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Abstract

The two-way quantum/classical finite automaton (2QCFA), defined by Ambainis and Watrous,
is a model of quantum computation whose quantum part is extremely limited; however, as they
showed, 2QCFA are surprisingly powerful: a 2QCFA, with a single qubit, can recognize, with one-
sided bounded-error, the language Leq = {ambm|m ∈ N} in expected polynomial time and the
language Lpal = {w ∈ {a, b}∗|w is a palindrome} in expected exponential time.

We further demonstrate the power of 2QCFA by showing that they can recognize the word
problems of a broad class of groups. In particular, we first restrict our attention to 2QCFA that:
(1) have a single qubit, (2) recognize their language with one-sided bounded-error, and (3) have
transition amplitudes which are algebraic numbers. We show that such 2QCFA can recognize the
word problem of any finitely-generated virtually abelian group in expected polynomial time, as well
as the word problem of a large class of linear groups in expected exponential time. This latter class
includes all groups whose word problem is a context-free language as well as all groups whose word
problem is known to be the intersection of finitely many context-free languages. As a corollary, we
obtain a direct improvement on the original Ambainis and Watrous result by showing that Leq can
be recognized by a 2QCFA with better parameters.

We also consider those word problems which a 2QCFA can recognize with one-sided unbounded -
error, and show that this class includes the word problem of more exotic groups such as the free
product of any finite collection of finitely-generated free abelian groups. As a corollary of this result,
we demonstrate that a new class of group word problems are co-stochastic languages. Lastly, we
exhibit analogous results for 2QCFA with any finite number of qubits or with more general transition
amplitudes, as well as results for other classic QFA models.

1 Introduction

1.1 Background

The theory of quantum computation has made amazing strides in the last several decades. Landmark
results, like Shor’s polynomial time quantum algorithms for integer factorization and computing the
discrete logarithm [41], Grover’s algorithm for unstructured search [18], and the linear system solver of
Harrow, Hassadim, and Lloyd [19], have provided remarkable examples of natural problems for which
quantum computers seem to have an advantage over their classical counterparts. These theoretical
breakthroughs have provided strong motivation to construct quantum computers. However, while
significant advancements have been made, even the most advanced experimental quantum computers
that exist today are still quite limited, and are certainly not capable of implementing, on a large scale,
algorithms designed for general quantum Turing machines. This naturally motivates the study of more
restricted models of quantum computation.

In this paper, our goal is to understand the computational power of a small number of qubits,
especially the power of a single qubit. To that end, we study the two-way quantum/classical finite
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automaton (2QCFA) introduced by Ambainis and Watrous [2]. Informally, a 2QCFA is a two-way
deterministic finite automaton (2DFA) that has been augmented with a quantum register of constant
size, i.e., a constant number of qubits. The quantum part of the machine is extremely limited;
however, the model is surprisingly powerful. In particular, Ambainis and Watrous [2] showed that a
2QCFA, using only one qubit, can recognize, with bounded-error, the language Leq = {ambm|m ∈ N}
in expected polynomial time and the language Lpal = {w ∈ {a, b}∗|w is a palindrome} in expected
exponential time. As Leq and Lpal are both non-regular, this clearly demonstrated that 2QCFA are
a more powerful model than ordinary 2DFA, which recognize precisely the regular languages [37].
Moreover, as it is known that two-way probabilistic finite automata (2PFA) can recognize Leq with
bounded-error in exponential time [15], but not in subexponential time [17], and cannot recognize Lpal
with bounded-error in any time bound [14], this result also demonstrated the superiority of 2QCFA
over 2PFA.

The 2QCFA model is a particular special case of the quantum finite automata (QFA) model. Many
(significantly) different variants of QFA have been defined (see for example [7, 11, 21, 25, 29, 32, 35, 48],
see the excellent survey [3] for a complete history), which led to many seemingly contradictory claims
about the power of QFA, ranging from results that they can only recognize a certain proper subset of
the regular languages, with the particular subset varying with the model, to being able to recognize
precisely the regular languages, to being able to recognize wide assortments of different extremely
powerful classes of languages. However, what truly sets the 2QCFA model apart is that it is realistic,
in two distinct senses. Firstly, the 2QCFA constructed by Ambainis and Watrous [2] that recognize Leq
and Lpal operate under the same limitations that constrain real physical (small) quantum computers:
as already noted, these 2QCFA recognize these languages with bounded-error, and have a quantum
part that consists of only a single qubit; additionally, the transition amplitudes of these 2QCFA are
all efficiently-computable numbers, no unreasonable assumptions are made concerning the precision
of these values, and only a particularly simple type of quantum measurement is allowed. Secondly,
the 2QCFA model does not impose any additional restrictions which are not physically motivated: for
example, the one-way QFA defined by Kondacs and Watrous [25] permitted quantum measurements to
be performed at any time; however, the result of these measurements could only be used to determine
whether or not the QFA halts at any particular step, whereas a 2QCFA is free to use the result of
a quantum measurement in any manner. Therefore, the 2QCFA model provides the ideal setting in
which to explore the power of a small number of qubits.

We investigate the ability of a 2QCFA to recognize the word problem of a group. Informally, the
word problem for a group G involves determining if the product (i.e., combination under the group
operation) of a finite collection of group elements g1, . . . , gk ∈ G is equal to the identity element of
G. Word problems for various classes of groups have a rich and well-studied history in computational
complexity theory, as there are many striking relationships between certain algebraic properties of a
group G and the computational complexity of its word problem WG. This is demonstrated by many
classic results, such as the result of Anisimov [4], which showed that WG is a regular language (REG)
if and only if G is finite, or the result of Muller and Schupp [30] (see also [12]) which showed that WG

is a context-free language (CFL) if and only if WG is a deterministic context-free language (DCFL) if
an only if G is a finitely-generated virtually free group. This latter result is especially remarkable,
as DCFL ( CFL, but there is no group whose word problem witnesses this separation. The landmark
result of Lipton and Zalcstein [27], which showed that the word problem of any finitely-generated
linear group over a field of characteristic 0 is decidable in deterministic logspace (L), has a similarly
intriguing consequence. Namely, while it remains an open question whether or not CFL is contained
in L, there are certainly no groups G for which WG ∈ CFL but WG 6∈ L.

For a quantum model, such as the 2QCFA, word problems for groups are a particularly natural
class of languages to study. In particular, there are several results which show that certain (generally
significantly more powerful) QFA variants can recognize the word problems of particular classes of
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groups (see, for instance, [7, 47, 48]). Moreover, there are many other results concerning the ability
of QFA to recognize certain languages that are extremely closely related to group word problems; in
fact, the languages Leq and Lpal considered by Ambainis and Watrous [2] are each closely related to
the word problem of a particular group.

Fundamentally, the requirement, imposed by laws of quantum mechanics, that the quantum state
of a 2QCFA must evolve unitarily forces the computation of a 2QCFA to have a certain algebraic
structure. Similarly, the algebraic properties of a particular group G impose a corresponding algebraic
structure on its word problem WG. For certain classes of groups, the algebraic structure of WG is
extremely compatible with the algebraic structure of the computation of a 2QCFA; for other classes
of groups, these two algebraic structures are in extreme opposition.

In this paper, we show that there is a broad class of groups for which these algebraic structures
are quite compatible, which enables us to produce 2QCFA that recognize these word problems. We
emphasize that, while substantially more powerful QFA variants have already been shown to recognize
many of these word problems, our results hold for a significantly more limited, and physically realistic
model. We discuss, in detail, the various variants of QFA, and known results concerning their ability
to recognize group word problems. Additionally, as a corollary of our results concerning group word
problems, we obtain a direct improvement on the Ambainis and Watrous result [2] concerning the
parameters of a 2QCFA that recognizes Leq. In an upcoming paper, we explore those group word
problems whose algebraic structure is quite incompatible with that of a 2QCFA, as these problems
are natural candidates for demonstrating an upper bound on the power of 2QCFA and other related
quantum models.

1.2 Statement of the Main Results

We show that, for many groups G, the corresponding word problem WG is recognized by a 2QCFA
with “good” parameters. In order to state these results, we must make use of some terminology and
notation concerning 2QCFA, the word problem of a group, and various classes of groups whose word
problems are of complexity theoretic interest. A full description of the 2QCFA model can be found
in Section 2.1; the definition of the word problem, as well as additional group theory background,
including the definitions of the various classes of groups discussed in this section, can be found in
Section 2.2. The following definition establishes some useful notation that will allow us to succinctly
describe the parameters of a 2QCFA. We use R>0 to denote the positive real numbers.

Definition 1.1. We say that a language L is recognized by a [ε, τ, d,T]-2QCFA, where ε ∈ R>0,
τ : N→ N, d ∈ N, and T ⊆ C, if there is a 2QCFA A for which the following holds.

(a) A accepts all w ∈ L with certainty and rejects all w 6∈ L with probability at least 1− ε.

(b) On an input string w of length n, A runs in expected time O(τ(n)).

(c) A has d quantum basis states.

(d) All transition amplitudes of A belong to T.

The focus on the transition amplitudes of a 2QCFA warrants a bit of additional justification, as
while it is standard to limit the transition amplitudes of a Turing machine in this way, it is common
for finite automata to be defined without any such limitation. Firstly, this restriction is physically
motivated as it is not reasonable to assume that the transition amplitudes of a physical computational
device can have infinite precision; in particular, any model which relies on such infinite precision,
by, for example, making use of transition amplitudes that are non-computable numbers, is not a
physically realizable model. Secondly, while this constraint of physical reasonableness would apply
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just as well to other finite automata models, applying such a constraint would often be superfluous;
for example, the class of languages recognized with bounded-error and in expected time 2n

o(1)
by a

2PFA with no restriction at all on its transition amplitudes is precisely the regular languages [13].
On the other hand, the power of the 2QCFA model is quite sensitive to the choice of transition
amplitudes; a 2QCFA with non-computable transition amplitudes can recognize, with bounded-error
and in expected polynomial time, undecidable languages [38], whereas a 2QCFA that is limited to
algebraic number transition amplitudes can only recognize languages in P ∩ L2, even if permitted
unbounded-error and exponential time [46]. In particular, the algebraic numbers Q are arguably the
“standard” choice for the permitted transition amplitudes of a quantum Turing machine (QTM). It is
desirable for the definition of 2QCFA to be consistent with that of QTMs as such consistency makes
it more likely that techniques developed for a 2QCFA could be applied to QTMs; therefore, Q is
the the natural choice for the permitted transition amplitudes of a 2QCFA. For every group G for
which we can construct a 2QCFA that recognizes the word problem WG with bounded-error, we can
construct a 2QCFA, whose transition amplitudes lie in Q, that recognizes WG with bounded-error. In
fact, our key results remain true even if we restrict the 2QCFA to have transition amplitudes that are
Gaussian rationals (i.e., numbers of the form a + bi, where a, b ∈ Q), but for ease of exposition, and
because algebraic numbers arise “naturally” in quantum computation (e.g., the entries of the 2 × 2
Hadamard matrix are of the form ±1/

√
2), we do not pursue this further specialization here. On the

other hand, we do consider the impact of allowing transition amplitudes in the slightly broader class
C̃ = Q ∪ {eπir|r ∈ (Q ∩ R)}.

We begin with a simple motivating example. For a finite alphabet Σ, a letter σ ∈ Σ, and a word
w ∈ Σ∗, let #(w, σ) denote the number of appearances of σ in w. Then the word problem for the group
Z (the integers, where the group operation is addition) is the language WZ = {w ∈ {a, b}∗|#(w, a) =
#(w, b)}. This language is closely related to the language Leq = {ambm|m ∈ N}; in particular,
Leq = (a∗b∗)∩WZ. More generally, for any positive integer k, the word problem for the group Zk (the
direct sum of k copies of Z) is the language WZk = {w ∈ {a1, b1, . . . , ak, bk}∗|#(w, ai) = #(w, bi), ∀i}.
Using our terminology, Ambainis and Watrous [2] showed that, for any ε ∈ R>0, Leq is recognizable

by a [ε, n4, 2, C̃]-2QCFA1; we note that the same method would easily imply the same result for WZ,
and could be further adapted to produce the analogous result for WZk .

Our first main theorem generalizes and improves upon the above mentioned result of Ambainis and
Watrous [2] in several ways. Recall that the finitely-generated virtually abelian groups are precisely
those groups that have a finite-index subgroup that is isomorphic to Zk, for some k ∈ N, where Z0 = {1}
is the trivial group (i.e., the group with one element); of course, this class of groups (properly) contains
all Zk. We show the following.

Theorem 1.2. There is a (universal, effectively computable) constant C ∈ R>0 for which the following
holds. Suppose G is a finitely-generated virtually abelian group. For any ε ∈ R>0, WG is recognized by
a [ε, n3, 2, C̃]-2QCFA, as well as by a [ε, nC , 2,Q]-2QCFA.

By the above observation about the relationship between WZ and Leq, the following corollary is
immediate.

Corollary 1.2.1. For any ε ∈ R>0, Leq is recognized by a [ε, n3, 2, C̃]-2QCFA, as well as by a
[ε, nC , 2,Q]-2QCFA, for the above constant C ∈ R>0.

Note that the above corollary provides an improvement upon the result of Ambainis and Watrous
[2] concerning the parameters of a 2QCFA for Leq in two distinct senses. Firstly, using the same set
of permissible transition amplitudes, our result has a better expected running time. Secondly, our

1Strictly speaking, Ambainis and Watrous [2] considered a slightly different but “equivalent” set of transition ampli-
tudes; this equivalence will be clarified in Section 5.3
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result allows for the construction of a 2QCFA for Leq that is limited to having algebraic transition
amplitudes, which still runs in expected polynomial time.

Let REG denote the regular languages (languages recognized by a deterministic finite automa-
ton), CFL denote the context-free languages (languages recognized by non-deterministic pushdown au-
tomata), OCL denote the one-counter languages (languages recognized by non-deterministic pushdown
automata where the stack alphabet is limited to a single symbol) and poly−CFL (resp. poly−OCL) de-
note the intersection of finitely many context-free (resp. one-counter) languages. As WG ∈ poly−OCL
if and only if G is a finitely-generated virtually abelian group [23], the following corollary is also
immediate.

Corollary 1.2.2. If WG ∈ poly−OCL, then for any ε ∈ R>0, WG is recognized by a [ε, n3, 2, C̃]-2QCFA,
as well as by a [ε, nC , 2,Q]-2QCFA, for the above constant C ∈ R>0.

In other words, a 2QCFA, with a single qubit, can recognize any of these “multi-counter” languages
in expected polynomial time, where the value of k only affects the constant hidden by the O(·)
notation, but not the degree of the polynomial specifying the expected run-time. Moreover, as WG ∈
poly−OCL∩CFL if and only if WG ∈ OCL if and only if G is a finitely-generated virtually cyclic group
[20, 23], the above corollary exhibits a wide class of non-context-free languages that are recognizable
by a 2QCFA in polynomial time: the word problems WG for any group G that is virtually rank-k free
abelian, for some k ≥ 2 (recall that Zk is the rank-k free abelian group, and, for any finitely-generated
virtually abelian group G, there is a unique k such that G has a finite-index subgroup isomorphic to
Zk).
Remark. Interestingly, the limiting factor on the run-time of the [ε, n3, 2, C̃]-2QCFA for any of the
above word problems (or Leq) is not the difficulty of distinguishing strings in the language from
strings not in the language, but is instead due to the apparent difficulty of using a 2QCFA to produce
a Boolean random variable with a particular (rather extreme) bias. In particular, we make use of the
procedure (from [2]) that allows a 2QCFA, on an input of size n, to generate a Boolean value that is
1 with probability essentially n−1, in time O(n2). If, for some δ ∈ (0, 1), it were possible for a 2QCFA
to produce a Boolean variable that has value 1 with probability n−δ in time t(n), our technique would
immediately yield a [ε, (n+ t(n))nδ, 2, C̃]-2QCFA.

We next consider groups that are built from finite-rank free groups using certain operations. First,
consider the word problem WF2 of the rank 2 free group F2, which is the language over the alphabet
Σ = {a, a−1, b, b−1} defined as follows. For a word x ∈ Σ∗, a matched-pair in x is a 2-element
contiguous subword of x of the form aa−1, a−1a, bb−1, or b−1b. Let x̂ ∈ Σ∗ denote the word obtained
from x ∈ Σ∗ by repeatedly deleting matched-pairs in x (i.e., replacing a matched-pair by the empty-
string) until there are no matched-pairs remaining. Then WF2 consists of precisely those words x
such that x̂ is the empty-string. Notice that WF2 is closely related to the language Lpal = {w ∈
{a, b}∗|w is a palindrome}. In particular, let Γ = {a, b} ⊆ Σ denote the alphabet over which Lpal is
defined, and, for w = w1 · · ·wn ∈ Γ∗, where each wi ∈ Γ, let w = w−1

1 · · ·w−1
n . Then, for any w ∈ Γ∗,

w ∈ Lpal ⇔ ww ∈ WF2 . Ambainis and Watrous [2] showed that, ∀ε ∈ R>0, there is a D ∈ R≥1 such
that Lpal is recognized by a [ε,Dn, 2,Q]-2QCFA, and the same method would show the same result
for WF2 .

More generally, we use Fk to denote the free group of rank k, for any k ∈ N; in particular, F0 is
the trivial group, F1 is the group Z, and, for any k ≥ 2, Fk is non-abelian. We show that the same
result holds for any group built from finite-rank free groups Fk, using certain operations.

Theorem 1.3. Suppose G is virtually a finitely-generated subgroup of a direct product of finitely many
finite-rank free groups. For any ε ∈ R>0, there is an effectively computable constant D ∈ R≥1 such
that WG is recognized by a [ε,Dn, 2,Q]-2QCFA.
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Let Π̂2 denote the class of groups that satisfy the hypothesis of the preceding theorem (we will
explain this choice of notation shortly). Notice that all finitely-generated virtually free groups belong
to Π̂2. As WG ∈ CFL if and only if G is a finitely-generated virtually free group [12, 30], we then
immediately have the following.

Corollary 1.3.1. If WG ∈ CFL, then for any ε ∈ R>0, there is an effectively computable constant
D ∈ R≥1 such that WG is recognized by a [ε,Dn, 2,Q]-2QCFA.

Next, consider the group H = F2 × F2, the direct product of two copies of F2; clearly, H ∈ Π̂2.
However, H is not virtually free, and so WH 6∈ CFL. Moreover, H is not virtually abelian, and so
WH 6∈ poly−OCL. This immediately implies the following corollary.

Corollary 1.3.2. There is a group H, for which WH 6∈ CFL∪poly−OCL, where for any ε ∈ R>0, there
is an effectively computable constant D ∈ R≥1 such that WH is recognized by a [ε,Dn, 2,Q]-2QCFA.

In fact, an even stronger version of the above corollary is true. Consider the classic example, due
to Stallings [42], of a subgroup K of H which is finitely-generated, but not finitely-presented; namely,
K is the kernel of the homomorphism π : H = F2 × F2 → Z, where π takes each free generator
of each copy of F2 to a single generator of Z. All groups G for which WG ∈ CFL ∪ poly−OCL are
finitely-presented, which immediately implies WK 6∈ CFL ∪ poly−OCL. Of course, we have K ∈ Π̂2,
which immediately implies the following corollary.

Corollary 1.3.3. There is a group K, which is finitely-generated, but not finitely-presented (which, in
particular, implies WK 6∈ CFL∪ poly−OCL), where for any ε ∈ R>0, there is an effectively computable
constant D ∈ R≥1 such that WK is recognized by a [ε,Dn, 2,Q]-2QCFA.

Remark. One could, equivalently, define Π̂2 as the closure of the set of finite-rank free groups under
the operations of (finite) direct product, passing to a finitely-generated subgroup, and passing to a
finite-index overgroup. For every group G ∈ Π̂2, it is known that WG ∈ poly−CFL [8]. Moreover, it is
conjectured that Π̂2 is precisely the class of groups whose word problem is in poly−CFL [8] (cf. [10]).

We next consider a broader class of groups. Let N≥1 denote the positive natural numbers, and
let Z(H) denote the center of a group H. For d ∈ N≥1, let U(d,Q) denote the group of d × d
unitary matrices whose entries are algebraic numbers, where the group operation is the usual matrix
multiplication; furthermore, let PU(d,Q) = U(d,Q)/Z(U(d,Q)) denote the d-dimensional projective
unitary group with algebraic number entries. For k ∈ N≥1, let (PU(d,Q))k denote the direct product
of k copies of PU(d,Q).

Theorem 1.4. Suppose G is a finitely-generated group that has a finite-index subgroup that is iso-
morphic to a subgroup of (PU(d,Q))k, for some d ∈ N≥2, k ∈ N≥1. Then for any ε ∈ R>0, there is an
effectively computable constant D ∈ R≥1 such that WG is recognized by a [ε,Dn, d,Q]-2QCFA.

The following corollary highlights a certain significant special case; see Section 2.4 for the notation
and terminology from representation theory used in the statement of this corollary.

Corollary 1.4.1. Suppose G is a finitely-generated group which has a faithful representation ρ : G→
U(d,Q). Then ρ has a (unique, up to isomorphism of representations) set of irreducible subrepre-
sentations {ρj : G → U(dj ,Q)}mj=1 such that ρ ∼= ρ1 ⊕ · · · ⊕ ρm. Let dmax = maxj dj. Then for
any ε ∈ R>0, there is an effectively computable constant D ∈ R≥1 such that WG is recognized by a
[ε,Dn, dmax + 1,Q]-2QCFA.

Remark. There is some overlap between the various classes of groups considered in each of the above
theorems. For example, consider the group Z. For any ε ∈ R>0, Theorem 1.2 implies that WZ
is recognized by a [ε, nC , 2,Q]-2QCFA; as Z = F1, Theorem 1.3 also guarantees the existence of a
2QCFA that recognizes WZ, but with the weaker parameters [ε,Dn, 2,Q]. Similarly, the class of
groups to which Theorem 1.4 applies contains all groups to which the earlier theorems apply.
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In order to state our final main result, as well as to provide appropriate context for the results
listed above, we next define a certain collection of important classes of groups. We write H1 ∗ H2

to denote the free product of groups H1 and H2. We define the classes of groups Σj and Πj , for
each j ∈ N, inductively. First Σ0 = Π0 = {Z, {1}} (i.e., both of these classes consist of the two
groups Z and the trivial group {1}). For each j ∈ N≥1, we define Σj as the collection of all groups
G such that ∃H1, . . . ,Ht ∈ Πj−1, for some t ∈ N≥1, such that G ∼= H1 ∗ · · · ∗ Ht; analogously, we
define Πj as the collection of all groups G such that ∃H1, . . . ,Ht ∈ Σj−1, for some t ∈ N≥1, such
that G ∼= H1 × · · · ×Ht. For example, Π1 = {Zk|k ∈ N} is the finitely-generated free abelian groups
and Σ1 = {Fk|k ∈ N} is the finitely-generated free groups. Note that all groups in all Σj and Πj are
finitely-generated, and also note that the Σj and Πj form a hierarchy in the obvious way. These groups
form a particularly important subclass of a particularly important class of groups: the right-angled
Artin groups (RAAGs). We further define Σ̂j (resp. Π̂j) as the set of all finitely-generated groups
that are virtually isomorphic to a (necessarily finitely-generated) subgroup of some group in Σj (resp.
Πj), which also form a hierarchy in the obvious way.

In particular, Π̂1 is the class of finitely-generated virtually abelian groups, which is (precisely)
the class of groups for which Theorem 1.2 demonstrates the existence of a polynomial-time 2QCFA
for the corresponding word problem. Furthermore, Σ̂1 is the class of finitely-generated virtually free
groups (i.e., those groups with context-free word problem), and the class Π̂2 ) Σ̂1 is (precisely) the
class of groups for which Theorem 1.3 demonstrates the existence of an exponential-time 2QCFA for
the corresponding word problem. We next consider the class Π̂3. While the relationship of this class
to the class of groups to which Theorem 1.4 applies is unclear to us, we can show that the word
problem of any group in this class can be recognized by a 2QCFA with one-sided unbounded -error.
In the following we say a language L is recognized by A with negative one-sided unbounded-error if,
∀w ∈ L, Pr[A accepts w] = 1 and, ∀w 6∈ L, Pr[A rejects w] > 0. We then say that A is an unbounded-
error [τ, d,T]-2QCFA for the language L if a modified version of the the conditions Definition 1.1 are
satisfied, where Definition 1.1(a) is replaced by the condition that A recognizes L with negative one-
sided unbounded-error and Definition 1.1(b) is replaced by the condition that A runs in time O(τ(n))
(rather than expected time O(τ(n))).

Theorem 1.5. For any group G ∈ Π̂3, the word problem WG is recognized by an unbounded-error
[n, 2, C̃]-2QCFA.

Remark. Consider G = Z ∗Z2 ∈ Σ2 ( Π̂3. It is conjectured that WG 6∈ poly−CFL [8] and WG 6∈ coCFL
[24] (where coCFL denotes the class of languages whose complements are in CFL).

While our focus in this paper is certainly the 2QCFA model, with the further restriction to 2QCFA
whose transition amplitudes are all “simple” numbers, we consider other QFA variants, beginning with
2QCFA with no restrictions on their transition amplitudes.

Theorem 1.6. For any finitely-generated group G that has a finite-index subgroup that is isomorphic
to a subgroup of (PU(d))k, for some d ∈ N≥2, k ∈ N≥1, the word problem WG is recognized with
negative one-sided unbounded-error by a 2QCFA with d quantum basis states in time O(n).

We also consider the measure-once one-way quantum finite automata (MO-1QFA) defined by
Moore and Crutchfield [29]. We write D for the class of all groups to which any of the previously
stated theorems apply.

Theorem 1.7. For any group G ∈ D, there is a MO-1QFA that recognizes WG with negative one-sided
unbounded-error.

We say a machine M recognizes a language L with strict cut-point λ ∈ R if ∀w ∈ L, we have
Pr[M accepts w] > λ and ∀w 6∈ L, Pr[M accepts w] ≤ λ. We write S to denote the stochastic
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languages, the class of languages L for which there is a PFA P that recognizes L for some strict
cut-point; we then write coS to denote the class of languages whose complements are in S. Of course,
if a MO-1QFA M recognizes a language L with negative one-sided unbounded-error, then there is a
MO-1QFA M that recognizes its complement L with strict cut-point 0 (i.e., with positive one-sided
unbounded-error), where M is obtained from M by swapping accepting and rejecting states. By [7,
Theorem 3.6], any language accepted by a MO-1QFA with any strict cut-point is stochastic, which
immediately implies the following corollary.

Corollary 1.7.1. For any group G ∈ D, WG ∈ coS.

Remark. For many G ∈ D, the fact that WG ∈ coS was already known; in particular, WZ ∈ coS is a
classic result of Rabin [36], and the fact that WFk ∈ coS was shown by Brodsky and Pippenger [7],
from which one can conclude (using standard arguments from computational group theory, see for
instance [30]) that ∀G ∈ Π̂2, WG ∈ coS However, for G ∈ D \ Π̂2, this result appears to be new.

1.3 Outline of the Paper

The core idea of our approach to solving the word problem of a particular group G is to construct what
we have chosen to call a distinguishing family of representations (DFR) for G. Informally, given a group
G, with identity element 1G, a DFR for G is a “small” collection of “small” unitary representations
of G that, collectively, “strongly” separate 1G from all other g ∈ G. A (unitary) representation of a
(topological) group G is a continuous homomorphism ρ : G→ U(H), where H is a Hilbert space, and
U(H) is the group of unitary operators on H. The Gel’fand-Raikov theorem states that the elements
of any locally compact group G are separated by its unitary representations, i.e., ∀g1, g2 ∈ G there is
some H and some ρ : G→ U(H) such that ρ(g1) 6= ρ(g2). For certain groups, stronger statements can
be made; in particular, one calls a group maximally almost periodic if the previous condition still holds
when H is restricted to be finite-dimensional. The notion of a DFR for a group G is a generalization
of this idea, as it is a collection of a (constant) small number of unitary representations of G, all of
which are into a Hilbert space of (constant) small dimension, such that, for any g ∈ G other than
1G, there is some representation ρ in the collection for which ρ(g) is “far from” ρ(1G), relative to the
“size” of g. This approach of recognizing WG by computing with appropriately chosen representations
of G formed the basis of the landmark result of Lipton and Zalcstein [27] which showed that WG ∈ L
when G is a finitely-generated linear group over a field of characteristic 0; however, the constraints of
quantum computing will require us to make many modifications to their approach.

In Section 3, we formally define DFRs, and construct DFRs for many groups. Our constructions of
DFRs crucially rely on certain results concerning Diophantine approximation, both in the traditional
setting of approximation of real numbers by rational numbers, as well as in a certain non-commutative
generalization, originally proposed by Gamburd, Jakobson, and Sarnak [16]; we study Diophantine
approximation in Section 3.2.

In Section 4, we use a DFR for a group G to construct a 2QCFA that recognizes WG, where the
parameters of the DFR directly determine the parameters of the 2QCFA. In fact, we show that it
is also possible to use a DFR for G to produce a 2QCFA that recognizes WH , for certain groups H
related to G; this observation will allow us, in certain cases, to improve the parameters of the 2QCFA.

In Section 5.1, we compare our results to existing results regarding both the classical and quantum
computational complexity of the word problem. A key feature of the 2QCFA that we construct is that
they operate by storing an amount of information that grows (quite quickly) with the size of the input
using only a quantum register of constant size. In Section 5.2, we discuss why this is possible, and
consider further implications of this extreme compression of information. In Section 5.3 we consider
the various variants of QFA that have been defined.
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2 Preliminaries

2.1 Quantum Computation and the 2QCFA

In this section, we briefly recall the fundamentals of quantum computation, after which we present
the definition of the Ambainis and Watrous [2] two-way finite automaton with quantum and classical
states (2QCFA). For additional background on quantum computation, see, for instance, [33].

The most natural way of understanding quantum computation is as a generalization of probabilistic
computation. Given a probabilistic system consisting of k states, for some finite k, the particular state
of that system, at some particular point in time, is given by a probability distribution over the k
states. Such a probability distribution can be described by a vector p = (p1, . . . , pk), where pj denotes
the probability that the system is in state j. As p is a probability distribution, each pj must be a
non-negative real number, and one must have

∑
j pj = 1, i.e., p must be a non-negative real vector

with L1 norm 1.
Similarly, one may consider a quantum system with k basis states, where the overall state of the

system at any particular time is given by a superposition of the k basis states. Formally, fix an
orthonormal basis |q1〉, . . . , |qk〉 of Ck, where here and throughout the paper we use the standard Bra-
Ket notation. A superposition is a linear combination

∑
j αj |qj〉, where each αj ∈ C and

∑
j |αj |2 = 1.

In other words, a superposition is simply an element |ψ〉 ∈ Ck of L2 norm 1.
Let U(k) denote the group of k × k unitary matrices, i.e., those matrices that preserve the norm

of all vectors in Ck. Given a quantum system currently in the superposition |ψ〉, one may apply a
transformation T ∈ U(k) to the system, after which the system is in the superposition T |ψ〉. One
may also perform a quantum measurement on a quantum system. In particular, if B = {B0, . . . , Bl}
is a partition of {1, . . . , k}, then measuring a quantum system that is in the superposition |ψ〉 =∑

j αj |qj〉 with respect to B gives the result r, with probability pr :=
∑

j∈Br |αj |
2, for each r ∈

{0, . . . , l}; additionally, if the result of the measurement is r, then the state of the system collapses
to the superposition 1√

pr

∑
j∈Br αj |qj〉. We emphasize that performing a quantum measurement on a

quantum system changes the state of that system.
We now define a 2QCFA, essentially following the original definition in [2]. Informally, a 2QCFA is

a two-way deterministic finite automaton that has been augmented with a finite size quantum register.
Formally, a 2QCFA A is given by an 8-tuple,

A = {Q,C,Σ, δ, q1, c1, Cacc, Crej},

where Q = {q1, . . . , qk} is the finite set of quantum basis states, C is the finite set of classical states, Σ
is a finite alphabet, δ is the transition function, q1 is the quantum start state, c1 is the classical start
state, and Cacc ⊆ C and Crej ⊆ C (where Cacc ∩Crej = ∅) are the accepting and rejecting states. We
define the tape alphabet Γ := Σ∪ {#L,#R} where the two distinct symbols #L,#R 6∈ Σ will be used
to denote, respectively, a left and right end-marker. The quantum register of A is the quantum part
of A, i.e., the quantum system with basis states Q, which, at any point in the computation is in some
superposition |ψ〉 =

∑
j αj |qj〉.

Each step of the computation of the 2QCFA A involves either performing a unitary transformation
or a quantum measurement on its quantum register, updating the classical state, and possibly moving
the tape head left or right. This behavior is encoded in the transition function δ. For each (c, γ) ∈
(C \ (Cacc ∪ Crej)) × Γ, δ(c, γ) specifies the behavior of A when it is in the classical state c and the
tape head currently points to a tape alphabet symbol γ. There are two forms that δ(c, γ) may take,
depending on whether it encodes a unitary transformation or a quantum measurement. In the first
case, δ(c, γ) is a triple (T, c′, h) where T ∈ U(|Q|) is a unitary transformation to be performed on
the quantum register, c′ ∈ C is the new classical state, and h ∈ {−1, 0, 1} specifies whether the tape
head is to move left, stay put, or move right, respectively. In the second case, δ(c, γ) is a pair (B, f),
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where B = {B0, . . . , Bl} is a partition of {1, . . . , k} (i.e., B is a family of sets specifying a quantum
measurement), and f : {0, . . . , l} → C × {−1, 0, 1} specifies the mapping from the result of that
quantum measurement to the evolution of the classical part of the machine, where, if the result of the
quantum measurement is r, and f(r) = (c′, h), then c′ ∈ C is the new classical state and h ∈ {−1, 0, 1}
specifies the movement of the tape head.

The computation of A on an input w ∈ Σ∗ is then defined as follows. If w has length n, then
the tape will be of size n + 2 and contain the string #Lw#R. Initially, the classical state is c1, the
quantum part of the machine is in the superposition |q1〉, and the tape head points to the leftmost
tape cell (which contains the left end-marker #L). At each step of the computation, if the classical
state is currently c and the tape head is pointing to symbol γ, the machine behaves as specified by
δ(c, γ). If, at some point in the computation, A enters an accepting state c ∈ Cacc (resp. rejecting
state c ∈ Crej) then it immediately halts and accepts (resp. rejects) the input w. For any w ∈ Σ∗,
we write pacc(w) (resp. prej(w)) for the probability that A will accept (resp. reject) the input w. We
then say that A recognizes a language L ⊆ Σ∗ with negative one-sided bounded-error ε ∈ R>0 if the
following three conditions hold:

1. ∀w ∈ Σ∗, pacc(w) + prej(w) = 1

2. ∀w ∈ L, pacc(w) = 1

3. ∀w 6∈ L, prej(w) ≥ 1− ε.

For a 2QCFA A, let T denote the set of all unitary matrices T that correspond to a unitary
transformation that A may perform on its quantum register, i.e., if A = {Q,C,Σ, δ, q1, c1, Cacc, Crej},
T consists of precisely those T ∈ U(|Q|) for which ∃(c, γ) ∈ (C \ (Cacc ∪Crej))×Γ such that δ(c, γ) =
(T, ·, ·). The transition amplitudes of A are the set of numbers T that appear as an entry of some
matrix T ∈ T . Let C̃ = Q∪ {eπir|r ∈ (Q∩R)}. We restrict our attention to 2QCFA whose transition
amplitudes T ⊆ C̃, though we will be most interested in the special case in which T ⊆ Q ( C̃. We
note that C̃ is, essentially, the class of transition amplitudes used by the 2QCFA AAW of Ambainis
and Watrous [2] to recognize Leq. In Section 5.3, we observe that AAW is equivalent to a 2QCFA A′AW

(in the sense that AAW and A′AW have precisely the same probability of accepting or rejecting any

input string) where the transition amplitudes of A′AW are restricted to C̃.

2.2 Group Theory and the Word Problem of a Group

Informally, the word problem for a group G is the following question: given a finite sequence of elements
g1, . . . , gn ∈ G, is g1 · · · gn, their combination using the group operation, equal to the identity element
of G? In this section, we formalize this problem.

We begin by introducing some terminology and notation from group theory; for more extensive
background, see, for instance, [28]. For a group G, we write S ⊆ G if the set S is a subset of G and
H ≤ G if the group H is a subgroup of G. For S ⊆ G, let 〈S〉 denote the subgroup of G generated by
S and let 〈SG〉 denote the normal closure of S in G. We say that S is a generating set for the group
G if S ⊆ G and G = 〈S〉. Let F (S) denote the free group on the set S. For sets S and R, where
R ⊆ F (S), we say G has presentation 〈S|R〉 if G ∼= F (S)/〈RF (S)〉, in which case we write G = 〈S|R〉.
If a group G has presentation G = 〈S|R〉, then S (or more precisely the image of S in G under the
natural map) is a generating set for G, and if G has generating set S, then it has (many) presentations
of the form G = 〈S|R〉. We say that G is finitely-generated if it has a generating set S that is finite,
and we say that G is finitely-presented if it has a presentation G = 〈S|R〉 with both S and R finite.
For S ⊆ G, let S−1 = {s−1|s ∈ S}, let Σ = S ∪S−1, and let Σ∗ denote the free monoid on Σ. When Σ
is finite (equivalently, S is finite), we say that Σ is an alphabet, w ∈ Σ∗ is a word over the alphabet Σ,
and L ⊆ Σ∗ is a language over the alphabet Σ. For a group G = 〈S|R〉, we have a natural surjective

10



homomorphism φ : Σ∗ → G which takes each element of Σ∗ to the element of G that it represents.
Lastly, we use 1G to denote the identity element of G. We now define the word problem for a group.

Definition 2.1. Suppose G = 〈S|R〉, where S is finite. Then the word problem of G with respect to
the presentation 〈S|R〉 is the language WG=〈S|R〉 = {w ∈ Σ∗|φ(w) = 1G} consisting of all words w over
the finite alphabet Σ = S ∪ S−1 that represent the identity element in G. Solving the word problem
for G = 〈S|R〉 means deciding membership in this language.

Note that while any group G will have infinitely many presentations, and the above definition of
the word problem of a group G does depend on the particular presentation used, the particular choice
of (finite) generating set or set of relators will have no bearing on the membership of this language
in any of the complexity classes considered in this paper. To clarify this, let L denote a class of
languages. We say that L is closed under inverse homomorphism if, for all pairs of finite alphabets
Σ1,Σ2, all monoid homomorphisms τ : Σ∗1 → Σ∗2, and every language W ∈ L over the alphabet Σ2,
we have τ−1(W ) = {v ∈ Σ∗1|τ(v) ∈ W} ∈ L. Clearly, for any class of languages L closed under
inverse homomorphism, if 〈S1|R1〉 and 〈S2|R2〉, with S1 and S2 finite, are both presentations of the
same group G, then W〈S1|R1〉 ∈ L ⇔ W〈S2|R2〉 ∈ L. As all complexity classes considered in this paper
are closed under inverse homomorphism, we can reasonably speak about the complexity of the word
problem for any finitely-generated group G, without reference to a particular presentation of G, and
can then simply write WG for the word problem of G.

We conclude this section with a bit of additional terminology and notation from group theory
needed in later parts of the paper. We say that a group F is free if F ∼= F (S) for some set S, and we
define the rank of F to be the cardinality of S. The rank of a free group is well-defined as F (S) ∼= F (T )
if and only if S and T have the same cardinality. As a consequence of the same observation, there is
a unique (up to isomorphism) free group of rank k, for any k ∈ N, which allows us to speak about
the free group of rank k, which we denote by Fk := F ({1, . . . , k}). We follow the convention that
F0 = F (∅) = {1}, the trivial group. For a group G and a subgroup H ≤ G, we use [G : H] to denote
the index of H in G; if [G : H] is finite, then we say that H is a finite index subgroup of G. We say a
group is finite if it is finite as a set, and countable if it is at most countably infinite as a set. Notice that
any finitely-generated group is necessarily countable. We say a group is cyclic if it has a generating
set consisting of a single element, abelian if the group operation is commutative, and linear if it is
isomorphic to a subgroup of GL(n, k), where GL(n, k) denotes the group of n× n invertible matrices,
over some field k, where the group operation is given by matrix multiplication. For any property P
(abelian, free, etc.), we say a group is virtually P if it contains a finite-index subgroup that has P.

2.3 Cayley Graphs

Consider a group G = 〈S|R〉, where, the generating set S is finite. As before write Σ = S ∪ S−1 for
the union of the generators S and their inverses, Σ∗ for the free monoid on Σ, and φ : Σ∗ → G for the
natural surjection that takes w ∈ Σ∗ to the element of G that it represents. The (right) Cayley graph
of G with the respect to the (symmetric) generating set Σ, which we denote Γ(G,Σ), is the directed,
labeled graph which has vertices G, and a directed edge from g to gσ that is labeled σ, for each g ∈ G
and σ ∈ Σ where σ 6= 1G. A word w = w1 · · ·wn ∈ Σ∗, with each wi ∈ Σ, specifies a path pw in
Γ(G,Σ) which starts at the vertex 1G and, on the ith step, follows the edge labeled wi. Notice that
φ(w) = 1G if and only if the path pw terminates at the vertex 1G.

Next, notice that the Cayley graph Γ(G,Σ) depends on the particular presentation G = 〈S|R〉,
insofar as different choices of the generating set S generally lead to different Σ, and, ultimately, to
distinct (non-isomorphic) graphs. However, if 〈S′|R′〉 is another presentation of G, where S′ is also
finite, then, while it is the case that Γ(G,Σ) and Γ(G,Σ′) will generally be non-isomorphic graphs,
they will “look the same from far away.”
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To formalize this notion, recall that a metric space is a set X equipped with a map d : X ×X →
R≥0, where R≥0 denotes the non-negative real numbers, such that, ∀x1, x2, x3 ∈ X, the following
three properties are satisfied: d(x1, x2) = 0 ⇔ x1 = x2, d(x1, x2) = d(x2, x1), and d(x1, x3) ≤
d(x1, x2) + d(x2, x3). Given two metric spaces (X, d) and (X ′, d′), we say that a function f : X → X ′

is a bilipschitz equivalence between them if f is a bijection and ∃C ∈ R>0 such that, ∀x1, x2 ∈ X,

1

C
d(x1, x2) ≤ d′(f(x1), f(x2)) ≤ Cd(x1, x2).

For G a group and S a generating set of G, the word metric on G relative to the generating set
S, which we denote by dS , is the usual distance metric on the Cayley graph Γ(G,Σ), i.e, for any
g1, g2 ∈ G, dS(g1, g2) is the length of the shortest path in Γ(G,Σ) from g1 to g2. Equivalently, for any
g1, g2 ∈ G, dS(g1, g2) is the smallest n ∈ N for which there exists a sequence σ1, . . . , σn ∈ Σ such that
g2 = g1σ1 · · ·σn. Notice that (G, dS) is a metric space. It is straightforward to see that, if S and S′

are two finite generating sets of G, then the identity map on G is a bilipschitz equivalence between
(G, dS) and (G, d′S), where the constant C can be straightforwardly bounded by considering dS and
d′S (see, for instance, [28, Proposition 5.2.4]).

When S is clear from context, we will often simply write d in place of dS . We also define lS(g), the
length of g ∈ G relative to the generating set S, by lS(g) := dS(1, g), i.e., lS(g) is the shortest length
of an expression for g in the generators S and their inverses. Similarly, we write l in place of lS , when
S is clear from context.

2.4 Representation Theory Background

In this section, we state certain basic definitions and elementary results from representation theory
that will be needed in the remainder of this paper. While the material in this section can be found in
essentially any textbook on the (linear) representation theory of (infinite) groups, we essentially follow
[26], though we deliberately avoid stating results in their full generality, to simplify the exposition as
much as possible.

A representation of a group G over a field k is a pair (ρ, Vρ), where Vρ is a vector space over
k, GL(Vρ) denotes the group of invertible k-linear maps on Vρ, and ρ : G → GL(Vρ) is a group
homomorphism. If, furthermore, ρ : G → GL(Vρ) is injective, then we say that (ρ, Vρ) is a faithful
representation of G. For v ∈ Vρ and g ∈ G, we denote the image of v under the map ρ(g) by ρ(g)v.
This notation is used to emphasize that a representation (ρ, Vρ) of a group G is equivalent to a linear
(left) action of G on Vρ, given by g · v = ρ(g)v, for g ∈ G and v ∈ Vρ. By standard slight abuse of
notation, we will often say that ρ is a representation of G, when Vρ is clear from the context. We say
that Vρ is the representation space of the representation ρ. The dimension of a representation ρ is the
(vector space) dimension of its representation space Vρ. If ρ is a finite-dimensional representation, one
may identify (non-canonically) GL(Vρ) with GL(n, k), the group of n× n invertible matrices over the
field k, by picking a particular basis of V . Such an identification allows the image of g ∈ G under the
map ρ : G→ GL(n, k), to be explicitly encoded in a matrix, which will be useful for computation.

In this paper, we concern ourselves, almost exclusively, with finite-dimensional unitary repre-
sentations of finitely-generated groups, which, for such a group G, are representations of the form
ρ : G → U(n), for some n ∈ N≥1, where U(n) denotes the group of n × n unitary matrices, and
for which the corresponding representation space Vρ = Cn. Throughout the paper, a representation
will always mean a finite-dimensional unitary representation of a finitely-generated group, unless we
explicitly note otherwise.

Remark. Generally, one defines a unitary representation of a topological group G as a representation
ρ : G → U(H), where H is some complex Hilbert space and U(H) denotes the group of all unitary
continuous linear operators on H, such that ρ is strongly continuous, i.e., for every v ∈ H, the mapping
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G → H given by g 7→ ρ(g)v is continuous. However, any finitely-generated group is countable,
and the natural topology for any countable group is the discrete topology, for which the continuity
condition is trivially satisfied. Moreover, as previously observed, finite-dimensional representations
can be concretely realized as representations into matrix groups. Therefore, this is equivalent to our
simpler definition.

Consider two representations ρ1 : G→ U(n1) and ρ2 : G→ U(n2) of a group G. Let HomC(n1, n2)
denote the space of C-linear maps (i.e., homomorphisms of C vector spaces) φ : Cn1 → Cn2 . A
homomorphism of representations is a φ ∈ HomC(n1, n2) such that, ∀g ∈ G,∀v ∈ Vρ1 = Cn1 , we have
φ(ρ1(g)v) = ρ2(g)φ(v). We use HomG(ρ1, ρ2) to denote the subspace of HomC(n1, n2) consisting of
all such φ. If there is some φ ∈ HomG(ρ1, ρ2) that is bijective, we say that the representations ρ1

and ρ2 are isomorphic, which we denote by writing ρ1
∼= ρ2, and we call such a φ an isomorphism

of representations. For an n1 × n1 matrix A and a n2 × n2 matrix B, we write A ⊕ B to denote
the (n1 + n2) × (n1 + n2) block-diagonal matrix whose two diagonal blocks are given by A and B.
The direct sum of representations ρ1 and ρ2 is the representation ρ1 ⊕ ρ2 : G → U(n1 + n2), where
(ρ1 ⊕ ρ2)(g) = ρ1(g)⊕ ρ2(g), ∀g ∈ G.

For a representation ρ : G → U(n), we say that a vector subspace V ′ of Vρ = Cn is stable if
∀g ∈ G,∀v ∈ V ′, ρ(g)v ∈ V ′. We say that the representation ρ′ : G→ U(n′) is a subrepresentation of
ρ if there is a stable subspace V ′ of Vρ, of dimension n′, such that ρ′(g)v = ρ(g)v, ∀g ∈ G,∀v ∈ V ′. We
say that ρ is irreducible if it has no non-trivial subrepresentations (i.e., the only stable subspaces of Vρ
are 0 and Vρ itself). For any representation ρ : G→ U(n), there is a decomposition ρ ∼= ρ1⊕ · · · ⊕ ρm,
where the ρj are all irreducible subrepresentations; moreover, this decomposition is unique (up to
permutation of the summands, and isomorphism of representations).

For a representation ρ : G→ U(n) of a group G, and a subgroup H ≤ G, we define the restricted
representation ResGH(ρ) to be the representation π : H → U(n) of H, where π(h) = ρ(h), ∀h ∈ H ≤ G,
i.e., this is simply the restriction of ρ to H. Next, we define a concept dual to the notion of restriction.
Let π : H → U(m) be a representation of H and let G be a finite-index overgroup of H, i.e., H ≤ G and
r := [G : H] is finite. The induced representation IndGH(π) is the representation ρ : G→ U(mr), which
is defined as follows. Let T = {g1, . . . , gr} ⊆ G denote a complete family of left coset representatives
of H in G. Let Sr denote the symmetric group on r symbols. For each g ∈ G, let σg ∈ Sr and hg,j ∈ H
denote the (unique) elements such that, for each j ∈ {1, . . . , r}, we have ggj = gσg(j)hg,j . For each
gj ∈ T , let gjCm denote an isomorphic copy of the representation space Vπ = Cm. We then define
Vρ, the representation space of ρ, by Vρ =

⊕r
j=1 gjCm ∼= Cmr. To define ρ, we think of an element of

Vρ as being of the form
∑r

j=1 gjvj , where each vj ∈ Vπ = Cm, and define ρ : G → U(mr) such that
∀g ∈ G, ρ(g)

∑r
j=1 gjvj =

∑r
j=1 gσg(j)π(hg,j)vj . Concretely, ρ(g) is a block matrix, all of whose blocks

are m ×m, and, in block-column j, the only non-zero block-row is σg(j), and this block is given by
π(hg,j).

Remark. Induction and restriction, as defined above are dual in the following sense: If one lets RepG
(resp. RepH) denotes, the category of representations of G (resp. H) over the field k, then ResGH :
RepG → RepH and IndGH : RepH → RepG are functors and IndGH is the left-adjoint of ResGH . We note
that induction, as we have defined it, is more commonly called co-induction, and that one traditionally
defines the induced representation such that induction is the right-adjoint of restriction. However, as
we only consider the case when H is a finite index subgroup of G, the co-induced representation that we
have defined and the induced representation that one normally defines are isomorphic. It will simply
be more convenient, for our purposes, to use co-induction, though we will refer to it as induction.

Consider a representation ρ : G → U(n). The character of ρ is the function χρ : G → C given
by χρ(g) = Tr(ρ(g)), where Tr(ρ(g)) denotes the trace of (the unitary matrix) ρ(g). Let Id ∈ U(d)
denote the d×d identity matrix (i.e., the identity element of the group U(d)), Z(U(d)) = {eirId|r ∈ R}
denote the center of U(d), PU(d) = U(d)/Z(U(d)) denote the d-dimensional projective unitary group,
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and τ : U(d) → PU(d) denote the canonical projection. Let Pker(ρ) = {g ∈ G|ρ(g) ∈ Z(U(d))}
denote the quasikernel of ρ; notice that Pker(ρ) = ker(τ ◦ ρ), and ker(ρ) ≤ Pker(ρ) ≤ G. We say
that a representation ρ of G is projectively faithful or simply P-faithful if Pker(ρ) is the trivial group
(i.e., if only the identity element of G belongs to Pker(ρ)). Notice that a P-faithful representation is
necessarily a faithful representation. Furthermore, notice that, ∀g ∈ G, |χρ(g)| ≤ d, and |χρ(g)| =
d⇔ g ∈ Pker(ρ). Lastly, we define a projective unitary representation of a finitely-generated group G
to be a group homomorphism π : G→ PU(d). We will use the term projective representation to refer
to such a representation.

3 Distinguishing Family of Representations

Our primary tool for constructing a 2QCFA for the word problem for a group G is a distinguishing
family of representations (DFR) for the group G. Informally, a DFR for a group G is a “small” family
of “small” unitary representations of G such that, for each g ∈ G where g 6= 1G, the family contains at
least one representation which “strongly” separates g from 1G. The following definition formalizes this,
by introducing parameters to quantify the above fuzzy notions. In this definition, and in the remainder
of the paper, we write G6=1G for the subset G \ {1G} of G. Recall that C̃ = Q ∪ {eπir|r ∈ (Q ∩ R)} is

the set of transition amplitudes that we permit for 2QCFA, in this paper. Let Md(C̃) denote the set
of d× d matrices with entries in C̃.

Definition 3.1. Consider a group G = 〈S|R〉, with S finite. Let Σ = S∪S−1 denote the corresponding
symmetric generating set of G and let l(g) denote the length of any g ∈ G relative to this symmetric
generating set (i.e., l(g) is the distance from 1G to g in the Cayley graph Γ(G,Σ)). Then for k, d ∈ N,
with k ≥ 1, d ≥ 2, and τ : R>0 → R>0 a monotone non-increasing function, we define a [k, d, τ ]-
distinguishing family of representations(DFR) for G, to be a set F = {ρ1, . . . , ρk} where the following
conditions hold.

(i) ∀j ∈ {1, . . . , k}, ρj : G→ U(d) is a representation of G.

(ii) ∀g ∈ G6=1G , ∃j ∈ {1, . . . , k} such that |χρj (g)| ≤ d− τ(l(g)).

(iii) ∀s ∈ S,∀j ∈ {1, . . . , k}, ∃Y1, . . . , Yt ∈ U(d) ∩Md(C̃), for some finite t, such that ρj(s) =
∏
i Yi.

Remark. As was the case for the definition of the word problem, the definition of a DFR for a group
G does depend on the particular choice of presentation for G. However, much as it was the case
that any reasonable choice of presentation did not affect the computational complexity of the word
problem, for the complexity classes considered in this paper, it is also the case that any reasonable
choice of presentation will not affect the existence of a DFR, for any of the groups considered in this
paper. Moreover, the requirements that all representations must have the same dimension, and that
this dimension d ≥ 2, are simply done for convenience and ease of notation; it will have no effect on
the parameters of the 2QCFAs that are ultimately constructed.

3.1 Application to the Word Problem

We now discuss how a DFR for G will be used to solve the word problem for G. We begin by clarifying
the sense in which a DFR strongly separates each g ∈ G6=1G from 1G. Suppose F = {ρ1, . . . , ρk}
is a [k, d, τ ]-DFR for G. As before, we write Id = 1U(d) ∈ U(d) for the d × d identity matrix,
ker(ρj) = {g ∈ G|ρj(g) = Id} for the kernel of ρj , Z(U(d)) = {eirId|r ∈ R} for the center of U(d) and
Pker(ρj) = {g ∈ G|ρj(g) = Z(U(d))} for the quasikernel of ρj . Clearly, 1G ∈ ∩j Pker(ρj), as ρj is a
group homomorphism and so must take 1G to 1U(d) = Id ∈ Z(U(d)). Notice ρj is not assumed to be
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P-faithful or even faithful, and, in fact, it will often be desirable to have the ρj be non-faithful as it
will lead to more efficient 2QCFAs. Therefore, there may be g ∈ G6=1G for which, for certain j, we
have g ∈ Pker(ρj). As previously observed, g ∈ Pker(ρj) exactly when |χρj (g)| = d, and so we may
have g ∈ G6=1G where for some (perhaps many) j, |χρj (g)| = d. However, the second defining property
of a DFR guarantees not only that ∩j Pker(ρj) = {1G}, but, much more strongly, that all g ∈ G 6=1

are “far from” being in ∩j Pker(ρj) in that, for each g ∈ G 6=1, there is some j such that |χρj (g)| is at
distance at least τ(l(g)) from having value d. The fundamental approach to solving the word problem
for g is to test if g ∈ ∩j Pker(ρj), where this can be done as any g is either in ∩j Pker(ρj) or far from
being in ∩j Pker(ρj). The following proposition is then immediate, but we explicitly state it as it is a
central notion in our quantum approach to the word problem.

Proposition 3.2. Consider a group G = 〈S|R〉 with a [k, d, τ ]-DFR {ρ1, . . . , ρk}. Then, ∀g ∈ G,

g = 1G ⇔ g ∈ ∩j Pker(ρj)⇔ |χρ1(g)| = · · · = |χρk(g)| = d.

Furthermore,
g ∈ G6=1G ⇔ ∃j ∈ {1, . . . , k} such that |χρj (g)| ≤ d− τ(l(g)).

In particular, ρ1 ⊕ · · · ⊕ ρk : G→ U(kd) is a faithful representation of G.

In the following definition, we establish some terminology that will better allow us to describe
particular types of DFR. We first need a bit of notation. Let U(d,Q) denote the subgroup of U(d)
consisting of matrices whose entries are algebraic numbers, let C∗ denote the multiplicative group of the
field C, and let S1 = {eir|r ∈ R} ≤ C∗ denote the circle group. For any H ≤ C∗, let S1(H) = S1 ∩H,
and let T(d,H) denote the group of all diagonal matrices D where each diagonal entry Djj ∈ S1(H).
Notice that, ∀H ≤ C∗, T(d,H) ≤ U(d); moreover, T(d,Q) ≤ U(d,Q). We also define T(d) = T(d,C∗).
For a homomorphism ρj : G → U(d), let ρj(G) denote the image of G under ρj , and notice that
ρj(G) ≤ U(d).

Definition 3.3. Suppose F = {ρ1, . . . , ρk} is a [k, d, τ ]-DFR for a group G.

(i) If, ∀j ∈ {1, . . . , k}, ρj(G) ≤ U(d,Q) ≤ U(d), we say F is an algebraic DFR.

(ii) If, for some H ≤ C∗, we have that, ∀j ∈ {1, . . . , k}, ρj(G) ≤ T(d,H) ≤ U(d), we say F is a
H-diagonal DFR.

Notice that Q ≤ C∗, and, moreover, that a Q-diagonal DFR is also an algebraic DFR; we call such
a DFR an algebraic diagonal DFR. Let Ẽ = {eπir|r ∈ (Q∩R)}, and note that C̃ = Q∪ Ẽ and Ẽ ≤ C∗.
In the following, we will restrict our attention to algebraic DFRs and Ẽ-diagonal DFRs; and so from
this point forward, we will only use the term “DFR” to refer to one of these special cases. Using a
DFR for a group G, it will be possible to construct a 2QCFA for WG, the word problem of G, where
the parameters of the DFR will strongly impact the parameters of the resulting 2QCFA. In particular,
as will be shown in Section 4, a [k, d, τ ]-DFR for G can be used to produce a 2QCFA for WG which
requires only d quantum states, k+c classical states (for a universal constant c > 0), and has expected
running time approximately O(τ(n))−1). Moreover, if the DFR is algebraic, all transition amplitudes
of the resulting 2QCFA will be algebraic numbers; whereas a Ẽ-diagonal DFR will yield a 2QCFA
whose transition amplitudes are in C̃. For all groups for which we can construct DFRs, we can in fact
construct algebraic DFRs; however, in a single important special case we can construct a non-algebraic
DFR for a group that has better parameters than our best algebraic DFR for that group. As we wish
to explore the trade-off between the permitted complexity of the transition amplitudes of a 2QCFA
and the performance of that 2QCFA, we consider both algebraic DFRs and not-necessarily-algebraic
DFRs.
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Notice that if a group G has a diagonal DFR, then G must be a finitely-generated abelian group.
To see this, suppose F = {ρ1, . . . , ρk} is a H-diagonal [k, d, τ ]-DFR of G, for some H ≤ C∗. As noted
in Proposition 3.2, ρ1 ⊕ · · · ⊕ ρk : G→ T(kd,H) ≤ T(kd) is a faithful representation of G, and so we
have G ≤ T(kd). Of course, T(kd) is an abelian group, and so any subgroup of T(kd) is also abelian;
in particular, G is abelian. Moreover, the definition of a DFR requires that G have presentation
〈S|R〉, with S finite, and so G is finitely-generated. In the other direction, we will show that any
finitely-generated abelian group G has a diagonal algebraic [1, 2, C1n

−C2 ]-DFR, and a Ẽ-diagonal
[1, 2, C3n

−δ]-DFR, for any δ ∈ R>0 and certain constants C1, C2, C3 ∈ R>0.

Remark. Additionally, notice that, for any N ∈ U(d) ∩Md(C̃), there is a d-dimensional permutation
matrix PN such that PNNP

−1
N ∈ U(d1,Q)×T(d2, Ẽ), for some d1, d2 ∈ N≥1, where d1 +d2 = d. Here,

we are thinking of elements M ∈ U(d1,Q)×T(d2, Ẽ) concretely as d×d block-diagonal matrices, with
an upper-left d1 × d1 diagonal block given by some M ′ ∈ U(d1,Q) and a lower-right d2 × d2 diagonal
block given by some M ′′ ∈ T(d2, Ẽ), i.e., M = M ′ ⊕M ′′, where here ⊕ denotes the direct sum of

matrices; therefore, we have M = M̂ ′M̂ ′′, where M̂ ′ = M ′ ⊕ Id2 ∈ U(d,Q) and M̂ ′′ = Id1 ⊕M ′′ ∈
T(d, Ẽ). Applying this to MN := PNNP

−1
N ∈ U(d1,Q) × T(d2, Ẽ), we can write MN = M̂ ′NM̂

′′
N

and therefore N = P−1
N M̂ ′NM̂

′′
NPN , where PN , P

−1
N , M̂ ′N ∈ U(d,Q) and M̂ ′′N ∈ T(d, Ẽ). Therefore,

the condition expressed in Definition 3.1(iii) for a DFR F = {ρ1, . . . , ρk} of a group G = 〈S|R〉, is
equivalent to the statement that ∀s ∈ S, ∀j ∈ {1, . . . , k}, ∃Y1, . . . , Yt ∈ U(d,Q) ∪ T(d, Ẽ), such that
ρj(s) =

∏
i Yi; moreover, as S is a generating set for G, the preceding statement holds ∀s ∈ S precisely

when it holds ∀g ∈ G.

It will also be shown, in Section 4, that it is possible to solve the word problem for G using a
DFR for a finite-index subgroup H ≤ G; the resulting 2QCFA for WG will have the same parameters
as the 2QCFA for WH , except for an increase in the number of classical states. For many groups,
this will allow the construction of a 2QCFA for the word problem with smaller quantum part, though
larger classical part. As quantum states are, arguable, more “expensive” than classical states, this
is a desirable trade-off, which motivates the following generalization of a DFR. Recall that, for some
property P (e.g., free, abelian, etc.) a group G is said to be virtually-P if it contains a finite-index
subgroup H that has P.

Definition 3.4. We say that a finitely-generated group G virtually has a [k, d, τ ]-DFR, if there is
some H ≤ G, with [G : H] finite, such that H has a [k, d, τ ]-DFR.

The goal is then to show that a wide collection of groups virtually have [k, d, τ ]-DFRs with good
parameters, with a preference for algebraic DFRs.

3.2 Diophantine Approximation

Our constructions of DFRs rely crucially on certain results concerning Diophantine approximation.
We begin by establishing some notation that will be used throughout this section, as well as in the
remainder of the paper. We write Z,Q,R,C, and Q to denote, respectively, the integers, rational
numbers, real numbers, complex numbers, and algebraic numbers. We also write R>0 to denote the
positive real numbers, R≥1 to denote the real numbers that are at least 1, Z6=0 to denote the non-zero
integers, etc. For α ∈ C, we denote the magnitude of α by |α|. For α ∈ R, ‖α‖ denotes the distance
between α and its nearest integer, i.e., ‖α‖ = minm∈Z|α−m|. If the value of a particular constant C
depends on numbers α, β, γ, we write C = C(α, β, γ).

Most fundamentally, the Diophantine approximation question asks how well a particular real num-
ber α can be approximated by rational numbers. Of course, as Q is dense in R, one can choose p

q ∈ Q
so as to make the quantity |α − p

q | arbitrarily small; for this reason, one considers p
q to be a “good”

approximation to α only when |α− p
q | is small compared to a suitable function of q. One then considers
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α to be poorly approximated by rationals if, for some “small” constant d ∈ R≥2, there is a constant
C = C(α, d) ∈ R>0 such that, ∀(p, q) ∈ Z× Z6=0, we have |α − p

q | ≥ C|q|−d, where the smallness of d
determines just how poorly approximable α is. Notice that∣∣∣∣α− p

q

∣∣∣∣ = |q|−1|qα− p| ≥ |q|−1 min
m∈Z
|qα−m| = |q|−1‖qα‖,

which implies ∣∣∣∣α− p

q

∣∣∣∣ ≥ C|q|−d, ∀(p, q) ∈ Z× Z6=0 ⇔ ‖qα‖ ≥ C|q|−(d−1), ∀q ∈ Z6=0.

Of particular relevance to us is the following result, due to Schmidt [39], that real, irrational
algebraic numbers are poorly approximated by rationals, in two dual senses.

Proposition 3.5. [39] Let α1, . . . , αk ∈ (R ∩Q) such that 1, α1, . . . , αk are linearly independent over
Q. For any ε ∈ R>0, ∃C = C(α1, . . . , αk, ε) ∈ R>0 such that the following hold.

(i) ∀q ∈ Z6=0, ∃j ∈ {1, . . . , k} such that ‖qαj‖ ≥ C|q|−( 1
k

+ε).

(ii) ∀(q1, . . . , qk) ∈ Zk, where qmax := maxj |qj | > 0, we have ‖q1α1 + . . .+ qkαk‖ ≥ Cq
−(k+ε)
max .

We also require the following result concerning the Diophantine properties of linear forms in loga-
rithms of algebraic numbers, due to Baker [6].

Proposition 3.6. [6] Let L = {β ∈ C6=0|eβ ∈ Q}. For any β1, . . . , βk ∈ L that are linearly independent
over Q, there is an effectively computable constant C = C(β1, . . . , βk) ∈ R>0 such that, ∀(q1, . . . , qk) ∈
Zk where qmax := maxj |qj | > 0, we have |q1β1 + · · ·+ qkβk| ≥ (eqmax)−C .

Additionally, we require the following result of Gamburd, Jakobson, and Sarnak [16], concerning
the Diophantine properties of SU(2,Q), the group of 2 × 2 unitary matrices of determinant 1 whose
entries are algebraic numbers, as well as a particular generalization to U(d,Q). We first need a bit
of notation. For a group G, and a finite collection of elements h1, . . . , hk ∈ G, let H = 〈h1, . . . , hk〉
denote the subgroup of G generated by h1, . . . , hk and let Σ = {h1, . . . , hk, h

−1
1 , . . . , h−1

k } denote the
corresponding symmetric generating set. For any h ∈ H, let l(h) denote the length of H with respect
to Σ. Let Md(S) denote the set of d × d matrices with entries in some set S. For M ∈ Md(C) let
‖M‖HS denote the Hilbert-Schmidt norm (i.e., ‖M‖2HS =

∑
i,j |Mij |2), and note that for any g ∈ SU(2),

‖g ± Id‖2HS = 2|Tr(g)∓ 2|.

Proposition 3.7. [16] For any h1, . . . , hk ∈ SU(2,Q), there is an effectively computable constant
C = C(h1, . . . , hk) ∈ R≥1, such that ∀h ∈ H = 〈h1, . . . , hk〉 for which h 6= ±Id, we have ‖h± Id‖HS ≥
C−l(h).

We now prove a straightforward generalization of the preceding result of Gamburd, Jakobson, and
Sarnak [16]. Recall that the center of U(d,Q) is given by Z(U(d,Q)) = {eirId|r ∈ R, eir ∈ Q}.

Lemma 3.8. For any h1, . . . , hk ∈ U(d,Q), there is an effectively computable constant C = C(h1, . . . , hk) ∈
R≥1, such that ∀h ∈ H = 〈h1, . . . , hk〉, if h 6∈ Z(U(d,Q)), then |Tr(h)| ≤ d− C−l(h).

Proof. Notice that Z(U(1,Q)) = U(1,Q), and so the conclusion is vacuously true when d = 1; we
assume for the remainder of the proof that d ≥ 2.

We begin by following, essentially, the proof in [16]. As {h1, . . . , hk} is a finite subset of Md(Q),
there is some finite degree extension K of Q such that {h1, . . . , hk} ⊆Md(K). Let OK denote the ring
of integers of K and set N ∈ Z>0 sufficiently large such that Nhi ∈ Md(OK), ∀i. Let s denote the
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degree of K over Q, and let σ1, . . . , σs denote the s distinct embeddings of K in C, where σ1 is the
identity map. Each σj : K → C induces a map Md(K) → Md(C) in the obvious way, which we also
denote by σj . For brevity, we write ‖·‖ in place of ‖·‖HS throughout this proof. Let B = maxi,j‖σj(hi)‖,
and notice that B ≥

√
d as hj ∈ U(d) implies ‖σ1(hj)‖ = ‖hj‖ =

√
d.

Fix h 6∈ Z(U(d,Q)). In particular, h 6= Id = 1H , and so l(h) ≥ 1. As ‖·‖ is submultiplicative, we
then have ‖σj(h)‖ ≤ Bl(h), ∀j. For r, c ∈ {1, . . . , d}, and W a d× d matrix, we write W [r, c] to denote
the entry of W in row r and column c.

There are two cases. First, suppose there is some r such that h[r, r] 6= h[1, 1]. Fix such an r. Let
y denote the d× d matrix given by y = h− h[1, 1]Id and notice that y[r, r] = h[r, r]− h[1, 1] 6= 0. For
every j, we have

|σj(y[r, r])| = |σj(h[r, r])− σj(h[1, 1])| ≤ |σj(h[r, r])|+ |σj(h[1, 1])| ≤ 2‖σj(h)‖ ≤ 2Bl(h).

By construction, N l(h)h ∈ Md(OK), ∀h ∈ H = 〈h1, . . . , hk〉, which immediately implies N l(h)y =
N l(h)(h− h[1, 1]Id) ∈Md(OK). Therefore, N l(h)y[r, r] is some non-zero element of OK , which implies∏
j σj(N

l(h)y[r, r]) ∈ Z6=0. By the above, |σj(N l(h)y[r, r])| ≤ 2(BN)l(h) ≤ (2BN)l(h), ∀j. Therefore,

|y[r, r]| = |σ1(y[r, r])| = N−l(h)|σ1(N l(h)y[r, r])| ≥ N−l(h) 1∏
j>1|σj(N l(h)y[r, r])|

≥ ((2B)d−1Nd)−l(h).

Notice that
|h[r, r] + h[1, 1]|2 + |h[r, r]− h[1, 1]|2 = 2|h[r, r]|2 + 2|h[1, 1]|2 ≤ 4.

Therefore,

|h[r, r] + h[1, 1]| ≤
√

4− |h[r, r]− h[1, 1]|2 ≤ 2− 1

4
|h[r, r]− h[1, 1]|2 = 2− 1

4
|y[r, r]|2 ≤ 2− C−l(h),

where C = ((2BN)2d) ≥ 1 (notice l(h) ≥ 1, B ≥
√
d ≥ 1, and N ≥ 1). Therefore,

|Tr(h)| =

∣∣∣∣∣∑
i

h[i, i]

∣∣∣∣∣ ≤ |h[r, r] + h[1, 1]|+

∣∣∣∣∣∣
∑

i 6∈{1,r}

h[i, i]

∣∣∣∣∣∣ ≤ 2− C−l(h) + (d− 2) = d− C−l(h).

Next, suppose instead h[r, r] = h[1, 1], ∀r. As h 6∈ Z(U(d,Q)), there must then be some r, c ∈
{1, . . . , d}, r 6= c, such that h[r, c] 6= 0 (if there were no such r, c, then h = h[1, 1]Id ∈ Z(U(d,Q))).
Fix such a pair r, c. For every j, we have

|σj(h[r, c])| ≤ ‖σj(h)‖ ≤ Bl(h).

Furthermore, N l(h)h[r, c] is some non-zero element of OK , and so

|h[r, c]| = N−l(h)|σ1(N l(h)h[r, c])| ≥ N−l(h) 1∏
j>1|σj(N l(h)h[r, c])|

≥ (Bd−1Nd)−l(h).

As |h[r, r]|2 + |h[r, c]|2 ≤ 1, we have

|h[r, r]| ≤
√

1− |h[r, c]|2 ≤ 1− 1

2
|h[r, c]|2 ≤ 1− C−l(h).

Therefore,

|Tr(h)| =

∣∣∣∣∣∑
i

h[i, i]

∣∣∣∣∣ ≤ |h[r, r]|+

∣∣∣∣∣∣
∑
i 6=r

h[i, i]

∣∣∣∣∣∣ ≤ 1− C−l(h) + (d− 1) = d− C−l(h).

18



By expressing the above condition in the language of representation theory, we then immediately
have the following.

Corollary 3.8.1. Suppose the group G = 〈S|R〉, with S finite, has a representation ρ : G→ U(d,Q).
Then there is an effectively computable constant C = C(G,S, ρ) ∈ R≥1, such that, if g 6∈ Pker(ρ), then
|χρ(g)| ≤ d− C−l(g), where l(g) denotes the length of g with respect to the generating set S.

3.3 Constructions of Distinguishing Families of Representations

We now show that a wide collection of groups virtually have [k, d, τ ]-DFRs with good parameters.
We accomplish this by first constructing DFRs for only a small family of special groups. We then
present several constructions in which a DFR for a group, or more generally a family of DFRs for a
family of groups, is used to produce a DFR for a related group. This will allow us to construct DFRs
with good parameters for a wide class of groups, and, ultimately, show that an even wider class of
groups virtually have [k, d, τ ]-DFRs with good parameters. We begin with a straightforward lemma
expressing a useful character bound. In this lemma, and throughout this section, we continue to write
group operations multiplicatively, and so, for g ∈ G and h ∈ Z, if h > 0 then gh denotes the element
of G obtained by combining h copies of g with the group operation, if h < 0 then then gh denotes the
element obtained by combining h copies of g−1, and if h = 0 then gh is 1G, by the usual convention
on an empty product. For any d ∈ N≥1, let 1d : G → U(d) denote the trivial representation, i.e.,
1d(g) = Id, ∀g ∈ G. As before, S1 = {eir|r ∈ R} denotes the circle group.

Lemma 3.9. Consider the cyclic group G = 〈a|RG〉. Fix r ∈ R and define the representation φ : G→
S1
∼= U(1) such that a 7→ e2πir; further define the representation ρ : G→ T(2) by ρ = φ⊕ 11. Suppose

that h ∈ Z and ε ∈ R>0 satisfy ‖hr‖ ≥ ε. Then χρ(a
h) ≤ 2− 19π2

24 ε2.

Proof. We have

χρ(a
h) = e2πihr + 1 = eπihr

(
eπihr + e−πihr

)
= 2eπihr cos(πhr).

As we must necessarily have ε ≤ 1
2 , it immediately follows that

|χρ(ah)| = 2|cos(πhr)| ≤ 2 cos(πε) ≤ 2

(
1− (πε)2

2
+

(πε)4

24

)
≤ 2− (πε)2 +

π2(πε)2

48
≤ 2− 19π2

24
ε2.

We next construct DFRs for a very narrow class of special groups: (i) for any m ∈ N≥2, Zm =
〈a|am〉, the integers modulo m, where the group operation is addition (modulo m), (ii) Z = 〈a|〉, the
integers, where the group operations is addition, and (iii) F2 = 〈a, b|〉 the free (non-abelian) group of
rank 2. Note that Z = F1 is the free abelian group of rank 1.

Lemma 3.10. For any m ∈ N≥2, Zm = 〈a|am〉 has a diagonal algebraic
[
1, 2, 19π2

24m2

]
-DFR.

Proof. Fix m ∈ N≥2, define the representation φ : Zm = 〈a|am〉 → S1(Q) such that a 7→ e
2πi
m , and

define the representation ρ : Zm → T(2,Q) where ρ = φ⊕ 11. Then {ρ} is a diagonal algebraic DFR
for Zm, with the desired parameters. To see this, consider any q ∈ Zm, where q 6= 1Zm . Then q can
be expressed as q = ah, for h ∈ Z, h 6≡ 0 mod m. Let r = ε = 1

m . As we clearly have ‖hr‖ ≥ ε,

Lemma 3.9 immediately implies χρ(q) ≤ 2− 19π2

24m2 .

Lemma 3.11. Let Z = 〈a|〉.

19



(i) ∀δ ∈ R>0, ∃C = C(δ) ∈ R>0 such that Z = 〈a|〉 has a Ẽ-diagonal [1 + b2
δ c, 2, Cn

−δ]-DFR.

(ii) Let R denote the set of r ∈ (R\Q)∩(0, 1) for which e2πir ∈ Q (e.g., r̂ = 1
2π cos−1

(
3
5

)
is irrational

and has e2πir̂ = 3+4i
5 , and so r̂ ∈ R). Fix r ∈ R, define the representation φ : Z = 〈a|〉 → S1(Q)

such that a 7→ e2πir, and define the representation ρ : Z → T (2,Q) as ρ = φ ⊕ 11. Then there
are (effectively computable) constants C1 = C1(r), C2 = C2(r) ∈ R>0 for which {ρ} is a diagonal
algebraic [1, 2, C2n

−C1 ]-DFR for Z.

Proof. (i) Let k = 1 + b2
δ c and η = δ

2 −
1
k > 0. Fix α1, . . . , αk ∈ (Q ∩R) such that 1, α1, . . . , αk are

linearly independent over Q. For each j ∈ {1, . . . , k} define the representation φj : Z = 〈a|〉 →
S1(Ẽ) such that a 7→ e2πiαj , and let the representation ρj : Z→ T(2, Ẽ) be given by ρj = φj⊕11.
Then for an appropriately chosen C ∈ R>0, F = {ρ1, . . . , ρk} is a [1 + b2

δ c, 2, Cn
−δ]-DFR for Z.

To see this, notice that, by Proposition 3.5(i), ∃D ∈ R>0, such that ∀q ∈ Z6=0 (i.e., ∀q ∈ Z where
q 6= 1Z = 0), ∃j such that

‖qαj‖ ≥ D|q|−( 1
k

+η) = D|q|−
δ
2 .

Therefore, for any q ∈ Z6=0, if we take j as above, then by Lemma 3.9, (with r = αj , ε = D|q|−
δ
2 ,

and h = q) we have

|χρj (q)| ≤ 2− 19π2

24
D2|q|−δ.

Therefore, F = {ρ1, . . . , ρk} is a diagonal [1 + b2
δ c, 2, Cn

−δ]-DFR for Z, with C = 19π2

24 D2 > 0.

(ii) As in Proposition 3.6, let L = {β ∈ C 6=0|eβ ∈ Q}. Notice that πi ∈ L, as eπi = −1 ∈ Q. By
definition, 2πir ∈ L, which immediately implies πir ∈ L. Also by definition, r is irrational, which
implies πir and πi are linearly independent over Q. Therefore, by Proposition 3.6, ∃D ∈ R>0

such that ∀(q,m) ∈ Z2 where qmax := max(|q|, |m|) > 0, we have

|qπir −mπi| ≥ (eqmax)−D.

Consider any q ∈ Z6=0. For fixed q and varying m ∈ Z, |qπir −mπi| attains its minimum when
m is the closest integer to qr, which we denote by round(qr). Notice that |round(qr)| ≤ |q|, as
r ∈ (0, 1) and q ∈ Z. Therefore, for any q ∈ Z6=0, we have

‖qr‖ = min
m∈Z
|qr −m| = 1

π
min
m∈Z
|qπir −mπi| = 1

π
|qπir − round(qr)πi| ≥ 1

π
|eq|−D.

Applying Lemma 3.9, we conclude

χρ(q) ≤ 2− 19

24
|eq|−2D.

Therefore, {ρ} is a [1, 2, C2n
−C1 ]-DFR for Z, with C1 = 2D and C2 = 19

24e
−2D.

Remark. We note that the above constructions of diagonal DFRs for Zk are quite similar to the
technique used by Ambainis and Watrous [2] to produce a 2QCFA AAW that recognizes Leq (cf.
[7, 36]). To clarify this similarity, let SO(2) denote the dimension-2 special orthogonal group, i.e., the
group of all rotation matrices

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, θ ∈ R.

Let A = {πr|r ∈ (Q∩R)} (and so Ẽ = eiA), notice that A is a subgroup of the group (under addition)
R, and let SO(2, cos(A)) denote the subgroup of SO(2) consisting of those matrices whose entries lie in
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cos(A) (i.e., the subgroup consisting of those Rθ with θ ∈ A). Then, essentially, AAW recognizes Leq by
making use of, in our language, a DFR {π} for Z, for a representation π : Z→ SO(2, cos(A)) ≤ U(2).
As SO(2, cos(A)) ∼= T(1, Ẽ) , π induces a representation π̂ : Z → T(1, Ẽ), and π̂ ⊕ 11 : Z → T(2, Ẽ)
is then a representation of the type we have produced above. Moreover, we note that the technique
used by Ambainis and Watrous [2] relied on the fact that the number

√
2 ∈ Q is poorly approximated

by rationals; our constructions above make use of more general Diophantine approximation results.

Lemma 3.12. There is an effectively computable constant C ∈ R≥1, such that F2 = 〈a, b|〉 has an
algebraic [1, 2, C−n]-DFR.

Proof. First, define the representation π : F2 → SO(3,Q) by

a 7→ 1

5

3 −4 0
4 3 0
0 0 5

 and b 7→ 1

5

5 0 0
0 3 −4
0 4 3

 .

This is the “standard” faithful representation of F2 into SO(3) used in many treatments of the Banach-
Tarski paradox. Recall that SU(2) is the double cover of SO(3), i.e., SU(2)/Z(SU(2)) ∼= SO(3). Then
π induces a homomorphism π̂ : F2 → SU(2)/Z(SU(2)) in the obvious way, which, by the universal
property of the free group, can be lifted to the representation ρ : F2 → SU(2,Q) given by

a 7→ 1√
5

(
2 + i 0

0 2− i

)
and b 7→ 1√

5

(
2 i
i 2

)
.

Then for any g ∈ F2, where g 6= 1F2 , ρ(g) 6∈ Z(SU(2,Q)) = {±I2}, and, therefore, ρ(g) 6∈ Z(U(2,Q))
(as ρ(g) ∈ SU(2), and Z(SU(2,Q)) = SU(2) ∩ Z(U(2,Q))). Therefore, by Corollary 3.8.1, {ρ} is an
algebraic [1, 2, C−n]-DFR for F2.

Remark. Similarly, we note that the method used in the proof of the preceding lemma to produce a
DFR for F2 is, fundamentally, the same construction used by Ambainis and Watrous [2] to produce
a 2QCFA for Lpal. However, the algebraic structure of F2 allows a substantially simpler argument to
be used.

We now consider several constructions of new DFRs from existing DFRs. We emphasize that all
results in the following lemmas are constructive in the sense that, given the supposed DFR or collection
of DFRs, each corresponding proof provides an explicit construction of the new DFR. We begin by
considering conversions of a DFR of a group G to a DFR with different parameters of the same group
G.

Lemma 3.13. Suppose FG = {ρ1, . . . , ρk} is a [k, d, τ ]-DFR for G = 〈S|R〉. Then the following
statements hold.

(i) G has a [1, kd, τ ]-DFR.

(ii) If d′ ∈ N and d′ > d, then G has a [k, d′, τ ]-DFR.

(iii) Suppose S′ ⊆ G is a finite generating set for G. Then there is an effectively computable constant
C = C(S, S′) ∈ R>0 such that FG is also a [k, d, τ ◦ηC ]-DFR for G = 〈S′|R′〉, where ηC : R>0 →
R>0 is given by ηC(n) = Cn.

If, moreover, FG is an algebraic (resp. diagonal) DFR, then each newly constructed DFR is also
algebraic (resp. diagonal).
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Proof. (i) Consider the representation ρ : G → U(kd) of G given by ρ = ρ1 ⊕ · · · ⊕ ρk. As FG =
{ρ1, . . . , ρk} is a [k, d, τ ]-DFR for G, it satisfies the property Definition 3.1(ii); for each g ∈ G6=1G ,
set jg to be the corresponding value of j ∈ {1, . . . , k} provided by the property. Therefore, for
each g ∈ G6=1G , we have,

|χρ(g)| =

∣∣∣∣∣∣
∑
j

χρj (g)

∣∣∣∣∣∣ ≤ |χρjg (g)|+

∣∣∣∣∣∣
∑
j 6=jg

χρi(g)

∣∣∣∣∣∣ ≤ d− τ(l(g)) + (k − 1)d ≤ kd− τ(l(g)).

(ii) For each j, define the representation ρ̂j = ρj ⊕ 1d′−d. Then {ρ̂1, . . . , ρ̂k} is a [k, d′, τ ]-DFR, by
an argument analogous to the above proof of (i).

(iii) Let Γ(G,Σ) (resp. Γ(G,Σ′)) denote the Cayley graph of G with (symmetric) generating sets
Σ = S∪S−1 (resp. Σ′ = S′∪S′−1). Let dS and dS′ denote the corresponding word metrics. Then
idG : G→ G, the identity map on G, is a bilipschitz equivalence between (G, d′S) and (G, dS) (see,
for instance, [28, Proposition 5.2.4]), and so ∃C = C(S, S′) ∈ R>0, which is straightforwardly
computable, such that, ∀g1, g2 ∈ G, 1

C dS′(g1, g2) ≤ dS(g1, g2) ≤ CdS′(g1, g2). We then write
lS(g) and lS′(g) for the length of g ∈ G with respect to each of the generating sets S and S′, i.e.,
lS(g) = dS(g, 1G) and lS′(g) = dS′(g, 1G). By the above, lS(g) ≤ ClS′(g). As FG is a [k, d, τ ]-
DFR for G, we have that for each g ∈ G 6=1G , ∃jg ∈ {1, . . . , k} such that |χρjg (g)| ≤ d− τ(lS(g)).
As lS(g) ≤ ClS′(g), and τ is monotone non-increasing, we then have τ(lS(g)) ≥ τ(ClS′(g)),
which immediately implies |χρjg (g)| ≤ d− τ(ClS′(g)), as desired.

Next, we show that a DFR of G and a DFR of H can be used to produce a DFR of G×H, the direct
product of G and H. In the following, for a group Q the commutator of elements q1, q2 ∈ Q, is denoted
by [q1, q2] = q−1

1 q−1
2 q1q2. For functions τ, τ ′ : R>0 → R>0, we define the function τmin

τ,τ ′ : R>0 → R>0

by τmin
τ,τ ′ (m) := min(τ(m), τ ′(m)), ∀m ∈ R>0.

Lemma 3.14. Consider groups G = 〈SG|RG〉 and H = 〈SH |RH〉, with SG ∩ SH = ∅. Let Rcom =
{[g, h]|g ∈ SG, h ∈ SH}. If G has a [k, d, τ ]-DFR and H has a [k′, d′, τ ′]-DFR, then G × H =
〈SG tSH |RG ∪RH ∪Rcom〉 has a [k+ k′,max(d, d′), τmin

τ,τ ′ ]-DFR. Moreover, if G and H have algebraic
(resp. diagonal) DFRs with the above parameters, then G×H has an algebraic (resp. diagonal) DFR
with the above parameters.

Proof. By Lemma 3.13(ii), we may assume, without loss of generality, that d′ = d (i.e., we increase the
smaller of d, d′ to max(d, d′)). Let FG = {ρ1, . . . , ρk} be a [k, d, τ ]-DFR for G and FH = {π1, . . . , πk′}
a [k′, d, τ ′]-DFR for H. For each j ∈ {1, . . . , k}, define a representation ρ̂j : G×H → U(d) such that,
∀(g, h) ∈ G × H, ρ̂j(g, h) = ρj(g). Analogously, for each j ∈ {1, . . . , k′}, we define a representation
π̂j : G×H → U(d) such that, ∀(g, h) ∈ G×H, π̂j(g, h) = πj(h). Then FG×H = {ρ̂1, . . . , ρ̂k, π̂1, . . . , π̂k′}
is the desired DFR. To see this, first notice that, ∀(g, h) ∈ G×H, l(g, h) = l(g) + l(h), where we write
l(g, h) in place of l((g, h)), to avoid cumbersome notation. By definition, τ and τ ′ are monotone non-
increasing, and so, ∀(g, h) ∈ G×H, we have τ(l(g, h)) ≤ τ(l(g)) and τ ′(l(g, h)) ≤ τ ′(l(h)). As FG is a
[k, d, τ ]-DFR for G, we have that for each g ∈ G 6=1G , ∃jg ∈ {1, . . . , k} such that |χρjg (g)| ≤ d− τ(l(g)).
Analogously, for each h ∈ H6=1H , ∃jh ∈ {1, . . . , k′} such that |χπjh (h)| ≤ d− τ(l(h)).

Consider (g, h) ∈ G×H, where (g, h) 6= 1G×H = (1G, 1H). Then we must have g 6= 1G or h 6= 1H .
If g 6= 1G, then, by the above ∃jg such that

|χρ̂jg (g, h)| = |χρjg (g)| ≤ d− τ(l(g)) ≤ d− τ(l(g, h)).

If, h 6= 1H , then, analogously, ∃jh such that

|χπ̂jh (g, h)| = |χπjh (h)| ≤ d− τ ′(l(h)) ≤ d− τ ′(l(g, h)).
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Therefore, for any (g, h) ∈ (G×H)6=1G×H , there is some representation β ∈ FG×H for which

|χβ(g, h)| ≤ max(d− τ(l(g, h)), d− τ ′(l(g, h))) = d−min(τ(l(g, h)), τ ′(l(g, h))) = d− τmin
τ,τ ′ (l(g, h)).

Now, we show that a DFR of a group G can be used to produce a DFR of a finitely-generated
subgroup of G, or of a finite-index overgroup of G.

Lemma 3.15. Suppose FG = {ρ1, . . . , ρk} is a [k, d, τ ]-DFR for G = 〈SG|RG〉. For C ∈ R>0, let
ηC : R>0 → R>0 be given by ηC(n) = Cn. Then the following statements hold.

(i) Suppose H ≤ G, where H = 〈SH |RH〉, with SH finite. Then there is an effectively computable
constant C ∈ R>0 such that H has a [k, d, τ ◦ ηC ]-DFR. If, moreover, FG is an algebraic (resp.
diagonal) DFR, then H will also have an algebraic (resp. diagonal) DFR with the claimed
parameters.

(ii) Suppose G ≤ Q, where Q = 〈SQ|RQ〉, with SQ finite, SG ⊆ SQ, and [Q : G] := r finite. Then
there is an effectively computable constant C ∈ R>0 such that Q has a [k, dr, τ ◦ ηC ]-DFR. If,
moreover, FG is an algebraic DFR, then Q will also have an algebraic DFR with the claimed
parameters.

Proof. (i) As H ≤ G, G admits a presentation 〈S′G|R′G〉 such that S′G is finite and SH ⊆ S′G.
Writing lSH (h) for the length of h ∈ H relative to the generating set SH and lS′G(g) for the
length of g ∈ G relative to the generating set S′G, we immediately have that lSH (h) ≥ lS′G(h),
∀h ∈ H ≤ G. By Lemma 3.13(iii), ∃C ∈ R>0 such that FG is a [k, d, τ ◦ηC ]-DFR of G = 〈S′G|R′G〉.
Let τ ′ = τ ◦ ηC and let FH = {π1, . . . , πk}, where πj = ResGH(ρj). As FG is a [k, d, τ ′]-DFR
for G, we have that for each h ∈ H ≤ G, where h 6= 1H = 1G, ∃jh ∈ {1, . . . , k} such that
|χρjh (h)| ≤ d − τ ′(lS′G(h)). Notice that χπj (h) = χρj (h), ∀h ∈ H,∀j ∈ {1, . . . , k}. As τ ′ is
monotone non-increasing, τ ′(lSH (h)) ≤ τ ′(lS′G(h)). Therefore, ∀h ∈ H6=1H , ∃jh such that

|χπjh (h)| = |χρjh (h)| ≤ d− τ ′(lS′G(h)) ≤ d− τ ′(lSH (h)).

Therefore, FH is a [k, d, τ ◦ η]-DFR for H.

(ii) For each j ∈ {1, . . . , k}, let πj = IndQG(ρj) : Q→ U(kr). Then FQ = {π1, . . . , πk} is the desired
DFR. To see this, let T ⊆ Q be a complete family of left coset representatives of G in Q, where
1Q ∈ T . Notice that |T | = [Q : G] = r, with r finite. Then, for any q ∈ Q, we have (see, for
instance, [26, Proposition 2.7.35])

χπj (q) =
∑
t∈T

t−1qt∈G

χρj (t
−1qt).

Let lQ(q) denote the length of q ∈ Q relative to SQ and lG(g) denote the length of g ∈ G ≤ Q
relative to SG. Then ∃C ∈ R>0 such that lG(g) ≤ ClQ(g), ∀g ∈ G, as [Q : G] is finite. As τ is
monotone non-increasing, τ(lG(g)) ≥ τ(ClQ(g)), ∀g ∈ G. Additionally, τ(l(g)) ≤ d, ∀g ∈ G 6=1G .
Therefore, if g ∈ G6=1G , then d ≥ τ(lG(g)) ≥ τ(ClQ(q)).

Fix q ∈ Q 6=1Q . First, suppose q ∈ G. As FG = {ρ1, . . . , ρk} is a [k, d, τ ]-DFR for G, we conclude
that there is some j such that |χρj (q)| ≤ d− τ(lG(q)) ≤ d− τ(ClQ(q)). This immediately implies

|χπj (q)| =

∣∣∣∣∣∣∣∣
∑
t∈T

t−1qt∈G

χρj (t
−1qt)

∣∣∣∣∣∣∣∣ ≤ |χρj (1
−1
Q q1Q)|+

∣∣∣∣∣∣∣∣∣
∑

t∈T\1Q
t−1qt∈G

χρj (t
−1qt)

∣∣∣∣∣∣∣∣∣ ≤ d− τ(ClQ(q)) + (r− 1)d.
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Therefore, there is some j such that |χπj (q)| ≤ dr − τ(ClQ(q)), if q ∈ G. Next, suppose instead

q 6∈ G and let m = |{t ∈ T |t−1qt ∈ G}|. As q 6∈ G, 1−1
Q q1Q = q 6∈ G, and so m ≤ |T | − 1 = r− 1.

Therefore, ∀j, we have

|χπj (q)| =

∣∣∣∣∣∣∣∣
∑
t∈T

t−1qt∈G

χρj (t
−1qt)

∣∣∣∣∣∣∣∣ ≤ dm ≤ dr − d ≤ dr − τ(ClQ(q)).

Therefore, ∀q ∈ Q 6=1Q , ∃j such that |χπj (q)| ≤ dr − τ(ClQ(q)), as desired.

Remark. Notice that an immediate consequence of the preceding Lemma is that any group G that
virtually has a DFR also has a DFR, but with worse parameters. In particular, if G virtually has a
[k, d, τ ]-DFR, it has some subgroup H ≤ G, [G : H] := r finite, where H has a [k, d, τ ]-DFR. Then
Lemma 3.15(ii) guarantees that ∃C ∈ R>0 such that G has a [k, dr, τ ◦ηC ]-DFR, where ηC : R>0 → R>0

is given by ηC(n) = Cn. However, the increase in the dimension of the representation space from d
to dr has a corresponding increase in the size of the quantum register 2QCFA for the word problem
of G, which is undesirable. As discussed earlier, it will be possible to solve the word problem for G
using DFR for its subgroup H, thereby avoiding this issue.

We now present the main technical result of this section: the construction of DFRs, with good
parameters, for a wide class of groups. We begin with the finitely-generated (virtually) abelian
groups. Recall that any finitely-generated abelian group G admits a unique decomposition G ∼=
Zr × Zm1 × · · · × Zml , where mi divides mi+1, ∀i ∈ {1, . . . , l − 1} (it is more standard to express the
previous decomposition using the direct sum, as such a decomposition is most naturally thought of
as coproduct, which, in the category of abelian groups, is the direct sum; however, as direct prod-
ucts and direct sums of a finite number of groups are canonically isomorphic, we express the above
decomposition using the direct product, for ease of notation). Clearly, Zr × Zm1 × · · · × Zml has pre-
sentation 〈a1, . . . , ar+l|R(r,m1, . . . ,ml)〉 where R(r,m1, . . . ,ml) = {amii |i ∈ {1, . . . , l}}∪ {[ai, aj ]|i, j ∈
{1, . . . , r + l}} with [ai, aj ] = a−1

i a−1
j aiaj denoting the commutator of ai and aj .

Theorem 3.16. There is an (effectively computable) constant C1 ∈ R>0, such that, for any finitely-
generated abelian group G = Zr × Zm1 × · · · × Zml = 〈a1, . . . , ar+l|R(r,m1, . . . ,ml)〉, the following
statements hold.

(i) Suppose r = 0. In the trivial case in which l = 0, i.e., G is the trivial group, G has a diagonal

algebraic [1, 2, 2]-DFR. Otherwise, G has a diagonal algebraic
[
l, 2, 19π2

24m2
l

]
-DFR.

(ii) If r 6= 0, ∃C2 ∈ R>0, with C2 effectively computable, such that G has a diagonal algebraic[
r + l, 2, C2n

−C1
]
-DFR.

(iii) If r 6= 0, then ∀δ ∈ R>0, ∃C3 ∈ R>0 such that G has a Ẽ-diagonal
[
r(1 + b2

δ c) + l, 2, C3n
−δ]-

DFR.

Proof. Apply Lemma 3.11(ii), for an arbitrary x that satisfies the hypothesis of the lemma, e.g.,
x = 1

2π cos−1
(

3
5

)
. Then there are effectively computable constants D1, D2 ∈ R>0 such that Z = 〈a|〉

has a diagonal algebraic [1, 2, D2n
−D1 ]-DFR, which we call F . We set C1 = D1. Now, consider the

finitely-generated abelian group G = Zr × Zm1 × · · · × Zml .

(i) When l = 0, the claim immediately follows by considering the representation ρ : {1} → U(2),
for which ρ(1) = I2. Suppose l > 0. By Lemma 3.10, each factor Zmi = 〈a|ami〉 has a diagonal
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algebraic
[
1, 2, 19π2

24m2
i

]
-DFR. Notice that m1 ≤ · · · ≤ ml, as each mi divides mi+1. The existence

of the desired DFR is then an immediate consequence of Lemma 3.14.

(ii) Using the DFR F of Z, Lemma 3.14 implies H1 := Zr has a diagonal algebraic [r, 2, D2n
−C1 ]-

DFR H1. If l = 0, then G = H1; therefore, H1 is the desired DFR for G, with C2 = D2, and we
are done. If l > 0, part (i) of this lemma shows H2 := Zm1 × · · · × Zml has a diagonal algebraic[
l, 2, 19π2

24m2
l

]
-DFR H2. Set C2 = min(D2,

19π2

24m2
l
). By Lemma 3.14, we conclude G = H1 ×H2 has

a DFR with the claimed parameters.

(iii) By Lemma 3.11(i), ∃D ∈ R>0 such that Z = 〈a|〉 has a Ẽ-diagonal
[
1 + b2

δ c, 2, Dn
−δ]-DFR, F ′.

The remainder of the proof is precisely analogous to that of part(ii), using F ′ in place of F .

Recall that we say a group is virtually abelian if it has a finite-index subgroup that is abelian.
Notice that all finite groups are virtually abelian as any finite group contains the (trivial) abelian
group {1} as a (necessarily) finite-index subgroup. As defined in Section 1.2, we write Π̂1 to denote
the class of all finitely-generated virtually abelian groups. Recall that, for any G ∈ Π̂1, there is a
unique r ∈ N such that G has a finite-index subgroup isomorphic to Zr. The following is immediate.

Corollary 3.16.1. There is an effectively computable constant C ∈ R>0, such that, for any G ∈ Π̂1,
the following holds.

(i) If G is finite, there are (trivially) effectively computable D ∈ R>0 and K ∈ N>0, such that G
virtually has a diagonal algebraic [K, 2, D]-DFR.

(ii) There are effectively computable D ∈ R>0 and K ∈ N>0, such that G virtually has a diagonal
algebraic [K, 2, Dn−C ]-DFR.

(iii) ∀δ ∈ R>0, ∃D ∈ R>0 and K ∈ N>0, such that G virtually has a Ẽ-diagonal
[
K, 2, Dn−δ

]
-DFR.

Consider the group Zr, for r ∈ N≥1. By Theorem 3.16, we see that Zr has a diagonal algebraic[
r, 2, C2n

−C1
]
-DFR, as well as a Ẽ-diagonal

[
r(1 + b2

δ c), 2, C3n
−δ]-DFR, for any δ ∈ R>0, for particular

constants C1, C2, C3. While these DFRs suffice for establishing all of our results concerning the
recognizability of the word problem for Zr, we next exhibit a different construction of a DFR for Zr,
which we will require in Section 3.5. In the following, for a commutative (unital) ring R, let SO(2, R)
denote the group of 2 × 2 orthogonal matrices of determinant 1 whose entries lie in R. For a set of
prime numbers P = {p1, . . . , pm}, let Z[ 1

p1
, . . . , 1

pm
] denote the ring obtained by adjoining 1

p1
, . . . , 1

pm
to

the ring Z, i.e., Z[ 1
p1
, . . . , 1

pm
] is the localization of Z away from P. Notice that SO(2,Z[ 1

p1
, . . . , 1

pm
]) ≤

SO(2,Q) ≤ SU(2,Q) ≤ SU(2,Q).

Lemma 3.17. Consider the group Zr = 〈Sr|Rr〉, where Sr = {a1, . . . , ar} and Rr = {[ai, aj ]|i, j ∈
{1, . . . , r}}. There is a representation ρ : Zr → SO(2,Z[ 1

p1
, . . . , 1

pr
]) such that, for some effectively

computable constants D1, D2 ∈ R>0, {ρ} is a [1, 2, D2n
−D1 ]-algebraic DFR for Zr.

Proof. Fundamentally, we follow the construction of Tan [43] of the rational points on the unit circle.
Let pj denote the jth prime number that is congruent to 1 modulo 4, and let mj , nj ∈ N denote the
(unique) values which satisfy pj = m2

j + n2
j and mj > nj > 0. Define the representation ρ : Zr →

SO(2,Z[ 1
p1
, . . . , 1

pr
]) such that

aj 7→
1

pj

(
m2
j − n2

j 2mjnj
−2mjnj m2

j − n2
j

)
, ∀j ∈ {1, . . . , r}.
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Notice that ρ(aj) has eigenvalues p−1
j (m2

j − n2
j ± 2mjnji). As SO(2,Z[ 1

p1
, . . . , 1

pr
]) is abelian, the

ρ(aj) are simultaneously diagonalizable. Define Y ∈ U(2) such that, ∀j, Y ρ(aj)Y
−1 = Dj , where Dj

is a 2× 2 diagonal matrix whose diagonal entries are the eigenvalues p−1
j (m2

j − n2
j ± 2mjnji). Define

αj ∈ (R ∩ (−π, π)) such that Dj = diag[eiαj , e−iαj ].
For some (q1, . . . , qr) ∈ Zr, consider the element g = aq11 · · · a

qr
r ∈ Zr. Then

χρ(g) = Tr

 r∏
j=1

ρ(aj)
qj

 = Tr

 r∏
j=1

(
Y ρ(aj)Y

−1
)qj = ei

∑
j qjαj + e−i

∑
j qjαj = 2 cos

∑
j

qjαj

 .

Let L = {β ∈ C 6=0|eβ ∈ Q}. Let β0 = iπ and, for j ∈ {1, . . . , r}, let βj = iαj . Then β0, . . . , βr ∈ L.
By [43, Theorem 1], ρ is P-faithful, which immediately implies β0, . . . , βr are linearly independent over
Q. By Proposition 3.6, there is an effectively computable constant C ∈ R>0 such that, ∀(q0, . . . , qr) ∈
Zr+1, where qmax := maxj |qj | > 0, we have |

∑
j qjβj | ≥ (eqmax)−C .

Consider any g = aq11 · · · a
qr
r ∈ Zr6=1Zr

(i.e., not all qi = 0). Let q0 = round( 1
π

∑r
j=1 qjαj) and observe

that, by construction |αj | ≤ π, ∀j, and so |q0| ≤
∑r

j=1|qj | = l(g). Therefore, qmax := maxj∈{0,...,r} qj ≤
l(g), which implies

min
m∈Z

∣∣∣∣∣∣mπ +

r∑
j=1

qjαj

∣∣∣∣∣∣ =

∣∣∣∣∣∣q0π +

r∑
j=1

qjαj

∣∣∣∣∣∣ =

∣∣∣∣∣∣q0β0 +

r∑
j=1

qjβj

∣∣∣∣∣∣ ≥ (el(g))−C .

Therefore,

|χρ(g)| = 2

∣∣∣∣∣∣cos

∑
j

qjαj

∣∣∣∣∣∣ ≤ 2− C ′min
m∈Z

∣∣∣∣∣∣mπ +
r∑
j=1

qjαj

∣∣∣∣∣∣
2

≤ 2− C ′(el(g))−2C ,

for a constant C ′ ∈ R>0. We then conclude that {ρ} is a [1, 2, D2n
−D1 ]-algebraic DFR for Zr, where

D1 = 2C and D2 = C ′e−2C .

Next, we consider groups that can be built, in certain ways, from finitely-generated free groups.

Theorem 3.18. Suppose G = 〈S|R〉, with S finite, such that G ≤ Fr1×· · ·×Frt, for some r1, . . . , rt ∈
N. Then there is an effectively computable constant C ∈ R≥1 such that G has an algebraic [t, 2, C−n]-
DFR. In particular, for any r ∈ N, Fr = 〈a1, . . . , ar|〉 has an algebraic [1, 2, C−n]-DFR.

Proof. We first show that, for any r ∈ N, there is an (effectively computable) constant C ∈ R≥1

such that Fr = 〈a1, . . . , ar|〉 has an algebraic [1, 2, C−n]-DFR. As F0 = {1} and F1 = Z, Theorem 3.16
immediately implies the claim when r ∈ {0, 1}. Next, consider the case in which r = 2. By Lemma 3.12,
∃C ∈ R≥1 such that the free group of rank 2, F2 = 〈a1, a2|〉, has an algebraic [1, 2, C−n]-DFR. If r > 2,
then fix r, and note that, by the Nielsen-Schreier theorem, F2 has a finite-index subgroup isomorphic
to Fr. The result immediately follows from Lemma 3.15(i).

Next, suppose G = 〈S|R〉, with S finite, such that G ≤ Fr1 × · · ·×Frt , for some r1, . . . , rt ∈ N. By
the previous paragraph, each Fri has an algebraic [1, 2, C−ni ]-DFR, for some Ci ∈ R≥1. Lemma 3.14
implies that Fr1 × · · · × Frt has an algebraic [t, 2, C−n]-DFR, where C = maxiCi, and Lemma 3.15(i)
then implies G has a DFR with the claimed parameters.

As defined in Section 1.2, we write Σ1 = {Fk|k ∈ N} to denote the finitely-generated (i.e., finite-
rank) free groups, Π2 to denote the class of groups isomorphic to a direct product of some finite set of
groups in Σ1, and Π̂2 to denote the class of finitely-generated groups that are virtually a (necessarily
finitely-generated) subgroup of some group in Π2. The following corollary is immediate.

26



Corollary 3.18.1. Suppose G ∈ Π̂2. Then G has a finite-index subgroup H such that H ∼= Fr1×· · ·×
Frt, for some r1, . . . , rt ∈ N. Then there is an effectively computable constant C ∈ R≥1 such that G
virtually has an algebraic [t, 2, C−n]-DFR.

Remark. Note that the above theorem (and its corollary) would also hold if we considered finitely-
generated subgroups of Fr1 × · · · × Frt × A (and their finite-index overgroups), where A is a finite
abelian group. This, of course, does not extend the class of groups for which we can construct a DFR,
but it does allow for a slightly better bound on the number of classical states of the 2QCFA for certain
word problems (by “moving” the finite abelian group into the DFR).

We conclude with a “generic” construction, that, in a certain sense, covers all groups that have
algebraic DFRs. We remark that while this does partially subsume all other results in this section,
it does not do so completely, as the earlier constructions of DFRs for certain particular groups will,
in several important special cases, have parameters that are better than those guaranteed by this
construction.

Theorem 3.19. Consider a group G = 〈S|R〉, with S finite, where G is not the trivial group. Suppose
G has a faithful representation π : G → U(l,Q). Then π has a (unique, up to isomorphism of
representations) set of irreducible subrepresentations {πj : G→ U(dj ,Q)}mj=1 such that π ∼= π1⊕ · · · ⊕
πm. Let dmax = maxj dj. Define the value d as follows: if ∩j Pker(πj) = {1G}, let d = dmax, otherwise,
let d = dmax + 1. Partition the non-trivial πj into isomorphism classes (i.e., only consider those πj
which are not the trivial representation; πj1 and πj2 belong to the same isomorphism class precisely
when πj1

∼= πj2) and let k denote the number of isomorphism classes that appear. Then there is an
effectively computable constant C ∈ R≥1 such that G has an algebraic [k, d, C−n]-DFR.

Proof. Notice that, as G is not the trivial group, we must have d ≥ 2. Assume, for notational conve-
nience, that the πj are ordered such that π1, . . . , πk are representatives of the k distinct isomorphism
classes of the non-trivial representations that appear among the πj . For each j ∈ {1, . . . , k}, de-
fine the representation ρj : G → U(d,Q) as ρj = πj ⊕ 1d−dj . By Corollary 3.8.1, we have that for
each j ∈ {1, . . . , k}, there is an effectively computable constant Cj = Cj(G,S, ρj) ∈ R≥1 such that,

∀g 6∈ Pker(ρj), |χρj (g)| ≤ d− C−l(g)j . Set C = maxj Cj .
Next, notice that ∩j Pker(ρj) = {1G}. If ∩j Pker(πj) = {1G}, then this is obvious. Suppose

∩j Pker(πj) 6= {1G}. Then d = dmax + 1 > dj , ∀j, which implies ρj = πj ⊕ 1tj , where tj := d− dj ≥ 1.

Therefore, for each j, ρj(G) ∩ Z(U(d,Q)) = Id, and so, by definition, Pker(ρj) = ker(ρj). As π is
faithful,

{1G} =

m⋂
j=1

ker(πj) =

k⋂
j=1

ker(ρj) =

k⋂
j=1

Pker(ρj).

This immediate implies that, ∀g ∈ G6=1G , ∃jg such that g 6∈ Pker(ρjg), which implies

|χρjg (g)| ≤ d− C−l(g)jg
≤ d− C−l(g).

Therefore, {ρ1, . . . , ρk} is an algebraic [k, d, C−n]-DFR for G.

Corollary 3.19.1. Suppose G is a finitely-generated group. Suppose further that G has a finite-index
subgroup H such that H is isomorphic to a subgroup H̃ of (U(d,Q))k (the direct product of k copies
of (U(d,Q))), for some d, k ∈ N≥1. Then there is an effectively computable constant C ∈ R≥1 such

that G virtually has an algebraic [k, d + 1, C−n]-DFR. Moreover, if H̃ is not the trivial group and
H̃ ∩ Z((U(d,Q))k) is the trivial group (in particular, this implies d ≥ 2), then G virtually has an
algebraic [k, d, C−n]-DFR.
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Remark. While we demonstrated that many groups have a DFR, it is of course not the case that all
groups have a DFR. Let U (resp. L) denote the set of finitely-generated groups that have a faithful
finite-dimensional unitary (resp. C-linear) representation. As noted in Proposition 3.2, the existence
of a DFR for a finitely-generated group G immediately implies G ∈ U . Of course, U ⊆ L and, in
fact, U ( L. To see this, note that, by the Tits’ alternative [45], L is divided into two classes: those
groups that are virtually solvable, and those groups that have a subgroup isomorphic to F2. By [44,
Proposition 2.2], the only virtually solvable groups in U are virtually abelian, and so a DFR could
certainly not exist for any virtually solvable G ∈ L that is not virtually abelian. On the other hand,
we have demonstrated the existence of a DFR for every finitely-generated virtually abelian group.

3.4 Projective DFRs

Thus far, we have considered DFRs that consist of ordinary representations; that is to say, a DFR
F = {ρ1, . . . , ρj} of a group G is a collection of representations (i.e., group homomorphisms) ρj : G→
U(d). We next consider a slight generalization to projective representations. As before, we write S1 =
{eir|r ∈ R} for the circle group, Z(U(d)) = S1Id for the center of U(d), and PU(d) = U(d)/Z(U(d))
for the d-dimensional projective unitary group. Recall that a projective representation of G is a group
homomorphism ρ : G → PU(d). For any such ρ, we may define a function (not necessarily a group
homomorphism) ρ̂ : G → U(d), such that, for each g ∈ G, ρ̂(g) ∈ U(d) is some lift of ρ(g) ∈ PU(d),
i.e., γ ◦ ρ̂ = ρ, where γ : U(d) → PU(d) is the canonical projection. For a particular projective
representation ρ of G, it may or may not be possible to choose some ρ̂ that is a unitary representation
of G (i.e., such that ρ̂ : G→ U(d) is a group homomorphism).

A 2-cocycle is a mapping ζ : G × G → S1 such that ζ(g1, g2)ζ(g1g2, g3) = ζ(g1, g2g3)ζ(g2, g3),
∀g1, g2, g3 ∈ G. For any ρ̂, there is a unique ζ such that, ∀g1, g2 ∈ G, we have ρ̂(g1)ρ̂(g2) =
ζ(g1, g2)ρ̂(g1, g2). Then, for any two lifts ρ̂1 and ρ̂2, we have |χρ̂1(g)| = |χρ̂2(g)|. Therefore, the
function |χρ(·)| : G → C given by |χρ(g)| = |χρ̂(g)|, ∀g ∈ G, is well-defined. We then define a
[k, d, τ ]-PDFR as a set of projective representations F = {ρ1, . . . , ρj} that satisfies Definition 3.1
where “representation” is replaced by “projective representation” in that definition. As we will ob-
serve in the following section, the same process that allows a DFR for a group G to be used to produce
a 2QCFA for the word problem WG, can also be applied to a PDFR. Clearly, any DFR is a PDFR,
with the same parameters. However, as a projective representation of a group cannot always be lifted
to an ordinary representation of that group, this is a generalization.

Let PU(d,Q) = U(d,Q)/Z(U(d,Q)) denote the d-dimensional projective unitary group with alge-
braic number entries. If a PDFR consists entirely of representations into PU(d,Q), we say it is an
algebraic PDFR. The following variant of Theorem 3.19 follows by a precisely analogous proof.

Theorem 3.20. Suppose the group G = 〈S,R〉, with S finite, has a family F = {ρ1, . . . , ρk} of
projective representations ρj : G→ PU(d,Q), such that ∩j ker(ρj) = {1G}. Then there is an effectively
computable constant C ∈ R≥1 such that F is an algebraic [k, d, C−n]-PDFR for G.

3.5 Unbounded DFRs

As noted in Proposition 3.2, if F = {ρ1, . . . , ρk} is a DFR for a group G, then ∩j Pker(ρj) = {1G}.
However, a crucial element in the definition of a DFR is the requirement that, much more strongly,
all g ∈ G6=1G are “far” from being in ∩j Pker(ρj); in particular, if F is a [k, d, τ ]-DFR, then for each
g ∈ G6=1G there is some j such that |χρj (g)| ≤ d − τ(l(g)). This requirement is essential in order for
the construction of a 2QCFA for WG using a DFR for G, which we present in Section 4, to operate
with one-sided bounded-error. We next consider a generalization of a DFR, in which this requirement
is removed; as we will then see in Section 4, these less constrained DFRs will still yield a 2QCFA that
recognizes the corresponding group word problem with one-sided unbounded-error.
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Definition 3.21. We say F = {ρ1, . . . , ρk} is an unbounded-error [k, d]-DFR for a group G = 〈S|R〉
if the conditions of Definition 3.1 hold, where Definition 3.1(ii) is replaced by:

Definition 3.1(ii)’: ∀g ∈ G 6=1G , ∃j ∈ {1, . . . , k} such that |χρj (g)| < d. This condition is equivalent
to ∩j Pker(ρj) = {1G}.

Similarly, if the ρj are projective representations, then we say F is an unbounded-error [k, d]-PDFR.
We also define algebraic, diagonal, and virtual unbounded-error DFRs in the obvious way.

Of course, any [k, d, τ ]-DFR for G is also an unbounded-error [k, d]-DFR for G. In the other
direction, any algebraic unbounded-error [k, d]-DFR is also an algebraic [k, d, C−n]-DFR, for some
constant C ∈ R≥1, by Corollary 3.8.1; furthermore, by the same argument that follows the discussion
of Definition 3.3, only a finitely-generated abelian group could have a diagonal unbounded-error [k, d]-
DFR, and all finitely-generated abelian groups were shown to have DFRs in Theorem 3.16. Therefore,
in order to obtain something new, we must consider unbounded-error DFRs that are neither algebraic
nor diagonal.

Recall that for groups G = 〈SG|RG〉 and H = 〈SH |RH〉, the free product of G and H, which
we denote G ∗ H, is the group G ∗ H = 〈SG t SH |RG t RH〉 (here, for notational convenience, we
assume that SG and SH are disjoint; of course, if G and H are both subgroups of some group, there
could be non-trivial g ∈ G and h ∈ H such that g = h, but we view these as two distinct copies of a
single element). We consider the possibility of using DFRs for G and H to produce a DFR for G ∗H.
First, suppose both G and H have linear representations (we emphasize here that these are the more
general sort of representations discussed at the beginning of Section 2.4, rather than the special case
of unitary representations) ρ : G→ GL(n,F) and π : H → GL(n,F), for some n ∈ N≥1 and field F. It
is a classic result of Nisnevic̆ [34] that if ρ and π are both P-faithful representations, then G ∗H has
a P-faithful representation γ : G ∗H → GL(n,F′) where F′ is some field of the same characteristic as
F. While the technique used to show Nisnevic̆’s result [34] do not, immediately, seem to carry over to
the case of unitary representations, the technique used by Shalen [40] to prove a certain generalization
of the preceding result does directly apply to the unitary case. However, unfortunately, F′ may be a
substantially more “complex” field than F; for example, if G and H have P-faithful representations
over the field Q, these constructions will produce a P-faithful representation of G ∗ H over some
transcendental extension of Q. While that latter issue of the complexity of the field is an obstacle to
using DFRs of G and H to produce a DFR of G∗H, we are still able to construct an unbounded-error
DFR of G ∗H, in a certain interesting case.

Lemma 3.22. For any r ∈ N≥1, Z ∗ Zr has an unbounded-error [1, 2]-DFR.

Proof. Fix r. Let Sr = {x1, . . . , xr} and let Rr = {[xi, xj ]|i, j ∈ {1, . . . , r}}. By Lemma 3.17, the group
A := Zr = 〈Sr|Rr〉 has a P-faithful representation ρ : A → SU(2,Q), and the group B := Z = 〈{y}|〉
has a P-faithful representation π : B → SU(2,Q). Notice that, ∀a ∈ A 6=1A both off-diagonal entries
of the matrix ρ(a) are nonzero. To see this, consider some a ∈ A 6=1A . As ρ(a) ∈ SU(2), its two
off-diagonal entries are equal in magnitude, and so they are both zero or both nonzero. If they are
both zero, then ρ(a) is diagonal; however, the only diagonal matrices in SU(2,Q) are {±I2}, which
would then imply ρ(a) ∈ {±I2} = Z(SU(2)), which contradicts the fact that ρ is P-faithful. By a
symmetric argument, ∀b ∈ B 6=1B , both off-diagonal entries of the matrix π(b) are nonzero.

We now fundamentally follow (the proof of) Shalen [40, Proposition 1.3] to produce a P-faithful
representation of A∗B ∼= Z∗Zr. Fix α ∈ ((R∩Q)\Q), let λ = eπiα, and notice that, by the Gel’fond-
Schneider theorem, λ 6∈ Q. Let Λ = diag[λ, λ2], the 2 × 2 diagonal matrix with diagonal entries λ
and λ2, and observe that Λ ∈ T(2, Ẽ). Define the representation ρ̂ : A→ SU(2) by ρ̂(a) = Λρ(a)Λ−1,
∀a ∈ A. Define the representation γ : A ∗B → SU(2) such that γ(a) = ρ̂(a), ∀a ∈ A and γ(b) = π(b),
∀b ∈ B (where γ is uniquely defined by the universal property of the free product). By Shalen [40,
Proposition 1.3], γ is a P-faithful representation. Moreover, π(y) ∈ SU(2,Q) ≤ U(2,Q), and for each
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xj ∈ Sr, ρ̂(xj) = Λρ(xj)Λ
−1, and so ρ̂(xj) is the product of three matrices in U(2,Q) ∪ T(2, Ẽ). As

{y} t Sr is a generating set for A ∗ B, this implies that the image of each such generator under γ
is expressible as the product of at most three matrices in U(2,Q) ∪ T(2, Ẽ). Therefore, {γ} is an
unbounded-error [1, 2]-DFR for A ∗B ∼= Z ∗ Zr.

As defined in Section 1.2, Π1 = {Zk|k ∈ N} denotes the finitely-generated free abelian groups, Σ2

denotes the set of groups isomorphic to a free product of some finite set of groups in Π1, Π3 denotes
the set of groups isomorphic to a direct product of some finite set of groups in Σ2, and Π̂3 denotes the
set of finitely-generated groups that are virtually a (necessarily finitely-generated) subgroup of some
group in Π3.

Theorem 3.23. Suppose G ∈ Π̂3, then G virtually has an unbounded-error [k, 2]-DFR, for some
k ∈ N.

Proof. Consider a group H ∈ Σ2. Such an H is of the form H ∼= Zr1 ∗· · ·∗Zrm , for some r1, . . . , rm ∈ N.
Let r = maxj rj . Then, by a straightforward application of the Kurosh subgroup theorem, H embeds
in Z∗Zr, which implies H has an unbounded-error [1, 2]-DFR, by Lemma 3.22. Next, consider a group
L ∈ Π3; such a group is of the form L ∼= H1×· · ·×Hk, for some H1, . . . ,Hk ∈ Σ2. As all such Hj have
unbounded-error [1, 2]-DFRs, we conclude, by an argument identical to that of Lemma 3.14, that L
has an unbounded-error [k, 2]-DFR. Finally, for any G ∈ Π̂3, G has a finitely-index subgroup K such
that K is isomorphic to a finitely-generated subgroup of some L ∈ Π3. As just observed, any such L
has an unbounded-error [k, 2]-DFR, for some k, and so, by the same argument as in Lemma 3.15(i), K
has an unbounded-error [k, 2]-DFR. We then conclude G virtually has an unbounded-error [k, 2]-DFR,
as desired.

4 2QCFA for the Word Problem

In this section, we use a DFR for a group G to construct a 2QCFA for the word problem of G, as well
as for certain other groups related to G. Consider the group G = 〈S|R〉, with S finite. As before, we
write Σ = S ∪ S−1 for the finite symmetric generating set of S which serves as our alphabet for the
word problem of G, Σ∗ for the free monoid on Σ, φ : Σ∗ → G for the natural map that takes each
word in Σ∗ to the element of G that it represents, and l(g) for the length of g ∈ G with respect to
Σ, i.e., the distance from 1G to g in the Cayley graph Γ(G,Σ). Recall that the word problem of G
is WG := WG=〈S|R〉 = {w ∈ Σ∗|φ(w) = 1G}. Suppose F = {ρ1, . . . , ρk} is a [k, d, τ ]-DFR for G. As
noted in Proposition 3.2, if w ∈WG, then |χρj (g)| = d, ∀j, and if w 6∈WG, then there is some j where
it is not merely the case that |χρj (g)| < d, but, much more strongly, |χρj (g)| ≤ d − τ(l(g)). We will
show that a 2QCFA can solve the word problem for G by checking the above condition. We will also
observe that a PDFR or unbounded-error DFR for G can also be used to produce a 2QCFA for WG,
where essentially all aspects of the construction are the same, modulo some small notational details.

4.1 Computing with DFRs

We first consider a simple way in which a 2QCFA could directly compute ρj(φ(w)), where, here,
“compute ρj(φ(w))” means placing the quantum part of the 2QCFA in a superposition that encodes
ρj(φ(w)). This initial approach will be somewhat inefficient, in terms of the size of the quantum
register, and so, after describing this approach, we will then improve it. We do this both so as to present
certain features of the algorithm as simply as possible, as well as to allow certain generalizations in
which having a full encoding of ρj(φ(w)) is useful (in particular, we use this encoding when considering
the MO-1QFA [29]). We also note that this approach has a certain formal similarity to the “standard”
way of using an “ordinary” quantum computer that is limited to pure quantum states and unitary
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transformations to simulate a quantum computer that is augmented with the ability to use mixed
quantum states and superoperators (see, for instance, [3]).

Let |q1〉, . . . , |qd2〉 denote the standard basis of Cd2 . Let Cd×d denote the vector space of d×d com-
plex matrices (under addition); clearly, Cd×d ∼= Cd2 , as vector spaces. This vector space isomorphism
is witnessed by the usual vectorization homomorphism vec : Cd×d → Cd2 , where, for any M ∈ Cd×d,
vec(M) is the vector where the first d elements are given by the first column of M , the next d ele-
ments of vec(M) are given by the second column of M , and so on. By interpreting an element M of
(the multiplicative group) U(d) as an element of the vector space Cd×d in the obvious way, we can
encode M in a quantum superposition by normalizing vec(M). In particular, for any M ∈ U(d) we
define |M〉 = 1√

d
vec(M). Recall that, for any M,L,R ∈ Cd×d, vec(LMR) = (R> ⊗ L)vec(M), where

here ⊗ denotes the Kronecker product. Therefore, for M,L,R ∈ U(d), |LMR〉 = (R> ⊗ L)|M〉 and
R> ⊗ L ∈ U(d2). This allows us to multiply M by matrices, both on the left and on the right, by
applying a corresponding unitary transformation to |M〉; though, in the following we will only require
the special case in which we multiply on the left. Define the homomorphism γ : U(d) → U(d2) such
that, for any L ∈ U(d), γ(L) = Id ⊗ L, and so γ(L)|M〉 = |LM〉. For w ∈ Σ∗, write w = w1, . . . , wn
where each wi ∈ Σ. Of course, as each wi ∈ Σ, φ(wi) = wi, in that φ takes wi as a formal symbol in
the input alphabet Σ to the corresponding group element wi ∈ Σ ⊆ G. For notational convenience,
we will ignore this distinction and write wi in place of φ(wi), for wi ∈ Σ.

Throughout this section, we will always read the string w “backwards” by initially positioning the
tape head at the rightmost symbol and scanning the tape from right to left. We do this so as to respect
both the convention that representations are left actions and the convention that the string w is written
from left to right along the tape. As a 2QCFA can move its head in either direction, this is perfectly
permissible. However, we emphasize that all results in this paper would apply equally well if one is only
allowed to read the string w in the “forwards” direction, as would be the case for the MO-1QFA [29]
or one-way QFA with reset [48], for example. This follows as 1G = φ(w) = φ(w1) · · ·φ(wn) precisely
when 1G = φ(w)−1 = φ(wn)−1 · · ·φ(w1)−1. This convention motivates the following definition of a
certain restricted type of subroutine of a 2QCFA A in which A is only permitted to scan the tape
once, from right to left, exclusively applying unitary transformations to its quantum register along the
way.

Definition 4.1. Consider a group G = 〈S|R〉, with S finite. Suppose A is a 2QCFA with quantum
basis states Q = {q1, . . . , q|Q|}, |Q| ≥ 2, quantum start state q1 ∈ Q, and alphabet Σ = S ∪ S−1.
Recall that, on input w ∈ Σ∗, the tape of A is the string #Lw#R, where #L and #R are the left and
right end-markers, respectively.

(i) Suppose |ψ1〉 =
∑

h αh|qh〉 and |ψ2〉 =
∑

h βh|qh〉 are two, not necessarily distinct, superpositions
of the basis states Q, where all αh, βh ∈ Q. There are (many) T ∈ U(|Q|,Q) such that T |ψ1〉 =
|ψ2〉. Let T|ψ1〉→|ψ2〉 denote an arbitrary such T .

(ii) Suppose π : G → U(|Q|) is a group homomorphism, and |ψ〉 =
∑

h αh|qh〉 a superposition of
the basis states Q, where αh ∈ Q, ∀h. Then the unitary round U(π, |ψ〉) is a particular sub-
computation of A on w, defined as follows. The round begins with the quantum register in the
superposition |q1〉 and the tape head at the right end of the tape. On reading #R, A performs
the unitary transformation T|q1〉→|ψ〉 to its quantum register, and moves its head to the left. On
reading a symbol σ ∈ Σ (which is interpreted as the element φ(σ) = σ ∈ Σ ⊆ G), A performs the
unitary transformation π(σ) to the quantum register and moves its head left. When the tape
head first reaches the left end of the tape (i.e., the first time the symbol #L is read), A performs
the identity transformation to its quantum register, and does not move its head, at which point
the round ends. As φ : Σ∗ → G is a (monoid) homomorphism and π : G → U(|Q|) is a (group)
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homomorphism, we immediately conclude that, at the end of the round, the quantum register is
in the superposition π(φ(w))|ψ〉.

We now observe that a 2QCFA can compute ρj(φ(w)) in a single unitary round, in the sense
that, when the round is over, the 2QCFA will have ρj(φ(w)) encoded in its quantum register. We
consider a 2QCFA A with quantum basis states q1, . . . , qd2 and quantum start state q1. Then, after the
round U(γ ◦ ρj , |Id〉), the quantum register will be in the superposition γ(ρj(φ(w)))|Id〉 = |ρj(φ(w))〉.
Moreover, |χρj (φ(w1, . . . , wn))| = |Tr(ρj(φ(w1, . . . , wn)))| is also easily obtainable from this encoding
as there is a T ∈ U(d2) for which the first entry of T |M〉 is 1

d Tr(M), for any M ∈ U(d). We leave
the straightforward details of completing this procedure to the reader, as we will now consider a more
efficient encoding.

In particular, the above procedure is rather wasteful, in that it explicitly encodes ρj(φ(w)) as the
quantum superposition |ρj(φ(w))〉, which requires d2 quantum states. Of course, we only wish to
determine if |χρj (φ(w))| = d, which does not require explicitly computing ρj(φ(w)). Fundamentally,
the idea is that, as ρj is a d-dimensional unitary representation, we can obtain the needed information
about ρj(φ(w)) by simply applying it to appropriately chosen |ψ〉 ∈ Cd, and such |ψ〉 can be stored
using only d quantum states. Define the subset Yj ⊆ G to be the elements of G strongly separated
from 1G by ρj , i.e., Yj = {g ∈ G

∣∣|χρj (g)| ≤ d − τ(l(g))}. By definition, ∪jYj = G6=1G , though the Yj
are not necessarily disjoint. In particular, ∀j, we have 1G 6∈ Yj . For n ∈ N, let Σn denote all words in
Σ∗ of (string) length exactly n (i.e., all sequences σ1, . . . , σn ∈ Σ). Notice that l(φ(w)) ≤ n, and so,
as τ is monotone non-increasing, τ(l(φ(w))) ≥ τ(n). We will show that, given some w ∈ Σn as input,
a 2QCFA can make a constant number (i.e., independent of n) right-to-left passes over the input, and
perform a constant number of quantum measurements such that, if φ(w) ∈ Yj , then with non-negligible
probability (related to τ(n)), the results of those measurements will allow the machine to conclude,
with certainty, that φ(w) 6= 1G. This motivates the following extension of Definition 4.1(ii), in which
we allow the 2QCFA to perform quantum measurements, in a certain restricted way.

Definition 4.2. Using the notation of Definition 4.1, let B = {B0, B1} be the partition of {1, . . . , |Q|}
given by B0 = {2, . . . , |Q|} and B1 = {1}.

(i) For M ∈ U(|Q|), a measurement round M(π, |ψ〉,M) is a sub-computation of A that begins
with the unitary round U(π, |ψ〉). Then A performs the unitary transformation M , and does not
move its head. After which A performs the quantum measurement specified by B, producing
the result r ∈ {0, 1}, A records r in its classical state, and does not move its head, at which
point the round is over. The result of the measurement round is the result r of the quantum
measurement. If r = 1, then the quantum register is in the superposition |q1〉 and if r = 0 then
the quantum register is in some superposition of the form

∑
h>1 αh|qh〉.

(ii) A reset consists of A moving its head directly to the right end of the tape, without altering its
quantum register. That is to say, when reading #L or any σ ∈ Σ, A must perform the identity
transformation on its quantum register and move its head one step to the right. When #R is
encountered for the first time, A must again perform the identity transformation on its quantum
register and A must not move its head, after which the reset is complete.

(iii) For p ∈ N≥1, a [≤ p]-pass measurement round of A on input w consists of A performing at
most p measurement rounds, where the overall result is the AND of the results of individual
measurement rounds, and which stops as soon as any result of 0 is obtained. Formally, we define
a [≤ p]-pass measurement round M [(π1, |ψ1〉,M1), . . . , (πp, |ψp〉,Mp)] as follows. Initialize a
counter j = 1 (A keeps track of j using its classical states). A repeatedly does the following:
A performs the measurement round M(πj , |ψj〉) producing the result rj , if rj = 0 or j = p, we
are done and the result is rj , otherwise (in particular, notice this requires rj = 1 and so the

32



quantum register is |q1〉) A increments the counter to j+1, performs a reset, and continues (and
of course does not continue to remember rj).

We now show that a 2QCFA can distinguish w for which φ(w) ∈ Yj from w for which φ(w) = 1G.

Lemma 4.3. Suppose F = {ρ1, . . . , ρk} is a [k, d, τ ]-DFR (or algebraic PDFR) for a group G = 〈S|R〉,
with S finite. Fix any j, consider the representation ρj, and define Yj = {g ∈ G

∣∣|χρj (g)| ≤ d−τ(l(g))},
as above.

(a) If F is a diagonal DFR, then there is a 2QCFA A, with only d quantum basis states, such that,
∀w ∈ Σn, the result r ∈ {0, 1} of a single measurement round of A on w satisfies the following.

(i) (Perfect Completeness) If φ(w) = 1G, then Pr[r = 1] = 1.

(ii) (Soundness) If φ(w) ∈ Yj ⊆ G6=1G, then Pr[r = 0] ≥ τ(n)
d .

(b) Otherwise, there is a 2QCFA B, with only d quantum basis states, such that, ∀w ∈ Σn, the result
r ∈ {0, 1} of a [≤ (d+ 1)]-pass measurement round of B on w satisfies the following.

(i) (Perfect Completeness) If φ(w) = 1G, then Pr[r = 1] = 1.

(ii) (Soundness) If φ(w) ∈ Yj ⊆ G6=1G, then Pr[r = 0] ≥
(

τ(n)
2d(d−1)

)2
.

Moreover, in either case, all transition amplitudes of the 2QCFA will belong to Q∪E, where E is the
collection of entries of the family of matrices ρj(s), as s varies over S.

Proof. First, suppose F is a DFR. Recall that the definition of a DFR requires d ≥ 2. Fix an
orthonormal basis |q1〉, . . . , |qd〉 of Cd, and let |1〉 = 1√

d

∑
j |qj〉. Fix any F ∈ U(d,Q) such that all

entries in the first row of F are equal to 1√
d
. For concreteness, we take F as the usual (unitary)

d × d DFT matrix, i.e., set ω = e−
2πi
d , then, for any u, v ∈ {1, . . . , d}, the (u, v) entry of F is

given by Fu,v = 1√
d
ω(u−1)(v−1). Notice that, for any M ∈ U(d), if |ψ〉 := FM |1〉, then |ψ〉 =(

1
d

∑
u,vMu,v

)
|q1〉 +

∑
h>1 αh|qh〉, for some α2, . . . , αd ∈ C. If, moreover, M is a diagonal matrix,

then |ψ〉 = 1
d Tr(M)|q1〉+

∑
h>1 αh|qh〉.

First, we consider the case in which F is a diagonal DFR. The 2QCFA A will have the d quantum
basis states Q = {q1, . . . , qd}, and q1 will be its quantum start state. A performs the measurement
round M(ρj , |1〉, F ), producing the result r, which we now show has the claimed properties. Immedi-
ately before performing the quantum measurement, the quantum register is in the superposition

Fρj(φ(w))|1〉 =
1

d
χρj (φ(w))|q1〉+

∑
h>1

αh|qh〉,

for some α2, . . . , αd ∈ C. By definition, Pr[r = 1] = |1dχρj (φ(w))|2. If φ(w) = 1G, then χρj (φ(w)) = d,
and so Pr[r = 1] = 1, as desired. If φ(w) ∈ Yj , then

|χρj (φ(w))| ≤ d− τ(l(φ(w))) ≤ d− τ(n).

This immediately implies,

Pr[r = 0] ≥ 1− 1

d2
(d− τ(n))2 = 2

τ(n)

d
−
(
τ(n)

d

)2

≥ τ(n)

d
,

where the last inequality follows from the fact that τ(n) ≤ d, which shows that the result of the
measurement round performed by A has the claimed parameters.
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Next, we consider the case in which F is not diagonal. The 2QCFA B will also have the d quantum
basis states Q = {q1, . . . , qd}, with q1 its quantum start state. For each, v ∈ {1, . . . , d}, let Pv ∈ U(d,Q)
denote an arbitrary permutation matrix with a 1 in entry (1, v). B performs the [≤ (d + 1)]-pass
measurement round M [(ρj , |1〉, F ), (ρj , |q1〉, P1), (ρj , |q2〉, P2), . . . , (ρj , |qd〉, Pd)], producing the result
r. To see that r has the claimed properties, let M = ρj(φ(w)). By the above,

FM |1〉 =
1

d

∑
u,v

Mu,v|q1〉+
∑
h>1

α′h|qh〉,

for some α′2, . . . , α
′
d ∈ C. Fix w such that φ(w) ∈ Yj , and define δ to be the maximum, taken over u, v

such that u 6= v, of |Mu,v|. We wish to bound |α′1| = |1d
∑

u,vMu,v|. We have,

∣∣∣∣∣1d∑
u,v

Mu,v

∣∣∣∣∣ =
1

d

∣∣∣∣∣∣∣Tr(M) +
∑
u,v
u6=v

Mu,v

∣∣∣∣∣∣∣ ≤
1

d

|Tr(M)|+
∑
u,v
u6=v

|Mu,v|

 ≤ 1

d
(d− τ(n) + δd(d− 1)) .

In particular, if δ ≤ τ(n)
2d(d−1) , then, letting r1 denote the result of the first quantum measurement

performed by B, we have

Pr[r = 0] ≥ Pr[r1 = 0] = 1−

∣∣∣∣∣1d∑
u,v

Mu,v

∣∣∣∣∣
2

≥ 1−
(

1− τ(n)

2d

)2

≥ τ(n)

2d
.

As this proves the claimed bound, assume for the remainder of the proof that δ ≥ τ(n)
2d(d−1) , and so there

is some u′, v′, u′ 6= v′ such that |Mu′,v′ | ≥ τ(n)
2d(d−1) . Notice that Pv′M |qv′〉 is of the form

∑
h βh|qh〉

where the βh are a permutation of the entries in column v′ of M . In particular, β1 = Mv′,v′ , so there
is some h > 1 such that βh = Mu′,v′ . Let pv+1 denote the probability that B performs the (v + 1)th

quantum measurement (recall that a multiple pass measurement round will stop as soon as a result
of 0 is obtained) and let rv+1 denote the result of that measurement, assuming that it is performed.
Then

Pr[r = 0] ≥ (1− pv+1) + Pr[rv+1 = 0]pv+1 ≥ Pr[rv+1 = 0] =
∑
h>1

|βh|2 ≥ |Mu′,v′ |2 ≥
(

τ(n)

2d(d− 1)

)2

.

Therefore, we have shown that, ∀w such that φ(w) ∈ Yj , the result r produced by B satisfies the
claimed lower bound on Pr[r = 0]. All that remains is to observe that, if φ(w) = 1G, then each of
the measurements possibly performed by B will always have value 1. This follows from the fact that
ρj(φ(w)) = Id, and so, when each of the above quantum measurements are performed, the quantum
register of B is in the superposition |q1〉. Therefore, the multiple pass measurement round performed
by B has the claimed parameters.

The claim concerning the transition amplitudes immediately follows from the fact that the only
unitary transformations performed by either A or B fall in two classes: (1) those of the type ρj(σ),
for σ ∈ Σ (note that, for s ∈ S, ρj(s

−1) = ρj(s)
−1 = ρj(s)

†, where † denotes conjugate-transpose),
whose transition amplitudes belong to E by definition, or (2) a transformation T|q1〉→1, T|q1〉→|qv〉, F ,
Id, or Pv, all of whose transition amplitudes are clearly algebraic numbers.

If, instead, F is an algebraic PDFR, simply take arbitrary lifts ρ̂j : G → U(d,Q) (functions, not
necessarily homomorphisms, such that the composition of the natural projection U(d)→ PU(d) with
each ρ̂j yields ρj), and apply the above argument to the ρ̂j .
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Remark. The particular parameters used to define “soundness” above can straightforwardly be im-
proved. However, as we view d as a small constant (in particular, we are most interested in the case
when d = 2), such improvements would not affect the asymptotics of any final results, so we do not
pursue them here.

Similarly, in the unbounded-error case, we have the following, by a proof precisely analogous to
that of Lemma 4.3(b) above.

Lemma 4.4. Consider a group G = 〈S|R〉, with S finite and suppose F = {ρ1, . . . , ρk} is a set of
representations ρj : G → U(d). Then there is a 2QCFA B, with only d quantum basis states, such
that, ∀w ∈ Σ∗, the result r ∈ {0, 1} of a [≤ (d + 1)]-pass measurement round of B on w satisfies the
following.

(i) (Perfect Completeness) If φ(w) = 1G, then Pr[r = 1] = 1.

(ii) (Soundness) If φ(w) 6∈ Pker(ρj), then Pr[r = 0] > 0.

Moreover all transition amplitudes of the 2QCFA will belong to Q ∪ E, where E is the collection of
entries of an appropriate finite factorization of each matrix the family of matrices ρj(s), as s varies
over S. Furthermore, the above claims all also hold if instead F is a set of projective representations.

4.2 Constructions of 2QCFA for Word Problems

Now, by combining the results of the previous section, the constructions of DFRs from Section 3.3,
and standard techniques from computational group theory, we show that 2QCFA can solve the word
problem for a wide class of groups. We first show that a DFR (with appropriate parameters) for a
group G can be used to produce a 2QCFA for WG, where for ease of exposition we split this into two
cases according to the parameters of the DFR. We then show that, if H is a finite-index subgroup of
G, a 2QCFA for WH can be used to produce a 2QCFA for WG. Finally, we show, for many groups,
there is a 2QCFA that recognizes its word problem. We use the notation of Definition 1.1 when stating
the parameters of the 2QCFA.

Lemma 4.5. Suppose F = {ρ1, . . . , ρk} is a E-diagonal [k, d, C1n
−C2 ]-DFR for a group G = 〈S|R〉,

with S finite, and C1, C2 ∈ R>0. Then ∀ε ∈ R>0, there is a [ε, ndC2e+2, d,Q ∪ E]-2QCFA A that
recognizes WG := WG=〈S|R〉.

Proof. Define the subsets Yj ⊆ G6=1G as in Lemma 4.3, and recall that G6=1G = ∪jYj . The 2QCFA
A will recognize WG by running the subroutine of Lemma 4.3(a), for each j. If φ(w) 6= 1G, then, for
at least some j, this subroutine will, with sufficient probability, produce a result that allows one to
conclude with certainty, that φ(w) 6= 1G, at which point A will immediately reject. To assure that
w for which φ(w) = 1G are accepted, A will periodically run a subroutine that accepts with some
small probability and continues otherwise, using the technique from Ambainis and Watrous [2]. In
particular, for m, y ∈ N, let R(m, y) denote the subroutine that, on an input of length n ∈ N produces
a result b ∈ {0, 1}, where Pr[b = 1] = (n + 1)−m2−y, within expected running time O(n2) (see [2]
for details; in brief, if the 2QCFA starts with its head over the first symbol to the right of #L and
performs an unbiased one-dimensional random walk along the tape until either of the end-markers
are encountered, then the probability that #R is the first end-marker encountered is (n + 1)−1; by
repeating this procedure m times, and generating unbiased random bits y times, the desired b can be
produced).

We now fill in the details. A has the quantum basis states |q1〉, . . . , |qd〉, where q1 is the quantum
start state. A performs the following procedure.

Use the classical states to store a counter j ∈ {1, . . . , k}, initialized to 1
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Repeat indefinitely:
Move the head to the right end of the tape, leaving the quantum register unchanged
Run the subroutine of Lemma 4.3(a) with ρj producing the result r
If r = 0 then reject
Add 1 to j, where the addition is performed modulo k
If j = k then

Run the subroutine R(dC2e,
⌈
log( εC1

d )
⌉
), giving the result b

If b = 1 then accept

We now show that A has the claimed parameters. Clearly, A has d basis states and the transition
amplitudes of A belong to Q ∪ E. To see the remaining claims, fix a string w and let n denote its
(string) length. Consider a subcomputation of the above computation of A that begins when the
counter j = 1 and A is at the beginning of the “Repeat indefinitely” loop, and ends as soon as A
accepts or rejects, or after k complete iterations of the “Repeat indefinitely” loop. Let pacc and prej
denote, respectively, the probability that such a subcomputation ends with A accepting or rejecting.
Let Ej denote the event that such a subcomputation actually runs the subroutine of Lemma 4.3(a)

with ρj (note that the only way this does not happen is if A has already rejected for some j̃ < j), let
pj denote the probability that Ej occurs, and let rj denote the result produced by this subroutine, if
Ej occurs. Notice that

Pr[b = 1|Ek] = 2
−
⌈
log(

εC1
d

)
⌉
(n+ 1)−dC2e > 0.

First, suppose w 6∈WG. There is at least one j′ such that φ(w) ∈ Yj′ . Therefore, when the counter
j = j′, Lemma 4.3(a)(ii) guarantees that Pr[rj′ = 0|Ej′ ] ≥ C1

d n
−C2 . Notice that the event that A

rejects in such a subcomputation is the (disjoint) union of the event A rejects before step j′ (i.e., Ej′

does not occur) and the event A rejects at step j′ or later. Therefore,

prej = (1− pj′)1 +
∑
j≥j′

pj Pr[rj = 0|Ej ] ≥ (1− pj′) + pj′ Pr[rj′ = 0|Ej′ ] ≥ Pr[rj′ = 0|Ej′ ] ≥
C1

d
n−C2 .

We also have

pacc = pk Pr[b = 1|Ek] < Pr[b = 1|Ek] = 2
−
⌈
log(

εC1
d

)
⌉
(n+ 1)−dC2e ≤ εC1

d
(n+ 1)−dC2e ≤ εprej .

As we repeat such subcomputations until A either accepts or rejects, we have

Pr[A rejects w|w 6∈WG] =
prej

pacc + prej
≥ prej
εprej + prej

=
1

1 + ε
≥ 1− ε.

Next, instead suppose w ∈WG. Then Lemma 4.3(a)(i) guarantees that every use of the subroutine
of Lemma 4.3(a) will produce r = 1. This implies prej = 0, pk = 1, and

pacc = pk Pr[b = 1|Ek] = 2
−
⌈
log(

εC1
d

)
⌉
(n+ 1)−dC2e ≥ εC1

2d
(n+ 1)−dC2e > 0.

As we repeat such subcomputations until A either accepts or rejects, we have

Pr[A accepts w|w ∈WG] =
pacc

pacc + prej
= 1.

This completes the proof of the claim that A recognizes WG with one-sided error ε. Lastly, to
see that A has the claimed expected running time, let phalt denote the probability that any given
subcomputation of the above form ends with A halting (i.e., accepting or rejecting). When w ∈WG,

phalt = pacc + prej ≥ ε
C1

2d
(n+ 1)−dC2e.
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When w 6∈WG,

phalt = pacc + prej ≥ prej ≥
C1

2d
n−C2 ≥ εC1

2d
(n+ 1)−dC2e.

Therefore the expected number of executions of such subcomputations is O(ndC2e). Each subcompu-
tation of the above form consists of at most k passes through the “Repeat indefinitely” loop. Each
pass involves a single use of the subroutine of Lemma 4.3(a), which runs in time O(n); additionally,
the pass in which the counter j = k also involves a single use of the subroutine R, which runs in time
O(n2). Therefore, A runs in expected time O(ndC2e+2), as desired.

Lemma 4.6. Suppose F = {ρ1, . . . , ρk} is an algebraic [k, d, C−n]-DFR (or PDFR) for a group
G = 〈S|R〉, with S finite, and C ∈ R≥1. Then ∀ε ∈ R>0, there is a [ε,Kn, d,Q]-2QCFA A that
recognizes WG := WG=〈S|R〉, for some constant K = K(C) ∈ R≥1.

Proof. We proceed almost exactly as in the proof of Lemma 4.5, with the only modification arising
from the fact that the substantially weaker bound on the parameter τ of the DFR has a corresponding
decrease in the probability that the subroutine of Lemma 4.3 can distinguish w with |χρj (φ(w))| = d
from w with |χρj (φ(w))| 6= d. As before, A will periodically run a subroutine that accepts with
some small probability, though the above issue requires that this is done with a substantially smaller
probability than in the proof of Lemma 4.5.

A has the quantum basis states |q1〉, . . . , |qd〉, where q1 is the quantum start state. For p ∈ Q∩[0, 1],
let B(p) denote the subroutine that produces a biased random Boolean value x, such that Pr[x = 1] =
p, which operates as follows. We start with the quantum register in the superposition |q1〉. Let
|ψ〉 =

√
p|q1〉 +

√
1− p|q2〉. We then perform the unitary transformation T|q1〉→|ψ〉, followed by the

quantum measurement with respect to the partition B0 = {2 . . . , d}, B1 = {1}. The result 1 occurs
with probability p. If the result is 0, we then perform the unitary transformation T|q2〉→|q1〉 to return
the quantum register to the superposition |q1〉. The head of the 2QCFA does not move during this
subroutine.

For p ∈ Q ∩ [0, 1], y ∈ N, let R′(p, y) denote the subroutine that, on an input of length n ∈ N
produces a result b ∈ {0, 1}, where Pr[b = 1] = pn2−y, and has running time O(n). R′(p, y) operates
by scanning the tape once, from left to right. On symbols other than the end-markers, B(p) is run; if
the result is 0, the subroutine immediately halts with the result of 0, otherwise it continues reading
the next symbol. When the right end-marker #R is encountered, the subroutine generates up to y
unbiased bits, one after the other. If any of these bits are 0, the subroutine immediately halts with
the result of 0; if all y bits are 1, the subroutine halts with the result of 1. Notice that the transition
amplitudes needed to implement R′ are all algebraic numbers.

A performs the following procedure.

Use the classical states to store a counter j ∈ {1, . . . , k}, initialized to 1
Repeat indefinitely:

Move the head to the right end of the tape, leaving quantum register unchanged
Run the subroutine of Lemma 4.3(b) with ρj producing the result r
If r = 0 then reject
Add 1 to j, where the addition is performed modulo k
If j = k then

Run the subroutine R′( 1
dC2e , dlog( ε

4d4
)e), giving the result b

If b = 1 then accept

All remaining parts of the proof are identical to that of Lemma 4.5, and so we omit the details.
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We now show that a 2QCFA for WG can be constructed from a 2QCFA for WH , if H is a finite-index
normal subgroup of G.

Lemma 4.7. Consider a group H = 〈SH |RH〉, with SH finite, and suppose that AH is a 2QCFA that
recognizes WH , which operates in the manner of Lemma 4.5 or Lemma 4.6. Further suppose G is a
group such that H ≤ G and [G : H] is finite. Then G admits a presentation G = 〈SG|RG〉, with SG
finite, such that there is a 2QCFA AG that recognizes WG. Moreover, AG has the same acceptance
criteria, asymptotic expected running time, number of quantum basis states, and class of transition
amplitudes as AH .

Proof. Following (essentially) [30] (with the exception that we do not assume H is a normal subgroup
of G), we now construct a convenient presentation for G. We begin by establishing some notation. Let
l = [G : H], and let g1, . . . , gl denote a complete family of left coset representatives of H in G, where
g1 = 1G. We assume for notational convenience that SH ∩ S−1

H = ∅ (and so, in particular, 1H 6∈ SH).
Let ΣH = SH tS−1

H , SG = SH t (g2, . . . , gl), and ΣG = SG∪S−1
G . Let φH : Σ∗H → H and φG : Σ∗G → G

be the natural maps. Let Tl = {1, . . . , l}.
As the gi are a complete family of left coset representatives of H in G, every element g ∈ G can

be expressed uniquely as some gih, where i ∈ Tl and h ∈ H. In particular, for any σ ∈ ΣG and j ∈ Tl,
consider the element σgj ∈ G; there is unique i ∈ Tl and h ∈ H such that σgj = gih. Therefore, we
can define functions α : ΣG × Tl → Tl and β : ΣG × Tl → H, such that

σgj = gα(σ,j)β(σ, j), ∀σ ∈ ΣG, ∀j ∈ Tl.

Let τ : H → F (SH) be the function that takes each h ∈ H to some element in the free group on
SH such that h = τ(h), as elements of H. Then G has presentation 〈SG|RG〉, where SG is as defined
above and

RG = RH ∪
{
gα(σ,j)τ(β(σ, j))g−1

j σ−1|σ ∈ ΣG, j ∈ Tl
}
.

We now construct a 2QCFA AG that recognizes WG := WG=〈SG|RG〉. Consider an input w ∈ Σ∗G,
and let |w| denote the (string) length of w, i.e., w = w1 · · ·w|w|, where each wi ∈ ΣG. For any
p ∈ {0, . . . , |w|}, let wp = w|w|−p+1 · · ·w|w| denote the suffix of w of length p; in particular, w0 is the
empty string. AG must determine if φG(w) = 1G = g11H . The key idea is that AG will make many
right-to-left passes over its input, such that, after AG has read the suffix wp, if φG(wp) = gmh, then AG
will have the values m ∈ Tl and h ∈ H “stored” in its internal state, in an appropriate sense. Namely,
AG will keep track of m ∈ Tl using its classical states, and AG will keep track of h by simulating AH .

We now fill in the details. AG has the same quantum basis states as AH , which we will denote
|q1〉, . . . , |qd〉, and quantum start state q1. AG begins by moving its head to the far right end of
the tape, leaving its quantum register in the superposition |q1〉. AG will store a value t ∈ Tl using its
classical states, where t is initialized to 1. AG then repeatedly scans its input in the manner prescribed
by AH , i.e., AG makes many right-to-left passes reading the input word w, and AG also performs the
simulated coin flipping via random walks of AH . During each right-to-left pass, AG will maintain the
property that after reading the suffix wp, if φG(wp) = gmh, then the stored value t = m and AN will
have been simulated on a string ŵp ∈ Σ∗H (read “backwards”), where φH(ŵp) = h.

AG accomplishes this as follows. Suppose AG has already read the particular suffix wp and
φG(wp) = gmh, and is now about to read the next symbol, σ := w|w|−p. After reading σ, we want AG
to update its internal state (both classical and quantum) to correspond to the word wp+1 = σ ◦ wp.
By construction, σgm = gα(σ,m)β(σ,m), and so

φG(wp+1) = φG(σ ◦ wp) = φG(σ)φG(wp) = σgmh = gα(σ,m)β(σ,m)h.

Define the function β̂ : ΣG×Tl → Σ∗H such that β̂(κ, j) is any word in Σ∗H of minimum (string) length

such that φN (β̂(κ, j)) = β(κ, j), ∀κ ∈ ΣG, ∀j ∈ Tl. AG then updates its stored value t ∈ Tl from m
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to α(σ,m) and simulates AH on β̂(σ,m). That is to say, at this point AH has been simulated on the
string ŵp, where φH(ŵp) = h; AG then feeds the string β̂(σ,m) to AH (from right-to-left), after which
AH will have been simulated on β̂(σ,m) ◦ ŵp, as desired. During this process of feeding the string
β̂(σ,m) to AH , AG does not move its head.

All that remains is to define the acceptance criteria of AG. Suppose AG has just made a complete
pass over the input, simulating AH along the way, and then possibly also performed a simulated
coin-flipping procedure, if AH so demanded. AG also has the value m in its internal state, such that
φG(w) = gmh. At this point (the simulation of) AH may or may not have halted. AG behaves as
follows. If m 6= 1, AG immediately rejects. If m = 1, then if AH has halted (accepting or rejecting the
input), then AG halts, accepting if AH accepted and rejecting if AH rejected. If m = 1 and AH has
not halted, AG continues. It immediately follows from the above argument that AG recognizes WG

and that AG has all the claimed properties.

Using the above Lemma, and the constructions of DFR and PDFR from Section 3, the main
theorems stated in the introduction concerning the bounded-error recognizability of the word problem
straightforwardly follow.

Proof of Theorem 1.2. By Corollary 3.16.1, there is an effectively computable constant C ∈ R>0

such that, for any finitely-generated virtually abelian group G, claims Corollary 3.16(ii) and Corol-
lary 3.16(iii) hold. Fix such a group G. By Corollary 3.16(ii), G virtually has a diagonal alge-
braic [K1, 2, D1n

−C ]-DFR. By Corollary 3.16(iii), with δ = 0.9, G also virtually has a Ẽ-diagonal
[K2, 2, D2n

−0.9]-DFR. By Lemma 4.7, we conclude that, for any ε ∈ R>0, WG is recognized by a
[ε, nC , 2,Q]-2QCFA, as well as by a [ε, n3, 2, C̃]-2QCFA.

Remark. We note that the limiting factor on the expecting running time of the [ε, n3, 2, C̃]-2QCFA
for WG is not the difficulty of distinguishing strings in WG from strings not in WG, but is instead
the difficulty of producing an appropriately biased Boolean random variable. In particular, by Corol-
lary 3.16(iii), any such G virtually has a Ẽ-diagonal [K2, 2, D2n

−δ]-DFR, for arbitrarily small δ > 0.
However, while we can use the random walk technique of Ambainis and Watrous [2] to produce a
Boolean random variable b such that Pr[b = 1] = n−1, we do not know how to produce a b′ such that
Pr[b = 1] = n−γ , for some γ ∈ (0, 1), which prevents us from fully exploiting the improved parameters
of the DFR.

Proof of Theorem 1.3. Direct consequence of Corollary 3.18.1 and Lemma 4.7.

Proof of Theorem 1.4. Let H denote a finite-index subgroup of G such that H ∼= (PU(d,Q))k. By
definition, we have an injective group homomorphism ρ : H → (PU(d,Q))k. For j ∈ {1, . . . , k},
let τj : (PU(d,Q))k → PU(d,Q) denote the canonical projection onto the jth factor and define the
representation ρj : H → PU(d,Q) by ρj = τj ◦ρ. As ker ρ = {1H}, we then have ∩j ker ρj = {1H}. The
result is then a direct consequence of applying Theorem 3.20 to F = {ρ1, . . . , ρk} and then applying
Lemma 4.7.

Proof of Corollary 1.4.1. Follows immediately from Theorem 1.4. Alternatively, this is a direct con-
sequence of Corollary 3.19.1 and Lemma 4.7.

We next consider the unbounded-error case. We first show the following lemma, which is the
unbounded-error version of a combination of Lemma 4.6 and Lemma 4.7.

Lemma 4.8. Consider a group H = 〈SH |RH〉, with SH finite, and suppose that F = {ρ1, . . . , ρk} is a
set of representations ρj : H → U(d) such that ∩j Pker(ρj) = {1H}. Further suppose G is a group such
that H ≤ G and [G : H] is finite. Then G admits a presentation G = 〈SG|RG〉, with SG finite, such
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that there is a 2QCFA AG, with d quantum basis states, that recognizes WG with negative one-sided
unbounded-error. Moreover, the above claim also holds if the ρj are projective representations.

Proof. First, by an argument similar to that of Lemma 4.6, we construct a 2QCFA AH for WH . By
Lemma 4.4, for each j ∈ {1, . . . , k}, there is a 2QCFA subroutine Bj that produces a result rj ∈ {0, 1}
such that, on any input w ∈ Σ∗, if φ(w) = 1H , then Pr[rj = 1] = 1, and if φ(w) 6∈ Pker(ρj), then
Pr[rj = 0] > 0. AH operates as follows. For each j, run Bj producing rj . If rj = 0, then immediately
reject; otherwise continue with the next j. Then (i.e., if AH completes the above procedure for every
j ∈ {1, . . . , k} without rejecting) immediately accept. The correctness of this procedure is immediate,
as ∩j Pker(ρj) = {1H}. Using AH we then produce the 2QCFA for AG precisely as in the proof of
Lemma 4.7.

We now prove the remaining theorems stated in Section 1.2.

Proof of Theorem 1.5. By Theorem 3.23, any G = 〈S|R〉 ∈ Π̂3 has an unbounded-error [k, 2]-DFR
F = {ρ1, . . . , ρk}, for some constant k. By applying Lemma 4.8, we produce the desired 2QCFA AG
for WG (note that, by definition, ∀j ∈ {1, . . . , k}, ∀s ∈ S, ρj(s) is expressible as the product of a finite

number of matrices in U(d) ∩Md(C̃), which then implies that the transition amplitudes of AG all lie
in C̃).

Proof of Theorem 1.6. Let H denote a finite-index subgroup of G such that H ∼= (PU(d))k. As in the
proof of Theorem 1.4, we obtain a set F = {ρ1, . . . , ρk} of representations ρj : H → PU(d) where
∩j ker ρj = {1H}. The result follows by Lemma 4.8 and Lemma 4.7.

Proof of Theorem 1.7. Recall that D is defined to be the class of all groups G for which a 2QCFA
for WG is produced by any of the preceding theorems. Then D consists precisely of those finitely-
generated groups G that have a P-faithful projective representation ρ : G→ PU(d), for some finite d.
Let τ : U(d) → PU(d) denote the canonical projection and let ρ̂ : G → U(d) denote a function (not
necessarily a homomorphism) such that τ◦ρ̂ = ρ. A Moore-Crutchfield MO-1QFA (see [29] for complete
definition) recognizes WG by using the “full” encoding defined at the beginning of Section 4.1, i.e.,
after reading the partial input word w the quantum register stores the entire d×d matrix ρ̂(φ(w)); after
reading the entire word, a single quantum measurement is performed to determine if the magnitude
of the trace of this matrix is d.

5 Discussion

5.1 Computational Complexity of the Word Problem

Word problems for finitely-generated groups have long been studied by complexity theorists, and it has
been observed that there are many deep connections between the algebraic structure of a particular
group and the computational complexity of its word problem. In this section, we compare the results
that we have obtained concerning the ability of a 2QCFA to recognize certain group word problems
with existing results for “simple” classical and quantum models.

We use the following notation for complexity classes: REG denotes the regular languages (lan-
guages recognized by deterministic finite automata), CFL (resp. DCFL) denotes the context-free (resp.
deterministic context-free) languages (languages recognized by non-deterministic (resp. deterministic)
pushdown automata), OCL (resp. DOCL) denotes the one-counter (resp. deterministic one-counter)
languages (languages recognized by non-deterministic (resp. deterministic) pushdown automata where
the stack alphabet is limited to a single symbol), poly−CFL (resp. poly−DCFL, poly−OCL, poly−DOCL)
denotes the intersection of finitely many context-free (resp. deterministic context-free, one-counter,
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deterministic one-counter) languages, and L denotes deterministic logspace (languages recognized by
deterministic Turing machines with read-only input tape and read/write work tape of size logarithmic
in the input).

Using the notation of Section 1.2, we write Π̂0 (resp. Π̂1, Σ̂1, Π̂2) for the finitely-generated groups
that are virtually cyclic (resp. abelian, free, a subgroup of a direct product of finitely many finite-rank

free groups). We also write {̂1} for the finite groups, and L for the set of all finitely-generated groups G
that are linear groups over some field of characteristic 0. The following proposition, which collects the
results of many authors, demonstrates the extremely strong relationship between the computational
complexity of WG and certain algebraic properties of G.

Proposition 5.1. ([4, 5, 8, 12, 20, 23, 27, 30, 31]) Let G be a finitely-generated group, with word
problem WG.

(i) G ∈ {̂1} ⇔WG ∈ REG.

(ii) G ∈ Π̂0 ⇔WG ∈ OCL⇔WG ∈ DOCL.

(iii) G ∈ Π̂1 ⇔WG ∈ poly−OCL⇔WG ∈ poly−DOCL.

(iv) G ∈ Σ̂1 ⇔WG ∈ CFL⇔WG ∈ DCFL.

(v) G ∈ Π̂2 ⇒WG ∈ poly−DCFL ( poly−CFL.

(vi) G ∈ L ⇒WG ∈ L.

Proof. Statements (i), (ii), (iii), (v), and (vi) were shown, respectively, in [4],[20],[23], [8], and [27]. In
[30], it was shown that G is free if and only if WG ∈ CFL and G is accessible, in [12], it was shown
that all finitely-presented groups are accessible, and in [5] it was shown that all context-free groups
are finitely-presented, which implies the first equivalence in (iv). The second equivalence in (iv) was
shown in [31].

Our results have a close correspondence to the above mentioned results. By Theorem 1.2 (resp.

Theorem 1.3), for all groups G ∈ Π̂1 ) Π̂0 ) {̂1} (resp. G ∈ Π̂2 ) Π̂1 ∪ Σ̂1 ) Π̂0 ) {̂1}), WG

is recognized, with one-sided bounded-error, in expected polynomial (resp. exponential) time, by a
2QCFA with a single qubit and algebraic number transition amplitudes. Of course, as our funda-
mental approach to solving the group word problem is to construct a DFR for a group G, and as
any such DFR yields a faithful finite-dimensional unitary representation of G, any such G ∈ L, as
a faithful finite-dimensional unitary representation is (a special case of) a faithful finite-dimensional
linear representation over C.

It is particularly interesting that, while there are strict inclusions DCFL ( CFL, DOCL ( OCL, and
poly−DOCL ( poly−OCL, there are no groups whose word problem witnesses any of these separations.
That is to say, the deterministic and non-deterministic versions of each of these models (pushdown
automata, one-counter automata, etc.) can recognize word problems for precisely the same class of
groups. Let Σ2 denote the finitely-generated groups that are a free product of finitely many finite-
rank free abelian groups, and Π̂3 denote the finitely-generated groups that are virtually a subgroup
of a direct product of finitely many groups in Σ2. By Theorem 1.5, for all G ∈ Π̂3 ) Π̂2, the word
problem WG is recognized with one-sided unbounded-error in expected exponential time by a 2QCFA
with a single qubit and transition amplitudes in C̃. Of course, language recognition with one-sided
unbounded-error is naturally a non-deterministic analogue of language recognition with one-sided
bounded-error, which raises the question of whether or not adding non-determinism to the 2QCFA
model allows the recognition of a larger class of group word problems. In particular, consider the group
G = Z ∗ Z2, and notice that G ∈ Σ2 ( Π̂3 (and so WG is recognized by an unbounded-error 2QCFA),
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but G 6∈ Π̂2. The complexity of WG has been considered by many authors and it is conjectured that
WG 6∈ poly−CFL [8](cf. [10]) and that WG 6∈ coCFL [24]. We ask the following question.

Open Problem 5.2. Is WG, the word problem of the group G = Z ∗ Z2, recognizable with one-sided
bounded-error by a 2QCFA with algebraic number transition amplitudes? More generally, is the word
problem of every group of the form Z ∗ Zr, r ∈ N recognizable by such a 2QCFA?

In particular, by Lemma 3.17, for any distinct primes p1, p2 ≡ 1 mod 4, and any prime q ≡ 1
mod 4 (where q is not necessarily distinct from p1, p2), we have P-faithful representations ρ : Z2 =
〈x1, x2|[x1, x2]〉 → SO(2,Z[ 1

p1
, 1
p2

]) ≤ SO(2,Q) and π : Z = 〈y|〉 → SO(2,Z[1
q ]) ≤ SO(2,Q). By use of

Shalen’s method [40, Proposition 1.3], we can produce a P-faithful representation γ : G → SU(2) of
G = Z ∗ Z2 (see the proof of Theorem 3.23). While γ(y) = π(y) ∈ SO(2,Q) (here we identify y with
its image under the natural inclusion Z → Z ∗ Z2), we have, for j ∈ {1, 2}, that γ(xj) = Λρ(xj)Λ

−1,

where ρ(xj) ∈ SO(2,Q), but Λ ∈ T(2, Ẽ). This added complexity of the numbers that appear in
these matrices produces two issues. Firstly, our construction of a 2QCFA that makes use of this
γ to recognize WG has transition amplitudes that lie in C̃ = Q ∪ Ẽ; whereas, we would prefer to
construct a 2QCFA whose transition amplitudes are limited to Q. Secondly, it is then unclear if a
useful bound can be obtained on the distance 2− |χγ(g)|, for g ∈ G6=1G in terms of l(g), as each such
χγ(g) is a polynomial f ∈ R[z] evaluated at some transcendental number λ, where R = Z[ 1

p1
, 1
p2
, 1
q ]

and R[z] denotes the polynomial ring over the ring R in a single indeterminate z. We naturally ask
if this construction, or a construction like this (for example, by the same construction, one also has
a P-faithful representation of G into SU(2, R[z, z−1]), where R[z, z−1] denotes the ring of Laurent
polynomials in a single indeterminate over R), could be adapted to yield an algebraic DFR of G, or
similar groups.

Open Problem 5.3. Does the group Z ∗ Z2 have an algebraic [k, d, C−n]-DFR, for some k ∈ N≥1,
d ∈ N≥2, C ∈ R≥1. More generally, does every group Z ∗ Zr, r ∈ N have such a DFR? Even more,
generally, is the class of groups which have DFRs of this type closed under free product?

Remark. Of course, such a DFR would immediately yield a 2QCFA of the desired type for the cor-
responding word problem. Moreover, recall that Σ2 consists of all groups of the form Zr1 ∗ · · · ∗ Zrm ,
for some m, r1, . . . , rm ∈ N, and that any such groups embeds in (i.e., is a subgroup of) Z ∗ Zr, where
r = maxj rj . By Lemma 3.15(i), if Z ∗ Zr has a DFR then Zr1 ∗ · · · ∗ Zrm has a DFR with essentially
the same parameters. Therefore, if all such Z ∗ Zr have DFRs of the desired type, then so do all
groups in Σ2, which would then imply all groups in Π̂3 virtually have such a DFR, by an application
of Lemma 3.14 and Lemma 3.15(i).

We next consider known results concerning those group word problems recognizable by particular
QFA variants. Ambainis and Watrous, in the paper in which the 2QCFA model was first defined [2],
demonstrated the power of this new model by showing that it is capable of recognizing certain languages
that probabilistic two-way finite automata cannot. In particular, they considered the languages Leq =
{ambm|m ∈ N} and Lpal = {w ∈ {a, b}∗|w is a palindrome}. They showed that a 2QCFA, with
only two quantum basis states (i.e., a single qubit quantum register), can recognize Leq (resp. Lpal)
with one-sided bounded-error in expected polynomial (resp. exponential) time. As noted in the
introduction, while neither Leq nor Lpal are group word problems, they are closely related to word
problems for Z and F2, respectively. This observation allows us to reinterpret the above results of
Ambainis and Watrous [2] in terms of the word problem.

In addition to results of the above form, which, implicitly, study the quantum computational com-
plexity of the word problem for certain groups, some authors have explicitly considered this question.
We now briefly recall certain results that are especially relevant to this paper (see the survey [3] for a
complete history). In the following we write MO-1QFA for the measure-once one-way QFA (defined
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in [29]), MM-1QFA for the measure-many one-way QFA (defined in [25]) and 1QFA	 for the one-way
QFA with restart (defined in [48]). Let S=

Q denote the class of languages L for which there is a PFA
(probabilistic finite automaton) P , all of whose transition amplitudes are rational numbers, such that,
∀w ∈ L, the probability that P accepts w is exactly 1

2 , and, ∀w 6∈ L, the probability that P accepts w
differs from 1

2 .
Brodsky and Pippenger [7] showed that the languages WFk , k ∈ N (in particular, recall F1 = Z)

can be recognized, with negative one-sided unbounded-error, by a MO-1QFA. Yakaryilmaz and Say
[48] showed that, any language L ∈ S=

Q can be recognized by a MM-1QFA, with negative one-sided
unbounded-error, and by a 1QFA	 or 2QCFA, with negative one-sided bounded-error, in expected
exponential time. As Leq and Lpal both belong to S=

Q, this result, partially, subsumes the original result
from Ambainis and Watrous [2]. However, in addition to the difference in expected running time in
the case of Leq, we also note that there is a significant difference between the sizes of the quantum
registers of the machines produced in these two results. In particular, the result of Yakaryilmaz and
Say [48] was obtained by using the technique of Yakaryilmaz and Say [47] to directly simulate a PFA
with a MM-1QFA; this leads to a MM-1QFA with a number of quantum basis states given by a
particular constant plus the (potentially non-trivially large) constant number of states of the PFA: a
similar statement holds for the constructions of 1QFA	 and 2QCFA. For example, the 1QFA	 and
2QCFA constructed by Yakaryilmaz and Say [48] to recognize Lpal have 15 quantum basis states (and
therefore require 4 qubits), as opposed to the 2 quantum basis states (i.e., 1 qubit) of Ambainis and
Watrous [2]. Similarly, as WFk ∈ S=

Q, ∀k ∈ N, the result of Yakaryilmaz and Say [48] shows that the
word problems of these groups can be recognized by a 2QCFA of our type; though, a direct application
of their construction would yield a 2QCFA with larger quantum part than that of our construction,
or that of Ambainis and Watrous [2]. Of course, our results also apply to the 1QFA	 model.

5.2 Information Compression, Unstable Stacks, and Quantum Pointers and Coun-
ters

The 2QCFA constructed by Ambainis and Watrous [2] that recognize Leq and Lpal do so using only
a single qubit; as they noted, this demonstrates that quantum computational models can perform
a particularly interesting sort of extreme information compression. We next observe that the same
phenomenon occurs in our constructions of 2QCFA. Consider a group G = 〈S|R〉, with S finite, where
we assume for notational convenience, that 1G 6∈ S. Let Σ = S ∪ S−1 denote the corresponding
symmetric generating set that forms the alphabet for the word problem WG and let φ : Σ∗ → G
denote the natural map that takes each word in Σ∗ to the group element it represents. The core idea
of our 2QCFA A for the word problem WG is to scan the input word w = w1 · · ·wn ∈ Σ∗ (where each
wj ∈ Σ) and, after the partial word w1 · · ·wt has been read2 the quantum register of A stores the
group element gt := φ(w1 · · ·wt) ∈ G. Interestingly, for a wide collection of groups, A is able to store
gt using only a single qubit. Therefore, in a certain sense, such an A is storing an unbounded amount
of information in a single qubit.

To clarify the information stored in this single qubit, let Γ(G,Σ) denote the Cayley graph of G
with respect to Σ. Then A operates by following the path pw specified by w in Γ(G,Σ), using its
quantum register to store the current vertex in this graph (i.e., after t steps along the path pw, the
element gt ∈ G is stored). Let BG,Σ(n) = {g ∈ G|lS(g) ≤ n} denote the closed ball in Γ(G,Σ) of radius
n centered at 1G, and let fG,Σ(n) = |BG,Σ(n)| denote the growth rate of G. On an input w, A scans w
and, after having read the first t symbols of w, A has the element gt ∈ G corresponding to that prefix
of w stored in its single qubit. On inputs of string length n, gt may vary over the entirety of BG,Σ(n).

2Strictly speaking, our algorithm reads the input word “backwards” (i.e., from wn to w1), though in this section we
will describe the algorithm as though it operated in the “forwards” direction, for the sake of clarity. As discussed in
Section 4.1, the algorithm could be adapted to operate in the “forwards” direction.
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In order to store an arbitrary element of BG,Σ(n) such that it is (information theoretically) possible to
perfectly discern the identity of that element, one requires log(fG,Σ(n)) (classical) bits. Moreover, by
Holevo’s theorem [22], this same task requires log fG,Σ(n) qubits. For the remainder of this section,
we ignore the uninteresting case in which G is a finite group (as then WG is a regular language), and
consider only finitely-generated (necessarily countably) infinite groups, and so fG,Σ is necessarily a
growing function of n. Therefore, we must first make clear why our approach, which encodes such
an element using only a single qubit, does not violate Holevo’s theorem. The key observation is that,
while all log fG(n) bits of information are truly stored in the single qubit, one is extremely limited
in the manner in which that information may be accessed. In particular, this information may only
be accessed by performing a quantum measurement, which only (probabilistically) indicates whether
or not the currently stored value gt is equal to the identity element 1G; moreover, performing this
quantum measurement completely destroys all information stored in this qubit. This extremely severe
restriction on the manner in which the information content of a qubit may be accessed prevents
one from reconstructing information stored within the qubit in a manner inconsistent with Holevo’s
theorem. On the other hand, this restriction is perfectly consistent with the manner in which A
operates when solving the word problem of G, and so it provides no impediment to using a single
qubit to store information in a radically compressed way.

We next quantify the extent to which our constructions of 2QCFA compress information. For
two monotone non-decreasing functions f1, f2 : R≥1 → R≥0, we write f1 ≺ f2 if there are constants
C1, C2 ∈ R>0 such that, f1(x) ≤ C1f2(C1x + C2) + C2, ∀x ∈ R≥0, and we write f1 ∼ f2 if both
f1 ≺ f2 and f2 ≺ f1. Note that while the exact value of fG,Σ(n) does depend on the choice of
symmetric generating set Σ, the asymptotic behavior does not, in that fG,Σ ∼ fG,Σ′ , for any other
finite symmetric generating set Σ′ (see, for instance, [28, Proposition 6.2.4]); therefore, we will often
simply write fG in place of fG,Σ when only the asymptotic behavior is relevant. We say G is of
polynomial growth if fG ∼ nC , for some C ∈ R≥0, and of exponential growth if fG ∼ Cn, for some
C ∈ R>0. In this paper we have restricted our attention to finitely-generated linear groups over a
field of characteristic 0; we denote this class of groups by L. By the famous Tits’ alternative [45],
every G ∈ L is either of polynomial or exponential growth; in particular, every G ∈ L that is not
virtually nilpotent has exponential growth (more explicitly, any G ∈ L that is virtually solvable but
not virtually nilpotent, or which has a subgroup isomorphic to F2, has exponential growth). For
example, any finitely-generated virtually abelian group G has polynomial growth; more precisely,
fG ∼ nr, where r ∈ N is the unique value such that G has a finite-index subgroup isomorphic to
Zr. By the discussion of the previous paragraph, one requires log fG(n) ∼ log(n) classical bits to
unambiguously store an element of BG,Σ(n). By Theorem 1.2, for any such G, there is a 2QCFA A,
which has only a single-qubit and algebraic number transition amplitudes, that recognizes WG, with
negative one-sided bounded-error, in expected polynomial time. In particular, A stores this arbitrary
element of BG,Σ(n) using only a single qubit. More dramatically, by Theorem 1.3, for any finitely-
generated virtually free group G, there is a 2QCFA A, which has only a single-qubit and algebraic
number transition amplitudes, that recognizes WG, with negative one-sided bounded-error, in expected
exponential time. Any such G which is not virtually cyclic (i.e., any such G that is neither finite nor
virtually Z, or equivalently any such G that has a subgroup isomorphic to F2) has exponential growth,
which means that one requires log fG(n) ∼ nC classical bits to unambiguously store an element of
BG,Σ(n), for some constant C ∈ R>0. Yet, A still stores an arbitrary element of BG,Σ(n) using only
one qubit.

The above examples, and more generally all of the 2QCFA that we have constructed for various
word problems, demonstrate the extreme sort of information compression that a 2QCFA is capable
of performing. On the other hand, this extreme compression does not come without a cost, as it
directly impacts the running time of our 2QCFA. We note that information compression of this form
is by no means a new idea in quantum computation, as techniques like quantum fingerprinting [9]
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and dense quantum coding [1] explicitly involve such compression, and, moreover, many quantum
algorithms, including Shor’s quantum factoring algorithm [41], crucially rely on this sort of compression
to achieve their apparent speedup relative to their classical counterparts. Nevertheless, both the
original Ambainis and Watrous 2QCFA result [2] and our approach push this idea down to the much
weaker computational model of 2QCFA, and introduce techniques that might also be useful for more
powerful quantum models.

Next, we consider other consequences and interpretations of this extreme compression of informa-
tion. We first observe that the 2QCFA Qeq constructed by Ambainis and Watrous [2] to recognize
Leq = {ambm|m ∈ N} operates in much the same way as the natural deterministic pushdown automa-
ton (DPDA) for this language. Namely there is DPDA Peq (which is in fact a deterministic one-counter
automaton) that recognizes Leq by scanning the input, pushing a symbol 1 onto the stack when reading
each a and popping a 1 off the stack when reading each b; Peq rejects if the input is not of the form
a∗b∗ or if it ever reads the symbol b when the stack is empty, and accepts otherwise. Similarly, Qeq
recognizes Leq by scanning the input, applying a unitary transformation T when reading each a and
T−1 when reading each b. Therefore, after reading the prefix w1 · · ·wt of the input w1 · · ·wn, the single
qubit register of Qeq has the value dt := #(w1 · · ·wt, a)−#(w1 · · ·wt, b) stored (where #(x, σ) denotes
the number of appearances of the letter σ in the word x). Then Qeq rejects if the input is not of the
form a∗b∗ or if dn 6= 0, and accepts otherwise. There is a similar relationship between the 2QCFA
Qpal constructed by Ambainis and Watrous [2] to recognize Lpal = {w ∈ {a, b}∗|w is a palindrome}
and the natural two-pass DPDA Ppal for this language. Namely, in Ppal’s first pass over the input,
it pushes each symbol that is read onto the stack, and in its second pass over the input, it pops one
symbol at a time from the stack and compares with the input; Ppal rejects if a mismatch is found, and
accepts otherwise. In Qpal’s first pass over the input, it performs the unitary transformation A when
a is read and B when b is read; in its second pass over the input, it performs the unitary transforma-
tion A−1 when a is read and B−1 when b is read. A and B are chosen so they satisfy no non-trivial
relations (i.e., they generate a free group), and so the input is a palindrome precisely when the overall
transformation performed is the identity, which is the criterion that Qpal checks to determine whether
to accept or reject the input.

Similarly, there is also a close correspondence between the 2QCFA that we have constructed for
various word problems and the natural multi-pass DPDA for those word problems. In a certain sense,
both our constructions, and those of Ambainis and Watrous [2] discussed above use a single qubit to
simulate a stack, albeit an “unstable” stack. Of course, given an (actual) stack, one can, for example,
check if the stack is empty, or determine the value of the symbol on top of the stack, without altering
the state of the stack; on the other hand, given this unstable simulation of a stack with a single qubit,
one can only obtain information by performing a quantum measurement, which destroys all stored
information. Moreover, on an (actual) stack, symbols are stored discretely, whereas this unstable
simulation mashes together all symbols into the state of a single qubit. Nevertheless, this technique
yields 2QCFA, with only one qubit, that can recognize any word problem WG ∈ CFL, and, more
generally, any WG known to be in poly−DCFL or even poly−CFL (see Theorem 1.3 and the discussion
that follows it). Therefore, it appears that these deficiencies in the unstable single qubit simulation
of a stack pose no problem regarding the recognition of word problems. The situation is far less clear
if one considers recognition of general languages, rather than simply group word problems; that is to
say, the relationship between the class of languages recognizable by 2QCFA and the complexity class
CFL (and, more generally, poly−DOCL and poly−DCFL) is quite unclear. We note that this is not an
unusual phenomenon as, for example, while it remains an open question whether or not CFL ⊆ L, it
is known that for any word problem WG, WG ∈ CFL⇒WG ∈ L [27, 30]. On the other hand, perhaps
this unstable simulation of a stack has an advantage over an actual stack, as we have shown that a
2QCFA, with a single qubit and transition amplitudes in C̃, can recognize the word problem WH of the
group H = Z∗Z2 with negative one-sided unbounded-error ; note that WH 6∈ CFL and it is conjectured
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that WH 6∈ poly−CFL [8](cf. [10]) and that WH 6∈ coCFL [24]. In particular, the mashing together of
all symbols on the stack into the state of a single qubit might actually be an advantage when solving
the word problem.

The core technical fact enabling the proof of Theorem 1.2, which guarantees the existence of a
single qubit 2QCFA that recognizes WG, for any G ∈ Π̂1 (the finitely-generated virtually abelian
groups), is that the group Z has a faithful one-dimensional representation, as this fact allows us to use
a single qubit to store a counter in a single qubit. More generally, Zr has a faithful one-dimensional
representation, for any r ∈ N, which in fact allows us to use a single qubit to store r counters; while
we did not use such a representation in the construction of our 2QCFA for WG when G ∈ Π̂1, as this
produces worse parameters than using the ability of a 2QCFA to make multiple passes over its input,
this representation did play a crucial role in our construction of a 2QCFA for WG with G ∈ Π̂3 (see
Theorem 3.23 and the discussion surrounding it). More generally, all of our constructions of 2QCFA
with a single qubit for some WG relied on the existence of a faithful two-dimensional representation of
G, or of some group closely related to G. Such a representation of a group G allows a single qubit to
be used to store an arbitrary element g ∈ G; moreover, crucially, it also allows one to perform limited
computation on the stored element. In particular, one can replace the stored element g with the
element gσ, for any σ ∈ Σ (where Σ is a finite symmetric generating set of G); being able to perform
this computational step is essential to our approach to the word problem. One can naturally interpret
these constructions as making use of a single qubit to store a quantum pointer into the Cayley graph
Γ(G,Σ), where the quantum pointer points to a single vertex in Γ(G,Σ) (i.e., a single g ∈ G), and one
can, in a single computational step, update the pointer so that it points to a neighbor of the current
vertex. In the special case when G = Zr, we can view this quantum pointer more simply as an r-wide
quantum counter, which stores r integers. Therefore, much as a deterministic logspace Turing machine
can use its O(log(n)) space work tape to store a pointer into its length n input string, or to store a
finite number of counters that can each store a O(log(n))-bit integer, these constructions of 2QCFA
use a single qubit to store a pointer or counter that would require as many as poly(n) classical bits to
directly record. Of course, our implementations of quantum pointers and counters are quite limited,
as in order to obtain any information, one must perform a quantum measurement; the result of this
measurement only indicates (probabilistically) if the value pointed to is 1G (in the case of an r-wide
quantum counter, this corresponds to all counters having value 0), and performing the measurement
destroys all stored information. Nevertheless, it is natural to ask what other sort of computational
tasks one might be able to perform using quantum pointers and counters. In particular, we note here
that, as discussion in Section 4.1, one can store the entire d× d matrix corresponding to the value of
a d-dimensional unitary representation using d2 quantum basis states.

5.3 Quantum Finite Automata Variants

As noted in the introduction, many distinct variants of quantum finite automata (QFA) have been
defined (see for example [7, 11, 21, 25, 29, 32, 35, 48], see the excellent survey [3] for a complete
history). These numerous types of QFA differ significantly in terms of their language recognition
power: at one extreme, the measure-once one-way quantum finite automata (MO-1QFA) defined by
Moore and Crutchfield [29] can recognize, with bounded-error, precisely the group languages [7], a
particularly limited subset of the regular languages; at the other extreme, many QFA variants can
recognize undecidable languages, in some cases even with bounded-error, (see, for instance, [38, 47]).
Fundamentally, this massive discrepancy in the capabilities of early definitions of QFAs was a result of
two significant issues. Firstly, as real, physical implementations of quantum computers were then, and
in many ways still are now, in the early experimental phase, it was not entirely clear what features the
theoretical QFA model should possess. Secondly, while the core idea of quantum computation is to
be a model of computation that benefits from the unique features of quantum mechanics, those same
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quantum mechanical principles also provide sharp restrictions.
For example, measure-many one-way quantum finite automata (MM-1QFA), defined in [25], can

naturally be thought of as a modification of one-way probabilistic finite automata (1PFA) in which
the probabilistic states are replaced by quantum states. When reading each symbol of the input, a
MM-1QFA performs a single unitary transformation, rather than a stochastic transformation, on its
state space, followed by a single quantum measurement of its state space, where the result of that
measurement determines whether the machine accepts its input, rejects its input, or continues reading
the input. The class of languages recognized, with bounded-error, by MM-1QFA is a proper subset of
the regular languages, which might seem to suggest a setting where quantum computers are actually
weaker than their classical counterparts. However, this weakness is somewhat artificial. In particular,
the laws of quantum mechanics tell us that the state of a quantum system evolves unitarily, and so
the requirement that the MM-1QFA may only perform unitary transformations on its state space is
physically justified; on the other hand, the requirement that the MM-1QFA may only perform a single
quantum measurement when reading each input symbol, and that the result of this measurement may
only be used to determine whether or not the machine halts at this stage of the computation, has no
physical motivation. That is to say, if a machine is capable of performing a quantum measurement
at a particular point in time, then it would be quite reasonable to allow the machine to freely make
use of the result of that quantum measurement. If one removes this artificial restriction on the use of
quantum measurement then one may obtain a QFA model for which the class of languages recognized,
with bounded-error, is precisely the regular languages (e.g., the variant of the MM-1QFA defined in
[21], which, after reading each input symbol, may freely perform a sequence of operations, consisting of
both unitary transformations and quantum measurements, where the particular operation performed
at any stage of the sequence may depend on the results of quantum measurements performed earlier
in the sequence).

More generally, one may consider any of the other “standard” one-way QFA variants which are
“physically realistic” (i.e., whose definition is consistent with the limitations imposed on real, physical
quantum computers by the laws of quantum mechanics; see the survey [3] for a thorough discussion
of these models). The class of languages recognized, with bounded-error, by each such model is
some subset of the regular languages (more precisely, many of these models recognize exactly the
regular languages, others recognize various, often distinct, proper subsets of the regular languages).
The requirement that these models have a quantum part that is both small and whose operation is
consistent with the laws of quantum mechanics, as well as the requirement that a language must be
accepted with bounded-error, make these models quite realistic. However, given that these models
can only recognize, at most, the regular languages, they are not very powerful. On the other hand,
many versions of QFA have been shown to be able to recognize Leq, Lpal, or other related languages,
both before and after the 2QCFA result. For example, in [25], it was shown that a two-way quantum
finite automaton with a quantum head can also recognize Leq with bounded-error in polynomial time;
however, on an input of size n, one would require log(n) qubits to implement the quantum head. There
are also many results which demonstrate the power of variants of the QFA model where it is allowed
to recognize a language with unbounded-error, or for which the transition amplitudes of the QFA are
non-computable numbers, or for which the model is augmented with various not necessarily physically
realizable quantum phenomena (where we again direct the reader to the survey [3]). These models are
powerful, but they are not very realistic. On the other hand, the 2QCFA model operates under all the
constraints demanded by physical realism, yet it is surprisingly powerful. As demonstrated both in
the original Ambainis and Watrous results [2], as well as in this paper, a 2QCFA, with a single qubit
and with one-sided bounded error, recognize a very broad class of languages.

The issue of the allowable class of transition amplitudes of a 2QCFA merits further discussion. As
in Section 2.1, for a 2QCFA A, let T denote the set of all unitary matrices T that correspond to a
unitary transformation that A may perform on its quantum register, and let T denote the transition
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amplitudes of A, which are the set of numbers that appear as an entry of some matrix T ∈ T .
In this paper, we have restricted our attention to 2QCFA whose transition amplitudes T satisfy
T ⊆ Q or, more generally, T ⊆ C̃. While the stronger restriction to Q is quite natural in quantum
computation, the weaker restriction to C̃ is motivated by the fact that this is, essentially, the class
of transition amplitudes used by the 2QCFA AAW of Ambainis and Watrous [2] that recognizes Leq,

which we now clarify. As before, let A = {πr|r ∈ Q ∩ R}, Ẽ = {eia|a ∈ A}, C̃ = Q ∪ Ẽ, and
SO(2, cos(A)) denote the group of 2×2 special orthogonal matrices with entries in cos(A). Then AAW

has transition matrices TAW ⊆ SO(2, cos(A))∪U(2,Q). As Ẽ = eiA, we are justified in saying that C̃ is
“essentially” the class of transition amplitudes needed by AAW; moreover, there is a 2QCFA A′AW that
is equivalent to AAW, in the sense that A′AW and AAW have precisely the same probability of accepting

any input string, but the transition amplitudes of A′AW are restricted to C̃. To see this, notice that

SO(2, cos(A)) is conjugate to a subgroup of T(2, Ẽ) by some element of U(2,Q); i.e., ∃M ∈ U(2,Q)
such that, ∀N ∈ SO(2, cos(A)), MNM−1 ∈ T(2, Ẽ). Produce the 2QCFA A′AW from AAW by replacing
each unitary transition N ∈ SO(2, cos(A)) by the sequence of transitions M,MNM−1,M−1. More
generally, this sort of decomposition holds for any unitary matrices with entries in C̃, as noted in the
remark following Definition 3.3: each such matrix N ∈ U(d)∩Md(C̃) can be expressed as N = M1TM2,
for M1,M2 ∈ U(d,Q) and T ∈ T(d, Ẽ).

As discussed in Section 5.2, our approach to the word problem fundamentally depends on being
able to store an unbounded amount of information in a single qubit, which therefore requires extremely
high precision in the state of that qubit. However, this does not imply any unreasonably stringent
constraints on the precision of the 2QCFA. That is to say, a qubit is implemented by some physical
quantum system, such as a spin-1

2 particle, and its precision is guaranteed by the rules of quantum
mechanics; the remainder of a 2QCFA, where here we are imagining a concrete physical realization of
a 2QCFA as a computational device, interacts with the physical qubit system to perform computation.
A 2QCFA can interact with a qubit in only two ways: either by performing a unitary transformation
or a quantum measurement. It is only the precision of these interactions that one must consider.
While a qubit may store a tremendous amount of information, a quantum measurement of a qubit will
only return a single bit of information, and collapse the state of that qubit, destroying all information
stored within; in particular, the fact that a qubit stores many bits of information in no way increases
the difficulty of performing an accurate quantum measurement. Moreover, as unitary transformations
do not compound errors, the needed precision of the unitary transformations is relatively mild; fur-
thermore, our key constructions of DFR only rely on using numbers that are hard to approximate by
rational numbers, and this property is held by almost all numbers, a random but static error in the
corresponding unitary transformation would cause no issue.
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