynomial in-
equality in indeterminates w1, w2, . . . , wn that holds whenever the wis satisfy the constraint
system Aw of polynomial inequalities appearing in the checks of our certifiability test.
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Lemma 4.30 (Sum-of-Squares Certifiability). Let X be a (t,∆)-certifiably good sample.
Then, for w(Cr) = k

n

∑
i∈Cr wi and δ = ∆−2t210tk3(256t)t,

Bw,Q 2t

v,w

{∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t 6 k3 (512t)t

∆2t
‖v‖2t

}
. (4.7)

for every integer t.

To prove this “SoS-version” of the soundness of certifiability test, we will show that
each line of the proof of Lemma 4.20 is a polynomial inequality with a low-degree SoS
proof. By using simple facts about composition of SoS proofs, we will thus have a proof of
Lemma 4.30. Recall that all the inequalities in our proof of Lemma 4.20 used the “almost
triangle inequality”. The proof of the SoS-version of Lemma 4.20 will rely on the following
“SoS-ization” of this inequality.

Lemma 4.31 (Almost Triangle Inequality). For any k ∈ N,

2k

a,b
(a+ b)2k 6 2k−1(a2k + b2k) .

Our proof of this will rely on SoS-ization of the AM-GM inequality. The first SoS proof
for the AM-GM inequality was given by Hurwitz [70] in 1891. There are elementary proofs
known now (see for example, Appendix A of [19]).

Fact 4.32 (SoS AM-GM Inequality). For polynomials w1, w2, . . . , wn,

n
w1,w2,...,wn

{(
w1 + w2 + · · ·+ wn

n

)n
>
∏
i6n

wi

}
.

Proof of Lemma 4.31. Using the identity, 2(a2 + b2)− (a+ b)2 = (a− b)2, we have:

2

a,b {
2(a2 + b2)− (a+ b)2 > 0

}
.

Iteratively using this argument k times gives:

2k

a,b {
2k(a2 + b2)k − (a+ b)2k > 0

}
. (4.8)

Now, by binomial expansion, (a2 + b2)k =
∑k

i=0

(
k
i

)
a2ib2k−2i. By Lemma 4.32 applies to

a2ib2k−2i, we have that for every 0 6 i 6 k,

2k

a,b

{(
2i

2k
a+

2k − 2i

2k
b

)2k

> a2ib2k−2i

}
.
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Thus,

2k

a,b

{∑
06i6k

a2ib2k−2i 6
∑

06i6k

(
k

i

)(
2i

2k
a2k +

2k − 2i

2k
b2k

)}
,

or,

2k

a,b

{∑
06i6k

a2ib2k−2i 6
∑

06i6k

(
k

i

)(
1

2
a2k +

1

2
b2k

)
6 2k−1(a2k + b2k)

}
.

Combining with (4.8) completes the proof.

We can now prove Lemma 4.30.

Proof of Lemma 4.30. Let w(Cr) stand for the linear polynomial
∑

i∈Cr wi in w for every
r 6 k. We will use the SoS-ized almost triangle inequality to show:

2t

v,w

{∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t 6 k
24t

∆2t

(
1

n

n∑
i=1

〈xi − µC(i), v〉2t +
1

n

n∑
i=1

wi〈xi − µ(w), v〉2t
)}

.

(4.9)
Let us first complete the proof assuming (4.9). First, we can have a SoS proof upper bounding
the two terms on the RHS above. Observe that, 1

n

∑n
i=1〈xi−µC(i), v〉2t = 1

k

∑
j6k

k
n

∑
i∈Cj〈xi−

µj, v〉2t‖v‖2t. Since X is (t,∆)-certifiably good, we must have:

2t
v

{
1

n

n∑
i=1

〈xi − µC(i), v〉2t 6 (16t)t‖v‖2t

}
. (4.10)

Next, we also have:

Bw,Q 2t

w,v

{
k

n

n∑
i=1

wi〈xi − µ(w), v〉2t 6 (16t)t‖v‖2t

}
. (4.11)

Combining the above two bounds with (4.9), we have the conclusion:

Bw,Q 2t

v,w

{∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t 6 k3 (512t)t

∆2t
‖v‖2t

}
. (4.12)

Let us now complete the proof of (4.9). By the SoS version of the almost triangle
inequality (Lemma 4.31), we have:

2t

w,v

{
1

∆2t

∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t 6
22t−1

∆2t

∑
r 6=r′6k

w(Cr)w(Cr′)

(
〈µr − µ(w), v〉2t + 〈µ(w)− µr′ , v〉2t

)}
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2t

w,v

{
1

∆2t

∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t 6
22t

∆t

∑
r6k

w(Cr)(µr − µ(w))2t

}
.

Substituting w(Cr) =
∑

i∈Cr wi and applying the almost triangle inequality again, we have:

2t

w,v

{
1

∆2t

∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t 6
22t

∆t

k

n

n∑
i=1

wi〈µC(i) − µ(w), v〉2t
}

2t

w,v

{
1

∆2t

∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t 6
22t

∆t
· k22t−1

n

n∑
i=1

wi
(
〈xi − µC(i), v〉2t + 〈xi − µ(w), v〉2t

)}
.

Using the identity wi + (wi − w2
i ) + (wi − 1)2 = 1, we have:

Bw,Q 2
w {wi 6 1} .

We can thus conclude that,

Bw,Q 2t

w,v

{
1

∆2t

∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t

6 k
22t

∆2t

(
1

n

n∑
i=1

〈xi − µC(i), v)〉2t +
1

n

n∑
i=1

wi〈xi − µ(w), v〉2t
)}

.

This completes the proof.

Efficient Algorithm and Analysis We can now describe an efficient analog of Algo-
rithm 4.22.

Algorithm 4.33 (Efficient Clustering Algorithm).

Given: A (t,∆)-good sample X with true clusters C1, C2, . . . , Ck.

Output: A partition of X into an approximately correct clustering Ĉ1, Ĉ2, . . . , Ĉk.

Operation:

1. Find a degree 2t pseudo-distribution D satisfying Bw and satisfying Ẽwi = 1
k

for every 1 6 i 6 n.

2. For M = Ẽw∼D[ww>], repeat for 1 6 ` 6 k:

(a) Choose a uniformly random row i of M .

(b) Let Ĉ` be the largest n
k

entries in the i-th row of M .
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(c) Remove the rows and columns with indices in Ĉ`.

The analysis of our inefficient algorithm 4.22 relied on the simple properties of the second
moment matrix of D presented in Lemma 4.21. To analyze our efficient algorithm above,
we will give the analog of Lemma 4.21 and prove the same properties for the 2nd moment
matrix of the pseudo-distribution D. This will finally finish the full analysis of our algorithm.

Lemma 4.34. Let X be a (t,∆)-certifiably good sample and let D be a pseudo-distribution
of degree at least 2t on w,Q satisfying Bw,Q. Further, suppose ẼD[wi] = 1/k for each i ∈ [n].
Then M = Ew∼D[ww>] satisfies:

1. for each i, j, 0 6Mi,j 6 1
k
,

2. For any r ∈ [k] and for any i ∈ Cr, Ej∼[n][Mi,j] = 1
k2

, and,

3. For every r ∈ [k], Ei∼Cr,j 6∈Cr [Mi,j] 6 kδ.

In our analysis, we will use the following Cauchy-Schwarz inequality for pseudo-
distributions.

Proposition 4.35 (Cauchy-Schwarz Inequality). Let f, g be polynomials of degree at most
k in indeterminate x. Then, for every pseudo-distribution D on x of degree at least 4k, we
have:

ẼD[fg] 6
√

ẼD[f 2]

√
ẼD[g2] .

Proof. First suppose Ẽ[g2] = 0. For any c > 0, we have Ẽ[(cf −g)2] > 0. Expanding out and
using linearity and rearranging, this gives 2c Ẽ[fg] 6 c2 Ẽ[f 2] or Ẽ[fg] 6 c/2 Ẽ[f 2]. Taking
limits as c → 0 yields that Ẽ[fg] 6 0. A similar argument starting with Ẽ[(cf + g)2] > 0
yields that Ẽ[fg] > 0. Together, we obtain that Ẽ[fg] = 0. This completes the proof in this
case.

Now suppose Ẽ[f 2], Ẽ[g2] > 0. Let f ′ = f/
√

Ẽ[f 2] and g′ = g/
√

Ẽ[g2] and Ẽ[f 2] > 0.

Then, Ẽ[(f ′ − g′)2] > 0 implies that Ẽ[f ′g′] 6 1
2
(Ẽ[f ′2] + Ẽ[g′2]) = 1. Plugging back, we

obtain Ẽ[fg] 6
√
Ẽ[f 2]

√
Ẽ[g2] as required.

Proof. We have:
Bw,Q 4

w
wiwj = w2

iw
2
j .

Since D is a pseudo-distribution of degree at least 4, we must have: Ẽ[wiwj] = Ẽ[w2
iw

2
j ] > 0.

This proves that M is a non-negative matrix.
Let us now upper bound any entry of the matrix M . Using Cauchy-Schwarz inequality

for pseudo-distributions and that w2
i = wi for every i, we have that for any i, j,

ẼD[wiwj] 6
√
ẼD[w2

i ]
√

ẼD[w2
j ] =

√
Ẽ[wi]

√
Ẽ[wj] = 1/k .
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Finally, for any i ∈ Cr, we have

Bw,Q 2
w

∑
j∈[n]

wiwj = wi
n

k

 .

Taking pseudo-expectations yields that
∑

jMi,j = ẼD[wi] = 1
k
. Next,

Bw,Q 2
w k

n

n∑
i=1

wi = 1 .

Squaring yields:

Bw,Q 2
w k2

n2

∑
i,j

wiwj = 1 .

Taking pseudo-expectations w.r.t D implies that 1
n2

∑
i,j6n[Mi,j] = 1

k2
.

Finally, using Lemma 4.30,

Bw,Q 2t

v,w

{∑
r 6=r′

w(Cr)w(Cr′)〈µr − µr′ , v〉2t 6 k3 (512t)t

∆2t
‖v‖2t

}
. (4.13)

Taking pseudo-expectations with respect to D, we have:

k∑
r=1

ẼD w2(Cr) > 1− δ

where δ = ∆−2tk3(512t)t and w(Cr) = k
n

∑
iwi. Taking expectations with respect to D, we

obtain:

Er∼[k]Ei,j∼Cr [Mi,j] >
1

k2
(1− δ)

Equivalently,
Er∈[k] [Ei∈Cr,j 6∈Cr [Mi,j]] 6 δ .

Thus, for every r ∈ [k], Ei∈Cr,j 6∈Cr [Mi,j] 6 kδ.
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Chapter 5

Lower Bounds for Sum-of-Squares

In this Chapter, our main focus will be to present the linear lower bound on the degree of
SoS refutations of random 3XOR equations (Section 5.1). Then in Section 5.2, we give a
brief survey of other SoS lower bounds, and applications.

5.1 3XOR

In this Section, we present the result by Grigoriev [57] and independently by Schoenbeck
[130], giving linear lower bounds on the SoS degree of refuting random 3XOR equations.

Definition 5.1 (Random 3XOR). A random 3XOR instance φ over x1, . . . , xn is defined as
follows. Let m = O(n). Choose m random mod 2 equations xi + xj + xk = bijk, where i, j, k
are chosen randomly without replacement from [n], and bijk ∈ {0, 1} is also chosen randomly.

The complexity of solving a system of linear equations exactly is in P. In terms of
approximate solutions, a random solution is expected to satisfy at least half of the equations.
H̊astad proved that this is essentially optimal, unless P equals NP. In contrast, we will
prove that SoS requires maximal (linear) degree even to determine whether a random 3XOR
instance is satisfiable or not.

Theorem 5.2. Let φ be a random 3XOR instance over x1, . . . , xn with m = cn equations
for c > 0 sufficiently large. Then with high probability, φ is unsatisfiable and requires SoS
refutations of degree Ω(n).

It will simplify the argument considerably to change basis from {0, 1} to {−1, 1}. Thus
for the rest of this section, we will convert φ into an equivalent set of multilinear monomial
equations over {−1, 1} as follows. Given φ as defined above, apply the linear transformation
1− 2xi, 1− 2bijk to each equation to obtain multilinear monomial equations of the form:

xixjxk = bijk bijk ∈ {±1}.

First, we show that a random 3XOR instance is unsatisfiable with high probability.
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Lemma 5.3. Let φ be an instance of 3XOR on n variables with m = cεn constraints (for
some constant cε depending only on ε) be chosen as follows: for each constraint we choose
i, j, k ∼ [n], bijk ∼ {±1} i.i.d. Then with probability at least 1 − 2−n, every assignment
α ∈ {±1}n satisfies at most (1

2
+ ε)m constraints, where the probability is over the choice of

φ.

Proof. For a fixed α ∈ {±1}n we let Y α
j be the event that the j-th constraint is satisfied by

x = α and Y α =
∑

j Y
α
j be the number of constraints satisfied by x = α. By construction

of the constraints, for a fixed α each Y α
j is an independent Bernoulli random variable with

expectation 1
2
. Therefore a standard Chernoff bound implies

P
φ

[
Y α >

(1

2
+ ε
)
m
]
< 2O(−ε2m) ∀α ∈ {±1}n,

and so by a union bound on all x

P
φ

[
∃α ∈ {±1}n | Y α >

(1

2
+ ε
)
m
]
< 2n−O(ε2m).

Choosing m = cεn for an appropriate cε = O( 1
ε2

) makes this probability less than 2−n.

The lower bound for SoS actually gives a reduction from SoS degree lower bounds to
Gaussian width lower bounds, which in turn are equivalent to Resolution width lower bounds.

Definition 5.4 (Gaussian Refutation). Let xS =
∏

i∈S xi, and Let L = {l1 = b1, . . . , lm =
bm} be a set of monomial equations over x1, . . . , xn, where each li is a multilinear degree 3
monomial and bi ∈ {±1}. A Gaussian refutation of L is a sequence of multilinear monomial
equations such that:

1. Each equation is either from L, or follows from two previous equations by: xS =
b1, xS′ = b2 → xS4S′ = b1 · b2.

2. The final equation is 1 = −1.

The width of a Gaussian refutation is the maximum degree of any equation, and the Gaussian
width of L is the minimum width over all Gaussian refutations of L.

Example 5.5. Suppose that L = {x1 = −1, x1x2 = 1, x2x3 = −1, x3 = −1}. Then L
has a degree 2 Gaussian refutation:

1. x1 = −1 (Initial equation)

2. x1x2 = 1 (Initial equation)

3. x2 = −1 (1 and 2)

4. x2x3 = −1 (Initial equation)

5. x3 = 1 (3 and 4)
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6. x3 = −1 (Initial equation)

7. 1 = −1 (5 and 6)

The following canonical procedure determines all monomial equations, L6d that can be
derived from L via width d Gaussian reasoning. Initially D6d is the set of all equations in L.
Repeat the following until no new equations can be generated: Take two equations xS = b1,
xS′ = b2 from D6d and derive xS4S′ = b1b2. If this equation is not already in D6d and has
degree at most d, then add it to D6d. This procedure will converge with D6d equal to L6d.
Thus, L has a width-d Gaussian refutation if and only if −1 = 1 is in L6d.

It is not hard to see that all of the monomial equations in L6d can be derived in degree
d SoS. Remarkably we will show that, for 3XOR, linear combinations of such equations is
essentially all that can be derived in degree d SoS. The following two lemmas imply Theorem
5.2.

Lemma 5.6. Let φ be an instance of 3XOR. Then any SoS refutation of φ has degree equal
to the Gaussian width of φ.

Lemma 5.7. Let φ be a random instance of 3XOR over x1, . . . , xn, with m equations. For
m = O(n) sufficiently large, the Gaussian width of φ is Ω(n).

We first prove Lemma 5.6. Lemma 5.7 is fairly standard, so we will leave its proof until
the end.

Proof. (of Lemma 5.6) Let L be the monomial equations corresponding to φ. We leave
the easy direction (showing that if L has Gaussian width d, then L has an SoS refutation of
degree d) as an exercise. For the harder direction, assume that L does not have a refutation of
degree d, so −1 = 1 is not in L6d. Let xS =

∏
i∈S xi. To prove that there is no SoS refutation

it suffices to define a pseudo-expectation operator Ẽ satisfying the following conditions:

1. Ẽ[xS] is defined for all |S| 6 d, and extends linearly to all Ẽ[P (x)], for P (x) ∈ R[x] of
degree at most d,

2. Ẽ[x2P (x)] = Ẽ[P (x)],

3. Ẽ[1] = 1,

4. Ẽ[xijk] = bijk for all equations xixjxk = bijk ∈ L,

5. M� 0 where MS,T = Ẽ[xS]Ẽ[xT ].

Our pseudo-expectation operator is based on the canonical degree d Gaussian procedure
defined above. Applying the procedure, each (multilinear) monomial xS of degree 6 d is
labelled as determined if xS = −1 or xS = 1 is in D6d. (Note that since we are assuming
−1 = 1 6∈ L, at most one of xS = 1, xS = −1 is in L6d.) Otherwise xS is labelled as
undetermined.
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Our pseudo-expectation operates on degree 6 d monomials as follows: First, we mul-
tilinearize by applying x2

i = 1. This corresponds to forcing all variables to have domain
{±1}, and thus we will have Ẽ[x2

ixS] = Ẽ[xS]. Secondly, if the monomial is determined, then
we set its pseudo-expectation to this value, and otherwise (the monomial is undetermined),
then we set its pseudo-expectation to 0, corresponding to it being set to -1 and 1 each with
probability 1/2. We extend Ẽ to all degree 6 d polynomials by linearity.

Conditions (1)-(4) are satisfied by construction, and thus we only need to show (5), that
the moment matrix M defined by Ẽ is positive-semidefinite. To prove this we exhibit vectors
{vS | S ⊆ [n], |S| 6 d/2} such that for all S, T |S|, |T | 6 d/2, MS,T = v>S vT . That is, the
vectors vS give a Cholesky decomposition of M.

It is important to note that a monomial equation can be derived in more than one way.
For example, the monomial x1x2x3x4 = −1 could also be written as x1x2 = −x3x4. For this
reason, our vectors have to be defined so that for any determined monomial xT , and any
pair S, S ′ such that S 4 S ′ = T , v>S vS′ equals Ẽ[xT ]. To this end, we define an equivalence
relation ∼ on sets of size at most d/2 as follows: S ∼ T iff xS4T is determined. It is not
hard to check that ∼ is an equivalence relation. In particular, if S ∼ T and T ∼ U , then
xS4T = b1 and xT4U = b2 for some b1, b2 ∈ {±1}, and thus xS4T4T4U = xS4U is also defined
with value b1b2.

The vectors will have dimension q, where q is the number of equivalence classes induced
by ∼, and vS ∈ {0,−1, 1}q. Consider S ⊆ [n] with |S| 6 d/2. For equivalence class j with
representative Ij, if S ∼ Ij (so S is in equivalence class j) then S 4 Ij is defined to have
some value b ∈ {−1, 1}, so we define vS,j = b. For all other equivalence classes j′ 6= j, let
vS,j = 0.

We want to show that for every pair S, T ⊆ [n], with |S|, |T | 6 d/2, v>S vT = Ẽ[xS4T ].
First consider the case when S ∼ T . Then S, T are both in some equivalence class j ∈ [q] with
representative element Ij. Thus xS4Ij and xT4Ij are both determined. Say that xS4Ij = b1

and xT4Ij = b2. Then xS,T is also determined and has value b1b2. So by definition, vS,j = b1

and vT,j = b2, and for all other j′ 6= j, vS,j′ = vT,j′ = 0. Therefore, v>S v
>
T = b1b2 = Ẽ[xS4T ].

Next, consider the case where S 6∼ T . Then S 4 T is not defined, so by definition
Ẽ[xS4T ] = 0. Since S and T are in different equivalence classes, for every equivalence class
j, at least one of vS,j and vT,j is 0. Thus v>S vT = 0 as desired.

This gives a Cholesky decomposition ofM and thus we have proven thatM is positive-
semidefinite, to complete the proof.

Proof. (of Lemma 5.7) We first prove using the probabilistic method that the clause-variable
graph corresponding to a random 3XOR instance is highly expanding and thus has large
boundary expansion. Secondly, we show that large boundary expansion implies large width.

A random instance φ gives rise to a clause-to-variable bipartite graph Gφ = (L,R,E): L
consists of m vertices, one for each constraint, R consists of n vertices one for each variable,
and edge (i, j) is present if and only if constraint Ci contains the variable xj. An example
is given in Figure 5.1. Let the neighborhood of constraint j be Γ({j}), and for a subset of
constraints T ⊆ [m], let Γ(T ) be the neighborhood of T in Gφ.
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x1 = −1

x1x2 = 1

x2x3 = −1

x3 = −1

x1

x2

x3

Figure 5.1: Constraint-variable graph GL for the CSP L from Example 5.5.

Definition 5.8 ((t, β)-Expander Graph). G is a (t, β)-expander if for all subsets T ⊆ L,
|T | 6 t, |Γ(T )| > β|T |.

The following lemma shows that random 3XOR instance have good expansion with high
probability.

Lemma 5.9. For m = cεn and any constant δ > 0 there exists a constant η > 0 depending
on δ and cε such that with probability 0.99, the constraint graph Gφ is (ηn, 2− δ)-expanding.

Proof. Let YS be the event that the set S ⊆ [m] of size s 6 ηn has expansion less than 2− δ.
There are at most

(
n

(2−δ)s

)
possible neighborhoods, and each vertex has

(
(2−δ)s

3

)
possible

individual neighborhoods from this total neighborhood, each occurring with probability 1
n3 .

By extension there are
(((2−δ)s

3 )
s

)
possible settings of all the edges on S, each of which occurs

with probability ( 1
n3 )s. Thus we get that

P[YS > 1] 6
(

n
(2−δ)s

)(((2−δ)s
3 )
s

) (
1
n3

)s
6

(
ne

(2−δ)s

)(2−δ)s
((

(2−δ)se
3

)3
1
s

)s
1
n3s

6 C
(
n2−δ

s2−δ
· s2 · 1

n3

)s
6 C

(
sδ

n1+δ

)s
6 C

(
s
n

)δs
n−s

. Taking the sum over all
(
m
s

)
possible S gives us

P[∃S, |S| 6 s | YS > 1] 6 ms · C( s
n
)δsn−s

6 C( s
n
)δs( cεn

n
)s

=
(
cε,δ

s
n

)δs
which is at most 0.01 for s 6 ηn as long as η 6 1

2cε,δ
.
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Definition 5.10 (Boundary Expander). Gφ is a (t, γ)-boundary expander if for all subsets
T ⊆ L, |T | 6 t, |B(T )| > β|T |, where B(T ) is the boundary of Γ(T ) – that is, the set of all
vertices from R with exactly one neighbor in T .

It is not hard to see that if G 3-regular (t, β)-expander graph, then G is a (t, 2β − 3)-
boundary expander. Fix any set S ⊆ L of size s 6 t. Letting the number of edges incident
with S be E(S), we have:

3|S| = E(S)
> |B(S)|+ 2|Γ(S)/B(S)|
= 2|Γ(S)| − |B(S)|
> 2β|S| − |B(S)|

Rearranging, |B(S))| > (2β − 3)|S| as desired.
If we choose δ in our expansion lemma to be strictly less than 0.5, say δ = 0.3, then our

graph will have constant boundary expansion for sets up to the same size. When δ = 0.3
the boundary expansion will be 2(1.7) − 3 = 0.4, and so from here on out we assume that
Gφ is a (ηn, 0.4)-boundary expander.

Let L refer to the monomial equations corresponding to φ. We want to show that any
Gaussian refutation of L has width Ω(n). Let S = {l1, l2, . . . , lq} be a Gaussian refutation of
L. Label each equation li ∈ S with the set Ax(li) ⊆ L of initial equations that were used to
derive li. The size of Ax(li) is a subadditive complexity measure. Viewing the derivation S as
a directed acyclic graph, the initial equations are in L, and thus |Ax(li)| = 1 for each li that
is a leaf/axiom of S. If li and lj derive lk, then |Ax(lk)| 6 |Ax(li)|+ |Ax(lj)|. Finally, since
we assumed that Gφ is a (ηn, .4)-boundary expander, this implies that |Ax(−1 = 1)| > ηn)
since all variables have cancelled out and for any subset of at most ηn initial equations, there
are a lot of boundary variables, so they cannot derive −1 = 1.

Thus by subadditivity there must exist an equation l in the proof such that ηn/3 6
|Ax(l)| 6 2ηn/3. By boundary expansion, there must be at least 0.4|Ax(l)| variables in l
(since boundary variables cannot have cancelled out), and therefore the width of l is Ω(n).

This completes the SoS lower bound for 3XOR, which implies the same lower bound for
SA as well.

5.2 Other SoS Lower Bounds

There is a fairly long history of degree lower bounds preceding and following this result.
Lower bounds for Nullstellensatz refutations were obtained in many papers. (For example,
see [24, 56] and references therein.) Lower bounds for the Polynomial Calculus (a stronger
subsystem of SoS) were then obtained by many works. (i.e., [44, 35, 121].) Grigoriev’s proof
[57] presented in Section 5.1 builds on the earlier lower bounds for random 3XOR equations
that were proven for the Nullstellensatz and Polynomial Calculus [56, 35]. The same lower
bound for 3XOR was also obtained independently by Schoenebeck [130]. There is also a fairly
long history of degree lower bounds known for SA including lower bounds for unsatisfiable
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systems of equations, and in addition a long series of papers proving integrality gaps for SA.
For example, see [50, 29, 4, 41, 47, 103] and references therein.

Building on many on these techniques, a line of work sought to prove lower bounds on SoS
for various NP-hard optimization problems. Schoenebeck [130] proved unconditional lower
bounds for high-degree SoS proofs of several NP-hard combinatorial optimization problems
such as MAX 3SAT and MAX Independent Set. These results follow by fairly straightforward
reductions to the 3XOR lower bound for SoS. Tulsiani [139] gave a general method to do
reductions within the SoS framework and extended Schonebeck’s lower bounds to a large class
of constraint satisfaction problems with pairwise uniform and algebraically linear predicates.
Barak, Chan and Kothari [15] finally extended these lower bounds to all pairwise uniform
predicates. Here we give a simple example, showing how SoS degree lower bounds for 3SAT
can be obtained by a reduction to the 3XOR lower bound.

Corollary 5.11. Let φ be an instance of 3SAT on n variables with m = cεn constraints
(for cε a constant only dependent on ε) chosen as follows: for each constraint we choose
i, j, k ∼ [n], ei, ej, ek ∼ {0, 1} i.i.d. and take our clause to be (xeii ∨ x

ej
j ∨ x

ek
k ), where x0 = x,

x1 = x. Then with probability at least 0.99,

• (Soundness) every assignment α ∈ {±1}n, satisfies at most
(

7
8

+ ε
)
m clauses

• (Completeness) there exists a pseudo-distribution of degree Ω(n) such that in expecta-
tion all clauses of φ are satisfied,

where the probability is over the choice of φ.

Proof. Let φ be our random instance. For the soundness, we leave it as an exercise to the
reader to use the same argument as in the 3XOR case. For completeness, we define φ⊕ to
be a 3XOR instance as follows: for each clause C : (xeii ∨ x

ej
j ∨ x

ek
k ), we have a constraint

C ′ : xixjxk = aijk, where aijk = (−1)ei+ej+ek . This is a random instance of 3XOR, as i, j, k
were chosen i.i.d. and (−1)ei+ej+ek is uniformly distributed over ±1. Thus with probability
0.99 there exists a pseudo-distribution satisifying all constraints in φ⊕. The result follows
by noting that if we transform this pseudo-distribution back to {0, 1} valued variables via
x → 1−x

2
, any assignment in the support of the pseudo-distribution satisfies C ′, and any

assignment satisfying C ′ also satisfies C.

Recently there has been a surge of works for showing SoS lower bounds for average-case
settings. [89] proved a sharp SoS lower bound to precisely characterize the number of clauses
required for refuting a constraint satisfaction problem with a given predicate. Following a
sequence of work [104, 67], Barak et. al. [17] proved an optimal lower bound for the planted
clique problem via the new technique of pseudocalibration. This technique was later used
in [68] to prove strong lower bounds for optimizing random degree 3 polynomials over the
unit sphere and Sparse principal component analysis (PCA).
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5.3 Applications of Lower Bounds

So far we have focused on using SoS degree bounds and integrality gaps is to rule out LP
and SDP relaxations of NP-hard optimization problems. Quite surprisingly, SA and SoS
lower bounds can also be used to rule out other very general classes of algorithms. Again
these proofs are reductions, albeit much more sophisticated ones. The reductions we discuss
next are examples of hardness escalation whereby (SA or SoS) lower bounds for computing
(or approximating) a function in a weaker model (LP or SDP) can be lifted via function
composition to obtain lower bounds in a stronger model of computation. Some of the early
examples of lifting include Sherstov’s pattern matrix method [133], and Raz and McKenzie’s
separation of the monotone NC hierarchy [120]. In recent years, many lifting theorems
have been discovered, and have in turn resolved a large number of open problems in circuit
complexity, game theory and proof complexity (i.e., [54, 53, 55, 49]). Unfortunately the ideas
and even the setup for these results are beyond the scope of this manuscript, so we will settle
with at least mentioning some of the main lifting theorems that use SA or SoS lower bounds
as their starting point.

First, SoS degree lower bounds, and more specifically Nullstellensatz degree bounds, have
been used to prove exponential size lower bounds for monotone circuit models. Monotone
span programs capture the power of reasoning using linear algebra in order to compute
monotone functions [74]. [110] prove a lifting theorem between Nullstellensatz degree and
monotone span program size that implies exponential lower bounds on the size of monotone
span programs for several functions (and over all fields). By the known equivalence between
monotone span programs and linear secret sharing schemes, this also implies exponential
lower bounds for the latter.

Secondly, SoS degree lower bounds have been used to prove exponential lower bounds for
extended formulations [140]. More specifically, SA degree bounds were shown to imply lower
bounds for LP extended formulations [38, 88] and similarly, SoS lower bounds were shown
to imply lower bounds for SDP extended formulations [87].

As mentioned above, all of these applications of SoS lower bounds are instantiations of
lifting theorems whereby query complexity lower bounds for a particular search problem are
lifted via composition with an inner gadget, in order to obtain stronger communication com-
plexity lower bounds in the corresponding communication measure. For example, [120, 54]
lift tree-like Resolution height (here the query measure is decision tree height) to determinis-
tic communication complexity, which in turn is known to be equivalent to monotone formula
size. [110] lift Nullstellensatz degree (here the query measure is polynomial degree) to its
corresponding communication measure, which in turn is known to be equivalent to monotone
span program size. And [88] lift SA degree (where the query measure is junta degree ) to
the nonnegative rank of the communication matrix, which in turn is known to be equivalent
to LP extension complexity [140]. Finally, [87] proved via a lifting theorem, that SoS lower
bounds imply SDP extension complexity lower bounds.
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Appendix

Section 2.2.3 Missing Proofs

Claim 2.29. If there is a non-negative linear combination of the constraints of SAd(P)
equalling c0 ∈ R, then there exists a degree d SA derivation of c0 from P.

Proof. Denote by L(y) the SA constraint corresponding to the multilinearization of
Pi(x)JS,T (x) over the placeholder variables y, for Pi(x) > 0 ∈ P ∪ {1 > 0}, and JS,T (x)
a degree at most (d− deg(Pi)) non-negative junta. Suppose that there exists a non-negative
linear combination

ci
∑̀
i=1

L(y) = c0. (5.1)

We can translate this into a sum over the x-variables by replacing each linearized L(y) by
its corresponding term in the x variables, JSi,Ti(x) · Pi(x)

ci
∑̀
i=1

Pi(x) · JSi,Ti(x).

It may no longer be the case that this evaluates to c because terms which previously cancelled
in the linearized sum may no longer cancel in this non-linearized sum. The axioms ±(xi −
x2
i ) > 0 can be used to mimic the linearization. Each term c

∏
i∈[k] x

ai
i can be linearized by

introducing the following telescoping sum

k∑
i=1

(
ai−2∑
`=0

c(xi − x2
i )x

`
i

∏
j>i

x
aj
j

∏
j<i

xj

)
.

Each term in this sum is of the form (x2
i − xi) · JS,T (x) for some S, T with |S|+ |T | 6 d− 2,

and therefore is a valid inequality for SA. The degree of this proof is the maximum degree
of among the constraints being linearized, and therefore is bounded above by d.

Section 3.1 Missing Proofs

Lemma 3.41. For any set of polynomial inequalities P = {P1(x) > 0, . . . , Pm(x) > 0},
SOSd(P) satisfies the following properties:
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1. 0 6 yJ 6 yI 6 1 for every I ⊆ J ⊆ [n] with |J | 6 d.

2.
∑

J⊆T (−1)|J |yS∪J > 0 for every non-negative d-junta JS,T (x).

3. If α ∈ {0, 1}n satisfies every Pi(x) > 0 ∈ P, then α ∈ proj[n] (SOSd(P)) 1 for every
d > deg(P).

Proof. To prove (1), we will use the fact that the diagonal entries of a symmetric PSD
matrix are non-negative (Claim 3.5), and that Md(y) is symmetric PSD. First, let I ⊆ [n]
with |I| 6 d. Observe that yI occurs on the diagonal of Md(y) and therefore yI > 0. To

prove that yI 6 1, define u ∈ R( n6d) as

uK =


1 if K = ∅,
−1 if K = I,

0 otherwise.

Then,

u>Md(y)u =
[
1 −1

] [y∅ yI
yI yI

] [
1
−1

]
= y∅ − yI > 0,

where the final inequality follows because Md(y) � 0. Finally, because y∅ = 1, we have
1− yI > 0. Now, for any I ⊆ J ⊆ [n] with |J | 6 2d, define u′ ∈ Rn2d+1 as

u′K =


1 if K = I,

−1 if K = J ,

0 otherwise.

Then, as before,

u′>Md(y)u′ =
[
1 −1

] [yI yJ
yJ yJ

] [
1
−1

]
= yI − yJ > 0.

Therefore, we have 0 6 yJ 6 yI 6 1.
For (2), let

∑
J⊆T (−1)|J |yS∪T be the y-variable representation of some non-negative d-

junta JS,T (x). Define the vector v ∈ R( n6d) as vI = 1 if yI occurs positively in the junta,
vI = −1 if yI occurs negatively, and vI = 0 if yI is absent from the junta. We claim that

v>Md(y)v =
∑
J⊆T

(−1)|J |yS∪T .

Indeed, multiplying by v is equivalent to multiplying the principal submatrix M of Md(y)
corresponding to rows and columns indexed by {I : vI 6= 0} by the vector v′ := v �vI 6=0.
First, let’s look at the vector v′>M . The first entry of this vector, corresponding to mul-
tiplying v′> by the column indexed by S, is

∑
J⊆T (−1)|J |yS∪T . We claim that the rest of

1Recall that proj[n] (P) =
{
α �y{1},...,y{n} : α ∈ P

}
, the orthogonal projection of P to the first n variables.
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the entries in this vector are 0. To prove this, we will use the following property of juntas
JS,T (x): for any i ∈ T , because T is disjoint from S, we can write∑

J⊆T

(−1)|J |yS∪T =
∑

J⊆T :i∈J

(−1)|J |yS∪J −
∑

J⊆T :i 6∈J

(−1)|J |yS∪J ,

as well as the observation that the only non-zero entries vL are such that S ⊆ L ⊆ S ∪ T .
Now, consider an entry, other than the first, in the vector v′>M . For this entry to be included
in v′>M , it must be non-zero in v>Md(y), and so by the definition of v it must correspond
to a column ofMd(y) indexed by S ∪K for some K ⊆ T with K 6= ∅. Denote this entry by
(v′>M)S∪K , and let i ∈ K ∩ T . Then,

(v′>M)S∪K =
∑
J⊆T

(−1)|J |yS∪T∪K ,

=
∑

J⊆T :i∈J

(−1)|J |yS∪J∪K −
∑

J⊆T :i 6∈J

(−1)|J |yS∪J∪K = 0.

Therefore,

v>Md(y)v = v′>Mv′ =

(∑
J⊆T

(−1)|J |yS∪T , 0, 0, . . . , 0

)
v′ =

∑
J⊆T

(−1)|J |yS∪T > 0,

where the last equality follows because the first entry of v′ is the entry vS = 1.
For (3), let α ∈ {0, 1}n such that Pi(α) > 0 for every Pi(x) > 0 ∈ P . The moment

matrix corresponding to α is defined as M(α)I,J =
∏

i∈I αi
∏

j∈J αj for every |I|, |J | 6 d

with I ∩ J = ∅, and M(α, Pi) is defined analogously. Extend α to an
(
n
6d

)
-dimensional

vector α̃ by defining α̃I =
∏

i∈I αI . Then, for any v ∈ R( n6d),

v>M(α̃)v = v>α̃α̃>v = (v>α̃)2 > 0,

and so M(α̃) � 0. To see that M(α̃, Pi) � 0, define the vector p where pI = Pi(α)
∏

j∈I αj
for |I| 6 d − deg(Pi)/2, and observe that pp> = M(α̃, Pi). Therefore v>M(α̃, Pi)v =
(v>p)2 > 0.
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