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Abstract. The following multi-determinantal algebraic variety plays a central role in algebra,
algebraic geometry and computational complexity theory: SINGn,m, consisting of all m-tuples of
n× n complex matrices which span only singular matrices. In particular, an efficient deterministic
algorithm testing membership in SINGn,m will imply super-polynomial circuit lower bounds, a holy
grail of the theory of computation.

A sequence of recent works suggests such efficient algorithms for memberships in a general class
of algebraic varieties, namely the null cones of linear group actions. Can this be used for the
problem above? Our main result is negative: SINGn,m is not the null cone of any (reductive) group
action! This stands in stark contrast to a non-commutative analog of this variety, and points to an
inherent structural difficulty of SINGn,m.

To prove this result we identify precisely the group of symmetries of SINGn,m. We find this
characterization, and the tools we introduce to prove it, of independent interest. Our work signifi-
cantly generalizes a result of Frobenius for the special case m = 1, and suggests a general method
for determining the symmetries of algebraic varieties.
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1. Introduction

We start the introduction with a general discussion of the main problems and their motivations.
Next we turn to describe our main object of study - singular spaces of matrices. We end by formally
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stating our main results. While a few technical terms here may be unfamiliar to some readers, we
will have a simple running example to demonstrate all essential notions. Throughout, the underlying
field is the complex numbers C.

1.1. Motivation and main problems. Consider a (reductive1) group G acting (algebraically) on
a vector space V by linear transformations. Understanding this very general setting is the purview
of invariant theory. As a simple, and very relevant running example, consider the following.

Example 1.1 (Running example). Consider G = SLn acting on n× n matrices (namely V = Cn2)
by left multiplication, i.e, the action of P ∈ SLn sends the matrix X to PX.

A group action partitions V into orbits: the orbit of v is the set of all points in V it can be moved
to by an element g ∈ G. An even more natural object in our setting is the orbit closure: all limit
points of an orbit2.

The null cone of a group action is the set of points v ∈ V whose orbit closure contains the origin,
namely the point 0. Null cones of group actions are central to invariant theory, and are interesting
algebraic objects to study in mathematics and physics. More recently, connections to fundamental
problems in computational complexity have surfaced. Diverse problems (see [GGOW16, BGO+18])
such as bipartite matching, equivalence of non-commutative rational expressions, tensor scaling and
quantum distillation, can each be formulated (for specific choices of G,V and an action) as a null
cone membership problem – given a point v ∈ V , decide if it is in the null cone. Note that in our
running example, i.e., Example 1.1, the null cone is precisely the set of singular matrices.

A closely related problem is the orbit closure intersection problem – given v, w ∈ V , decide if the
orbit closure of v and w intersect. The orbit closure intersection problem is a generalization of the
null cone membership problem, and this too has many connections with arithmetic complexity. For
example, the graph isomorphism problem can be phrased as an orbit closure intersection problem!
We refer to [Mul17] for more details on the aforementioned problems and their relevance in the
Geometric Complexity Theory (GCT) program, which is an algebro-geometric approach to the VP
vs VNP problem (an algebraic analog of P vs NP). Note that in Example 1.1, the orbit closure of
two matrices X and Y intersect precisely when det(X) = det(Y ).

In an exciting series of recent works, efficient algorithms for the null cone membership and orbit
closure intersection problems in various cases have been discovered, and moreover techniques have
developed that may allow significant generalization of their applicability [GGOW16, IQS18, FS13,
DM17b, DM18a, GGOW18, AZGL+18, BGO+18, BFG+18, Fra18, DM17a, DM18b]. Curiously,
Geometric Complexity Theory (morally) predicts efficient algorithms for null cone membership
problems in great generality (see [Mul17] for precise formulations), although establishing this re-
mains an elusive goal.

What is remarkable is the possibility that such efficient algorithms, through the work of [KI04],
may enable proving non-trivial lower bounds on computation, the major challenge of computational
complexity. Specifically, what is needed is a deterministic polynomial time algorithm for a problem
called Symbolic Determinant Identity Testing (SDIT)3 that is central to this work, and will be
defined soon. SDIT happens to be a membership problem in an algebraic subvariety, a context
generalizing null cones.

A subset S ⊆ V is called an algebraic subvariety4 (or simply a subvariety) if it is the zero locus of a
collection of polynomial functions on V . Many algorithmic problems can be phrased as “membership
in a subvariety”, and is non-trivial when the underlying set of polynomials is given implicitly or are

1A technical term that includes all classical groups.
2where limits can be equivalently taken in the Euclidean or Zariski topology
3A canonical version of the Polynomial Identity Testing (PIT) problem.
4We do not require irreducibility in our definition of varieties.
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difficult to compute. It is a fundamental result of invariant theory that every null cone is an
algebraic subvariety, a connection which goes through invariant polynomials of group actions. A
polynomial function f on V is called invariant if it is constant along orbits, i.e., f(gv) = f(v) for all
g ∈ G, v ∈ V . Invariant polynomials form a graded subring of C[V ], the ring of polynomial functions
on V . Mumford proved that the orbit closures of any two points v, w ∈ V intersect, if and only if
f(v) = f(w) for all invariant polynomials5, see [MFK94]. As a consequence, the null cone can also
be described as the zero locus of all (non-constant) homogenous invariant polynomials. Indeed, this
analytic-algebraic connection provides the path to structural and algorithmic understanding of the
null cone membership and orbit closure intersection problems via invariant theory.

Summarizing, if a subvariety S ⊆ V happens to be a null cone for some group action, then the
aforementioned algorithms can be used to decide “membership in S”, with the exciting possibility
that they could very well be efficient. Of course, not every subvariety is a null cone, which leads to
the following interesting problem:

Problem 1.2. Given a subvariety S ⊆ V , is it the null cone for the (algebraic) action of a (reductive)
group G on V ?

Remark 1.3. We specifically refer to S as a subvariety of V rather than just call it a variety for
the following reason. In the above problem, it is important that we view S as a subset of V . As
an abstract variety, a different embedding of S into another vector space could very well make it a
null cone.6 Our setting of a given embedding makes the problem well-defined.

We now make an important observation. If S is to be the null cone for the action of a group G,
then the group must “preserve” S, i.e., for all g ∈ G, we must have gS = S. We define the group
of symmetries to be the (largest) subgroup of GL(V ) consisting of all linear transformations that
preserve S. With reference to Example 1.1, one might ask which is the largest group of symmetries
in GLn2 which preserves the set n × n the singular matrices (which is defined by the zeros of the
single determinant polynomial). This question was resolved by Frobenius [Fro97] as we will later
see, and is a very special case of our main technical result.

So, the (hypothetical) acting group G must be a subgroup7 of the group of symmetries of S.
Roughly speaking, this provides an important “upper bound” to the groups that one must consider
while resolving Problem 1.2.

Problem 1.4. Given a subvariety S ⊆ V , compute its group of symmetries.

Needless to say, the important role of symmetries in mathematics in present just about every
branch, and exploiting symmetries is an immensely powerful tool. Specifically, the fact that the
determinant and permanent polynomials are defined by their symmetries form the starting point
to the GCT of Mulmuley and Sohoni [MS01, MS08] program mentioned earlier towards the VP
6= VNP conjecture. Computing the group of symmetries of an algebraic variety is an extremely
natural problem (even in the absence of Problem 1.2!), and may be useful for other purposes. We
now elaborate informally on the path we take to solve Problem 1.4, and another natural problem it
raises.

The group of symmetries of an algebraic subvariety S ⊆ V is always an algebraic subgroup of
GL(V ) (and hence a Lie subgroup). Suppose that H is an algebraic group that acts linearly on a

5Reductivity is essential for this.
6For example, if we consider the parabola described as the zero locus of y − x2 in C2, this is not a null cone

(because null cones are stable under scalar multiplication, but the parabola isn’t. However, as a variety, this is just
the affine line, which is definitely a null cone (for the action of C∗ on C by multiplication).

7Any group G acting on V gives a map ρ : G→ GL(V ). The null cone for G is the same as the null cone for ρ(G),
so we can always restrict ourselves to subgroups of GL(V ) when concerned about Problem 1.2. Moreover, note that
if G is reductive, so is ρ(G).
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vector space V . It is a fact that the null cone for the action of its identity component8 (denoted H◦)
is the same as the null cone for the action of H. Thus, for Problem 1.2, one might as well study the
connected group of symmetries, i.e., the identity component of the group of symmetries. Indeed, if
S is the null cone for the action of a reductive group G, then it is the null cone for the action of its
identity component G◦, which must be a subgroup of the connected group of symmetries. Thus, we
are led to problem below.

Problem 1.5. Given a subvariety S ⊆ V , compute its connected group of symmetries.

To understand that Problem 1.5 really is much easier than Problem 1.4, one needs to realize that
connected group of symmetries is a connected algebraic subgroup of GL(V ), and so in particular
is determined by its Lie algebra (which is a Lie subalgebra of the Lie algebra of GL(V )). Roughly
speaking, we will use this to “linearize” the problem.

Algebraic subvarieties are defined as the zero locus of a collection of polynomials. Suppose we
have a collection of homogeneous polynomials {fi : i ∈ I}, and let S be its zero locus. If the ring
of invariants for the action of some group G is precisely C[fi : i ∈ I], then S would be the null
cone (recall that the null cone can be seen as the zero locus of non-constant homogeneous invariant
polynomials). This brings us to another interesting problem, which can be seen as a scheme-theoretic
version of Problem 1.2

Problem 1.6. Given a collection of polynomials {fi : i ∈ I} on V , is there a group G acting on V
by linear transformations such that the ring of invariants is C[{fi : i ∈ I}].

Curiously, the above problem is in some sense is an inverse problem to the classical one in invariant
theory: there, given a group action on V , we seek its invariant polynomials, whereas here we are
given the polynomials, and seek the group which makes them all invariant.

Remark 1.7. Both Problem 1.4 and Problem 1.6 belong to a general class of problems called
linear preserver problems. We refer the reader to the survey [LP01] which contains in particular
some general techniques for approaching linear preserver problems. These techniques do not seem
to be sufficient for us.

Finally, let us mention that all the aforementioned problems are very natural, interesting in their
own right, and could potentially use tools from invariant theory, representation theory, Lie theory,
algebraic geometry, commutative algebra and computational complexity.

1.2. The algebraic variety SING and the computational problem SDIT. Having introduced
the problems of interest, let us introduce the subvariety which we will be the main focus of this
paper. Let Matn denote n× n matrices with entries in C. Let t1, . . . , tm be indeterminates, and let
C(t1, . . . , tm) denote the function field in m indeterminates. Define

SINGn,m ,

{
X = (X1, . . . , Xm) ∈ Matmn |

m∑
i=1

tiXi singular (over C(t1, . . . , tm))

}
.(1)

Note that SINGn,m ⊆ V = Cmn2 , given by the zero locus of all polynomials {det(c1X1 + c2X2 +
· · · + cmXm) : ci ∈ C}. While this is an uncountable set, one can easily make it finite. Another
important note is that the case m = 1 is the null cone for our simple running example (Example 1.1)
of the previous subsection!

The subvariety SINGn,m is of central importance in computational complexity. The membership
problem for SINGn,m (i.e., given X ∈ Matmn , decide if X ∈ SINGn,m) is often called Symbolic
Determinant Identity Testing (SDIT). This problem SDIT is also sometimes referred to as the

8The identity component is the connected component of H that contains the identity element. It is always an
algebraic subgroup.
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Edmonds’ problem, as Edmond’ paper [Edm67] first explicitly defined it and asked if it has a
polynomial time algorithm. Note that any fixed tuple X = (X1, . . . , Xm) ∈ SINGn,m if and only
if the symbolic determinant det(t1X1 + t2X2 + . . . tmXm) vanishes identically when viewed now
as a polynomial in the new variables t1, . . . , tm. This viewpoint immediately provides an efficient
probabilistic algorithm for the SDIT [Lov79]: given X, simply pick (appropriately) at random values
for the variables ti and evaluate the resulting numeric determinant.

The importance of determining the complexity of SDIT stems from several central results in arith-
metic complexity and beyond. First, Valiant’s completeness theorem for VP [Val79] implies that
SDIT captures the general problem of Polynomial Identity Testing (PIT) problem (see the survey
[SY09], for background and status of this problem, and more generally on arithmetic complexity).
An equivalent way of phrasing Valiant’s result is that SDIT is the word problem for C(t1, . . . , tm),
namely testing if a rational expression in C(t1, . . . , tm) is identically zero. A second, and far more
surprising result we already mentioned, of Kabanets and Impagliazzo (see [KI04]), shows that effi-
cient deterministic algorithms for PIT would imply circuit lower bounds, a holy grail of complexity
theory. SDIT also plays an important role in the GCT program, see [Mul17]. Finally, the structural
study of the variety SINGn,m, namely of singular spaces of matrices is a rich subject in linear algebra
and geometry (see e.g. [FR07, EH88, RW19, Mes85, Mes90, GM02]).

It is illustrative to compare with the non-commutative version of the above story, and we will do
so. Let t1, . . . , tm be now non-commuting indeterminates, and let C (< t1, . . . , tm>) denote the free
skew field9. Consider

NSINGn,m ,

{
X = (X1, . . . , Xm) ∈ Matmn |

∑
i

tiXi singular (over C (<t1, . . . , tm>) )

}
,

which is clearly a non-commutative analog of SINGn,m. Moreover, membership in NSINGn,m cap-
tures the word problem over the free skew field C (< t1, . . . , tm >) (often called non-commutative
rational identity testing (RIT)) in precisely the same manner as membership in SINGn,m captures
the word problem over the function field C(t1, . . . , tm).

The surprising fact is that membership in NSINGn,m does have polynomial time deterministic
algorithms, see [GGOW16, IQS18]. The main point to note is that the algorithms use crucially the
fact that NSINGn,m is a null cone! Indeed, it is the null cone for the so called left-right action of
SLn×SLn on Matmn which is defined by:

(P,Q) · (X1, . . . , Xm) = (PX1Q
t, PX2Q

t, . . . , PXmQ
t),

where Qt denotes the transpose of the matrix Q. In view of this, it is only natural to ask whether a
similar story can be used to give an efficient algorithm for membership in SINGn,m. This provides
the principal motivation for studying Problem 1.2.

For S = SINGn,m, in this paper, we will answer Problem 1.2 and Problem 1.4 (and hence also
Problem 1.5). Moreover, recall that SINGn,m is the zero locus of a natural collection of polynomials,
namely {det(

∑
i ciXi) : ci ∈ C}. We also give a negative answer to Problem 1.6 for this collection

of polynomials. We will now proceed to give precise statements.

1.3. Main results. We begin by stating the main result, i.e., a negative answer to Problem 1.2 for
SINGn,m.

9The free skew field is intuitively the natural non-commutative analog of C(t1, . . . , tm), namely may be viewed
as the field of fractions completing non-commutative polynomials. However, we note that its very existence, let
alone its construction is highly non-trivial, and was first established by Amitsur [Ami66] (see also [Coh95]). For one
illustration of the complexity of this field, it is easy to see that unlike in the commutative case, its elements cannot
be represented as ratios of polynomials (or any finite number of inversions - an important result of [Reu96]).
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Theorem 1.8. Let n,m ≥ 3. Let G be any reductive group acting algebraically on Matmn by linear
transformations. Then the null cone for the action of G is not equal to SINGn,m.

First, and foremost, let us observe that the condition n,m ≥ 3 cannot be removed or even
improved. Indeed, if n ≤ 2 or m ≤ 2, we have SINGn,m = NSINGn,m and hence it is a null cone!
Thus, the above theorem gives the strongest possible statement of this nature. The above theorem
follows from the following one, which has no restrictions on n and m.

Theorem 1.9. Let G be any reductive group acting algebraically on V = Matmn by linear transforma-
tions which preserve SINGn,m (i.e., g ·SINGn,m = SINGn,m for all g ∈ G). Let N = NG(V ) denote
the null cone for this action. If the null cone N ⊆ SINGn,m, then the null cone N ⊆ NSINGn,m.

Indeed, Theorem 1.8 follows from the above theorem as n,m ≥ 3 is precisely the condition needed
to ensure that NSINGn,m is a proper subset of SINGn,m.

A crucial component in the proof of the above theorem is the computation of the group of
symmetries for SINGn,m. The importance of this computation is well beyond the context of this
paper. For example, it should serve as the starting point for any approach to SDIT that aims at
utilizing symmetry. Let us formally define the group of symmetries for a subvariety.

Definition 1.10 (Group of symmetries). For a subvariety S ⊆ V , we define its group of symmetries

GS = {g ∈ GL(V ) | gS = S}.

The group of symmetries GS is always an algebraic subgroup of GL(V ). We call its identity com-
ponent (denoted G◦S) the connected group of symmetries.

In order to compute the group of symmetries for SINGn,m, we first compute the connected group of
symmetries. Viewing Matmn as Cm⊗Cn⊗Cn elucidates a natural linear action of GLm×GLn×GLn
on Matmn . Concretely, the action is given by the formula:

(P,Q,R) · (X1, . . . , Xm) =

 m∑
j=1

p1jQXjR
−1,

m∑
j=1

p2jQXjR
−1, . . . ,

m∑
j=1

pnjQXjR
−1

 ,

where pij denotes the (i, j)th entry of P . A linear action is simply a representation, so we have a
map GLm×GLn×GLn → GL(Matmn ). We will call the image of this map Gn,m.

Theorem 1.11. Let S = SINGn,m ⊆ V = Matmn . Then the connected group of symmetries G◦S is
the subgroup Gn,m.

We will discuss in the subsequent section, the strategy of proof in more detail for the above
theorem. However, it is worth mentioning that it is essentially a linear algebraic computation on
the level of Lie algebras, and is applicable in more generality. At this juncture, we note a classical
result of Frobenius that addresses the special case of m = 1 (see [Fro97, Die49]), which deals with
our simple running example earlier. This result is essential for our proof of the above theorem for
any value of m. We will also give our own proof of this result as it allows us to illustrate our proof
strategy in the simple case.

Theorem 1.12 (Frobenius). Let S = SINGn,1 ⊆ V = Matn. The group of symmetries GS consists
of linear transformations of the form X 7→ PXQ or of the form X 7→ PXtQ where P,Q ∈ SLn.

First, note that the above result computes the entire group of symmetries! In the general case, let
us first note that apriori there could be an incredible number of groups whose identity component
is Gn,m. However, it turns out that they are actually manageable, and with some fairly elementary
results on semisimple Lie algebras, we can determine the entire group of symmetries for any m.
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Theorem 1.13. Let S = SINGn,m ⊆ V = Matmn . Let τ denote the linear transformation that
sends X = (X1, . . . , Xm) 7→ (Xt

1, . . . , X
t
m). Then the group of symmetries GS = Gn,m ∪Gn,m · τ =

Gn,m o Z/2.

The key idea here is that the entire group of symmetries must normalize the connected group of
symmetries, i.e., Gn,m. So, we compute the normalizer of Gn,m. To do so, we utilize heavily that
the group Gn,m is reductive, and use ad-hoc arguments that are particularly suited to this special
case. A slightly more abstract approach via automorphisms of Dynkin diagrams such as the one
in [Gur94] would work in this case (see also [Lan17]). We do not quite know a general strategy to
bridge the gap between the connected group of symmetries and the entire group of symmetries. We
also note that the same strategy yields the group of symmetries for NSINGn,m

Theorem 1.14. Let S = NSINGn,m ⊆ Matn. Then the group of symmetries GS = Gn,m oZ/2 (as
defined in the above theorem).

Once we compute the group of symmetries, the rest of the argument relies on an understanding
of the Hilbert–Mumford criterion (see Theorem 2.11) which tells us that the null cone is a union
of G-orbits of coordinate subspaces (linear subspaces that are defined by the vanishing of a subset
of coordinates, see Definition 2.9). In particular, we will show that the union of all the coordinate
subspaces contained in SINGn,m moved around by the action of its group of symmetries does not
cover all of SINGn,m, which will give the contradiction. We explain this idea in more detail in
Section 2.3.

Remark 1.15 (Positive characteristic). Our choice in working with C as a ground field is essentially
for simplicity of the exposition and proofs. All our results above (specifically Theorems 1.8, 1.9, 1.11,
1.12, 1.13 and 1.14) hold for every algebraically closed fields of every characteristic. In Appendix C,
we discuss the issues that arise in positive characteristic and the appropriate modifications needed
to deal with them.

The subvariety SINGn,m is the zero locus of some very structured polynomials. Observe that
for any ci ∈ C, the polynomial det(

∑
i ciXi) vanishes on SINGn,m. It is easy to see that the zero

locus of the collection of all det(
∑

i ciXi) (for all choices of ci) is precisely SINGn,m
10. We prove a

negative result for Problem 1.6 for this collection of polynomials.

Theorem 1.16. Suppose n,m ≥ 3. Then the subring R = C[{det(
∑

i ciXi) : ci ∈ C}] ⊆ C[Matmn ]
is not the invariant ring for any linear action of any group G on Matmn .

If we restrict to reductive groups, then the above theorem is a simple consequence of Theorem 1.8
and the alternate definition of null cone as the zero locus of non-constant homogenous invariants.
However, we use a different argument that works for any group, irrespective of reductivity.

1.4. Organization. In Section 2, we recall the basic notions from invariant theory and null cones
as well as the crucial Hilbert–Mumford criterion. It also contains a sketch of the proof strategy for
proving Theorem 1.8. In Section 3, we present the theoretical statements that we will use in the
computation of the group of symmetries, and in particular, we describe the role of Lie algebras. This
is followed by Section 4, which contains an explicit description of the action of the Lie algebra on
polynomials, which is vital for our computations. The ideal of polynomials vanishing on SINGn,m

is discussed in Section 5, with proofs pushed into the appendix. The group of symmetries for
SINGn,1 (i.e., the important special case of m = 1) is computed in Section 6. While the statement
was already known (due to Frobenius), we present a different proof that serves to illustrate our
strategy in the general case. Section 7 is a discussion of a particular multi-grading of the set of

10It seems plausible that these polynomials generate the ideal of polynomials that vanish on SINGn,m, but such
questions can often be quite subtle to prove.
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matrix-tuples, needed for computations. Section 8 tackles an intermediate problem, for a simpler
group action. The group of symmetries for SINGn,m and NSINGn,m are computed in Section 9,
proving Theorem 1.13 and Theorem 1.14. Section 10 contains the proofs of Theorem 1.8, our main
negative result, and Theorem 1.9 which implies it. In Section 11, we prove Theorem 1.16. Finally,
in Section 12, we discuss some open problems and directions for future research.

In Appendix A, we recall the necessary algebraic geometry and Lie theory to prove the results in
Section 3. The results stated in Section 5 are proved in Appendix B with the help of representation
theory. Finally in Appendix C, we discuss the modifications needed to extend the results to positive
characteristic.

Acknowledgements. We would like to especially thank J. M. Landsberg for suggesting that
we compute the group of symmetries, and Gurbir Dhillon for helping us with the Lie theoretic
statements needed for the computation. In addition, we also thank Ronno Das, Harm Derksen,
Ankit Garg, Robert Guralnick, Alexander Kleschev, Thomas Lam, Daniel Litt, Rafael Oliveira,
Gopal Prasad, Akash Sengupta, Rahul Singh, Yuval Wigderson, John Wiltshire-Gordon and Jakub
Witaszek for helpful discussions.

2. Invariant theory and null cones

We will now recall the basic notions in invariant theory that we need. In particular, we will
need the notions of rational group actions (rational representations), their invariant polynomials,
null cones and their basic properties. Most of this material is well known and can be found in a
standard text such as [DK15]. We will try to remain as elementary as possible. We remind the
reader again that our underlying field is C.

A linear algebraic group G is a subgroup of GLn (for some n) that is also an algebraic subvariety11.
In this paper, we will drop the prefix linear and simply refer to these as algebraic groups for
brevity. The connected component of an algebraic group G containing the identity element is itself
a connected algebraic group, and we call this the identity component of G, and denote it by G◦.

For a linear algebraic group G ⊆ GLn, an m-dimensional representation is simply a map ρ : G→
GLm. We want to consider “algebraic representations”, so we want the map ρ to be a morphism of
algebraic varieties. So, for X = (xij) ∈ G ⊆ GLn, each coordinate of them×m matrix ρ(X) ∈ GLm
is given as a rational function (ratio of polynomials) in the xij ’s.12 This is why such representations
are called rational representations. The definition itself is of course quite straightforward.

Definition 2.1 (Rational representation). A rational representation V of an algebraic group G is
a morphism of algebraic groups G→ GL(V ) (where V is a vector space over C). By a morphism of
algebraic groups, we simply mean a group homomorphism that is also a morphism of varieties.

A morphism G→ GL(V ) can also be interpreted as a morphism G× V → V , and we will write
g · v or simply gv to denote the image of (g, v) under this map. The orbit of a point v ∈ V is G · v =
{gv | g ∈ G}. All representations considered in this paper will be rational. Subrepresentations,
direct sums etc are defined in the standard way. A representation is called irreducible if it has no
subrepresentations.

11An equivalent definition is that a linear algebraic group G is an (affine) algebraic variety G which is also a
group such that the multiplication map m : G × G → G and an inverse map i : G → G are morphisms of algebraic
varieties. While this definition seems more general, it is a standard result that both definitions agree. For this reason,
sometimes linear algebraic groups are also called affine algebraic groups.

12Note that morphism ρ needs to be a regular morphism (and not a rational morphism) as it must be defined on
all of G. In particular even though ρ(X) is given by a matrix of rational functions, all these rational functions have to
be defined on G ⊆ GLn, so their locus of indeterminacy must be away from G. A canonical example is the function
1

det
which is an honest ratio of polynomials that will be defined on G (and indeed all of GLn). Also observe that 1

det

is a regular function on GLn and hence on G as well.
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Remark 2.2. For V to be a rational representation of an algebraic group G simply means that G
acts algebraically on V by linear transformations. This is precisely the premise under which we define
a null cone, and hence precisely the hypothesis in the main results (for example in Theorem 1.8).

For a vector space V , we denote by C[V ] the ring of polynomial functions on V (a.k.a. the
coordinate ring of V ). Concretely, if we have a basis e1, . . . , en for V , and x1, . . . , xn denote the
corresponding coordinate functions, then C[V ] = C[x1, . . . , xn] is the polynomial ring in dimV = n
variables.

Definition 2.3 (Invariant function). For a representation V of a group G, a function f ∈ C[V ] is
invariant (for the action of G) if it is constant along orbits, i.e., f(gv) = f(v) for all v ∈ V and
g ∈ G.

Invariant functions form a subring of the coordinate ring, which we will call the invariant ring or
ring of invariants.

Definition 2.4 (Invariant ring). For a representation V of a group G, we denote by C[V ]G, the
ring of invariants, i.e.,

C[V ]G = {f ∈ C[V ] | f(gv) = f(v) ∀g ∈ G, v ∈ V }.

Invariant rings are graded subrings of the polynomial ring C[V ], i.e., C[V ]G =
⊕

d∈NC[V ]Gd .
There are several equivalent definitions of a reductive group, particularly in characteristic zero.

We pick a definition that would resonate with anyone who has had experience with representations
of finite groups. In particular, we want to point to the fundamental result called Maschke’s theorem,
which says that for a finite group G (if characteristic is zero or doesn’t divide |G|), any representation
can be written as a direct sum of irreducible representations (a.k.a. complete reducibility). This
property is very useful because in order to study any representation of G, one can often reduce
it to the study of the irreducible representations. Algebraic groups with this property are called
reductive groups.

Definition 2.5 (Reductive group). An algebraic group G is called reductive if any rational rep-
resentation V of G is completely reducible, i.e., it can be written as a direct sum of irreducible
representations.

Examples of reductive groups include all finite groups, tori (i.e., (C∗)n), and all classical groups
such as GLn, SLn, SOn, Spn etc.

Definition 2.6 (Null cone). Let V be a rational representation of a reductive group G. Then the
null cone NG(V ) (or simply NG or even N when there is no confusion) is defined as the set of points
in V whose orbit closure13 contains zero, i.e.,

N = NG(V ) = {v ∈ V | 0 ∈ G · v},

where G · v denotes the closure of G · v, the orbit of v.

The above definition of the null cone is analytic in nature, and as defined seems to be a feature
of the geometry of orbits and their closures. However, there is an equivalent algebraic description
via invariant polynomials that we state below due to Mumford (and known already to Hilbert
for G = SLn). This interplay between the analytic and algebraic viewpoints has already proved
extremely valuable (see for e.g. [GGOW16, BGO+18, BFG+18]), and perhaps yet to be exploited
to its full capacity.

13The orbit closure can be taken in the Zariski topology or the analytic topology, since they are both the same.
9



Theorem 2.7 (Mumford). Let V be a rational representation of a reductive group G. Then, the
null cone

N = NG(V ) = zero locus of
∞⋃
d=1

C[V ]Gd .

For a proof of the above result, we refer the reader to [DK15, Section 2.5].

2.1. Null cones for tori. The group C∗ = GL1(C) is clearly an algebraic group, which is moreover
abelian. A direct product T = (C∗)n is called a (complex) torus. Any connected abelian reductive
group must a torus! Needless to say (non-abelian) reductive groups can of course be far more
complicated than tori. However, an understanding of the null cone for tori is key to understanding
the null cones for more general reductive groups, and this is captured by the celebrated Hilbert–
Mumford criterion that we will discuss in the next subsection. The null cone in the “easy” abelian
case of the torus has a simple description as a union of linear subspaces of a specific form (this is
related to the linear programming problem in complexity).

For this subsection, let T = (C∗)n be a (complex) torus. Let X (T ) denote all the characters of
T , i.e., all algebraic group homomorphisms T → C∗. One can identify X (T ) = Zn as follows. For
λ = (λ1, . . . , λn) ∈ Zn, we have the corresponding character (also denoted λ by abuse of notation)
λ : T → C∗ defined by λ(t1, . . . , tn) =

∏n
i=1 t

λi
i . It is a well known result that these are all the

algebraic characters of T .
Suppose V is a rational representation of T . Then there is a weight space decomposition

V =
⊕

λ∈X (T )

Vλ,

where for any λ ∈ X (T ), the weight space Vλ = {v ∈ V | t · v = λ(t)v}. One should think of this as
a simultaneous eigenspace decomposition for the action of T . Indeed, the weight space Vλ consists
of eigenvectors for the action of every t ∈ T , although each t will act by a different eigenvalue,
i.e., λ(t). Elements of Vλ are called weight vectors of weight λ. Let e1, . . . , em denote a basis of V
consisting of weight vectors (thus identifying V with Cm), and let the weight of ei be wi ∈ Zn. Let
x1, . . . , xm denote the corresponding coordinates.

Remark 2.8. A monomial
∏m
i=1 x

ai
i is an invariant monomial if and only if

∑
i ai ·wi = 0 (note that

ai ∈ N and wi ∈ Zn, so this is an equality in Zn). As a vector space over C, the ring of invariants
C[V ]T is spanned by such invariant monomials. In particular, the null cone is precisely the zero
locus of such invariant monomials (excluding the trivial monomial

∏m
i=1 x

0
i which is the constant

function 1).

Definition 2.9 (Coordinate subspace). For a subset I ⊆ [m], we define LI to be the linear subspace
of Cm that is defined as the zero locus of {xj : j /∈ I}. In other words, LI consists of all the vectors
in Cm whose support (i.e., the set of non-zero coordinates) is a subset of I. We will call any subspace
of the form LI a coordinate subspace.

For a subset I ⊆ [m], consider the set of points WI = {wi : i ∈ I} ⊆ Zn ⊆ Qn ⊆ Rn. Let ∆I

denote the convex hull of WI . The following description of the null cone is the main takeaway from
this subsection. We provide a proof for completeness.

Proposition 2.10. Let V be an m-dimensional rational representation of the torus T . Identify
V = Cm using a basis of weight vectors. Using the notation above, the null cone

NT (V ) =
⋃

I⊆[m],0/∈∆I

LI

10



Proof. First, let us show that for each I such that 0 /∈ ∆I , LI ⊆ NT (V ). By Remark 2.8 and
Theorem 2.7, it suffices to show that every (non-constant) invariant monomial vanishes on LI . Take
such an invariant monomial m =

∏m
i=1 x

ai
i . If aj > 0 for some j /∈ I, then clearly m vanishes on

LI . Otherwise m =
∏
i∈I x

ai
i , so for m to be invariant,

∑
i∈I aiwi = 0, but this means that 0 ∈ ∆I ,

which is a contradiction. Thus every non-constant invariant monomial vanishes on LI . Thus, we
have shown ⊇.

For the reverse direction, it suffices to show that v /∈ R.H.S. implies v /∈ NT (V ). To this end, let
v /∈ R.H.S.. Let J be the support of v (i.e., the set of all non-zero coordinates). Clearly 0 ∈ ∆J .
Thus, we have 0 =

∑
i∈J aiwi = 0 for some ai > 0 and

∑
i ai = 1. If the ai’s were (non-negative)

integers, then
∏
i∈J x

ai
i would be an invariant monomial that doesn’t vanish at v, and we would be

done. Even if the ai’s are rational numbers, by removing denominators, the argument would still
go through. However, we only know that ai’s are real numbers, and we will need a little bit of work
to ensure that we can get a non-negative integer linear combination of the wi’s to add to zero.

W.l.o.g., we can assume that ai > 0 for all i ∈ J (else, replace J with {i ∈ J |ai > 0} and proceed
with the argument). Let K = {(pi)i∈J |

∑
i∈J piwi = 0} ⊆ RJ . Then K is the kernel of an n× |J |

matrix whose columns are wi : i ∈ J . Since this matrix has rational entries, there is a basis of
K with rational entries, i.e., b1, . . . , br ∈ K ∩ QJ that span K (as an R-vector space). Now, since
(ai)i∈J ∈ K, we can write (ai)i∈J =

∑r
t=1 λtbt for some λt ∈ R. Since

∑
t λtbt = (ai)i∈J ∈ RJ>0, we

deduce by continuity that there exists ε > 0 such that
∑

t µtbt ∈ RJ>0 for all µi such that |µi−λi| < ε.
Let µi be rational numbers such that |µi − λi| < ε. Then let (ci)i∈J =

∑
i µibi ∈ K ∩ RJ>0, but

clearly ci are rational, so (ci)i∈J ∈ K ∩ QJ
>0. Thus

∑
i ciwi = 0 and ci ∈ Q. For some D ∈ N, we

have Dcj ∈ N for all j. Then m =
∏
i∈J x

Dcj
i is an invariant monomial that does not vanish on v,

so v /∈ NT (V ). �

2.2. Null cones for reductive groups: Hilbert–Mumford criterion. Let G be a reductive
group, and let T be a maximal torus14, i.e., a subgroup of G that is a torus, and not contained
in a larger torus. The celebrated result called the Hilbert–Mumford criterion that we state below
essentially tells us that elements in the null cone for the action of G are precisely those which can
be moved (by applying an element of G) into the null cone for the torus T . In particular, this is one
way to see that the null cone for the group G is the same as the null cone for its identity component
G◦.

The following statement can be found in [MFK94] (see also [DK15, Theorem 2.5.3]).

Theorem 2.11 (Hilbert–Mumford criterion). Let V be a rational representation of a reductive
group G. Then

NG(V ) = G · NT (V ).

The Hilbert–Mumford criterion is sometimes stated in more general fashion, which says that
v ∈ V is in the null cone for G if and only if there is a 1-parameter subgroup of G that drives
it to zero. To see that this is equivalent to the version we state above, one needs to understand
two things. The first is that any 1-parameter subgroup is contained in some maximal torus, and
all maximal tori are conjugate. The second is an understanding of the 1-parameter subgroups of
a torus, which will show that our description of the null cone for tori agrees with the criterion in
terms of 1-parameter subgroups (this is not hard).

2.3. Proof idea of Theorem 1.9. Let us briefly give the idea behind the proof of Theorem 1.9
(from which Theorem 1.8 follows easily). Indeed, suppose there is a reductive group G (with
maximal torus T ) acting on V = Matmn preserving SINGn,m such that the null cone is contained

14All maximal tori are conjugate. Moreover, the union of all maximal tori is dense in the identity component of
G.
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in SINGn,m. Then the null cone for the torus NT (V ) is also a subset of SINGn,m. We know
from the above discussion that NT (V ) is a union of coordinate subspaces. We will show that any
coordinate subspace contained in SINGn,m must already be contained in NSINGn,m – we will see
this in Section 10. Thus, whatever NT (V ) may be, it must be contained in NSINGn,m.

This is the point where an understanding the group of symmetries is really needed. To be
precise, the crucial result that drives the following argument is that the group of symmetries for
SINGn,m is the same as the group of symmetries for NSINGn,m! So, in particular, since G preserves
SINGn,m, it also preserves NSINGn,m. Thus, we have G · NT (V ) ⊆ NSINGn,m. By the Hilbert–
Mumford criterion (Theorem 2.11 above), we get that NG(V ) = G · NT (V ) ⊆ NSINGn,m which is
the required conclusion for Theorem 1.9.

3. Computing the group of symmetries via polynomials

In this section, we will explain the important statements that go into the calculation of the group
of symmetries. The proofs will be postponed to an appendix so as to not interrupt the flow of the
paper. The main purpose of this section is however to highlight the fact one can determine the
connected group of symmetries by a linear algebraic computation (by passing to Lie algebras), and
this works in great generality. Later on, we discuss a technique to determine the entire group of
symmetries, but this works only in a more limited setting (which of course includes SINGn,m).

Given a subset S ⊆ V , we define

IS = {f ∈ C[V ] | f(s) = 0 ∀s ∈ S},

which is called the ideal of polynomials vanishing on S. about S can almost always be reformulated
in terms of questions on IS . The first observation is that for a group G acting (algebraically) on V ,
there is a (natural) induced action of G on C[V ]. To understand this action , we need to describe
for g ∈ G and a polynomial function f ∈ C[V ], what the resulting polynomial function g · f is.
To describe a polynomial function, one can simply give its evaluation on all points of V . The
polynomial function g · f is defined by

(g · f)(v) = f(g−1v)

There are other ways to describe this action, one of them being that we identify C[V ] with the
symmetric algebra over the dual space V ∗. This point of view is not needed here, but will be helpful
in a later technical section. For now, we note some key features. The most important feature is
that deg(f) = deg(g · f) for any g ∈ G and any (homogenous) f ∈ C[V ]. Hence, the linear subspace
C[V ]a consisting of homogenous polynomials of degree a is a G-stable subspace of C[V ].

When S is a cone (i.e., λ ∈ C, s ∈ S =⇒ λs ∈ S), then IS is graded, i.e., IS = ⊕a∈N(IS)a, where
(IS)a denotes the polynomials in I that are homogenous of degree a.

Lemma 3.1. Suppose S ⊆ V is a cone, and let a ∈ N. Then

GS ⊆ {g ∈ GL(V ) | g(IS)a ⊆ (IS)a}.

Further, if the zero locus of (IS)a is equal to S, then we have equality.

The key reason behind restricting ourselves to polynomials of a certain degree is to work with
finite dimensional vector spaces rather than infinite dimensional ones.

Algebraic sets (in particular cones), are often described as the zero locus of a collection of (ho-
mogenous) polynomials {fi : i ∈ I}. While it is difficult to compute a set of generators for the
ideal IS , the degrees of {fi : i ∈ I} can help us find a suitable a to apply the above lemma (indeed
the least common multiple of degrees of fi will suffice, but in specific cases, one can probably do
much better). It is however another task to compute all the homogenous polynomials of a certain
degree that vanish on S. In any specific case, this may be manageable, but we do not know of any
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general strategy. For the case of SINGn,m, we will manage this (in a later section) with the help of
representation theory of GLm×GLn×GLn.

Our technique to compute the group of symmetries GS has two parts to it. The first is to determine
the connected group of symmetries G◦S , i.e., the identity component of the group of symmetries –
this will be done by appealing to the theory of Lie algebras, which reduces the problem to linear
algebra. The second is to determine the component group GS/G◦S , which is always a finite group.

3.1. Connected group of symmetries via Lie algebras. In this section, we discuss the first
part of our technique, i.e., how to determine the connected group of symmetries. The first obser-
vation (and easy to see) is that the group of symmetries of an algebraic subset S ⊆ V is a Zariski
closed subgroup of GL(V ), and so is an algebraic subgroup of GL(V ) (and hence a Lie group).
Consequently, the connected group of symmetries is a connected algebraic group (and hence con-
nected Lie subgroup). Connected Lie subgroups of GL(V ) are in 1 − 1 correspondence with Lie
subalgebras of gl(V ), the Lie algebra of GL(V )15. Thus, to determine the connected group of sym-
metries G◦S , it suffices to determine its Lie algebra (denoted gS), which we will call the Lie algebra
of symmetries. We should point out here that in general neither {M ∈ gl(V ) | M · S = S} nor
{M ∈ gl(V ) | M · S ⊆ S} is equal to gS . However, we have the following result:

Proposition 3.2. Let S ⊆ V be a cone. Then for any a ∈ N, the Lie algebra of symmetries

gS ⊆ {M ∈ gl(V ) | M · (IS)a ⊆ (IS)a}.
Finally, if the zero locus of (IS)a is precisely the cone S, then we have equality.

In the appendix, we give a gentle and quick introduction to Lie algebras, and prove the propo-
sition. It is however imperative for the reader to understand the action of the Lie algebra gl(V )
on polynomials in C[V ]a to be able to use the above proposition as a computational tool. For this
purpose, in the next section, we describe this action explicitly.

Notation 3.3. For algebraic groupsG,H, . . . , we will denote their Lie algebras by Lie(G),Lie(H), . . .
or by the corresponding gothic letters g, h, . . . (to avoid cumbersome notation).

3.2. Component group. We have already discussed above how to compute the connected group
of symmetries G◦S for an algebraic subset S ⊆ V . To compute the entire group of symmetries GS , we
observe that GS is an algebraic subgroup of GL(V ) whose identity component is G◦S . One deduces
that GS must be a subgroup of the normalizer of G◦S . In the event that G◦S is a reductive group and
acts irreducibly on V , its normalizer will be a finite extension (see for e.g. [Gur94])16. In particular
its normalizer is also an algebraic group whose identity component is G◦S . So, GS is a union of some
of the components of the normalizer of G◦S , and we just have to identity which ones.

4. Explicit description of the Lie algebra action on polynomials

For the technical aspects of the computations we do, it is absolutely essential to understand the
action of the Lie algebras on polynomial functions. Let V be a vector space with basis e1, . . . , en,
and let the corresponding coordinates functions be denoted x1, . . . , xn. Using the basis, we identify
V = Cn, C[V ] = C[x1, . . . , xn], GL(V ) = GLn and gl(V ) = Matn.

Let Eij denote the elementary matrix with a 1 in (i, j)th entry and 0’s everywhere else. As a
linear transformation, Eij maps ej to ei and kills ek for k 6= j. The matrices {Eij}1≤i,j≤n form a
basis for Matn. We will describe the action of Eij ’s, and then extend by linearity to understand the

15This is a famous result due to Chevalley, and is often called the subgroups-subalgebras correspondence
16One way to compute the normalizer in this case is by understanding the automorphisms of the Dynkin diagram,

see [Gur94]. However, we will give more concrete arguments as many of our readers may not possess an in depth
knowledge of the theory of semisimple algebras.
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action of gl(V ). The matrix Eij acts as the derivation −xj∂i, where ∂i denotes the partial derivative
with respect to xi. In other words, for any f ∈ C[V ], we have

Eij · f = −xj∂if
To write it all out explicitly, a matrix M ∈ gl(V ) = Matn acts on a polynomial f ∈ C[V ] =

C[x1, . . . , xn] by the following formula:

M · f =

− ∑
1≤i,j≤n

mijxj∂i

 f,

where mij denotes the (i, j)th entry of the matrix M . Also note that we can write M =∑
i,jmijEij , so another point of view is that mij are the coordinates of the matrix M with re-

spect to the (standard) basis {Eij}.

4.1. Twisting by Cartan involution. The action of the Lie algebra on polynomial functions is
annoying due to the negative signs and these will be cumbersome to keep track of it in computation.
To make the computations less confusing and more intuitive, we twist the action. This is done with
the help of the Cartan involution.

Definition 4.1 (Cartan involution). The Cartan involution Θ : gln → gln is the composition of
negation and transpose, i.e.,

Θ(X) = −Xt.

The Cartan involution is an automorphism of Lie algebras.

The main thing to observe about the map Θ is that it is an involution, i.e., Θ ◦Θ is the identity
map.

Definition 4.2 (Twisted action). For M ∈ gln, we define an action of M on C[V ] = C[x1, . . . , xn]
by

M ? f = Θ(M) · f.
In particular, we have

Eij ? f = xi∂jf,

and hence
M ? f = (

∑
i,j

mijxi∂j)f

The result on computing the Lie algebra of symmetries (i.e., Proposition 3.2) can be reformulated
in terms of the twisted action:

Lemma 4.3. Let S ⊆ V be a cone. Then for any a ∈ N, we have

gS ⊆ {Θ(M) | M ? (IS)a ⊆ (IS)a} = Θ{M | M ? (IS)a ⊆ (IS)a}.
In the above, we have equality if the zero locus of (IS)a is precisely S.

5. Vanishing ideal of singular tuples of matrices

In order to apply the ideas of Section 3 to computing the Lie algebra of symmetries for S, we
need to understand the ideal IS . We will focus on the case of S = SINGn,m. For this, one needs the
representation theory of the general linear group (highest weight vectors, Cauchy formulas, Schur
functors) as well as an understanding of the invariants in the left-right action of SLn×SLn. The
proofs are ad-hoc, and suited precisely to the case of SINGn,m. It is highly unlikely that these ideas
can be generalized to give results for other choices of S. For all these reasons, we postpone the
proofs to an appendix.
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In the case of S = SINGn,m, we do not know how to determine the entire ideal IS . However, we
can determine it upto degree n, which turns out to suffice for our purposes.

Proposition 5.1. Let S = SINGn,m ⊆ V = Matmn , and let IS ⊆ C[Matmn ] be the ideal of polynomial
functions that vanish on S. Then,

(1) IS is graded;
(2) (IS)a is empty if a < n;
(3) (IS)n = span(det(

∑
i ciXi) : ci ∈ C).

The significance of the above result is demonstrated by the following statement:

Corollary 5.2. Let S = SINGn,m ⊆ V = Matmn . Then

GS = {g ∈ GL(V ) | g · (IS)n ⊆ (IS)n},
and hence

gS = {M ∈ gl(V ) |M · (IS)n ⊆ (IS)n}.

Proof. This follows from Lemma 3.1, Proposition 3.2 and the above proposition since the zero locus
of (IS)n is precisely SINGn,m �

The latter part of the corollary is the one that is extremely useful because now the computation
of gS is feasible. In principle, for a fixed n and m, one could run an explicit computer algorithm to
compute gS . However, we will actually be able to compute gS for all n,m, and for this, we will need
to do the linear algebra by hand. To do so, we will (repeatedly) exploit the numerous symmetries
and multilinearity of the determinant polynomial.

6. Symmetries of singular matrices

In this section we give a proof of Frobenius’ result, i.e., Theorem 1.12 which is the important
case of m = 1 in Theorem 1.13. The technique we use is different from the existing proofs in
[Fro97, Die49]. First, we use the the previous sections to write the computation of the Lie algebra
of symmetries as a linear algebraic computation. Next, we define Kronecker product of matrices,
and then describe the twisted action of gl(Matn). Then, we recall a few facts on the Symmetric
group, and finally give the explicit computations to determine the Lie algebra of symmetries, which
suffices to determine the connected group of symmetries. Finally, we compute the entire group of
symmetries.

For this section, let S = SINGn,1 = {X ∈ Matn | det(X) = 0} ⊆ V = Matn. For (P,Q) ∈
GLn×GLn, consider the linear transformation X 7→ PXQt. The set of all such linear transforma-
tions is the group Gn,1 (as defined in Theorem 1.13). We will write gn,1 for the Lie algebra of Gn,1.
In this section, we will first prove:

Proposition 6.1. Let S = SINGn,1 ⊆ V = Matn. Then, we have G◦S = Gn,1 and hence gS = gn,1.

Let Eij denote the n × n matrix with a 1 in its (i, j)th spot and 0’s everywhere else. Then
{Eij}1≤i,j≤n form a basis for V = Matn. The Lie algebra gl(V ) = Matn2 can be identified canoni-
cally with End(V ), the space of linear transformations from V to V .

Let us give a description of gn,1. We have

gn,1 = {X 7→MX +XN | M,N ∈ Matn} ⊆ gl(V ) = End(V )}.
The Lie algebra of symmetries consists of precisely those elements of gl(V ) for whose action the

determinant polynomial is an eigenvector.

Lemma 6.2. The Lie algebra of symmetries

gS = Θ({M ∈ gl(V ) | M ? det = c · det for some c ∈ C})
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Proof. This follows from Proposition 5.1, Corollary 5.2 and Lemma 4.3. �

To make the necessary computations, we need to understand the action (or rather the twisted
action) of gl(Matn) on polynomials in C[Matn] explicitly. Prior to that, we recall the notion of
Kronecker product of matrices.

6.1. Kronecker product of matrices. For A = (aij) ∈ Matn and B = (bij) ∈ Matn, we define
the Kronecker (or tensor) product

A⊗B =


a11B a12B . . . a1nB

a21B
. . . . . .

...
...

. . . . . .
...

an1B . . . . . . annB

 ∈ Matn2 .

Using the Kronecker product, we will identify Matn2 = Matn⊗Matn. To do so, we will first
index the rows and columns by [n]× [n] in lexicographic order (rather than [n2]). Thus a basis for
Matn2 is given by {Eij,kl | ij, kl ∈ [n]× [n]}. Note that we have the intuitive equality

Eij ⊗ Epq = Eip,jq.

6.2. Twisted action of gl(Matn) on C[Matn]. Recall that the (standard) basis for V = Matn is
{Eij}, and let {xij} denote the corresponding coordinate functions. Note that V is n2-dimensional.
The Lie algebra gl(V ) = gl(Matn) can be identified with Matn2 , to be viewed as Matn⊗Matn, as
described above. Observe that we can think of an n2 × n2 matrix as an n× n block matrix whose
blocks are also of size n× n. Thus for any M ∈ gl(V ), we have

M =

M11 . . . M1n
...

. . .
...

Mn1 . . . Mnn

 ,

where each Mij is an n× n matrix. Note that writing M =
∑

i,j Eij ⊗Mij also defines Mij .
The matrix Eij⊗Epq = Eip,jq ∈ Matn2 = gl(Matn) acts (twisted action) on polynomial functions

via the derivation xip∂jq, i.e., for f ∈ C[Matn], we have

(2) Eip,jq ? f = xip∂jqf.

There is an Nn-grading on C[V ] = C[xij ] given by setting deg(xij) = δi := (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . , 0) ∈

Nn. We have the decomposition
C[V ] =

⊕
d∈Nn

C[V ]d,

where C[V ]d denotes the (multi)-homogeneous polynomials of degree d. The polynomial det =∑
σ∈Sn

∏n
i=1 xiσ(i) has degree (1, 1, . . . , 1). We make a crucial observation

Remark 6.3. Let us understand the action of the Lie algebra with respect to this multi-degree. The
twisted action of the matrix Eip,jq is by the derivation xip∂jq. Thus, Eip,jq : C[V ]d → C[V ]d−δj+δi .

Definition 6.4 (Grading on gl(Matn)). We give a grading on the Lie algebra gl(Matn) by setting
deg(Eip,jq) = δi − δj . We have

gl(Matn) = Matn2 = gl(Matn)0

⊕
i 6=j

gl(Matn)δi−δj .
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For any M ∈ Matn2 , we write M =
∑

i,j Eij ⊗Mij for matrices Mij ∈ Matn as above. Then
the degree 0 part is

∑
iEii ⊗Mii, and for i 6= j, Eij ⊗Mij is the degree δi − δj part. Thus, the

decomposition of M into homogeneous components is

M = (
∑
i

Eii ⊗Mii)
⊕
i 6=j

Eij ⊗Mij

The following lemma is immediate from the preceding discussion.

Lemma 6.5. If M ∈ Matn2 is homogeneous of degree d, and f ∈ C[V ] is homogeneous of degree
d′, then M ? f is homogeneous of degree d+ d′

The following easy corollary of the above lemma will be useful to us:

Corollary 6.6. Suppose M =
∑

ij Eij ⊗Mij ∈ gl(V ). Then M ? det = c · det for some c ∈ C if
and only if the following conditions hold:

(1) For i 6= j, (Eij ⊗Mij) ? det = 0;
(2) (

∑n
i=1Eii ⊗Mii) ? det = c · det.

Proof. This is straightforward from the decomposition of M into homogenous components (given
above) and the above lemma. �

Before we unravel the above condition to compute the Lie algebra of the symmetries, a few words
on the symmetric group.

6.3. Symmetric group. We denote by Sn, the symmetric group on n letters. In other words, Sn
consists of all bijective maps σ : [n] → [n]. The group operation is composition of maps. The pair
(i, j) with i < j is called an inversion for σ ∈ Sn if σ(i) > σ(j). For σ ∈ Sn, we define it sign

sgn(σ) = (−1) number of inversions in σ .

For σ ∈ Sn, we will define ι(σ) ∈ Sn by ι(σ)(1) = σ(2), ι(σ(2)) = σ(1) and ι(σ)(k) = σ(k) for all
k > 2. Thus

ι : Sn → Sn

is an involution (without any fixed points!). Moreover, sgn(ι(σ)) = −sgn(σ) for any σ ∈ Sn.

6.4. Computation of Lie algebra of symmetries. To understand gS (i.e., the elements of gl(V )
for which det is an eigenvector by Lemma 6.2) it suffices to understand the two conditions in the
previous corollary. For the rest of this subsection, let M =

∑
ij Eij ⊗Mij ∈ Matn2 = gl(V ).

Lemma 6.7. For i 6= j, (Eij ⊗Mij) ? det = 0 if and only if Mij = κIn for some κ ∈ C, where In
denotes the identity matrix of size n× n.

Proof. Let us first prove the forward direction. Suppose Eij⊗Mij ?det = 0. We want to prove that
Mij = κIn.

First, observe that without loss of generality, we can consider i = 2 and j = 1, and we will
do so. Let us denote the (p, q)th entry of M21 by αpq. Then E21 ⊗M21 acts by the derivation
D =

∑
p,q αp,qx2p∂1q.

Recall that
det =

∑
σ∈Sn

sgn(σ)x1σ(1)x2σ(2) . . . xnσ(n).

17



Thus

(E21 ⊗M21) ? det = D · det

=
∑
p, q, σ
σ(1) = q

αpqsgn(σ)x2px2σ(2)x3σ(3) . . . xnσ(n).

Consider the monomial m = x22x22x33 . . . xnn. Let us compute the coefficient of m in D ·det. To
do so, let us check the choices of p, q and σ in the above summation contribute to the coefficient of
m. Surely, we need 2 = p = σ(2), and σ(k) = k for k > 2. This means that σ must be the identity
permutation, p = 2 and q = σ(1) = 1. So, there is only one contributing term, and that contributes
a coefficient of α21. Since D · det = 0, we must have that α21 = 0.

For any choice of p 6= q, a similar argument will show that αpq = 0 for p 6= q (indeed consider
instead of m, a monomial x2qx2qx3π(3) . . . xnπ(n) for some π ∈ Sn such that π(1) = p and π(2) = q).
This proves that the off-diagonal entries of Mij are zero.

Now, consider the monomial n = x21x22x33 . . . xnn and let us compute its coefficient in D · det.
Again, let us check the choices of p, q and σ. Clearly need that σ(k) = k for k ≥ 2. Moreover, we
need either p = 1 and σ(2) = 2 or p = 2 and σ(2) = 1. In the former case, we will have σ to be the
identity permutation and q = σ(1) = 1, so this contributes α11. Similarly the latter case contributes
−α22. Thus, the coefficient of the n is α11 − α22 which must be zero. Hence α11 = α22.

Again, a similar argument proves that αii = αjj for all i, j (indeed, consider instead of n, the
monomial x2ix2jx3π(3) . . . xnπ(n) for some π ∈ Sn such that π(1) = i and π(2) = j). Thus,Mij = κIn,
where we take κ = α11. This shows that if Eij ⊗Mij ? det = 0, then Mij = κIn.

For the converse direction, if Mij = κIn, then Eij ⊗Mij acts by

D = κ
n∑
i=1

x2i∂1i.

Consider the action of D on t =
∏n
i=1 xiσ(i). Unless i = σ(1), the term x2i∂1i kills it. Thus, we

get:

D · t = κx2σ(1)∂1σ(1) · t
= x2σ(1)x2σ(2)x3σ(3) . . . xnσ(n).

Thus,

D · det = κ
∑
σ∈Sn

sgn(σ)x2σ(1)∂1σ(1) · t = κ(
∑
σ∈Sn

sgn(σ)x2σ(1)x2σ(2)x3σ(3) . . . xnσ(n)).

We claim that the sum is zero. To see this, notice that the terms corresponding to σ and ι(σ)
cancel. Hence, the whole sum cancels out as required. �

Lemma 6.8. Suppose (
∑n

i=1Eii ⊗Mii)?det = c ·det. Then for all i, j, we have Mii−Mjj = µi,jIn
for some scalar µi,j ∈ C.

Proof. Let the (p, q)th entry of Mii be αip,q. Without loss of generality, take i = 1 and j = 2, i.e.,
we will prove M11−M22 = µ1,2In for some µ1,2 ∈ C. Note that

∑
iEii⊗Mii acts by the derivation

D =
∑

i,p,q α
i
p,qxip∂iq. So

(3) D · det =
∑

i, p, q, σ
σ(i) = q

αip,q · sgn(σ) · x1σ(1) . . . xip . . . xnσ(n).

18



Fix π ∈ Sn, and consider the monomial m = x1π(1)x2π(1)x3π(3) . . . xnπ(n). The coefficient of m in
c · det is 0. So, the coefficient of m in D · det is also zero. We leave it to the reader to check from
the above expression that the coefficient of m in D · det is sgn(π)(α2

π(1),π(2) − α
1
π(1),π(2)). Thus, we

have α2
π(1),π(2) = α1

π(1),π(2). Running over all choices of π, we get that α1
p,q = α2

p,q for all p 6= q. This
means that the off-diagonal entries of M11 and M22 are the same.

Again fix π ∈ Sn. Consider the monomial n =
∏n
i=1 xiπ(i). Its coefficient in c · det is c · sgn(pi).

So, its coefficient in D · det should also be c · sgn(π). From Equation 3, one can check again that
the coefficient of n in D · det is sgn(σ)(

∑
i α

i
π(i),π(i)). Thus, we must have∑

i

αiπ(i),π(i) = c.

This holds for all permutations, in particular, if we replace π with ι(π). Thus, we have∑
i

αiπ(i),π(i) =
∑
i

αi(ιπ)(i),(ιπ)(i).

Hence, this means

α1
π(1),π(1) + α2

π(2),π(2) = α1
π(2),π(2) + α2

π(1),π(1).

Again, this holds for all π, so we have

α1
p,p − α2

p,p = α1
q,q − α2

q,q.

for all p, q. Thus, if we set µ1,2 = α1
p,p − α2

p,p, then the diagonal entries of M11 and M22 differ
precisely by µ1,2. Since the off-diagonal entries of M11 and M22 agree (shown above), we have that
M11 −M22 = µ1,2In.

�

Corollary 6.9. Suppose M ∈ Matn2 = gl(Matn). Then M ? det = c · det for some c ∈ C if and
only if M is of the form A⊗ In + In ⊗B.

Proof. This follows from the previous two lemmas. SupposeM is such thatM?det = c·det for some
c ∈ C. Observe that Mij = κijIn by Lemma 6.7 for some scalars κij ∈ C. Then, by Lemma 6.8, we
know that Mjj = M11 + µj,1In for all j (where µj,1 is as defined in Lemma 6.8).

Now, set A to be the n × n matrix whose (i, j)th entry is κij if i 6= j, and (i, i)th entry is µj,1.
(Note that µ1,1 = 0). Also, set B = M11. This just means that M = A⊗ In + In ⊗B. �

Corollary 6.10. The Lie algebra of symmetries gS = Θ{A ⊗ In + In ⊗ B |A,B ∈ Matn} =
{A⊗ In + In ⊗B |A,B ∈ Matn}.

Proof. It follows from the above corollary and Lemma 6.2 that gS = Θ{A⊗In+In⊗B |A,B ∈ Matn}.
Observe that Θ(A⊗ In + In⊗B) = −(At⊗ In + In⊗Bt). Thus Θ{A⊗ In + In⊗B |A,B ∈ Matn} =
{A⊗ In + In ⊗B |A,B ∈ Matn}.

�

Lemma 6.11. The lie algebra gn,1 = {A⊗ In + In ⊗B |A,B ∈ Matn} ⊆ Matn2 = gl(Matn).

Proof. We have the map φ : GLn×GLn → GLn2 given by (P,Q) 7→ P ⊗Q. The image of φ is Gn,1
(by definition). The derivative of φ, i.e., dφ : gln × gln → gln2 = gl(Matn) is given by the formula
dφ(A,B) = A ⊗ In + In ⊗ (−B). The lemma follows from the fact that the image of dφ is the Lie
algebra of the image of φ (see Appendix A), i.e., Lie(Gn,1) = gn,1. �

From the above lemma and the corollary preceding it, we deduce Proposition 6.1.
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Proof of Proposition 6.1. It follows from the above lemma and the preceding corollary that gS =
gn,1. Hence, it follows that G◦S = Gn,1. �

6.5. The entire group of symmetries. Much of the work has gone into computing the connected
group of symmetries G◦S . Now, we want to determine the entire group of symmetries GS . To do so,
we will need some results from the theory of semisimple Lie algebras, and we will only recall those
facts that we need.

Lemma 6.12. Let G be a linear algebraic group and let G◦ denote its identity component. Then G
normalizes G◦, i.e., for all g ∈ G, we have gG◦g−1 = G◦.

Proof. Consider the map φ : G◦ → G given by h 7→ ghg−1. The image is a connected because G◦
is connected, and contains the identity e ∈ G because φ(e) = e. So, we must have gG◦g−1 ⊆ G◦.
Since this holds for any g ∈ G, we must have g−1G◦g ⊆ G◦, which implies that G◦ ⊆ gG◦g−1.
Thus, we have gG◦g−1 = G◦. �

Definition 6.13. Let H ⊆ G be a subgroup. The normalizer of H in G is defined as

NG(H) = {g ∈ G | gHg−1 = H}.
Let Fn ⊆ GL(Matn) = GLn2 denote the subgroup of all linear transformations of the form

X 7→ PXQ and X 7→ PXtQ for some P,Q ∈ GLn. The proof of the following lemma is from
[DL94], but we recall it as we will need to generalize it.

Lemma 6.14. The normalizer of H = Gn,1 in G = GL(Matn) is Fn.

Proof. Let τ : Matn → Matn denote the transpose, i.e., τ(A) = At. Clearly τ ∈ NG(H), so
Fn ⊆ NG(H).

Let g ∈ NG(H). Then g normalizes H, and hence normalizes its derived group [H,H] = Gn,1.
Therefore, it normalizes its Lie algebra gn,1 = Lie(Gn,1) = {A⊗ In + In ⊗B | Tr(A) = Tr(B) = 0}.
Abstractly, gn,1 is equal to sln⊕sln. Let L1 = {A⊗In | Tr(A) = 0} and let L2 = {In⊗B | Tr(B) = 0}.
Then gn,1 = L1 ⊕ L2 is a semisimple Lie algebra, and each Li is a simple Lie algebra isomorphic
to sln. Thus if g normalizes gn,1, then conjugation by g is an automorphism of the Lie algebra. L1

and L2 are the only simple ideals of gn,1, so such an automorphism must either preserve each Li or
switch the two. Also, observe that conjugation by τ switches L1 and L2. Thus, by composing with
τ if necessary, we assume w.l.o.g that conjugation by g preserves each Li.

Now, write g =
∑r

i=1 Pi ⊗ Qi with {Pi} a linearly independent subset of Matn and {Qi} also a
linearly independent subset of Matn. Since gL1g

−1 = L1 (equivalently gL1 = L1g), we have that
for any A ∈ Matn (with trace zero), there exists Ã ∈ Matn (with trace zero) such that∑

i

PiA⊗Qi =
∑
i

ÃPi ⊗Qi.

Since Qi are linearly independent, we deduce that PiA = ÃPi for all i. Mutliplying by an
appropriate U ⊗ In on the left and V ⊗ In on the right (both of which are in H), we can assume

that P1 =

(
Ik 0
0 0

)
for some k ≤ n. We claim that k = n. Otherwise, take A to be

(
0 E
0 0

)
for

some non-zero E, and observe that there is no Ã which can satisfy P1A = ÃP1. Thus k = n, i.e.,
P1 = In. Hence A = P1A = ÃP1 = Ã, i.e., Ã = A for all A. Thus we must have PiA = APi for all
i ≥ 2. This means that Pi are scalar matrices, but we chose Pi to be linearly independent. So, we
must have i = 1.

This means that g = P1 ⊗ Q1, with P1 invertible. A similar argument shows that Q1 is also
invertible. In other words, g ∈ H.

To summarize, we have that either g or gτ is in H, i.e, g ∈ Fn. This shows that NG(H) ⊆ Fn.
Thus NG(H) = Fn as required. �

20



Proof of Theorem 1.12. We know that GS is an algebraic subgroup of GL(Matn) whose identity
component is Gn,1 by Proposition 6.1. Thus, we must have GS ⊆ NGL(Matn)(Gn,1) = Fn by the
above discussion. On the other hand, it is clear that Fn ⊆ GS , so GS = Fn as required. �

Remark 6.15. A very short proof (that hides much of the details) is to observe that Fn ⊆ GS (
GL(Matn). Next, Fn is a maximal proper subgroup of GL(Matn) (see for example [Dyn52, DL94,
Gur94]), so GS = Fn. However, in the general case, such an argument will not suffice, but the
argument we give here will be generalized.

7. Multi-grading on C[Matmn ]

For any vector space V , the ring of polynomial functions C[V ] has a natural grading given by
(total) degree. In the case when V = Matmn , we have a finer multi-grading which we will now
describe.

We will denote the coordinate functions on Matmn by x
(i)
jk . More precisely, let x(i)

jk denote the
(j, k)th coordinate of the ith matrix. Thus,

C[Matmn ] = C[x
(i)
jk : 1 ≤ i ≤ m, 1 ≤ j, k ≤ n].

We can define an Nm-grading on C[Matn] by setting

deg(x
(i)
jk ) = δi = (0, . . . , 0, 1︸︷︷︸

i

, 0 . . . 0) ∈ Nm.

So, we have

C[Matmn ] =
⊕

e=(e1,...,em)∈Nm
C[Matmn ]e.

where C[Matmn ]e is the linear span of all monomialsm =
∏

(x
(i)
jk )a

(i)
jk such that deg(m) =

∑
a(i)jkδi =

e.
We will now give another description of (IS)n for the case S = SINGn,m that incorporates

this multi-grading. First, recall that (IS)n = span(det(
∑

i ciXi) : ci ∈ C). Let t1, . . . , tm denote
indeterminates. For e ∈ Nm, let te := te11 t

e2
2 . . . temm . Consider det(

∑
i tiXi) ∈ C[Matn]. Write

det(
∑
i

tiXi) =
∑

e∈Nm,
∑
i ei=n

tefe.

Lemma 7.1. Let S = SINGn,m ⊆ V = Matn. Then we have
(1) (IS)n =

⊕
e∈Nm,

∑
i ei=n

(IS)e ;

(2) (IS)e = span(fe), and hence 1-dimensional.

Proof. A standard interpolation argument tells us that span(fe : e ∈ Nm such that
∑

i ei = n) =
span(det(

∑
i ciXi) : ci ∈ C). It is also easy to see that the multi-degree deg(fe) = e. The lemma

now follows. �

Let us describe more explicitly the polynomials fe. We call p = (p1, . . . , pn) ∈ [m]n e-compatible
if |{i | pi = j}| = ej for 1 ≤ j ≤ m.

We have
fe =

∑
p is e-compatible

∑
σ∈Sn

sgn(σ)x
(p1)
1σ(1)x

(p2)
2σ(2) . . . x

(pn)
nσ(n).
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8. An intermediate problem: action of (GLn×GLn)×m

In this section, we consider the action of (GLn×GLn)×m on Matmn given by

((P1, Q1), . . . , (Pm, Qm)) · (X1, . . . , Xm) = (P1X1Q
t
1, . . . , PmXmQ

t
m).

The main goal of this section is to compute the subgroup of (GLn×GLn)×m which fixes SINGn,m.
Our approach here will be slightly different because we do not resort to a Lie algebra computation.
Consider the homomorphism GLn×GLn×(C∗)m → (GLn×GLn)×m given by

(P,Q, (λ1, . . . , λm), (µ1, . . . , µm)) 7→ ((λ1P, µ1Q), (λ2P, µ2Q), . . . , (λmP, µmQ)).

Let the image of this homomorphism be denoted H.

Proposition 8.1. The subgroup of (GLn×GLn)×m that preserves S = SINGn,m ⊆ V = Matn is
H, i.e.,

{g ∈ (GLn×GLn)×m | gS = S} = H

We will derive the above proposition from the following lemma.

Lemma 8.2. Let S = SINGn,m ⊆ V = Matn. The subgroup {g ∈ (GLn×GLn)×m | g(IS)n ⊆
(IS)n} = H.

We will prove Proposition 8.1 assuming Lemma 8.2 above, and then we will prove Lemma 8.2.

Proof of Proposition 8.1. Let ρ : (GLn×GLn)×m → GL(Matmn ) be the group homomorphism that
defines the representation above. Then, observe that {g ∈ (GLn×GLn)×m | gS = S} = ρ−1(GS).

Similarly, {g ∈ (GLn×GLn)×m | g(IS)n ⊆ (IS)n} = ρ−1(GS) follows from Lemma 3.1 because
the zero locus of (IS)n is precisely S.

Thus, we have an equality

{g ∈ (GLn×GLn)×m | gSINGn,m = SINGn,m} = {g ∈ (GLn×GLn)×m | g(IS)n ⊆ (IS)n} = ρ−1(GS).

Hence, Lemma 8.2 implies Proposition 8.1 �

Now, all that is left to prove is Lemma 8.2.

Proof of Lemma 8.2. Let g ∈ (GLn×GLn)×m be such that g(IS)n ⊆ (IS)n. Write g = ((P1, Q
t
1), . . . , (Pm, Q

t
m))

(We put transposes on the Q’s for convenience). For any f ∈ (IS)n, we have

g−1 · f(X) = f(gX) = f(P1X1Q1, . . . , PmXmQm) = c · f(X1, L2X2R2, . . . , LmXmRm),

where Li = P−1
1 Pi and Ri = QiQ

−1
1 , and c = det(P−1

1 Q−1
1 ). The last equality follows because

(IS)n is spanned by det(
∑

i ciXi), and det(
∑

i ciP
−1
1 XiQ

−1
1 ) = det(P−1

1 Q−1
1 ) det(

∑
i ciXi)

Recall the multi-degree defined in the previous section. Observe that for any g ∈ (GLn×GLn)×m

and any (multi)-homogenous polynomial f of degree e, the polynomial g−1 · f is also (multi)-
homogenous of degree e.

From now on, let

f = f(n−1,1,0,...,0) =
∑
σ∈Sn

∑
1≤r≤n

x
(1)
1σ(1) . . . x

(1)
(r−1),σ(r−1)x

(2)
rσ(r)x

(1)
(r+1),σ(r+1) . . . x

(1)
nσ(n).

Then we have
g−1 · f(X) = f(gX) = cf(X) for some c ∈ C∗.

This is because g−1 ·f is a non-zero polynomial that is homogeneous of degree (n−1, 1, 0, . . . , 0) and
must be in (IS)n, and so is in (IS)(n−1,1,0,...,0) which is spanned by f = f(n−1,1,0,...,0) by Lemma 7.1.

Claim 8.3. The matrix L2 is diagonal.
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Proof of Claim. Suppose (L2)ij 6= 0 for some i 6= j (Here (L2)ij denotes the (i, j)th entry of L2).
Let p and q be such that (R2)pq 6= 0. This means that (L2)ij(R2)pq 6= 0. We have

g−1 · f = f(gX)

= f(X1, L2X2R2, . . . , LmXmRm)

=
∑
σ∈Sn

sgn(σ)
∑
r

x
(1)
1σ(1) . . . x

(1)
(r−1),σ(r−1)

∑
a,b

(L2)ra · x(2)
ab · (R2)bσ(r)

x
(1)
(r+1),σ(r+1) . . . x

(1)
nσ(n).

=
∑
σ,r,a,b

sgn(σ) · (L2)ra · (R2)bσ(r) · x
(1)
1σ(1) . . . x

(1)
(r−1),σ(r−1)x

(2)
ab x

(1)
(r+1),σ(r+1) . . . x

(1)
nσ(n).

Let π ∈ Sn be such that π(i) = q. Let us compute the coefficient of the monomial m =

x
(1)
1π(1) . . . x

(1)
(i−1),π(i−1)x

(2)
jp x

(1)
(i+1),π(i+1) . . . x

(1)
nπ(n) in g−1 · f . In the expansion of g−1 · f above, let us

see for which choices of σ, r, a, b do we get the monomial m. Indeed we must have r = i, and so we
must have σ(k) = π(k) for all k 6= i, which forces σ = π. Further, we must have a = j and b = q.
Hence, we conclude that the monomial m appears in the above expansion exactly once and with a
coefficient of sgn(π)(L2)ij(R2)pq (which is nonzero as noted above). However, the coefficient of the
monomial m in cḟ(n−1,1,0,...,0) is zero. This is a contradiction. Therefore (L2)ij = 0 for all i 6= j.
This means that (L2) is a diagonal matrix. �

By a similar argument, all the (Li)’s and (Ri)’s are all diagonal matrices. Now, let us write out
g−1 · f again. Since all the Li’s and Ri’s are diagonal, we have

g−1 · f =
∑
σ∈Sn

∑
r

x
(1)
1σ(1) . . . x

(1)
(r−1),σ(r−1)

(
(L2)rrx

(2)
rσ(r)(R2)σ(r),σ(r)

)
x

(1)
(r+1),σ(r+1) . . . x

(1)
nσ(n).

Claim 8.4. The matrices Li and Ri are scalar matrices.

Proof of Claim. The coefficient of n = x
(1)
1σ(1) . . . x

(1)
(r−1),σ(r−1)x

(2)
rσ(r)x

(1)
(r+1),σ(r+1) . . . x

(1)
nσ(n) in g−1 · f

is sgn(σ)(L2)rr(R2)σ(r),σ(r). The coefficient of n in c · f is sgn(σ) · c. Thus, if we are to have
g−1 · f = c · f , then we must have (L2)rr(R2)σ(r),σ(r) = c. This must hold for all choices of r and
σ, so we have (L2)ii(R2)jj = c for all i, j. This means that (L2)ii = (L2)kk for all i, k, i.e., L2 is a
scalar matrix, and so is R2. Similarly all the Li and Ri are scalar matrices. �

Since the Li’s and Ri’s are scalar matrices, we can write Li = λiIn and Ri = µiIn for scalars
λi, µi ∈ C∗. Thus we have Pi = λiP1 and Qi = µiQ1 for i ≥ 2. Thus, we have

g = ((P1, Q1), (λ2P1, µ2Q2), . . . , (λmP1, µmQ1)) ∈ H.
To summarize, we have shown that {g ∈ (GLn×GLn)×m | g(IS)n ⊆ (IS)n} ⊆ H. The other

inclusion is clear. �

9. Symmetries of singular tuples of matrices

In this section, we will compute the group of symmetries for S = SINGn,m, i.e., Theorem 1.13.
While the high-level strategy resembles that of Section 6 (which deals with the m = 1 case), we
need to work a little harder in the computations. Below, we will recall the setup again for the
convenience of the reader. Then, we will describe the action of gl(Matmn ) on polynomials explicitly.
We then present the explicit computation of the Lie algebra of symmetries. The main features that
we utilize in the computation are the multi-grading (as defined in Section 7), the description of the
ideal IS in Lemma 7.1 and the intermediate case resolved in the previous section. This is followed
by the computation of the entire group of symmetries which parallels the computation in Section 6.
Finally we indicate how the same arguments also compute the group of symmetries for NSINGn,m.
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First, let us recall the setup again. We have S = SINGn,m ⊆ V = Matmn , and we want to compute
GS ,G◦S and gS . We will first focus on gS . From Corollary 5.2, we have

gS = {M ∈ gl(Matmn ) | M · (IS)n ⊆ (IS)n}

Moreover, we have by Proposition 5.1 that

(IS)n = span(det(
∑
i

ciXi) : ci ∈ C).

From Lemma 7.1, we know that (IS)n is multi-graded, the explicit decomposition being (IS)n =⊕
e∈Nm,

∑
i ei=n

(IS)e, where (IS)e is 1-dimensional and spanned by fe (as defined in Lemma 7.1).

Moreover, we have an explicit formula for fe, i.e.,

(4) fe =
∑

p is e-compatible

∑
σ∈Sn

sgn(σ)x
(p1)
1σ(1)x

(p2)
2σ(2) . . . x

(pn)
nσ(n),

where we call p = (p1, . . . , pn) ∈ [m]n e-compatible if |{i | pi = j}| = ej for 1 ≤ j ≤ m. Of particular
interest are the cases of e = (n, 0, . . . , 0) and e = (n− 1, 1, 0, . . . , 0). We have:

(5) f(n,0,...,0) =
∑
σ∈Sn

sgn(σ)x
(1)
1σ(1) . . . x

(1)
nσ(n) = det(X1)

Similarly, we have:

(6) f(n−1,1,0,...,0) =
∑
j∈[n]

∑
σ∈Sn

sgn(σ)x
(1)
1σ(1) . . . x

(1)
j−1,σ(j−1)x

(2)
jσ(j)x

(1)
j+1,σ(j+1) · · ·x

(1)
nσ(n).

In the next subsection, we will write out the (twisted) action of gl(Matmn ) explicitly, so that we
can make the computations we need.

9.1. Action of gl(Matmn ) on C[Matmn ]. Let V = Matmn be the space of m-tuples of n×n matrices.
Let E(i)

jk denote the tuple of matrices with a 1 in the (j, k)th entry of the ith matrix, and 0’s

everywhere else. Let x(i)
jk denote the coordinate function corresponding to the (j, k)th entry of the

ith matrix. Then C[V ] = C[x
(i)
jk : 1 ≤ i ≤ m, 1 ≤ j, k ≤ n].

Since V is mn2 dimensional, we can identify gl(V ) = gl(Matmn ) with Matmn2 , but we will do so
in a very specific way. We will think of gl(Matmn ) = gl(Cm ⊗Matn) = Matm⊗Matn2 . We have
already been explicit in the earlier sections about how we view Matn2 as gl(Matn).

We index the rows and columns of mn2×mn2 matrices by {(i, j, k) : 1 ≤ i ≤ m, 1 ≤ j, k ≤ n} in
lexicographic order. Thus, we can write M ∈ gl(Matmn ) = Matmn2 as

M =

M11 . . . M1m
...

. . .
...

Mm1 . . . Mmm

 ,

where each Mpq is an n2 × n2 matrix. Equivalently, we can write M =
∑

1≤p,q≤mEpq ⊗Mpq. With
this indexing, we have the intuitive formula

Epq ⊗ Eab,cd = Epab,qcd.

The twisted action of the matrix Epab,qcd ∈ gl(Matmn ) is via the derivation x
(p)
ab ∂

(q)
cd where ∂(q)

cd

denotes the partial derivative with respect to the coordinate x(q)
cd .
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Recall the Nm-grading on C[Matmn ]. Observe that the twisted action of Epab,qcd maps C[V ]e to
C[V ]e+δp−δq , where δi = (0, . . . , 0, 1︸︷︷︸

i

, 0 . . . , 0) ∈ Nm. Thus, we give an Nm-grading on gl(Matn) =

Matmn2 .

Definition 9.1 (Grading on gl(Matmn )). We give a grading on the Lie algebra gl(Matmn ) by setting
deg(Epab,qcd) = δp − δq. We have

gl(Matmn ) = gl(Matmn )0

⊕
p 6=q

gl(Matmn )δp−δq .

For any M ∈ Matmn2 = gl(Matmn ), we write M =
∑

1≤p,q≤mEpq ⊗Mpq, with Mpq ∈ Matn2 . Then,
the degree 0 part is

∑m
p=1Epp⊗Mpp, and for p 6= q, Epq ⊗Mpq is the degree δp− δq part. Thus the

decomposition of M into homogenous components is

M = (
m∑
p=1

Epp ⊗Mpp)
⊕
p 6=q

Epq ⊗Mpq.

The following lemma is immediate from the preceding discussion:

Lemma 9.2. Let M ∈ Matmn2 be homogenous of degree e, and f ∈ C[Matmn ] be homogenous of
degree e′. Then M ? f is homogenous of degree e+ e′.

9.2. Computing the Lie algebra of symmetries. For this subsection, let M ∈ gl(Matmn ) =
Matmn2 be such that M ? (IS)n ⊆ (IS)n. Further, write M =

∑
p,q Epq ⊗Mpq, where Mpq ∈ Matn2 ,

i.e.,

M =

M11 . . . M1m
...

. . .
...

Mm1 . . . Mmm

 .

Lemma 9.3. For p 6= q, we have Mpq = λpqIn2 for some scalar λpq ∈ C.

Proof. Without loss of generality, let us assume that p = 2, q = 1. We know that M ? f(n,0,...,0) ∈
(IS)n. Consider the degree (n−1, 1, 0, . . . , 0) homogenous part of M ?f(n,0,...,0). By Lemma 9.2 and
the description of the grading on gl(Matmn ), we know that the degree (n−1, 1, 0, . . . , 0) homogenous
part of M ? f(n,0,...,0) is (E21 ⊗M21) ? f(n,0,...,0). Since, this must be in (IS)(n−1,1,0,...,0) which is
spanned by f(n−1,1,0,...,0), we must have

(E21 ⊗M21) ? f(n,0,...,0) = c · f(n−1,1,0,...,0),

for some c ∈ C. M21 ∈ Matn2 (and recall that we index the rows and columns of Matn2 by [n]× [n]
in lexicographic order). Let the (ab, cd)th entry of M21 be µab,cd.

Thus,

(E21 ⊗M21) ? f(n,0,...,0) =

∑
a,b,c,d

µab,cd · x
(2)
ab ∂

(1)
cd

(∑
σ∈Sn

sgn(σ) · x(1)
1σ(1) . . . x

(1)
nσ(n)

)(7)

=
∑

a, b, c, d, σ
σ(c) = d

µab,cd · sgn(σ) · x(1)
1σ(1) . . . x

(1)
(c−1),σ(c−1)x

(2)
ab x

(1)
(c+1)σ(c+1) . . . x

(1)
nσ(n).(8)

Since (E21 ⊗M21) ? f(n,0,...,0) = c · f(n−1,1,0,...,0), we will match the coefficients of monomials on
both sides to get conditions on the entries of M21.
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First, fix π ∈ Sn, i ∈ [n] and let αβ 6= iπ(i). Now, consider the coefficient of the monomial

m = x
(1)
1π(1) . . . x

(1)
(i−1),σ(i−1)x

(2)
α,βx

(1)
(i+1)σ(i+1) . . . x

(1)
nσ(n).

In the expression Equation 8, let us see what choices of a, b, c, d, σ lead to this monomial. Clearly,
we need c = i, d = σ(i). Moreover, we need σ(k) = π(k) for all k 6= i, so σ = π (and hence
σ(i) = π(i) = d). Finally also observe that we also need a = α and b = β. Thus, there is precisely
one choice for which can lead to the monomialm, and this means that the coefficient of the monomial
m is µαβ,iπ(i) · sgn(π). The coefficient of m in c · f(n−1,1,0,...,0) is zero, so we must have µαβ,iπ(i) = 0.
Observe that as long as i1j1 6= i2j2, we can choose α = i1, β = j1, i = i2 and π such that π(i) = j2
and satisfy the condition αβ 6= iπ(i). Thus, all the off-diagonal terms of M21 are zero. In other
words M21 is a diagonal matrix.

Now that M21 is a diagonal matrix, we have

(E21 ⊗M21) ? f(n,0,...,0) =
∑
a, b, σ
σ(a) = b

µab,ab · sgn(σ) · x(1)
1σ(1) . . . x

(1)
(a−1),σ(a−1)x

(2)
ab x

(1)
(a+1)σ(a+1) . . . x

(1)
nσ(n)

=
∑
a,σ

µaσ(a),aσ(a) · sgn(σ) · x(1)
1σ(1) . . . x

(1)
(a−1),σ(a−1)x

(2)
aσ(a)x

(1)
(a+1)σ(a+1) . . . x

(1)
nσ(n).

On the other hand

c · f(n−1,1,0,...,0) =
∑
a,σ

c · sgn(σ) · x(1)
1σ(1) . . . x

(1)
(a−1),σ(a−1)x

(2)
aσ(a)x

(1)
(a+1)σ(a+1) . . . x

(1)
nσ(n).

Thus, by matching coefficients of monomials, we get that µaσ(a),aσ(a) = c. Since this is true for
all choices of a and σ, we have that µab,ab = c for all ab ∈ [n] × [n]. This means that M21 = cIn2 .
Thus, with λ21 = c, we have M21 = λ21 · In2 as required. �

Recall the action of (GLn×GLn)×m on Matmn in Section 8. This gives a homomorphism ρ :
(GLn×GLn)×m → GL(Matmn ) = GLmn2 . In coordinates the map is given explicitly by the formula

((P1, Q1), (P2, Q2), . . . , (Pm, Qm)) 7→
∑
i

Eii ⊗ Pi ⊗Qi.

Differentiating gives a Lie algebra homomorphism dρ : (gln × gln)×m → gl(Matmn ) = Matmn2 .
Explicitly in coordinates, this is given by the formula

((A1, B1), . . . , (Am, Bm)) 7→
∑
i

Eii ⊗ (Ai ⊗ In + In ⊗Bi).

Recall the groupH defined in Section 8. By Lemma 8.2, we haveH = {g ∈ (GLn×GLn)×m | g(IS)n ⊆
(IS)n} = {g ∈ (GLn×GLn)×m |ρ(g) ∈ GS}. It follows that

Lie(H) = {N ∈ (gln × gln)×m | dρ(N) · (IS)n ⊆ (IS)n} = {N ∈ (gln × gln)×m | dρ(N) ∈ gS}.
The first equality essentially follows from the same argument in Proposition 3.2, and the second
equality is clear from Proposition 3.2. From the description of H in Section 8, a straightforward
computation gives

dρ(Lie(H)) = {Im⊗A⊗ In + Im⊗ In⊗B+D⊗ In⊗ In | A,B ∈ Matn, D ∈ Matn diagonal matrix}.

Lemma 9.4. Consider the degree 0 part of M , i.e., M0 =
∑

iEii ⊗Mii. Then M0 ∈ dρ(Lie(H))

Proof. Let M =
⊕

eMe be its graded decomposition. We know that Mδi−δj = Eij ⊗Mij for i 6= j,
and M0 =

∑
iEii ⊗Mii. For all other e, Me = 0. In particular, M ? (IS)n ⊆ (IS)n implies that for

all e with
∑

i ei = n, M0 ? fe = γefe for some γe ∈ C.
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First, observe that M0 ? f(n,0,...,0) = M ? det(X1) =
∑

i(Eii ⊗Mii) ? (det(X1)) = (E11 ⊗M11) ?
det(X1). This means that (E11 ⊗ M11) ? det(X1) = γ(n,0,...,0) det(X1). By Theorem 1.12, and
Corollary 5.2, we get that M11 is of the form A1 ⊗ In + In ⊗ B for some A,B ∈ Matn. Similarly,
each Mii is of the form Ai⊗ In + In⊗Bi. Thus M0 is in the image of dρ, since M0 =

∑
iEii⊗ (Ai⊗

In + In ⊗Bi) (see the explicit formula for dρ above).
This means that M0 is in the image of dρ such that (M0) ? (IS)n ⊆ (IS)n. From the description

of Lie(H) above, we get that Θ(M0) ∈ dρ(Lie(H)). But since dρ(Lie(H)) is closed under Θ, we get
that M0 ∈ dρ(Lie(H)). �

Thus, putting the above two lemmas together, we get that M is of the form C ⊗ In ⊗ In + Im ⊗
A⊗ In + Im ⊗ In ⊗B, i.e., M ∈ Lie(Gn,m).

Thus, we conclude that

gS = Θ{M | M ? (IS)n ⊆ (IS)n} ⊆ Θ(Lie(Gn,m)) = Lie(Gn,m).

since Lie(Gn,m) is closed under Θ.
The reverse inclusion is clear since Gn,m ⊆ GS implies that Lie(Gn,m) ⊆ Lie(GS) = gS . So, we

conclude that
gS = Lie(Gn,m).

Further, this implies (by the Lie subgroups – Lie subalgebras correspondence) that

G◦S = Gn,m.

Let us record this result.

Corollary 9.5. Let S = SINGn,m ⊆ V = Matn. Then the connected group of symmetries

G◦S = Gn,m.

In the next subsection, we will determine the entire group of symmetries. The argument is very
similar to the one in Section 6

9.3. The group of symmetries. From the above discussion, we know that Gn,m is the identity
component of GS . The component group GS/Gn,m is a finite group17. In any case the fact that Gn,m
is the identity component of GS means that GS normalizes Gn,m. Thus GS ⊆ NGL(Matmn )(Gn,m). Let
us therefore compute this normalizer.

Consider the transpose map τ : Matmn → Matmn given by (X1, . . . , Xm) 7→ (Xt
1, . . . , X

t
m). Viewing

Matmn as Cm ⊗ Cn ⊗ Cn, the τ is simply the linear map that switches the second and third tensor
factors. When m = n, then all three tensor factors are Cn, and there are linear transformations
that permute them in any way. For a permutation σ ∈ S3, let us denote by τσ the corresponding
linear map. Precisely, we have

τσ : Cn ⊗ Cn ⊗ Cn −→ Cn ⊗ Cn ⊗ Cn∑
i

vi,1 ⊗ vi,2 ⊗ vi,3 7−→
∑
i

vi,σ(1) ⊗ vi,σ(2) ⊗ vi,σ(3).

In particular, the transpose morphism τ = τσ for σ defined as σ(1) = 1, σ(2) = 3, σ(3) = 2.
Let us define

Σn,m =

{
{1, τ} if n 6= m

{τσ : σ ∈ S3} if n = m.

Observe that Σn,m is a subset of linear transformations of Cm ⊗ Cn ⊗ Cn. When m = n, Σn,m

consists of six linear transformations, and when m 6= n, it consists of two linear transformations.

17Component groups are always finite for linear algebraic groups.
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Lemma 9.6. The normalizer

NGL(Matmn )(Gn,m) = {h1h2 |h1 ∈ Gn,m, h2 ∈ Σn,m} = Gn,m o Σn,m.

Proof. The argument is very similar to the one for the m = 1 case. Let g ∈ GL(Matmn ) be such that
g normalizes Gn,m. Thus, it normalizes its derived group which is isomorphic to SLm×SLn×SLn,
and hence the Lie algebra of its derived group. This Lie algebra is slm × sln × sln which embeds in
gl(Matmn ) as

{C ⊗ In ⊗ In + Im ⊗A⊗ In + Im ⊗ In ⊗B | C ∈ slm, A,B,∈ sln}.

For simplicity we will continue to refer to this Lie subalgebra as slm × sln × sln. g normalizes this
Lie subalgebra. This Lie subalgebra has exactly 3 simple ideals, so the (conjugation) action of g has
to permute them. There are two cases, when m = n, then there are 6 possible permutations, and
when m 6= n, the slm must remain fixed and the two sln’s can be permuted. Now, one observes (in
both cases) that for some h2 ∈ Σn,m, the action of g′ = gh2 (by conjugation) fixes the three simple
ideals.

Thus, we have g′ ∈ GL(Matmn ) =⊆ Matmn2 = Matm⊗Matn2 . Observe that in this decomposi-
tion, we identify Matm with linear transformations on Cm (the first tensor factor) and Matn2 with
linear transformations on Cn⊗Cn (the second and third tensor factors). Note that g′ fixes slm, and
write g′ =

∑r
i=1 Pi⊗Qi where Pi ∈ Matm = gl(Cm) and Qi ∈ gl(Cn⊗Cn) = Matn2 such that {Pi}

is a linearly independent subset of Matm and {Qi} is a linearly independent subset of Matn2 .
The same argument as in the proof of Lemma 6.14 proves that r = 1 and P1 ∈ GLm. Repeating

the argument for the other tensor factors, we get that g′ = P1⊗P2⊗P3, where P1 ∈ GLm, P2 ∈ GLn
and P3 ∈ GLn. In other words, g′ ∈ Gn,m.

This proves that g = g′h−1
2 ∈ Gn,m o Σn,m. This proves that NGL(Matmn )(Gn,m) ⊆ Gn,m o Σn,m.

The reverse inclusion is clear. �

Proof of Theorem 1.13. It is clear that Gn,m ⊆ GS ⊆ Gn,moΣn,m. Any algebraic group sandwiched
between Gn,m and Gn,m × Σn,m must be a union of components, i.e., GS = ∪h∈IGn,m · h for some
subgroup I ⊆ Σn,m. But this subgroup is easy to determine. Clearly the transpose morphism τ is
in I, so I = Σn,m when m 6= n.

Now, consider the case m = n. We still claim that I = {e, τ}. Observe that {e, τ} is a proper
maximal subgroup of Σ3, and we have seen that {e, τ} ⊆ I. Thus, it suffices to show that I ( Σ3.

To see this, let σ ∈ S3 be the permutation σ(1) = 2, σ(2) = 1 and σ(3) = 3. Let us take
X = (In, 0, . . . , 0). Then observe that τσ(X) = (E11, E12, . . . , E1n). Observe that X /∈ SINGn,m

whereas τσ(X) ∈ SINGn,m. Thus τσ /∈ I. This forces {e, τ} ⊆ I ( Σn,m. Thus I = {e, τ}.
Thus irrespective of whether m and n are equal or not, we have GS = Gn,moZ/2 as required. �

9.4. Symmetries of NSINGn,m. All the work for computing the symmetries of NSINGn,m has
already been done, and we just need to put it together.

Proof of Theorem 1.14. Let us denote by I ⊆ C[Matmn ] the vanishing ideal of SINGn,m and by
J ⊆ C[Matmn ] the vanishing ideal of NSINGn,m. Our first claim is that In = Jn (see Lemma B.7).

Thus the lie algebra of symmetries for NSINGn,m is a subalgebra of {M ∈ gl(Matmn ) | MIn ⊆
In} = gn,m. Thus, the connected group of symmetries for NSINGn,m is a subgroup of Gn,m. But
clearly Gn,m preserves NSINGn,m. Thus, the connected group of symmetries for NSINGn,m is also
Gn,m. To determine the component group, the same analysis as in the previous subsection works.
Thus the group of symmetries for NSINGn,m is exactly the same as the group of symmetries for
SINGn,m. �
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10. Singular tuples of matrices cannot be a null cone

In this section, we will prove our main theorem, i.e., Theorem 1.8 as well as Theorem 1.9. To do
so, we need to understand the coordinate subspaces (see Definition 2.9) of NSINGn,m and SINGn,m.
The main point is that both NSINGn,m and SINGn,m have exactly the same coordinate subspaces.
First a few definitions.

Definition 10.1 (Support of a matrix). For a matrix M , it support Supp(M) ⊆ [n]× [n] is defined
as the subset of positions with non-zero entries. In other words, (j, k) ∈ Supp(M) if and only if the
(j, k)th entry of M is non-zero.

Definition 10.2 (Support and union support of a tuple of matrices). For X = (X1, . . . , Xn) ∈
Matmn , we define its support Supp(X) ⊆ [m] × [n] × [n] as the subset of positions with non-zero
entries. More precisely Supp(X) consists of all (i, j, k) such that the (j, k)th coordinate of Xi is
non-zero.

We also define its union support USupp(X) ⊆ [n] × [n] to be ∪iSupp(Xi). In other words,
(j, k) ∈ USupp(X) if and only if the (j, k)th entry of some Xi is non-zero.

Let us define a map

π2,3 : [m]× [n]× [n] −→ [n]× [n]

(i, j, k) 7−→ (j, k)

Remark 10.3. For X = (X1, . . . , Xm) ∈ Matmn , the union support USupp(X) can also be seen in
the following equivalent ways

(1) π2,3(Supp(X));
(2) Supp(

∑
i tiXi) for indeterminates t1, . . . , tm;

(3) Supp(
∑

i ciXi) for generic ci ∈ C.

Recall that on V = Matmn , we denote by x(i)
j,k the (j, k)th coordinate of the ith matrix.

Definition 10.4. For I ⊆ [m]× [n]× [n], we define the linear subspace of Matmn

LI = {X ∈ Matmn | Supp(X) ⊆ I}.

Equivalently, it can be seen as the zero locus of {x(i)
j,k | (i, j, k) /∈ I}.

10.1. Coordinate subspaces of NSINGn,m and SINGn,m. The following result will be derived
easily from well known characterizations of NSINGn,m. We say a subsset J ⊆ [n] × [n] contains a
permutation σ ∈ Sn if {(i, σ(i)) | 1 ≤ i ≤ n} ⊆ J . We say J ⊆ [n]× [n] is permutation free if it does
not contain any permutation.

Proposition 10.5. For I ⊆ [m] × [n] × [n], LI ⊆ NSINGn,m if and only if π2,3(I) ⊆ [n] × [n] is
permutation free.

Proof. Let us recall that NSINGn,m is the null cone for the action of SLn×SLn. Let T = STn×STn

denote the (standard) maximal torus, i.e., T consists of pairs of diagonal matrices with determinant
1. Recall that NSINGn,m = (SLn×SLn)·NT (Matmn ) by Theorem 2.11. Further, from the description
of the null cone for tori in Section 2.1, it can be deduced that

NT (Matmn ) =
⋃

π2,3(I) permutation free

LI .

Another simple way to see this is to understand that the invariant ring is generated by monomials
of the form

∏
(i,j,k)∈J x

(i)
j,k where |J | = n and π2,3(J) is a permutation. Thus, we conclude that

LI ⊆ NSINGn,m if π2,3(I) is permutation free. Alternately, one can see from the description of
29



SLn×SLn invariants (say for example [DM17b, Theorem 1.4]) that all non-constant homogenous
invariants vanish on LI .

Conversely, suppose π2,3(I) is not permutation free. So, π2,3(I) must contain some permutation,
say σ. Thus for all 1 ≤ i ≤ n, there exists pi ∈ [m], such that (pi, i, σ(i)) ∈ I. Let X =
(X1, . . . , Xm) ∈ Matmn be such that that (i, σ(i))th entry of Xpi is 1 and all other entries are zero.
Clearly X ∈ LI and further

∑
iXi is a permutation matrix (the one associated to σ), and hence

non-singular. But this means that X /∈ SINGn,m. Hence LI * SINGn,m, and so LI * NSINGn,m

(because NSINGn,m ⊆ SINGn,m). �

Indeed, observe that the proof of above also gives the following:

Proposition 10.6. For I ⊆ [m] × [n] × [n], LI ⊆ SINGn,m if and only if π2,3(I) ⊆ [n] × [n] is
permutation free.

Thus we get the following corollary that is crucial for our purposes.

Corollary 10.7. For I ⊆ [m]× [n]× [n], LI ⊆ NSINGn,m if and only if LI ⊆ SINGn,m.

10.2. Proof of main result. First, let us prove Theorem 1.9.

Proof. LetG be a reductive group acting on V = Matmn preserving S = SINGn,m such thatNG(V ) ⊆
S. This action is given by a map ρ : G→ GL(V ). The fact that G preserves SINGn,m means that
the image ρ(G) is contained in the group of symmetries GS = Gn,m×Z/2. Now, consider a maximal
torus T of G. Then ρ(T ) is a subtorus of ρ(G) and hence a subtorus of Gn,m. Thus, ρ(T ) is
contained in a maximal torus of Gn,m and all maximal tori are conjugate under the action of Gn,m.
Thus, for some g ∈ Gn,m, we have that gρ(T )g−1 is a subtorus of the standard maximal torus Tn,m.
The standard maximal torus

Tn,m = {D1 ⊗D2 ⊗D3 | D1 ∈ Tm, D2 ∈ Tn, D3 ∈ Tn},

where Tk denotes the (standard) diagonal torus of GLk. Let ρ̃ : G→ GL(V ) be defined by ρ̃(h) =
gρ(h)g−1. This is also an action that satisfies the hypothesis, in particular, NG,ρ̃(V ) = g · NG,ρ(V ),
and has the added feature that ρ̃(T ) ⊆ Tn,m. The point of the above discussion was to establish the
fact that the standard basis {Eijk} of V is a weight basis for the action defined by ρ̃ (since it is a
weight basis for Tn,m). Thus, the null cone for the torus NT,ρ̃(V ) is a union of certain coordinate
subspaces of SINGn,m, and hence contained in NSINGn,m by Corollary 10.7. Thus, the null cone
NG,ρ̃(V ) = ρ̃(G) · NT,ρ̃(V ) ⊆ NSINGn,m because ρ̃(G) = gρ(G)g−1 ⊆ Gn,m o Z/2, which is the
group of symmetries of NSINGn,m.

Now, we simply observe that NG,ρ(V ) = g−1 · NG,ρ̃(V ) ⊆ g−1NSINGn,m = NSINGn,m, which is
the required conclusion. �

Before proving Theorem 1.8, let us quickly recollect the fact that NSINGn,m is a proper subset
of SINGn,m precisely when n,m ≥ 3. To begin, we refer the reader to [GGOW16, IQS17] for many
equivalent characterizations of the NSINGn,m (we will not recall them here). First, if n = 1 or
m = 1, it is obvious. For n = 2, NSING2,m = SING2,m follows from the fact that for 2 × 2 linear
matrices, their commutative rank and non-commutative rank are the same (this follows from [FR07,
Remark 1] or [DM17b, Lemma 2.9]). For m = 2, it follows from the fact that polynomials of the
form det(c1X1 +c2X2) generates the invariant ring for the action of SLn×SLn, see [Hap82, Hap84].
Thus NSINGn,2 is the zero locus of {det(c1X1 + c2X2) : ci ∈ C}, which is precisely SINGn,2.

On the other hand, for n = m = 3, the 3-tuple

X =

 0 1 0
−1 0 0
0 0 0

 ,

 0 0 1
0 0 0
−1 0 0

 ,

0 0 0
0 0 1
0 −1 0

 ∈ Mat3
3
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is in SING3,3 but not in NSING3,3 (see for example [FR07] or [DM18c, Example 1.1]). For larger n
and m, this example can be modified in straightforward ways to show that NSINGn,m is a proper
subset of SINGn,m.

Proof of Theorem 1.8. Since n,m ≥ 3, we know that NSINGn,m ( SINGn,m by the above discus-
sion. Suppose there was a group G acting on V = Matmn such that the null cone is SINGn,m. This
means in particular that G must preserve SINGn,m. Thus, we can apply Theorem 1.9 to deduce
that the null cone is contained in NSINGn,m, which is a contradiction. �

Finally, let us reiterate that if n or m is less than 3, then SINGn,m = NSINGn,m is the null cone
for the left-right action of SLn×SLn.

11. The ring generated by determinantal polynomials is not invariant for any
group action

Let D(n,m) denote the ring C[{det(
∑

i ciXi) : ci ∈ C}] ⊆ C[Matmn ]. We want to show that
this is not the invariant ring for the linear action of any group on V = Matn. First, it suffices to
restrict ourselves to subgroups of V . Indeed, if there was such a group G with an action, i.e., a map
ρ : G→ GL(V ), then the ring of invariants for the action of G is the same as the ring of invariants
for the action of ρ(G) which is a subgroup of GL(V ).

Let us look at the subgroup GD ⊆ GL(V ) consisting of all linear transformations that leave
det(

∑
i ciXi) invariant for all choices of ci ∈ C, i.e.,

GD = {g ∈ GL(V ) = GLmn2 | g · det(
∑
i

ciXi) = det(
∑
i

ciXi) ∀ ci ∈ C}.

Let us also define
Gdet = {g ∈ GL(Matn) = GLn2 | g · det = det}.

Recall from Frobenius that Gn,1 o Z/2 is the group of symmetries of SINGn,1. If we define
SLn,1 = {A⊗B | A,B ∈ SLn} ⊆ Gn,1, then it follows easily that

Gdet = SLn,1 oZ/2.

We will prove the following proposition:

Proposition 11.1. The group GD = {Im ⊗ C |C ∈ Gdet}.

Proof. Let g ∈ G ⊆ GLmn2 . Then write

g =

 g11 g12 . . . g1m
...

. . . . . .
...

gm1 . . . . . . gmm

 ,

where each block gij is an n2×n2 matrix (which describes the map from the jth copy of Matn to the
ith copy of Matn). We will denote the action of g by ∗ to avoid confusion with matrix multiplication.

Now, g (and g−1) fixes det(X1), so we have det(X1) = det(g∗X1). Observe that g∗(X1, 0, . . . , 0) =
(g11 ∗X1, . . . , gm1 ∗X1). In particular, we must have det(X1) = det(g11 ∗X1). Thus g11 ∈ Gdet.

In particular, let

h =

g
−1
11 . . . 0
...

. . .
...

0 . . . g−1
11

 ,

Then since g and h preserve det(X1), so does gh. Observe that we have

(gh ∗X)1 = X1 + g12g
−1
11 ∗X2 + · · ·+ g1mg

−1
11 ∗Xn.
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Let us write

L = g12g
−1
11 ∗X2 + · · ·+ g1mg

−1
11 ∗Xn.

We now have det(X1 + L) = det(X1), where L is a matrix whose entries are linear functions in
(Xi)j,k with i ≥ 2. Suppose L 6= 0, then w.l.o.g, let us assume L1,1 6= 0. When we expand out
det(X1 + L) with the definition as sum over all permutations, the term L1,1 · (X1)2,2 · (X1)3,3 · · · · ·
(X1)n,n occurs, and cannot be cancelled. This is because in no other permutation can we get the
subterm (X1)2,2 · (X1)3,3 · · · · · (X1)n,n. But then, this means that det(X1) 6= det(X1 +L), which is
a contradiction. Hence, L = 0. Since g11 ∈ GLn2 is invertible, this means that g12, . . . , g1m = 0.

The argument above generalizes in the following way: Consider the identification Matmn =
Matn⊗Km. Let the standard basis for this Km be {w1, . . . , wm}. Then the above argument
simply says that g preserves the “slice” Matn⊗w1. Clearly, the same argument will show that g
preserves Matn⊗w for all w ∈ Km. Specializing to each wi, we get that gij = 0 whenever i 6= j.
So, we have

g =

g11 . . . 0
...

. . .
...

0 . . . gmm

 .

Now, suppose g11 6= g22. Again, w.l.o.g, we can assume column 1 of g11 6= column 1 of g22. Then,
g ∗ (E1,1 ⊗ (w1 + w2)) /∈ Matn⊗(w1 + w2). Note that when viewing an n2 × n2 matrix (say N) as
linear transformations on Matn, the first column tells us the image of E1,1 under N . Thus g11 = g22.
By a similar argument gii = g11 for all i. To summarize, we have g = Im ⊗ g11 with g11 ∈ Gdet.
Thus GD ⊆ {Im ⊗ C |C ∈ Gdet}. The other inclusion is obvious. �

Proof of Theorem 1.16. Clearly, D(n,m) ⊆ C[V ]GD . Recall the left-right action of SLn×SLn on
V given by (A,B) · (X1, . . . , Xm) = (AX1B

t, . . . , AXmB
t). This action is given by a map ρ :

SLn×SLn → GL(Matn). The image of a reductive group under a morphism of algebraic groups is
reductive, so ρ(SLn×SLn) is a connected reductive subgroup of GL(V ). We observe that in fact
this is precisely the identity component of GD. Thus GD is a reductive group. Hence, the null cone
for GD is the same as the null cone for its identity component ρ(SLn×SLn), and hence equal to
the null cone for SLn×SLn, which we know is NSINGn,m. Thus to summarize, the zero locus of all
non-constant homogenous elements of C[V ]GD is NSINGn,m. On the other hand the zero locus of
all non-constant homogenous elements of D(n,m) is precisely SINGn,m. Thus, this means that we
have a proper inclusion D(n,m) ( C[V ]GD .

Now, suppose there was any group G such that C[V ]G = D(n,m). Suppose the action is given
by ρ : G→ GL(V ). Then ρ(G) ⊆ GD by the previous proposition, so C[V ]G = C[V ]ρ(G) ⊇ C[V ]GD .
But this is a contradiction because C[V ]G = D(n,m) ( C[V ]GD ⊆ C[V ]G. Thus, there is no such
group. �

12. Discussion and open questions

This paper demonstrates another collaboration of different fields in mathematics. Expanding on
ongoing work cited in the introduction, here too fundamental problems in computational complexity
have given rise to a new flavor of problems that are purely algebraic in nature, some of which arise
from analyzing analytic (rather than symbolic) algorithms. We feel that it is important to intro-
duce these problems to representation theorists, algebraic geometers and commutative algebraists.
The results of this paper open the door for several further avenues of research, inviting a further
collaboration between theoretical computer scientists and mathematicians to resolve them.
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Let us begin with the stating that SINGn,m is a very important variety to study due to its
connection to circuit lower bounds ([KI04]) that we mentioned earlier. Insights from any field of
mathematics may be helpful! The major open problem is of course:

Problem 12.1. Is there a deterministic polynomial time algorithm for SDIT?

Various subclasses of SDIT (and PIT) have polynomial time algorithms. For example, we say
an m-tuple of n × n matrices X = (X1, . . . , Xm) satisfies the property (R1) if the linear subspace
in Matmn spanned by X1, . . . , Xm has a basis consisting of rank 1 matrices. It turns out that if X
satisfies (R1), then X ∈ SINGn,m if and only if X ∈ NSINGn,m. Thus, SDIT restricted to tuples
with the (R1) property can be solved via a null cone membership algorithm! (this is implicit in
[Gur04]). One direction of future research is to consider the following natural generalization of the
(R1) property.

For fixed k ∈ Z≥1 We say X = (X1, . . . , Xm) satisfies the property (Rk) if the linear subspace in
Matmn spanned by X1, . . . , Xm has a basis consisting of rank ≤ k matrices.

Problem 12.2. Is there a deterministic polynomial time algorithm for SDIT for tuples satisfying
(Rk)? How about (R2)?

Next, we turn to the symmetry group of an algebraic subvariety.

Problem 12.3. What algorithms can one use to determine the group of symmetries of a subvariety?
How efficient are these algorithms?

In this paper, we explicitly determined the group of symmetries of one family of variety. It is
however very clear that most steps are algorithmic. Roughly speaking, if the generators for the
ideal of polynomials vanishing on the subvariety are given as an input, then determining the Lie
algebra of symmetries reduces to solving a system of linear equations. So, in terms of the input size
of such generating polynomials given by their coefficients, this Lie algebra part is efficient. It is not
clear to us how to obtain the group itself efficiently from the Lie algebra. Moreover, if we are given
the generating polynomials that describes the subvariety (set-theoretically) in an implicit, concise
way (as in SING) it seems that more work is needed even to define the computational task. It is
possible that when the generators themselves have some symmetries, or rich relations (as in SING),
one can do more.

Another general problem to be pursued is to get a better understanding of null cones (and orbit
closure equivalence classes)

Problem 12.4. Can one classify null cones? What features must a subvariety satisfy in order to
possibly be a null cone?

In this paper, we used mainly the fact that the null cone must be the translation (by a group ele-
ment) of a union of coordinate subspaces (i.e., the Hilbert–Mumford criterion). It will be interesting
to find other properties of null cones which distinguish them from arbitrary subvarieties.

A different direction to pursue is the following. The main result of this paper is that SINGn,m

is not a null cone for any reductive group action. Natural as this condition is mathematically (and
we use it and consequences of it here), it is not important algorithmically, and one can potentially
implement and analyze null cone membership algorithms using non-reductive groups.18 So, what if
we drop the reductivity assumption?

Problem 12.5. Can SINGn,m be the null cone for the action of a non-reductive group?

Now, we mention a few more problems which are a little bit more technical, and of interest to
commutative algebraists and algebraic geometers.

18Clearly, for such groups the definition of a null cone must be take to be the analytic one.
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Problem 12.6. Let I be the ideal of polynomials vanishing on SINGn,m. Determine the ideal
generators of I. Do the determinantal polynomials det(

∑
i ciXi) generate the ideal?

Problem 12.7. Consider the ring C[{det(
∑

i ciXi) : ci ∈ C}] ⊆ C[Matmn,n]. Is it Cohen–Macaulay?
What is its regularity, etc?
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Appendix A. Missing proofs for Section 3

In this appendix, we will give the complete details of the theoretical ideas that go into Lemma 3.1
and Proposition 3.2. First, we note a lemma that will find repeated use.

Lemma A.1. Let W be a (finite-dimensional) linear subspace and U be a linear subspace of W .
Then

{g ∈ GL(W ) | gU ⊆ U} = {g ∈ GL(W ) | gU = U}.
Proof. The proof is straightforward and left to the reader. �

Let S ⊆ V be a subvariety, and let IS denote the ideal of all polynomials that vanish on S. Recall
that the action of GL(V ) on V gives an induced action on the polynomial ring C[V ]. Further, this
action preserves the degree of the polynomials, so C[V ]≤d (subspace of polynomials of degree ≤ d)
and C[V ]a (subspace of homogeneous polynomials of degree a) are subrepresentations (for any non-
negative integers d and a). Recall that GS = {g ∈ GL(V ) | gS = S} is the group of symmetries.

Lemma A.2. The group of symmetries

GS = {g ∈ GL(V ) |g · IS ⊆ IS} = {g ∈ GL(V ) | g · IS = IS}.
Proof. Let us first prove the second equality. If we denote by (IS)≤d the subspace of IS consisting
of polynomials of degree ≤ d. Indeed, applying the above lemma to U = (IS)≤d and W = C[V ]≤d,
it follows that

{g ∈ GL(V ) |g · (IS)≤d ⊆ (IS)≤d} = {g ∈ GL(V ) | g · (IS)≤d = (IS)≤d

Since IS = ∪d(IS)≤d, the second equality follows. Note that we did not directly apply to IS ⊆
C[V ] because they are not finite-dimensional.

Now, let us prove the first equality. For g ∈ GS and f ∈ IS , we observe that for s ∈ S,
(g · f)(s) = f(g−1 · s) = 0. Thus g · f ∈ IS . This shows that g · IS ⊆ IS . This shows ⊆.

For the reverse inclusion. Suppose g ∈ GL(V ) is such that g · IS ⊆ IS . Then, by the second
equality, we know that g · IS = IS and hence g−1 · IS = IS . Now, suppose s ∈ S. We want to
show that g · s ∈ S. For any f ∈ IS , we have f(g · s) = (g−1 · f)(s) = 0 since g−1 · f ∈ IS . This
means that gS ⊆ S. Moreover, suppose v /∈ S. Then for some f ∈ IS , we have f(v) 6= 0. Thus
(g · f)(gv) = f(v) 6= 0. Since g · f ∈ IS , we get that gv /∈ S. Thus gSc ⊆ Sc, where Sc denotes the
complement of S in V .

Since gS ⊆ S and gSc ⊆ Sc, we have gS = S (because g is invertible). Thus g ∈ GS , and this
concludes the proof. �

The same proof gives the following statement.

Lemma A.3. Suppose the zero locus of (IS)≤d is precisely S. Then the group of symmetries

GS = {g ∈ GL(V ) |g · (IS)≤d ⊆ (IS)≤d}
Proof. Run the same argument as above, but even easier because the infinite dimensional issue
doesn’t arise. �

Proof of Lemma 3.1. Again run the same argument as above. The hypothesis of S being a cone can
be ignored. However, unless S is a cone, the zero locus of (IS)a cannot possibly equal S. �

Let us note that to invoke Lemma A.3 (or Lemma 3.1) in any explicit situation, one has to find
an appropriate d (or a), which is not always an easy task.

Next, we will carry over these results to the setting of Lie algebras, culminating in a proof of
Proposition 3.2. First, a focused introduction to Lie theory.
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A.0.1. Lightning introduction to Lie theory. Let us start with an example.

Example A.4. Let V be a complex vector space with basis e1, . . . , en, and let the corresponding
coordinate functions be denoted x1, . . . , xn. The group GL(V ) consists of all invertible linear trans-
formations from V to itself, and can be identified with invertible n × n matrices using the chosen
basis. Its Lie algebra gl(V ) consists of all linear transformations from V to itself, and so can be
identified with Matn. There is an exponential map exp : gl(V ) = Matn → GL(V ) = GLn that sends
M 7→ exp(M) = I +M + M2

2! + · · ·+ Mn

n! + . . . .

With this example in mind, let us give some definitions. A Lie group G is a smooth manifold
(over the real numbers R) which is also a group such that the multiplication map and inverse map
are smooth. To a Lie group G, one associates a Lie algebra denoted Lie(G) or g (in general, we may
use the corresponding fraktur letter to make notation less cumbersome). The Lie algebra Lie(G) is
the space of all left-invariant vector fields, equipped with a bilinear operation called the Lie bracket.

A vector field on G is the assignment of a tangent vector to each point of G. Left multiplication
by group elements allows us to identify the tangent space at any point with the tangent space at
the identity element e ∈ G. A vector field is called left-invariant if the assigned tangent vectors at
all the points are the same (with the identification mentioned above). Thus one can identify the
space of left-invariant vector fields with the tangent space at identity. A curve on G is called an
integral curve for a vector field if the tangent vector of the curve at every point agrees with the
vector field. For a left-invariant vector field M , the curve exp(tM) is the unique integral curve for
M that passes through e ∈ G at t = 0. In particular, d

dtexp(tM)|t=0 = M and this will be useful to
us.

In the case of GL(V ), let us reconcile the abstract definitions with the concrete ones in the above
definition. Note that GL(V ) = GLn is an open subset of Matn. Hence, the tangent space at the
identity can be identified with Matn. Thus gl(V ), the Lie algebra of GL(V ) can be identified with
Matn. The abstract exponential map coincides with the concrete description given in the example
above.

For any Lie subgroup H of any Lie group G, its Lie algebra is

Lie(H) = {M ∈ Lie(G) | exp(tM) ∈ H ∀t}.
Many Lie groups occur as subgroups of GL(V ), and these are often called matrix groups, and one

can work extremely concretely in the setting of matrix groups. However, not every Lie group is a
matrix group. For our purposes, the abstract point of view is elegant and helps us in the theoretical
results, and the concrete description is more conducive for computations which is our main goal.

For any smooth action of an Lie group G on a (finite-dimensional) vector space W by linear
transformations, we get a smooth morphism of Lie groups ρ : G→ GL(W ). On differentiating, we
get a morphism of Lie algebras dρ : Lie(G) → gl(W ). In other words, we get an induced action of
Lie(G) on W . Note that algebraic groups are Lie groups and algebraic actions of algebraic groups
are smooth.

The exponential map commutes with this, i.e., for M ∈ Lie(G) ⊆ gl(V ), we have exp(dρ ·
M) = ρ(exp(M)). We will simply write exp(M) for ρ(exp(M)) whenever there is no possibility of
confusion.

The action of GL(V ) on V (by left multiplication) gives an action of GL(V ) on C[V ], C[V ]≤d
(polynomials of degree ≤ d) and C[V ]a (homogeneous polynomials of degree a) by the formula
(g · f)(v) = f(g−1v). When we take W = C[V ]≤d or C[V ]a, the above discussion gives an action of
the Lie algebra gl(V ). Thus, we have an action of gl(V ) on C[V ]a and hence on C[V ] = ⊕a∈NC[V ]a.
The Lie algebra gl(V ) acts on C[V ] by derivations, and this we described explicitly in Section 4

A.0.2. Computing the Lie algebra of symmetries. First a lemma. Suppose we have a Lie group G
acting on a vector space W by linear transformations. Let U be a linear subspace of W . Then let
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GU := {g ∈ G | gU = U} = {g ∈ G | gU ⊆ U}. The latter equality follows from Lemma A.1. We
have:

Lemma A.5. The Lie algebra Lie(GU ) = {M ∈ Lie(G) | M · U ⊆ U}.
Proof. Suppose M ∈ Lie(GU ). Let u ∈ U . Then exp(tM) · u ∈ U for all t because exp(tM) ∈ GU .
Thus exp(tM) · u is a smooth curve in U . For the vector space W , the tangent space at any point
is W . For any smooth curve completely contained in U , it is clear that the tangent vectors at any
point of the curve is also in U . Thus, we have M · u = d

dt(exp(tM) · u)|t=0 ∈ U . So, we conclude
that M · U ⊆ U .

Conversely, suppose M · U ⊆ U . Then for u ∈ U , we have exp(tM) · u = limn→∞(
∑n

i=0
M i

i! ) · u.
Since each (

∑n
i=0

M i

i! ) · u ∈ U , the limit is also in U . Thus exp(tM) · U ⊆ U , which means that
exp(tM) ∈ GU . Hence, M ∈ Lie(GU ). �

Applying the above lemma, we can formulate the Lie algebra versions of the results at the
beginning of this appendix (i.e., Lemma A.2, Lemma A.3 and Lemma 3.1).

Proposition A.6. Let S ⊆ V be an algebraic subset, and let GS denote its group of symmetries,
and gS its Lie algebra of symmetries. Let IS denote the ideal of polynomial functions in C[V ] that
vanish on S. Then we have

gS = {M ∈ gl(V ) | M · IS ⊆ IS}.
Further, if IS is generated in degree ≤ d, then we have

gS = {M ∈ gl(V ) | M · (IS)≤d ⊆ (IS)≤d}.
Moreover, if S is a cone, then IS is graded, and for any a ∈ N, we have

gS ⊆ {M ∈ gl(V ) | M · (IS)a ⊆ (IS)a}.
Finally, if the zero locus of (IS)a is precisely the cone S, then we have equality.

The last part of the above proposition is precisely Proposition 3.2.

Appendix B. Missing proofs for Section 5

We will need the representation theory of GLm×GLn×GLn. In particular, an understanding of
weights and highest weight vectors will be needed. We will recall the necessary background.

For this section, let I ⊆ C[Matn] denote the ideal of polynomial functions that vanish on SINGn,m.
The first observation is that since SINGn,m is stable under the action of GLm×GLn×GLn, so is
I. Let us now make this more precise.

We have an action of GLm×GLn×GLn on Matmn given by

(9) (A,B,C) · (X1, . . . , Xm) = (

m∑
j=1

a1jBXjC
t,
∑
j

a2jBXjC
t, . . . ,

∑
j

amjBXjC
t),

where aij denotes the (i, j)th entry of A. While this is the most natural action, we will use a slight
variant of this action which will make easier some later arguments. Consider the Cartan involution19

θ : GLk → GLk given by θ(A) = (A−1)t. We will twist the above action with the Cartan involution
of each of the GL’s. In the below formula, we will write A′ = θ(A), B′ = θ(B) and C ′ = θ(C).
Moreover, we will write a′ij to denote the (i, j)th entry of A′. The action of GLm×GLn×GLn on
Matmn we will use is given by

(10) (A,B,C) · (X1, . . . , Xm) = (
m∑
j=1

a′1jB
′Xj(C

t)′,
∑
j

a′2jB
′Xj(C

t)′, . . . ,
∑
j

a′mjB
′Xj(C

t)′),

19Differentiating this gives the Cartan involution on Lie algebras described in Section 4.
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Let us now justify briefly why we use the second action instead of the first one. For k ∈ N, there
is a natural action of GLk on Ck (viewed as column vectors) by left multiplication. This gives the
contragredient action of GLk on (Ck)∗ (for g ∈ GLk and ζ ∈ (Ck)∗, the element g · ζ ∈ (Ck)∗ is
defined by g · ζ(v) = ζ(g−1 · v) for v ∈ Ck). This is the canonical action of GLk on (Ck)∗. Thus,
we have an action of GLm×GLn×GLn on (Cm)∗ ⊗ (Cn)∗ ⊗ (Cn)∗ where each GL acts on the
corresponding tensor factor.

Let e1, . . . , ek denote the standard basis for Ck and let e∗1, . . . , e∗k denote the corresponding dual
basis of (Ck)∗. We identify Matmn with (Cm)∗ ⊗ (Cn)∗ ⊗ (Cn)∗ as follows. X = (X1, . . . , Xm) ↔∑

i,j,k(Xi)j,ke
∗
i ⊗ e∗j ⊗ e∗k. With this identification, the action of GLm×GLn×GLn on (Cm)∗ ⊗

(Cn)∗ ⊗ (Cn)∗ agrees with the one in Equation 10 above.
The advantage of this action is that the induced action on the coordinate ring C[Matmn ] is a

“polynomial” representation. This is notationally advantageous for many reasons – in particular
that polynomial representations of GLm×GLn×GLn are indexed by triples of partitions (more
details later). The action on polynomial functions is as follows. For g ∈ GLm×GLn×GLn, and
f ∈ C[Matmn ], we have g · f is the polynomial defined by the formula g · f(X) = f(g−1 · X) for
X ∈ Matmn .

Lemma B.1. If X = (X1, . . . , Xm) ∈ SINGn,m, and g ∈ GLm×GLn×GLn, then g ·X ∈ SINGn,m.

Proof. Let g = (A,B,C) as above. We leave it to the reader to check that span(g · X) =
B′(span(X))(Ct)′. Since B and C are invertible, span(X) contains a non-singular matrix if and
only if span(g ·X) contains a non-singular matrix. �

Corollary B.2. The ideal I ⊆ C[Matmn ] is GLm×GLn×GLn stable.

Proof. Suppose f ∈ I, and g ∈ GLm×GLn×GLn. Then for anyX ∈ SINGn,m, we have (g·f)(X) =
f(g−1 ·X) = 0 since g−1 ·X ∈ SINGn,m by the above lemma. Thus, g · f vanishes on SINGn,m and
hence g · f ∈ I as required. �

We want to prove Proposition 5.1. The first part of the proposition follows since S = SINGn,m is
a cone. For, the second part, it is simple to see that Id = 0. Let x(k)

i,j denote the coordinate function

corresponding to the (i, j)th entry of the kth matrix, so C[Matmn ] = C[x
(k)
i,j | 1 ≤ i, j ≤ n, 1 ≤ k ≤ m].

Proof of Proposition 5.1, part (2). Take f ∈ C[Matmn ]d. Write f as a sum of monomials. Suppose

a monomial m =
∏

(x
(k)
ij )a

(k)
ij occurs in f with non-zero coefficient (In particular,

∑
a

(k)
ij = d).

Consider the support of m, i.e., Supp(m) = {(k, i, j) | a(k)
ij > 0}. The cardinality of Supp(m) is at

most d < n. Let X = (X1, . . . , Xm) be such that (Xk)ij = 1 if (k, i, j) ∈ Supp(m) and 0 otherwise.
Then the number of non-zero entries in any linear combination

∑
i ciXi is at most d. Any matrix

with at most d non-zero entries is singular, so this means that X ∈ SINGn,m
20. Moreover observe

that by construction f(X) = coefficient of m in f which is non-zero, so f /∈ Id. �

The action of GLm×GLn×GLn on polynomials preserve degree, so the homogeneous polyno-
mials of degree d, i.e., C[Matmn ]d is a subrepresentation. From the above corollary, we get that
In ⊆ C[Matmn ]n is a subrepresentation. The group GLm×GLn×GLn is reductive, so its represen-
tations can be decomposed as a direct sum of irreducible representations. Thus to understand In,
we will have to understand the irreducibles that make up In and their multiplicities.We will need
some representation theoretic results, and we will be very brief, picking up only those results that
are necessary.

20In fact X ∈ NSINGn,m – this is not hard (for example it follows from the shrunk subspace criterion, see
[GGOW16, IQS17]).
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Irreducible polynomial representations of GLm×GLn×GLn are indexed by triples of partitions
(λ, µ, ν) (where λ has at most m parts and µ, ν have at most n parts). A partition λ is a (finite)
decreasing sequence of positive numbers (λ1, λ2, . . . , λk). We write λ ` d if

∑
i λi = d. We will

denote the irreducible representation corresponding to (λ, µ, ν) by Sλ,µ,ν . An explicit description
is given by Schur functors. For any partition π, denote by Sπ the Schur functor corresponding to
π as defined in [Ful97]. Sπ is a functor from the category of vector spaces to itself. We refer to
[Ful97, Wey03] for an extensive introduction. For us, it suffices to remark that

Sλ,µ,ν = Sλ(Cm)⊗ Sµ(Cn)⊗ Sν(Cn).

Remark B.3. For a reductive group G, let {Vi : i ∈ I} denote the irreducible representations.
Then for any representation V , it can be decomposed as a direct sum of irreducibles. Such a
decomposition is not always unique. Let Ei denote the isotypic component w.r.t Vi, i.e., the sum of
all subrepresentations of V that are isomorphic to Vi. Then the isotypic decomposition V = ⊕i∈IEi
is unique. Further, each Ei = V ⊕mii , and mi is called the multiplicity of Vi in V .

Consider the decomposition of C[Matmn ]d into isotypic components

C[Matmn ]d =
⊕

λ,µ,ν`d
Eλ,µ,ν

where Eλ,µ,ν is the isotypic component corresponding to Sλ,µ,ν . We have Eλ,µ,ν = S
aλ,µ,ν
λ,µ,ν where

aλ,µ,ν ∈ N are the celebrated Kronecker coefficients. This is actually one of many equivalent ways
to define Kronecker coefficients. We now focus on degree n polynomials.

Lemma B.4. We have

aλ,1n,1n =

{
1 if λ = (n);

0 otherwise.

Proof. To see this, we have to understand Kronecker coefficients from the symmetric groups per-
spective. For a partition λ ` n, denote by Tλ the corresponding representation of Sn. Then the
decomposition of the tensor product Tλ⊗Tµ into irreducibles is described by Kronecker coefficients,
i.e.,

Tλ ⊗ Tµ =
⊕
ν

T
aλ,µ,ν
ν .

Note that for λ = 1n, Tλ corresponds to a 1-dimensional representation which is called the sign
representation. With this explicit description, one can deduce that Tλ⊗T1n = Tλ† where λ† denotes
the conjugate partition of λ. Thus, aλ,1n,1n = 0 unless λ = (1n)† = (n) and in the latter case, we
have a(n),1n,1n = 1. �

Lemma B.5. For partitions λ, µ, ν ` n, the isotypic component Eλ,µ,ν ∩ In = φ if µ 6= (1, 1, . . . , 1).

Proof. First, let Tk ⊆ GLk denote the standard torus, i.e., the all invertible diagonal matrices.
Then Tk is a maximal torus for GLk. For our purposes, T = Tm × Tn × Tn is a maximal torus of
GLm×GLn×GLn.

A weight vector for the action of GLm×GLn×GLn is simply a weight vector for T , which is
a torus. We have already discussed weight vectors for actions of tori. Further, the characters of
T = Tm×Tn×Tn can be identified with Zm×Zn×Zn, and so a triple of partitions (λ, µ, ν) (where
λ has at most m parts and µ, ν have at most n parts) can be identified with a character.

If Eλ,µ,ν ∩ In 6= φ, then In has a subrepresentation isomorphic to Sλ,µ,ν , then it has a highest
weight vector of weight (λ, µ, ν) (since Sλ,µ,ν is generated by such a highest weight vector – a basic
fact). Thus, to show that Eλ,µ,ν ∩ In = φ, it suffices to show that all weight vectors of weight
(λ, µ, ν) are not in In.
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Let us consider all weight vectors of weight (λ, µ, ν) in C[Matmn ]n. Let x
(k)
ij denote the coordinate

function corresponding to the (i, j)th entry of the kth matrixXk. Then its weight is (δk, δi, δj), where

δa = (0, . . . , 0, 1︸︷︷︸
a

, 0, . . . , 0). Thus for a monomial
∏

(x
(k)
ij )n

(k)
ij , its weight is

∑
n

(k)
ij (δk, δi, δj).

The collection of all weight vectors of weight (λ, µ, ν) in C[Matmn ] is a linear subspace spanned by
monomials of weight (λ, µ, ν). Observe that since µ ` n and µ 6= (1, 1, . . . , 1), we have that µn = 0.
Thus, any monomial of degree n whose weight is (λ, µ, ν) does not depend on the last rows of the
matrices.

Thus, any weight vector f of weight (λ, µ, ν) is a linear combination of monomials all of which
do not involve the last rows of the matrices. Let U ⊆ Matmn be the subspace of tuples of matrices
whose last row is zero. Then the weight vector f is a nonzero polynomial on U , and U ⊆ SINGn,m

(in fact U ⊆ NSINGn,m). Thus, the weight vectors of weight (λ, µ, ν) are not in In. �

Corollary B.6. The multiplicity of S(n),1n,1n in C[Matmn ]n is one, and this subrepresentation is
equal to In.

Proof. First, we note that In is a direct sum of irreducible subrepresentations of C[Matmn ]. Second,
we note that all the isotypic components other than E(n),1n,1n do not intersect In. This is because, for
any other choice of (λ, µ, ν) for which aλ,µ,ν > 0, we have either µ 6= 1n or ν 6= 1n by Lemma B.4.
If µ 6= 1n, then the above lemma tells us that the isotypic component does not intersect In. If
ν 6= 1n, the argument is similar (In the proof of the above lemma, one would use the last column
being zero rather than the last row). Thus In ⊆ E(n),1n,1n . Now, since a(n),1n,1n = 1 by Lemma B.4,
we know that E(n),1n,1n is irreducible and has no proper subrepresentations. Clearly In 6= {0} since
det(X1) ∈ In, so In = E(n),1n,1n , which comprises of the unique copy of S(n),1n,1n in C[Matmn ]n. �

Proof of Proposition 5.1, part (3). This can be seen in many ways, some very explicit. However,
we will take a short route out by making the following observation. Consider the action of
SLn×SLn ⊆ GLn×GLn ⊆ GLm×GLn×GLn by left-right multiplication on Matmn . Then, the
invariant polynomials of degree n are precisely the isotypic component corresponding to S(n),1n,1n

(see for example [Mak16, Proposition 4.1]), which by the above corollary is precisely In.
There has been much work on the ring of invariants for the SLn×SLn action. It is a special

case of a semi-invariant ring of quivers, in particular for the generalized Kronecker quiver. Such
semi-invariants have explicit determinantal descriptions, an important and non-trivial result shown
simultaneously and independently by three groups of researchers (see [DW00, SvdB01, DZ01]). From
this description, we get that the invariants of degree n for the action of SLn×SLn are spanned by
polynomials of the form det(

∑
i ciXi) (see [DM17b, IQS17]). This completes the proof. �

B.1. Ideal of polynomials vanishing on NSINGn,m. We note that all the arguments above for
understanding the ideal of polynomials vanishing on SINGn,m work equally well for NSINGn,m, and
one obtains:

Lemma B.7. Consider NSINGn,m ⊆ V = Matmn , and let J ⊆ C[V ] be the ideal of polynomial
functions that vanish on NSINGn,m. Then,

(1) J is graded;
(2) Ja is empty if a < n;
(3) Jn = span(det(

∑
i ciXi) : ci ∈ C).

Appendix C. Positive characteristic

In this section, we will point out the parts of the paper that require characteristic zero, and how
to make the requisite modifications for the statements to hold in. Let K be an algebraically closed
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field of arbitrary characteristic. The first issue comes with the use of Lie algebras. Lie algebras
are a little trickier to define because of the lack of derivatives when working over K. Nevertheless,
one can define the Lie algebra Lie(G) = g of an algebraic group G as the space of all derivations
of K[G]. As a vector space one can identify this with the tangent space at the identity element.
Next, one does not have an exponential map that allows us to pass back from the Lie algebra to
the group.

Now, let V be a vector space over K and let S ⊆ V be a subvariety. Let GS denote its group of
symmetries, G◦S its identity component and gS its Lie algebra. Let IS denote the ideal of polynomials
in K[V ] vanishing on S. When we work over K instead of C, the proof of Lemma 3.1 clearly goes
through and Proposition 3.2 still remains true, for example by [Mil17, Proposition 10.31].

The other main issue in implementing this strategy is to understand the degree n component of the
ideal of polynomials vanishing on SINGn,m, as done in the previous appendix. Let I = ISINGn,m ⊆
K[Matmn ]. On first glance, it looks like we used quite heavily the notion of complete reducibility for
GLm×GLn×GLn actions. But in fact, we can get away with far less. The first idea is to restrict
our attention to SLn×SLn. Clearly In is an SLn×SLn subrepresentation. It need not break up
as a direct sum of irreducibles, but will definitely have a composition series. Nevertheless, In is a
direct sum of weight spaces. We claim that the only highest weight vectors that can be in In must
have weight zero. Basically the argument we used in the previous section shows that any highest
weight vector (for GLn×GLn) in In must have weight ((1, 1, . . . , 1), (1, 1, . . . , 1)). Highest weight
vectors for GLn×GLn are precisely the same as the highest weight vectors for SLn×SLn, and the
weight ((1, 1, . . . , 1), (1, 1, . . . , 1)) for GLn×GLn corresponds to the zero weight for SLn×SLn.

Now, let X denote the set of all weights for In (w.r.t SLn×SLn) whose multiplicity is nonzero.
It is well known (and easy to see) that the set of weights is stable under the action of the symmetric
group Sn (also known as the Weyl group). If X contains a non-zero weight, then it contains a
non-zero dominant weight (using the action of Sn). Consider the collection of all non-zero dominant
weights. Since this is a finite set, it has a maximal element w.r.t to the usual partial order (λ ≺ µ
if µ − λ is a sum of positive roots). Any weight vector for this maximal weight must be a highest
weight vector! But this contradicts the discussion above, so X must be the singleton set {0}.

In other words, In is an SLn×SLn stable subspace of the zero weight space (in the space of
degree n polynomials on Matmn ). Irreducible representations of SLn×SLn are indexed by their
highest weights (holds true in all characteristics), and so any composition series for In must only
contain trivial representations. However, trivial representations do not have any self-extensions,
so In must be a direct sum of trivial representations. In other words, In must be a subspace of
the SLn×SLn invariants. On the other hand, we know (by [DW00]) that SLn×SLn invariants
are spanned by polynomials of the form det(

∑
i ciXi), which are all clearly in In. This shows that

Proposition 5.1 continues to hold.
Now, armed with the above results, one sees that the computation of gS for S = SINGn,m is

exactly the same, and we get gS = Lie(Gn,m). However, the subgroups-subalgebras correspondence
is not necessarily true over fields of positive characteristic, so we cannot immediately conclude
that G◦S = Gn,m. However, it is definitely clear that Gn,m ⊆ G◦S . Suppose G◦S were a strictly
larger algebraic group, then dimG◦S > dimGn,m = dim(Lie(Gn,m)) = gS . Note that dim(Gn,m) =
dim(Lie(Gn,m)) follows from the fact thatGn,m is smooth (or one can simply compare the dimensions
to those in characteristic zero). Thus, we have dimG◦S > dim gS , but this is a contradiction because
dim gS is the dimension of the tangent space at identity for G◦S , which is always at least dimG◦S
(see [Mil17, Proposition 1.37]). Hence, we have G◦S = Gn,m. The computation of the entire group
of symmetries follows verbatim. The same arguments also compute the group of symmetries for
NSINGn,m just as in the characteristic zero case.

The rest of the arguments are effectively the same. The coordinate subspaces in NSINGn,m and
SINGn,m have exactly the same descriptions in terms of permutation free supports, and so as long
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as NSINGn,m ( SINGn,m, the latter cannot be a null cone. Finally, to show that NSINGn,m (
SINGn,m for n,m ≥ 3, we relied on an explicit example of 3-tuple of 3 × 3 matrices which was in
SINGn,m, but not in NSINGn,m. This example continues to hold in positive characteristic as well,
which can be explicitly checked (it can also be derived as a special case of [DM19, Proposition 1.8]
for p = 1).
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