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Abstract

We study the effect of noise on the n-party beeping model. In this model, in every

round, each party may decide to either ‘beep’ or not. All parties hear a beep if and

only if at least one party beeps. The beeping model is becoming increasingly popular,

as it offers a very simple abstraction of wireless networks and is very well suited for

studying biological phenomena. Still, the noise resilience of the beeping model is yet

to be understood.

Our main result is a lower bound, showing that making protocols in the beeping

model resilient to noise may have a large performance overhead. Specifically, we give

a protocol that works over the (noiseless) beeping model, and prove that any scheme

that simulates this protocol over the beeping model with correlated stochastic noise

will blow up the number of rounds by an Ω(log n) multiplicative factor.

We complement this result by a matching upper bound, constructing a noise-

resilient simulation scheme with O(log n) overhead for any noiseless beeping protocol.

1 Introduction

In the beeping model [CK10], a set of n parties interact by beeping in synchronous rounds.

In every round, each party can decide to beep (emit a signal) or not to beep (be silent).

If at least one party beeps, all parties hear a beep, otherwise, all parties hear silence. The

(noiseless) beeping model, and other related models, have received a lot of attention in recent

years [AABJ11, SJX13, AAB+13, HM13, FSW14, GN15, MRZ15, BKK+16, HL17, DBB18,

etc.], largely as they provide an abstraction capturing the simplest possible communication

primitive: a detectable burst of ‘energy’. This abstraction is very well suited for describing

wireless networks. In addition, one of the main motivations for studying the beeping model

is due to its connections to signal-driven biological systems [AAB+11, NB15], e.g., cells
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communicating by secreting proteins and other chemical markers that are diffused and sensed

by neighboring cells, or fireflies reacting to flashes of light from nearby fireflies.

The beeping model can also be viewed as a multi-party generalization of Blackwell’s

binary multiplication channel, an extensively studied channel in the information theory

community. In this channel, there are two parties, and in every round, each party sends

a bit and both parties receive the ‘and’ (or, equivalently, the ‘or’) of the two sent bits. By

viewing a beeping party as sending a 1, and a silent party as sending a 0, we get that, in

each round, the beeping model outputs the ‘or’ of the bits sent.

In this paper, we initiate the study of the noise tolerance of the beeping model. For

a constant ε > 0, we define the n-party ε-noisy beeping model as a model where, in every

round, all the parties receive the ‘or’ of the n bits sent in this round, with probability 1− ε,
and with probability ε, the parties receive the negation of this ‘or’, independently for all

rounds. We then consider the question: let Π be a protocol that was designed to work over

the (noiseless) beeping model. Is it possible to simulate Π by a protocol Π′, such that Π′ is

not much longer than Π, and works over the ε-noisy beeping model?

1.1 Our Results

While, as mentioned above, one of the attractive features of the beeping model is its simplicity

and robustness, it is still prone to errors. Our main result is that making protocols over the

beeping model resilient to noise may require a substantial performance overhead. Specifically,

simulating a noiseless protocol Π by a noise resilient protocol can require a logarithmic (in n)

blowup in length.

Theorem 1.1 (main). Let ε ≥ 0 be a constant. There exists a (deterministic) protocol

Π over the n-party noiseless beeping model of length T (n), such that any protocol Π′ (even

with shared randomness) that simulates Π in the n-party ε-noisy beeping model, requires

Ω(T (n) log n) rounds.

We mention that our lower bound is proved for the more relaxed one-sided noise model,

where the channel may only flip the ‘or’ when it evaluates to 0 (i.e., can change a 0 to a 1,

but never changes a 1 to a 0), see subsubsection A.1.2 and Theorem C.1. Curiously, this

statement is asymmetric - one can construct a simulation protocol with constant blowup

when the noisy channel only changes 1s to 0s, see section 2.

We complement this lower bound result by a matching upper bound: a simulation

protocol with a blowup of at most O(log(n)) to the number of rounds. While simulations

with such blowups for any protocol length1 are typically easy to obtain using the, by now

standard, rewind-if-error mechanism, the protocol in Theorem 1.2 requires an additional

idea, see subsection 2.1.

1Observe that protocols of length polynomial in n can trivially be simulated by repeating every round
O(log(n)) times and taking the majority.
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Theorem 1.2. Let ε ≥ 0 be a constant. For every protocol Π over the n-party noiseless

beeping model of length T (n), there exists a protocol Π′ that simulates2 Π in the n-party

ε-noisy beeping model, and only requires O(T (n) log n) rounds.

1.2 Noise Type

This paper considers the beeping model in the presence of correlated noise: when a bit is

flipped due to the noise in the channel, all parties receive the flipped bit. The channel

ensures that all parties receive the same bit in every round, and thus, they have the same

transcript. This stands in contrast to the independent noise model, where, in each round,

each party gets an independent ε-noisy copy of the ‘or’ of the bits sent by the parties in that

round. In this model, parties may witness different transcripts. The correlated noise model

describes the situation where there are global interferences (e.g., global network problems

due to weather, contaminated environment, etc.), while independent noise is better suited

to describe situations where the noise source is local.

The correlated and the independent noise models are (at least seemingly) incomparable,

and it is not clear how to “translate” a protocol assuming one of these models to a protocol

in the other model. From a protocol design point of view, the correlated noise model has the

advantage of the parties agreeing on the (noisy) transcript of the protocol. However, this

also means that, for some of the rounds, no party knows the correct ‘or’. In contrast, while

the independent noise model suffers from uncorrelated transcripts, the correct ‘or’ of every

round will be received by almost all the parties, and these may be able to convey it to the

rest of the parties.

Understanding the resilience of the beeping model under independent noise is an obvious

interesting problem left open by our work. While Theorem 1.2 applies to the independent

noise setting as well, the proof of Theorem 1.1 breaks. Furthermore, inspired by [Gal88],

one can show that the protocol Π that proves Theorem 1.1, admits a simulation protocol

with only O(log log(n)) blowup in length in the independent noise model. However, it is

our belief that with a different example (e.g., a variant of pointer chasing), a super-constant

lower bound on the blowup can be proved for independent noise as well.

1.3 Related Works

Interactive Coding. The field of coding for interactive communication was introduced

in the seminal papers of Schulman [Sch92, Sch93, Sch96]. Various aspects of two-

party interactive coding (such as computational efficiency, interactive channel capacity,

noise tolerance, list decoding, different channel types, etc.) were considered in recent

years [GMS11, BR11, BKN14, Bra12, MS14, BE14, GMS14, GH14, GHK+16, EGH16,

BGMO17, EKS18, to cite a few].

2except with probability polynomially small in n.
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While two-party models for interactive coding were studied extensively, until recently,

multi-party models were barely explored in this context. We view this paper as a part

of a general effort by the authors and others to better understand the noise tolerance of

multi-party (distributed) models.

Relation to [EKS18]. The work most relevant to this paper is the work of [EKS18],

studying the noise tolerance of the broadcast channel. This work shows that every (non-

adaptive) protocol over the (single-hop) broadcast channel can be compiled to a noise resilient

protocol, by incurring only a constant multiplicative overhead. We point out that the

[EKS18] protocol works for both the correlated and the independent noise models and makes

no assumptions about the outputs of the channel if it is not the case that exactly one party

broadcasts (i.e., in case of collision, where more than one party is broadcasting in the same

round, or silence, where no party is broadcasting, all the parties get adversarial bits).

While the noisy beeping model assumed by this paper is more powerful than the noisy

broadcast model assumed by [EKS18] (here, collisions and silences are not adversarial, but

are only subject to random noise), the [EKS18] simulation does not carry over to our setting

(as is evident by our lower bound). The reason is that the additional power of the beeping

model can also be used by the noiseless protocol we wish to simulate, and this is indeed the

case for the protocol Π from Theorem 1.1. More generally, given two communication models,

even if it is known that every protocol in the second model can be run over the first model

as well, the interactive coding questions for these models are incomparable.

The Noise Resilience of Other Distributed Models. The first distributed model to

be studied in the context of interactive coding is the point-to-point (a.k.a. private channels)

model, for which a beautiful constant rate coding scheme was given by [RS94]. Variants of

the point-to-point model were later explored by [JKL15, ABE+16, BEGH16, HS16, GK17,

CGH18, GKR19].

As described above, the noisy broadcast channel has also been studied in the works

of [Gam87, Gal88, GKS08, EKS18]. The noise tolerance of the broadcast channel

was also studied in [FK00, KM05, New04, GGKN09, GHM18]. Interactive coding for

multi-hop radio networks (in the “collision-as-silence” and related models) is studied in

[CHHZ17, CHHZ18, EKS19]. The related dual graph model, where some of the links

are unreliable, is studied by [KLN+10, GHLN12, CGK+14, GLN13], and [KKP01, KPP10]

consider radio networks with faulty nodes.

We mention that, while some techniques can be carried over between models, interactive

coding schemes, and even more so, interactive coding lower bounds, for each of the above

models require novel ideas capturing the unique nature of the model.
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2 Proof Sketch

2.1 The [EKS18] Interactive Coding Scheme

As mentioned in subsection 1.3, the main result in [EKS18] is a constant rate interactive

coding scheme for simulating every (non-adaptive) noiseless broadcast protocol over the

noisy adaptive broadcast channel. The scheme follows the popular ‘rewind-if-error’ approach

[Sch92, etc., for a survey, see [Gel17]]. The idea is to break the noiseless protocol into small

chunks and simulate each chunk separately such that the probability of failure of a given

chunk is polynomially small in the length of the chunk. After one chunk of the protocol

is simulated, the parties run a ‘verification phase’ to verify that the chunk was simulated

correctly. If it was, the parties proceed to simulate the next chunk of the noiseless protocol.

Otherwise, the parties re-simulate this chunk.

During the verification phase of [EKS18] (interpreted for correlated noise), each party

checks if the parties’ shared noisy transcript agrees with the bits it communicated. This can

be done easily, as they assume that the noiseless protocol is non-adaptive, meaning that the

order of turns is pre-defined and each party ‘owns’ a disjoint set of bits in the transcript.

A party that finds a mismatch in one of the bits it owns ‘raises an error flag’, causing the

verification phase to fail. This idea is implemented by having each party compute a bit

that evaluates to 1 if and only if it detects an error. The authors of [EKS18] then design a

protocol, with polylogarithmic number of rounds, allowing the parties to compute the ‘or’ of

these bits. Furthermore, they argue that an efficient (sublinear) protocol for the ‘or’ function

is essential for our approach to work.

One property of the beeping channel is that there is an (extremely) efficient protocol for

the ‘or’ of n bits, i.e., there exists an efficient protocol that computes
∨
i b
i where the bit bi is

known to player i. Thus, at first glance, it may seem that there is a constant rate interactive

coding scheme for the beeping channel as well.

However, delving deeper reveals a problem: how will a party verify that the shared

transcript π respects its beeping pattern? We say that a party beeped a 1 in a given round

if it decided to beep, otherwise we say that it beeped a 0. If, for a round m, the bit πm = 0,

then, this is easily verifiable: each party can check that it indeed beeped a 0 in round m.

But, it is unclear how to efficiently verify πm = 1: consider the case that all parties beeped 0

in round m (but πm = 1 due to noise). Each party may assume that one of the other parties

beeped a 1. In other words, if the channel noise flipped the value of round m from a 1 to

a 0, there will be at least one party that is able to detect the error by itself. However, it is

unclear that a flip of 0 to 1 can be detected in the same manner.

The upshot of the discussion above is that in the beeping channel, the errors that change

a 1 to a 0 are, in some sense, easier to handle than the errors that change a 0 to a 1. In

particular, if there were no errors of the latter type, then a constant rate interactive coding

scheme may be developed on the lines of [EKS18].

In the upper bound protocol, we show that with an Ω(log n) overhead to the length of the
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protocol, 0 to 1 flips can also be detected. An Ω(log n) overhead scheme simulating chunks

of polynomial length with inverse polynomial error can easily be obtained by repetition.

However, to prove our upper bound we describe a procedure that not only simulates a given

chunk to obtain a transcript π, but also computes an ‘owner’ for every round m where at

least one party beeped a 1. This owner is one of the parties that beeped 1 in round m.

Simulating a chunk this way allows us to implement the verification phases needed to make

the rewind-if-error approach work for simulating protocols of all lengths. In our verification

phase, it is the responsibility of the party that owns a given round m to raise an error flag

for that round (i.e., verify that πm = 1). An error flag for rounds with no owner (all parties

beeped 0) can be raised by any player.

2.2 The Lower Bound Construction

Our lower bound shows that detecting 0 to 1 flips cannot be done with o(log n) overhead. We

turn this detection problem into a concrete communication task witnessing our lower bound.

We draw inspiration from the problem of verifying a transcript π above. However, instead

of trying to verify a transcript π, we consider the harder problem of computing such a π. We

construct the following simple communication task: for all m ∈ [2n], all players i have a bit

bim. The task is to compute πm =
∨
i b
i
m for all m ∈ [2n]. Observe how bi1b

i
2 · · · bi2n corresponds

to the sequence of bits beeped by party i in some noiseless protocol (and therefore also known

to party i), while π1π2 · · · π2n corresponds to the correct transcript of this protocol (sequence

of channel outputs).

The above task has a trivial beeping protocol with 2n rounds in the noiseless setting: in

round m ∈ [2n], party i beeps bim.

To prove a lower bound on the length of a protocol solving the above task in the noisy

setting, it turns out to be enough to consider a restricted version of this task. Namely, we

show that π is hard to compute in the presence of noise, even under the promise that for all

i, the bit bim is 1 for exactly one m. In this case, the input of a player i can be equivalently

described by the index m ∈ [2n] such that bim = 1. Indeed, this version, where all players

get as input a number xi ∈ [2n] and compute L(x) = {xi | i ∈ [n]}3 is the version we work

with in this paper.

Interestingly, this lower bound construction lacks many of the complexities that a general

interactive coding scheme has to tackle. For example, if indeed the bit bim corresponds to the

bit beeped by player i in round m of a protocol over the noiseless beeping channel, then this

bit may depend on the bits π1π2 · · · πm−1 received by player i. In our example, we assume

that there is no such dependence and the bit bim is fixed in advance. In other words, our

example captures the problem of interactively coding very simple protocols, where the bits

sent in round m are independent of the transcript received in the first m − 1 rounds. We

interpret the fact that the best possible lower bound can be obtained for a communication

3We use x to denote the input vector x1x2 · · ·xn.

6



task as simple as L, as showing that even basic operations over the beeping model are

becoming expensive in the presence of noise.

2.3 Sensitivity of the Function L
The main reason why the function L is hard for a noisy beeping protocol is that it is highly

sensitive to a change in one of its n inputs. Specifically, for a constant fraction of the inputs

x, there exists a subset I of players such that |I| = Θ(n), and for any player i ∈ I, changing

the input of player i changes the output of the function. To see why, let I be the set of

players i such that only player i has the input xi, i.e., for all players j 6= i, it holds that

xj 6= xi. It is easily seen that |I| = Θ(n) for a constant fraction of the inputs x. It also holds

that changing the input of any player i ∈ I changes the output of the function (as xi is no

longer an element of the output).

With the above in mind, define two inputs x, x′ to be neighbors if there is at most 1

player i such that xi 6= x′i. Further, define N (x) to be the set of all neighbors x′ of x such

that L(x) 6= L(x′). The above discussion says that for a constant fraction of inputs x, we

have |N (x)| = Θ(n2). For the rest of this proof sketch, we only work with inputs x such

that N (x) = Θ(n2). We note that our actual proof does not deal with N explicitly and the

use of N is limited to this sketch only.

2.4 The Proof of the Lower Bound

While our lower bound proof is not lengthy, it is technically quite challenging. The proof

defines a measure for the information that the protocol obtains about the input. The measure

is of the form Pr(x|π)∑
x′∈N′(x) Pr(x

′|π) , where N ′(x) ⊆ N (x) (see the definition of ζ in subsection C.2).

Intuitively, protocols that solve InputSetn should be able to differentiate between x and

x′ ∈ N ′(x), as L(x) 6= L(x′). This is captured by Theorem C.3, showing that the above ratio

is large for correct protocols. Theorem C.2 proves that short protocols can only lead to a

small ratio, as, because of the noise, a round can only change the relative probabilities of x

and x′ by a constant. By combining Theorem C.2 and Theorem C.3, we get that any correct

protocol is long, and the assertion follows. The rest of the sketch is devoted to highlighting

the main ideas that go into the selection of the subset N ′(x) in the definition of our measure,

as well as to the proofs of Theorem C.2 and Theorem C.3.

2.4.1 Information about x Extracted from Ones in the Transcript

Let us recall our lower bound construction. All the players i have as input a number xi ∈ [2n]

and they have to compute the set L(x) = {xi : i ∈ [n]}. We consider a uniform distribution

over the inputs x. Suppose that Π is a protocol that correctly computes L(x) on a 0.9

fraction of inputs x.

We can assume, without loss of generality, that the output of player 1 in Π is determined

solely by the transcript of Π. This can be done because the input of player 1 is short (O(log n)
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bits), and thus, can be included as a part of the transcript with only an additive O(log n)

overhead to the number of rounds in Π.

Since we assume that the protocol Π is correct with probability at least 0.9, we can expect

a typical transcript π to be such that, conditioned on the transcript being π, the probability

that the protocol is correct is at least 0.9. This holds only in expectation and there is no

reason to believe that this holds for any given transcript. However, it does hold for many

transcripts π. Throughout the rest of this section, we illustrate how to handle the 1s in

any such transcript π by assuming that π is the all ones transcript. In the next section, we

describe how to deal with the 0s in π.

Let us now, and for the rest of this section, fix the transcript π to be the all ones transcript

and let L be the set output by player 1 when the transcript is π. Let x be the input given

to the parties. Under our assumption, conditioned on π, the probability that L(x) = L is at

least 0.9. This means that the expression∑
x:L(x)=L Pr(x, π)∑
x:L(x)6=L Pr(x, π)

=

∑
x:L(x)=L Pr(x|π)∑
x:L(x)6=L Pr(x|π)

(1)

is at least a constant (assuming that the denominator is non-zero). By the discussion

in subsection 2.3, for every x that appears in the numerator, there are Θ(n2) neighbors

x′ ∈ N (x) that appear in the denominator.

We wish to focus on only one x and all its neighbors N (x) and for that we would like

to take the sum over x ‘out’ of the numerator and the denominator in the expression above.

As will be explained below, we can in fact bound Equation 1 by

n ·
∑

x:L(x)=L Pr(x, π)∑
x:L(x)=L

∑
x′∈N (x) Pr(x′, π)

. (2)

This will allow us to conclude that there exists an x such that the probability of x given π is

comparable to the sum of the probabilities of all its neighbors given π. The rest of the proof

is divided into two steps. First, we show how to convert Equation 1 to Equation 2. Then,

we show how to conclude a lower bound on the length of π from Equation 2

From Equation 1 to Equation 2. The numerators in Equation 1 and Equation 2 are

the same, and we solely focus on the denominators. The definition of N (x) ensures that if

L(x) = L then L(x′) 6= L for all x′ ∈ N (x) and consequently, every term in the denominator

of Equation 2 appears in the denominator of Equation 1. However, it may happen that a

term may appear more than once in the denominator of Equation 2 while appearing only

once in the denominator of Equation 1.

We claim that a term in the denominator of Equation 1 can appear at most n times in the

denominator of Equation 2. Indeed, if a term Pr(x′, π) is to appear more than n times, then

there are more than n different x ∈ N (x′) such that L(x) = L. However, since L(x′) 6= L,

there is at least one mismatch between L(x′) and L. If a neighbor x of x′ changes the input
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to player i, it must change it in a way to correct this mismatch. This means that, for all

i, there is at most one way to change it to an x satisfying L(x) = L implying a total of at

most n ways (one for each i ∈ [n]).

Thus, we are able to conclude that

n ·
∑

x:L(x)=L Pr(x, π)∑
x:L(x)=L

∑
x′∈N (x) Pr(x′, π)

≥
∑

x:L(x)=L Pr(x, π)∑
x:L(x) 6=L Pr(x, π)

.

We do not know if losing a factor of n is necessary while going from Equation 1 to

Equation 2. However, the rest of our analysis is strong enough to deal with this loss.

From Equation 2 to a Lower Bound. For any input x, the neighbors x′ ∈ N (x) can

be divided into Θ(n) categories based on the player i whose input is changed. Let us denote

the subset of neighbors that differ in the input of player i using N i(x).

From Equation 2, we can conclude that there exists an x such that given π, the probability

of x is at least Ω
(
1
n

)
times the probability of N (x). This means that there exists an i such

that given π, the probability of x is at least Ω (1) times the probability of N i(x). It turns

out that the hardest case to analyze is when this holds for all the possible values of i. We

assume this for the rest of this subsection.

Prior to executing the protocol Π, since the inputs were sampled uniformly, the

probability of x is O
(
1
n

)
times the probability of N i(x). Conditioning on π changes O

(
1
n

)
to Ω (1). What is it about the all ones transcript π that makes x so much more likely than

its neighbors x′ ∈ N i(x)?

The inputs x′ differ from x only in the input of player i and, consequently, the only way

π can differentiate between x and x′ is if all the players other than i beep 0. Furthermore,

since π is the all ones transcript, the only way x can be made much more likely relative to x′

is when there are many rounds where player i was the only player beeping a 1. In this case,

since x′ has a different input for player i, player i may no longer beep 1 in the corresponding

round, and thus may lower the probability of receiving a 1 by a constant factor (as the noise

rate is constant).

Since every such round increases the probability of x relative to x′ by a constant factor,

and we need to increase by a factor of n, there should be Ω(log n) rounds where player i is

the only player beeping 1. Since there are Θ(n) possible values for i, Π must have Ω(n log n)

rounds.

2.4.2 Information about x Extracted from Zeros in the Transcript

The previous subsection was dedicated to handling the ones in π, and we assumed that π is

the transcript that has all 1s. Are things a lot different when π is allowed to have 0s?

When the transcript π is allowed to have zeros, x can be made more likely relative to

its neighbors x′ ∈ N i(x) in another way: consider rounds m such that πm = 0 and none of

the players beeped a 1 (when the input was x). Since the input to player i is different in

9



x′, player i may beep 1 in round m, lowering the probability of receiving a 0 by a constant

factor. Superficially, this may look the same as before. However, something very important

has changed.

Earlier, the relevant rounds m were such that when the input was x, only player i was

beeping in round m. This means that, in round m, the relative probability of x and x′ is

affected only for neighbors x′ ∈ N i(x). As explained above, the number of rounds required

to sufficiently increase the probability of x versus the probability of neighbors x′ ∈ N i(x),

for a given i, is Ω(log n), and the hard case is when the probability of x increases versus any

x′ ∈ N (x) (i.e., for any i). Observe that, earlier, the relevant rounds for different i were

disjoint and we were able to conclude that the total number of rounds is Ω(n log n).

However, when the transcript π is allowed to have zeros, even rounds m where all the

players beep 0 are relevant and these rounds may affect the relative probability of x and any

neighbor x′ ∈ N (x) (independently of i) as changing any player’s input may change the 0 to

a 1. It is not clear how to show that the rounds for different i are ‘sufficiently disjoint’ for

us to get the factor of n we need for the lower bound.

Since this line of attack does not give us a lot of traction, we exploit a different weakness

of the 0s in the transcript.

2.4.3 Handling the Zeros in the Transcript

In subsection 2.1, we argued that the zeros of the transcript are easier to verify than the

ones. This is because if a 0 was supposed to be a 1, the player who was beeping the 1 knows

that, and can immediately raise an error flag. If no player raised an error flag, the players

can be confident that the bit was actually a 0. Thus, a mechanism can be built on the lines

of, say, [EKS18] that ensures that all the 0s received in Π are noise-free without increasing

the number of rounds in Π by a lot. For the rest of this sketch, we work under a one-sided

error assumption, where when the parties receive the bit 0, they know that it is actually 0.

Since the players know the protocol Π and the current transcript π, the knowledge that

the bit was actually a 0 allows them to rule out certain input tuples. The subset of inputs

that is ruled out is precisely those inputs for which the parties would have beeped 1. Define,

for a transcript π, the set Si(π) to be the subset of inputs to player i that are not ruled out

in this way. In other words, if a player i has an input from the set Si(π), then, for all rounds

m such that πm = 0, player i beeps 0 in round m.

Observe that for a given transcript π, if we solely focus on the neighbors x′ of an input x

such that x′i ∈ Si(π) for all players i, then in a round m where all players beep 0 when the

input is x, then all players beep 0 even when the input is x′. Thus, the problem described

at the beginning of subsubsection 2.4.2 does not arise. This allows us to work as described

in subsubsection 2.4.1.

There is one last piece in this puzzle which is the size of the sets Si(π). Recall that we

got the Ω(log n) factor in the complexity because the size of the sets N i(x) was n. Now,

we are working with a subset of the neighbors x′ in N i(x) for which x′i ∈ Si(π). Does this
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mean we get a worse lower bound? The answer is no, and the reason is that we can ensure

that for most i, the sets Si(π) are at least polynomially large (≥
√
n, say). This is due to a

careful information theoretic argument which is as follows:

Initially, the input to our problem has entropy Θ(n log n). Since our protocol is short, its

transcript cannot give us more that c · n log n bits of information about the input, for some

small c. Thus, even after conditioning on the transcript π, the input distribution should

have entropy Θ(n log n). We know that inputs not in Si(π) are no longer possible given the

transcript. Thus, the sets Si(π) cannot all be very small (say, sub-polynomial). As long as

the sets Si(π) are polynomially large, we have an Ω(log n) overhead term, as desired.

For the formal definitions and the proof, please see the appendices below.
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Appendix

A The Beeping Model and The Problem

Throughout this paper, we will work with the n-party beeping model described below. We

will use X i to denote the inputs of party i and Y i to denote the output space.

A.1 The Model

A.1.1 Noisy Beeping Definitions

In the section, we define the n-party correlated noise beeping models assumed by this paper,

by defining communication protocols in these models. We first define the noisy beeping

model and the one-sided noisy beeping model for a noise parameter ε. The noiseless beeping

model and the noiseless one-sided beeping model are obtained from the noisy versions by

setting ε = 0.

Let ε ≥ 0. A (deterministic) protocol Π over the n-party ε-noisy beeping model is defined

by a tuple
(
T, {f im}i∈[n],m∈[T ], {gi}i∈[n]

)
. Here, T > 0 is a parameter that denotes the length

of Π, f im are functions of the type f im : X i × {0, 1}m−1 → {0, 1} (broadcast functions), and

gi are functions of the type gi : X i × {0, 1}T → Y i (output functions).

The protocol Π executes as follows. Suppose that party i has input xi ∈ X i. Before

round m, the parties share a transcript π<m. Define π<1 = ε, the empty string. In round

m ∈ [T ], we say that party i beeps the bit bi = f im(xi, π<m). Define the output of the channel

for round m to be

πm = Nε ⊕
∨
i∈[n]

bi,

where, Nε is an ε-noisy bit that is independent of all other randomness in the execution.

That is, Nε = 0 with probability 1 − ε, and Nε = 1 with probability ε. The parties append

πm to π<m and continue the execution of the protocol. After T rounds, party i outputs

gi(xi, π≤T ).

A (deterministic) protocol Π over the n-party one-sided ε-noisy beeping model is defined

similarly to the ε-noisy beeping model, with one difference: In round m ∈ [T ], if
∨
i∈[n] b

i = 1

then πm = 1 (no noise is introduced). Otherwise, if
∨
i∈[n] b

i = 0, then πm = Nε ⊕
∨
i∈[n] b

i,

as before.

A randomized protocol over the n-party ε-noisy beeping model is a distribution over

deterministic protocols in the n-party ε-noisy beeping model. A randomized protocol over

the one-sided n-party ε-noisy beeping model is a distribution over deterministic protocols in

the one-side n-party ε-noisy beeping model.
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A.1.2 One-Sided vs Two-Sided Noise

We next claim that every protocol Π over the n-party 1
4
-noisy beeping model can be simulated

over the one-sided n-party 1
3
-noisy beeping model where the parties share a random string:

parties run Π over the one sided n-party 1
3
-noisy beeping model round-by-round. If the

parties receive the bit 1, they flip it to 0 with probability 1
4

using the shared randomness.

Now, the probability of the updated output being 0 if one of the parties beeps a 1 is 1
4
,

as the one-sided noise never flips a 1 to a 0, but the parties will flip it by themselves with

probability 1
4
. The probability of the updated output being 1 if all parties beeps 0 is also

1
4
: with probability 1

3
, the one-sided noise flips the 0 to a 1, and then with probability 3

4

the parties do not flip the 1 back to a 0. Since these events are independent, we get that a

probability of the updated output being 1 if all parties beeps 0 is 1
3
· 3
4

= 1
4
.

The above claim shows that a lower bound on the length of a protocol solving

a communication task over the n-party one-sided 1
3
-noisy beeping model with shared

randomness, implies a similar lower bound for the n-party 1
4
-noisy beeping model.

Another way to see that the one sided error model gives the parties more power than the

two sided error model is two consider the two sided error model but with the presence of

an adversary that can ‘correct’ any of the bits flipped by the channel (but cannot introduce

new errors). The presence of such an adversary essentially prohibits the parties from using a

protocol that relies on the noise being exactly what it is. Since adversary can correct every

time the channel flips a 1 to a 0, the two sided error model becomes a one sided one.

A.2 The Communication Task

The Communication Problem InputSetn. For n > 0, we consider the InputSetn
communication task, which is described next. In the task InputSetn, all of the n parties

get as input a number in [2n], i.e., party i gets input xi ∈ [2n]. The numbers xi are chosen

uniformly at random, and independently for all the n parties. We will use x = x1x2 · · ·xn to

denote the vector of all inputs. The parties need to compute the set L(x) = {xi | i ∈ [n]}.
We stress that party i may not know xj for any j 6= i ∈ [n]. Rather, if y ∈ L(x), then party

i knows that some party j received y as input.

Noiseless Protocol for InputSetn. The task InputSetn has a 2n length deterministic

protocol in the noiseless beeping model. In a round m ∈ [T ], party i beeps 1 if and only if

xi = m. Observe that πm = 1 ⇐⇒ m ∈ L(x). Thus, the parties can output L(x) at the

end of the protocol.

The rest of this paper is devoted to showing that for a constant ε > 0, any (even

randomized) protocol for InputSetn in the ε-noisy beeping model must consist of at least n logn
1000

rounds in the worst-case. We note that since InputSetn is a distributional communication

task, the worst-case length of a protocol (over the selection of inputs, channel noise, and the

randomness used by the players) is only a constant factor away form its expected length (for
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a related error parameter), as the protocol can always be truncated to twice its expected

length, incurring only a constant blowup to the error.

B Technical Preliminaries

B.1 Notation

All logarithms in this paper are to the base 2. We denote random variables using capital

letters and their realizations using the corresponding lower case letters. For example, a

random variable X may take the value x. We often write Pr(· | X = x), Pr(X = x),

E(· | X = x), etc., as Pr(· | x), Pr(x), and E(· | x). We use the notation
∑

x∈S Pr(x) = Pr(S).

Finally, the support of X, denoted supp(X), is the set {x | Pr(x) > 0} and the concatenation

of two strings s1 and s2 is denoted using s1s2.

B.2 Information Theory

Definition B.1 (Entropy). The (binary) entropy of a discrete random variable X is defined

as

H(X) =
∑

x∈supp(X)

Pr(x) log
1

Pr(x)
= E

x∼X

[
log

1

Pr(x)

]
.

Definition B.2 (Conditional Entropy). The entropy of a discrete random variable X given

another random variable Y is defined as

H(X | Y ) = E
y∼Y

[H(X | Y = y)] .

Definition B.3 (Mutual Information). The mutual information between two discrete random

variables X and Y is defined as

I(X : Y ) = H(X)−H(X | Y ) = H(Y )−H(Y | X).

We can also define conditional mutual information as

I(X : Y | Z) = H(X | Z)−H(X | Y Z) = H(Y | Z)−H(Y | XZ).

Fact B.4. If the random variable X takes values in the set Ω, it holds that

0 ≤ H(X) ≤ log|Ω|.

Fact B.5 (Conditioning reduces entropy). We have 0 ≤ I(X : Y ) ≤ H(X).

Fact B.6 (Subadditivity of entropy). We4 have H(XY ) = H(X)+H(Y | X) ≤ H(X)+H(Y ).

Equality holds if X and Y are independent.

4We use H(XY ) to denote the joint entropy of the tuple (X,Y ).
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B.3 Some Lemmas

Lemma B.7. Let k > 0 and ai, bi be positive numbers for i ∈ [k]. It holds that(∑
i∈[k] ai

)2∑
i∈[k] bi

≤
∑
i∈[k]

a2i
bi

Proof. Applying the Cauchy-Schwarz inequality to the sequences ai√
bi

and
√
bi, we get∑

i∈[k]

ai

2

≤

∑
i∈[k]

a2i
bi

∑
i∈[k]

bi

 .

Lemma B.8. Let k > 0 and {Xi}ki=1 be mutually independent random variables uniformly

distributed over a finite set S. Define the random set I = {i ∈ [k] | Xi 6= Xj,∀j 6= i}. If

k < |S|,

Pr

(
|I| ≤ k

3

)
≤ 3

2
·
(

1− e−
k
|S|

)
.

Proof. Let α = Pr
(
|I| ≤ k

3

)
. We have

E[|I|] ≤ α · k
3

+ (1− α)k = k

(
1− 2α

3

)
.

Define Yi, for i ∈ [k], to be indicator random variable that is 1 if and only if i ∈ I. By

linearity of expectation, we have

E[|I|] =
∑
i∈[k]

E[Yi] = k E[Y1],

where the last step follows as the variables Yi are identically distributed. By direct

calculation,

E[|I|] = k E[Y1] = k

(
1− 1

|S|

)k−1
≥ ke−

k−1
|S|−1 ≥ ke−

k
|S| ,

where we use e−1 ≤
(
1− 1

n

)n−1
, for all n > 1. Combining the two bounds for E[Y1], we have

α ≤ 3

2
·
(

1− e−
k
|S|

)
.
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C Logarithmic Overhead Lower Bound (Proof of

Theorem 1.1)

For the rest of this text, we fix n > 0 and a protocol Π for the task InputSet = InputSetn in

the ε-noisy beeping model that has length T < n logn
1000

. For ease of exposition, we assume that

ε = 1
3
. We assume that the inputs to the n parties are drawn uniformly and independently

from [2n]. Since the input of the task InputSetn is randomized, we can assume, without loss

of generality, that the protocol Π is deterministic. Formally, we prove the following theorem,

and Theorem 1.1 follows.

Theorem C.1. Any deterministic protocol that computes InputSetn with error probability

ε < 1/4 over the n-party one-sided ε-noisy beeping model (over uniformly sampled inputs),

requires Ω(n log n) rounds.

C.1 Notation

We let X i be the random variable that represents the input xi of party i. Recall that

the variables X i are independent and uniformly distributed over the set [2n]. We will use

X = X1X2 · · ·Xn to denote the vector of all the parties’ inputs. Recall that realization of

random variables are denoted using the corresponding lower case letters. For y ∈ [2n], we

use xi=y to denote the input which is the same as x except at the coordinate i, where it is y.

We reserve m to index the rounds of Π. For m ∈ [T ], we use Πm to denote the random

variable representing the bit received by the players in round m of Π. The randomness in

Πm is the randomness in the parties’ inputs and the noise added by the beeping model. The

notation Π≤m will mean Π1Π2 · · ·Πm. We often omit the subscript when m = T , e.g., Π

denotes Π≤T .

C.2 Our Framework

In our proof, we make two simplifying assumptions that are without loss of generality. Firstly,

we assume that when any of the parties beeps 1, then this is received correctly by all the

parties. In other words, the noise can only change a 0 to a 1. This assumption also means

that in any round where the parties receive a 0, they can be sure that all parties beeped 0.

The second assumption that we make is that the output of player 1 is determined by

the transcript π of the protocol, and does not require knowing the input of player 1 (i.e.,

g1(x1, π) is only a function of π). This does not compromise generality as the input of player

1 is small and can be written using O(log n) bits. Thus, for any (noiseless) protocol Π that

solves InputSet, we can construct a (noiseless) protocol Π′, that is at most O(log n) longer

than Π, in which player 1 beeps its input in the first rounds (no other player beeps during

these rounds), and then the players execute Π. The transcript of Π′ contains the input of

player 1, thus player 1’s output is only a function of the transcript.
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Correct executions. Define the set C of correct executions as the set of tuples (x, π)

such that player 1 outputs L(x) when the transcript is π. This is well defined due to our

assumption that the output of player 1 is determined by π. Our proof works by upper

bounding Pr(C).

Feasible sets. Let m ∈ [T ]. For a realization π≤m = π1π2 · · · πm of Π≤m, let J = {j ∈
[m] : πj = 0} be the set of coordinates of π≤m that are 0. Since we assume that the noise

in our channel can only change a 0 to a 1, πj = 0 implies that all the parties beeped 0 in

round j. For j ∈ J , let Sij = {y : f ij(y, π<j) = 0}5 be the set of all inputs of party i such that

party i beeps 0 in round j if the transcript received in the first j − 1 rounds is π<j. Define

the feasible set of party i and a transcript π≤m as

Si(π≤m) =
⋂
j∈J

Sij.

Good players. Let x = x1x2 · · ·xn be an input to the n parties and let π be a transcript.

Recall the feasible sets Si(π) defined above. Let G1(x) = {i ∈ [n] | xi 6= xj,∀j 6= i} be the

set of all parties with unique inputs. Let G2(π) = {i ∈ [n] | |Si(π)| >
√
n} be the set of

parties with more than
√
n feasible inputs given the transcript π. The set of good players G

for the input x and transcript π is defined as

G(x, π) = G1(x) ∩G2(π).

Define the event G (over the selection of inputs and the channel noise) as

G ≡ |G(x, π)| ≥ n

4
.

A progress measure. Let i ∈ [n]. For any input x and any π, let G(x, π) and Si(π) be

as defined above. Define:

Z(x, π) =
∑

i∈G(x,π)

E
y∼Si(π)

[
Pr(xi=y, π)

]
.

ζ(x, π) =

{
0 ,Pr(x, π) = 0
Pr(x,π)
Z(x,π)

,Pr(x, π) > 0
.

The probabilities in the above definitions are over the selection of inputs and the channel

noise. We note that ζ is well defined as if Pr(x, π) > 0 then Z(x, π) 6= 0. The reason is that

since x can happen with π and since y ∈ Si(π), it holds that xi=y can also happen with π.

5Recall from Appendix A the definition of f i
j .
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C.3 The Proof of Theorem 1.1

C.3.1 Short Protocols Imply Small ζ

We prove Theorem 1.1 in two steps. First, we show that if T is short, then ζ(x, π) is small.

Theorem C.2. For all x, π such that G happens and Pr(x, π) > 0,

ζ(x, π) ≤ 4

n
· 3

4T
n .

Proof. Fix π = π1π2 · · · πT and x = x1x2 · · ·xn be such that G happens and Pr(x, π) > 0.

By the chain rule, we have

Pr(x, π) = Pr(x)
∏
m∈[T ]

Pr(πm | x, π<m).

For m ∈ [T ], let Bm = Bm(x, π) be the set of all players that beeped 1 in round m. Note

that one can indeed be retrieve Bm given x and π, as each party decides what to beep in

the next round based on its input and the shared transcript of the prior rounds. Also note

that Bm may be the empty set in case all the players beeped 0. We partition the rounds

into disjoint sets:

A0 = {m ∈ [T ] | πm = 0} A′0 = {m ∈ [T ] | πm = 1 ∧Bm = ∅}.

Ai = {m ∈ [T ] | Bm = {i}} An+1 = [T ] \

A0 ∪ A′0 ∪
⋃
i∈[n]

Ai

 .

Recall our assumption that a 1 is not affected by noise. Since we assume that Pr(x, π) > 0,

Bm 6= ∅ =⇒ πm = 1. On the other hand, we have Bm = ∅ means that Pr(πm = 0 |
x, π<m) = 2

3
and Pr(πm = 1 | x, π<m) = 1

3
(recall that ε is fixed to 1/3). Direct calculation

gives:

Pr(x, π) = Pr(x)

(
2

3

)|A0|(1

3

)|A′0|
.

We now focus on lower bounding Pr(xi=y, π) for some i ∈ G(x, π), y ∈ Si(π). Since

y ∈ Si(π), for any round m ∈ A0, all the parties beep 0 in round m even when the input is

xi=y. Thus, these rounds behave exactly as before and the terms carry over.

We claim that for any round m ∈ A′0, it holds that Pr(πm = 1 | xi=y, π<m) ≥ 1
3
. Recall

that for such rounds Bm = ∅, meaning that given the input x, all parties beeped 0 in

round m. Given the input xi=y, it is possible that all parties still beep 0, in which case

Pr(πm = 1 | xi=y, π<m) = 1
3
, or at least one party decides to beep 1 in this round, implying

Pr(πm = 1 | xi=y, π<m) = 1.

Among the other rounds, the only ones where the probabilities may be affected are the

rounds in Ai, as only party i has a different input in xi=y. In Ai, party i is the only one

beeping a 1. However, even if party i decides to beep a 0 given its new input y, then due
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to the noise, these rounds will still produce the same transcript with probability 1
3
. We can

thus lower bound Pr(xi=y, π) as follows:

Pr(xi=y, π) ≥ Pr(xi=y)

(
2

3

)|A0|(1

3

)|A′0|(1

3

)|Ai|
.

Since the distribution over inputs is uniform, we have

ζ(x, π) =
Pr(x, π)∑

i∈G(x,π) Ey∼Si(π) [Pr(xi=y, π)]

≤ 1∑
i∈G(x,π) 3−|Ai|

≤ 1

|G(x, π)|
· 3

∑
i∈G(x,π)|Ai|
|G(x,π)| (Convexity of f(x) = 3−x)

≤ 4

n
· 3

4T
n (Since G occurs and by the disjointness of Ai)

C.3.2 Correct (and Short) Protocols Have Large ζ

We finish by showing that the correctness of Π implies that ζ(x, π) cannot be that small.

Theorem C.3. If Pr(C) ≥ 2
3

+ n−
1
8 and T ≤ n logn

1000
, we have

E [ζ(x, π) | G] ≥ n−
3
4 .

The proof of Theorem C.3 uses the following claims:

Observation C.4. Due to subadditivity of entropy (Fact B.6) and Fact B.4, we have

H(X | π) ≤
∑

iH(X i | π) ≤
∑

i log(|Si(π)|). In particular, |G2(π)| ≤ 19n
20

=⇒ H(X |
π) ≤ 19n

20
log(2n) + n

40
log n.

Lemma C.5. If T ≤ n logn
1000

, then, Pr(G) ≤ 2
3
.

Proof. If (x, π) is such that G happens, then, |G(x, π)| < n
4
. Thus, either |G1(x)| < n

3
or

|G2(π)| < 19n
20

. By Lemma B.8, the probability of the former is at most 3
5
. Let G2 be the

event |G2(π)| ≤ 19n
20

. We now show that Pr(G2) ≤ 1
50

using information theory finishing the

proof. We have

T ≥ H(Π) ≥ I(X : Π) (By Fact B.4 and Fact B.5)

= H(X)−H(X | Π)

= n log(2n)− E
π

[H(X | π)] .
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For all π such that G2 happens, we upper bound H(X | π) using Observation C.4. For the

rest, we use the trivial bound of n log(2n) given by Fact B.4. This gives:

T ≥ n log n

40
Pr(G2),

implying the result.

Proof of Theorem C.3. In this proof, we refer to G as both an event and a set of (x, π).

Observe that

E [ζ(x, π) | G] =
∑
x,π

Pr(x, π | G)ζ(x, π) =
1

Pr(G)

∑
(x,π)∈G

Pr(x, π)ζ(x, π).

We continue using that fact ζ(·, ·) is non-negative.

E [ζ(x, π) | G] ≥
∑

(x,π)∈G∩C

Pr(x, π)ζ(x, π)

≥

(∑
(x,π)∈G∩C Pr(x, π)

)2∑
(x,π)∈G∩C Z(x, π)

(Lemma B.7)

≥ Pr(G ∩ C)2∑
(x,π)∈C Z(x, π)

≥
(
Pr(C)− Pr(G)

)2∑
(x,π)∈C Z(x, π)

.

The numerator is easily bounded from below by ((2
3

+ n−
1
8 )− 2

3
)2 = n−

1
4 using Lemma C.5.

We solely focus on the denominator now. We have∑
(x,π)∈C

Z(x, π) =
∑

(x,π)∈C

∑
i∈G(x,π)

E
y∼Si(π)

[
Pr(xi=y, π)

]
.

For all i ∈ G(x, π), we have |Si(π)| >
√
n implying∑

(x,π)∈C

Z(x, π) ≤ 1√
n

∑
(x,π)∈C

∑
i∈G(x,π)

∑
y∈Si(π)

Pr(xi=y, π). (3)

Now, define the set

T (π) = {x′ | ∃x, i, y : (x, π) ∈ C and i ∈ G(x, π) and y ∈ Si(π) and x′ = xi=y}.

By definition, all the terms in sum in Equation 3 are of the form Pr(x′, π) for x′ ∈ T (π).

However, a given term may be repeated multiple times. We now claim that the number of

repetitions is at most n. Formally,

Claim. Fix a tuple (x′, π). For any i ∈ [n], there is at most one tuple (x, y) such that

(x, π) ∈ C and i ∈ G(x, π) and x′ = xi=y.

Proof. Proof by contradiction. Suppose there are (x1, y1) and (x2, y2) satisfying the given

24



properties. Observe that x1 and x2 differ only in xi1 and xi2. Also, i ∈ G(x1, π) implies

that xi1 ∈ L(x1) and xi1 6∈ L(x2). Thus, L(x1) 6= L(x2). Since we assume that the output

of player 1 is determined solely by the transcript, L(x1) 6= L(x2) implies that (x1, π) and

(x2, π) cannot both be in C, a contradiction.

Due to the foregoing claim, we have
∑

(x,π)∈C Z(x, π) ≤
√
n. This implies

E [ζ(x, π) | G] ≥
(
Pr(C)− Pr(G)

)2∑
(x,π)∈C Z(x, π)

≥ n−
1
4

√
n

= n−
3
4 .

C.3.3 Proof of Theorem C.1 Given Theorem C.2 and Theorem C.3

Proof of Theorem C.1 . We assume that n is large, say n > 10100. Assume, for the sake

of contradiction, that there is a protocol Π of length T < n logn
1000

that solves InputSetn
correctly with probability at least 3

4
. Thus, Pr(C) ≥ 3

4
. By Theorem C.3, we have

E[ζ(x, π) | G] ≥ n−
3
4 . However, all the terms ζ(x, π) in this expectation such that

Pr(x, π) > 0 satisfy ζ(x, π) ≤ 4
n
· n0.01 < n−0.90 (Theorem C.2). This clearly contradicts

E[ζ(x, π) | G] ≥ n−
3
4 .

D Coding Scheme With Logarithmic Overhead (Proof

of Theorem 1.2)

In this section, we give an interactive coding scheme for simulating any noiseless beeping

protocol with an O(log n) overhead such that the error of the simulation is polynomially

small in n. The scheme works for both the correlated noise and the independent noise

models.

It is easy to see that protocols in the n-party noiseless beeping model that are polynomial

in length (say at most n100) can be simulated over the noisy beeping model with an O(log n)

overhead. This is done by repeating each transmission in the noiseless beeping model c log n

times, for a constant c large enough so that a majority of the receptions are correct with

probability polynomially small (say at most n−200). The correctness of the protocol then

follows using a union bound.

As argued in the sketch in subsection 2.1, in order to simulate noiseless beeping protocols

of arbitrary length, one can follow the ‘rewind-if-error’ approach where the long protocol is

partitioned into small chunks and the protocol is simulated chunk by chunk. For the beeping

model, our discussion there showed that merely simulating a chunk to get a transcript π is

not sufficient. Instead, one also needs to compute an ‘owner’ for every 1 in the transcript π.
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We next describe such a simulation procedure a for a given chunk. The owner should be a

player that beeped 1 in that round.

D.1 Simulating One Chunk

We now describe our simulation procedure for a chunk. We take our chunks to be of size

n. First, we simulate this chunk by repeating every round O(log n) times and obtaining a

transcript π. Next, we run a second phase that computes an owner for every 1 in π, i.e.,

a person who beeped 1 in the corresponding round. This phase (similar to the protocol in

[BO15]) works as follows: Starting with player 1, all the players beep all the 1s that they

can own. Since the transcript π has n rounds, any 1 in π can be identified with at most

log n + 1 bits. The players also encode these using constant rate error correcting codes to

ensure correct reception except with polynomially small probability. Once player 1 has listed

all the 1s in π that he can own, he beeps a special O(log n) length sequence that indicates

that player 2 should start listing. Thereafter, it is player 2’s turn to beep all the 1s that he

can own, without repeating those already beeped by player 1, and so on.

We formalize the above in Algorithm 1, where Π is used to denote a chunk of the noiseless

protocol to be simulated. Algorithm 1 has two phases as above. In the simulation phase, the

parties simulate Π by repetition, i.e., every round in Π is repeated c · log n times (for large

enough c) and players take the majority of the bits received. For simplicity, we omit this

detail in the description below and assume that all the parties have a correctly simulated

transcript π in the second phase. In the second ‘finding owners’ phase, the players compute

owners for every 1 in the transcript π computed in the simulation phase.

In Algorithm 1, for a transcript π, we use J = {j | πj = 1} to denote the set of 1s in π.

This deviates from our notation in subsection C.2 where we use J to denote the 0s instead.

We use C : [n] ∪ {Next} → {0, 1}c logn to denote a constant rate error correcting code of

relative distance 0.99. The constant c is chosen in the analysis to ensure correct decoding

with high probability.

It is readily seen that this procedure takes O(n log n) rounds as desired. We now formally

analyze the finding owners phase and show that it works as desired.

Theorem D.1. For i,m ∈ [n], let bim be an input to player i in the finding owners phase

in Algorithm 1. Also, define a transcript π ∈ {0, 1}n such that πm =
∨
i∈[n] b

i
m. Except with

probability at most n−10, it holds at the end of Algorithm 1 that:

For all j ∈ J , the variables oij have the same value oj for all players i. Additionally, this

value oj satisfies b
oj
j = 1.

Proof. We choose C to be an error correcting code such that the probability that all the

players decode correctly in all the 2n iterations is at least 1 − n−10. We condition on this

event for the rest of the proof.

It is easily seen that if all the players decode correctly in all the iterations, then the value

the variables T i, turni, and oij in our protocol is the same for all players. This proves the
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Algorithm 1 Simulating one chunk Π of length n

Simulation phase:
1: Simulate Π round by round and obtain a transcript π. For i,m ∈ [n], let the bit bim be

the bit beeped by player i in round m.
Finding owners:
Input: For i,m ∈ [n], player i has a bit bim. The players also share a transcript π where

πm =
∨
i∈[n] b

i
m.

Output: For all j ∈ J , player i outputs oij ∈ [n]. After a correct execution, oij are the same
for all i and indicate an owner of round j.

2: T i ← ∅,∀i ∈ [n].
3: turni ← 1,∀i ∈ [n].
4: for l ∈ [2n] do
5: if turni = i then
6: if ∃j 6∈ T i : bij = 1 then
7: Party i beeps C(j).
8: else
9: Party i beeps C(Next).

10: end if
11: end if
12: All players decode what was received. Let σi be the value decoded.
13: If σi = Next, increment turni. Else, let σi = j ∈ [n]. Set T i ← T i ∪ {j} and

oij ← turni.
14: end for
15: Player i outputs oij for all j ∈ J .
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first part of our claim. We denote these common values by T , turn, and oj respectively.

We now claim that the value oj is updated at least once for all j ∈ J . Suppose, for

contradiction, that for some j ∈ J , the value of oj is never updated. Then, j /∈ T and from

our assumption that the players always decode correctly, we get that C(j) was never beeped.

This means that bij = 0 for all values i taken by turn. However, turn takes all values in [n]

as after each iteration, either turn is incremented or T gets an additional element. Since T

can get at most n elements and there are 2n iterations. We can conclude that turn takes all

values in [n]. Thus, ∀i, bij = 0 =⇒ πj = 0 =⇒ j /∈ J , a contradiction.

When oj is updated, it gets the value turn. Furthermore, oj is updated only when player

turn beeped C(j) implying b
oj
j = 1.

D.2 Rest of the Simulation

The rest of the simulation proceeds along the lines of [EKS18]. We define a hierarchy of

simulation protocols Al for l ≥ 0, where Al simulates 2l chunks and generates a transcript π

of length 2l ·n with owners for all the 1s in π. The protocol Al, for l > 0, has two executions

of Al−1 followed by a progress check. If π1 and π2 are the transcripts generated by these

two executions, then, the progress check fails with probability exponentially small in l and

returns the longest prefix of π1π2 that was successfully simulated.

In the progress check, the parties find the longest prefix that was correctly simulated by

binary search. To decide whether or not a prefix is correctly simulated, the parties see if

they have any of the bits in the prefix does not match what they beeped in that round. For

bits in the prefix that are 1, only the owner preforms this check. For the bits that are 0, this

check is performed by all the parties. This can be repeated O(l) times to ensure correctness

except with probability exponentially small in l.

To analyze this scheme, we define a progress measure that is the expected length of the

prefix that has been correctly simulated and for which, owners have been correctly computed.

By Theorem D.1 the expectation of this measure is at least n(1− o(1)) for A0. Going from

Al−1 to Al, this measure almost doubles (with a loss exponentially small in l). Since a sum

of exponentially small terms converges, we get scheme with only logarithmic overhead for

arbitrary lengths. For further technical details, see [EKS18].
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