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Abstract

The k-Even Set problem is a parameterized variant of the Minimum Distance Problem of
linear codes over F2, which can be stated as follows: given a generator matrix A and an
integer k, determine whether the code generated by A has distance at most k, or in other
words, whether there is a nonzero vector x such that Ax has at most k nonzero coordinates.
The question of whether k-Even Set is fixed parameter tractable (FPT) parameterized by
the distance k has been repeatedly raised in literature; in fact, it is one of the few remaining
open questions from the seminal book of Downey and Fellows (1999). In this work, we
show that k-Even Set is W[1]-hard under randomized reductions.

We also consider the parameterized k-Shortest Vector Problem (SVP), in which we are
given a lattice whose basis vectors are integral and an integer k, and the goal is to determine
whether the norm of the shortest vector (in the `p norm for some fixed p) is at most k.
Similar to k-Even Set, understanding the complexity of this problem is also a long-standing
open question in the field of Parameterized Complexity. We show that, for any p > 1, k-SVP
is W[1]-hard to approximate (under randomized reductions) to some constant factor.
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1 Introduction

The study of error-correcting codes gives rise to many interesting computational problems.
One of the most fundamental among these is the problem of computing the distance of a linear
code. In this problem, which is commonly referred to as the Minimum Distance Problem (MDP),
we are given as input a generator matrix A ∈ Fn×m

2 of a binary1 linear code and an integer k.
The goal is to determine whether the code has distance at most k. Recall that the distance of a
linear code is min

0 6=x∈Fm
2

‖Ax‖0 where ‖ · ‖0 denote the 0-norm (aka the Hamming norm).

To see the fundamental nature of MDP, let us discuss two other natural ways of arriving
at (equivalent formulations of) this problem. MDP has the following well-known dual formu-
lation: the minimum distance of the code generated by A ∈ Fn×m

2 can be also expressed as
min

0 6=y∈Fm
2 ,A⊥y=0

‖y‖0, where A⊥ is the orthogonal complement of A. In other words, finding the

minimum distance of the code is equivalent to finding the minimum set of linearly dependent
vectors among the column vectors of A⊥. Thus, MDP is equivalent to the the Linear Dependent
Set problem on vectors over F2 or, using the language of matroid theory, solving the Shortest
Circuit problem on a represented binary matroid.

One can arrive at a more combinatorial formulation of the problem as a variant of the
Hitting Set problem. Given a set system S over a universe U and an integer k, the Hitting Set
problem asks for a k-element subset X of U such that |S ∩ X| 6= 0 for every S ∈ S . Hitting Set
is a basic combinatorial optimization that is well studied (often under the dual formulation
Set Cover) in the approximation algorithms and the parameterized complexity literature. More
restrictive versions of the problem are the Exact Hitting Set problem, where we require |S ∩
X| = 1, and the Odd Set problem, where we require |S ∩ X| to be odd. By analogy, we can
define the Even Set problem, where we require |S ∩ X| to be even, but in this case we need to
add the requirement X 6= ∅ to avoid the trivial solution. While Hitting Set, Exact Hitting Set,
and Odd Set are known to be W[1]-hard parameterized by k, Even Set can be easily seen to be
equivalent to MDP (in the dual formulation of MDP, the rows of A⊥ play the same role as the
sets in S).

The study of this problem dates back to at least 1978 when Berlekamp et al. [BMvT78]
conjectured that it is NP-hard. This conjecture remained open for almost two decades until it
was positively resolved by Vardy [Var97a, Var97b]. Later, Dumer et al. [DMS03] strengthened
this intractability result by showing that even approximately computing the minimum distance
of the code is hard. Specifically, they showed that, unless NP = RP, no polynomial time
algorithm can distinguish between a code with distance at most k and one whose distance is
greater than γ · k for any constant γ > 1. Furthermore, under stronger assumptions, the ratio
can be improved to superconstants and even almost polynomial. Dumer et al.’s result has been
subsequently derandomized by Cheng and Wan [CW12] and further simplified by Austrin and
Khot [AK14] and Micciancio [Mic14].

While the aforementioned intractability results rule out not only efficient algorithms but
also efficient approximation algorithms for MDP, there is another popular technique in coping
with NP-hardness of problems which is not yet ruled out by the known results: parameteriza-

1Note that MDP can be defined over larger fields as well; we discuss more about this in Section 8.
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tion.

In parameterized problems, part of the input is an integer that is designated as the param-
eter of the problem, and the goal is now not to find a polynomial time algorithm but a fixed
parameter tractable (FPT) algorithm. This is an algorithm whose running time can be upper
bounded by some (computable) function of the parameter in addition to some polynomial in
the input length. Specifically, for MDP, its parameterized variant2 k-MDP has k as the parame-
ter and the question is whether there exists an algorithm that can decide if the code generated
by A has distance at most k in time f (k) · poly(mn) where f can be any computable function
that depends only on k.

Note that k-MDP can be solved in nO(k) time. This can be easily seen in the dual formu-
lation, as we can enumerate through all vectors y with Hamming norm at most k and check
whether A⊥y = 0. In Parameterized Complexity language, this means that k-MDP belongs to
the class XP.

The parameterized complexity of k-MDP was first questioned by Downey
et al. [DFVW99], who showed that parameterized variants of several other coding-theoretic
problems, including the Nearest Codeword Problem and the Nearest Vector Problem3 which
we will discuss in more details in Section 1.1.1, are W[1]-hard. Thereby, assuming the
widely believed W[1] 6= FPT hypothesis, these problems are rendered intractable from the
parameterized perspective. Unfortunately, Downey et al. fell short of proving such hardness
for k-MDP and left it as an open problem:

Open Question 1.1. Is k-MDP fixed parameter tractable?

Although almost two decades have passed, the above question remains unresolved to this
day, despite receiving significant attention from the community. In particular, the problem
was listed as an open question in the seminal 1999 book of Downey and Fellows [DF99] and
has been reiterated numerous times over the years [DGMS07, FGMS12, GKS12, FM12, DF13,
CFJ+14, CFK+15, BGGS16, CFHW17, Maj17]. This problem is one of the few questions that
remained open from the original list of Downey and Fellows [DF99]. In fact, in their second
book [DF13], Downey and Fellows even include this problem as one of the six4 “most infa-
mous” open questions in the area of Parameterized Complexity.

Another question posted in Downey et al.’s work [DFVW99] that remains open is the pa-
rameterized Shortest Vector Problem (k-SVP) in lattices. The input of k-SVP (in the `p norm) is
an integer k ∈ N and a matrix A ∈ Zn×m representing the basis of a lattice, and we want
to determine whether the shortest (non-zero) vector in the lattice has length at most k, i.e.,
whether min

0 6=x∈Zm
‖Ax‖p 6 k. Again, k is the parameter of the problem. It should also be noted

here that, similar to [DFVW99], we require the basis of the lattice to be integer valued, which
is sometimes not enforced in literature (e.g. [vEB81, Ajt98]). This is because, if A is allowed to
be any matrix in Rn×m, then parameterization is meaningless because we can simply scale A
down by a large multiplicative factor.

2Throughout Sections 1 and 2, for a computational problem Π, we denote its parameterized variant by k-Π,
where k is the parameter of the problem.

3The Nearest Vector Problem is also referred to in the literature as the Closest Vector Problem.
4So far, two of the six problems have been resolved: that of parameterized complexity of k-Biclique [Lin18] and

that of parameterized approximability of k-Dominating Set [KLM19].
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The (non-parameterized) Shortest Vector Problem (SVP) has been intensively studied, mo-
tivated partly due to the fact that both algorithms and hardness results for the problem have
numerous applications. Specifically, the celebrated LLL algorithm for SVP [LLL82] can be
used to factor rational polynomials, and to solve integer programming (parameterized by the
number of unknowns) [Len83] and many other computational number-theoretic problems (see
e.g. [NV10]). Furthermore, the hardness of (approximating) SVP has been used as the basis of
several cryptographic constructions [Ajt98, AD97, Reg03, Reg05]. Since these topics are out
of scope of our paper, we refer the interested readers to the following surveys for more de-
tails: [Reg06, MR09, NV10, Reg10].

On the computational hardness side of the problem, van Emde-Boas [vEB81] was the first
to show that SVP is NP-hard for the `∞ norm, but left open the question of whether SVP on the
`p norm for 1 6 p < ∞ is NP-hard. It was not until a decade and a half later that Ajtai [Ajt96]
showed, under a randomized reduction, that SVP for the `2 norm is also NP-hard; in fact, Aj-
tai’s hardness result holds not only for exact algorithms but also for (1 + o(1))-approximation
algorithms as well. The o(1) term in the inapproximability ratio was then improved in a sub-
sequent work of Cai and Nerurkar [CN99]. Finally, Micciancio [Mic00] managed to achieve a
factor that is bounded away from one. Specifically, Micciancio [Mic00] showed (again under
randomized reductions) that SVP on the `p norm is NP-hard to approximate to within a factor
of p
√

2 for every 1 6 p < ∞. Khot [Kho05] later improved the ratio to any constant, and even
to 2log1/2−ε(nm) under a stronger assumption. Haviv and Regev [HR07] subsequently simplified
the gap amplification step of Khot and, in the process, improved the ratio to almost polyno-
mial. We note that both Khot’s and Haviv-Regev reductions are also randomized and it is still
open to find a deterministic NP-hardness reduction for SVP in the `p norms for 1 6 p < ∞
(see [Mic12]); we emphasize here that such a reduction is not known even for the exact (not
approximate) version of the problem. For the `∞ norm, the following stronger result due to
Dinur [Din02] is known: SVP in the `∞ norm is NP-hard to approximate to within nΩ(1/ log log n)

factor (under a deterministic reduction).

Very recently, fine-grained studies of SVP have been initiated [BGS17, AS18]. The au-
thors of [BGS17, AS18] showed that SVP for any `p norm cannot be solved (or even approx-
imated to some constant strictly greater than one) in subexponential time assuming the ex-
istence of a certain family of lattices5 and the (randomized) Gap Exponential Time Hypothesis
(Gap-ETH) [Din16, MR16], which states that no randomized subexponential time algorithm
can distinguish between a satisfiable 3-CNF formula and one which is only 0.99-satisfiable.

As with MDP, Downey et al. [DFVW99] were the first to question the parameterized
tractability of k-SVP (for the `2 norm). Once again, Downey and Fellows included k-SVP as
one of the open problems in both of their books [DF99, DF13]. As with Open Question 1.1, this
question remains unresolved to this day:

Open Question 1.2. Is k-SVP fixed parameter tractable?

We remark here that, similar to k-MDP, k-SVP also belongs to XP, as we can enumerate
over all vectors with norm at most k and check whether it belongs to the given lattice. There
are only (mn)O(kp) such vectors, and the lattice membership of a given vector can be decided

5This additional assumption is only needed for 1 6 p 6 2. For p > 2, their hardness is conditional only on
Gap-ETH.
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in polynomial time (e.g., see page 18 [MG12]). Hence, this is an (nm)O(kp)-time algorithm for
k-SVP.

1.1 Our Results

The main result of this paper is a resolution to the previously mentioned Open Ques-
tions 1.1 and 1.2: more specifically, we prove that k-MDP and k-SVP (on `p norm for any p > 1)
are W[1]-hard under randomized reductions. In fact, our result is stronger than stated here as
we rule out not only exact FPT algorithms but also FPT approximation algorithms as well. In
particular, all of our results use the W[1]-hardness of approximating the k-BICLIQUE problem
recently proved by Lin [Lin18] as a starting point.

With this in mind, we can state our results starting with the parameterized intractability
of k-MDP, more concretely (but still informally), as follows:

Theorem 1.3 (Informal; see Theorem 6.1). For any γ > 1, given input (A, k) ∈ Fn×m
2 ×N, it is

W[1]-hard (under randomized reductions) to distinguish between

• the distance of the code generated by A is at most k , and,

• the distance of the code generated by A is more than γ · k.

Notice that our above result rules out FPT approximation algorithms with any constant
approximation ratio for k-MDP. In contrast, we can only prove FPT inapproximability with
some constant ratio for k-SVP in `p norm for p > 1. These are stated more precisely below.

Theorem 1.4 (Informal; see Theorem 7.1). For any p > 1, there exists a constant γp > 1 such
that given input (A, k) ∈ Zn×m ×N, it is W[1]-hard (under randomized reductions) to distinguish
between

• the `p norm of the shortest vector of the lattice generated by A is 6 k, and,

• the `p norm of the shortest vector of the lattice generated by A is > γp · k.

We remark that our results do not yield hardness for SVP in the `1 norm and this remains
an interesting open question. Section 8 contains discussion on this problem. We also note that,
for Theorem 7.1 and onwards, we are only concerned with p 6= ∞; this is because, for p = ∞,
the problem is NP-hard to approximate even when k = 1 [vEB81]!

1.1.1 Nearest Codeword Problem and Nearest Vector Problem

As we shall see in Section 2, our proof proceeds by first showing FPT hardness of approxi-
mation of the non-homogeneous variants of k-MDP and k-SVP called the k-Nearest Codeword
Problem (k-NCP) and the k-Nearest Vector Problem (k-NVP) respectively. For both k-NCP and
k-NVP, we are given a target vector y (in Fn

2 and Zn, respectively) in addition to (A, k), and
the goal is to find whether there is any x (in Fm

2 and Zm, respectively) such that the (Hamming
and `p, respectively) norm of Ax− y is at most k. Note that their homogeneous counterparts,

5



namely k-MDP and k-SVP, explicitly require the coefficient vector x to be non-zero, and hence
they cannot be interpreted as special cases of k-NCPand k-NVP respectively.

As an intermediate step of our proof, we show that the k-NCP and k-NVP problems are
hard to approximate6 (see Theorem 5.1 and Theorem 7.2 respectively). This should be com-
pared to Downey et al. [DFVW99], in which the authors show that both problems are W[1]-
hard to solve exactly. Therefore our inapproximability result significantly improves on their
work to rule out any polylog(k) factor FPT-approximation algorithm (assuming W[1] 6= FPT)
and are also the first inapproximability results for these problems.

We end this section by remarking that the computational complexity of both (non-
parameterized) NCP and NVP are also thoroughly studied (see e.g. [Mic01, DKRS03, Ste93,
ABSS97, GMSS99] in addition to the references for MDP and SVP), and indeed the inapprox-
imability results of these two problems form the basis of hardness of approximation for MDP
and SVP. We would like to emphasize that while W[1]-hardness results were known for k-NCP
and k-NVP, it does not seem easy to transfer them to W[1]-hardness results for k-MDP and
k-SVP; we really need parameterized inapproximability results for k-NCP and k-NVP to be able
to transfer them to (slightly weaker) inapproximability results for k-MDP and k-SVP. There
are other parameterized problems that resisted all efforts at proving hardness so far, and we
believe that it may be the case for these problems as well that building a chain of inapproxima-
bility results is more feasible than building a chain of W[1]-hardness results.

1.2 Organization of the paper

In the next section, we give an overview of our reductions and proofs. After that, in Section 3,
we define additional notation and preliminaries needed to fully formalize our proofs. In Sec-
tion 4, we show the inapproximability of k-Linear Dependent Set (k-LDS), a problem naturally
arising from linear algebra, that would be used as the base step for all future inapproximability
results in this paper. In Section 5 we show the inapproximability of k-NCP. Next, in Section 6,
we establish the constant inapproximability of k-MDP. Section 7 provides the inapproxima-
bility of k-NVP and k-SVP. Finally, in Section 8, we conclude with a few open questions and
research directions.

2 Proof Overview

In the non-parameterized setting, all the aforementioned inapproximability results for both
MDP and SVP are shown in two steps: first, one proves the inapproximability of their inho-
mogeneous counterparts (i.e. NCP and NVP), and then reduces them to MDP and SVP. We
follow this general outline. That is, we first show, that both k-NCP and k-NVP are W[1]-hard to
approximate. Then, we reduce k-NCP and k-NVP to k-MDP and k-SVP respectively. In this sec-
ond step, we employ an adaptation of Dumer et al.’s reduction [DMS03] for k-MDP and Khot’s
reduction [Kho05] for k-SVP. While the latter reduction works almost immediately in the pa-
rameterized regime, there are several technical challenges in adapting Dumer et al.’s reduction

6While our k-MDP result only applies for F2, it is not hard to see that our intermediate reduction for k-NCP
actually applies for every finite field Fq too.

6



to our setting. The remainder of this section is devoted to presenting all of our reductions and
to highlight such technical challenges and changes in comparison with the non-parameterized
setting.

As mentioned before, the starting point of all the hardness results in this paper is the
W[1]-hardness of approximating the k-BICLIQUE problem. In Subsection 2.2, we show a gap-
retaining reduction from the gap k-BICLIQUE problem to gap k-Linear Dependent Set (referred
to hereafter as k-LDS), an intermediate problem that we introduce which might be of inde-
pendent interest. We show a gap-retaining reduction from gap k-LDS to gap k-NCP in Subsec-
tion 2.3, and then a randomized reduction from gap k-NCP to k-MDP in Subsection 2.4. Finally,
in Subsection 2.5, we show a gap-retaining reduction from gap k-LDS to gap k-NVP, and then
a randomized reduction from gap k-NVP to k-SVP.

In the next subsection, we first give an overview of Dumer et al.’s reduction [DMS03] and
highlight the challenges in extending their reduction to the parameterized setting, following
which we give a sketch of the various steps involved in the actual reduction to k-MDP.

2.1 The Dumer-Micciancio-Sudan reduction

We start this subsection by describing the Dumer et al.’s (henceforth DMS) reduction [DMS03].
The starting point of the DMS reduction is the NP-hardness of approximating NCP to any
constant factor [ABSS97]. Let us recall that in NCP we are given a matrix A ∈ Fn×m

2 , an integer
k, and a target vector y ∈ Fn

2 , and the goal is to determine whether there is any x ∈ Fm
2 such

that ‖Ax− y‖0 is at most k. Arora et al. [ABSS97] shows that for any constant γ > 1, it is
NP-hard to distinguish the case when there exists x such that ‖Ax − y‖0 6 k from the case
when for all x we have that ‖Ax− y‖0 > γk.

Dumer et al. introduce the notion of “locally dense codes” to enable a gadget reduction
from NCP to MDP. Informally, a locally dense code is a linear code L with minimum distance d
admitting a ball B(s, r) centered at s of radius7 r < d and containing a large (exponential in the
dimension) number of codewords. Moreover, for the gadget reduction to MDP to go through,
we require not only the knowledge of the code, but also the center s and a linear transformation
T used to index the codewords in B(s, r), i.e., T maps B(s, r) ∩ L onto a smaller subspace.
Given an instance (A, y, k) of NCP, and a locally dense code (L, T, s) whose parameters (such
as dimension and distance) we will fix later, Dumer et al. build the following matrix:

B =



ATL −y
...

...
ATL −y

L −s
...

...
L −s

 b copies

a copies
, (1)

where a, b are some appropriately chosen positive integers. If there exists x such that
‖Ax− y‖0 6 k then consider z′ such that TLz′ = x (we choose the parameters of (L, T, s), in

7Note that for the ball to contain more than a single codeword, we must have r > d/2.
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particular the dimensions of L and T such that all these computations are valid). Let z = z′ ◦ 1,
and note that ‖Bz‖0 = a‖Ax− y‖0 + b‖Lz− s‖0 6 ak + br. In other words, if (A, y, k) is a YES
instance of NCP then (B, ak + br) is a YES instance of MDP. On the other hand if we had that
for all x, the norm of ‖Ax− y‖0 is more than γk for some constant8 γ > 2, then it is possible
to show that for all z we have that ‖Bz‖0 > γ′(ak + br) for any γ′ < 2γ

2+γ . The proof is based
on a case analysis of the last coordinate of z. If that coordinate is 0, then, since L is a code of
distance d, we have ‖Bz‖0 > bd > γ′(ak + br); if that coordinate is 1, then the assumption that
(A, y, k) is a NO instance of NCP implies that ‖Bz‖0 > aγk > γ′(ak + br). Note that this gives
an inapproximability for MDP of ratio γ′ < 2; this gap is then further amplified by a simple
tensoring procedure.

We note that Dumer et al. were not able to find a deterministic construction of locally
dense code with all of the above described properties. Specifically, they gave an efficient de-
terministic construction of a code L, but only gave a randomized algorithm that finds a linear
transformation T and a center s w.h.p. Therefore, their hardness result relies on the assump-
tion that NP 6= RP, instead of the more standard NP 6= P assumption. Later, Cheng and Wan
[CW12] and Micciancio [Mic14] provided constructions for such (families of) locally dense
codes with an explicit center, and thus showed the constant ratio inapproximability of MDP
under the assumption of NP 6= P.

Trying to follow the DMS reduction in order to show the parameterized intractability of
k-MDP, we face the following three immediate obstacles. First, there is no inapproximability
result known for k-NCP, for any constant factor greater than 1. Note that to use the DMS
reduction, we need the parameterized inapproximability of k-NCP, for an approximation factor
which is greater than two. Second, the construction of locally dense codes of Dumer et al.
only works when the distance is linear in the block length (which is a function of the size of
the input). However, we need codes whose distance are bounded above by a function of the
parameter of the problem (and not dependent on the input size). This is because the DMS
reduction converts an instance (A, y, k) of k-NCP to an instance (B, ak + br) of (ak + br)-MDP,
and for this reduction to be an FPT reduction, we need ak + br to be a function only depending
on k, i.e., d, the distance of the code L (which is at most 2r), must be a function only of k. Third,
recall that the DMS reduction needs to identify the vectors in the ball B(s, r) ∩ L with all the
potential solutions of k-NCP. Notice that the number of vectors in the ball is at most (nm)O(r)

but the number of potential solutions of k-NCP is exponential in m (i.e. all x ∈ Fm
2 ). However,

this is impossible since r 6 d is bounded above by a function of k!

We overcome the first obstacle by proving the inapproximability of k-NCP upto poly-
logarithmic factors under W[1] 6= FPT (see Subsection 2.2). Note that in order to follow the
DMS reduction, it suffices to just show the inapproximability of k-NCP for some constant fac-
tor greater than 2; nonetheless the hardness of approximating k-NCP up to poly-logarithmic
factors is of independent interest.

We overcome the third obstacle by introducing an intermediate problem in the DMS re-
duction, which we call the sparse nearest codeword problem. The sparse nearest codeword prob-
lem is a promise problem which differs from k-NCP in the following way: the objective here
considers the distance of the target vector y to the nearest codeword Ax as well as the Ham-

8Note that in the described reduction, we need the inapproximability of NCP to a factor greater than two, even
to just reduce to the exact version of MDP.
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ming weight of the coefficient vector x which realizes the nearest codeword. We show the
inapproximability of the sparse nearest codeword problem (See Subsection 2.3).

Finally, we overcome the second obstacle by introducing a variant of locally dense codes,
which we call locally suffix dense codes. Roughly speaking, we show that any systematic code
which nears the sphere-packing bound (aka Hamming bound) in the high rate regime is a
locally suffix dense code. Then we follow the DMS reduction with the new ingredient of lo-
cally suffix dense codes (replacing locally dense codes) to reduce the sparse nearest codeword
problem to k-MDP.

The full reduction goes through several intermediate steps, which we will describe in
more detail in the coming subsections. The high-level summary of these steps is also provided
in Figure 1. Throughout this section, for any gap problem, if we do not specify the gap in the
subscript, then it implies that the gap can be any arbitrary constant (or even super constant).

2.2 Parameterized Inapproximability of k-LDS

To prove the inapproximability of MDP we first consider its dual problem LDS. Given a set
A of n vectors over a finite field Fq and an integer k, the goal of k-LDS problem is to decide if
there are k vectors in A that are linearly dependent. The gap version of this problem (GAPLDS)
is to distinguish the case when there are k vectors in A that are linearly dependent from the
case when any γk (γ > 1) vectors in A are linearly independent. As briefly touched upon
in the introduction, k-LDS is closely related to k-MDP: one might think of A as a matrix in
Fn×m

q and the goal of k-LDS is to find a vector y ∈ Fm
q with ‖y‖0 6 k and Ay = 0, then k-

LDS is a yes-instance if and only if min
0 6=x∈Fn′

q

‖A⊥x‖0 6 k, where A⊥ ∈ Fm×n′
q is a matrix with

maximum number of linearly independent column vectors such that AA⊥ = 0. Note that
the parameterized inapproximability of k-MDP follows by the parameterized intractability of
GAPLDS over the binary field.

However, we cannot prove the hardness of GAPLDS over the binary field directly. Instead,
we tackle this problem in three steps. Our first step is to show the parameterized intractability
of GAPLDS over large fields by giving a reduction from the ONE-SIDED BICLIQUE problem to
GAPLDS.

It will be more convenient to view the inapproximability result of ONE-SIDED BICLIQUE

from [Lin18] as a hardness of the following problem which we call BIPARTITE SUBGRAPH WITH

MINIMUM DEGREE (BSMD): given a bipartite graph G and positive integers s, h with s 6 h,
find smallest (in terms of edges) non-empty subgraph of G such that every left vertex of the
subgraph has degree at least h and every right vertex has degree at least s. Here the parameter
is s + h. The gap version of BSMD, called GAPBSMDγ, is to distinguish between (i) the YES
case in which G contains a complete bipartite graph with s vertices on the left and h on the
right (which satisfies the property with hs edges) and (ii) the NO case in which every desired
subgraph must have at least γ · hs edges.

It is not hard to see that Lin’s reduction, with appropriate parameter setting, gives W[1]-
hardness of GAPBSMDγ for any constant γ. In what follows we sketch the reduction from
GAPBSMD to GAPLDS. Given an instance (G = (L, R, E), s, h) of GAPBSMD, we choose a
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GAPLDS COLORED GAPLDS GAPMLD

k-CLIQUE ONE-SIDED BICLIQUE GAPBSMD

GAPSNC GAPMDP1.01 GAPMDP

[Lin18] Section 4.1

Section 4.2

Color-Coding Technique
(Section 4.2.1)

Section 5.2

Section 6.1

Introducing LSDC to
DMS reduction

(Sections 6.2.1 and 6.2.2)

Gap Amplification
(Proposition 6.6)

Figure 1: The figure provides an overview of our reduction from the canonical W[1]-complete
k-Clique problem to the parameterized Minimum Distance problem. Our starting point is
the gap one-sided biclique problem which is now known to be W[1]-hard from Lin’s work
[Lin18]. Based on the hardness of approximating the one-sided biclique problem, we obtain
the constant inapproximability of a different graph problem, namely the bipartite subgraph
with minimum degree problem (GAPBSMD); see Section 4.1 for details. Next, we reduce
GAPBSMD to the gap linear dependent set problem (GAPLDS) in Section 4.2, and then use
standard color-coding techniques in Section 4.2.1 to obtain the constant inapproximability of
a colored version of GAPLDS over fields of non-constant size. In Section 5.2, we reduce the
aforementioned colored version of GAPLDS to the GAPMLD problem over F2, and thus rule
out constant approximation parameterized algorithms for NCP. Via a simple reduction from
GAPMLD, in Section 6.1 we obtain the constant parameterized inapproximability of GAPSNC.
In Section 6.2.1, we formally introduce locally suffix dense codes and show how to efficiently
(but probabilistically) construct them. These codes are then used in Section 6.2.2 to obtain the
parameterized innapproximability of GAPMDP1.01. The final step is a known gap amplifica-
tion by tensoring (Proposition 6.6).

large finite field Fq so that the vertices of G can be treated as elements of Fq. Then we construct
a function ι : L ∪ R→ Fh−1

q such that:

(L1) the images of any s− 1 vertices in L under ι are linearly independent;

(L2) the images of any s vertices in L under ι are linearly dependent.

Similarly,

(R1) the images of any h− 1 vertices in R under ι are linearly independent;

(R2) while the images of any h vertices in R under ι are linearly dependent.
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We point out that one can construct functions satisfying the above properties by mapping
the vertices (now identified with field elements) to the columns of a Vandermonde matrix of
appropriate dimensions padded with zeros. Finally we construct a vector we ∈ F

q(h−1)
q for

every edge in e ∈ E and then let {we : e ∈ E} be our target instance of GAPLDS. To define
we, firstly, we partition each vector in F

q(h−1)
q into q blocks. Each vertex in G has its unique

corresponding block. Each block has h − 1 elements. Suppose e = {u, v} where u ∈ L and
v ∈ R. We set the u-th block of the vector we equal to ι(v), the the v-th block of the vector we

equal to ι(u) and all the other blocks of we equal to 0. Note that the u-th block is equal to ι(v)
(not to ι(u)!) and the v-th block is equal to ι(u).

Suppose that u1, . . . , us ∈ L and v1, . . . , vh ∈ R form a complete bipartite subgraph in G.
We will show that the sh-sized set W = {wui ,vj : i ∈ [s], j ∈ [h]} is linearly dependent. It is
not hard to see that for all i ∈ [s], the restriction of W to the ui-th block is a set of h vectors
{ι(v1), . . . , ι(vh)}. By the property (R2) of ι, these vectors are linearly dependent, i.e., there
are b1, . . . , bh ∈ Fq such that ∑j∈[h] bjι(vj) = 0. Similarly, we can see that for all j ∈ [h], the
restriction of W to the vj-th block is a set of s linearly dependent vectors {ι(u1), . . . , ι(us)} and
∑i∈[s] aiι(ui) = 0 for some a1, . . . , as ∈ Fq. It is easy to check that ∑i∈[s],j∈[h] aibjwui ,vj = 0 and
aibj (i ∈ [s],j ∈ [h]) are not all zero.

On the other hand, if G is a NO instance of GAPBSMDγ, we will show that any linearly
dependent set must have at least γ · hs vectors. Observe that every vector in the GAPLDS
instance is corresponding to an edge in the graph G. Suppose W is a set of linearly dependent
vectors. We consider the graph HW in G induced by the edges corresponding to vectors in
W. We can argue that every vertex on the left side of HW must have at least h neighbors and
every vertex on the right side of HW must have at least s neighbors, using properties (R1) and
(L1) respectively. From the definition of the NO instance of GAPBSMDγ, we can immediately
conclude that |W| > γ · hs.

2.3 Parameterized Inapproximability of k-NCP

In the second step, we prove the inapproximability of k-NCP using the hardness of GAPLDS.
Note that this is the step in which we reduce the field size to two, i.e., the hardness for GAPLDS
described above is for a large field (Fq where q = Θ(n)) but the k-NCP problem is for F2.

The reduction is simpler to state if we use the dual (equivalent) formulation of k-NCP
called Maximum Likelihood Decoding (k-MLD). The gap version of the problem, denoted by
GAPMLDγ, can be formulated as follows: Given a matrix A ∈ Fn×m

2 , a vector y ∈ Fn
2 and a

positive integer k ∈ N, the goal of GAPMLDγ problem is to distinguish the case when there
exists a nonzero vector x ∈ Fm

2 with Hamming weight at most k such that Ax = y from the
case when for all x ∈ Fm

2 with Hamming weight at most γk, Ax 6= y.

Reducing GAPLDS to GAPMLD. We present a reduction from GAPLDS to GAPMLD. For
ease of presentation, we think of the input of GAPMLD as a set W of vectors (i.e. column
vectors of A) in Fn

2 , the goal is to distinguish the case when there exist k vectors whose sum is
y from the case when the sum of any nonempty subset of vectors inW of size at most γk is not
equal to y.

11



We start with the hardness of GAPLDSγ where the input vectors are F2d -vectors, for
d = Θ(log n). To reduce the field size, we transform vectors from Fm

2d into Fdm
2 using a lin-

ear bijection f between Fm
2d and Fdm

2 . Observe that, even if w1, . . . , wk are linearly dependent
vectors in Fm

2d , the sum of their images under f is not necessarily zero. This is because we need
coefficients a1, . . . , ak ∈ F2d \ {0} so that ∑i∈[k] aiwi = 0 and hence ∑i∈[k] f (aiwi) = 0, while
∑i∈[k] f (wi) = 0 may not hold.

With these in mind, we will try to construct an instanceW ′ of GAPMLD such that for all
a ∈ F2d and w ∈ W , f (aw) has a corresponding vector inW ′. And ifW has k linearly depen-
dent vectors ∑i∈[k] aiwi = 0, then the sum of vectors corresponding to f (a1w1), . . . , f (akwk) is
equal to y.

We need some mechanism to force the solution of GAPMLD to select vectors correspond-
ing to at least k distinct vectors f (a1w1), . . . , f (akwk). To that end, we use the color-coding
technique to reduce GAPLDS to its colored version (see Section 4.2.1 for details). Thus, we can
assume that the instanceW of GAPLDS comes with a coloring c : W → [k] such that ifW is a
YES instance, then there are exactly k vectors inW with distinct colors under c that are linearly
dependent.

For i ∈ [k], let ei ∈ Fk
2 be the vector whose i-th coordinate is 1 and the other coordinates

are equal to 0. It is natural to construct a reduction as follows: given an instanceW of GAPLDS
over F2d and a coloring function c :W → [k], output

W ′ = {ec(w) ◦ f (aw) : w ∈ W , a ∈ F2d \ {0}} and y = 1k ◦ 0md

as the target instance of GAPMLD, where ◦ stands for the concatenation of vectors.

It is easy to see that if W contains k linearly dependent vectors ∑i∈[k] aiwi = 0, then the
sum of the vectors ec(w1) ◦ f (a1w1), . . . , ec(wk) ◦ f (akwk) is equal to 1dm ◦ 0k.

On the other hand, if any 3k vectors of W are linearly independent, we will show that
for any W ⊆ W ′ such that ∑x∈W x = y, we have |W| > 3k. Let the elements of W be ec(w1) ◦
f (a1w1), . . . , ec(wk′ )

◦ f (ak′wk′), and suppose for the sake of contradiction that k′ < 3k. By
restricting the equation ∑x∈W x = y onto the last md coordinates, it follows that

∑
i∈[k′]

f (aiwi) = 0,

which implies

∑
i∈[k′]

aiwi = 0.

At this moment, we cannot yet say that the set {w1, . . . , wk′} is linearly dependent (and there-
fore contradicts k′ < 3k), because w1, . . . , wk′ may contain duplicated elements. For example,
it is possible that k′ = 3, a1 + a2 + a3 = 0 and w1 = w2 = w3 could be any nonzero vector. To
get a contradiction by this way, we need to show that there is a vector w which appears exactly
once in w1, . . . , wk′ .

To see this, first observe that, since k′ < 3k, there must be a color j ∈ [k] that corresponds to
at most two vectors from w1, . . . , wk′ (duplicated counted). However, if we restrict the equation
∑x∈W x = y to only the j-th coordinate, we can see that the left hand side equals to the number
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of occurrences of color j modulo 2, whereas the right hand side is one. This means that there is
only a unique vector among w1, . . . , wk′ that is of the j-th color; this immediately implies that
this vector occurs only once in w1, . . . , wk′ . This in turns means that {w1, . . . , wk′} is linearly
dependent and therefore k′ > 3k, a contradiction.

Note that our argument only gives hardness of approximation with factor 3− ε for any
ε > 0. Nonetheless, this factor suffices for the subsequent steps. We can in fact also prove
hardness for every constant factor, using a slight tweak of the above idea. Please see Section 5.2
for more details

Reducing GAPMLD to GAPSNC. Now we introduce the sparse nearest codeword problem
that we will use to prove the parameterized inapproximability of k-MDP. We define the
gap version of this problem, denoted by GAPSNCγ (for some constant γ > 1) as follows:
on input (A′, y′, k), distinguish between the YES case where there exists x ∈ Fm

2 such that
‖A′x − y′‖0 + ‖x‖0 6 k, and the NO case where for all x (in the entire space), we have
‖A′x − y′‖0 + ‖x‖0 > γk. We highlight that the difference between k-NCP and GAPSNCγ

is that the objective also depends on the Hamming weight of the coefficient vector x. We
sketch below the reduction from an instance (A, y, k) of GAPMLDγ to an instance (A′, y′, k) of
GAPSNCγ. Given A, y, let

A′ =


A
...

A
Id

 γk + 1 copies , y′ =


y
...
y
0

 γk + 1 copies .

Notice that for any x (in the entire space), we have

‖A′x− y′‖0 = (γk + 1)‖Ax− y‖0 + ‖x‖0,

and thus both the completeness and soundness of the reduction easily follow.

2.4 Parameterized Inapproximability of k-MDP

Let us recall that in the NCP we are given a matrix A ∈ F
n×q
2 , an integer k, and a target vector

y ∈ Fn
2 , and the goal is to determine whether there is exists a vector x ∈ Fm

2 such that ‖Ax−y‖0

is at most k. A natural first idea for reducing an NCP instance (A ∈ Fn×m
2 , y ∈ Fn

2) to MDP
would be to introduce the n× (m + 1) matrix

B =
[
A −y

]
; (2)

then any solution x ∈ Fm
2 of the NCP instance with ‖Ax − y‖0 6 k would give a solution

x′ = x ◦ 1 ∈ Fm+1
2 of the MDP instance with |Bx′| 6 k. However, the problem is that if the

MDP instance has a solution x′ = x ◦ 0 (i.e., the last coordinate is zero), then ‖Bx′‖0 6 k implies
only ‖Ax‖0 6 k, but does not imply ‖Ax− y‖0 6 k. Thus we need a way to force the last
coordinate to 1 in the solution of the MDP instance. We can try to use error correcting codes for
this purpose. Let L ∈ Fh×m

2 be the generator matrix of an error correcting code with minimum
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distance d. Let us consider now the matrix

B =

[
A −y
L −s

]
; (3)

for some arbitrarily chosen vector s ∈ Fh
2. Now for any nonzero x′ = x ◦ 0, we have ‖Bx′‖0 =

‖Ax‖0 + ‖Lx‖0 > ‖Ax‖0 + d, since x is a nonzero vector and the code generated by L has
minimum distance d. Thus the second term gives a penalty of d if the last coordinate of x′ is 0.
However, the problem now is that if x is a solution of the NCP instance with ‖Ax− y‖0 6 k,
then defining x′ = x ◦ 1 gives ‖Bx′‖0 = ‖Ax− y‖0 + ‖Lx− s‖0 = k + ‖Lx− s‖0. We would
need to argue that this second term ‖Lx− s‖0 is small, much smaller than the penalty d in the
previous case. While in general, there is no reason why the chosen vector s would be close to
Lx for the hypothetical solution x. However, we can hope to increase the chances of finding
such an s, if we could somehow enforce that there are many distinct choices of x for which
we would have ‖Ax− y‖0 6 k. This can indeed by achieved by padding the matrix A with
additional dummy zero columns, and padding the corresponding solution x with additional
dummy coordinates. In particular, this ensures that for even a random choice of s (sampled
from an appropriate distribution) is close to Lx for at least one of the choices of x with non-
negligible probability. We formalize this intuition in the form of Locally Suffix Dense Codes
described below.

Locally Suffix Dense Codes. A locally suffix dense code (LSDC) is a linear code L ∈ Fh×m
2

of block length h with minimum distance d such that the following holds. For any choice of
prefix x ∈ F

q
2 and a randomly drawn suffix vector s u.a.r∼ F

h−q
2 the vector x ◦ s is r close to the

code L with non-negligible probability. In other words, for every choice of prefix vector x, the
restriction of the code L to the affine subspace Vx := {x} × F

h−q
2 is dense. While one can think

of the suffix vector s as being analogous to the center in LDC, note that s is merely a suffix
which is used to extend the vector x. Therefore, due to systematicity of the code, the distance
of the vector x ◦ s to the code L depends only on the choice of s, which allows us to ensure that
the parameters r and d can be chosen to functions of k, without explicitly depending on the
block length h.

As in the case of Dumer et al. we too cannot find an explicit suffix s for the LSDCs that we
construct, but instead provide an efficiently samplable distribution such that, for any x ∈ F

q
2,

the probability (over s sampled from the distribution) that B(x ◦ s, r)∩L 6= ∅ is non-negligible.
This is what makes our reduction from GAPSNC2.5 to GAPMDP1.01 randomized. We will not
elaborate more on this issue here, but focus on the (probabilistic) construction of such codes.
For convenience, we will assume throughout this overview that k is much smaller than d, i.e.,
k = 0.001d.

Recall that the sphere-packing bound (aka Hamming bound) states that a binary code of
block length h and distance d can have at most 2h/|B(0, d d−1

2 e)| codewords; this is simply
because the balls of radius d d−1

2 e at the codewords do not intersect. Our main theorem re-
garding the existence of locally dense suffix code is that any systematic code that is “near” the
sphere-packing bound is a locally dense suffix code with r = d d−1

2 e. Here “near” means that
the number of codewords must be at least 2h/|B(0, d d−1

2 e)| divided by f (d) · poly(h) for some
function f that depends only on d. (Equivalently, this means that the message length must be

14



at least h− (d/2 + O(1)) log h.) The BCH code over binary alphabet is an example of a code
satisfying such a condition.

While we will not sketch the proof of the existence theorem here, we note that the general
idea is as follows. We choose L in such a way that for every choice of x ∈ F

q
2, the restriction of

L to the affine subspace Vx is near the sphere packing bound. Then from the above discussion,
it follows that for s sampled uniformly from F

h−q
2 , the probability that B(x ◦ s, r) ∩ L 6= ∅

is at least the probability that a random point in F
h−q
2 is within distance r = d d−1

2 e of some
codeword from Vx ∩ L. The latter is non-negligible from our choice of L which ensures that the
restriction of the code to any affine subspace Vx nears the sphere-packing bound.

Finally, we remark that our proof here is completely different from the DMS proof of
existence of locally dense codes. Specifically, DMS uses a group-theoretic argument to show
that, when a code exceeds the Gilbert-Varshamov bound, there must be a center s such that
B(s, r) contains many codewords. Then, they pick a random linear map T and show that
w.h.p. T(B(s, r) ∩ L) is the entire space. Note that this second step does not use any structure
of B(s, r)∩L; their argument is simply that, for any sufficiently large subset Y, a random linear
map T maps Y to an entire space w.h.p. However, such an argument fails for us, due to the
fact that, in LSDC, we want to ensure that L is dense (up to Hamming distance r = O(k)) in
all the affine subspaces {Vx : x ∈ F

q
2}, instead of exactly covering the whole space Fh

2. Now
if we insist on exactly covering all the affine subspaces using a linear map T, as in the DMS
construction, we will then have T(B(s, r)) ⊇ Fh

2. This would instead require r to depend on h,
whereas in our setting we want r to depend only on the parameter k.

Reducing GAPSNC2.5 to GAPMDP1.01. Equipped with the notion of locally suffix dense codes
defined above, we now prove the hardness of GAPMDP1.01.

We begin with an instance (A, y, k) with A ∈ F
n×q
2 of GAPSNC2.5. Let L ∈ Fh×m

2 be a
locally suffix dense code with distance d ≈ 2.5k, where we can choose h, m 6 poly(q, d). We
also choose a vector s ∈ Fh

2 uniformly at random with the first q coordinates equal to zero and
construct the matrix

B =

[
A 0n×(m−q) −y
L −s

]
.

We shall show that with probability at least p = p(k) 9, we have that (B, k + d/2) is an
instance of GAPMDP1.01.

If (A, y, k) is a YES instance of GAPSNC2.5, then there exists x ∈ B(0, k) such that ‖Ax−
y‖0 6 k. Furthermore, from the guarantees of the locally suffix dense codes, with probability
at least p (over the choice of the vector s), we have ‖Lx− s‖0 6 (d− 1)/2. Therefore, setting
z = x′ ◦ 1, we get that

‖Bz‖0 = ‖A′x′ − y‖0 + ‖Lx′ − s‖0 6 k + (d− 1)/2.

In other words, if (A, y, k) is a YES instance of NCP, then (B, k + d/2) is a YES instance of
MDP1.01.

9Here the probability p = p(k) depends only on the parameter k
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On the other hand, if we had that ‖Ax − y‖0 + ‖x‖0 > 2.5k for all x, then for all non-zero
z ∈ Fm

2 ,
‖B(z ◦ 0)‖0 = ‖A′z‖0 + ‖Lz‖0 > d,

and
‖B(z ◦ 1)‖0 = ‖A′z− y‖0 + ‖Lz− s‖0 > 2.5k.

Since from our choice of parameters, we have d ≈ 2.5k > 1.01(k + d/2), which implies that
(B, k + d/2) is a NO instance of MDP1.01.

Gap Amplification for GAPMDP1.01. It is well known that the distance of the tensor product
of two linear codes is the product of the distances of the individual codes (see Proposition 6.6
for a formal statement). We can use this proposition to reduce GAPMDPγ to GAPMDPγ2 for
any γ > 1. In particular, we can obtain, for any constant γ, the intractability of GAPMDPγ

starting from GAPMDP1.01 by just recursively tensoring the input code dlog1.01 γe times.

2.5 Parameterized Intractability of k-SVP

We begin this subsection by briefly describing Khot’s reduction. The starting point of Khot’s
reduction is the NP-hardness of approximating NVP in every `p norm to any constant factor
[ABSS97]. Let us recall that in NVP in the `p norm, we are given a matrix A ∈ Zn×m, an integer
k, and a target vector y ∈ Zn, and the goal is to determine whether there is any x ∈ Zm such
that10 ‖Ax− y‖p

p is at most k. The result of Arora et al. [ABSS97] states that for any constant
γ > 1, it is NP-hard to distinguish the case when there exists x such that ‖Ax−y‖p

p 6 k from the
case when for all (integral) x we have that ‖Ax− y‖p

p > γk. Khot’s reduction proceeds in four
steps. First, he constructs a gadget lattice called the “BCH Lattice” using BCH Codes. Next,
he reduces NVP in the `p norm (where p ∈ (1, ∞)) to an instance of SVP on an intermediate
lattice by using the BCH Lattice. This intermediate lattice has the following property. For any
YES instance of NVP the intermediate lattice contains multiple copies of the witness of the YES
instance; For any NO instance of NVP there are also many “annoying vectors” (but far less
than the total number of YES instance witnesses) which look like witnesses of a YES instance.
However, since the annoying vectors are outnumbered, Khot reduces this intermediate lattice
to a proper SVP instance, by randomly picking a sub-lattice via a random homogeneous linear
constraint on the coordinates of the lattice vectors (this annihilates all the annoying vectors
while retaining at least one witness for the YES instance). Thus he obtains some constant
factor hardness for SVP. Finally, the gap is amplified via “Augmented Tensor Product”. It is
important to note that Khot’s reduction is randomized, and thus his result of inapproximability
of SVP is based on NP 6= RP.

Trying to follow Khot’s reduction, in order to show the parameterized intractability of k-
SVP, we face only one obstacle: there is no known parameterized inapproximability of k-NVP
for any constant factor greater than 1. Let us denote by GAPNVPp,η for any constant η > 1
the gap version of k-NVP in the `p norm. Recall that in GAPNVPp,η we are given a matrix
A ∈ Zn×m, a target vector y ∈ Zn, and a parameter k, and we would like to distinguish the

10Previously, we use ‖Ax− y‖p instead of ‖Ax− y‖p
p. However, from the fixed parameter perspective, these two

versions are equivalent since the parameter k is only raised to the p-th power, and p is a constant in our setting.
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case when there exists x ∈ Zm such that ‖Ax− y‖p
p 6 k from the case when for all x ∈ Zm

we have that ‖Ax− y‖p
p > ηk. As it turns out, our reduction from k-LDS to GAPMLD, can

be translated to show the inapproximability of GAPMLD over any larger (but still constant)
field in a straightforward manner. We then provide a simple for GAPMLD over large field to
GAPNVPp that establishes W[1]-hardness of the latter.

Once we have established the constant parameterized inapproximability of GAPNVPp,
we follow Khot’s reduction, and everything goes through as it is to establish the inapproxima-
bility for some factor of the gap version of k-SVP in the `p norm (where p ∈ (1, ∞)). We denote
by GAPSVPp,γ for some constant γ(p) > 1 the the gap version of k-SVP (in the `p norm) where
we are given a matrix B ∈ Zn×m and a parameter k ∈ N, and we would like to distinguish
the case when there exists a non-zero x ∈ Zm such that ‖Bx‖p

p 6 k from the case when for all
x ∈ Zm \ {0} we have that ‖Bx‖p

p > γk. Let γ∗ := 2p

2p−1+1 . Following Khot’s reduction, we
obtain the inapproximability of GAPSVPp,γ∗ .

Summarizing, in Figure 2, we provide the proof outline of our W[1]-hardness result of
GAPSVPp to some constant approximation factor, for every p ∈ (1, ∞).

GAPLDS COLORED GAPLDS GAPMLD

k-CLIQUE ONE-SIDED BICLIQUE GAPBSMD

GAPNVPp GAPSVPp, 2p

2p−1+1Khot’s Reduction
Lemma 7.3

[Lin18] Section 4.1

Section 4.2

Color-Coding Technique
(Section 4.2.1)

Section 5.2

Section 7.1

Figure 2: The figure provides an overview of our reduction from the canonical W[1]-
complete k-Clique problem to the parameterized Shortest Vector problem in the `p norm,
where p ∈ (1, ∞). The proof outline of the reduction from k-Clique to GAPMLD (to rule out
constant approximation parameterized algorithms for NCP) is reiterated in the above figure.
In Section 7.1, we reduce GAPMLD to GAPNVP and obtain the constant inapproximability of
NVP. Then, applying Lemma 7.3 (i.e., Khot’s reduction) implies the parameterized inapprox-
imability of GAPSVPp, 2p

2p−1+1

.
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3 Preliminaries

We use the following notation throughout the paper.

Notation. We use boldface (e.g. x, A or 0) to stress that the objects are vectors or matrices.
When we refer to a vector x, we assume that it is a column vector. Moreover, since subscripts
will often be used for other purposes, we instead use the notation x[i] for i ∈ N to denote the
value of the i-th coordinate of the vector. For matrices, we use A[i] to denote its i-th column
vector.

For p ∈N, we use 1p (respectively, 0p) to denote the all ones (respectively, all zeros) vector
of length p. We sometimes drop the subscript if the dimension is clear from the context. For
p, q ∈ N, we use 0p×q to denote the all zeroes matrix of p rows and q columns. We use Idq to
denote the identity matrix of q rows and q columns.

For any vector x ∈ Rd, the `p norm of x is defined as `p(x) = ‖x‖p =
(

∑d
i=1 |x[i]|p

)1/p
.

Thus, `∞(x) = ‖x‖∞ = maxi∈[d]{|xi|}. The `0 norm of x is defined as `0(x) = ‖x‖0 = |{x[i] 6=
0 : i ∈ [d]}|, i.e., the number of non-zero entries of x. We note that the `0 norm is also referred
to as the Hamming norm. For a ∈ N, t ∈ N ∪ {0}, and s ∈ {0, 1}a, we use Ba(s, t) to denote
the Hamming ball of radius t centered at s, i.e., Ba(s, t) = {x ∈ {0, 1}a | ‖s− x‖0 6 t}. Finally,
given two vectors x and y, we use x ◦ y to denote the concatenation of vectors x and y.

We sometimes use ∪̇ to emphasize that the sets are disjoint; for instance, we may write
G = (L ∪̇ R, E) for bipartite graphs to indicate that L, R are disjoint.

3.1 Parameterized Promise Problems and (Randomized) FPT Reductions

In this subsection, we briefly describe the various kinds of fixed-parameter reductions that are
used in this paper. We start by defining the notion of promise problems in the fixed-parameter
world, which is naturally analogues to promise problems in the NP world (see e.g. [Gol06]).

Definition 3.1. A parameterized promise problem Π is a pair of parameterized languages (ΠYES, ΠNO)

such that ΠYES ∩ΠNO = ∅.

Next, we formalize the notion of algorithms for these parameterized promise problems:

Definition 3.2. A deterministic algorithm A is said to be an FPT algorithm for Π if the following
holds:

• On any input (x, k), A runs in time f (k)|x|c for some computable function f and constant c.

• (YES) For all (x, k) ∈ ΠYES, A(x, k) = 1.

• (NO) For all (x, k) ∈ ΠNO, A(x, k) = 0.

Definition 3.3. A Monte Carlo algorithm A is said to be a randomized FPT algorithm for Π if the
following holds:

• A runs in time f (k)|x|c for some computable function f and constant c (on every randomness).
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• (YES) For all (x, k) ∈ ΠYES, Pr[A(x, k) = 1] > 2/3.

• (NO) For all (x, k) ∈ ΠNO, Pr[A(x, k) = 0] > 2/3.

Finally, we define deterministic and randomized reductions between these problems.

Definition 3.4. A (deterministic) FPT reduction from a parameterized promise problem Π to a param-
eterized promise problem Π′ is a (deterministic) procedure that transforms (x, k) to (x′, k′) that satisfies
the following:

• The procedure runs in f (k)|x|c for some computable function f and constant c.

• There exists a computable function g such that k′ 6 g(k) for every input (x, k).

• For all (x, k) ∈ ΠYES, (x′, k′) ∈ Π′YES.

• For all (x, k) ∈ ΠNO, (x′, k′) ∈ Π′NO.

Definition 3.5. A randomized (one sided error) FPT reduction from a parameterized promise problem
Π to a parameterized promise problem Π′ is a randomized procedure that transforms (x, k) to (x′, k′)
that satisfies the following:

• The procedure runs in f (k)|x|c for some computable function f and constant c (on every random-
ness).

• There exists a computable function g such that k′ 6 g(k) for every input (x, k).

• For all (x, k) ∈ ΠYES, Pr[(x′, k′) ∈ Π′YES] > 1/( f ′(k)|x|c′) for some computable function f ′

and constant c′.

• For all (x, k) ∈ ΠNO, Pr[(x′, k′) ∈ Π′NO] = 1.

Note that the above definition corresponds to the notion of Reverse Unfaithful Random
(RUR) reductions in the classical world [Joh90]. The only difference (besides the allowed FPT
running time) is that the above definition allows the probability that the YES case gets map
to the YES case to be as small as 1/( f ′(k)poly(|x|)), whereas in the RUR reductions this can
only be 1/poly(|x|). The reason is that, as we will see in Lemma 3.7 below, FPT algorithms can
afford to repeat the reduction f ′(k)poly(|x|) times, whereas polynomial time algorithms can
only repeat poly(|x|) times.

We also consider randomized two-sided error FPT reductions, which are defined as fol-
lows.

Definition 3.6. A randomized two sided error FPT reduction from a parameterized promise problem
Π to a parameterized promise problem Π′ is a randomized procedure that transforms (x, k) to (x′, k′)
that satisfies the following:

• The procedure runs in f (k)|x|c for some computable function f and constant c (on every random-
ness).

• There exists a computable function g such that k′ 6 g(k) for every input (x, k).
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• For all (x, k) ∈ ΠYES, Pr[(x′, k′) ∈ Π′YES] > 2/3.

• For all (x, k) ∈ ΠNO, Pr[(x′, k′) ∈ Π′NO] > 2/3.

Note that this is not a generalization of the standard randomized FPT reduction (as de-
fined in Definition 3.5), since the definition requires the success probabilities for the YES and
NO cases to be constants independent of the parameter. In both cases, using standard tech-
niques randomized FPT reductions, can be used to transform randomized FPT algorithms for
Π′ to randomized FPT algorithm for Π, as stated by the following lemma:

Lemma 3.7. Suppose there exists a randomized (one sided/ two sided) error FPT reduction from a
parameterized promise problem Π to a parameterized promise problem Π′. If there exists a randomized
FPT algorithm A for Π′, there there also exists a randomized FPT algorithm for Π.

Proof. We prove this for one sided error reductions, the other case follows using similar argu-
ments. Suppose there exists a randomized one sided error reduction from Π to Π′. Let f ′(·), c′

be as in Definition 3.5. We consider the following subroutine. Given instance (x, k) of promise
problem Π, we apply the randomized reduction on (x, k) to get instance (x′, k′) of promise
problem Π′. We run A on (x′, k′) repeatedly 100 log( f ′(k)|x|c) times, and output the majority
of the outcomes.

If (x, k) is a YES instance, then with probability at least 1/( f ′(k)|x|c′), (x′, k′) is also a
YES instance for Π′. Using Chernoff bound, conditioned on (x′, k′) being a YES instance, the
majority of the outcomes is YES with probability at least 1− e−10 log( f ′(k)|x|c′ ). Therefore using
union bound, the output of the above algorithm is YES with probability at least 1/( f ′(k)|x|c′)−
e−10 log( f ′(k)|x|c′ ) > 1/2( f ′(k)|x|c′). Similarly, if (x, k) is a NO instance, then the subroutine
outputs YES with probability at most e−10 log( f ′(k)|x|c′ ).

Equipped with the above subroutine, our algorithm is simply the following: given (x, k),
it runs the subroutine 10 f ′(k)|x|c′ times. If at least one of the outcomes is YES, then the al-
gorithm outputs YES, otherwise it outputs NO. Again we can analyze this using elemen-
tary probability. If (x, k) is a YES instance, then the algorithm outputs NO only if out-
comes of all the trials is NO. Therefore, the algorithm outputs YES with probability at least
1− (1− 1/2( f ′(k)|x|c′))10 f ′(k)|x|c′ > 0.9. Conversely, if (x, k) is a NO instance, then by union
bound, the algorithm outputs NO with probability at least 1− 10 f ′(k)|x|c′e−10 log( f ′(k)|x|c′ ) >
0.9. Finally, ifA is FPT, then the running time of the proposed algorithm is also FPT. Hence the
claim follows11.

Since the conclusion of the above proposition holds for both types of randomized reduc-
tions, we will not be distinguishing between the two types in the rest of the paper.

3.2 Bipartite Subgraph with Minimum Degrees

As stated in the proof overview, it will be convenient to view Lin’s hardness of BICLIQUE

in terms of hardness of approximating Bipartite Subgraph with Minimum Degree, where the
11For the case of 2-sided error, we change the final step of the algorithm as follows; we invoke the subroutine

O(log 1/δ)-times (where δ is a constant) and again output the majority of the outcomes. The guarantees again
follow by a Chernoff bound argument.
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goal, given a bipartite graph G, is to find a non-empty subgraph H of G such that every left
vertex in H has degree at least h and every right vertex of H has degree at least s. The parameter
here is s + h.

The gap version that we will use is to distinguish between the YES case where there is
such a subgraph with hs edges, i.e., a complete bipartite subgraph with s left vertices and h
right vertices, and the NO case where every such subgraph H must contains more than γ · hs
edges (for γ > 1). This is defined more precisely below.

γ-Gap Bipartite Subgraph with Minimum Degree Problem (GAPBSMDγ)

Input: A bipartite graph G = (L ∪̇ R, E) with n vertices, s, h ∈N

Parameter: s + h

Question: Distinguish between the following two cases:

• (YES) There is a complete bipartite subgraph of G with s vertices in L and h vertices
in R.

• (NO) For any non-empty subgraph H of G such that every left vertex of H has degree
at least h and every right vertex of H has degree at least s, H contains at least γ · (sh)
edges.

3.3 Linear Dependent Set Problems

We next introduce the parameterized Linear Dependent Problem. In this problem, we are
given Fq-vectors w1, . . . , wn and the goal is to find a smallest number of vectors that are linearly
dependent. It should be stressed here that the field Fq is part of the input (i.e. q will be of the
order of n in our proofs); this is indeed the main difference between this problem and the
Minimum Distance Problem which is in fact equivalent to the Linear Dependent Problem for
a fixed q = 2.

γ-Gap Linear Dependent Set Problem (GAPLDSγ)

Input: A field Fq, a setW ⊆ Fm
q and a positive integer k ∈N.

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exist k distinct vectors w1, . . . , wk ∈ W and a1, . . . , ak ∈ Fq \ {0} such that
∑i∈[k] aiwi = 0 (which implies that w1, . . . , wk are linearly dependent)

• (NO) there are no γ · k vectors inW that are linearly dependent

Notice here that the guarantee in the YES case is slightly stronger than “there exist k vec-
tors that are linearly dependent”, as we also require the coefficients to be non-zero. (This
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would be automatically true if, for instance, any k − 1 vectors are linearly dependent.) We
remark that this does not significantly change the complexity of the problem, as our hardness
applies to both versions; however, it will be more convenient in subsequent steps to have such
an additional guarantee.

It will also be convenient to work with a colored version of GAPLDS which we introduce
below.

γ-Gap Colored Linear Dependent Set Problem (GAPLDScol
γ )

Input: A field Fq, a setW ⊆ Fm
q , a positive integer k ∈N and a coloring c :W → [k]

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exist k vectors w1, . . . , wk ∈ W of distinct colors (i.e. c({w1, . . . , wk}) =
[k]) and a1, . . . , ak ∈ Fq \ {0} such that ∑i∈[k] aiwi = 0

• (NO) there are no γ · k vectors inW that are linearly dependent

We point out that in we require the vectors to have distinct colors only in the YES case; in
the NO case, we assume that there are no γ · k linearly dependent vectors of arbitrary colors.

3.4 Minimum Distance Problem

In this subsection, we define the fixed-parameter variant of the minimum distance problem
and other relevant parameterized problems. We actually define them as gap problems – as
later in the paper, we show the constant inapproximability of these problems.

For every γ > 1, we define the γ-gap minimum distance problem12 as follows:

γ-Gap Minimum Distance Problem (GAPMDPγ)

Input: A matrix A ∈ Fn×m
2 and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Fm
2 \ {0} such that ‖Ax‖0 6 k

• (NO) for all x ∈ Fm
2 \ {0}, ‖Ax‖0 > γ · k

12In the parameterized complexity literature, this problem is referred to as the k-Even set problem [DFVW99] and
the input to the problem is (equivalently) given through the parity-check matrix, instead of the generator matrix as
described in this paper.
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Next, for every γ > 1, we define the γ-gap maximum likelihood decoding problem13 as
follows:

γ-Gap Maximum Likelihood Decoding Problem (GAPMLDγ)

Input: A matrix A ∈ Fn×m
2 , a vector y ∈ Fn

2 and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Bm(0, k) such that Ax = y

• (NO) for all x ∈ Bm(0, γk), Ax 6= y

For brevity, we shall denote the exact version (i.e., GAPMLD1) of the problem as MLD.

It should be noted that the Odd Set problem discussed in the introduction is closely re-
lated to GAPMLD; in particular, the only different is that, in ODDSET, y is not part of the input
but is always fixed as 1, the all-ones vector. Indeed, it is not hard to see that our parameter-
ized hardness of approximation for GAPMLD also transfers to that of GAPODDSET. This is
formulated in Appendix A.

We also define the GAPMLD problem over larger (constant) field Fp below; this version
of the problem will be used in proving hardness of Nearest Vector Problem. In this version,
we have an additional requirement that, in the YES case, the solution x must be a {0, 1}-vector.
(Note that this is automatically the case for GAPMLD over F2.)

γ-Gap Maximum Likelihood Decoding Problem over Fp (GAPMLDγ,p)

Input: A matrix A ∈ Fn×m
p , a vector y ∈ Fn

p and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ {0, 1}m with ‖x‖0 6 k such that Ax = y

• (NO) for all x ∈ Fm
q such that ‖x‖0 6 γk, Ax 6= y

Finally, we introduce a “sparse” version of the GAPMLD problem called the sparse near-
est codeword problem, and later in the paper, we show a reduction from GAPMLD to this
problem, followed by a reduction from this problem to GAPMDP. As its name suggest, the
sparse nearest codeword problem priorities not only the Hamming distance of the codeword
Ax to the target vector y but also the “sparsity” (i.e. Hamming weight) of x. Formally, for every
γ > 1, we define the γ-gap sparsest nearest codeword problem as follows:

13The maximum likelihood decoding problem is also equivalently known in the literature as the nearest code-
word problem.
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γ-Gap Sparse Nearest Codeword Problem (GAPSNCγ)

Input: A matrix A ∈ Fn×m
2 , a vector y ∈ Fn

2 and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Fm
2 such that ‖Ax− y‖0 + ‖x‖0 6 k

• (NO) for all x ∈ Fm
2 , ‖Ax− y‖0 + ‖x‖0 > γ · k

3.5 Shortest Vector Problem and Nearest Vector Problem

In this subsection, we define the fixed-parameter variants of the shortest vector and nearest
vector problems. As in the previous subsection, we define them as gap problems, for the same
reason that later in the paper, we show the constant inapproximability of these two problems.

Fix p ∈ R>1. For every γ > 1, we define the γ-gap shortest vector problem in the `p-
norm14 as follows:

γ-Gap Shortest Vector Problem (GAPSVPp,γ)

Input: A matrix A ∈ Zn×m and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Zm \ {0} such that ‖Ax‖p
p 6 k

• (NO) for all x ∈ Zm \ {0}, ‖Ax‖p
p > γ · k

For every γ > 1, we define the γ-gap nearest vector problem in the `p-norm as follows:

γ-Gap Nearest Vector Problem (GAPNVPp,γ)

Input: A matrix A ∈ Zn×m, vector y ∈ Zn and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Zm such that ‖Ax− y‖p
p 6 k

14Note that we define GAPNVP and GAPSVP problems in terms of `p
p, whereas traditionally, it is defined in

terms of `p. However, it is sufficient for us to work with the `
p
p variant, since an α-factor inapproximability in `

p
p

translates to an α1/p-factor inapproximabillity in the `p norm, for any α > 1
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• (NO) for all x ∈ Zm, ‖Ax− y‖p
p > γ · k

3.6 Error-Correcting Codes

An error correcting code C over alphabet Σ is a function C : Σm → Σh where m and h are
positive integers which are referred to as the message length (aka dimension) and block length of
C respectively. Intuitively, C encodes an original message of length m to an encoded message
of length h. The distance of a code, denoted by d(C), is defined as min

x 6=y∈Σm
‖C(x)− C(y)‖0, i.e.,

the number of coordinates on which C(x) and C(y) disagree. We also define the systematicity
of a code as follows: Given s ∈ N, a code C : Σm → Σh is s-systematic if there exists a size-s
subset of [h], which for convenience we identify with [s], such that for every x ∈ Σs there exists
w ∈ Σm in which x = C(w) |[s]. We use the shorthand [h, m, d]|Σ| to denote a code of message
length m, block length h, and distance d.

Additionally, we will need the following existence and efficient construction of BCH codes
for every message length and distance parameter.

Theorem 3.8 (BCH Code [Hoc59, BR60]). For any choice of h, d ∈ N such that h + 1 is a power of
two and that d 6 h, there exists a linear code over F2 with block length h, message length h−

⌈
d−1

2

⌉
·

log(h + 1) and distance d. Moreover, the generator matrix of this code can be computed in poly(h)
time.

Finally, we define the tensor product of codes which will be used later in the paper. Con-
sider two linear codes C1 ⊆ Fm

2 (generated by G1 ∈ Fm×m′
2 ) and C2 ⊆ Fn

2 (generated by
G2 ∈ Fn×n′

2 ). Then the tensor product of the two codes C1 ⊗ C2 ⊆ Fm×n
2 is defined as

C1 ⊗ C2 = {G1XG>2 |X ∈ Fm′×n′
2 }.

We will only need two properties of tensor product codes. First, the generator matrix of the
tensor products of two linear codes C1, C2 with generator matrices G1, G2 can be computed in
polynomial time in the size of G1, G2. Second, the distance of C1 ⊗ C2 is exactly the product of
the distances of the two codes, i.e.,

d(C1 ⊗ C2) = d(C1)d(C2).

4 Parameterized Inapproximability of Linear Dependent Set

In this section, we show that the Linear Dependent Set problem has no constant factor FPT
approximation algorithm unless W[1] = FPT. More formally, we prove the following:

Theorem 4.1. For every γ > 1, GAPLDSγ and GAPLDScol
γ are W[1]-hard.

The proof consists of two steps. First, we will reformulate Lin’s reduction for the Biclique
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problem in terms of hardness of GAPBSMD. Then, we reduce GAPBSMDto our target problem
GAPLDS.

4.1 Translating ONE-SIDED BICLIQUE to GAPBSMD

In the first step of our proof, we will show that GAPBSMD is W[1]-hard to approximate to
within any constant factor, as stated more precisely below.

Theorem 4.2. For every γ > 1, GAPBSMDγ is W[1]-hard.

Our result relies crucially on the recent W[1]-hardness of approximation result for the
ONE-SIDED BICLIQUE problem by Lin [Lin18]. Recall that, in ONE-SIDED BICLIQUE, we are
given a bipartite graph G and an integer s and the goal is to find s left vertices with maximum
number of common neighbors. The following theorem is the main result of Lin [Lin18] for
ONE-SIDED BICLIQUE.

Theorem 4.3 ([Lin18, Theorem 1.3]). There is a polynomial time algorithm A such that, given a
graph G with n vertices and k ∈ N with dn 6

k+6 e > (k + 6)! and 6 | k + 1, it outputs a bipartite graph
G′ = (A ∪̇ B, E) and s = (k

2) satisfying:

1. (YES) If G contains a k-clique, then there are s vertices in A with at least dn 6
k+1 e common neigh-

bors in B;

2. (NO) If G does not contain a k-clique, any s vertices in A have at most (k+ 1)! common neighbors
in B.

Another ingredient of our reduction is a simple observation regarding the size of bipartite
graphs with prescribed minimum degrees, conditioned on the fact that any small subset of left
vertices have small number of neighbors. This is stated below.

Claim 4.4. For any s, `, h ∈N, let (X ∪Y, EW) be a non-empty bipartite graph such that

(i) every vertex in X has at least h neighbors,

(ii) every vertex in Y has at least s neighbors, and,

(iii) every s-vertex set of X has at most ` common neighbors.

Furthermore, the parameters h, ` and s satisfy h/` > γsss. Then, |EW | > (h/`)1/s > γ · hs.

Proof of Claim 4.4. Consider any vertex u ∈ X. By (i), u has at least h neighbors in Y, so |Y| > h.
By (ii), for every v ∈ Y, v has at least s neighbors in X. If (|X|s )` < |Y|, then there must exist a
s-vertex set in X which has more than ` common neighbors in Y. Thus, we must have

|X|s >
(
|X|
s

)
>
|Y|
`

>
h
`

.

By (i) and our choice of parameters h, `, s, we can conclude that |EW | > h|X| > (h/`)1/s · h >
γ · hs, as desired.
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With Theorem 4.3 and Claim 4.4 in place, we can prove Theorem 4.2 simply by using the
reduction from Theorem 4.3 and choosing an appropriate value of h; the guarantee in the NO
case would then follow from Claim 4.4.

Proof of Theorem 4.2. We reduce from the k-CLIQUE problem which is well-known to be W[1]-
complete. Let (G, k) be an instance of k-CLIQUE and n be the number of vertices in G. Without
loss of generality, we can assume that 6 | k + 1 and dn 6

k+6 e > (k + 6)! · (γ · k2)k2
. Using the

reduction in Theorem 4.3, we can produce (G′, s = (k
2)) in polynomial time with the guaran-

tees as in the theorem. We then set h = (k + 6)! · (γ · k2)k2
and let (H, s, h) be our instance

of GAPBSMDγ. We will next show that this is indeed a valid reduction from k-Clique to
GAPBSMDγ.

(YES Case) Suppose that G contains a k-clique. Then, Theorem 4.3 guarantees that G′

contains a complete bipartite subgraph with s left vertices and h right vertices as desired.

(NO Case) Suppose that G does not contain a k-clique. Now, consider any non-empty
subgraph H of G′ such that every left vertex of H has at least h neighbors and every right
vertex of H contains at least s neighbors, i.e., H satisfies condition (i) and (ii) in Claim 4.4.
Furthermore, since G does not contain a k-clique, guarantees that every s vertices in A contains
at most ` = (k + 1)! common neighbors. It can be easily verified that our setting of parameters
h, ` and s satisfies the inequality h/` > γsss. Hence, by applying Claim 4.4 on H, the number of
edges in H must be at least γ · (hs). This means that (H, s, h) is a NO instance of GAPBSMDγ

as desired.

4.2 Reducing GAPBSMD to GAPLDS

We now move on to the next step of our proof, which is the reduction from GAPBSMD to
GAPLDS.

Since the reduction itself will be used in the subsequent proofs (with different parameter
selections), we also state it separately below. We remark that the reduction as stated below goes
from GAPBSMDγ to the uncolored version of the problem (GAPLDSγ); we will state how to
go from here to the colored version later on.

Theorem 4.5. Let γ > 1 be any constant. There is a polynomial time algorithm that, given an instance
(G, s, h) of GAPBSMDγ where G contains n vertices and any prime power q > n, produces an instance
(W ⊆ Fm

q , k = hs) of GAPLDSγ such that

• (YES) If (G, s, h) is a YES instance of GAPBSMDγ, then (W , k) is a YES instance of
GAPLDSγ.

• (NO) If (G, s, h) is a NO instance of GAPBSMDγ, then (W , k) is a NO instance of GAPLDSγ.

Proof. Assume that an instance (G = (L∪̇R, E), s, h) of GAPBSMDγ and a prime power q >

|L|+ |R| are given. Before we constructW , let us first define additional notation. We identify
vertices in L∪̇R with distinct elements of Fq. Let B := s + h and let ι : L ∪ R → FB

q be defined
as follows.
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• for each v ∈ R, ι(v) := (1, v, . . . , vh−2) ◦ 0B−h+1,

• for each u ∈ L, ι(u) := (1, u, . . . , us−2) ◦ 0B−s+1.

By a well-known property of Vandermonde matrices, any h− 1 vectors in ι(R) are linearly
independent and any h vectors from ι(R) are linearly dependent. To summarize, we have

(R1) For all I ∈ (R
h), the vectors {ι(v) : v ∈ I} are linearly dependent.

(R2) For all I ∈ ( R
h−1), the vectors {ι(v) : v ∈ I} are linearly independent.

Similarly, we also have

(L1) For all I ∈ (L
s), the vectors {ι(u) : u ∈ I} are linearly dependent.

(L2) For all I ∈ ( L
s−1), the vectors {ι(u) : u ∈ I} are linearly independent.

Let m = qB and consider vectors from Fm
q = F

qB
q , which can be seen as the concatenation

of q blocks, each of B coordinates. For x ∈ Fm
q , we use the notation x(i) to refer to the i-block,

i.e. the B-dimensional vector given by coordinates (i− 1)B + 1, (i− 1)B + 2, . . . , iB.

Construction of (W , k). First, we let k = hs. Then, for each (u, v) = e ∈ E (where u ∈ L, v ∈ R),
we introduce a vector we ∈ F

qB
q such that

(W1) for all i ∈ [q] \ {v, u}, w(i)
e = 0B,

(W2) w(v)
e = ι(u),

(W3) w(u)
e = ι(v).

That is, we can imagine we as being partitioned q blocks of B coordinates, with the rep-
resentation of u appearing in the v-th block and the representation of v appearing in the u-th
block. Note the use of u and v in the definition: the v-th block on its own describes both v (by
its position) and u (by its content), and similarly the u-th block also describes both endpoints
of e. We then let

W := {we : e ∈ E}.

Obviously, (W , k) can be computed in polynomial time. We next argue its correctness.

(YES case) Suppose (G, s, h) is a YES instance of GAPBSMDγ. There exist a set X ∈ (L
s)

and a set Y ∈ (R
h) such that for all u ∈ X and v ∈ Y, (u, v) ∈ E. By (R1) and (L1), there exists

bu ∈ Fq for each u ∈ X and bv ∈ Fq for each v ∈ Y such that

∑
u∈X

buι(u) = 0B and ∑
v∈Y

bvι(v) = 0B.

By (R2) and (L2), we deduce that, for all u ∈ X and v ∈ Y, bu 6= 0 and bv 6= 0. We now claim
that {w(u,v)}u∈X,v∈Y is the set of desired vectors, with the coefficient of w(u,v) being bubv 6= 0.
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In other words, we are left to show that

∑
u∈X,v∈Y

bubvw(u,v) = 0m.

To see that this is true, let w = ∑i∈[s],j∈[h] bubvw{ui ,vj}. It is easy to check that

• by (W1), for every z ∈ [q] \ (X ∪Y), w(z) = 0B,

• by (W2), for every v ∈ Y, w(v) = ∑u∈X bubvι(u) = bv ∑u∈X buι(u) = 0B,

• by (W3), for every u ∈ X, w(ui) = ∑j∈[h] aibjι(vj) = ai ∑j∈[h] bjι(vj) = 0B.

Hence, we have completed the proof for the YES case.

(NO case) Suppose (G, s, h) is a NO instance of GAPBSMDγ. Let W ⊆ W be a set of
vectors that are linearly dependent. We define two vertex sets and their edge set as follows.
Let

X := {u ∈ L : there exists v ∈ R such that w(u,v) ∈W},

Y := {v ∈ R : there exists u ∈ L such that w(u,v) ∈W},

and
EW := {e ∈ E : we ∈W }.

Note that X and Y are not empty because W is non-empty. By (R2) and (W3), for every u ∈ X,
there exist at least h vertices in Y that are adjacent to u, i.e. |N(u) ∩ Y| > h. Similarly, by (L2)
and (W2), for every v ∈ Y, we have |N(v) ∩ X| > s. Hence, by the guarantee in the NO case of
GAPBSMDγ, we can conclude that γ · sh 6 |EW | = |W| as desired.

4.2.1 Reducing Uncolored LDS to Colored LDS

In this section, we show a simple reduction from the uncolored version of LDS to the colored
version of LDS. As is usual in such a reduction, we will need the definition of perfect hash
families and an efficient construction stated below.

Definition 4.6. An (n, k)-perfect hash family is a collection F of functions from [n] to [k] such that,
for every subset S ⊆ [n] of size k, there exists f ∈ F that maps every S to distinct elements in [k], i.e.,
f (S) = [k].

Theorem 4.7 ([NSS95]). There exists an algorithm that, for any n, k ∈N, constructs an (n, k)-perfect
hash family in time 2O(k)poly(n).

If we use perfect hash families to reduce GAPLDS to GAPLDScol in a straightforwad
manner, we will end up with a Turing reduction, i.e., we will produce multiple instances of
GAPLDScol. Our observation here is that these instances can be “merged” into a single in-
stance, i.e., by shifting the vectors appropriately so that the coordinates of vectors from differ-
ent instances are not overlap:

Lemma 4.8. There exists an algorithm reduction that takes in W ⊆ Fm
q and an integer k, runs in

2O(k)poly(m, |W|) time, and outputsW ′ ⊆ Fm′
q and a coloring c :W ′ → [k] such that
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• (YES) if (W , k) is a YES instace of GAPLDSγ, then (W ′, k, c) is a YES instace of GAPLDScol
γ ;

• (NO) if (W , k) is a NO instace of GAPLDSγ, then (W ′, k, c) is a NO instace of GAPLDScol
γ ;

Proof. Let (W , k) be any instance of GAPLDSγ, and let n denote |W|. We use Theorem 4.7 to
construct an (n, k)-perfect hash family F = { f1, . . . , fR} where R = 2O(k)poly(n). For every
w ∈ W and j ∈ [R], we add a vector 0m(j−1) ◦w ◦ 0m(R−j) ∈ FmR

2 toW ′ and color this vector by
f j(w). Finally, k remains the same as before.

It is obvious that the reduction runs in 2O(k)poly(n) time. We now argue its correctness.

(YES Case) Suppose that (W , k) is a YES instance of GAPLDSγ, i.e., there exist a1, . . . , ak ∈
Fq \ {0} such that a1w1 + · · ·+ akwk = 0. Since F is a perfect hash family, there exists j ∈ [R]
such that f j({w1, . . . , wk}) = [k]. In this case, we have ∑i∈[k] ai(0m(j−1) ◦wi ◦ 0m(R−j)) = 0 and
that the vectors 0m(j−1) ◦w1 ◦ 0m(R−j), . . . , 0m(j−1) ◦wk ◦ 0m(R−j) are of different colors. Hence,
(W ′, k, c) is a YES instance of GAPLDScol

γ .

(NO Case) Suppose that (W , k) is a NO instance of GAPLDSγ. Consider any W ′ ⊆ W ′
such that the vectors in W ′ are linearly dependent; we may pick such a set that is minimum,
i.e., for every w′ ∈W ′, there exists a coefficient aw′ so that ∑w′∈W ′ aw′w′ = 0.

Consider any element of W ′; suppose that it is of the form 0m(j−1) ◦w∗ ◦ 0m(R−j) for some
j ∈ [R]. Let W be {w ∈ W : 0m(j−1) ◦ w ◦ 0m(R−j) ∈ W ′}. By restricting the equation
∑w′∈W ′ aw′w′ = 0 only to the coordinates m(j− 1) + 1, . . . , mj, we can conclude that the vectors
in W are linearly dependent. Hence, we must have |W ′| > |W| > γk; that is, (W , k, c) is a NO
instance of GAPLDScol

γ as desired.

Combining Theorem 4.5 and Lemma 4.8, we can get the following theorem, which implies
the W[1]-hardness of GAPLDScol

γ .

Theorem 4.9. Let γ > 1 be any constant. There is a polynomial time algorithm that, given an instance
(G, s, h) of GAPBSMDγ where G contains n vertices and any prime power q > n, produces an instance
(W ⊆ Fm

q , k = hs, c) of GAPLDSγ such that

• (YES) If (G, s, h) is a YES instance of GAPBSMDγ, then (W , k, c) is a YES instance of
GAPLDScol

γ .

• (NO) If (G, s, h) is a NO instance of GAPBSMDγ, then (W , k, c) is a NO instance of
GAPLDScol

γ .

5 Parameterized Inapproximability of Maximum Likelihood Decod-
ing

In this section, we will show the parameterized intractability of GAPMLD as stated below.

Theorem 5.1. For every γ > 1 and any prime number p, GAPMLDγ,p is W[1]-hard.

We will divide the section into two parts. In the first part, we will give a simpler proof
that only yields a hardness of approximation with factor 3− ε for any ε > 0, and we only focus
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on the case p = 2 for simplicity. We note that this already suffices for proving hardness for
Even Set problem. (In fact, any inapproximability result with factor greater than two suffices;
see Lemma 6.5.)

Next, in the second part, we add an additional step in the proof that allows us to prove
hardness of approximation with any constant factor and every prime field. We note here that,
while this additional step is not used in proving hardness of Even Set, the technique not only
gives the better inapproximability factor for GAPMLD but is also crucial in proving hardness
of the Shortest Vector Problem (see Appendix 7.1).

5.1 (3− ε) Factor Inapproximability of Maximum Likelihood Decoding

In this subsection, we will show the inapproximability of MLD over F2 for any constant factor
less than three. More formally, we show the following:

Theorem 5.2. For any constant ε > 0, GAPMLD3−ε is W[1]-hard.

Proof. We will reduce from GAPBSMD3, which is W[1]-hard due to Theorem 4.2. Let (G =

(L∪̇R, E), s, h) be an instance of GAPBSMD3. We first run the reduction in Theorem 4.9 with
q = 2dlog(|L|+|R|)e. This gives us an instance (W ⊆ Fm

2d , k, c) of GAPLDScol
3 . We use n to denote

|W|.

We now describe how we construct the instance (A ∈ Fm′×n′
2 , y ∈ Fm′

2 , k) of GAPMLD3−ε

where m′ = md + k and n′ = (2d − 1)n. First, the parameter k remains the same from the
GAPBSMDcol

3 . Second, y is the m′-dimensional vector whose first k coordinates are ones and
the remaining coordinates are zeros, i.e., y = 1k ◦ 0md.

To define A, we need to introduce some notation. First, recall that the elements of the field
F2d can be viewed as d-dimensional F2-vectors. In other words, there is a map f : F2d → Fd

2
such that f (x + y) = f (x) + f (y) for all x, y ∈ F2d , and f (x) = 0d iff x = 0. We additionally
define F : Fm

2d → Fmd
2 by F(v) = f (v[1]) ◦ · · · ◦ f (v[m]). Again, we have F(u + v) = F(u) +

F(v) for all u, v ∈ Fm
2d , and F(v) = 0md iff v = 0m.

Moreover, for every i ∈ [k], let ei be the k-dimensional vector with one at the i-th coordi-
nate and zero elsewhere. We identify the column indices of A byW × (F2d \ {0}). Then, we
construct A by letting its (w, a)-column be

A[(w, a)] := ec(w) ◦ F(a ·w).

This completes our reduction description. It is simple to verify that the reduction runs in
polynomial time. We now move on to prove the correctness of the reduction.

(YES Case) Suppose that (G, s, h) is a YES instance of GAPBSMD3. From Theorem 4.9,
there exist w1, . . . , wk ∈ W all of different colors and non-zero a1, . . . , ak ∈ F2d \ {0} such that
∑i∈[k] ai ·wi = 0. Let x ∈ Fn′

2 such that x[(wi, ai)] = 1 for all i ∈ [k] and all other coordinates of
x are zero. Clearly, ‖x‖0 = k and

Ax = ∑
i∈[k]

A[(wi, ai)] = ∑
i∈[k]

ec(w) ◦ F (ai ·wi) = 1k ◦ F

(
∑

i∈[k]
ai ·wi

)
= 1k ◦ F(0) = 1k ◦ 0md = y,
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which means that (A, y, k) is indeed a YES instance.

(NO Case) Suppose that (G, s, h) is a NO instance of GAPBSMD3. From Theorem 4.9,
(W , k, c) is a NO instance of GAPLDScol

3 . Suppose for the sake of contradiction that (A, y, k)
is not a NO instance of GAPMLD3−ε. That is, there exists x ∈ Fn′

2 such that Ax = y and
‖x‖0 6 (3− ε)k < 3k.

For every i ∈ [k], let us define Xi as

Xi := {(w, a) ∈ W × (F2d \ {0}) : x[(w, a)] = 1}.

We can write Ax as

Ax = ∑
i∈[k]

∑
(w,a)∈Xi

ei ◦ F(a ·w) =

(
∑

i∈[k]
|Xi|ei

)
◦ F

(
∑

i∈[k]
∑

(w,a)∈Xi

a ·w
)

.

Since Ax = y, we must have |Xi| ≡ 1 (mod 2) for all i ∈ [k] and

∑
i∈[k]

∑
(w,a)∈Xi

a ·w = 0m. (4)

Moreover, observe that ‖x‖0 = ∑i∈[k] |Xi|. Since ‖x‖0 < 3k and |Xi| ≡ 1 (mod 2) for all
i ∈ [k], there must be i∗ ∈ [k] such that |Xi∗ | = 1. Let (w∗, a∗) be the unique element of Xi∗ .
Notice that w∗ appears only once in the left hand side of (4) with coefficient a∗ 6= 0; as a result,
this is a non-empty linear combination of less than 3k vectors inW . Hence, there are less than
3k vectors in W that are linearly dependent, which contradicts the fact that (W , k, c) is a NO
instance of GAPLDScol

3 .

Thus, (W , k, c) must be a NO instance of GAPMLD3−ε as desired.

5.2 Every Constant Factor Inapproximability of Maximum Likelihood Decoding

In this section, we will prove our main result of this section, i.e., Theorem 5.1.

To demonstrate the main additional idea, let us recall why the proof in the previous section
fails to give us the hardness of factor three. The reason is as follows: when d > 2, we can pick
three non-zero elements a, b, c ∈ F2d whose sum is zero. We can then select any w1, . . . , wk of
different colors, and set x[(wi, a)], x[(wi, b)], x[(wi, c)] to be ones for all i ∈ [k], and set the rest
of coordinates of x to be zero. Clearly, ‖x‖0 = 3k and this gives

Ax = 1k ◦ F

(
∑

i∈[k]
(a + b + c)wi

)
= 1k ◦ 0md = y.

That is, the fact that a + b + c = 0 allows us to zero out the coefficient of each wi. Our fix
to overcome this issue is rather straightforward. First, observe that we can write Fd

2 \ {0} =

C1 ∪ · · · ∪ Cd such that no such “problematic” tuples (a, b, c) appears in Ci, where Ci is defined
as {a ∈ Fq \ {0} : f (a)[i] = 1} (where f is as defined in Theorem 5.2). In fact, this guarantees
not only that any triplet in Ci sums to non-zero, but also that any odd number of elements in
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Ci sums to non-zero.

Now, the modification is very simple: instead of creating columns for (w, a) for all a ∈
F2d \ {0}, we will only create columns for (w, a) for a ∈ Cg[c(w)] where g ∈ [d]k, i.e., we restrict
the coefficients to only Cg[j] for each color j. This helps us avoid “problematic” coefficients
as described above. In particular, we can construct a instance Ag for every choice of c. As in
the reduction to GAPLDScol, we can merge the various instances corresponding to different
choices of g into a single instance using the shifting trick employed in the proof of Lemma 4.8.

For a general prime p, we can write Fpd similarly as above into a union of subsets, such
that each subset does not contain “problematic” tuples of elements, as stated below. Note
that the definition of “problematic” is slightly more complicated for general p. Now, the tuple
(a1, . . . , at) ∈ Ft

pd is “problematic” if we can find ba1 , . . . , bat ∈ Fp such that ba1 + · · ·+ bat 6= 0
(over Fp) but ba1 · a1 + · · · bat · at = 0 (over Fpd ).

Definition 5.3. For q = pd where d ∈ N and p is a prime, let f : Fq → Fd
p be the isomorphism

between F+
q and the Fp-vector space Fd

p. For every i ∈ [d] and α ∈ Fp \ {0}, we define C(i,α) := {a ∈
Fq \ {0} : f (a)[i] = 1}. Observe that

(i) Fq \ {0} =
⋃

i∈[d],α∈Fp\{0} C(i,α)

(ii) for any i ∈ [d], α ∈ Fp \ {0} and any (ba)a∈C(i,α)
∈ (Fp)

C(i,α) such that ∑a∈C(i,α)
ba 6= 0, we have

∑a∈C(i,α)
ba · a 6= 0.

With this definition, we can easily generalize the (sketched) reduction from F2 to Fp. The
properties of the reduction are summarized and proved below.

Theorem 5.4. Given an instance (W ⊆ Fm
pd , k, c) of GAPLDSγ where p is a prime, we can create an

instance of GAPMLDγ,p (with the same parameter k) in O((dp)k · poly(|W|, m, pd)) time such that

• (YES) If (W , k, c) is a YES instance of GAPLDSγ, then the GAPMLDγ,p is a YES instance.

• (NO) If (W , k, c) is a NO instance of GAPLDSγ, then the GAPMLDγ,p is a NO instance.

Proof. Let (W ⊆ Fm
pd , k, c) be an instance of GAPLDSγ. Let n = |W|, and f : Fq → Fd

p be

the isomorphism between F+
q and the Fp-vector space Fd

p. Furthermore, let F : Fm
pd → Fmd

p

be defined by F(v) = f (v[1]) ◦ · · · ◦ f (v[m]). We will also find it convenient to define ` =

dk(p− 1)k, which is the total number of distinct choices of g.

For every g ∈ [`], we construct a matrix Ag ∈ Fm′×md
2 where m′ = k + `md. As before, we

index the columns of Ag with the set Ig = ∪w∈W{w} × Cg[c(w)]. Here, for any [w, a] ∈ Ig, we
let the corresponding column be

Ag[w, a] := ec−1(w) ◦
(

0md(i−1) ◦ F(a ·w) ◦ 0md(`−i)

)
(5)

Finally, we define the matrix A = [Ag]g∈[`] ∈ Fm′×n′
p to be the concatenation of all the Ag

matrices, where n′ = `n. Note that the above construction ensures that for any distinct pair
of g, g′ ∈ [`], the column supports of the sub-matrices Ag and Ag′ do not intersect in the
coordinates [k + 1, n′]. We also define the target vector y = 1k ◦ 0md`. We set (A, y, k) to be
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the GAPMLDγ,p instance output by the reduction. Clearly, the reduction runs in O((dp)k ·
poly(n, m, pd)) time. We next argue its correctness.

(YES Case) Suppose there exist w1, . . . , wk ∈ W all of different colors and non-zero
a1, . . . , ak ∈ Fpd \ {0} such that ∑i∈[k] ai · wi = 0. We claim that (A, y, k) is a YES instance
of GAPMLDγ,p. To see this, consider g∗ where ai belongs to Cg∗[i] for all i ∈ [k]. . Also let
x ∈ Fn′

p be such that xg∗ [(wi, ai)] = 1 for all i ∈ [k], where xg∗ is the vector x restricted to coordi-
nates corresponding to the sub-matrix Ag∗ . We set all other coordinates of x to zero. (Note that
the column (wi, ai) exists in Ag∗ because ai ∈ Cg∗[i].) Clearly, x is a {0, 1}-vector with ‖x‖0 = k
and

Ax = Ag∗xg∗ = ∑
i∈[k]

Ag∗ [(wi, ai)] = ∑
i∈[k]

ec(wi) ◦ F (ai ·wi) = 1k ◦ F

(
∑

i∈[k]
ai ·wi

)
= 1k ◦ F(0) = y,

which means that (A, y, k) is indeed a YES instance of GAPMLDγ,p.

(NO Case) Suppose that (W , k, c) is a NO instance of GAPLDSγ. Consider any x ∈ Fn′
p

such that Ax = y. Recall that for any g ∈ [`], xg is the sub-vector of x which acts on the
sub-matrix Ag. Let us rewrite Ax as follows:

Ax =

∑
i∈[k]

 ∑
g∈[`]

∑
w∈c−1(i),a∈Cg[i]

xg[(w, a)]

 ei

 ◦ v1 ◦ v2 ◦ · · · ◦ v`

where for any g ∈ [`], the vector vg is the sub-vector of Agxg which can be formally expressed
as

vg = F

 ∑
w∈W

 ∑
a∈Cg[c(w)]

xg[(w, a)] · a

 ·w


In other words, it is the block resulting from Agxg in the coordinates k + 1, k + 2, . . . , m′. Since
Ax = y, we must have

∑
g∈[`]

∑
w∈c−1(i),a∈Cg[i]

xg[(w, a)] = 1 ∀i ∈ [d] (6)

and for every g ∈ [`],

∑
w∈W

 ∑
a∈Cg[c(w)]

xg[(w, a)] · a

 ·w = 0m. (7)

From (6) with i = 1, there must be g∗ ∈ [`] such that

∑
w∈c−1(i),a∈Cg∗ [1]

xg∗ [(w, a)] 6= 0

which in turn implies that there exists w∗ of color 1 such that ∑a∈Cg∗ [1]
xg∗ [(w∗, a)] 6= 0. From

this and observation (ii) in Definition 5.3, we have ∑a∈Cg∗ [1]
xg∗ [(w∗, a)] · a 6= 0. This means
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that the left hand side of (7) instantiated with g∗ is a non-zero linear combination of at most
‖xg∗‖0 vectors from W . Since (W , k, c) is a NO instance of GAPLDSγ, we can conclude that
‖xg∗‖0 (and consequently ‖x‖0) must be larger than γ · k. Hence, (A, y, k) is a NO instance for
GAPMLDγ,p.

Finally, we note that the above theorem together with Theorems 4.2 and 4.9 imply the main
result of this section (Theorem 5.1). In particular, by selecting d = dlogp(|L|+ |R|)e in Theo-
rem 4.9 and applying Theorem 5.4 afterwards, we get a (Turing) reduction from GAPBSMDγ

to GAPMLDγ,p that runs in time

O((pd)k ·poly(|L|+ |R|)) 6 O
((

(pd)
√

pd + (k2)k)
)
· poly(|L|+ |R|)

)
= kO(k) ·poly(|L|+ |R|),

which is FPT. From this and from W[1]-hardness of GAPBSMDγ (Theorem 4.2), we arrive at
Theorem 5.1.

6 Parameterized Intractability of Minimum Distance Problem

Next, we will prove our main theorem regarding parameterized intractability of GAPMDP:

Theorem 6.1. GAPMDPγ for any γ > 1 is W[1]-hard under randomized reductions.

This again proceeds in two steps. First, we give a simple reduction from GAPMLD to
GAPSNC in Section 6.1. Then, we reduce the latter to GAPMDP in Section 6.2.

6.1 Parameterized Inapproximability of Sparse Nearest Codeword Problem

We start with a simple approximation-preserving reduction from GAPMLD to GAPSNC.

Theorem 6.2. GAPSNCγ for any γ > 1 is W[1]-hard under randomized reductions.

Proof. We reduce from GAPMLDγ, which is W[1]-hard from Theorem 5.1. Let (B, z, k) be the
input for GAPMLDγ where B ∈ Fn×m

2 , y ∈ Fn
2 , and t is the parameter. Let a = dγk + 1e. We

produce an instance (A, y, k) for GAPSNCγ by letting

A =

B
...
B

 a copies , y =

z
...
z

 a copies

The reduction clearly runs in polynomial time, we are only left to argue that it appropri-
ately maps YES and NO cases from GAPMLDγ to those in GAPSNCγ.

(YES Case) Suppose that (B, z, k) is a YES instance of GAPMLDγ, i.e., there exists x ∈
Bq(0, k) such that Bx = z. This implies that ‖Ax− y‖0 + ‖x‖0 = ‖x‖0 6 k as desired.

(NO Case) Suppose that (B, z, k) is a NO instance of GAPMLDγ, i.e., for all x ∈ Bm(0, γk),
we have Bx 6= z. Now, let us consider two cases, based on whether x ∈ Bm(0, γk). First, if
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x ∈ B(0, γk), then we have ‖Ax− y‖0 + ‖x‖0 > a‖Bx− z‖0 > a > γk. On the other hand, if
x /∈ Bm(0, γk), then ‖Ax− y‖0 + ‖x‖0 > ‖x‖0 > γk.

Thus, in both cases, ‖Ax− y‖0 + ‖x‖0 > γk and (A, y, k) is a NO instance of GAPSNCγ.

6.2 Reducing GAPSNC to GAPMDP

In order to reduce GAPSNC to GAPMDP, we need to formalize the definition of Locally Suffix
Dense Codes (LSDC) and prove their existence; these are done in in Section 6.2.1. Finally, we
show how to use them in the reduction in Section 6.2.2.

6.2.1 Locally Suffix Dense Codes

Before we formalize the notion of Locally Suffix Dense Codes (LSDC), let us give an intuitive
explanation of LSDC: informally, LSDC is a linear code C ⊆ Fh

2 where, given any short prefix
x ∈ F

q
2 where q � h and a random suffix s ∈ F

h−q
2 , we can, with non-negligible probability,

find a codeword that shares the prefix x and has a suffix that is “close” in Hamming distance
to s (i.e. one should think of r below as roughly d/2). More formally, LSDC can be defined as
follows.

Definition 6.3. A Locally Suffix Dense Code (LSDC) over F2 with parameters15 (m, q, d, r, δ) an m-
dimensional systematic linear code with minimum distance (at least) d given by its generator matrix
L ∈ Fh×m

2 such that for any x ∈ F
q
2, the following holds:

Pr
s∼F

h−q
2

[
∃z ∈ Bh−q(s, r) : (x ◦ z) ∈ L(Fm

2 )

]
> δ. (8)

We note that our notion of Locally Suffix Dense Codes is closely related and inspired by
the notion of Locally Dense Codes (LDC) of Dumer et al. [DMS03]. Essentially speaking, the
key differences in the two definitions are that (i) Locally Dense Codes are for the case of q = 0,
i.e., there is no prefix involved, and (ii) s in LDC is not chosen at random from F

q
2 but rather

from Bq(0, r). Note that, apart from these, there are other subtle additional requirements in
Locally Dense Codes that we do not need in our reduction, such as the requirements that the
“center” s is close to not just one but many codewords; however, these are not important and
we will not discuss them further.

Unfortunately, the proof of Dumer et al. does not directly give us the desired LSDC; the
main issue is that, when there is no prefix, the set of codewords is a linear subspace, and
their proof relies heavily on the linear structure of the set (which is also why s is randomly

chosen from Bq(0, r) instead of F
q
2). However, the set of our interest is

{
z ∈ Fh−q

∣∣∣x ◦ z ∈

L(Fm
2 )
}

, which is not a linear subspace but rather an affine subspace; Dumer et al.’s argument
(specifically Lemma 13 in [DMS03]) does not apply in the affine subspace case.

15We remark that the parameter h is implicit in specifying LSDC.
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Below, we provide a different proof than Dumer et al. for the construction of LSDC. Our
bound is more related to the Sphere Packing (aka Hamming) bound for codes. In particular,
we show below that BCH codes, which “near” the Sphere Packing bound gives us LSDC with
certain parameters. It should be noted however that the probability guarantee δ that we have
is quite poor, i.e. δ > d−Θ(d), but this works for us since d is bounded by a function of the
parameter of our problem. On the other hand, this would not work in NP-hardness reductions
of [DMS03] (and, on top of this, our codes may not satisfy other additional properties required
in LDC).

Lemma 6.4. For any q, d ∈ N such that d is an odd number larger than one, there exist h, m ∈N and
L ∈ Fh×m

2 which is a LSDCwith parameters
(

m, q, d, d−1
2 , 1

dd/2

)
. Additionally, the following holds:

• h, m 6 poly(q, d) and m > q,

• L can be computed in poly(q, d) time.

Proof. Let h be the smallest integer such that h + 1 is a power of two and that h >

max{2q, 10d log d}, and let m = h−
(

d−1
2

)
log(h + 1). Clearly, h and m satisfy the first condi-

tion.

Let L be the generator matrix of the [h, m, d]2 linear code as given by Theorem 3.8. Without
loss of generality, we assume that the code is systematic on the first m coordinates. From
Theorem 3.8, L can be computed in poly(h) = poly(q, d) time.

It remains to show that for our choice of L, (8) holds for any fixed choice of x ∈ F
q
2. Fix a

vector x ∈ F
q
2 and define the set C =

{
z ∈ F

h−q
2

∣∣∣x ◦ z ∈ L(Fm
2 )
}

. Since the code generated by

L is systematic on the first m > q coordinates, we have that |C| > 2m−q.

Moreover, since the code generated by L has distance d, every distinct z1, z2 ∈ C are at
least d-far from each other (i.e. ‖z1 − z2‖0 > d). Therefore, for any distinct pair of vectors
z1, z2 ∈ C, the sets Bh−q(z1, d−1

2 ) and Bh−q(z2, d−1
2 ) are disjoint. Hence the number of vectors

in the union of
(

d−1
2

)
-radius Hamming balls around every z ∈ C is at least

2m−q
∣∣∣∣Bh−q

(
0,

d− 1
2

)∣∣∣∣ > 2m−q
(

h− q
d−1

2

)
> 2m−q

(
h/2
d−1

2

)
> 2m−q

( h
d− 1

) d−1
2

On the other hand, |Fh−q
2 | = 2h−q = 2m−q(h + 1)

d−1
2 . Hence, with probability at least(

h
(d−1)(h+1)

) d−1
2

> 1
dd/2 , a vector s sampled uniformly from F

h−q
2 lies in Bh−q

(
z, d−1

2

)
for some

vector z ∈ C. This is indeed the desired condition in (8), which completes our proof.

6.2.2 The Reduction

In this subsection, we state and prove the FPT reduction from the GAPSNC problem to the
GAPMDP problem. It is inspired by the reduction from [DMS03], which is then modified (and
simplified) to work in combination with LSDC instead of LDC.

Lemma 6.5. There is a randomized FPT reduction from GAPSNC2.5 to GAPMDP1.01.
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Proof. Let (B, y, t) be the input for GAPSNCγ′ where B ∈ F
n×q
2 , y ∈ Fn

2 , and t is the parameter.
We may assume without loss of generality that t > 1000. Let d be the smallest odd integer
greater than 2.5t. Let h, m ∈N, L ∈ Fh×m

2 be as in Lemma 6.4.

We produce an instance (A, k) for GAPMDPγ by first sampling a random s ∼ F
h−q
2 . Then,

we set k = t + (d− 1)/2, s′ = 0q ◦ −s and

A =

[
B 0n×(m−q) y
L s′

]
∈ F

(n+h)×(m+1)
2 .

Notice that the zeros are padded onto the right of B so that the number of rows is the same as
that of L.

Since k = t + (d− 1)/2 = Oγ′(t) and the reduction clearly runs in polynomial time, we
are only left to argue that it appropriately maps YES and NO cases from GAPSNCγ′ to those
in GAPMDPγ.

(YES Case) Suppose that (B, y, t) is a YES instance of GAPSNCγ′ , i.e., there exists x ∈ F
q
2

such that ‖Bx− y‖0 + ‖x‖0 6 t. From Lemma 6.4, with probability at least 1/dd/2, there exists
u ∈ Bh−q

(
s, d−1

2

)
such that x ◦ u ∈ L(Fm

2 ). From this and from systematicity of L, there exists

z′ ∈ F
m−q
2 such that L(x ◦ z′) = x ◦ u. Conditioned on this, we can pick z = x ◦ z′ ◦ 1 ∈ Fm+1

2 ,
which yields

‖Az‖0 = ‖Bx− y‖0 + ‖x‖0 + ‖u− s‖0 6 t +
d− 1

2
= k.

In other words, with probability at least 1/dd/2, (A, k) is a YES instance of GAPMDPγ as
desired.

(NO Case) Suppose that (B, y, t) is a NO instance of GAPSNCγ′ . We will show that, for
all non-zero z ∈ Fm+1

2 , ‖Az‖0 > 2.5t; with our choice of parameters and our assumption on
t, it is simple to check that 2.5t > 1.01k. Hence, this implies that (A, k) is a NO instance of
GAPMDPγ.

To show that ‖Az‖0 > γ′t for all z ∈ Fm+1
2 \ {0}, let us consider two cases, based on the

last coordinate z[m + 1] of z. For convenience, we write z as x ◦ z′ ◦ z[m + 1], where x ∈ F
q
2 and

z′ ∈ F
m−q
2 .

If z[m + 1] = 0, then ‖Az‖0 = ‖Bx‖0 + ‖L(x ◦ z′)‖0 > ‖L(x ◦ z′)‖0 > d, where the last
inequality comes from the fact that L is a generator matrix of a code of distance d (and that
z 6= 0). Finally, recall that we select d > 2.5t, which yields the desired result for this case.

On the other hand, if zm+1 = 1, then ‖Az‖0 > ‖Bx− y‖0 + ‖x‖0 > 2.5t, where the second
inequality comes from the assumption that (B, y, t) is a NO instance of GAPSNC2.5.

In conclusion, ‖Az‖0 > 2.5t in all cases considered, which completes our proof.

Gap Amplification. Finally, the above gap hardness result can be boosted to any constant gap
using the now standard technique of tensoring the code (c.f. [DMS03],[AK14]) which is stated
formally in the following proposition:
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Proposition 6.6 (E.g. [DMS03]). Given two linear codes C1 ⊆ Fm
2 and C2 ⊆ Fn

2 , let C1⊗C2 ⊆ Fm×n

be the tensor product of C1 and C2. Then d(C1 ⊗ C2) = d(C1)d(C2).

We briefly show how the above proposition can be used to amplify the gap. Consider a
GAPMDPγ instance (A, k) where A ∈ Fm×n

2 . Let C ⊆ Fm
2 be the linear code generated by it.

Let C⊗2 = C ⊗ C be the tensor product of the code with itself, and let A⊗2 be its generator
matrix. By the above proposition, if (A, k) is a YES instance, then d(C⊗2) 6 k2. Conversely,
if (A, k) is a NO instance, then d(C⊗2) > γ2k2. Therefore (A⊗2, k2) is a GAPMDPγ2 instance.
Hence, for any α ∈ R+, repeating this argument dlogγ αe-number of times gives us an FPT

reduction from k-GAPMDPγ to k2dlogγ αe-GAPMDPα. We have thereby completed our proof of
Theorem 6.1.

7 Parameterized Intractability of Shortest Vector Problem

The main result of this section is the parameterized inapproximability of GAPSVP, as stated
below.

Theorem 7.1 (FPT Inapproximability of GAPSVP). For any p > 1, there exists constant γp > 1
(where γp depends on p), such that there GAPSVPp,γp is W[1]-hard (under randomized reductions).

Similar to the Minimum Distance Problem, the proof of Theorem 7.1 goes through two
steps. First, we show that the non-homogeneous variant, the Nearest Vector Problem. Then, in
the second step, we reduce it to the Shortest Vector Problem.

7.1 FPT Inapproximability of Nearest Vector Problem

In this section, we prove the inapproximability of Nearest Vector Problem, as stated more
formally below. The proof is via a simple reduction from Maximum Likelihood Decoding over
a large field.

Theorem 7.2 (FPT Inapproximability of GAPNVP). For any η, p > 1, GAPNVPη,p is W[1]-hard.

Proof. Let q be the smallest prime number such that q > 2η. We will reduce from GAPMLD2η,q,
which is W[1]-hard from Theorem 5.1. Let (A ∈ Fn×m

q , y ∈ Fn
q , k) be an instance of

GAPMLD2η,q. We create an instance of (A′, y′, k′) of GAPNVPη,p as follows. First, we set
k′ = 2k and let

A′ =

1a ⊗A 1a ⊗ (q · Idn)

Idn 0n×n

0k×k 0k×k

 ∈ Zn′×m′ , and, y′ =

1a ⊗ y
0n

1k

 ∈ Zn′ ,

where a = d2ηk + 2e, n′ = an + k and k′ = m + n. Clearly, the reduction runs in polynomial
time. We next argue its correctness.

(YES Case) Suppose that (A, y, k) is a YES instance of GAPMLD2η,q, i.e., that there exists
x ∈ {0, 1}n with ‖x‖0 6 k such that Ax = y when operations are over Fq. This means that,
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when view operations over Z, we have Ax = y + q · z for some z ∈ Zn. Let x′ = x ◦ (−z) ∈
Zm′ . Then, we have (over Z)

‖A′x′‖p
p = ‖0a ◦ x ◦ 1k‖

p
p 6 2k = k′.

In other words, (A′, y′, k′) is a YES instance of GAPNVPη,p as desired.

(NO Case) Suppose that (A, y, k) is a NO instance of GAPMLD2η,q. Consider any x′ ∈ Zm′

and any w ∈ Z \ {0}. We would like to show that ‖A′x′ − w · y′‖p
p > η · k′ = 2ηk. To do so, let

us write x′ as x ◦ z where x ∈ Zm and z ∈ Zn. We can now rearrange ‖A′x′ − w · y′‖p
p as

‖A′x′ − w · y′‖p
p = a‖Ax + qz− y‖p

p + ‖x‖
p
p + |w|pk.

As a result, if Ax + qz 6= y, then ‖A′x′ − w · y′‖p
p > a > 2ηk. Furthermore, if |w| > q, then we

also have ‖A′x′−w · y′‖p
p > |w|pk > qk > 2ηk. Hence, we may henceforth assume that |w| < q

and A′x′ + qz = w · y′. Since |w| < q, it has an inverse modulo q, i.e., there exists u ∈ [q− 1]
such that uw ≡ 1 (mod q). Now, let us consider x̃ ∈ Fm

q where x̃[i] is defined as the remainder
of u · x[i] modulo q. From Ax + qz 6= y, we have (over Fq)

Ax̃ = (uw) · y = y.

Since (A, y, k) is a NO instance of GAPMLD2η,q, we must have ‖x̃‖0 > 2ηk. Observe that
‖x‖0 > ‖x̃‖0. Thus, we have ‖A′x′ − w · y′‖p

p > ‖x‖p
p > ‖x‖0 > 2ηk. In other words, we can

conclude that (A′, y′, k′) is a NO instance of GAPNVPη,p.

7.2 Following Khot’s Reduction from NVP to SVP

We will now reduce from GAPNVP to GAPSVP. This step is almost the same as that of
Khot [Kho05], with small changes in parameter selection. Despite this, we repeat the whole
argument here (with appropriate adjustments) for completeness.

The main properties of the (randomized) FPT reduction from GAPNVPp,η to GAPSVPp,γ

are summarized below. For succinctness, we define a couple of additional notation: let L(A)

denote the lattice generated by the matrix A ∈ Zn×m, i.e., L(A) = {Ax | x ∈ Zm}, and let
λp(L) denote the length (in the `p norm) of the shortest vector of the lattice L, i.e., λp(L) =

min
0 6=y∈L

‖y‖p.

Lemma 7.3. Fix p > 1, and let η > 1 be such that 1
2 +

1
2p +

(2p+1)
η < 1. Let (B, y, t) be a GAPNVPp,η

instance, as given by Theorem 7.2. Then, there is a randomized FPT reduction from GAPNVPp,η

instance (B, y, t) to GAPSVPp,γ instance (Bsvp, γ−1
p l) with l = η · t such that

• (YES) If (B, y, t) is a YES instance, then with probability at least 0.8, λp(L(Bsvp))p 6 γ−1
p l.

• (NO) If (B, y, t) is a NO instance, then with probability at least 0.9, λp(L(Bsvp))p > l.

Here γp := 1
1
2+(2p+1)/η+1/2p is strictly greater than 1 by our choice of η.

Combining the above lemma with Theorem 7.2 gives us Theorem 7.1.
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We devote the rest of this subsection to describing the reduction (which is similar to that
from [Kho05]) and proving Lemma 7.3. In Section 7.2.1, we define the BCH lattice, which is
the key gadget used in the reduction. Using the BCH lattice and the GAPNVPp,η instance,
we construct the intermediate lattice Bint in Section 7.2.2. The intermediate lattice serves to
blow up the number of “good vectors” for the YES case, while controlling the number of “bad
vectors” for the NO case. In particular, this step ensures that the number of good vectors in
the YES case (Lemma 7.5) far outnumber the number of bad vectors in the NO case (Lemma
7.6). Finally, in Section 7.2.3 we compose the intermediate lattice with a random homogeneous
constraint (sampled from an appropriate distribution), to give the final GAPSVPp,γ instance.
The additional random constraint is used to annihilate all bad vectors in the NO case, while
retaining at least one good vector in the YES case.

For the rest of the section, we fix (B, y, t) to be a GAPNVPp,η instance (as given by Theorem

7.2), and set l := η · t and r :=
(

1
2 +

1
2p + 1

η

)
l. For simplicity of calculations, we will assume

that both l and r are integers, and that l is even. Furthermore, we say that a vector u is good
(for the YES case) if ‖u‖p

p 6 γ−1
p l, and we say that u is bad (for the NO case) if ‖u‖p

p 6 l.

7.2.1 The BCH Lattice gadget

We begin by defining the BCH lattices which is the key gadget used in the reduction. Given
parameters l, h ∈ N where h + 1 is a power of 2 and l < h. Let g = (l/2) · log(h + 1).
Theorem 3.8 guarantees that there exists a BCH code with block length h, message length h− g
and distance l + 1. Let PBCH ∈ {0, 1}g×h be the parity check matrix of such code. The BCH
lattice is defined by

BBCH =

[
Idh 0h×g

l · PBCH 2l · Idg

]
∈ Z(h+g)×(h+g).

The following lemma, which is simply a restatement16 of Lemma 4.3 in [Kho05], summarizes
the key properties of BCH lattices, as defined above.

Lemma 7.4 ([Kho05]). Let BBCH ∈ Z(h+g)×(h+g) be as above. There exists a randomized polynomial
time algorithm that, with probability at least 0.99, returns a vector s ∈ Zh+g such that the following
holds: there are at least 1

100 2−g(h
r) distinct vectors z ∈ Zh+g such that ‖BBCHz− s

∥∥p
p = r.

7.2.2 The Intermediate Lattice

We now define the intermediate lattice. Let (B, y, t) be an instance of GAPNVPp,η , where B ∈
Zn×q. The intermediate lattice Bint is constructed as follows. Let l = ηt. Let h be the smallest
power of 2 such that h > max{2n, (1010l)2η}, and let BBCH be constructed as above. Then

Bint =

[
2B 0n×(h+g) 2y

0(h+g)×q BBCH s

]
∈ Z(n+h+g)×(q+h+g+1).

where s ∈ Zh+g is the vector given by Lemma 7.4.
16In fact, Lemma 7.4 is even weaker than Khot’s lemma, since we do not impose a bound on ‖z‖p.
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Bounding Good Vectors in YES Case. We now prove a lower bound on the number of good
vectors in the YES case.

Lemma 7.5. Let (B, y, t) be a YES instance, and let Bint be the corresponding intermediate lattice.

With probability at least 0.99, there are at least hr
(

200hl/2ll
)−1

good non-zero vectors in L(Bint).

Proof. Since (B, y, t) is a YES instance, there exists x̃ ∈ Zq such that ‖Bx̃ − y‖p
p 6 t. From

Lemma 7.4, with probability at least 0.99, there exist at least 2−g(h
r)/100 distinct vectors z ∈

Zh+g such that ‖BBCHz − s‖p = r. For each such z, consider the vector x = x̃ ◦ z ◦ −1. It
follows that Bintx = (2Bx̃− 2y) ◦ (BBCHz− s) is a non-zero vector and ‖Bintx‖p

p = 2p‖Bx̃−
y‖p

p + ‖BBCHz − s‖p
p 6 2pt + r = γ−1

p l. Since the number of such vectors x is at least the
number of distinct coefficient vectors z, it can be lower bounded by

1
100
· 2−g

(
h
r

)
>

1
100
· 2− l

2 log(h+1)
(

h
r

)
>

1
100
· hr

rr(h + 1)l/2 >
1

200
· hr

llhl/2 ,

where the last inequality follows from r 6 l and l < h. Finally, observe that each z produces
different BBCHz and hence all Bintx’s are distinct.

Bounding Bad Vectors in NO Case. We next bound the number of bad vectors in the NO
case:

Lemma 7.6. Let (B, y, t) be a NO instance, and let Bint be the corresponding intermediate lattice. Then

the number of bad vectors in L(Bint) is at most 10−5hr
(

200hl/2ll
)−1

.

At the heart of the proof is the claim that every bad vector must have even coordinates:

Claim 7.7. Let (B, y, t) be a NO instance, and let Bint be the corresponding intermediate lattice. Then,
for every bad u ∈ L(Bint), all coordinates of u must be even.

Proof. Let u be any bad vector in L(Bint) and let x ∈ Zq+h+g+1 be such that Bintx = u. We
write x as x1 ◦ x2 ◦ x where x1 ∈ Zq, x2 ∈ Zm+h and x ∈ Z. Using this, we can express u as
Bintx = (2Bx1 − 2x · y) ◦ (BBCHx2 − x · s). Recall that u is bad means that ‖u‖p

p 6 l, which
implies that ‖Bx1 − x · y‖ 6 l = η · t. Since (B, y, t) is a NO instance, it must be that x = 0.

Note that we now have u = (2Bx1) ◦ (BBCHx2). Let us assume for the sake of contradiction
that u has at least one odd coordinate; it must be that (BBCHx2) has at least one odd coordinate.
Let us further write x2 as x2 = w1 ◦w2 where w1 ∈ Zm and w2 ∈ Zh. Notice that BBCHx2 =

w1 ◦ (l(PBCHw1 − 2w2)). Since every coordinate of BBCHx2 must be less than l in magnitude,
it must be the case that PBCHw1 − 2w2 = 0. In other words, (w1 mod 2) is a codeword of
the BCH code. However, since the code has distance l + 1, this means that, if w1 has at least
one odd coordinate, it must have at least l + 1 odd (non-zero) coordinates, which contradicts
‖u‖p

p 6 l.

Having proved Claim 7.7, we can now prove Lemma 7.6 by a simple counting argument.
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Proof of Lemma 7.6. From Claim 7.7, all coordinates of u must be even. Therefore, u must have
at most l/2p non-zero coordinates, all of which have magnitude at most bl1/pc 6 l− 1. Hence,
we can upper bound the total number of such vectors by

(
2(l − 1) + 1

)l/2p
(

n + h + g
b l

2p c

)
6 (2l)l(n + h + g)l/2p

6 (2l)l(2lh)l/2p
6 (2l)2lhl/2p

where the second-to-last step holds since g 6 l
2 log(h + 1) 6 lh/2 and n 6 h/2. On the other

hand,

hr

hl/2ll =
h
(

1
2+

1
η +

1
2p

)
l

hl/2ll = hl/2p
(h/lη)l/η > 108

(
(2l)2lhl/2p

)
,

which follows from h > (1010l)2η . Combining the two bounds completes the proof.

7.2.3 The GAPSVPp,γ Instance and Proof of The Main Lemma

Finally, we construct Bsvp from Bint by adding a random homogeneous constraint similar to
[Kho05]. For ease of notation, let Ng denote the lower bound on the number of distinct coef-
ficient vectors guaranteed by Lemma 7.5 in the YES case. Similarly, let Na denote the upper
bound on the number of annoying vectors as given in Lemma 7.6. Combining the two Lemmas
we have Ng > 105Na, which will be used crucially in the construction and analysis of the final
lattice.

Construction of the Final Lattice. Let ρ be any prime number in17
[
10−4Ng, 10−2Ng

]
. Further-

more, let r unif∼ [0, ρ− 1]n+h+g be a uniformly sampled lattice point. We construct Bsvp as

Bsvp =

[
Bint 0

l · rTBint l · ρ

]
∈ Z(n+h+g+1)×(q+h+g+2).

This can be thought of as adding a random linear constraint to the intermediate lattice. The
choice of parameters ensures that with good probability, in the YES case, at least one of the
good vectors x ∈ Zq+h+g+1 evaluates to 0 modulo ρ on the random constraint, and therefore
we can pick u ∈ Z such that Bsvp(x ◦ u) = (Bintx) ◦ 0 still has small `p norm. On the other
hand, since Na � Ng, with good probability, all of bad vectors evaluate to non-zeros, and
hence will contribute a coordinate of magnitude l. This intuition is formalized below.

Proof of Lemma 7.3. Let Bsvp be the corresponding final lattice of (B, y, t) as described above.
Observe that given the GAPNVPp,η-instance (B, y, t), we can construct Bsvp in poly(n, q, t)-
time.

Moreover, observe that L(Bsvp) is exactly equal to {u ◦ (l · w) | u ∈ L(Bint), w ≡
rTu (mod ρ)}.

17Note that the density of primes in this range is at least 1/ log Ng = 1/r log h. Therefore, a random sample
of size O(r log h) in this range contains a prime with high probability. Since we can test primality for any ρ ∈[
10−4Ng, 10−2Ng

]
in FPT time, this gives us an FPT algorithm to sample such a prime number efficiently .
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Suppose that (B, y, t) is a NO instance. Consider any u ◦ (l · w) ∈ L(Bsvp). If ‖u ◦ (l ·
w)‖p

p 6 l, it must be that ‖u‖p
p 6 l and w = 0; the latter is equivalent to rTu ≡ 0 (mod ρ).

However, from Lemma 7.6, there are only Na bad vectors u in L(Bint). For each such non-zero
u, the probability that rTu ≡ 0 (mod ρ) is exactly 1/ρ. As a result, by taking union bound
over all such u 6= 0, we can conclude that, with probability at least 1− Na/ρ > 0.9, we have
λp(L(Bsvp))p > l.

Next, suppose that (B, y, t) is a YES instance. We will show that, with probability at least
0.8, λp(L(Bsvp))p 6 γ−1

p l. To do this, we first condition on the event that there exists at least Ng

good vectors as guaranteed by Lemma 7.5. Consider any two good vectors u1 6= u2. Since each
entry of u1 and u2 is of magnitude at most (γ−1

p l)1/p, they are pairwise independent modulo
ρ > 2l. Therefore, instantiating Lemma 5.8 from [Kho05] with the lower bound on the number
of good vectors Ng, and our choice of ρ, it follows that with probability at least 0.9, there exists
a good vector u such that rTu ≡ 0 (mod ρ), i.e., u ◦ 0 belongs to L(Bsvp). Therefore, by union
bound, with probability at least 0.8 (over the randomness of Lemma 7.5 and the choice of
r), there exists a good u ∈ L(Bint) such that u ◦ 0 remains in L(Bsvp), which concludes the
proof.

8 Conclusion and Open Questions

In this work, we have shown the parameterized inapproximability of k-Minimum Distance
Problem (k-MDP) and k-Shortest Vector Problem (k-SVP) in the `p norm for every p > 1 as-
suming W[1] 6= FPT (and under randomized reductions).

An immediate open question stemming from our work is whether k-SVP in the `1 norm is
in FPT. Khot’s reduction unfortunately does not work for `1; indeed, in the work of Haviv and
Regev [HR07], they arrive at the hardness of approximating SVP in the `1 norm by embedding
SVP instances in `2 to instances in `1 using an earlier result of Regev and Rosen [RR06]. The
Regev-Rosen embedding inherently does not work in the FPT regime either, as it produces
non-integral lattices. Similar issue applies to an earlier hardness result for SVP on `1 of [Mic00],
whose reduction produces irrational bases.

An additional question regarding k-SVP is whether we can prove hardness of approxima-
tion for every constant factor for p 6= 2. We note here that for p = 2, we can use the tensor
product of lattices to amplify the gap, as Khot’s construction is tailored so that the resulting
lattice is “well-behaved” under tensoring, and gap amplification is indeed possible for such
instances. However, if p 6= 2 then the gap amplification techniques of [Kho05, HR07] require
the distance k to be dependent on the input size nm, and hence are not applicable for us. To the
best of our knowledge, it is unknown whether this dependency is necessary. If they are indeed
required, it would also be interesting to see whether other different techniques that work for
our settings can be utilized for gap amplification instead of those from [Kho05, HR07].

Furthermore, the Minimum Distance Problem can be defined for linear codes in Fp for any
larger field of size p > 2 as well. It turns out that our result does not rule out FPT algorithms
for k-MDP over Fp with p > 2, when p is fixed and is not part on the input. The issue here
is that, in our proof of existence of Locally Suffix Dense Codes (Lemma 6.4), we need the co-
dimension of the code to be small compared to its distance. In particular, the co-dimension
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h−m has to be at most (d/2 + O(1)) logp h where d is the distance. While the BCH code over
binary alphabet satisfies this property, we are not aware of any linear codes that satisfy this
for larger fields. It is an intriguing open question to determine whether such codes exist, or
whether the reduction can be made to work without existence of such codes.

Since the current reductions for both k-MDP and k-SVP are randomized, it is still an in-
triguing open question whether we can find deterministic reductions for these problems. As
stated in the introduction, even in the non-parameterized setting, NP-hardness of SVP through
deterministic reductions is not known. On the other hand, MDP is known to be NP-hard
even to approximate under deterministic reductions; in fact, even the Dumer et al.’s reduc-
tion [DMS03] that we employ can be derandomized, as long as one has a deterministic con-
struction for Locally Dense Codes [CW12, Mic14]. In our settings, if one can deterministically
construct Locally Suffix Dense Codes (i.e. derandomize Lemma 6.4), then we would also get a
deterministic reduction for k-MDP.
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A Inapproximability of Odd Set

In this section, we show how the hardness for the more general GAPMLD, also implies hard-
ness for the Odd Set problem, which can be defined in a similar manner as GAPMLD except
that y is always fixed as the all-ones vector instead of being part of the input. More formally,
we define the gap version of Odd Set below.

γ-Gap Odd Set Problem (GAPODDSETγ)

Input: A matrix A ∈ Fn×m
2 and a positive integer k ∈N

Parameter: k

Question: Distinguish between the following two cases:

• (YES) there exists x ∈ Bm(0, k) such that Ax = 1

• (NO) for all x ∈ Bm(0, γk), Ax 6= 1

It is obvious that hardness for GAPODDSET gives the hardness for GAPMLD, by simply
setting y = 1. Below we show that the opposite implication is also true; note that, together
with Theorem 5.1, it implies that GAPODDSETγ is W[1]-hard for every γ > 1.

Proposition A.1. For every γ′ > γ > 1, there is an FPT reduction from GAPMLDγ′ to
GAPODDSETγ

Proof. Let (A, y, k) be an instance of GAPMLDγ′ where A ∈ Fn×m
2 and y ∈ Fn

2 . We may assume

without loss of generality that k > γ
γ′−γ . The instance (A′ ∈ F

(n+1)×(m+1)
2 , k′) of GAPODDSETγ

is defined as follows. First, we let k′ = k + 1. Then, for i ∈ [m], we let the i-th column of A′ be
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the i-th column concatenated with zero, and we let the (m + 1)-th column be (1n + y) ◦ 1. That
is,

A′ =

[
A 1n + y

01×m 1

]
.

Clearly, the reduction runs in polynomial time. We next argue its correctness.

(YES Case) Suppose that (A, y, k) is a YES instance of GAPMLDγ′ , i.e., there exists x ∈ Fn
2

with ‖x‖0 6 k such that Ax = y. Let x′ = x ◦ 1; it is simple to see that A′x′ = 1m+1 and that
‖x′‖0 6 k + 1 = k′. Hence, (A′, k′) is a YES instance of GAPODDSETγ.

(NO Case) Suppose that (A, y, k) is NO instance of GAPMLDγ′ . Now, let us consider
any x′ ∈ Fn+1

2 such that A′x′ = 1. Notice that (A′x′)[m + 1] = x′[n + 1], which implies that
x′[n + 1] = 1.

Now, consider the vector x = (x[1], . . . , x[n]); it is easy to verify that Ax = y. Since (A, y, k)
is NO instance of GAPMLDγ′ , we have ‖x‖0 > γ′k. As a result, ‖x′‖0 = 1 + ‖x‖0 > 1 + γ′k >

γ · k′, where the last inequality follows from k > γ
γ′−γ . Thus, (A′, k′) is indeed a NO instance

of GAPODDSETγ.
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