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Abstract

In this work we adapt the notion of non-malleability for codes or Dziembowski, Pietrzak
and Wichs (ICS 2010) to locally testable codes. Roughly speaking, a locally testable code is
non-malleable if any tampered codeword which passes the local test with good probability is
close to a valid codeword which either encodes the original, or an unrelated message.

We instantiate our definition by proving that a Reed-Muller-type code is non-malleable in
the following sense: any adversary who independently tampers the coordinates of the code
so that the tampered code passes the test with good probability, is tampering the underlying
polynomial according to an affine transformation.

To the best of our knowledge, prior to this work, polynomial codes were not known to
possess any non-malleability guarantees. Our analysis builds on the sampler-based decoding
techniques common to several recent works.

1 Introduction

1.1 Locally Testable Codes and Non-Malleable Codes

A coding scheme is a pair (Enc,Dec) of functions Enc : Γk → Γn (possibly randomized) and
Dec : Γn → Γk ∪ {⊥} such that Dec

(
Enc(m)

)
= m holds with probability 1 for all m ∈ Γk.

We say x ∈ Γn is a valid codeword if x = Enc(m) for some m ∈ Γk (and some choice of
randomness for Enc). The quantity k/n is called the rate of the code. Given x,y ∈ Γn, the
distance between x and y is Pri∼[n]

[
xi 6= yi

]
. The distance of the code is the minimum distance

between any two distinct valid codewords. When a code’s distance is bounded away from zero,
one can try to design decoding-type algorithms with extra features such as error-correction or local-
decoding/testing capabilities. In this paper, we will work with codes which admit a local testing
algorithm.

Definition 1 (Local Testing). Given a code (Enc,Dec), q ∈ N, and ε0, c > 0, a (q, ε0, c)−local
tester, Test, is a randomized algorithm which takes x ∈ Γn as input, chooses I = (i1, . . . , iq),
a q−tuple of elements in [n], reads the q symbols xI = (xi1 , . . . ,xiq) from x and outputs a bit.
Moreover,
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• Correctness: if x ∈ Γn is a valid codeword then Test(x) = 1 with probability 1;

• Soundness: for all x ∈ Γn such that ε := PrI
[
Test(x; I) = 1

]
≥ ε0, there exists a valid

codeword y ∈ Γn within distance c · ε of x.

We say that (Enc,Dec) is a (q, ε0)−locally testable code (LTC) if it has a (q, ε0, c)−local tester for
a constant c > 0. The intuitive interpretation of soundness is: if x ∈ Γn is such that Test(x) = 1
with good probability, then x is close to a valid codeword. List decoding for LTCs refers to the
stronger guarantee: for any x ∈ Γn, there is a short list of valid codewords which explain nearly
all of Test(x)’s acceptance probability.

Definition 2 (List-Decoding for LTCs). Fix ` ∈ N and ε > 0. A locally testable code is said to
be (`, ε)−list-decodable if for all x ∈ Γn there exists a set Lx ⊂ Γn of valid codewords such that
|Lx| ≤ ` and

PrI

[
Test(x; I) = 1 & xI /∈ {yI : y ∈ Lx}

]
< ε.

Non-malleable codes [DPW18] (NMCs) provide meaningful security guarantees even in situa-
tions where error correction is impossible. Roughly speaking, (Enc,Dec) is non-malleable against
the tampering function family F ⊂ {f : Γn → Γn} if for all f ∈ F and m ∈ Γk, the distribution(
Dec ◦ f ◦ Enc

)
(m) (over the randomness of Enc) is either equal to m (such is the case when f

is the identity), or else is statistically independent of m. Non-malleable reductions [ADKO15] are
useful relaxations which allow constructing non-malleable codes via concatenation. Intuitively, a
non-malleable reduction from F to G guarantees that the tampering of codewords by functions in
F is captured by tampering messages by functions in G. The key feature of non-malleable reduc-
tions is that they compose well. For example, if (EncF ,DecF) is a non-malleable reduction from
F to G and (EncG,DecG) is a non-malleable code against G, then

(
EncF ◦ EncG,DecG ◦DecF

)
is a

non-malleable code against F .

Definition 3 (Non-Malleable Reductions). Fix ε > 0 and tampering function families

F ⊂ {f : Γn → Γn} and G ⊂
{
g : Γk → Γk ∪ {⊥}

}
.

We say that a coding scheme (Enc,Dec) is an ε−non-malleable reduction from F to G if for all
f ∈ F there exists a distribution Gf on G such that ∆

(
(Dec ◦ f ◦ Enc)(m),Gf (m)

)
≤ ε for all

m ∈ Γk, where Gf (m) is the distribution which draws g ∼ Gf and outputs g(m) (∆ denotes
statistical distance). A non-malleable code is a non-malleable reduction to the family of “trivial”
tampering functions, containing only the identity and constants.

1.2 Non-Malleable, Locally-Testable Codes

Syntax for the Definition. Given a function h : Γn → (Γ ∪ {⊥})n, and a distribution R on
Γn, we let DRh denote the distribution which 1) draws x ∼ R and I according to Test; 2) tampers
to obtain x̃ = h(x); 3) outputs x̃I if Test(x̃; I) = 1, ⊥ otherwise. When R is the encoding
distribution Enc(m) for some m ∈ Γk, we denote the distribution by Dh(m) instead of DEnc(m)

h .
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Definition 4 (Non-Malleability for LTCs). Fix parameters ` ∈ N, ε > 0, and function families

F ⊂ {f : Γn → Γn} and G ⊂
{
g : Γn → (Γ ∪ {⊥})n

}
.

We say that a LTC (Enc,Dec,Test) is an (`, ε)−locally-testable non-malleable reduction from F
to G if for all f ∈ F , there exists Lf = {g(1), . . . , g(`)} ⊂ G of size |Lf | = ` and a function
g : Γn → (Γ ∪ {⊥})n such that:

1. for all i ∈ [n] and x ∈ Γn, g(x)i ∈
{
g(j)(x)i : g(j) ∈ Lf

}
; and

2. there exists a distribution SIM on Γn such that for all m ∈ Γk, ∆
(
Df (m),DSIM

g

)
≤ ε.

As before, if G is the family of trivial tampering functions consisting just of the identity and con-
stants, then (Enc,Dec) is called an (`, ε)−locally-testable non-malleable code.

Remark. Some remarks are in order.

1. The list-decoding intuition is captured by the shortness of Lf : nearly all of the test passing
probability of an f−tampered codeword is explained by f ’s agreement with a short list of
functions in G. Note that each coordinate of g is a (possibly different) convex combination
of the corresponding coordinates of the g(j). Non-malleability is captured by the fact that
DSIM
g does not depend on m.

2. Unlike Definition 3, the functions in G in Definition 4 map codewords to codewords, rather
than messages to messages. This modification is so that we can meaningfully compare f(x)I
with g(x)I , an important feature of local-testing definitions. The family Dec◦G ◦Enc would
be the corresponding distribution on message-to-message functions. In this work, G will
always be either the family of trivial tampering functions, or the family of affine tampering
functions. In either case, Dec ◦ G ◦ Enc is also trivial or affine. The distribution Gf of
Definition 3 outputs g(j) with probability proportional to the probability that DSIM

f agrees
with g(j).

3. Composing two standard non-malleable reductions − one from F to G, one from G to H
− yields a non-malleable reduction from F to H. The same composition theorem does
not hold generically for locally testable, non-malleable reductions. We use a non-generic
composition theorem to combine a locally testable, non-malleable reduction from F to G
with a non-malleable code against G (for specific F and G) to obtain a locally testable, non-
malleable code againstF . The test of our composed code involves locally decoding a symbol
of the outer code so it can be checked for validity by the inner code. This idea is often used
to compose locally testable codes and PCPs.

The following claim gives a useful set of sufficient conditions for a LTC being non-malleable. The
simple proof is given in Appendix A. For the codes used in this work, the first three conditions will
be more or less trivial to establish. Thus, Claim 1 essentially reduces proving non-malleability to
the task of establishing condition 4. This will simplify our proofs considerably.
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Claim 1 (Sufficient Conditions for Non-Malleability in LTCs.). Let (Enc,Dec,Test) be a LTC
with Enc : Γk → Γn, and let

F ⊂ {f : Γn → Γn} and G ⊂
{
g : Γn → (Γ ∪ {⊥})n

}
be function families. Suppose the following four conditions hold.

1. G contains the constant “all ⊥” function; for all other g ∈ G, and all valid codewords
x ∈ Γn, Test

(
g(x); I

)
= 1 occurs with probability 1;

2. For all distinct g, g′ ∈ G and m ∈ Γk, Prx∼Enc(m),I

[
g(x)I = g′(x)I

]
≤ ε/`2.

3. For all f ∈ F , and m,m′ ∈ Γk: ∆
({
f(x)I

}
x∼Enc(m),I

,
{
f(x)I

}
x∼Enc(m′),I

)
≤ ε.

4. For all f ∈ F there exists a list Lf = {g(1), . . . , g(`)} ⊂ G of size |Lf | = ` such that for all
m ∈ Γk,

Prx∼Enc(m),I

[
Test

(
f(x); I

)
= 1 & f(x)I /∈

{
g(j)(x)I : g(j) ∈ Lf

}]
≤ ε.

Then (Enc,Dec,Test) is an (`+ 1, 3ε)−locally testable, non-malleable reduction from F to G.

1.3 Sampler Graphs

Notations. For a finite set S, s ∼ S indicates that s is drawn uniformly from S. For a bipartite
graph (A ∪ B,E) and a ∈ A, B(a) denotes the uniform distribution on the neighborhood of a in
B: {b ∈ B : (a, b) ∈ E}. The neighborhood distribution A(b) for b ∈ B is defined analogously.
For all bipartite graphs used in this work, the edge relations are natural. For example, A might
be the set of lines in Fk (F a finite field), B the set of points in Fk, and the edge relation captures
incidence: (a, b) ∈ E iff b ∈ a. For this reason, we simplify notations by supressing E and
denoting bipartite graphs as A/B instead of (A ∪B,E), and writing a ∼ b instead of (a, b) ∈ E.

Definition 5 (Biregularity). Let A/B be a bipartite graph and fix η > 0. We say that A/B
is η−biregular if the distribution which draws a ∼ A, b ∼ B(a), and outputs (a, b) is within
statistical distance η of the distribution which gives the same output by drawing b ∼ B, a ∼ A(b).1

Biregularity as defined above ensures that for any B′ ⊂ B of size |B′| = λ · |B|, the expectation
(over a ∼ A) of Prb∼B(a)[b ∈ B′] is close to λ. We say that A/B is sampling if, in addition, a
concentration bound holds.

Definition 6 (Sampler Graph [Zuc97]). Fix ε, δ > 0. We say that the bipartite graph A/B is
(ε, δ)−sampling if for all subsets B′ ⊂ B of size |B′| = λ · |B|,

Pra∼A

[∣∣∣Prb∼B(a)

[
b ∈ B′

]
− λ
∣∣∣ > ε

]
≤ δ.

1This is related to the usual notion of biregularity; specifically, if A/B is biregular in the usual sense, then it is
0−biregular in the sense of Definition 5.
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Double Samplers. A triple (A,B,C) is called a double sampler if B/C is sampling and for all
c ∈ C, A(c)/B(c) is sampling. Double samplers have been used implicitly in several works prior
to their formalization in [DK17]. We use them implicitly in this work as well. The construction
in [DK17] is of a double sampler of linear size (i.e., |A| ≈ |B| ≈ |C|) based on high-dimensional
expanders. The double samplers used in this work are built from elementary means and are not
linear size (our double samplers have |A| � |B| � |C|). Importantly, a random object in our
parameter regime is a double sampler with good probability, while this is not true in the linear size
regime.

1.4 Our Code and Main Theorem

Notation. Let F be a finite field, and let k ≥ 4 and d ≥ 2 be dimension and degree parameters,
respectively. Let A be the set of affine 3−planes in Fk, C = Fk and let the edge relation be
incidence: a ∼ c iff c ∈ a. Let Γ and ΓA be the sets of k−variate and 3−variate polynomials of
degree at most d over F, respectively.

Main Construction. With notations as above:

• Enc(m): For m ∈ F, draw Φ ∼ Γ such that Φ(0) = m and output {Φ|a}a∈A ∈ Γ
|A|
A . We will

often write codewords as
{

(a, α)
}

a∈A
with the understanding that α = Φ|a.

• Dec
(
{(a, α)}a∈A

)
: Given

{
(a, α)

}
a∈A

, find Φ ∈ Γ such that (a, α) = (a,Φ|a) for all a ∈ A.2 If
such Φ exists, output m = Φ(0), otherwise output ⊥.3

• Test
(
{(a, α)}a∈A

)
: Draw c ∼ C, a, a′ ∼ A(c); read (a, α) and (a′, α′), and output 1 if α|c = α′|c

(α|c denotes the evaluation of α at c), 0 otherwise.

The above code is known to be a
(
2, |F|−Ω(1)

)
−locally testable code. This was proven origi-

nally the influential works [AS97, RS97]. Our main theorem is that this code also possesses
non-malleability guarantees. Before we state this formally, we introduce the tampering function
families.

Tampering Function Families. We identify three types of tampering.

• Coordinate-Wise: F :=
{
{fa}a∈A

∣∣fa : ΓA → ΓA

}
tampers codewords via

{fa}a : {(a, α)}a 7→
{(

a, fa(α)
)}

a
.

• Affine: We say that T : Γ → Γ is affine if ∃ (s,Φ0) ∈ F× Γ such that T(Φ) = s · Φ + Φ0. We
define G to be the family of coordinate-wise restrictions of global affine maps:

G :=
{
{ga}a∈A

∣∣ ∃ (s,Φ0) ∈ F× Γ st ga(α) = s · α + Φ0|a ∀ a ∈ A
}
⊂ F .

2Such Φ, if it exists, can be found in time poly
(
|F|
)

by interpolation.
3As written, decoding runs in time poly(|F|), which is exponential in the message length. However, local decoding

algorithms exist which run in time poly
(
λ, log |F|, 1/δ

)
and outputm (or a list containingm) with probability 1−2−λ

whenever the input is within distance δ of a valid encoding of m. See for example [Sud97].
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• Trivial: We say that T : Γ → Γ is trivial if either T(Φ) = Φ or if ∃ Φ0 ∈ Γ such that
T(Φ) = Φ0. We defineH to be the family of coordinate-wise restrictions of trivial maps:

H :=
{
{ha}a∈A

∣∣ T(Φ) = Φ, or ∃ Φ0 ∈ Γ s.t. T(Φ) = Φ0|a ∀ a ∈ A
}
⊂ G.

We also include the “all ⊥ function” (maps every coordinate to ⊥) in G andH.

Theorem 1 (Main). The code above is an (`, ε)−locally-testable, non-malleable reduction from
F to G where ε = |F|−Ω(1) and ` = 4/ε.

We use this locally testable, non-malleable reduction to build a locally testable, non-malleable code
against F . The explicit construction is given in section 6.

Theorem 2. There exists an explicit (`, ε)−locally testable, non-malleable code against F , the
family of coordinate-wise tampering functions where ε = |F|−Ω(1) and ` = 4/ε.

1.5 Prior Work

Sampler-Based Decoding. Our work fits into a recent line of work on sampler-based decod-
ing [IKW12, Mos17, BDN17, DHK+19, DHKR19] (and many more). In these works, sampling
properties of a code’s index set are exploited in order to give non-trivial decoding algorithms.
Our work builds on techniques developed in these papers in order to “decode” a coordinate-wise
tampering function which respects codeword proximity, to a small list of affine functions.

Non-Malleable Codes. Since the introduction of non-malleable codes in 2010 [DPW18], an
immense research effort has focused on giving constructions which are secure against richer classes
of tampering functions, and with better rate [DKO13, ADL14, ADKO15, CGL16, Li16, BDG+18]
(and many, many more). Our work adapts some of the techniques developed in this area to the
local-testing regime. We expect constructions with security against other types of tampering, and
constructions with better rate are possible.

Locally Decodable Non-Malleable Codes. A few works combine the notions of local decod-
ability with non-malleability [DLSZ15, CKR15]. These works give constructions of non-malleable
codes which admit local decode/update subroutines. Our work differs in several ways from these.
Most telling, is the fact that the codes in these works achieve high rate with super-constant local-
ity, whereas our main construction achieves optimal locality with very poor rate. Moreover, our
techniques differ significantly. The construction of [DLSZ15] had computational security; the sec-
ond work [CKR15] showed how to replace the cryptographic primitives with information-theoretic
variants in order to obtain statistical security. Our techniques on the other hand, are similar to those
used in the LTC literature. We believe the following statement is fair and summarizes these dif-
ferences: our work is aimed at inserting non-malleability into LTCs, while [DLSZ15, CKR15] are
focused on inserting locality into NMCs.
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2 The Affine Agreement Theorem

In this section we state the affine agreement theorem, which is at the core of the proof of Theorem 1.
Theorem 1 follows from our affine agreement theorem in much the same way as list-decoding
theorems often follow from agreement theorems. We begin by recalling, and adding some new
notations.

Notation. Recall F is a finite field, k ≥ 4, d ≥ 2, A is the set of affine 3−planes in Fk, C = Fk,
forming the bipartite graph A/C where the edge relation is incidence: a ∼ c iff c ∈ a. Addition-
ally, Γ and ΓA are the sets of k−variate and 3−variate polynomials of degree at most d over F,
respectively. Also recall that F denotes the family of coordinate-wise functions from Γ

|A|
A → Γ

|A|
A ;

and we saw that {fa}a∈A ∈ F maps {(a, α)}a 7→ {(a, α̃)}a, where α̃ = fa(α). We always use tildes
to indicate images under various tampering functions. Now, let ΓC = F, and let A = A × ΓA and
C = C × ΓC. This forms another bipartite graph A/C where the edge relation is incidence and
agreement: (a, α) ∼ (c, γ) iff c ∈ a and α|c = γ. We write a and c instead of (a, α) and (c, γ).

Theorem 3 (Affine Agreement). There exists ε = |F|−Ω(1) such that for all {fa} ∈ F , the follow-
ing holds. If

PrΦ,(c,a,a′)

[
α̃|c = α̃′|c

]
≥ 6ε,

where the probability is over Φ ∼ Γ, c ∼ C, a, a′ ∼ A(c) and where (α̃, α̃′) =
(
fa(Φ|a), fa′(Φ|a′)

)
,

then there exists an affine T : Γ→ Γ such that Pr(Φ,a)∼Γ×A

[
α̃ = T(Φ)|a

]
≥ ε.

Proof of Theorem 1 Assuming Theorem 3. Let ε be as in Theorem 3 above and fix f = {fa}a ∈ F .
We prove that the code is non-malleable by establishing the sufficient conditions of Claim 1. The
first three are immediate.

1. Clearly G contains the constant ‘all-⊥’ function, and for all other {ga}a ∈ G, the equality
ga(Φ|a)|c = ga′(Φ|a′)|c holds for all Φ ∈ Γ, and (c, a, a′).

2. For all distinct {ga}a, {g′a}a ∈ G, ga(Φ|a) = g′a(Φ|a) holds only if either ga = g′a (occurs
with probability O

(
|F|−1

)
when {ga}a 6= {g′a}a), or if ga 6= g′a but ga(Φ|a) = g′a(Φ|a) (also

probability O
(
|F|−1

)
). Thus, PrΦ,(c,a,a′)

[
ga(Φ|a) = g′a(Φ|a)

]
= O

(
|F|−1

)
� ε/`2.

3. Note that for all (a, a′) such that 0 /∈ a ∪ a′, the distribution which draws Φ ∼ Γ such that
Φ(0) = m, and outputs (Φ|a,Φ|a′) is identical to the one which draws Φ ∼ Γ and gives the
same output. It follows that for all m,m′ ∈ Γk,

∆

({(
fa(Φ|a), fa′(Φ|a′)

)}
Φ: Φ(0)=m

(c,a,a′)

,
{(

fa(Φ|a), fa′(Φ|a′)
)}

Φ: Φ(0)=m′

(c,a,a′)

)
≤ Pr(c,a,a′)

[
0 ∈ a∪a′

]
,

which is O
(
|F|−1

)
� ε.

For the last condition, we show that there exists Lf ⊂ G of size at most ` such that

PrΦ,(c,a,a′)

[
α̃|c = α̃′|c & (α̃, α̃′) /∈

{(
ga(α), ga′(α

′)
)

: {ga}a ∈ Lf

}]
< 6ε, (1)
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where (α̃, α̃′) =
(
fa(α), fa′(α

′)
)

for (α, α′) =
(
Φ|a,Φ|a′

)
, and where Φ ∼ Γ.4 Towards this end,

let Lf :=
{
{ga}a ∈ G : Pr(Φ,a)∼Γ×A

[
α̃ = ga(α)

]
≥ ε/2

}
.

Small List Size. Assume for contradiction that |Lf | ≥ ` = 4/ε + 1, and so contains a set{
{g1

a}a, . . . , {g`a}a

}
. By inclusion-exclusion,

1 ≥ Pr(Φ,a)∼Γ×A

[
α̃ ∈

{
gia(α) : i = 1, . . . , `

}]
≥ ` · ε

2
−

∑
1≤i<j≤`

PrΦ,a

[
gia(α) = gja(α)

]
> 2−

(
`

2

)
·
(

1

|Γ|
+

d

|F|

)
.

The last inequality used `ε > 4, and the bound on PrΦ,a

[
gia(Φ|a) = gja(Φ|a)

]
from point 2 above.

The right hand side simplifies to 2− o(1) > 1, a contradiction.

Proximity Implies List Decoding. Suppose {fa} is such that (1) does not hold. Define {f ′a}a ∈ F
as follows: f ′a(α) = fa(α), unless fa(α) = ga(α) for some {ga}a ∈ Lf in which case f ′a(α) outputs a
random α̃ /∈

{
ga(α) : {ga}a ∈ Lf

}
. Note

PrΦ,(c,a,a′)

[
f ′a(α)|c = f ′a′(α

′)|c
]
≥ 6ε

since (1) does not hold. Therefore, by Theorem 3, there exists an affine T : Γ → Γ such that
PrΦ,a

[
f ′a(Φ|a) = T(Φ)|a

]
≥ ε. Thus PrΦ,a

[
fa(Φ|a) = T(Φ)|a

]
≥ ε − `/|ΓA| ≥ ε/2, and so

the coordinate-wise version of T is in Lf . This is a contradiction since by construction, for every
{ga}a ∈ Lf , f ′a(α) 6= ga(α) holds for all a ∈ A and α ∈ ΓA.

2.1 Reducing the NM Agreement Theorem to Two Lemmas

The proof of Theorem 3 will occupy much of the rest of this paper. In this section, we separate the
proof into two parts by stating two lemmas which combine to immediately prove the theorem.

Proof of Theorem 3. Suppose ε = |F|−Ω(1) is chosen so it satisfies Lemmas 1 and 2, below. Let
{fa}a ∈ F be such that

PrΦ,(c,a,a′)

[
α̃|c = α̃′|c

]
≥ 6ε. (2)

By Lemma 1 below, there exists a function h : C→ ΓC such that

Pr(a,Φ)∼A×Γ

[
Prc∼C(a)

[
α̃|c = γ̃

]
≥ 1− ζ

]
≥ 2ε, (3)

where γ̃ = h(c), a = (a,Φ|a), and where ζ = |F|−Ω(1) is specified precisely in Section 4. By
Lemma 2, there exists an affine map T : Γ→ Γ such that

Pr(a,Φ)∼A×Γ

[
α̃ = T(Φ)|a

]
≥ ε. (4)

4as noted in point 3 above, the difference in probability caused by drawing Φ ∼ Γ such that Φ(0) = m instead is
negligible.
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Lemma 1 (Global Agreement). There exists ε = |F|−Ω(1) such that whenever {fa}a ∈ F is such
that (2) holds, there exists h : C→ ΓC such that (3) holds.

Lemma 2 (Affine Agreement). There exists ε = |F|−Ω(1) such that whenever {fa}a ∈ F and
h : C→ ΓC are such that (3) holds, there exists an affine T : Γ→ Γ such that (4) holds.

Lemma 1 is proved in Section 4 using a sampler-based decoding argument similar to ones which
have appeared in several recent works, for example [BDN17]. The linearity test analyzed in the
proof of Lemma 2 in Section 5 is new to this work.

3 Sampler Graph Preliminaries

Sampler graphs play a big role in the proofs in the following sections. In this section we introduce
the graphs whose sampling will be used, and various properties of sampler graphs. All of the
graphs are what we call “incidence× agreement” graphs, such as A/C from last section. We begin
with some notation.

Notation. Recall F is a finite field, k ≥ 4, d ≥ 2, A is the set of 3−planes in Fk, C = Fk, Γ and
ΓA are the sets of k−variate and 3−variate polynomials of degree at most d over F, respectively,
ΓC = F. This defines an incidence× agreement bipartite graph A/C where A = A×ΓA, C = C×ΓC

and the edge relation is “incidence × agreement”: a = (a, α) ∼ (c, γ) = c iff c ∈ a and α|c = γ.
For r = 1, 2, let Br denote the set of affine r−dimensional planes in Fk, let ΓBr be the set of
r−variate polynomials of degree at most d over F, and let Br = Br×ΓBr . At various points during
the proof, we will use that A/Br/C is a double sampler. The incidence × agreement edge relation
extends naturally to A/Br, Br/C, and B2/B1. For example, if a = (a, α) ∈ A and b = (b, β) ∈ B2,
then a ∼ b iff b ⊂ a and α|b = β.

3.1 Incidence × Agreement Samplers

We begin by listing the incidence× agreement samplers we will need in the remainder of the paper
and proving they are sampling. In the claim statement below, A(c), for c ∈ C, denotes the set of
a ∈ A such that a ∼ c. In the proof which follows, we use A(c) to mean either this set, or the
uniform distribution on this set; in all cases, our intention should be clear from the context.

Claim 2. The following graphs are allO
(
|F|−1

)
−biregular and

(
12·|F|−1/15, |F|−1/15

)
−sampling:

(1) B1

/
C (2) A

/
C (3) A(c, c′)

/
C ∀ c, c′ ∈ C

(4) A(c)
/

C
2 ∀ c ∈ C (5) A

/
C

2
(6) B2(c)

/
C ∀ c ∈ C

(7) A(b)
/

C ∀ b ∈ B1 (8) A× Γ
/

C (9) A× Γ
/

B1

Proof. It is easy to see that all of the graphs in the Claim statement are O
(
|F|−1

)
−biregular, as

per Definition 5. By symmetry, graphs (1), (2), (5), (8), (9) are actually 0−biregular. The others
have a slight error introduced by the fact, for example, that the distribution which draws a ∼ A(c)
and outputs a random element of C(a) is more likely to output c than c′ 6= c. However, an easy
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calculation shows that the statistical distance between the required distributions is O
(
|F|−1

)
; the

same is true for all examples in the list. The rest of the proof is divided into two stages. First, we
use a pairwise independence argument to show that B1/C, B2/C, and B2(c)

/
B1(c) for all c ∈ C are

(|F|−1/5, |F|−3/5)−sampling. Then we reduce the sampling of every graph above to the sampling
of these three.

We phrase the pairwise independence argument for a generic bipartite graph A/B. The key
feature we need involves a set X which parametrizes the neighborhoods B(a) for all a ∈ A. Given
x ∈ X and a ∈ A, we write the x−th neighbor of a as a(x) ∈ B, soX parametrizes neighborhoods
as B(a) = {a(x) : x ∈ X} for all a ∈ A. The property we require is that for all x1 6= x2 ∈ X ,
the random variable

(
a(x1), a(x2)

)
(randomness over a ∼ A) is uniform on B2. For B1/C, X = F

since C(b) is parametrized by the points on the line b. Likewise, for B2/C, X = F2. Finally, for
B2(c)

/
B1(c), X = F ∪ {∞}, since B1(c, b2) is parametrized by all possible slopes of a line in b2

through c. In all cases, independence follows from the fact that for every b1 ∈ B, the distribution
which draws a ∼ A(b1) and outputs b2 ∼ B(a) \ {b1} is the uniform distribution on B.

So now, let A/B be a bipartite graph which satisfies the pairwise independent parametrized
neighborhood property described above. Let B′ ⊂ B be a subset of size |B′| = λ · |B|. For b ∈ B,
let 11B′(b) indicate whether b ∈ B′ or not, and let 1̂1B′(b) := 11B′(b)− λ. Note Eb∼B

[
1̂1B′(b)

]
= 0.

Finally, define f : A → [0, 1] by f(a) := Eb∼B(a)

[
1̂1B′(b)

]
. We will show Ea∼A

[
f(a)2

]
≤ |F|−1.

This suffices by Markov’s inequality:

Pra∼A

[∣∣∣Prb∼B(a)

(
b ∈ B′

)
− λ
∣∣∣ > |F|−1/5

]
≤ Pra∼A

[
f(a)2 > |F|−2/5

]
≤ |F|2/5 · Ea∼A

[
f(a)2

]
.

We use the pairwise independence property to conclude:

Ea∼A
[
f(a)2

]
= Ea∼A

[
Ex1,x2∼X

[
1̂1B′
(
a(x1)

)
· 1̂1B′

(
a(x2)

)]
≤ 1

|X|
+ Eb1,b2∼B

[
1̂1B′(b1) · 1̂1B′(b2)

]
=

1

|X|
.

For the reductions in the second phase, we use the following generic facts about samplers.

Fact 1 (Extending Sampling via Biregularity). Fix ε, ε′, δ, δ′, η > 0. Suppose A/B/C are such
that B(a)

/
C(a) is η−biregular and C(a, b) = C(b) for all a ∈ A and b ∈ B(a). The following

hold.

1. If B/C is (ε′, δ′)−sampling and A/B is η−biregular, then A/C is (ε, δ)−sampling, where
δ ≥ ε−1 · (2η + ε′ + δ′).

2. If A
/
B is (ε′, δ′)−sampling and B

/
C is η−biregular, then A

/
C is (ε, δ)−sampling, where

ε ≥ 3ε′ + 2η and δ ≥ δ′/ε′.

Fact 2 (Replacement Product). Let ε, ε′, δ, δ′ > 0 be such that δ · (ε − 5ε′) ≥ 2δ′/ε′. Suppose
A/B/C is such that:

• A/C, B/C and B(a)
/
C(a) are 0−biregular for all a ∈ A; and

• A/C and A(c)
/
B(c) are (ε′, δ′)−sampling for all c ∈ C.
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Then A/B is (ε, δ)−sampling.

We prove Fact 1 below, outside the current proof. Fact 2 is a version of the replacement product,
proved originally in [WZ93] in the context of seeded randomness extractors (which are equivalent
to sampler graphs). We include a proof in Appendix B for completeness. For now, we use these
facts to complete the proof of Claim 2.

We have shown that B2/C and B2(c)
/

B1(c) for all c ∈ C are each
(
|F|−1/5, |F|−3/5

)
−sampling.

Therefore, B1/C and B2/B1 are both
(
7 · |F|−1/5, |F|−1/5

)
−sampling (we have already shown

sampling of B1/C with better parameters, sampling of B2/B1 follows from Fact 2). The first
point of Fact 1 says that any time we have Z such that Z/B1 or Z/B2 is O

(
|F|−1

)
−biregular,

then Z/C or Z/B1 is
(
3 · |F|−1/15, 3 · |F|−2/15

)
−sampling. This proves the sampling of all graphs

except for (4) and (5): A(c)
/

C
2

for all c ∈ C, and A/C
2
, so it remains to prove sampling of

these. Note A(c)
/

B1 for all c ∈ C and A/B1 are
(
3 · |F|−1/15, 3 · |F|−2/15

)
−samplers, since

A(c)
/

B2 and A/B2 are O
(
|F|−1

)
−biregular. Thus we can use the second point Fact 1 to get(

12·|F|−1/15, |F|−1/15
)
−sampling of graphs (4) and (5) because B1/C

2
isO

(
|F|−1

)
−biregular.

Proof of Fact 1. Assume A/B/C are such that for all a ∈ A, B(a)
/
C(a) is η−biregular, and

C(a, b) = C(b). Let C ′ ⊂ C be a subset of size |C ′| = λ · |C|. The key observation in both cases
is that for all a ∈ A,∣∣∣Prc∼C(a)(c ∈ C ′)− λ

∣∣∣ ≤ ∣∣∣Eb∼B(a)

[
Prc∼C(b)(c ∈ C ′)

]
− λ
∣∣∣+ η.

Now, let val := Pra∼A
[∣∣Prc∼C(a)(c ∈ C ′)−λ

∣∣ > ε
]

be the quantity we have to bound. For the first
point we have

val ≤ ε−1 ·
(
E a∼A
b∼B(a)

[∣∣Prc∼C(b)(c ∈ C ′)− λ
∣∣]+ η

)
≤ ε−1 · (2η + ε′ + δ′),

by Markov’s inequality, the η−biregularity of A/B and the (ε′, δ′)−sampling of B/C. For the
second point we have

val ≤ Pra∼A

[∣∣∣Eb∼B(a)

[
λ(b)

]
− Eb∼B

[
λ(b)

]∣∣∣ > ε− 2η ≥ 3ε′
]
≤ δ′/ε′,

where λ(b) := Prc∼C(b)(c ∈ C ′). We have used the η−biregularity of B/C to say that Eb∼B
[
λ(b)

]
is in λ± η, and the (ε′, δ′)−sampling of A/B combined with the first point of Fact 3, stated in the
next section.

3.2 Using Sampler Graphs

Fact 3 (Properties of Samplers). Suppose A/B is η−biregular and (ε, δ)−sampling. We have
the following.

1. For any ρ > 0 and f : B → [0, 1],

Pra∼A

[∣∣∣Eb∼B(a)

[
f(b)

]
− Eb∼B

[
f(b)

]∣∣∣ > ε+ 2ρ

]
≤ δ/ρ.
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2. For any ρ > 0, B/A is
(
ρ, 2(ε+ δ + η)/ρ

)
−sampling.

3. For any B′ ⊂ B of size |B′| = λ · |B| with λ > ε,

∆
({

(a, b) : b∼B
′

a∼A(b)

}
,
{

(a, b) : a∼Ab∼B′(a)

})
≤ δ + η/ε,

where B′(a) denotes the distribution which draws b ∼ B(a) and outputs if b ∈ B′, else
resamples (or if B(a) ∩B′ = ∅, B′(a) outputs an arbitrary b ∈ B).

The facts above are all well-known. See, for example, [Zuc97, IKW12, BDN17] for proofs of
points 1, 2, and 3, respectively.

Notational Conventions and Example Use. Our proofs in the next sections relies heavily, and
often implicitly, on the fact that the graphs of Claim 2 are samplers, and on the properties of
sampler graphs stated in Fact 3. To facilitate readability, from here on, we reserve the quantity
δ > 0 for the loss introduced any time a sampling argument is used. As an example of how looks
in the body of the paper, let C

′ ⊂ C be a set with |C′| ≥ λ · |C|, and let E be some event. Then
we might deduce: E

c,c′∼C
′
[
Pra∼A(c,c′)(E)

]
≥ Ea∼A

[
Pr

c,c′∼C
′
(a)

(E)
]
− δ, “because of the sampling

of A
/

C
2
.” Formally, we are using the third point of Fact 3, the fact that A

/
C

2
is η′−biregular,

(ε′, δ′)−sampling with λ > ε′ and that δ ≥ δ′ + η′/ε′.

Setting the Sampling Parameter. In the example use mentioned above, η′ = O
(
|F|−1

)
and

ε′, δ′ = O
(
|F|−1/15

)
. Thus, δ = O

(
|F|−1/15

)
is sufficient for δ ≥ δ′ + η′/ε′ to hold. In general,

each sampler property use will put a lower bound on δ, and so we simply set δ large enough so that
they all hold. Explicitly, δ = 3 · |F|−1/60 is sufficient for our purposes.

We conclude this section with a corollary listing two sampler-based facts which will be useful in
the calculations in the next section.

Claim 3. Let the notations be as above, and let δ = 3 · |F|−1/60 and η = O
(
|F|−1

)
. Let C

′ ⊂ C be
a subset of size |C′|/|C| ≥ 12 · |F|−1/15. We have the following.

1. (c, b, c′)

∣∣∣∣∣
a ∼ A

c ∼ C(a)

c′ ∼ C
′
(a)

b ∼ B2(a, c, c′)

 ≈δ
(c, b, c′)

∣∣∣∣∣
c ∼ C

b ∼ B2(c)

c′ ∼ C
′
(b)

 ,

where in the first distribution b = (b, α|b), where a = (a, α).

2. (a, b, c′)

∣∣∣∣∣
a ∼ A

c ∼ C(a)

c′ ∼ C
′
(a)

b ∼ B2(c, c′)

 ≈δ
(a, b, c′)

∣∣∣∣∣ c′ ∼ C
′

b ∼ B2(c′)
a ∼ A(b)

 ,

where in the first distribution b = a|b.
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In both (1) and (2) above, ≈δ denots that the two distributions are within statistical distance δ of
one another.

Proof. For the first part, we have
a ∼ A

c ∼ C(a)

c′ ∼ C
′
(a)

 ≈δ/3
 c′ ∼ C

′

a ∼ A(c′)
c ∼ C(a)

 ≈η
 c′ ∼ C

′

b ∼ B2(c′)
c ∼ C(b)

 ≈δ/3


b ∼ B2

c′ ∼ C
′
(b)

c ∼ C(b)

 ,

where each distribution outputs (c, b, c′) and where b = a|b for b ∼ B2(a, c, c′) is implied in the
first two distributions. The first relation follows from sampling of A/C; the second follows from the
η−biregularity of B2(a, c′)

/
C(a) for all a ∈ A and c′ ∈ C(a), and the 0−biregularity of A(c′)

/
B(c′)

for all c′ ∈ C; the third follows from the sampling of B2/C. Finally, the last distribution is identical
to the desired distribution on the right of point 1 because of the 0−biregularity of B2/C. We work
similarly for the second point:

a ∼ A
c ∼ C(a)

c′ ∼ C
′
(a)

 ≈δ/2
 c′ ∼ C

′

a ∼ A(c′)
c ∼ C(a)

 ≈η
 c′ ∼ C

′

a ∼ A(c′)
b ∼ B2(a, c′)

 ≡
 c′ ∼ C

′

b ∼ B2(c′)
a ∼ A(b)

 ,

where each distribution outputs (a, b, c′) and where b = a|b (as above, b ∼ B2(a, c, c′) is implicit
in the first two distributions). We have used the sampling of A/C, η−biregularity of B2(a, c′)

/
C(a)

for all a ∈ A and c′ ∈ C(a), and 0−biregularity of A(c′)
/

B2(c′) for all c′ ∈ C.

4 Global Agreement

In this section we prove Lemma 1, restated below in a quantitative form.

Lemma 1 (Restated). Suppose ε ≥ F−1/1000, and fix parameters η = |F|−9/10, δ = 3 · |F|−1/60,
and τ = O

(
δ/ε6 + η/ε11

)
. Suppose {fa}a ⊂ {f : ΓA → ΓA} is such that

PrΦ,(c,a,a′)

[
α̃|c = α̃′|c

]
= 6ε (5)

where the probability is over Φ ∼ Γ, c ∼ C, a, a′ ∼ A(c), and where (α̃, α̃′) =
(
fa(Φ|a), fa′(Φ|a′)

)
.

Then there exists a set G ⊂ A × Γ of size at least |G| ≥ 2ε · |A × Γ| and a function h : C → ΓC

such that: Pr(a,Φ)∼G
c∼C(a)

[
γ̃ ∼ α̃

]
≥ 1− ζ , where γ̃ = h(c,Φ|c) and ζ := ε−2 · (τ + δ) + ε−1 · (η + δ).

Remark. Many different O
(
|F|−1

)
parameters are introduced during the course of our analysis

which are all O
(
|F|−1

)
. We encourage the reader to think of two levels of parameters: level

one consists of ε only; all other parameters are in level 2 and are much smaller. The level two
parameters are each defined to be smaller than εc for some constant c = O(1) which arises during
our analysis. So in the above theorem, for example, in order for τ to be level 2, it must be that
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δ � ε6 and η � ε11; additionally, for ζ to be level 2, τ � ε2 is required. We remark that the
analysis prioritizes modularity and succinctness, rather than optimizing constants. As a result, the
small constant 1/1000 is suboptimal.

We begin by introducing the notation and ideas needed to prove Lemma 1 in Section 4.1. The
actual proof appears in Section 4.2, conditioned on two claims which we state in Section 4.1 and
prove in Section 4.3.

4.1 Proof Setup.

Notations. In this section B denotes the set of 2−dimensional planes in Fm, and ΓB is the set of
2−variate polynomials over F of degree at most d, and B = B× ΓB. The sets A,C,Γ are as usual.
We will take advantage of the sampling properties of the triple A/B/C. When considering two
polynomials whose domains intersect, we write ∼ to indicate that they agree on the intersection.
For example, given α̃, α̃ ∈ ΓA defined on a, a′ ∈ A(c) we write α̃ ∼ α̃′ if α̃|c = α̃′|c.

We say that (c, γ, γ̃) is good if Pr(a,Φ)

[
α̃ ∼ γ̃] ≥ 4ε, where the probability is over a ∼ A(c)

and Φ ∼ Γ(c). We say c = (c, γ) is good if there exists γ̃ such that (c, γ, γ̃) is. Note that
Prc∼C

[
c good

]
≥ 2ε. To see this, let pc,γ,γ̃ = Pr(a,Φ)

[
α̃ ∼ γ̃]. Then (5) gives

6ε = Ec∼C

[∑
γ̃

pc,γ,γ̃ · Pra′∼A(c)

[
α̃′ ∼ γ̃

]]
≤ Ec∼C

[
max
γ̃

{
pc,γ,γ̃

}]
.

We have used that
∑

γ̃ Pra′∼A(c)

[
α̃′ ∼ γ̃

]
= 1 for all c.

Local Functions. Let h0 : C → ΓC be the randomized function which sends c = (c, γ) to a
random γ̃ such that (c, γ, γ̃) is good if such γ̃ exists, and to an arbitrary γ̃ ∈ ΓC if not. For c ∈ C,
let gc : B(c)→ ΓB be the randomized function where gc(b) is the distribution on ΓB which draws
a ∼ A(b) such that α̃ ∼ h0(c), and outputs β̃ = α̃|b.

Definition 7 (Well-Defined). Let η = |F|−9/10. We say that gc is well-defined if

Pr b∼B(c)

a,a′∼A(b)

[
α̃ ≈ α̃′

∣∣∣α̃ ∼ h0(c) ∼ α̃′
]
≥ 1− η,

where α̃ ≈ α̃′ indicates that α̃|b = α̃′|b.

Previous work [IKW12, BDN17] refers to the good c ∈ C for which gc is well-defined as excellent;
the fact that the excellent points comprise a non-negligible fraction of C is a crucial component of
the proofs in these papers. We require one extra property from our specialized subset of C which
simplifies the remainder of our proof greatly. The following is proved in Section 4.3.

Claim 4. There exists a set C
′ ⊂ C such that the following hold: 1) |C′| ≥ ε3|C|; 2) every c ∈ C

′

is good and such that gc is well-defined; 3)

Pr
c,c′∼C

′

[
Pra∼A(c,c′)

[
h0(c) ∼ α̃ ∼ h0(c′)

]
≥ ε5

]
≥ 1− σ,

where σ := δ/ε3 + δ/ε6 + η/ε11.
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Intuitively, the extra property captured by (3) demands that the set of excellent points can be
partitioned into large sets of mutually compatible points; the set C

′
is any member of this partition.

The Global Function. Let h : C→ ΓC be the randomized function where h(c) draws b ∼ B(c),
c′ ∼ C

′
(b) and outputs β̃|c where β̃ = gc′(b). The following is also proved in Section 4.3.

Claim 5. We have Pr(c,b,c′)

[
h(c) ∼ β̃

]
≥ 1 − τ , where τ :=

(
σ + 2ε−5(η + δ) + 2δ

)
, β̃ = gc′(b)

and the probability is over c ∼ C, b ∼ B(c), c′ ∼ C
′
(b).

4.2 Proof of Lemma 1

Notational Convention. Let h0, h : C → ΓC be the functions defined in Section 4.1. In this
section if we write γ̃ when working with c ∈ C, it should be understood that γ̃ = h(c). We will
always refer to h0(c) explicitly.

Proof. Suppose (ε, {fa}) are such that (5) holds; let C
′ ⊂ C be the set guaranteed by Claim 4. We

define G to be the set of (a,Φ) ∈ A× Γ such that Pr
c∼C

′
(a)

[
α̃ ∼ h0(c)

]
≥ ε. We have,

E(a,Φ)∼A×Γ

[
Pr

c∼C
′
(a)

[
α̃ ∼ h0(c)

]]
≥ E

c∼C
′

[
Pr a∼A(c)

Φ∼Γ(c)

[
α̃ ∼ h0(c)

]]
− δ ≥ 3ε

We have used the sampling of A × Γ
/

C for the first inequality, and that all c ∈ C
′

are good
for the second (and 4ε − δ ≥ 3ε). It follows that |G| ≥ 2ε|A × Γ|. Thus, it remains to prove
that Pr(a,Φ),c

[
γ̃ ∼ α̃

]
≥ 1 − ζ , where the probability is over (a,Φ) ∼ G, c ∼ C(a) and where

γ̃ = h(c,Φ|c), where h is the global function defined in Section 4.1.
So let p := Pr(a,Φ),c

[
γ̃ ∼ α̃

]
be the probability we are trying to bound. We have

p ≥ Pr(a,Φ)
b,c,c′

[
γ̃ ∼ β̃ ∼ α̃

∣∣α̃ ∼ h0(c′)
]
≥ Pr(a,Φ)

b,c,c′

[
γ̃ ∼ β̃

∣∣α̃ ∼ h0(c′)
]
−Pr(a,Φ)

b,c,c′

[
β̃ 6∼ α̃

∣∣α̃ ∼ h0(c′)
]
,

where the probabilities are over (a,Φ) ∼ G, c ∼ C(a), c′ ∼ C
′
(a), b ∼ B(a, c, c′), and where

β̃ = gc′(b), for b = (b,Φ|b). We conclude by bounding both probabilities on the right; denoted
RHS1 and RHS2, respectively. We have

1− RHS1 = Pr(a,Φ)∼G
b,c,c′

[
γ̃ 6∼ β̃

∣∣α̃ ∼ h0(c′)
]
≤

Pr(a,Φ),b,c,c′
[
γ̃ 6∼ β̃

]
min(a,Φ)∈G

{
Pr

c′∼C
′
(a)

[
α̃ ∼ h0(c′)

]}
≤ ε−2

2
· Pra∼A

b,c,c′

[
γ̃ 6∼ β̃

]
< ε−2 ·

(
Pr c∼C

b∼B(c)

c′∼C
′
(b)

[
γ̃ 6∼ β̃

]
+ δ
)
≤ ε−2 · (τ + δ).

The first inequality on the second line used the definition of G and that |G| ≥ 2ε · |A × Γ|; the
second used Claim 3, point 1; and the last used Claim 5. Finally,

RHS2 ≤
ε−1

2
· Pr a∼A

c′∼C
′
(a)

b∼B(c′,a)

[
β̃ 6∼ α̃

∣∣α̃ ∼ h0(c′)
]
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≤ ε−1 ·
(

max
c′∈C

′

{
Prb∼B(c′)

a∼A(b)

[
β̃ 6∼ α̃

∣∣α̃ ∼ h0(c′)
]}

+ δ

)
≤ ε−1

(
η + δ

)
.

We have used Claim 3 point 2 and the fact that gc′ is well-defined for all c′ ∈ C
′
. The result

follows.

4.3 Proving the Claims

Starting Assumption and Notational Conventions. Throughout this section, we assume the
hypotheses of Lemma 1, namely (ε, {fa}) are such that PrΦ,(c,a,a′)

[
α̃ ∼ α̃′

]
= 6ε (i.e., such that (5)

holds). Let h0, h : C → ΓC be the functions defined in Section 4.1. In this section if we write γ̃
when working with c ∈ C, it should be understood that γ̃ = h0(c). We will refer to h(c) explicitly
(note, this is opposite to the convention of Section 4.2). Given c, c′ ∈ C set µc, p(c) and q(c, c′) to:

Pr a∼A(c)
Φ∼Γ(c)

[
γ̃ ∼ α̃

]
; Prb∼B(c)

a∼A(b)

[
β̃ ∼ α̃

∣∣γ̃ ∼ α̃
]
; Pra∼A(c,c′)

[
γ̃ ∼ α̃ ∼ γ̃′

]
.

In Section 4.1 we called c ∈ C such that µc ≥ 4ε good. Also for c ∈ C we defined local functions
gc : B(c) → ΓB and said that gc was well-defined if p(c) ≥ 1 − η, where η = |F|−9/10. In the
remainder of this section we prove three claims; the first two combine to prove Claim 4, the last is
Claim 5.

Claim 6. There exists a set C
′
0 ⊂ C such that the following hold: 1) |C′0| ≥ ε|C|; 2) µc ≥ 4ε for

every c ∈ C
′
0; 3) p(c) ≥ 1− η for every c ∈ C

′
0.

Proof. Let C
′
0 ⊂ C be the set of c ∈ C for which µc ≥ 4ε and p(c) ≥ 1 − η (i.e., c ∈ C

′
0 if c is

good and such that gc is well-defined). We bound |C′0| using three observations. First, as noted in
Section 4.1, Prc∼C

[
µc ≥ 4ε

]
≥ 2ε. Second, for all c ∈ C such that µc ≥ 4ε:

Pr b∼B(c)

a,a′∼A(b)

[
α̃ ∼ γ̃ ∼ α̃′

]
= Eb∼B(c)

[
µc(b)2

]
≥ Prb∼B(c)

[∣∣µc(b)− µc

∣∣ ≤ ε
]
· 9ε2 ≥ ε2,

where µc(b) := Pra∼A(b)

[
α̃ ∼ γ̃

]
is shorthand. We have used the sampling of A(c)

/
B(c) to

(crudely) lower bound Prb∼B(c)

[
|µc(b)− µc| ≤ ε

]
. Finally, by Markov’s inequality and Schwartz-

Zippel:

Prc∼C

[
Pr b∼B(c)

a,a′∼A(b)

[
α̃ 6≈ α̃′ & α̃ ∼ γ̃ ∼ α̃′

]
> ηε2

]
≤ d

ηε2|F|
.

Putting these together gives

|C′0|
|C|

= Prc∼C

[
µc ≥ 4ε & Pr b∼B(c)

a,a′∼A(b)

[
α̃ 6≈ α̃′

∣∣∣α̃ ∼ γ̃ ∼ α̃′
]
≤ η

]
≥ Prc∼C

[
µc ≥ 4ε

]
− Prc∼C

[
Pr(b,a,a′)

[
α̃ 6≈ α̃′ & α̃ ∼ γ̃ ∼ α̃′

]
> ηε2

]
≥ 2ε− d

ηε2|F|
≥ ε.
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Claim 4 (Restated). There exists a set C
′ ⊂ C such that the following hold: 1) |C′| ≥ ε3|C|; 2)

µc ≥ 4ε for every c ∈ C
′
; 3) p(c) ≥ 1 − η for every c ∈ C

′
; 4) Pr

c,c′∼C
′
[
q(c, c′) ≥ ε5

]
≥ 1 − σ,

where σ := δ/ε3 + δ/ε6 + η/ε11.

Proof. By Claim 6 it suffices to construct a large subset of C
′
0 such that the fourth property holds.

For this purpose, we equip C
′
0 with a graph structure: c, c′ ∈ C

′
0 are adjacent if q(c, c′) ≥ ε2. Our

final set C
′
will be the neighborhood, N(c′) :=

{
c ∈ C

′
0 : q(c, c′) ≥ ε2

}
of some c′ ∈ C

′
0. In order

for this to work, c′ should satisfy: 1)
∣∣N(c′)

∣∣ must be large; 2) Prc,c′′∼N(c′)[q(c, c′′) < ε5] must be
small. We show there exists such a c′ ∈ C

′
0. Specifically we prove

1. E
c,c′∼C

′
0

[
q(c, c′)

]
≥ 3ε2; and

2. Pr
c′∼C

′
0

c,c′′∼N(c′)

[
q(c, c′′) ≥ ε5

∣∣∣|N(c′)| > ε3|C|
]
≥ 1− σ.

It follows from the first point that Pr
c′∼C

′
0

[
|N(c′)| ≥ ε3|C|

]
> ε2 (using |C′0| ≥ ε|C|). Thus,

the two points together guarantee the existence of some c′ ∈ C
′
0 such that |N(c′)| ≥ ε3|C| and

Prc,c′′∼N(c′)

[
q(c, c′′) ≥ ε5

]
≥ 1− σ. Setting C

′
= N(c′) for such a c′ ∈ C

′
0 completes the proof. So

it remains to establish the above two bounds.
For the first, we have

E
c,c′∼C

′
0

[
q(c, c′)

]
≥ Ea∼A

[
Pr

c∼C
′
0(a)

[
γ̃ ∼ α̃

]2]− δ ≥ Ea∼A

[
Pr

c∼C
′
0(a)

[
γ̃ ∼ α̃

]]2

− δ

≥ E
c∼C

′
0

[
µc

]2 − 3δ ≥ 16ε2 − 3δ ≥ 3ε2.

We have used the sampling of A
/

C
2
, Jensen’s inequality, the sampling of A

/
C, and the fact that

µc ≥ 4ε for all c ∈ C
′
0. Establishing the second bound is more involved. Towards this end, we

define three quantities, shorthanded as val1, val2, val3; each is a function of (c, c′, c′′):

• val1 :=
∣∣∣Pra′∼A(c,c′,c′′)

[
γ̃ ∼ α̃′ ∼ γ̃′′

]
− q(c, c′′)

∣∣∣;
• val2 :=

∣∣∣Pra′∼A(c,c′,c′′)[γ̃
′ ∼ α̃′]− µc′

∣∣∣;
• val3 := Pr b∼B(c,c′)

a∼A(b)

a′∼A(b,c′′)

[
α̃ 6≈ α̃′

∣∣α̃ ∼ γ̃′ ∼ α̃′
]

+ Pr
b
′′∼B(c′,c′′)

a′′∼A(b
′′

)

a′∼A(b
′′
,c)

[
α̃′ 6≈ α̃′′

∣∣α̃′ ∼ γ̃′ ∼ α̃′′
]
.

We show that each vali is small with very high probability over (c, c′, c′′) drawn as follows: c′ ∼ C
′
0

such that |N(c′)| ≥ ε3|C|, c, c′′ ∼ N(c′). These bounds will be used in the computation which
follows. We have

Pr(c,c′,c′′)

[
val1 > δ

]
≤ ε−3 · max

c,c′′∈C

{
Prc′∼C

[∣∣∣Ea′∼A(c,c′,c′′)

[
f1(a′)

]
− Ea′∼A(c,c′′)

[
f1(a′)

]∣∣∣ > δ

]}
,
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where f1(a′) = 1 if γ̃ ∼ α̃′ ∼ γ̃′′, 0 otherwise. Thus Pr(c,c′,c′′)

[
val1 > δ

]
≤ δ/ε3, by the sampling

of A(c, c′′)/C for all c, c′′ ∈ C. Likewise, Pr(c,c′,c′′)

[
val2 > δ

]
≤ δ/ε6 follows from the same

reasoning using the sampling of A(c′)/C
2

and the function f2(a′) = 1 iff γ̃′ ∼ α̃′. Finally,

Pr(c,c′,c′′)

[
val3 > 2ε5

]
≤ ε−6 ·max

c′∈C
′
0

{
Prc,c′′∼C

[
val3 > 2ε5

]}
≤ ε−11

2
·max

c′∈C
′
0

{
Ec,c′′∼C

[
val3
]}

=
ε−11

2
·max

c′∈C
′
0

{
2 ·
(
1− p(c′)

)}
≤ η/ε11.

Now we show how these values figure into deriving the bound we need. The key point is that they
let us bound q(c, c′′) in terms of q(c, c′) · q(c′, c′′) · µc′ , which is large when c, c′′ ∈ N(c′) and
c′ ∈ C

′
0. We have:

q(c, c′′) = Pra′∼A(c,c′′)

[
γ̃ ∼ α̃′ ∼ γ̃′′

]
≥ Pra′∼A(c,c′,c′′)

[
γ̃ ∼ α̃′ ∼ γ̃′′

]
− val1

≥ Pra′∼A(c,c′,c′′)

a∼A(b)

a′′∼A(b
′′

)

[
γ̃ ∼ α̃ ∼ γ̃′ ∼ α̃′′ ∼ γ̃′′ & α̃ ≈ α̃′ ≈ α̃′′ & γ̃′ ∼ α̃′

]
− val1

≥ Pr a∼A(c,c′)

a′∼A(c,c′,c′′)

a′′∼A(c′,c′′)

[
γ̃ ∼ α̃ ∼ γ̃′ & γ̃′ ∼ α̃′ & γ̃′ ∼ α̃′′ ∼ γ̃′′

]
− val1 − val3

≥ q(c, c′) · q(c′, c′′) · µc′ − val1 − val2 − val3 ≥ 4ε5 − val1 − val2 − val3.

In the probability subscript in the second line, b and b
′′

are the restrictions of a′ to the lines spanned
by (c, c′) and (c′, c′′), respectively. The result follows:

Pr
c′∼C

′
0

c,c′′∼N(c′)

[
q(c, c′′) ≥ ε5

∣∣∣|N(c′)| > ε3|C|
]
≥ Pr(c,c′,c′′)

[
val1 + val2 + val3 ≤ 3ε5

]
≥ 1− σ.

Claim 5 (Restated). We have

Pr c∼C
b1∼B(c)

c′1∼C
′
(b1)

[
h(c) ∼ β̃1

]
≥ 1− τ,

where β̃ = gc′(b), and where τ :=
(
σ + 2ε−5(η + δ) + 2δ

)
. Recall h(c) is the distribution on ΓC

which draws b
′
2 ∼ B(c), c′2 ∼ C

′
(b2) and outputs gc′2

(b2)|c.

Proof. We show Pr(c,c′1,c
′
2,b1,b2)

[
β̃1 ∼ β̃2

]
≥ 1−

(
σ + 2ε−5(η + δ)

)
, where the probability is over

c ∼ C, c′1, c
′
2 ∼ C

′
, b1 ∼ B(c, c′1), b2 ∼ B(c, c′2) and where β̃1 ∼ β̃2 means that gc′1

(b1) and gc′2
(b2)

agree at c. The result then follows by the sampling of B(c)/C for all c ∈ C. We have

Pr(c,c′1,c
′
2,b1,b2)

[
β̃1 ∼ β̃2

]
≥ E

c′1,c
′
2∼C

′

[
Pr(c,b1,b2)

[
∃ a ∈ A(b1, b2) st γ̃′1 ∼ α̃ ∼ γ̃′2 & β̃1 ∼ α̃ ∼ β̃2

]]
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≥ E
c′1,c

′
2∼C

′

[
Pr (c,b1,b2)

a∼A(b1,b2)

[
β̃1 ∼ α̃ ∼ β̃2

∣∣∣γ̃′1 ∼ α̃ ∼ γ̃′2

]]
.

Let val := Pr(c,b1,b2,a)

[
β̃1 ∼ α̃ ∼ β̃2

∣∣γ̃′1 ∼ α ∼ γ̃′2
]

be shorthand for the quantity inside the
expectation. We have

val ≥ 1−
[
Pr(c,b1,b2,a)

[
β̃1 6∼ α̃

∣∣∣γ̃′1 ∼ α̃ ∼ γ̃′2

]
+ Pr(c,b1,b2,a)

[
β̃2 6∼ α̃

∣∣∣γ̃′1 ∼ α̃ ∼ γ̃′2

]]
≥ 1− 1

q(c′1, c
′
2)
·
[
Pr b1∼B(c′1)

a∼A(b1,c′2)

[
β̃1 6∼ α̃

∣∣∣γ̃′1 ∼ α̃
]

+ Pr b2∼B(c′2)

a∼A(b2,c′1)

[
β̃2 6∼ α̃

∣∣∣γ̃′2 ∼ α̃
]]

By definition of C
′
, we have Pr

c′1,c
′
2∼C

′
[
q(c′1, c

′
2) < ε5

]
≤ σ and also

E
c′1,c

′
2∼C

′

[
Pr b1∼B(c′1)

a∼A(b1,c′2)

[
β̃1 6∼ α̃

∣∣γ̃′1 ∼ α̃
]]
≤ max

c′1∈C
′

{
Prb1∼B(c′1)

a∼A(b1)

[
β̃1 6∼ α̃

∣∣γ̃′1 ∼ α̃
]

+ δ
}

= max
c′1∈C

′

{
1− p(c′1) + δ

}
≤ η + δ.

We have used the sampling of A(b)/C for all b ∈ B, and that p(c′1) ≥ 1 − η since c′1 ∈ C
′
. The

result follows:

E
c′1,c

′
2∼C

′
[
val
]
≥
(
1− σ

)
·
(
1− 2ε−5(η + δ)

)
≥ 1−

(
σ + 2ε−5(η + δ)

)
.

5 Affine Agreement

In this section we prove Lemma 2, restated in an expanded form below. We begin here by reducing
Lemma 2 to Claims 7, 8 and 9, which we will prove in Section 5.2 after gathering some background
on linearity/low-degree tests in Section 5.1. Recall that a function T : Γ→ Γ is affine if there exists
u ∈ F and Φ0 ∈ Γ such that T(Φ) = u · Φ + Φ0.

Lemma 2 (Restated). Suppose {fa}a ⊂ {f : ΓA → ΓA}, h : ΓC → ΓC and G ⊂ A × Γ are such
that |G| ≥ 2ε · |A× Γ|, and

Pr(a,Φ)∼G
c∼C(a)

[
γ̃ ∼ α̃

]
≥ 1− ζ, (6)

where (ε, ζ) are as in Lemma 1. Then there exists an affine map T : Γ→ Γ such that

Pr(a,Φ)∼G

[
α̃ = T(Φ)

∣∣
a

]
≥ 1/2.

Claim 7. Let
(
ε, ζ, {fa}, h,G

)
be as in the hypothesis of Lemma 2, so that (6) holds. Then there

exist affine maps {Tc}c∈C with Tc : ΓC → ΓC such that Prc∼C

[
γ̃ = Tc(γ)

]
≥ 1− ξ7 holds, where

ξ2
7 := 32(d+ 1)(ζ + δ).
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Claim 8. Let
(
ε, ζ, {fa}, h,G

)
be as in the hypothesis of Lemma 2, so that (6) holds, and let {Tc}

be the family of affine maps promised by Claim 7. For each c ∈ C, let uc, vc ∈ F be the scalars
defining Tc, so Tc(γ) := uc · γ + vc. Then there exists u ∈ F such that Prc∼C

[
uc = u

]
≥ 1 − ξ8,

where ξ8 := (d+ 2)(ζ + δ) + 4ξ7 + 2/|F|.

Claim 9. Let
(
ε, ζ, {fa}, h,G

)
be as in the hypothesis of Lemma 2, so that (6) holds, and let {Tc}

be the family of affine maps promised by Claim 7, with Tc(γ) := uc · γ + vc, as in Claim 8. Then
there exists Φ0 ∈ Γ such that Prc∼C

[
vc = Φ0(c)

]
≥ 1− ξ9, where ξ2

9 := 8(d+ 3)2(ζ + ξ7 + ξ8).

Proof of Lemma 2 Assuming Claims 7, 8 and 9. Let
(
ε, ζ, {fa}, h,G

)
be as in the hypothesis of

Lemma 2, so that (6) holds, and let {Tc} be the family of affine maps promised by Claim 7.
Define the affine map T : Γ → Γ by T(Φ) := u · Φ + Φ0, where u ∈ F and Φ0 ∈ Γ are the
quantities guaranteed by Claims 8 and 9, respectively. We have

3

4
≤ Pr(a,Φ)∼G

c∼C(a)

[
γ̃ ∼ α̃ & γ̃ = Tc(γ) & uc = u & vc = Φ0(c)

]
≤ Pr(a,Φ)∼G

c∼C(a)

[
α̃|c = T(Φ)|c

]
.

This follows from (6), Claims 7, 8, 9 and the sampling of A×Γ
/

C. We have used the loose bound
1/4 ≤ (ζ + ξ7 + ξ8 + ξ9 + δ) where ζ > 0 (resp. ξ7, ξ8, ξ9) are the quantities from the statement
of Lemma 2 (resp. Claims 7, 8, and 9), and δ > 0 is the sampling parameter. It follows that
Pr(a,Φ)∼G

[
α̃ = T(Φ)|a

]
≥ 1/2, since whenever α̃ and T(Φ)|a agree on half of the c ∈ C(a), they

must be equal as they are both low degree. The lemma follows.

5.1 Linearity Testing Background

In this section we state three facts which we use in the next section to prove the claims. Throughout
this section we use notations consistent with the rest of the paper. Additionally, in this section we
use B as the set of lines in Fm and ΓB is the set of univariate polynomials over F of degree at most
d. Recall T : ΓC → ΓC is affine if there exist coefficients u, v ∈ F such that T(x) = u · x + v for
all x ∈ ΓC. The first fact is standard and can be proved using linear algebraic methods.

Fact 4 (Linear Dependence of Polynomial Evaluations). Suppose |F| ≥ d + 2. For any b ∈ B
and distinct c0, . . . cd+1 ∈ B(c), there exist non-zero coefficients r0, r1, . . . , rd+1 ∈ F such that for
all β ∈ ΓB,

d+1∑
i=0

ri · β|ci = 0.

The second and third facts are proved in [RS96]. The second fact gives a sufficient condition for a
function f : Fm → F being close to a multivariate low-degree polynomial.

Fact 5 (Robust Characterization of Low-Degree Functions). Fix κ > 0 such that κ ≤ 1
2(d+2)2

.
If f : C→ F is such that

Prb∼B

[
∃ β ∈ ΓB st Prc∼C(b)

[
f(c) = β|c

]
≥ 1− κ

]
≥ 1− κ,

then there exists Φ ∈ Γ such that Prc∼C

[
f(c) = Φ(c)

]
≥ 1− 2(d+ 3)κ.
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Fact 6 (Testing Affine Maps over Large Fields in High Soundness Regime). Fix κ > 0 such
that κ ≤ 1

18
. If f : ΓC → ΓC is such that

Prx,y,z∼ΓC

[
f(x) + f(y + z) = f(x+ y) + f(z)

]
≥ 1− κ,

then there exists an affine T : ΓC → ΓC such that Prx∼ΓC

[
f(x) = T(x)

]
≥ 1− 2κ.

5.2 Proving the Claims

In this section we restate and prove the claims used to prove Lemma 2.

Notation. Throughout this section, we assume {fa}a ⊂ {f : ΓA → ΓA}, h : ΓC → ΓC and
G ⊂ A×Γ with |G| ≥ 2ε · |A×Γ| are such that (6) holds. Namely, we assume that the hypotheses
of Lemma 2. We also use γ̃ = h(c) throughout.

Claim 7 (Restated). There exist affine maps {Tc}c∈C such that Prc∼C

[
γ̃ = Tc(γ)

]
≥ 1− ξ7.

Proof. Consider the following distribution, D on C × Γ3
C. Ultimately, the output of D is just

uniform, however the internal choices of D help in our analysis. D works as follows:

1. draw b ∼ B and distinct c0, c1, . . . , cd+1 ∼ C(b); let r0, . . . , rd+1 ∈ F be the coefficients
guaranteed by Fact 4;

2. draw γ0
0 , γ

1
0 , . . . , γ

0
d , γ

1
d ∼ ΓC; let ci,k = (ck, γ

i
k), and γ̃ik = h(ci,k) for i = 0, 1 and

k = 0, . . . , d;

3. for i, j ∈ {0, 1}, let βi,j ∈ ΓB be the unique polynomial that agrees with γi0 at c0 and γjk at
ck for all k = 1, . . . , d; let bi,j = (b, βi,j);

4. for i, j ∈ {0, 1}, draw (ai,j,Φ
i,j) ∼ G(bi,j) and set α̃i,j = fai,j(Φi,j|ai,j) and β̃i,j = α̃i,j|b;

5. let (γ̃, γ̃′, γ̃′′, γ̃′′′) =
(
h(cd+1, γ), h(cd+1, γ

′), h(cd+1, γ
′′), h(cd+1, γ

′′′)
)
, where

(γ, γ′, γ′′, γ′′′) =
(
β0,0|cd+1

, β1,0|cd+1
, β0,1|cd+1

, β1,1|cd+1

)
;

here β|c denotes the evaluation of the polynomial β at the point c;

6. output (c, x, y, z) = (cd+1, γ, γ
′ − γ, γ′′).

Note that the output ofD is uniform on C×Γ3
C. Indeed, cd+1 drawn in Step 1 is uniform since B

/
C

is biregular. Moreover, given any fixed γ1
1 , . . . , γ

1
k , γ′′ varies uniformly as γ0

0 does. Then, given
any fixing of (γ0

0 , γ
1
1 , . . . , γ

1
k), γ varies uniformly as (γ0

1 , . . . , γ
0
k) does. Finally, given any fixing of

γ0
0 and (γ0

1 , γ
1
1 , . . . , γ

0
k, γ

1
k), γ′ varies uniformly as γ1

0 does.
Now, let E be the event: γ̃i0 ∼ β̃i,j ∼ γ̃jk ∀ (i, j, k) ∈ {0, 1}2 × {1, . . . , d}, where the γ̃i0, β̃i,j ,

and γ̃jk are the internal values drawn during steps 2 and 4. By the assumptions of Lemma 2 and the
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sampling of A×Γ
/

B, we have Prb,c,(a,Φ)

[
γ̃ ∼ α̃

]
≥ 1−ζ−δ, where the probability is over b ∼ B,

c ∼ C(b), (a,Φ) ∼ G(b). It follows from the union bound that PrD
[
E
]
≥ 1 − ξ2

7/8 (substituting
ξ2

7 = 32(d + 1)(ζ + δ)), since each (bi,j, ci,0, ai,j,Φ
i,j) and (bi,j, cj,k, ai,j,Φ

i,j) are, individually,
drawn in this way for each (i, j, k) ∈ {0, 1}2 × {0, . . . , d}.

We complete the proof by showing that whenever the sampling of (c, x, y, z) ∼ D is such that
E occurs, it holds that h(c, x) + h(c, y + z) = h(c, x + y) + h(c, z). Together with Fact 6, this
implies that there is a family of affine maps {Tc}c∈C such that

Prc∼C

[
Prγ∼ΓC

[
γ̃ = Tc(γ)

]
≥ 1− ξ7

2

]
≥ 1− ξ7

2
,

which implies the claim.
So it suffices to show that

γ − γ′ = γ′′ − γ′′′ and γ̃ − γ̃′ = γ̃′′ − γ̃′′′

both hold whenever E occurs (the first equality always holds, the second holds whenever E occurs).
This follows from Fact 4. The first equality holds since the βi,j are low-degree and for all (i, j, k),
γi0 and γjk are the evaluations of βi,j at c0 and ck, respectively. Thus Fact 4 gives

r0 · γ0
0 +

(∑d
k=1 rk · γ0

k

)
+ rd+1 · γ = 0; r0 · γ1

0 +

(∑d
k=1 rk · γ0

k

)
+ rd+1 · γ′ = 0;

r0 · γ0
0 +

(∑d
k=1 rk · γ1

k

)
+ rd+1 · γ′′ = 0; r0 · γ1

0 +

(∑d
k=1 rk · γ1

k

)
+ rd+1 · γ′′′ = 0,

which simplifies to γ − γ′ = γ′′ − γ′′′ since rd+1 6= 0. Likewise, for the second equality, the β̃i,j

are low degree and when E occurs, the γ̃i0 and γ̃jk are the evaluations of β̃i,j at c0 and ck. As above,
this implies γ̃ − γ̃′ = γ̃′′ − γ̃′′′.

Claim 8 (Restated). Let {Tc} be the family of affine maps promised by Claim 7; for each c ∈ C,
let Tc(γ) := uc · γ + vc for uc, vc ∈ F. Then there exists u ∈ F such that Prc∼C

[
uc = u

]
≥ 1− ξ8,

where ξ8 = (d+ 2)(ζ + δ) + 4ξ7 + 2/|F|.

Proof. We prove that Prc,c′∼C

[
uc = uc′

]
≥ 1− ξ8 which suffices since

Prc,c′∼C

[
uc = uc′

]
=
∑
u∈F

p2
u ≤ max

{
pu : u ∈ F

}
,

where pu := Prc∼C

[
uc = u

]
is shorthand. As in the previous proof, we describe a distribution D′

on C2:

1. draw b ∼ B and distinct c0, c1, . . . , cd+1 ∼ C(b); let r0, . . . , rd+1 ∈ F be the coefficients
guaranteed by Fact 4; let u0, ud+1 ∈ F denote the linear terms of Tc0 and Tcd+1

, respectively;

2. draw γ0
0 , γ

1
0 , γk ∼ ΓC for k = 1, . . . , d; let ci,0 = (c0, γ

i
0) for i = 0, 1 and ck = (ck, γk) for

k = 1, . . . , d; let γ̃i0 = h(ci,0) and γ̃k = h(ck);
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3. for i ∈ {0, 1}, let βi ∈ ΓB be the unique polynomial that agrees with γi0 at c0 and γk at ck
for all k = 1, . . . , d; let bi = (b, βi);

4. for i ∈ {0, 1}, draw (ai,Φ
i) ∼ G(bi) and set α̃i = fai(Φi|ai) and β̃i = α̃i|b;

5. let (γ̃, γ̃′) =
(
h(cd+1, γ), h(cd+1, γ

′)
)
, where (γ, γ′) =

(
β0|cd+1

, β1|cd+1

)
;

6. output (c, c′) = (c0, cd+1).

Note thatD′ outputs two random points on a random line, which is within statistical distance 2/|F|
of uniform on C2. Let E′ be the event:

1. γ̃i0 ∼ β̃i ∼ γ̃k ∀ (i, k) ∈ {0, 1} × {1, . . . , d}; and

2. (γ̃0
0 , γ̃

1
0 , γ̃, γ̃

′) =
(
Tc0(γ

0
0),Tc0(γ

1
0),Tcd+1

(γ),Tcd+1
(γ′)
)

The first condition occurs with probability at least 1− (d + 2)(ζ + δ); as in the proof of Claim 7,
this follows from (6), the sampling of A× Γ

/
B, and a union bound. The second condition occurs

with probability at least 1− 4ξ7, by Claim 7. Upon substituting ξ8 = (d+ 2)(ζ + δ) + 4ξ7 + 2/|F|,
we get Pr(c,c′)∼C2

[
E′
]
≥ PrD′

[
E′
]
− 2/|F| ≥ 1− ξ8. As in the proof of Claim 7, Fact 4 gives

r0 · (γ0
0 − γ1

0) + rd+1 · (γ − γ′) = 0 = r0 · (γ̃0
0 − γ̃1

0) + rd+1 · (γ̃ − γ̃′).

Substituting (γ̃0
0−γ̃1

0) = u0·(γ0
0−γ1

0) and (γ̃−γ̃′) = ud+1·(γ−γ′) gives rd+1(ud+1−u0)(γ−γ′) = 0
which means ud+1 = u0 since rd+1 6= 0 and γ 6= γ′. Thus, Prc,c′∼C

[
uc = uc′

]
≥ 1− ξ8.

Claim 9 (Restated). Let {Tc} be the family of affine maps promised by Claim 7. Then there
exists Φ0 ∈ Γ with Prc∼C

[
Tc(0) = Φ0(c)

]
≥ 1− ξ9, where ξ2

9 = 8(d+ 3)2(ζ + ξ7 + ξ8).

Proof. Let v : C→ F as a function mapping c 7→ vc = Tc(0). Let ξ := ξ9
2(d+3)

. We will show that

Prb∼B

[
∃ β̃′ ∈ ΓB st Prc∼C(b)

[
vc = β̃′|c

]
≥ 1− ξ

]
≥ 1− ξ. (7)

The claim then follows from Fact 5. Towards establishing (7), note that

Pr(a,Φ)∼G
b∼B(a)
c∼C(b)

[
vc = β̃|c − u · β|c

]
≥ 1− (ζ + ξ7 + ξ8) ≥ 1− ξ(ξ − δ),

where β = Φ|b and β̃ = α̃|b; we have used ξ(ξ−δ) ≥ ξ2/2 = ζ+ξ7+ξ8. This follows immediately
from (6) and Claims 7 and 8. By an averaging argument,

Pr(a,Φ)∼G
b∼B(a)

[
Prc∼C(b)

[
vc = β̃′|c

]
≥ 1− ξ

]
≥ 1− ξ + δ,

where β̃′ = β̃ − u · β. The bound (7) now follows from the sampling of A× Γ
/

B.
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6 A Locally Testable, Non-Malleable Code

In this section, we give a construction of a locally testable non-malleable code against coordinate
wise tampering. To build our code, we take the LTMN reduction, (ELTNM,DLTNM,TLTNM), from
coordinate-wise tampering to affine tampering, from section 1.4 and compose it with a new non-
malleable code, (Eaff ,Daff), against affine tampering.

6.1 A Simple Non-malleable Code against Affine Tampering

We begin with a new constant rate, non-malleable code against affine tampering. This result is not
new, several prior works [ADL14, CZ14, Li16, CL17] give such codes, however, our construction
is considerably simpler than those prior.

Notations. Let F be a finite field and K/F a degree 3 extension, so K = F[x]
/(
p(x)

)
for an

irreducible cubic polynomial p(x) = x3 − e2x
2 − e1x− e0. Thus K is a 3-dimensional F−vector

space with basis {1, σ, σ2}, where σ ∈ K is a root of p(x). The ‘multiplication by σ’ map F3 → F3

is linear, specified over this basis by the matrix

Σ =

 0 0 e0

1 0 e1

0 1 e2

 ∈ F3×3.

Our code makes use of an ε−high entropy encoding, (E,D), with codeword space F, such that for
all m, c∗, Prc∼E(m)

[
c = c∗

]
≤ ε. Such codes can be trivilally constructed by appending a message

with a random string of length log
(
1/ε
)
.

Construction. Let (E,D) be an ε−high entropy code with message space M and codeword
space F, and let m ∈M.

• Eaff(m): Draw r ∼ F;w ∼ E(m) and output w + r · σ + wr · σ2 ∈ K.

• Daff(c): Parse c = c0 + c1 · σ + c2 · σ2; if c0 · c1 = c2, output m = D(c0); if not, output ⊥.

Theorem 4. Fix ε > 0, and let (E,D) be an ε−high entropy code with message space M and
codeword space F. Then (Eaff ,Daff) is a (2ε+2/|F|)−non-malleable code against affine tampering
functions.

Proof. Fix an affine map f given by f(x) = sx+t where s, t, x ∈ K and fix any messagem ∈M.
Parse s = s0 +s1 ·σ+s2 ·σ2 and t = t0 + t1 ·σ+ t2 ·σ2. To prove the theorem, we exhibbit a trivial
tampering function gf (i.e., either constant or the identity) such that the tampering distribution(
Daff ◦ f ◦ Eaff

)
(m) outputs gf (m) with probability at least 1 − 2ε − 2/|F|. The trivial function

gf is f if f is either the identity or a constant function mapping to a valid codeword, and is the
constant ⊥ function otherwise. Specifically, if (s, t) = (1, 0), gf is the identity; if s = 0 and
t0 · t1 = t2, gf is the constant function mapping everything to t; otherwise gf is the constant ⊥
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function. The key point, is that for all m ∈ M, the distribution f
(
Eaff(m)

)
draws w ∼ E(m),

r ∼ F and outputs

S

 wr
wr

+

t0t1
t2

 =

 t0 + s0w + e0s2r + (e0s1 + e0e2s2)wr
t1 + s1w + (s0 + e1s2)r + (e1s1 + s2e0 + s2e1e2)wr
t2 + s2w + (s1 + e2s2)r + (s0 + e2s1 + s2e

2
2 + s2e1)wr

 =:

C0(w, r)
C1(w, r)
C2(w, r)

 ,
where S ∈ F3×3 is the ‘multiplication by s’ matrix: S = s0 · 11 + s1 ·Σ + s2 ·Σ2. In the above, we
have defined bilinear (i.e., of the form a+ bx+ cy + dxy) polynomials C0,C1,C2 ∈ F[x, y]. Note
that if C0(x, y)·C1(x, y) 6≡ C2(x, y) as polynomials, then C0(w, r)·C1(w, r) = C2(w, r) holds with
probability at most 2ε+ 2/|F|, in which case

(
Daff ◦ f ◦ Eaff

)
(m) = ⊥ with high probability. This

follows immediately from Schwartz-Zippel and the low entropy property of (E,D). Therefore, in
order to prove the theorem, it suffices to show that if C0(x, y) · C1(x, y) ≡ C2(x, y) holds, then
either s = 0 or (s, t) = (1, 0). We assume C0(x, y) · C1(x, y) ≡ C2(x, y) holds, and we prove the
following three items:

1. either s1 = 0 or s2 = 0;

2. s1 = 0⇔ s2 = 0;

3. if s1 = s2 = 0 then either s0 = 0 or s0 = 1 and t0 = t1 = t2 = 0.

The third point is easiest: if C0(x, y) · C1(x, y) ≡ C2(x, y) and s1 = s2 = 0 then plugging gives

(t0 + s0x) · (t1 + s0y) = t2 + s0xy,

from which it follows that either s0 = 0 or s0 = 1 and ti = 0 for all i = 0, 1, 2. To prove the
first point, note that if C0(x, y) · C1(x, y) ≡ C2(x, y), then s0 · s1 = 0 (since the x2 coefficient in
C2 is zero). If s1 = 0 we are done; if s0 = 0 then e0e1s

2
2 = 0 (since y2 coefficient in C2 is zero),

which implies e1s2 = 0 since e0 6= 0 (else p(x) is reducible). If s2 = 0 we are done; if e1 = 0 then
e2

0s
2
2 = 0 (since xy2 coefficient in C2 is zero). Again, e0 6= 0 so s2 = 0 so the first point follows.
Finally, for the second point, assume s1 = 0. Then s0s2 · (e0 + e1e2) = 0 since the coefficient

of x2y = 0 in C2. Note e0 6= −e1e2 since otherwise p(x) is reducible: p(x) = (x − e2)(x2 − e1).
However, if s0 = 0 then, as shown in the proof of the first point, s2 = 0; therefore s1 = 0 implies
s2 = 0. Conversely, if s2 = 0 then e0s0s1 = 0 (coefficient of xy2 in C2 is zero), so s0s1 = 0. If
s0 = 0 then e0s

2
1 = 0 (coefficient of x2y in C2 is zero). Thus s2 = 0 implies s1 = 0, and we are

done.

Remark. In our LTNM code in the next section, we will use (Eaff ,Daff) to encode a random
w ∈ F and so the high entropy encoding is not necessary. The precise claim we use is stated
below. The proof is the same as above since if C0(x, y) · C1(x, y) 6≡ C2(x, y) as polynomials, then
C0(w, r) · C1(w, r) = C2(w, r) holds with probability at most 4/|F| over w, r ∼ F.

Claim 10. Let f : K → K be affine of the form f(x) = sx + t for s, t ∈ K such that s 6= 0 and
(s, t) 6= (1, 0). Then Prw,r∼F

[
Daff

(
f(w + r · σ + wr · σ2)

)
6= ⊥

]
≤ 4/|F|.
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6.2 A LTNM Code via Composition

Composition Overview. The local test of our main construction from Section 1.4 passes when-
ever codewords are tampered by a coordinate-wise affine function. Thus, in order to use our main
construction to build a fully LTNM code, we must modify the test in such a way so that it fails
whenever a non-trivial affine tampering function is used. We do this in two steps. First, we mod-
ify the local tester so that it locally decodes a specified polynomial evaluation. Second, the tester
checks that the evaluation recovered is a valid codeword of (Eaff ,Daff), if not it outputs ⊥. Essen-
tially, the reason this works is that the local decoder will output⊥ unless the codeword is tampered
with an affine function, in which case the evaluation recovered is an affine function of the original
evaluation. If the original evaluation is a random valid codeword of (Eaff ,Daff) then by Claim 10,
the recovered evaluation is a valid codeword only if the affine tampering function is trivial.

Notations. As in the previous section, let K/F be a degree 3 extension with F−basis {1, σ, σ2}.
Let k ≥ 5 and d ≥ 2. As in the rest of the paper, let A be the set of 3−planes in Fk and C = Fk. In
this section, we use B and Ā to denote the set of lines and 4−planes respectively(note, the second
usage is different from rest of the paper where we used Ā to denote A×ΓA). Let p = (1, 0, . . . , 0) ∈
Fk.

Construction. Let Eaff() denote the procedure which draws w, r ∼ F, and outputs the value
w + r · σ +wr · σ2 ∈ K; let Daff be the decoding algorithm from the previous section. Let m ∈ K
be a message.

• Enc(m): Draw v ∼ Eaff(); and Φ ∼ Γ such that Φ(0) = m and Φ(p) = v; output
{

(a,Φa)
}

a∈A
.

• Dec
(
{(a, α)}a∈A

)
: Find Φ ∈ Γ such that (a, α) = (a,Φ|a) for all a ∈ A. If such Φ exists, and if

Daff

(
Φ(p)

)
6= ⊥, output m = Φ(0), otherwise output ⊥.

• Test
(
{(a, α)}a∈A

)
: Draw b ∼ B(p), c1, c2, c3 ∼ C(b), c, c′ ∼ C, a1 ∼ A(c, c1), a2 ∼ A(c, c′, c2),

a3 ∼ A(c′, c3). Read (a1, α1), (a2, α2), (a3, α3) and do the following.

1) Check that α1|c = α2|c and α2|c′ = α3|c′; if not output 0; if so use interpolation to
recover β ∈ ΓB, the unique degree 2 polynomial such that β|ci = αi|ci for i = 1, 2, 3;
let v = β|p.

2) If Daff(v) 6= ⊥, output 1; otherwise output 0.

Theorem 5. Let `, ε as in theorem 1. Then the code (Enc,Dec,Test) above is a (`, ε′)−locally
testable, non-malleable code against F , the family of coordinate-wise tampering functions where
ε′ = O(ε1/2).

Proof. Fix a tampering function f = {fa}a ∈ F . We prove that (Enc,Dec,Test) is non-malleable
using the sufficient conditions of Claim 1. The first three conditions are trivial.

1. The coordinate-wise ⊥ function is in H; for all other tampering functions in H, the test
passes when a valid codeword is tampered with h ∈ H.
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2. For all distinct {ha}a, {h′a}a ∈ H, PrΦ,a

[
ha(Φ|a) = h′a(Φ|a)

]
= O

(
|F|−1

)
, as before.

3. for all {ha}a ∈ H, the distribution which draws (v,Φ) like Enc(m) and

rand := (b, c1, c2, c3, c, c
′, a1, a2, a3)

like Test, and outputs
(
(a1, ha1(Φ|a1)), (a2, ha2(Φ|a2)), (a3, ha3(Φ|a3))

)
is within statistical

distance O
(
|F|−1

)
of the distribution which draws Φ ∼ Γ uniformly, rand as in Test and

gives the same output. This is because when d = 2 and k ≥ 5, the statistical distance
between these two distributions is upper bounded by the probability that at least one of the
ai intersects the line through 0 and p (which is O

(
|F|−1

)
when k ≥ 5), since the number

of degrees of freedom in Φ with Φ(0) and Φ(p) fixed is more than the number of linear
constraints imposed by the hai(Φ|ai).

Therefore, it remains to exhibbit a list Lf ⊂ H of size at most |Lf | ≤ ` such that val ≤ O(ε1/2)
where

val := PrΦ,rand

[
Test passes & (α̃1, α̃2, α̃3) /∈

{(
ha1(Φ|a1), ha2(Φ|a2), ha3(Φ|a3)

)
: {ha}a ∈ Lf

}]
,

where α̃i = fai(Φ|ai). In the course of the proof of Theorem 1 from Section 2, a similar list L′f ⊂ G
of size at most |L′f | ≤ ` was constructed such that

PrΦ,(c,a1,a2)

[
α̃1|c = α̃2|c & (α̃1, α̃2) /∈

{(
ga1(Φ|a1), ga2(Φ|a2)

)
: {ga}a ∈ L′f

}]
≤ ε,

where this probability is over Φ ∼ Γ and c ∼ C, a1, a2 ∼ A(c). Our list Lf ⊂ H is the set of trivial
(i.e., constant or affine) {ga}a ∈ L′f . The quantity val can now be bounded

val ≤ PrΦ,rand

[
E1 ∨ E′1 ∨ E2 ∨ E3

]
for the following events:

E1: α̃1|c = α̃2|c & (α̃1, α̃2) /∈
{(

ga1(Φ|a1), ga2(Φ|a2)
)

: {ga}a ∈ L′f
}

;

E′1: α̃2|c′ = α̃3|c′ & (α̃2, α̃3) /∈
{(

g′a2(Φ|a2), g′a3(Φ|a3)
)

: {g′a}a ∈ L′f
}

;

E2: the {ga}a, {g′a}a ∈ G which agree with f from E1 and E′1 are distinct and such that
ga2(Φ|a2) = g′a2(Φ|a2);

E3: the same {ga}a ∈ G results from E1 and E′1; this {ga}a ∈ G is non-trivial, but the affine
check passes: Daff(ṽ) 6= ⊥.

The marginal distribution on a2 from rand is uniform, so PrΦ,rand

[
E2

]
= O

(
|F|−1

)
. By Claim 10,

PrΦ,rand

[
E3

]
≤ 4/|F|. We prove PrΦ,rand

[
E1

]
≤ ε1/2 + O

(
|F|−1

)
. The same holds for E′1, and

the result follows. Towards bounding PrΦ,rand

[
E1

]
, note that drawing Φ ∼ Γ uniformly, rather

than uniformly subject to Φ(0) = m and Φ(p) = v changes the probability by at most O
(
|F|−1

)
.

Therefore, in the calculation below, we assume Φ ∼ Γ. We have

PrΦ,rand

[
E1

]2
= EΦ,c∼C,a2∼A(c)

[
Pra1∼rand(c,a2)

[
E1

]]2

≤ EΦ,c,a2

[
Pra1∼rand(c,a2)

[
E1

]2]
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≤ EΦ,c,a2

[
Pra1,a3∼rand(c,a2)

[
α̃1|c = α̃2|c = α̃3|c & (α̃1, α̃2, α̃3) /∈ L′f

]]
+O(|F|−1),

where “(α̃1, α̃2, α̃3) /∈ L′f” is shorthand for

(α̃1, α̃2, α̃3) /∈
{(

ga1(Φ|a1), ga2(Φ|a2), ga3(Φ|a3)
)

: {ga}a ∈ L′f
}

and the O(|F|−1) term in the second line accounts for the case when there are {ga}a, {g′a}a ∈ L′f
such that ga2(Φ|a2) = g′a2(Φ|a2) holds. Note that if α̃1 = ga1(Φ|a1), and α̃2 6= ga2(Φ|a2), then
α̃1|c = α̃2|c occurs with probability O

(
|F|−1

)
. It follows that

PrΦ,rand

[
E1

]2 ≤ Pr Φ,c,a2
a1,a3∼rand(c,a2)

[
α̃1|c = α̃3|c & (α̃1, α̃3) /∈ L′f

]
+O

(
|F|−1

)
.

Therefore, it suffices to show that for all c ∈ C, the distribution which draws a2 ∼ A(c), a1, a3 ∼
rand(c, a2) and outputs (a1, a3) is within statistical distance O

(
|F|−1

)
of uniform on A(c)2. The

distribution rand(c, a2) draws c2 ∼ C(a2), c1 ∼ C(b), where b is the line through p and c2, and
outputs a1 ∼ A(c, c1). This is equivalent to drawing c1 ∼ C(a2) and outputting a1 ∼ A(c, c1),
where a2 is the 4−plane containing a2 and p. Thus the distribution which draws a2 ∼ A(c) and
then a1, a3 ∼ rand(c, a2), outputting (a1, a2, a3) can be equivalently described by drawing a1, a3 ∼
A(c), ci ∼ C(ai) for i = 1, 3, a2 ∼ A(c, p, c1, c3) (i.e., a random 4−plane containing c, p, c1, c3),
a2 ∼ A(c, a2) and outputting (a1, a2, a3). In the previous calculation we have ignored error terms of
size O

(
|F|−1

)
. Thus the marginal distribution on (a1, a3) is O

(
|F|−1

)
−close to uniform on A(c),

and the result follows.
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A Sufficient Conditions for Non-Malleability in LTCs

In this section we prove Claim 1, restated below.

Claim 1 (Restated). Let ε > 0 and ` ∈ N be parameters. Let (Enc,Dec,Test) be a LTC with
Enc : Γk → Γn, and let

F ⊂ {f : Γn → Γn} and G ⊂
{
g : Γn → (Γ ∪ {⊥})n

}
be function families. Suppose the following four conditions hold.

1. G contains the constant “all ⊥” function; for all other g ∈ G, and all valid codewords
x ∈ Γn, Test

(
g(x); I

)
= 1 occurs with probability 1;

2. For all distinct g, g′ ∈ G and m ∈ Γk, Prx∼Enc(m),I

[
g(x)I = g′(x)I

]
≤ ε/`2.

3. For all f ∈ F , and m,m′ ∈ Γk: ∆
({
f(x)I

}
x∼Enc(m),I

,
{
f(x)I

}
x∼Enc(m′),I

)
≤ ε.
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4. For all f ∈ F there exists a list Lf = {g(1), . . . , g(`)} ⊂ G of size |Lf | = ` such that for all
m ∈ Γk,

Prx∼Enc(m),I

[
Test

(
f(x); I

)
= 1 & f(x)I /∈

{
g(j)(x)I : g(j) ∈ Lf

}]
≤ ε.

Then (Enc,Dec,Test) is an (`+ 1, 3ε)−locally testable, non-malleable reduction from F to G.

Proof. Define g : Γn → (Γ ∪ {⊥})n by setting g(x)i = f(x)i if there is a unique g(j) ∈ Lf
such that f(x)i = g(j)(x)i, and g(x)i = ⊥ otherwise. Note every coordinate of g is a convex
combination of the corresponding coordinate functions in Lf ∪{⊥}, a subset of G of size `+1. We
must exhibbit a distribution SIM on Γn such that for all m ∈ Γk, ∆

(
Df (m),DSIM

g

)
≤ 3ε, where

Df (m) (resp. DSIM
g ) are the distributions which 1) draw I according to Test, and x ∼ Enc(m)

(resp. x ∼ SIM); 2) tamper to obtain x̃ = f(x) (resp. x̃ = g(x)); 3) output x̃I if Test(x; I) = 1, ⊥
otherwise. Let SIM be the distribution which draws m ∼ Γk and outputs x ∼ Enc(m). The third
condition implies that for all m ∈ Γk, ∆

(
Df (m),DSIM

f

)
≤ ε. Moreover, for all m ∈ Γk,

∆
(
Df (m),Dg(m)

)
≤ Prx∼Enc(m),I

[
Test

(
f(x); I

)
= 1 & f(x)I 6= g(x)I

]
≤ Prx∼Enc(m),I

[
∃ g(j), g(j′) ∈ Lf st g(j)(x)I = g(j′)(x)I

]
+

+ Prx∼Enc(m),I

[
Test

(
f(x); I

)
= 1 & f(x)I /∈

{
g(j)(x)I : g(j) ∈ Lf

}]
≤

(
`

2

)
· ε
`2

+ ε ≤ 2ε.

We have used the second and fourth conditions. It follows that ∆
(
DSIM
f ,DSIM

g

)
≤ 2ε, and the result

follows.

B Sampler Replacement

In the body we used the following fact with (ε′, δ′) = (ε, δ) and ρ = ζ = ε.

Fact 2 (Restated). Let ε, δ, ε′, δ′, ε∗, δ∗, ρ, ζ > 0 be such that δ∗(ε∗−ε−ε′−2ρ−ζ) ≥ δ′/ζ+δ/ρ.
Suppose A/B/C is such that:

• A/C, B/C and B(a)
/
C(a) are 0−biregular for all a ∈ A; and

• A/C is (ε, δ)−sampling and A(c)
/
B(c) is (ε′, δ′)−sampling for all c ∈ C.

Then A/B is (ε∗, δ∗)−sampling.

Proof. Fix ε, δ, ε′, δ′, ε∗, ρ, ζ > 0 and A/B/C as in the statement. Let B′ ⊂ B be a set of size
|B′| = λ · |B|, and let A′ ⊂ A be the set of a ∈ A such that

∣∣Prb∼B(a)(b ∈ B′) − λ
∣∣ > ε∗, let

ν = |A′|/|A|. We must show that ν ≤
(
δ′/ζ + δ/ρ

)/
(ε∗ − ε− ε′ − 2ρ− ζ). We have

ε∗ < Ea∼A′

[∣∣Prb∼B(a)(b ∈ B′)− λ
∣∣] ≤ Ea∼A′

[∣∣∣Ec∼C(a)

[
Prb∼B(a,c)(b ∈ B′)

]
− λ
∣∣∣]
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≤ E a∼A′
c∼C(a)

[∣∣∣Prb∼B(a,c)(b ∈ B′)− λ(c)
∣∣∣]+ Ea∼A′

[∣∣∣Ec∼C(a)

[
λ(c)

]
− Ec∼C

[
λ(c)

]∣∣∣],
where for c ∈ C, λ(c) := Prb∼B(c)(b ∈ B′). We have used the biregularity of B(a)

/
C(a) for all

a ∈ A and that Ec∼C
[
λ(c)

]
= λ, which follows from biregularity of B/C. Let RHS1 and RHS2

be the two expectations on the right hand side of the equation above. We bound RHS1 and RHS2

separately. Note,

RHS2 ≤ ε+ 2ρ+ ν−1 · Pra∼A

[∣∣∣Ec∼C(a)

[
λ(c)

]
− Ec∼C

[
λ(c)

]∣∣∣ > ε+ 2ρ

]
≤ ε+ 2ρ+ ν−1 · δ/ρ.

Thus, it suffices to show that RHS1 ≤ ζ + ε′+ ν−1 · δ′/ζ . Let C ′ ⊂ C be the set of c ∈ C such that
Pr a∼A′

c′∼C(a)
(c′ = c) < ζ/|C|. Clearly, Pr a∼A′

c∼C(a)
(c ∈ C ′) < ζ . Also, whenever c /∈ C ′, we have

ν · ζ ≤ ν · |C| · Pr a∼A
c′∼C(a)

[
c′ = c

∣∣a ∈ A′] = Pr c′∼C
a∼A(c′)

[
a ∈ A′

∣∣c′ = c
]

= Pra∼A(c)

[
a ∈ A′

]
.

We have used the biregularity of A/C. This gives

RHS1 < ζ + ε′ + max
c/∈C′

{
Pra∼A(c)

[∣∣∣Prb∼B(a,c)(b ∈ B′)− λ(c)
∣∣∣ > ε′

]/
Pra∼A(c)(a ∈ A′)

}
≤ ζ + ε′ + ν−1 · δ′/ζ,

and the result follows.
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