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Abstract

In this work we adapt the notion of non-malleability for codes of Dziembowski, Pietrzak
and Wichs (ICS 2010) to locally testable codes. Roughly speaking, a locally testable code is
non-malleable if any tampered codeword which passes the local test with good probability is
close to a valid codeword which either encodes the original, or an unrelated message.

We instantiate our definition by proving that a Reed-Muller-type code is non-malleable in
the following sense: any adversary who independently tampers the coordinates of the code
so that the tampered code passes the test with good probability, is tampering the underlying
polynomial according to an affine transformation.

To the best of our knowledge, prior to this work, polynomial codes were not known to
possess any non-malleability guarantees. Our analysis builds on the sampler-based decoding
techniques common to several recent works.

As an additional contribution, we describe a new (standard) non-malleable code against
affine tampering which is much simpler than prior constructions, and achieves better parame-
ters. Finally, we prove a composition theorem for locally testable non-malleable codes which
allows for obtaining codes via concatenation.

1 Introduction

A coding scheme is a pair (Enc,Dec) of functions Enc : Γk → Γn (possibly randomized) and
Dec : Γn → Γk ∪ {⊥} such that Dec

(
Enc(m)

)
= m holds with probability 1 for all m ∈ Γk. We

say x ∈ Γn is a valid codeword if x = Enc(m) for some m ∈ Γk (and some choice of randomness
for Enc). The quantity k/n is called the rate of the code. Given x,y ∈ Γn, the distance between
x and y is Pri∼[n]

[
xi 6= yi

]
. The distance of the code is the minimum distance between any two

distinct valid codewords. When a code’s distance is bounded away from zero, one can design
decoding algorithms with error-correction capabilities. We say (Enc,Dec) is an error-correcting
code [Sha49, Ham50] if there exists δ > 0 such that Dec(y) = m for all y which are within
distance δ of some valid codeword x = Enc(m). Error-correcting codes are incredibly useful
objects in both theory and practice. Thanks to an extensive research effort over the past 70 years,
the theory of error-correcting codes has advanced to the point that many of the first order questions
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have been answered. For example, at this point it is known how to construct codes with constant
rate and which can decode from a constant fraction of errors [RS60, Jus72].

Most of the time, Dec(y) − in addition to outputting the message underlying the nearest valid
codeword to y − will detect whether y itself is a valid codeword, and if not, identify the incorrect
symbols. Locally-testable codes (LTCs) [FS95, GS06] support a very efficient, randomized test
of this type which reads only a few (usually a constant number of) symbols from the code and
outputs a bit indicating whether or not it thinks the codeword is valid. Roughly speaking, the
requirement is that for all y ∈ Γn, the probability that Test(y) = 0 should be proportional to the
distance between y and the nearest valid codeword. So Test(x) = 1 with probability 1 for all valid
codewords x ∈ Γn; and if y is very far from being valid, then Test(y) = 0 should occur with
high probability. Interest in LTCs is derived from their connection to probabilistically checkable
proofs [ALM+98, AS98] and to property testing [BLR93, RS96].

Non-malleable codes (NMCs) [DPW18] provide security against a channel which, rather than
being honest but noisy, actively tampers codewords using a function f : Γn → Γn. This model
was initially motivated by applications to leakage and tamper resilient cryptography [DPW18,
AGM+15, CDTV16]. However, since their introduction, NMCs have found numerous other ap-
plications, for example to secure protocol design [GPR16, GR19], complexity theory [DJMW12],
and pseudorandomness [CGL16, CZ16]. Given a message m ∈ Γk and f : Γn → Γn, the tamper-
ing distribution outputs

(
Dec◦f ◦Enc

)
(m) ∈ Γk∪{⊥}. Roughly speaking, we say that (Enc,Dec)

is non-malleable against a function family F ⊂
{
f : Γn → Γn

}
if for all f ∈ F and m ∈ Γk, the

tampering distribution either outputs m (such is the case when f is the identity) or is statistically
independent of m (such is the case when f is a constant function).

1.1 Our Contributions

LTCs and NMCs represent two generalizations of error-correcting codes along different axes. In
this work, we combine the notions and define locally testable, non-malleable codes (LTNMCs).
Roughly speaking, a LTNMC is a LTC which has the following non-malleability guarantee: any
tampered codeword which passes the test with good probability is close to a valid codeword which
either encodes m, or else encodes an unrelated message. We then instantiate our notion by proving
that a Reed-Muller-type code is non-malleable against the family of coordinate-wise tampering
functions. Our construction has three parts.

1. We prove that when the Reed-Muller-type LTC of Raz and Safra [RS97] (i.e., the “planes
table”) is tampered by a coordinate-wise tampering function then either the tampered code-
word is far from a valid codeword (and so fails the local test with high probability) or else is
close to a valid codeword which encodes an affine function of the original message. In NMC
terminology, we show that the planes table is a non-malleable reduction from coordinate-
wise tampering to affine tampering.

2. We describe an elementary construction of a (standard) NMC against the family of affine
tampering functions. Such codes were previously known [ADL14, Agg15, CL17], but our
construction is much simpler those in prior work. When the message space is large, our
construction is more efficient than the one in [ADL14, Agg15] as our encoding algorithm
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does not require drawing large random primes. Our code achieves a better rate/error tradeoff
than the construction of [CL17].

3. We combine the codes from the above points into a concatenated code, obtaining a LTNMC
against coordinate-wise tampering via a composition theorem. The local test of our com-
posed code works by decoding a symbol of the outer code and checking validity using the
inner code. This idea has been used previously to analyze the composition of LTCs and
PCPs [AS98].

1.2 Motivation

LTCs and NMCs are both well studied objects from coding theory. As mentioned, both are gen-
eralizations of error-correcting codes (ECCs) − LTCs extend ECCs by adding efficient testing
capabilities, while NMCs extend ECCs by protecting against more sophisticated forms of tam-
pering. So LTCs are ECCs with more functionality while NMCs are ECCs with better security.
For this reason, it is natural to ask whether these two extensions can be achieved simultaneously.
Rather than constructing a special purpose code which is locally testable and non-malleable, we
show that one of the most widely-used LTCs already possesses non-malleability properties. Thus,
our result might have applications in the areas of theoretical computer science where these codes
are commonly used.

For example, although non-malleable proofs have been studied in cryptography since [DDN91],
non-malleable PCPs have not to our knowledge been defined or constructed. LTNMCs might be
the “combinatorial analogues” of non-malleable PCPs, just like LTCs are analogues of standard
PCPs. Thus our work could be a stepping stone towards new PCP constructions, and more op-
timistically, new hardness of approximation results. We elaborate below on a specific potential
application of our result which we believe is a promising research direction. In fact, it was by
pursuing this direction that this paper originated.

Split-State NMCs with Optimal Parameters. In the split-state model, the encoding algorithm
splits the message into a codeword with two parts,1 Enc : Γk → Γn × Γn, and the tampering
function acts on the parts independently: Fsplit :=

{
(f, g)

∣∣f, g : Γn → Γn
}

. So the tampering
distribution for (f, g) ∈ Fsplit and m ∈ Γk, outputs:(

Dec ◦ (f, g) ◦ Enc
)
(m) = Dec

(
f(L), g(R)

)
= Dec(L̃, R̃) = m̃, (1)

where L,R ∈ Γn and (L̃, R̃) =
(
f(L), g(R)

)
. Let us say that (Enc,Dec) is an [n, k, ε]ΓNM−code if it

has Enc : Γk → Γn × Γn, and is ε−non-malleable against Fsplit (omit Γ if Γ = {0, 1}).
Split-state codes have a tremendous number of applications. The works [ADKO15, AKO17,

BDG+18, ADN+19, BGW19] (and more) use split-state non-malleable codes to construct codes
which are secure against more sophisticated classes of adversarial tampering. Additionally, sev-
eral applications of split-state codes have been found outside of coding theory [GPR16, CGL16,
CZ16, GR19] (and more). For most of these examples, an optimal construction of split-state non-
malleable codes would yield improvements in the applications.

1In general Enc : Γk → L×R with L and R different. We enforce L = R = Γn for simplicity; note the rate is
k/2n.
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The split-state model for non-malleable codes was conceived in [DPW18], where it was proved
(non-constructively) that [n, k, ε]NM−codes exist with n = O(k) and ε = 2−Ω(k). Numerous
explicit constructions followed [DKO13, ADL14, ADKO15, CGL16, Li17] (and more). The state
of the art today is represented by two works [Li19, AO19]. Li constructs an [n, k, ε]NM−code with
n = O

(
k · log k

log log k

)
, ε = 2−Ω(k); Aggarwal and Obremski get n = O(k) and ε = 2−k

α for a constant
0 < α < 1. Both constructions use the “alternating extraction” technique of [DP07], which is both
a very powerful method for proving non-malleability, and the source of the sub-optimalities. For
this reason, it seems as though new ideas will be required in order to obtain optimal split-state
non-malleable codes.

One such idea is to build a split-state code using a LTC with extra properties. Specifically,
suppose that (Enc,Dec) is a LTC with Enc : Γk → Γn. Additionally, assume that the local testing
algorithm has a decoding feature where it takes an additional input j ∈ [k] and Test(x, j) reads
two symbols, say (xiL ,xiR) and outputs either ⊥ if the test fails or mj ∈ Γ, the j−th symbol of the
encoded message, if the test passes. Given such a code, define the split state code (Enc′,Dec′) as
follows.

• Enc′(m): Given m ∈ Γ, compute x ∼ Enc(m, 0, . . . , 0) where (m, 0, . . . , 0) ∈ Γk, draw
(iL, iR) ∈ [n]2 according to Test(x, 1), and output (L,R) =

(
(iL,xiL), (iR,xiR)

)
.

• Dec′(L,R): Parse (L,R) =
(
(iL,xiL), (iR,xiR)

)
, and output what the test outputs (either⊥ orm).

Note the rate of (Enc′,Dec′) is 1
2
· log |Γ|/

(
log n+log |Γ|) which is constant whenever n = |Γ|O(1).

The list of requirements on the LTC in order for (Enc′,Dec′) to be non-malleable is extensive
though plausible. Our result handles the special tampering case when f tampers (iL,xiL) to
(iL, x̃iL), keeping iL fixed, and similarly when g fixes iR. Indeed, such tampering of (Enc′,Dec′)
corresponds to coordinate-wise tampering of the LTC. We obtain the optimal non-malleability error
of |Γ|−Ω(k) in this case.

1.3 Other Prior Work

Sampler-Based Decoding. Our work fits into a recent line of work on sampler-based decod-
ing [IKW12, Mos17, BDN17, DHK+19, DHKR19] (and more). In these works, sampling proper-
ties of a code’s index set are exploited in order to give non-trivial decoding algorithms. Our work
builds on techniques developed in these papers in order to “decode” a coordinate-wise tampering
function which respects codeword proximity, to a small list of affine functions.

Locally Decodable Non-Malleable Codes. A few works combine the notions of local decod-
ability with non-malleability [DLSZ15, CKR15, DLSZ20]. These works give constructions of
non-malleable codes which admit local decode/update subroutines. Our work differs in several
ways from these. First, the codes in these works achieve high rate with super-constant local-
ity, whereas our main construction achieves optimal locality with very poor rate. Moreover, our
techniques differ significantly. The constructions in prior work achieve local decodeability and
updateability by separately encoding each element of the message, they do not support a local test
of proximity to a valid codeword. Our techniques on the other hand, are similar to those used in
the LTC literature.
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1.4 Technical Overview

In this technical overview we focus on our first contribution − the proof that any coordinate-wise
tampering of the planes-table code results either in a codeword which fails the local test with high
probability, or else in a codeword which encodes an affine function of the original message. Let
k, d ∈ N be integers with k ≥ 5 and d ≥ 2, and let F be a finite field. The code we analyze
encodes a field element m ∈ F by choosing a random k−variate, degree d polynomial Φ such that
Φ(0) = m, then for each 3−plane a ⊂ Fk, the a−th codeword symbol is the restriction of Φ to
a, α = Φ|a. Note α is a 3−variate polynomial of degree at most d. This code was shown to be a
LTC in [RS97] where the testing algorithm chooses a random point c ∈ Fk and two random planes
a, a′ ⊂ Fk containing c, reads the a−th and a′−th symbols α and α′ and outputs 1 if α|c = α′|c
and 0 otherwise. Here, α|c denotes the evaluation of the 3−variate polynomial α at the point c.
The tampering function family we consider is the family of coordinate-wise tampering functions,
F =

{
{fa}a⊂Fk

}
where for each 3−plane a ⊂ Fk, fa is an arbitrary function mapping 3−variate,

degree d polynomials to 3−variate, degree d polynomials. We write α̃ = fa(α).
Given m ∈ F and {fa} ∈ F , the tampering distribution chooses a random k−variate Φ of

degree d such that Φ(0) = m, and for each 3−plane a ⊂ Fk, tampers to obtain α̃ = fa(α) where
α = Φ|a; the distribution outputs {(a, α̃)}a⊂Fk . We must show that either {(a, α̃)} fails the local
test with high probability, or else is close to an encoding of an affine function of m. Since the
code is a LTC, if {(a, α̃)} passes the local test with good probability, then there exists a k−variate
polynomial Φ̃ of degree at most d such that α̃ = Φ̃|a holds for a good fraction of the a ⊂ Ft. Our
main theorem says, intuitively, that for all {fa} ∈ F there exists an affine map T on k−variate,
degree d polynomials such that Φ̃ = T(Φ). This means that a good fraction of the coordinate-wise
functions are restrictions of a global affine function. The result of such tampering on the message
is that m̃ is an affine function of m.

So we now zoom in on the proof of the main theorem: that for all {fa} ∈ F such that the output
of the tampering experiment passes the local test with good probability, there exists an affine map
T such that a good fraction of the fa agree with T. One can think of the data {fa} as assigning
α̃ = fa(α), a 3−variate low degree polynomial, to the plane/polynomial pair (a, α). Thus {fa} is a
planes/polynomials table, i.e., it is like the planes table from [RS97] which assigns a polynomial
to each plane, except that the index set now consists of all plane/polynomial pairs. Thus our main
theorem involves analyzing a low-degree test. We do this in two steps.

The first part is similar to the low-degree theorem of [BDN17]. We show that if {fa} is such
that the tampering experiment passes the local test with non-negligible probability, then the index
set of the planes table splits into a few “almost cliques”. These are subsets of the index set with
non-negligible weight where agreement within the set holds with high probability. Typically this
argument uses the pseudorandomness properties of the index set. For example, [BDN17] makes
heavy use of the fact that the planes/points “incidence graph”2 is a good sampler. In our context,
we will need that the “incidence×agreement” graph is a good sampler. This is the bipartite graph
G = (A ∪ B,E) where A is the set of pairs (a, α) where a ⊂ Fk is a 3−plane and α a 3−variate,
degree d polynomial; B = Fk × F and

(
(a, α), (c, γ)

)
∈ iff c ∈ a and α|c = γ. We establish the

sampling properties we need in Section 5.
Once we know that the set of plane/polynomial pairs separates into cliques we focus in on

2This is the bipartite graph G = (A ∪B,E) where A is the set of planes in Fk, B = Fk and (a, c) ∈ E iff c ∈ a.
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one of these cliques and we use a linearity test of [RS96] to show that there is a global affine map
which many of the fa agree with. It is key that we work within a clique because this puts us in the
“low error” regime rather than the “high error” one where we originally started.

2 Preliminaries

2.1 Locally Testable Codes and Non-Malleable Codes

Definition 1 (Locally Testable Code). Fix q ∈ N and ε > 0. We say that a code (Enc,Dec),
is a (q, ε)−locally testable code (LTC) if there exists a randomized algorithm Test which reads q
symbols of a supposed codeword y ∈ Γn (the symbols are indexed by I ⊂ [n] of size |I| = q) and
outputs a bit such that 1) Test(x) = 1 with probability 1 for all valid codewords x ∈ Γn, and 2)
there exists a constant c > 0 such that for all y ∈ Γn with dist(y) ≥ ε,

PrI

[
Test(y; I) = 0

]
≥ c · dist(y),

where dist(y) denotes the distance between y and the nearest valid codeword.

Intuitively, the second point says that if y ∈ Γn is such that Test(y) = 1 with non-negligible
probability, then y has non-negligible agreement with a valid codeword. List decoding for LTCs
refers to the stronger guarantee: for any y ∈ Γn, there is a short list of valid codewords which
explain nearly all of Test(y)’s acceptance probability.

Definition 2 (List-Decoding for LTCs). Fix ` ∈ N and ε > 0. A locally testable code is said to
be (`, ε)−list-decodable if for all y ∈ Γn there exists a set Ly ⊂ Γn of valid codewords such that
|Ly| ≤ ` and

PrI

[
Test(y; I) = 1 & yI 6= xI ∀ x ∈ Ly

]
< ε.

Non-malleable codes [DPW18] (NMCs) provide meaningful security guarantees even in situations
where error correction is impossible. Non-malleable reductions [ADKO15] are useful relaxations
which allow constructing non-malleable codes via concatenation. Intuitively, a non-malleable re-
duction from F to G guarantees that the tampering of codewords by functions in F is captured
by tampering messages by functions in G. The key feature of non-malleable reductions is that
they compose well. For example, if (EncF ,DecF) is a non-malleable reduction from F to G
and (EncG,DecG) is a non-malleable code against G, then

(
EncF ◦ EncG,DecG ◦ DecF

)
is a non-

malleable code against F .

Definition 3 (Non-Malleable Reductions). Fix ε > 0 and tampering function families

F ⊂ {f : Γn → Γn} and G ⊂
{
g : Γk → Γk ∪ {⊥}

}
.

We say that a coding scheme (Enc,Dec) is an ε−non-malleable reduction from F to G if for all
f ∈ F there exists a distribution Gf on G such that ∆

(
(Dec ◦ f ◦ Enc)(m),Gf (m)

)
≤ ε for all

m ∈ Γk, where Gf (m) is the distribution which draws g ∼ Gf and outputs g(m) (∆ denotes
statistical distance). A non-malleable code is a non-malleable reduction to the family of “trivial”
tampering functions, containing only the identity and constants.
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Remark. We have chosen to define NM codes via NM reductions because it is syntactically
simpler and much more intuitive for readers who are not already experts in non-malleability. It
was one of the main contributions of [ADKO15] that non-malleable codes could be defined this
way. We refer readers to the original definition of [DPW18] and the discussion in [ADKO15] for
more details.

2.2 Sampler Graphs

Notations. For a finite set S, s ∼ S indicates that s is drawn uniformly from S. For a bipartite
graph (A ∪ B,E) and a ∈ A, B(a) denotes the uniform distribution on the neighborhood of a in
B: {b ∈ B : (a, b) ∈ E}. The neighborhood distribution A(b) for b ∈ B is defined analogously.
For all bipartite graphs used in this work, the edge relations are natural. For example, A might
be the set of lines in Fk (F a finite field), B the set of points in Fk, and the edge relation captures
incidence: (a, b) ∈ E iff b ∈ a. For this reason, we simplify notations by supressing E and
denoting bipartite graphs as A/B instead of (A ∪B,E), and writing a ∼ b instead of (a, b) ∈ E.

Definition 4 (Biregularity). Let A/B be a bipartite graph and fix η > 0. We say that A/B
is η−biregular if the distribution which draws a ∼ A, b ∼ B(a), and outputs (a, b) is within
statistical distance η of the distribution which gives the same output by drawing b ∼ B, a ∼ A(b).3

Biregularity ensures that for any B′ ⊂ B of size |B′| = λ · |B|, the expectation (over a ∼ A) of
Prb∼B(a)[b ∈ B′] is close to λ. We say that A/B is sampling if a concentration bound holds.

Definition 5 (Sampler Graph [Zuc97]). Fix ε, δ > 0. We say that the bipartite graph A/B is
(ε, δ)−sampling if for all subsets B′ ⊂ B of size |B′| = λ · |B|,

Pra∼A

[∣∣∣Prb∼B(a)

[
b ∈ B′

]
− λ
∣∣∣ > ε

]
≤ δ.

Double Samplers. A triple (A,B,C) is called a double sampler if B/C is sampling and for all
c ∈ C, A(c)/B(c) is sampling. Double samplers have been used implicitly in several works prior
to their formalization in [DK17]. We use them implicitly in this work as well. The construction
in [DK17] is of a double sampler of linear size (i.e., |A| ≈ |B| ≈ |C|) based on high-dimensional
expanders. The double samplers used in this work are built from elementary means and are not
linear size (our double samplers have |A| � |B| � |C|). Importantly, a random object in our
parameter regime is a double sampler with good probability, while this is not true in the linear size
regime.

Fact 1 (Properties of Samplers). Suppose A/B is η−biregular and (ε, δ)−sampling. We have
the following.

1. For any ρ > 0 and f : B → [0, 1],

Pra∼A

[∣∣∣Eb∼B(a)

[
f(b)

]
− Eb∼B

[
f(b)

]∣∣∣ > ε+ 2ρ

]
≤ δ/ρ.

3This is related to the usual notion of biregularity; specifically, if A/B is biregular in the usual sense, then it is
0−biregular in the sense of Definition 4.
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2. For any ρ > 0, B/A is
(
ρ, 2(ε+ δ + η)/ρ

)
−sampling.

3. For any B′ ⊂ B of size |B′| = λ · |B| with λ > ε,

∆
({

(a, b) : b∼B
′

a∼A(b)

}
,
{

(a, b) : a∼Ab∼B′(a)

})
≤ δ + η/ε,

where B′(a) denotes the distribution which draws b ∼ B(a) and outputs if b ∈ B′, else
resamples (or if B(a) ∩B′ = ∅, B′(a) outputs an arbitrary b ∈ B).

The facts above are all well-known. See, for example, [Zuc97, IKW12, BDN17] for proofs of
points 1, 2, and 3, respectively.

Fact 2 (Extending Sampling via Biregularity). Fix ε, ε′, δ, δ′, η > 0. Suppose A/B/C are such
that B(a)

/
C(a) is η−biregular and C(a, b) = C(b) for all a ∈ A and b ∈ B(a). The following

hold.

1. If B/C is (ε′, δ′)−sampling and A/B is η−biregular, then A/C is (ε, δ)−sampling, where
δ ≥ ε−1 · (2η + ε′ + δ′).

2. If A
/
B is (ε′, δ′)−sampling and B

/
C is η−biregular, then A

/
C is (ε, δ)−sampling, where

ε ≥ 3ε′ + 2η and δ ≥ δ′/ε′.

Proof. Assume A/B/C are such that for all a ∈ A, B(a)
/
C(a) is η−biregular, and also that

C(a, b) = C(b). Let C ′ ⊂ C be a subset of size |C ′| = λ · |C|. By η−biregularity,∣∣∣Prc∼C(a)(c ∈ C ′)− λ
∣∣∣ ≤ ∣∣∣Eb∼B(a)

[
Prc∼C(b)(c ∈ C ′)

]
− λ
∣∣∣+ η

holds for all a ∈ A. Now, let val := Pra∼A
[
|Prc∼C(a)(c ∈ C ′) − λ| > ε

]
be the quantity we have

to bound. For the first point we have

val ≤ ε−1 ·
(
E a∼A
b∼B(a)

[∣∣Prc∼C(b)(c ∈ C ′)− λ
∣∣]+ η

)
≤ ε−1 · (2η + ε′ + δ′),

by Markov’s inequality, the η−biregularity of A/B and the (ε′, δ′)−sampling of B/C. For the
second point we have

val ≤ Pra∼A

[∣∣∣Eb∼B(a)

[
λ(b)

]
− Eb∼B

[
λ(b)

]∣∣∣ > ε− 2η ≥ 3ε′
]
≤ δ′/ε′,

where λ(b) := Prc∼C(b)(c ∈ C ′). We have used the η−biregularity of B/C to say that Eb∼B
[
λ(b)

]
is in λ± η, and the (ε′, δ′)−sampling of A/B combined with the first point of Fact 1.

Fact 3 (Replacement Product). Let ε, ε′, δ, δ′ > 0 be such that δ · (ε − 5ε′) ≥ 2δ′/ε′. Suppose
A/B/C is such that:

• A/C, B/C and B(a)
/
C(a) are 0−biregular for all a ∈ A; and

• A/C and A(c)
/
B(c) are (ε′, δ′)−sampling for all c ∈ C.

Then A/B is (ε, δ)−sampling.

The replacement product was originally proved in [WZ93] in the context of seeded randomness
extractors (which are equivalent to sampler graphs). We give the proof ported over to the language
of samplers in Appendix A for completeness.
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2.3 Polynomials Over Finite Fields and Incidence Geometry

Let F be a finite field, and let k ≥ 4 and d ≥ 2 be dimension and degree parameters, respectively.
We denote by A the set of affine 3−planes in Fk, C = Fk. The edge relation in the bipartite
graph A/C is incidence: a ∼ c iff c ∈ a. Let Γ and ΓA be the sets of k−variate and 3−variate
polynomials of degree at most d over F, respectively; let ΓC = F. This defines an incidence ×
agreement bipartite graph A/C where A = A×ΓA, C = C×ΓC and the edge relation is “incidence
× agreement”: a = (a, α) ∼ (c, γ) = c iff c ∈ a and α|c = γ. We show in Section 5 that A/C has
similar sampling properties to A/C, whose sampling properties are well known.

3 Locally Testable, Non-Malleable Codes

3.1 Definition

Just as how we defined non-malleable codes via non-malleable reductions, likewise locally testable,
non-malleable codes are a special case of locally testable, non-malleable reductions which we now
define. As mentioned previously, this

Definition 6 (Locally Testable, Non-Malleable Reductions). Fix parameters ` ∈ N, ε > 0,
and function families F ⊂ {f : Γn → Γn} and G ⊂

{
g : Γn → Γn

}
. We say that a LTC

(Enc,Dec,Test) is an (`, ε)−locally-testable non-malleable reduction fromF to G if for all f ∈ F ,
there exists Lf = {g(1), . . . , g(`)} ⊂ G of size |Lf | = ` and a function g : Γn → Γn such that:

1. for all i ∈ [n] and y ∈ Γn, g(y)i ∈
{
g(j)(y)i : g(j) ∈ Lf

}
; and

2. for all m ∈ Γk, Prx∼Enc(m),I

[
Test

(
f(x); I

)
= 1 & f(x)I 6= g(x)I

]
≤ ε.

As before, if G is the family of trivial tampering functions consisting just of the identity and con-
stants, then (Enc,Dec,Test) is called an (`, ε)−locally-testable non-malleable code.

Remark. Some remarks are in order.

1. The list-decoding intuition is captured by the shortness of Lf : nearly all of the test passing
probability of an f−tampered codeword is explained by f ’s agreement with g, which in
turn, always agrees with one of the functions in Lf ⊂ G. Note that each coordinate of g
is a (possibly different) convex combination of the corresponding coordinates of the g(j).
The non-malleability intuition is captured because the function g is defined given f , and the
agreement guarantee of point 2 holds for all m ∈ Γk.

2. Unlike Definition 3, the functions in G in Definition 6 map codewords to codewords, rather
than messages to messages. This modification is so that we can meaningfully compare f(x)I
with g(x)I , an important feature of local-testing definitions. The family Dec◦G ◦Enc would
be the corresponding distribution on message-to-message functions. In this work, G will
always be either the family of trivial tampering functions, or the family of affine tampering
functions. In either case, Dec ◦ G ◦ Enc is also trivial or affine. The distribution Gf of
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Definition 3 outputs g(j) with probability proportional to the probability that DSIM
f agrees

with g(j).

3. Composing two standard non-malleable reductions − one from F to G, one from G to H
− yields a non-malleable reduction from F to H. The same composition theorem does
not hold generically for locally testable, non-malleable reductions. We use a non-generic
composition theorem to combine a locally testable, non-malleable reduction from F to G
with a non-malleable code against G (for specific F and G) to obtain a locally testable, non-
malleable code againstF . The test of our composed code involves locally decoding a symbol
of the outer code so it can be checked for validity by the inner code. This idea is often used
to compose locally testable codes and PCPs.

3.2 Discussion

In this section, we briefly discuss how our new coding gadgets relate to other nearby members
in the coding theory tree. Additionally we discuss a few naive attempts at building LTNMCs by
combining other coding objects.

First, it is clear that any LTNMC is also a LTC. On the other hand, LTNMCs do not seem to
immediately give NMCs. Essentially, this is because the tester for LTNMC does not distinguish
between the case when the tampered codeword is valid and when it is very close but not equal
to a valid codeword. Thus, the definition 6 does not prevent "selective bot attacks" where the
probability of decoding failure varies very slightly with the message. For example, a tampering
function might be able to tamper an encoding of m = 0 to a valid codeword, and an encoding of
m = 1 to a valid codeword except with a single incorrect symbol. In this case the tester will not
notice the difference, but a decoding algorithm will have to output 0 in one case and⊥ in the other.

In the other direction, NMCs also do not readily give LTNMC because they might not be locally
testable. One might try composed a NMC with an outer LTC to obtain a code with a local tester
and (hopefully) some non-malleability properties. However, in order to show that the concatenated
code is non-malleable, one basically has to show that if the outer LTC is tampered, the resulting
tampering on the inner NMC is precisely what it is secure against. Thus, this requires the outer
LTC to already have some non-malleability.

One notable exception to this is the case of linear (or affine) tampering. If an LTC has an
encoding algorithm which is linear and the inner NMC is non-malleable against affine tampering,
then the composed code will be a LTNMC against affine tampering as well, since an affine attack
on the outer code translates (by linearity) to an affine attack on the inner one.

3.3 Sufficient Conditions for LTNMCs

The following claim gives a useful set of sufficient conditions for a LTC being non-malleable.
For the codes used in this work, the first condition will be more or less trivial to establish. Thus,
Claim 1 essentially reduces proving non-malleability to the task of establishing condition 2. This
will simplify our proofs considerably.
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Claim 1 (Sufficient Conditions for Non-Malleability in LTCs.). Let (Enc,Dec,Test) be a LTC
with Enc : Γk → Γn, and let

F ⊂ {f : Γn → Γn} and G ⊂
{
g : Γn → (Γ ∪ {⊥})n

}
be function families. Suppose the following two conditions hold.

1. Tampering function distance: For all distinct function pairs g, g′ ∈ G and m ∈ Γk, we
have

Prx∼Enc(m),I

[
g(x)I = g′(x)I

]
≤ ε/`2

.2. List decoding: For all f ∈ F there exists a list Lf = {g(1), . . . , g(`)} ⊂ G of size |Lf | = `
such that for all m ∈ Γk,

Prx∼Enc(m),I

[
Test

(
f(x); I

)
= 1 & f(x)I /∈

{
g(j)(x)I : g(j) ∈ Lf

}]
≤ ε.

Then (Enc,Dec,Test) is an (`, 2ε)−locally testable, non-malleable reduction from F to G.

Proof. Define g : Γn → (Γ ∪ {⊥})n by setting g(x)i = f(x)i if there is a unique g(j) ∈ Lf
such that f(x)i = g(j)(x)i, and g(x)i = ⊥ otherwise. Note every coordinate of g is a convex
combination of the corresponding coordinate functions in Lf ∪ {⊥}, a subset of G of size ` + 1.
Thus, for all m ∈ Γk,

Prx∼Enc(m),I

[
Test

(
f(x); I

)
= 1 & f(x)I 6= g(x)I

]
≤ Prx∼Enc(m),I

[
∃ g(j), g(j′) ∈ Lf st g(j)(x)I = g(j′)(x)I

]
+ Prx∼Enc(m),I

[
Test

(
f(x); I

)
= 1 & f(x)I /∈

{
g(j)(x)I : g(j) ∈ Lf

}]
≤
(
`

2

)
· ε
`2

+ ε ≤ 2ε.

We used the two given conditions to bound the two terms in second line. The claim follows.

3.4 Our Code and Main Theorem

Main Construction. We choose a dimension parameter k ≥ 4 and the degree parameter d ≥ 2.
With notations as defined in section 2.3:

• Enc(m): For m ∈ F, draw Φ ∼ Γ such that Φ(0) = m and output {Φ|a}a∈A ∈ Γ
|A|
A . We will

often write codewords as
{

(a, α)
}

a∈A
with the understanding that α = Φ|a.

• Dec
(
{(a, α)}a∈A

)
: Given

{
(a, α)

}
a∈A

, find Φ ∈ Γ such that (a, α) = (a,Φ|a) for all a ∈ A.4 If
such Φ exists, output m = Φ(0), otherwise output ⊥.5

4Such Φ, if it exists, can be found in time poly
(
|F|
)

by interpolation.
5As written, decoding runs in time poly(|F|), which is exponential in the message length. However, local decoding

algorithms exist which run in time poly
(
λ, log |F|, 1/δ

)
and outputm (or a list containingm) with probability 1−2−λ

whenever the input is within distance δ of a valid encoding of m. See for example [Sud97].
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• Test
(
{(a, α)}a∈A

)
: Draw c ∼ C, a, a′ ∼ A(c); read (a, α) and (a′, α′), and output 1 if α|c = α′|c

(α|c denotes the evaluation of α at c), 0 otherwise.

The above code is known to be a
(
2, |F|−Ω(1)

)
−locally testable code. This was proven origi-

nally the influential works [AS97, RS97]. Our main theorem is that this code also possesses
non-malleability guarantees. Before we state this formally, we introduce the tampering function
families.

Tampering Function Families. We identify three types of tampering.

• Coordinate-Wise: F :=
{
{fa}a∈A

∣∣fa : ΓA → ΓA

}
tampers codewords via

{fa}a : {(a, α)}a 7→
{(

a, fa(α)
)}

a
.

• Affine: We say that T : Γ → Γ is affine if ∃ (s,Φ0) ∈ F× Γ such that T(Φ) = s · Φ + Φ0. We
define G to be the family of coordinate-wise restrictions of global affine maps:

G :=
{
{ga}a∈A

∣∣ ∃ (s,Φ0) ∈ F× Γ st ga(α) = s · α + Φ0|a ∀ a ∈ A
}
⊂ F .

• Trivial: We say that T : Γ → Γ is trivial if either T(Φ) = Φ or if ∃ Φ0 ∈ Γ such that
T(Φ) = Φ0. We defineH to be the family of coordinate-wise restrictions of trivial maps:

H :=
{
{ha}a∈A

∣∣ either ha(α) = α ∀ (a, α) or ∃ Φ0 ∈ Γ st ha(α) = Φ0|a ∀ (a, α)
}
⊂ G.

We also include the “all ⊥ function” (maps every coordinate to ⊥) in G andH.

Theorem 1. The code above is an (`, ε)−locally-testable, non-malleable reduction from F to G
where ε = |F|−Ω(1) and ` = 4/ε.

We use this locally testable, non-malleable reduction to build a locally testable, non-malleable code
against F . The explicit construction is given in section 8.

Theorem 2 (Main). There exists an explicit (`, ε)−locally testable, non-malleable code against
F , the family of coordinate-wise tampering functions where ε = |F|−Ω(1) and ` = 4/ε.

4 The Affine Agreement Theorem

In this section we state the affine agreement theorem, which is at the core of the proof of Theorem 1.
Theorem 1 follows from our affine agreement theorem in much the same way as list-decoding
theorems often follow from agreement theorems.

Theorem 3 (Affine Agreement). There exists ε = |F|−Ω(1) such that for all {fa} ∈ F , the follow-
ing holds. If

PrΦ,(c,a,a′)

[
α̃|c = α̃′|c

]
≥ 6ε,

where the probability is over Φ ∼ Γ, c ∼ C, a, a′ ∼ A(c) and where (α̃, α̃′) =
(
fa(Φ|a), fa′(Φ|a′)

)
,

then there exists an affine T : Γ→ Γ such that Pr(Φ,a)∼Γ×A

[
α̃ = T(Φ)|a

]
≥ ε.
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Proof of Theorem 1 Assuming Theorem 3. Let ε be as in Theorem 3 above and fix f = {fa}a ∈
F . We prove that the code is non-malleable by establishing the sufficient conditions of Claim 1.
The first condition is immediate. Because: For all distinct {ga}a, {g′a}a ∈ G, ga(Φ|a) = g′a(Φ|a)
holds only if either ga = g′a (occurs with probability O

(
|F|−1

)
when {ga}a 6= {g′a}a), or if ga 6=

g′a but ga(Φ|a) = g′a(Φ|a) (also probability O
(
|F|−1

)
). Thus, PrΦ,(c,a,a′)

[
ga(Φ|a) = g′a(Φ|a)

]
=

O
(
|F|−1

)
� ε/`2. For the second condition, we show that there exists Lf ⊂ G of size at most `

such that

PrΦ,(c,a,a′)

[
α̃|c = α̃′|c & (α̃, α̃′) /∈

{(
ga(α), ga′(α

′)
)

: {ga}a ∈ Lf

}]
< 6ε, (2)

where (α̃, α̃′) =
(
fa(α), fa′(α

′)
)

for (α, α′) =
(
Φ|a,Φ|a′

)
, and where Φ ∼ Γ.6 Towards this end,

let Lf :=
{
{ga}a ∈ G : Pr(Φ,a)∼Γ×A

[
α̃ = ga(α)

]
≥ ε/2

}
.

Small List Size. Assume for contradiction that |Lf | ≥ ` = 4/ε + 1, and so contains a set{
{g1

a}a, . . . , {g`a}a

}
. By inclusion-exclusion,

1 ≥ Pr(Φ,a)∼Γ×A

[
α̃ ∈

{
gia(α) : i = 1, . . . , `

}]
≥ ` · ε

2
−

∑
1≤i<j≤`

PrΦ,a

[
gia(α) = gja(α)

]
> 2−

(
`

2

)
·
(

1

|Γ|
+

d

|F|

)
.

The last inequality used `ε > 4, and the bound on PrΦ,a

[
gia(Φ|a) = gja(Φ|a)

]
from point 2 above.

The right hand side simplifies to 2− o(1) > 1, a contradiction.

Proximity Implies List Decoding. Suppose {fa} is such that (2) does not hold. Define {f ′a}a ∈ F
as follows: f ′a(α) = fa(α), unless fa(α) = ga(α) for some {ga}a ∈ Lf in which case f ′a(α) outputs a
random α̃ /∈

{
ga(α) : {ga}a ∈ Lf

}
. Note

PrΦ,(c,a,a′)

[
f ′a(α)|c = f ′a′(α

′)|c
]
≥ 6ε

since (2) does not hold. Therefore, by Theorem 3, there exists an affine T : Γ → Γ such that
PrΦ,a

[
f ′a(Φ|a) = T(Φ)|a

]
≥ ε. Thus PrΦ,a

[
fa(Φ|a) = T(Φ)|a

]
≥ ε − `/|ΓA| ≥ ε/2, and so

the coordinate-wise version of T is in Lf . This is a contradiction since by construction, for every
{ga}a ∈ Lf , f ′a(α) 6= ga(α) holds for all a ∈ A and α ∈ ΓA.

4.1 Overview of the Proof of Theorem 3

Theorem 3 roughly says if any random tampered codeword passes the the plane-point-plane agree-
ment test with good probability then the tampering function, f , must be close to some affine map-
ping. To see intuitively why this theorem holds, lets first consider a more favorable situation where
the test passes with close to one probability (over random codewords and test indices). Since our
code is already known to be locally testable, any tampered codeword that passes the test with high
probability, must agree with some polynomial Φ̃ at many co-oridnates. Thus it must be the case

6The difference in probability caused by drawing Φ ∼ Γ such that Φ(0) = m instead is O(|F|−1), thus negligible.
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that our tampering f is mapping random codewords to close to valid codewords or equivalently,
we can think the tampering as defining a function that sends a random Φ to some Φ̃. The key
of our theorem is showing that if f is a coordinate-wise function that maps random polynomials
to polynomials, then it must be affine. This completes the very high level proof sketch of Theo-
rem 3 modulo the low error assumption. Now, to prove the theorem in the high error regime, we
first show that whenever low agreement holds, there is a small fraction of planes where very high
agreement holds. Thus, we can essentially perform the proof mentioned above on this small set
of planes to get our result. The lemmas described in the next section capture these two pieces of
intuition.

4.2 Reducing the NM Agreement Theorem to Two Lemmas

The proof of Theorem 3 will occupy much of the rest of this paper. In this section, we separate the
proof into two parts by stating two lemmas which combine to immediately prove the theorem.

Proof of Theorem 3. Suppose ε = |F|−Ω(1) is chosen so it satisfies Lemmas 1 and 2, below. Let
{fa}a ∈ F be such that

PrΦ,(c,a,a′)

[
α̃|c = α̃′|c

]
≥ 6ε. (3)

By Lemma 1 below, there exists a function h : C→ ΓC such that

Pr(a,Φ)∼A×Γ

[
Prc∼C(a)

[
α̃|c = γ̃

]
≥ 1− ζ

]
≥ 2ε, (4)

where γ̃ = h(c), a = (a,Φ|a), and where ζ = |F|−Ω(1) is specified precisely in Section 6. By
Lemma 2, there exists an affine map T : Γ→ Γ such that

Pr(a,Φ)∼A×Γ

[
α̃ = T(Φ)|a

]
≥ ε. (5)

Lemma 1 (Global Agreement). There exists ε = |F|−Ω(1) such that whenever {fa}a ∈ F is such
that (3) holds, there exists h : C→ ΓC such that (4) holds.

Lemma 2 (Affine Agreement). There exists ε = |F|−Ω(1) such that whenever {fa}a ∈ F and
h : C→ ΓC are such that (4) holds, there exists an affine T : Γ→ Γ such that (5) holds.

Lemma 1 is proved in Section 6 using a sampler-based decoding argument similar to ones which
have appeared in several recent works, for example [BDN17]. The linearity test analyzed in the
proof of Lemma 2 in Section 7 is new to this work.

5 Sampler Graph Preliminaries

5.1 Why Samplers Play a Role

Here we briefly discuss how sampler graphs serve as an important component in our analysis.
We begin by recalling the ’plane vs plane’ low degree testing model from PCP literature [RS97,
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BDN17]. In this model, a test algorithm gets oracle access to a ‘planes’ table where to each plane,
a ∈ A, the table contains a polynomial, α, defined on that plane. Then the test algorithm’s task
is to decide if the table is close to any global low degree polynomial Φ. The final step is then to
prove an agreement theorem that says if the test passes with good probability, then there exists a
polynomial that agrees with the table on many planes. In literature, these agreement theorems are
proven using essentially two ingredients: sampling properties of planes and facts about low degree
polynomials. Now, its easy to see that our tampering and testing model is very similar to the ‘plane
vs plane’ model. The only difference is that in our model as we are looking at coordinate-wise
tampering fa(α) = α̃, we have a ‘plane×polynomial table’ where to (a, α) the table contains a
polynomial α̃. Thus, to prove an agreement theorem in our setting, we wind up using sampling of
’planes×polynomials’ [see section 5.2 below] and the same facts about polynomials.

5.2 Incidence × Agreement Samplers

Sampler graphs play a big role in the proofs in the following sections. In this section we introduce
the graphs whose sampling will be used, and various properties of sampler graphs. All of the
graphs are what we call “incidence× agreement” graphs, such as A/C from last section. We begin
with some notation.

Notation. Recall F is a finite field, k ≥ 4, d ≥ 2, A is the set of 3−planes in Fk, C = Fk, Γ and
ΓA are the sets of k−variate and 3−variate polynomials of degree at most d over F, respectively,
ΓC = F. This defines an incidence× agreement bipartite graph A/C where A = A×ΓA, C = C×ΓC

and the edge relation is “incidence × agreement”: a = (a, α) ∼ (c, γ) = c iff c ∈ a and α|c = γ.
For r = 1, 2, let Br denote the set of affine r−dimensional planes in Fk, let ΓBr be the set of
r−variate polynomials of degree at most d over F, and let Br = Br×ΓBr . At various points during
the proof, we will use that A/Br/C is a double sampler. The incidence × agreement edge relation
extends naturally to A/Br, Br/C, and B2/B1. For example, if a = (a, α) ∈ A and b = (b, β) ∈ B2,
then a ∼ b iff b ⊂ a and α|b = β.

We begin by listing the incidence × agreement samplers we will need in the remainder of the
paper and proving they are sampling. In the claim statement below, A(c), for c ∈ C, denotes the
set of a ∈ A such that a ∼ c. In the proof which follows, we use A(c) to mean either this set, or the
uniform distribution on this set; in all cases, our intention should be clear from the context.

Claim 2. The following graphs are allO
(
|F|−1

)
−biregular and

(
12·|F|−1/15, |F|−1/15

)
−sampling:

(1) B1

/
C (2) A(c)

/
B2(c) ∀ c ∈ C (3) A

/
C (4) A(c, c′)

/
C ∀ c, c′ ∈ C

(5) A
/

C
2

(6) A(c)
/

C
2 ∀ c ∈ C (7) A× Γ

/
C (8) B2(c)

/
C ∀ c ∈ C

(9) A(b)
/

C ∀ b ∈ B1 (10) A× Γ
/

B1

Proof. It is easy to see that all of the graphs in the Claim statement areO
(
|F|−1

)
−biregular, as per

Definition 4. By symmetry, graphs (1), (2), (3), (5), (7), (10) are actually 0−biregular. The others
have a slight error introduced by the fact, for example, that the distribution which draws a ∼ A(c)
and outputs a random element of C(a) is more likely to output c than c′ 6= c. However, an easy
calculation shows that the statistical distance between the required distributions is O

(
|F|−1

)
; the
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same is true for all examples in the list. The rest of the proof is divided into two stages. First, we
use a pairwise independence argument to show that B1/C, B2/C, A(b1)

/
B2(b1) for all b1 ∈ B1

and B2(c)
/

B1(c), A(c)
/

B1(c) for all c ∈ C are (|F|−1/5, |F|−3/5)−sampling. Then we reduce the
sampling of every graph above to the sampling of these five.

We phrase the pairwise independence argument for a generic bipartite graph A/B. The key
feature we need involves a set X which parametrizes the neighborhoods B(a) for all a ∈ A.
Given x ∈ X and a ∈ A, we write the x−th neighbor of a as a(x) ∈ B, so X parametrizes
neighborhoods as B(a) = {a(x) : x ∈ X} for all a ∈ A. The property we require is that for all
x1 6= x2 ∈ X , the random variable

(
a(x1), a(x2)

)
(randomness over a ∼ A) is uniform on B2. For

B1/C, X = F since C(b) is parametrized by the points on the line b. Likewise, for B2/C, X = F2.
For A(b1)

/
B2(b1),the neighborhood B2(b1, a) is paramterized by all possible planes in a through

b1, so we have |X| = |F| + 1. For B2(c)
/

B1(c), X = F ∪ {∞}, since B1(c, b2) is parametrized
by all possible slopes of a line in b2 through c. Finally, for A(c)/B1(c) the neighborhood B1(c, a)
is paramterized by all possible lines in a through c, so we have |X| = |F|2 + |F|+ 1 . In all cases,
independence follows from the fact that for every b1 ∈ B, the distribution which draws a ∼ A(b1)
and outputs b2 ∼ B(a) \ {b1} is the uniform distribution on B.

So now, let A/B be a bipartite graph which satisfies the pairwise independent parametrized
neighborhood property described above. Let B′ ⊂ B be a subset of size |B′| = λ · |B|. For b ∈ B,
let 11B′(b) indicate whether b ∈ B′ or not, and let 1̂1B′(b) := 11B′(b)− λ. Note Eb∼B

[
1̂1B′(b)

]
= 0.

Finally, define f : A → [0, 1] by f(a) := Eb∼B(a)

[
1̂1B′(b)

]
. We will show Ea∼A

[
f(a)2

]
≤ |F|−1.

This suffices by Markov’s inequality:

Pra∼A

[∣∣∣Prb∼B(a)

(
b ∈ B′

)
− λ
∣∣∣ > |F|−1/5

]
≤ Pra∼A

[
f(a)2 > |F|−2/5

]
≤ |F|2/5 · Ea∼A

[
f(a)2

]
.

We use the pairwise independence property to conclude:

Ea∼A
[
f(a)2

]
= Ea∼A

[
Ex1,x2∼X

[
1̂1B′
(
a(x1)

)
· 1̂1B′

(
a(x2)

)]
≤ 1

|X|
+ Eb1,b2∼B

[
1̂1B′(b1) · 1̂1B′(b2)

]
=

1

|X|
.

For the reductions in the second phase, we use the generic facts about samplers stated in
Section 2.2. Since B2/C and B2(c)

/
B1(c) for all c ∈ C are each

(
|F|−1/5, |F|−3/5

)
−sampling,

B1/C and B2/B1 are both
(
7 · |F|−1/5, |F|−1/5

)
−sampling (we have already shown sampling of

B1/C with better parameters, sampling of B2/B1 follows from Fact 3. We have also shown that
A(b1)/B2(b1) for all b1 ∈ B1 and A(c)/B1(c) for all c ∈ C are both

(
|F|−1/5, |F|−3/5

)
−sampling.

This fact combined with Fact 3 proves sampling of A(c)/B2(c) for all c ∈ C. The first point
of Fact 2 says that any time we have Z such that Z/B1 or Z/B2 is O

(
|F|−1

)
−biregular, then

Z/C or Z/B1 is
(
3 · |F|−1/15, 3 · |F|−2/15

)
−sampling. This proves the sampling of all graphs

except for (5) and (6): A/C
2

and A(c)
/

C
2

for all c ∈ C, so it remains to prove sampling of
these. Note A(c)

/
B1 for all c ∈ C and A/B1 are

(
3 · |F|−1/15, 3 · |F|−2/15

)
−samplers, since

A(c)
/

B2 and A/B2 are O
(
|F|−1

)
−biregular. Thus we can use the second point Fact 2 to get(

12·|F|−1/15, |F|−1/15
)
−sampling of graphs (5) and (6) because B1/C

2
isO

(
|F|−1

)
−biregular.
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Notational Conventions and Example Use. Our proofs in the next sections rely heavily, and
often implicitly, on the fact that the graphs of Claim 2 are samplers, and on the properties of
sampler graphs stated in Fact 1. To facilitate readability, from here on, we reserve the quantity
δ > 0 for the loss introduced any time a sampling argument is used. As an example of how this
looks in the body of the paper, let C

′ ⊂ C be a set with |C′| ≥ λ · |C|, and let E be some event. Then
we might deduce: E

c,c′∼C
′
[
Pra∼A(c,c′)(E)

]
≥ Ea∼A

[
Pr

c,c′∼C
′
(a)

(E)
]
− δ, “because of the sampling

of A
/

C
2
.” Formally, we are using the third point of Fact 1, the fact that A

/
C

2
is η′−biregular,

(ε′, δ′)−sampling with λ > ε′ and that δ ≥ δ′ + η′/ε′.

Setting the Sampling Parameter. In the example use mentioned above, η′ = O
(
|F|−1

)
and

ε′, δ′ = O
(
|F|−1/15

)
. Thus, δ = O

(
|F|−1/15

)
is sufficient for δ ≥ δ′ + η′/ε′ to hold. In general,

each sampler property use will put a lower bound on δ, and so we simply set δ large enough so that
they all hold. Explicitly, δ = 3 · |F|−1/60 is sufficient for our purposes.

We conclude this section with a claim listing two sampler-based facts which will be useful in the
calculations in the next section.

Claim 3. Let the notations be as above, and let δ = 3 · |F|−1/60 and η = O
(
|F|−1

)
. Let C

′ ⊂ C be
a subset of size |C′|/|C| ≥ 12 · |F|−1/15. We have the following.

1. (c, b, c′)

∣∣∣∣∣
a ∼ A

c ∼ C(a)

c′ ∼ C
′
(a)

b ∼ B2(a, c, c′)

 ≈δ
(c, b, c′)

∣∣∣∣∣
c ∼ C

b ∼ B2(c)

c′ ∼ C
′
(b)

 ,

where in the first distribution b = (b, α|b), where a = (a, α).

2. (a, b, c′)

∣∣∣∣∣
a ∼ A

c ∼ C(a)

c′ ∼ C
′
(a)

b ∼ B2(c, c′)

 ≈δ
(a, b, c′)

∣∣∣∣∣ c′ ∼ C
′

b ∼ B2(c′)
a ∼ A(b)

 ,

where in the first distribution b = a|b.

In both (1) and (2) above, ≈δ denots that the two distributions are within statistical distance δ of
one another.

Proof. For the first part, we have
a ∼ A

c ∼ C(a)

c′ ∼ C
′
(a)

 ≈δ/3
 c′ ∼ C

′

a ∼ A(c′)
c ∼ C(a)

 ≈η
 c′ ∼ C

′

b ∼ B2(c′)
c ∼ C(b)

 ≈δ/3


b ∼ B2

c′ ∼ C
′
(b)

c ∼ C(b)

 ,

where each distribution outputs (c, b, c′) and where b = a|b for b ∼ B2(a, c, c′) is implied in the
first two distributions. The first relation follows from sampling of A/C; the second follows from the
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η−biregularity of B2(a, c′)
/

C(a) for all a ∈ A and c′ ∈ C(a), and the 0−biregularity of A(c′)
/

B(c′)

for all c′ ∈ C; the third follows from the sampling of B2/C. Finally, the last distribution is identical
to the desired distribution on the right of point 1 because of the 0−biregularity of B2/C. We work
similarly for the second point:

a ∼ A
c ∼ C(a)

c′ ∼ C
′
(a)

 ≈δ/2
 c′ ∼ C

′

a ∼ A(c′)
c ∼ C(a)

 ≈η
 c′ ∼ C

′

a ∼ A(c′)
b ∼ B2(a, c′)

 ≡
 c′ ∼ C

′

b ∼ B2(c′)
a ∼ A(b)

 ,

where each distribution outputs (a, b, c′) and where b = a|b (as above, b ∼ B2(a, c, c′) is implicit
in the first two distributions). We have used the sampling of A/C, η−biregularity of B2(a, c′)

/
C(a)

for all a ∈ A and c′ ∈ C(a), and 0−biregularity of A(c′)
/

B2(c′) for all c′ ∈ C.

6 Global Agreement

In this section we prove Lemma 1, restated below in a quantitative form.

Lemma 1 (Restated). Suppose ε ≥ F−1/1000, and fix parameters η = |F|−9/10, δ = 3 · |F|−1/60,
and τ = O

(
δ/ε6 + η/ε11

)
. Suppose {fa}a ⊂ {f : ΓA → ΓA} is such that

PrΦ,(c,a,a′)

[
α̃|c = α̃′|c

]
= 6ε (6)

where the probability is over Φ ∼ Γ, c ∼ C, a, a′ ∼ A(c), and where (α̃, α̃′) =
(
fa(Φ|a), fa′(Φ|a′)

)
.

Then there exists a set G ⊂ A × Γ of size at least |G| ≥ 2ε · |A × Γ| and a function h : C → ΓC

such that: Pr(a,Φ)∼G
c∼C(a)

[
γ̃ ∼ α̃

]
≥ 1− ζ , where γ̃ = h(c,Φ|c) and ζ := ε−2 · (τ + δ) + ε−1 · (η + δ).

Remark. Many different parameters are introduced during the course of our analysis which are
all O

(
|F|−1

)
. We encourage the reader to think of two levels of parameters: level one consists of

ε only; all other parameters are in level 2 and are much smaller. The level two parameters are
each defined to be smaller than εc for some constant c = O(1) which arises during our analysis.
So in the above theorem, for example, in order for τ to be level 2, it must be that δ � ε6 and
η � ε11; additionally, for ζ to be level 2, τ � ε2 is required. We remark that the analysis
prioritizes modularity and succinctness, rather than optimizing constants. As a result, the small
constant 1/1000 is suboptimal.

We begin by introducing the notation and ideas needed to prove Lemma 1 in Section 6.1. The
actual proof appears in Section 6.2, conditioned on two claims which we state in Section 6.1 and
prove in Section 6.3.

6.1 Proof Setup.

Notations. In this section B denotes the set of 2−dimensional planes in Fk, and ΓB is the set of
2−variate polynomials over F of degree at most d, and B = B× ΓB. The sets A,C,Γ are as usual.
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We will take advantage of the sampling properties of the triple A/B/C. When considering two
polynomials whose domains intersect, we write ∼ to indicate that they agree on the intersection.
For example, given α̃, α̃′ ∈ ΓA defined on a, a′ ∈ A(c) we write α̃ ∼ α̃′ if α̃|c = α̃′|c.

We say that (c, γ, γ̃) is good if Pr(a,Φ)

[
α̃ ∼ γ̃] ≥ 4ε, where the probability is over a ∼ A(c)

and Φ ∼ Γ(c). We say c = (c, γ) is good if there exists γ̃ such that (c, γ, γ̃) is. Note that
Prc∼C

[
c good

]
≥ 2ε. To see this, let pc,γ,γ̃ := Pr(a,Φ)

[
α̃ ∼ γ̃]. Then (6) gives

6ε = Ec∼C

[∑
γ̃

pc,γ,γ̃ · Pra′∼A(c)

[
α̃′ ∼ γ̃

]]
≤ Ec∼C

[
max
γ̃

{
pc,γ,γ̃

}]
.

We have used that
∑

γ̃ Pra′∼A(c)

[
α̃′ ∼ γ̃

]
= 1 for all c.

Local Functions. Let h0 : C → ΓC be the randomized function which sends c = (c, γ) to a
random γ̃ such that (c, γ, γ̃) is good if such γ̃ exists, and to an arbitrary γ̃ ∈ ΓC if not. For c ∈ C,
let gc : B(c)→ ΓB be the randomized function where gc(b) is the distribution on ΓB which draws
a ∼ A(b) such that α̃ ∼ h0(c), and outputs β̃ = α̃|b.

Definition 7 (Well-Defined). Let η = |F|−9/10. We say that gc is well-defined if

Pr b∼B(c)

a,a′∼A(b)

[
α̃ ≈ α̃′

∣∣∣α̃ ∼ h0(c) ∼ α̃′
]
≥ 1− η,

where α̃ ≈ α̃′ indicates that α̃|b = α̃′|b.

Previous work [IKW12, BDN17] refers to the good c ∈ C for which gc is well-defined as excellent;
the fact that the excellent points comprise a non-negligible fraction of C is a crucial component of
the proofs in these papers. We require one extra property from our specialized subset of C which
simplifies the remainder of our proof greatly. The following is proved in Section 6.3.

Claim 4. There exists a set C
′ ⊂ C such that the following hold: 1) |C′| ≥ ε3|C|; 2) every c ∈ C

′

is good and such that gc is well-defined; 3)

Pr
c,c′∼C

′

[
Pra∼A(c,c′)

[
h0(c) ∼ α̃ ∼ h0(c′)

]
≥ ε5

]
≥ 1− σ,

where σ := δ/ε3 + δ/ε6 + η/ε11.

Intuitively, the extra property captured by (3) demands that the set of excellent points can be
partitioned into large sets of mutually compatible points; the set C

′
is any member of this partition.

The Global Function. Let h : C→ ΓC be the randomized function where h(c) draws b ∼ B(c),
c′ ∼ C

′
(b) and outputs β̃|c where β̃ = gc′(b). The following is also proved in Section 6.3.

Claim 5. We have Pr(c,b,c′)

[
h(c) ∼ β̃

]
≥ 1 − τ , where τ :=

(
σ + 2ε−5(η + δ) + 2δ

)
, β̃ = gc′(b)

and the probability is over c ∼ C, b ∼ B(c), c′ ∼ C
′
(b).
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6.2 Proof of Lemma 1

Notational Convention. Let h0, h : C → ΓC be the functions defined in Section 6.1. In this
section if we write γ̃ when working with c ∈ C, it should be understood that γ̃ = h(c). We will
always refer to h0(c) explicitly.

Proof. Suppose (ε, {fa}) are such that (6) holds; let C
′ ⊂ C be the set guaranteed by Claim 4. We

define G to be the set of (a,Φ) ∈ A× Γ such that Pr
c∼C

′
(a)

[
α̃ ∼ h0(c)

]
≥ ε. We have,

E(a,Φ)∼A×Γ

[
Pr

c∼C
′
(a)

[
α̃ ∼ h0(c)

]]
≥ E

c∼C
′

[
Pr a∼A(c)

Φ∼Γ(c)

[
α̃ ∼ h0(c)

]]
− δ ≥ 3ε

We have used the sampling of A × Γ
/

C for the first inequality, and that all c ∈ C
′

are good
for the second (and 4ε − δ ≥ 3ε). It follows that |G| ≥ 2ε|A × Γ|. Thus, it remains to prove
that Pr(a,Φ),c

[
γ̃ ∼ α̃

]
≥ 1 − ζ , where the probability is over (a,Φ) ∼ G, c ∼ C(a) and where

γ̃ = h(c,Φ|c), where h is the global function defined in Section 6.1.
So let p := Pr(a,Φ),c

[
γ̃ ∼ α̃

]
be the probability we are trying to bound. We have

p ≥ Pr(a,Φ)
b,c,c′

[
γ̃ ∼ β̃ ∼ α̃

∣∣α̃ ∼ h0(c′)
]
≥ Pr(a,Φ)

b,c,c′

[
γ̃ ∼ β̃

∣∣α̃ ∼ h0(c′)
]
−Pr(a,Φ)

b,c,c′

[
β̃ 6∼ α̃

∣∣α̃ ∼ h0(c′)
]
,

where the probabilities are over (a,Φ) ∼ G, c ∼ C(a), c′ ∼ C
′
(a), b ∼ B(a, c, c′), and where

β̃ = gc′(b), for b = (b,Φ|b). We conclude by bounding both probabilities on the right; denoted
RHS1 and RHS2, respectively. We have

1− RHS1 = Pr(a,Φ)∼G
b,c,c′

[
γ̃ 6∼ β̃

∣∣α̃ ∼ h0(c′)
]
≤

Pr(a,Φ),b,c,c′
[
γ̃ 6∼ β̃

]
min(a,Φ)∈G

{
Pr

c′∼C
′
(a)

[
α̃ ∼ h0(c′)

]}
≤ ε−2

2
· Pra∼A

b,c,c′

[
γ̃ 6∼ β̃

]
< ε−2 ·

(
Pr c∼C

b∼B(c)

c′∼C
′
(b)

[
γ̃ 6∼ β̃

]
+ δ
)
≤ ε−2 · (τ + δ).

The first inequality on the second line used the definition of G and that |G| ≥ 2ε · |A × Γ|; the
second used Claim 3, point 1; and the last used Claim 5. Finally,

RHS2 ≤
ε−1

2
· Pr a∼A

c′∼C
′
(a)

b∼B(c′,a)

[
β̃ 6∼ α̃

∣∣α̃ ∼ h0(c′)
]

≤ ε−1 ·
(

max
c′∈C

′

{
Prb∼B(c′)

a∼A(b)

[
β̃ 6∼ α̃

∣∣α̃ ∼ h0(c′)
]}

+ δ

)
≤ ε−1

(
η + δ

)
.

We have used Claim 3 point 2 and the fact that gc′ is well-defined for all c′ ∈ C
′
. The result

follows.
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6.3 Proving the Claims

Starting Assumption and Notational Conventions. Throughout this section, we assume the
hypotheses of Lemma 1, namely (ε, {fa}) are such that PrΦ,(c,a,a′)

[
α̃ ∼ α̃′

]
= 6ε (i.e., such that (6)

holds). Let h0, h : C → ΓC be the functions defined in Section 6.1. In this section if we write γ̃
when working with c ∈ C, it should be understood that γ̃ = h0(c). We will refer to h(c) explicitly
(note, this is opposite to the convention of Section 6.2). Given c, c′ ∈ C set µc, p(c) and q(c, c′) to:

Pr a∼A(c)
Φ∼Γ(c)

[
γ̃ ∼ α̃

]
; Prb∼B(c)

a∼A(b)

[
β̃ ∼ α̃

∣∣γ̃ ∼ α̃
]
; Pra∼A(c,c′)

[
γ̃ ∼ α̃ ∼ γ̃′

]
.

In Section 6.1 we called c ∈ C such that µc ≥ 4ε good. Also for c ∈ C we defined local functions
gc : B(c) → ΓB and said that gc was well-defined if p(c) ≥ 1 − η, where η = |F|−9/10. In the
remainder of this section we prove three claims; the first two combine to prove Claim 4, the last is
Claim 5.

Claim 6. There exists a set C
′
0 ⊂ C such that the following hold: 1) |C′0| ≥ ε|C|; 2) µc ≥ 4ε for

every c ∈ C
′
0; 3) p(c) ≥ 1− η for every c ∈ C

′
0.

Proof. Let C
′
0 ⊂ C be the set of c ∈ C for which µc ≥ 4ε and p(c) ≥ 1 − η (i.e., c ∈ C

′
0 if c is

good and such that gc is well-defined). We bound |C′0| using three observations. First, as noted in
Section 6.1, Prc∼C

[
µc ≥ 4ε

]
≥ 2ε. Second, for all c ∈ C such that µc ≥ 4ε:

Pr b∼B(c)

a,a′∼A(b)

[
α̃ ∼ γ̃ ∼ α̃′

]
= Eb∼B(c)

[
µc(b)2

]
≥ Prb∼B(c)

[∣∣µc(b)− µc

∣∣ ≤ ε
]
· 9ε2 ≥ ε2,

where µc(b) := Pra∼A(b)

[
α̃ ∼ γ̃

]
is shorthand. We have used the sampling of A(c)

/
B(c) to

(crudely) lower bound Prb∼B(c)

[
|µc(b)− µc| ≤ ε

]
. Finally, by Markov’s inequality and Schwartz-

Zippel:

Prc∼C

[
Pr b∼B(c)

a,a′∼A(b)

[
α̃ 6≈ α̃′ & α̃ ∼ γ̃ ∼ α̃′

]
> ηε2

]
≤ d

ηε2|F|
.

Putting these together gives

|C′0|
|C|

= Prc∼C

[
µc ≥ 4ε & Pr b∼B(c)

a,a′∼A(b)

[
α̃ 6≈ α̃′

∣∣∣α̃ ∼ γ̃ ∼ α̃′
]
≤ η

]
≥ Prc∼C

[
µc ≥ 4ε

]
− Prc∼C

[
Pr(b,a,a′)

[
α̃ 6≈ α̃′ & α̃ ∼ γ̃ ∼ α̃′

]
> ηε2

]
≥ 2ε− d

ηε2|F|
≥ ε.

Claim 4 (Restated). There exists a set C
′ ⊂ C such that the following hold: 1) |C′| ≥ ε3|C|; 2)

µc ≥ 4ε for every c ∈ C
′
; 3) p(c) ≥ 1 − η for every c ∈ C

′
; 4) Pr

c,c′∼C
′
[
q(c, c′) ≥ ε5

]
≥ 1 − σ,

where σ := δ/ε3 + δ/ε6 + η/ε11.
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Proof. By Claim 6 it suffices to construct a large subset of C
′
0 such that the fourth property holds.

For this purpose, we equip C
′
0 with a graph structure: c, c′ ∈ C

′
0 are adjacent if q(c, c′) ≥ ε2. Our

final set C
′
will be the neighborhood, N(c′) :=

{
c ∈ C

′
0 : q(c, c′) ≥ ε2

}
of some c′ ∈ C

′
0. In order

for this to work, c′ should satisfy: 1)
∣∣N(c′)

∣∣ must be large; 2) Prc,c′′∼N(c′)[q(c, c′′) < ε5] must be
small. We show there exists such a c′ ∈ C

′
0. Specifically we prove

1. E
c,c′∼C

′
0

[
q(c, c′)

]
≥ 3ε2; and

2. Pr
c′∼C

′
0

c,c′′∼N(c′)

[
q(c, c′′) ≥ ε5

∣∣∣|N(c′)| > ε3|C|
]
≥ 1− σ.

It follows from the first point that Pr
c′∼C

′
0

[
|N(c′)| ≥ ε3|C|

]
> ε2 (using |C′0| ≥ ε|C|). Thus,

the two points together guarantee the existence of some c′ ∈ C
′
0 such that |N(c′)| ≥ ε3|C| and

Prc,c′′∼N(c′)

[
q(c, c′′) ≥ ε5

]
≥ 1− σ. Setting C

′
= N(c′) for such a c′ ∈ C

′
0 completes the proof. So

it remains to establish the above two bounds.
For the first, we have

E
c,c′∼C

′
0

[
q(c, c′)

]
≥ Ea∼A

[
Pr

c∼C
′
0(a)

[
γ̃ ∼ α̃

]2]− δ ≥ Ea∼A

[
Pr

c∼C
′
0(a)

[
γ̃ ∼ α̃

]]2

− δ

≥ E
c∼C

′
0

[
µc

]2 − 3δ ≥ 16ε2 − 3δ ≥ 3ε2.

We have used the sampling of A
/

C
2
, Jensen’s inequality, the sampling of A

/
C, and the fact that

µc ≥ 4ε for all c ∈ C
′
0. Establishing the second bound is more involved. Towards this end, we

define three quantities, shorthanded as val1, val2, val3; each is a function of (c, c′, c′′):

• val1 :=
∣∣∣Pra′∼A(c,c′,c′′)

[
γ̃ ∼ α̃′ ∼ γ̃′′

]
− q(c, c′′)

∣∣∣;
• val2 :=

∣∣∣Pra′∼A(c,c′,c′′)[γ̃
′ ∼ α̃′]− µc′

∣∣∣;
• val3 := Pr b∼B(c,c′)

a∼A(b)

a′∼A(b,c′′)

[
α̃ 6≈ α̃′

∣∣α̃ ∼ γ̃′ ∼ α̃′
]

+ Pr
b
′′∼B(c′,c′′)

a′′∼A(b
′′

)

a′∼A(b
′′
,c)

[
α̃′ 6≈ α̃′′

∣∣α̃′ ∼ γ̃′ ∼ α̃′′
]
.

We show that each vali is small with very high probability over (c, c′, c′′) drawn as follows: c′ ∼ C
′
0

such that |N(c′)| ≥ ε3|C|, c, c′′ ∼ N(c′). These bounds will be used in the computation which
follows. We have

Pr(c,c′,c′′)

[
val1 > δ

]
≤ ε−3 · max

c,c′′∈C

{
Prc′∼C

[∣∣∣Ea′∼A(c,c′,c′′)

[
f1(a′)

]
− Ea′∼A(c,c′′)

[
f1(a′)

]∣∣∣ > δ

]}
,

where f1(a′) = 1 if γ̃ ∼ α̃′ ∼ γ̃′′, 0 otherwise. Thus Pr(c,c′,c′′)

[
val1 > δ

]
≤ δ/ε3, by the sampling

of A(c, c′′)/C for all c, c′′ ∈ C. Likewise, Pr(c,c′,c′′)

[
val2 > δ

]
≤ δ/ε6 follows from the same

reasoning using the sampling of A(c′)/C
2

and the function f2(a′) = 1 iff γ̃′ ∼ α̃′. Finally,

Pr(c,c′,c′′)

[
val3 > 2ε5

]
≤ ε−6 ·max

c′∈C
′
0

{
Prc,c′′∼C

[
val3 > 2ε5

]}
≤ ε−11

2
·max

c′∈C
′
0

{
Ec,c′′∼C

[
val3
]}
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=
ε−11

2
·max

c′∈C
′
0

{
2 ·
(
1− p(c′)

)}
≤ η/ε11.

Now we show how these values figure into deriving the bound we need. The key point is that they
let us bound q(c, c′′) in terms of q(c, c′) · q(c′, c′′) · µc′ , which is large when c, c′′ ∈ N(c′) and
c′ ∈ C

′
0. We have:

q(c, c′′) = Pra′∼A(c,c′′)

[
γ̃ ∼ α̃′ ∼ γ̃′′

]
≥ Pra′∼A(c,c′,c′′)

[
γ̃ ∼ α̃′ ∼ γ̃′′

]
− val1

≥ Pra′∼A(c,c′,c′′)

a∼A(b)

a′′∼A(b
′′

)

[
γ̃ ∼ α̃ ∼ γ̃′ ∼ α̃′′ ∼ γ̃′′ & α̃ ≈ α̃′ ≈ α̃′′ & γ̃′ ∼ α̃′

]
− val1

≥ Pr a∼A(c,c′)

a′∼A(c,c′,c′′)

a′′∼A(c′,c′′)

[
γ̃ ∼ α̃ ∼ γ̃′ & γ̃′ ∼ α̃′ & γ̃′ ∼ α̃′′ ∼ γ̃′′

]
− val1 − val3

≥ q(c, c′) · q(c′, c′′) · µc′ − val1 − val2 − val3 ≥ 4ε5 − val1 − val2 − val3.

In the probability subscript in the second line, b and b
′′

are the restrictions of a′ to the lines spanned
by (c, c′) and (c′, c′′), respectively. The result follows:

Pr
c′∼C

′
0

c,c′′∼N(c′)

[
q(c, c′′) ≥ ε5

∣∣∣|N(c′)| > ε3|C|
]
≥ Pr(c,c′,c′′)

[
val1 + val2 + val3 ≤ 3ε5

]
≥ 1− σ.

Claim 5 (Restated). We have

Pr c∼C
b1∼B(c)

c′1∼C
′
(b1)

[
h(c) ∼ β̃1

]
≥ 1− τ,

where β̃ = gc′(b), and where τ :=
(
σ + 2ε−5(η + δ) + 2δ

)
. Recall h(c) is the distribution on ΓC

which draws b
′
2 ∼ B(c), c′2 ∼ C

′
(b2) and outputs gc′2

(b2)|c.

Proof. We show Pr(c,c′1,c
′
2,b1,b2)

[
β̃1 ∼ β̃2

]
≥ 1−

(
σ + 2ε−5(η + δ)

)
, where the probability is over

c ∼ C, c′1, c
′
2 ∼ C

′
, b1 ∼ B(c, c′1), b2 ∼ B(c, c′2) and where β̃1 ∼ β̃2 means that gc′1

(b1) and gc′2
(b2)

agree at c. The result then follows by the sampling of B(c)/C for all c ∈ C. We have

Pr(c,c′1,c
′
2,b1,b2)

[
β̃1 ∼ β̃2

]
≥ E

c′1,c
′
2∼C

′

[
Pr(c,b1,b2)

[
∃ a ∈ A(b1, b2) st γ̃′1 ∼ α̃ ∼ γ̃′2 & β̃1 ∼ α̃ ∼ β̃2

]]
≥ E

c′1,c
′
2∼C

′

[
Pr (c,b1,b2)

a∼A(b1,b2)

[
β̃1 ∼ α̃ ∼ β̃2

∣∣∣γ̃′1 ∼ α̃ ∼ γ̃′2

]]
.

Let val := Pr(c,b1,b2,a)

[
β̃1 ∼ α̃ ∼ β̃2

∣∣γ̃′1 ∼ α ∼ γ̃′2
]

be shorthand for the quantity inside the
expectation. We have

val ≥ 1−
[
Pr(c,b1,b2,a)

[
β̃1 6∼ α̃

∣∣∣γ̃′1 ∼ α̃ ∼ γ̃′2

]
+ Pr(c,b1,b2,a)

[
β̃2 6∼ α̃

∣∣∣γ̃′1 ∼ α̃ ∼ γ̃′2

]]
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≥ 1− 1

q(c′1, c
′
2)
·
[
Pr b1∼B(c′1)

a∼A(b1,c′2)

[
β̃1 6∼ α̃

∣∣∣γ̃′1 ∼ α̃
]

+ Pr b2∼B(c′2)

a∼A(b2,c′1)

[
β̃2 6∼ α̃

∣∣∣γ̃′2 ∼ α̃
]]

By definition of C
′
, we have Pr

c′1,c
′
2∼C

′
[
q(c′1, c

′
2) < ε5

]
≤ σ and also

E
c′1,c

′
2∼C

′

[
Pr b1∼B(c′1)

a∼A(b1,c′2)

[
β̃1 6∼ α̃

∣∣γ̃′1 ∼ α̃
]]
≤ max

c′1∈C
′

{
Prb1∼B(c′1)

a∼A(b1)

[
β̃1 6∼ α̃

∣∣γ̃′1 ∼ α̃
]

+ δ
}

= max
c′1∈C

′

{
1− p(c′1) + δ

}
≤ η + δ.

We have used the sampling of A(b)/C for all b ∈ B, and that p(c′1) ≥ 1 − η since c′1 ∈ C
′
. The

result follows:

E
c′1,c

′
2∼C

′
[
val
]
≥
(
1− σ

)
·
(
1− 2ε−5(η + δ)

)
≥ 1−

(
σ + 2ε−5(η + δ)

)
.

7 Affine Agreement

In this section we prove Lemma 2, restated in an expanded form below. We begin here by reducing
Lemma 2 to Claims 7, 8 and 9, which we will prove in Section 7.2 after gathering some background
on linearity/low-degree tests in Section 7.1. Recall that a function T : Γ→ Γ is affine if there exists
u ∈ F and Φ0 ∈ Γ such that T(Φ) = u · Φ + Φ0.

Lemma 2 (Restated). Suppose {fa}a ⊂ {f : ΓA → ΓA}, h : ΓC → ΓC and G ⊂ A × Γ are such
that |G| ≥ 2ε · |A× Γ|, and

Pr(a,Φ)∼G
c∼C(a)

[
γ̃ ∼ α̃

]
≥ 1− ζ, (7)

where (ε, ζ) are as in Lemma 1. Then there exists an affine map T : Γ→ Γ such that

Pr(a,Φ)∼G

[
α̃ = T(Φ)

∣∣
a

]
≥ 1/2.

Claim 7. Let
(
ε, ζ, {fa}, h,G

)
be as in the hypothesis of Lemma 2, so that (7) holds. Then there

exist affine maps {Tc}c∈C with Tc : ΓC → ΓC such that Prc∼C

[
γ̃ = Tc(γ)

]
≥ 1− ξ7 holds, where

ξ2
7 := 32(d+ 1)(ζ + δ).

Claim 8. Let
(
ε, ζ, {fa}, h,G

)
be as in the hypothesis of Lemma 2, so that (7) holds, and let {Tc}

be the family of affine maps promised by Claim 7. For each c ∈ C, let uc, vc ∈ F be the scalars
defining Tc, so Tc(γ) := uc · γ + vc. Then there exists u ∈ F such that Prc∼C

[
uc = u

]
≥ 1 − ξ8,

where ξ8 := (d+ 2)(ζ + δ) + 4ξ7 + 2/|F|.

Claim 9. Let
(
ε, ζ, {fa}, h,G

)
be as in the hypothesis of Lemma 2, so that (7) holds, and let {Tc}

be the family of affine maps promised by Claim 7, with Tc(γ) := uc · γ + vc, as in Claim 8. Then
there exists Φ0 ∈ Γ such that Prc∼C

[
vc = Φ0(c)

]
≥ 1− ξ9, where ξ2

9 := 8(d+ 3)2(ζ + ξ7 + ξ8).
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Proof of Lemma 2 Assuming Claims 7, 8 and 9. Let
(
ε, ζ, {fa}, h,G

)
be as in the hypothesis of

Lemma 2, so that (7) holds, and let {Tc} be the family of affine maps promised by Claim 7.
Define the affine map T : Γ → Γ by T(Φ) := u · Φ + Φ0, where u ∈ F and Φ0 ∈ Γ are the
quantities guaranteed by Claims 8 and 9, respectively. We have

3

4
≤ Pr(a,Φ)∼G

c∼C(a)

[
γ̃ ∼ α̃ & γ̃ = Tc(γ) & uc = u & vc = Φ0(c)

]
≤ Pr(a,Φ)∼G

c∼C(a)

[
α̃|c = T(Φ)|c

]
.

This follows from (7), Claims 7, 8, 9 and the sampling of A×Γ
/

C. We have used the loose bound
1/4 ≤ (ζ + ξ7 + ξ8 + ξ9 + δ) where ζ > 0 (resp. ξ7, ξ8, ξ9) are the quantities from the statement
of Lemma 2 (resp. Claims 7, 8, and 9), and δ > 0 is the sampling parameter. It follows that
Pr(a,Φ)∼G

[
α̃ = T(Φ)|a

]
≥ 1/2, since whenever α̃ and T(Φ)|a agree on half of the c ∈ C(a), they

must be equal as they are both low degree. The lemma follows.

7.1 Linearity Testing Background

In this section we state three facts which we use in the next section to prove the claims. Throughout
this section we use notations consistent with the rest of the paper. Additionally, in this section we
use B as the set of lines in Fk and ΓB is the set of univariate polynomials over F of degree at most
d. Recall T : ΓC → ΓC is affine if there exist coefficients u, v ∈ F such that T(x) = u · x + v for
all x ∈ ΓC. The first fact is standard and can be proved using linear algebraic methods.

Fact 4 (Linear Dependence of Polynomial Evaluations). Suppose |F| ≥ d + 2. For any b ∈ B
and distinct c0, . . . cd+1 ∈ C(b), there exist non-zero coefficients r0, r1, . . . , rd+1 ∈ F such that for
all β ∈ ΓB,

d+1∑
i=0

ri · β|ci = 0.

The second and third facts are proved in [RS96]. The second fact gives a sufficient condition for a
function f : Fk → F being close to a multivariate low-degree polynomial.

Fact 5 (Robust Characterization of Low-Degree Functions). Fix κ > 0 such that κ ≤ 1
2(d+2)2

.
If f : C→ F is such that

Prb∼B

[
∃ β ∈ ΓB st Prc∼C(b)

[
f(c) = β|c

]
≥ 1− κ

]
≥ 1− κ,

then there exists Φ ∈ Γ such that Prc∼C

[
f(c) = Φ(c)

]
≥ 1− 2(d+ 3)κ.

Fact 6 (Testing Affine Maps over Large Fields in High Soundness Regime). Fix κ > 0 such
that κ ≤ 1

18
. If f : ΓC → ΓC is such that

Prx,y,z∼ΓC

[
f(x) + f(y + z) = f(x+ y) + f(z)

]
≥ 1− κ,

then there exists an affine T : ΓC → ΓC such that Prx∼ΓC

[
f(x) = T(x)

]
≥ 1− 2κ.
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7.2 Proving the Claims

In this section we restate and prove the claims used to prove Lemma 2.

Notation. Throughout this section, we assume {fa}a ⊂ {f : ΓA → ΓA}, h : ΓC → ΓC and
G ⊂ A×Γ with |G| ≥ 2ε · |A×Γ| are such that (7) holds. Namely, we assume that the hypotheses
of Lemma 2. We also use γ̃ = h(c) throughout.

Claim 7 (Restated). There exist affine maps {Tc}c∈C such that Prc∼C

[
γ̃ = Tc(γ)

]
≥ 1− ξ7.

Proof. Consider the following distribution, D on C × Γ3
C. Ultimately, the output of D is just

uniform, however the internal choices of D help in our analysis. D works as follows:

1. draw b ∼ B and distinct c0, c1, . . . , cd+1 ∼ C(b); let r0, . . . , rd+1 ∈ F be the coefficients
guaranteed by Fact 4;

2. draw γ0
0 , γ

1
0 , . . . , γ

0
d , γ

1
d ∼ ΓC; let ci,k = (ck, γ

i
k), and γ̃ik = h(ci,k) for i = 0, 1 and

k = 0, . . . , d;

3. for i, j ∈ {0, 1}, let βi,j ∈ ΓB be the unique polynomial that agrees with γi0 at c0 and γjk at
ck for all k = 1, . . . , d; let bi,j = (b, βi,j);

4. for i, j ∈ {0, 1}, draw (ai,j,Φ
i,j) ∼ G(bi,j) and set α̃i,j = fai,j(Φi,j|ai,j) and β̃i,j = α̃i,j|b;

5. let (γ̃, γ̃′, γ̃′′, γ̃′′′) =
(
h(cd+1, γ), h(cd+1, γ

′), h(cd+1, γ
′′), h(cd+1, γ

′′′)
)
, where

(γ, γ′, γ′′, γ′′′) =
(
β0,0|cd+1

, β1,0|cd+1
, β0,1|cd+1

, β1,1|cd+1

)
;

here β|c denotes the evaluation of the polynomial β at the point c;

6. output (c, x, y, z) = (cd+1, γ, γ
′ − γ, γ′′).

Note that the output ofD is uniform on C×Γ3
C. Indeed, cd+1 drawn in Step 1 is uniform since B

/
C

is biregular. Moreover, given any fixed γ1
1 , . . . , γ

1
k , γ′′ varies uniformly as γ0

0 does. Then, given
any fixing of (γ0

0 , γ
1
1 , . . . , γ

1
k), γ varies uniformly as (γ0

1 , . . . , γ
0
k) does. Finally, given any fixing of

γ0
0 and (γ0

1 , γ
1
1 , . . . , γ

0
k, γ

1
k), γ′ varies uniformly as γ1

0 does.
Now, let E be the event: γ̃i0 ∼ β̃i,j ∼ γ̃jk ∀ (i, j, k) ∈ {0, 1}2 × {1, . . . , d}, where the γ̃i0, β̃i,j ,

and γ̃jk are the internal values drawn during steps 2 and 4. By the assumptions of Lemma 2 and the
sampling of A×Γ

/
B, we have Prb,c,(a,Φ)

[
γ̃ ∼ α̃

]
≥ 1−ζ−δ, where the probability is over b ∼ B,

c ∼ C(b), (a,Φ) ∼ G(b). It follows from the union bound that PrD
[
E
]
≥ 1 − ξ2

7/8 (substituting
ξ2

7 = 32(d + 1)(ζ + δ)), since each (bi,j, ci,0, ai,j,Φ
i,j) and (bi,j, cj,k, ai,j,Φ

i,j) are, individually,
drawn in this way for each (i, j, k) ∈ {0, 1}2 × {0, . . . , d}.

We complete the proof by showing that whenever the sampling of (c, x, y, z) ∼ D is such that
E occurs, it holds that h(c, x) + h(c, y + z) = h(c, x + y) + h(c, z). Together with Fact 6, this
implies that there is a family of affine maps {Tc}c∈C such that

Prc∼C

[
Prγ∼ΓC

[
γ̃ = Tc(γ)

]
≥ 1− ξ7

2

]
≥ 1− ξ7

2
,
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which implies the claim.
So it suffices to show that

γ − γ′ = γ′′ − γ′′′ and γ̃ − γ̃′ = γ̃′′ − γ̃′′′

both hold whenever E occurs (the first equality always holds, the second holds whenever E occurs).
This follows from Fact 4. The first equality holds since the βi,j are low-degree and for all (i, j, k),
γi0 and γjk are the evaluations of βi,j at c0 and ck, respectively. Thus Fact 4 gives

r0 · γ0
0 +

(∑d
k=1 rk · γ0

k

)
+ rd+1 · γ = 0; r0 · γ1

0 +

(∑d
k=1 rk · γ0

k

)
+ rd+1 · γ′ = 0;

r0 · γ0
0 +

(∑d
k=1 rk · γ1

k

)
+ rd+1 · γ′′ = 0; r0 · γ1

0 +

(∑d
k=1 rk · γ1

k

)
+ rd+1 · γ′′′ = 0,

which simplifies to γ − γ′ = γ′′ − γ′′′ since rd+1 6= 0. Likewise, for the second equality, the β̃i,j

are low degree and when E occurs, the γ̃i0 and γ̃jk are the evaluations of β̃i,j at c0 and ck. As above,
this implies γ̃ − γ̃′ = γ̃′′ − γ̃′′′.

Claim 8 (Restated). Let {Tc} be the family of affine maps promised by Claim 7; for each c ∈ C,
let Tc(γ) := uc · γ + vc for uc, vc ∈ F. Then there exists u ∈ F such that Prc∼C

[
uc = u

]
≥ 1− ξ8,

where ξ8 = (d+ 2)(ζ + δ) + 4ξ7 + 2/|F|.

Proof. We prove that Prc,c′∼C

[
uc = uc′

]
≥ 1− ξ8 which suffices since

Prc,c′∼C

[
uc = uc′

]
=
∑
u∈F

p2
u ≤ max

{
pu : u ∈ F

}
,

where pu := Prc∼C

[
uc = u

]
is shorthand. As in the previous proof, we describe a distribution D′

on C2:

1. draw b ∼ B and distinct c0, c1, . . . , cd+1 ∼ C(b); let r0, . . . , rd+1 ∈ F be the coefficients
guaranteed by Fact 4; let u0, ud+1 ∈ F denote the linear terms of Tc0 and Tcd+1

, respectively;

2. draw γ0
0 , γ

1
0 , γk ∼ ΓC for k = 1, . . . , d; let ci,0 = (c0, γ

i
0) for i = 0, 1 and ck = (ck, γk) for

k = 1, . . . , d; let γ̃i0 = h(ci,0) and γ̃k = h(ck);

3. for i ∈ {0, 1}, let βi ∈ ΓB be the unique polynomial that agrees with γi0 at c0 and γk at ck
for all k = 1, . . . , d; let bi = (b, βi);

4. for i ∈ {0, 1}, draw (ai,Φ
i) ∼ G(bi) and set α̃i = fai(Φi|ai) and β̃i = α̃i|b;

5. let (γ̃, γ̃′) =
(
h(cd+1, γ), h(cd+1, γ

′)
)
, where (γ, γ′) =

(
β0|cd+1

, β1|cd+1

)
;

6. output (c, c′) = (c0, cd+1).

Note thatD′ outputs two random points on a random line, which is within statistical distance 2/|F|
of uniform on C2. Let E′ be the event:
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1. γ̃i0 ∼ β̃i ∼ γ̃k ∀ (i, k) ∈ {0, 1} × {1, . . . , d}; and

2. (γ̃0
0 , γ̃

1
0 , γ̃, γ̃

′) =
(
Tc0(γ

0
0),Tc0(γ

1
0),Tcd+1

(γ),Tcd+1
(γ′)
)

The first condition occurs with probability at least 1− (d + 2)(ζ + δ); as in the proof of Claim 7,
this follows from (7), the sampling of A× Γ

/
B, and a union bound. The second condition occurs

with probability at least 1− 4ξ7, by Claim 7. Upon substituting ξ8 = (d+ 2)(ζ + δ) + 4ξ7 + 2/|F|,
we get Pr(c,c′)∼C2

[
E′
]
≥ PrD′

[
E′
]
− 2/|F| ≥ 1− ξ8. As in the proof of Claim 7, Fact 4 gives

r0 · (γ0
0 − γ1

0) + rd+1 · (γ − γ′) = 0 = r0 · (γ̃0
0 − γ̃1

0) + rd+1 · (γ̃ − γ̃′).

Substituting (γ̃0
0−γ̃1

0) = u0·(γ0
0−γ1

0) and (γ̃−γ̃′) = ud+1·(γ−γ′) gives rd+1(ud+1−u0)(γ−γ′) = 0
which means ud+1 = u0 since rd+1 6= 0 and γ 6= γ′. Thus, Prc,c′∼C

[
uc = uc′

]
≥ 1− ξ8.

Claim 9 (Restated). Let {Tc} be the family of affine maps promised by Claim 7. Then there
exists Φ0 ∈ Γ with Prc∼C

[
Tc(0) = Φ0(c)

]
≥ 1− ξ9, where ξ2

9 = 8(d+ 3)2(ζ + ξ7 + ξ8).

Proof. Let v : C→ F as a function mapping c 7→ vc = Tc(0). Let ξ := ξ9
2(d+3)

. We will show that

Prb∼B

[
∃ β̃′ ∈ ΓB st Prc∼C(b)

[
vc = β̃′|c

]
≥ 1− ξ

]
≥ 1− ξ. (8)

The claim then follows from Fact 5. Towards establishing (8), note that

Pr(a,Φ)∼G
b∼B(a)
c∼C(b)

[
vc = β̃|c − u · β|c

]
≥ 1− (ζ + ξ7 + ξ8) ≥ 1− ξ(ξ − δ),

where β = Φ|b and β̃ = α̃|b; we have used ξ(ξ−δ) ≥ ξ2/2 = ζ+ξ7+ξ8. This follows immediately
from (7) and Claims 7 and 8. By an averaging argument,

Pr(a,Φ)∼G
b∼B(a)

[
Prc∼C(b)

[
vc = β̃′|c

]
≥ 1− ξ

]
≥ 1− ξ + δ,

where β̃′ = β̃ − u · β. The bound (8) now follows from the sampling of A× Γ
/

B.

8 A Locally Testable, Non-Malleable Code

In this section, we give a construction of a locally testable non-malleable code against coordinate
wise tampering. To build our code, we take the LTNM reduction, (ELTNM,DLTNM,TLTNM), from
coordinate-wise tampering to affine tampering, from section 3.4 and compose it with a new non-
malleable code, (Eaff ,Daff), against affine tampering.

8.1 A Simple Non-malleable Code against Affine Tampering

We begin with a new constant rate, non-malleable code against affine tampering. This result is not
new, several prior works [ADL14, CZ14, Li16, CL17] give such codes, however, our construction
is considerably simpler than those prior.
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Notations. Let F be a finite field and K/F a degree 3 extension, so K = F[x]
/(
p(x)

)
for an

irreducible cubic polynomial p(x) = x3 − e2x
2 − e1x− e0. Thus K is a 3-dimensional F−vector

space with basis {1, σ, σ2}, where σ ∈ K is a root of p(x). The ‘multiplication by σ’ map F3 → F3

is linear, specified over this basis by the matrix

Σ =

 0 0 e0

1 0 e1

0 1 e2

 ∈ F3×3.

Our code makes use of an ε−high entropy encoding, (E,D), with codeword space F, such that for
all m, c∗, Prc∼E(m)

[
c = c∗

]
≤ ε. Such codes can be trivilally constructed by appending a message

with a random string of length log
(
1/ε
)
.

Construction. Let (E,D) be an ε−high entropy code with message space M and codeword
space F, and let m ∈M.

• Eaff(m): Draw r ∼ F;w ∼ E(m) and output w + r · σ + wr · σ2 ∈ K.

• Daff(c): Parse c = c0 + c1 · σ + c2 · σ2; if c0 · c1 = c2, output m = D(c0); if not, output ⊥.

Theorem 4. Fix ε > 0, and let (E,D) be an ε−high entropy code with message space M and
codeword space F. Then (Eaff ,Daff) is a (2ε+2/|F|)−non-malleable code against affine tampering
functions.

Proof. Fix an affine map f given by f(x) = sx+t where s, t, x ∈ K and fix any messagem ∈M.
Parse s = s0 +s1 ·σ+s2 ·σ2 and t = t0 + t1 ·σ+ t2 ·σ2. To prove the theorem, we exhibbit a trivial
tampering function gf (i.e., either constant or the identity) such that the tampering distribution(
Daff ◦ f ◦ Eaff

)
(m) outputs gf (m) with probability at least 1 − 2ε − 2/|F|. The trivial function

gf is f if f is either the identity or a constant function mapping to a valid codeword, and is the
constant ⊥ function otherwise. Specifically, if (s, t) = (1, 0), gf is the identity; if s = 0 and
t0 · t1 = t2, gf is the constant function mapping everything to t; otherwise gf is the constant ⊥
function. The key point, is that for all m ∈ M, the distribution f

(
Eaff(m)

)
draws w ∼ E(m),

r ∼ F and outputs

S

 wr
wr

+

t0t1
t2

 =

 t0 + s0w + e0s2r + (e0s1 + e0e2s2)wr
t1 + s1w + (s0 + e1s2)r + (e1s1 + s2e0 + s2e1e2)wr
t2 + s2w + (s1 + e2s2)r + (s0 + e2s1 + s2e

2
2 + s2e1)wr

 =:

C0(w, r)
C1(w, r)
C2(w, r)

 ,
where S ∈ F3×3 is the ‘multiplication by s’ matrix: S = s0 · 11 + s1 ·Σ + s2 ·Σ2. In the above, we
have defined bilinear (i.e., of the form a+ bx+ cy + dxy) polynomials C0,C1,C2 ∈ F[x, y]. Note
that if C0(x, y)·C1(x, y) 6≡ C2(x, y) as polynomials, then C0(w, r)·C1(w, r) = C2(w, r) holds with
probability at most 2ε+ 2/|F|, in which case

(
Daff ◦ f ◦ Eaff

)
(m) = ⊥ with high probability. This

follows immediately from Schwartz-Zippel and the low entropy property of (E,D). Therefore, in
order to prove the theorem, it suffices to show that if C0(x, y) · C1(x, y) ≡ C2(x, y) holds, then
either s = 0 or (s, t) = (1, 0). We assume C0(x, y) · C1(x, y) ≡ C2(x, y) holds, and we prove the
following three items:
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1. either s1 = 0 or s2 = 0;

2. s1 = 0⇔ s2 = 0;

3. if s1 = s2 = 0 then either s0 = 0 or s0 = 1 and t0 = t1 = t2 = 0.

The third point is easiest: if C0(x, y) · C1(x, y) ≡ C2(x, y) and s1 = s2 = 0 then plugging gives

(t0 + s0x) · (t1 + s0y) = t2 + s0xy,

from which it follows that either s0 = 0 or s0 = 1 and ti = 0 for all i = 0, 1, 2. To prove the
first point, note that if C0(x, y) · C1(x, y) ≡ C2(x, y), then s0 · s1 = 0 (since the x2 coefficient in
C2 is zero). If s1 = 0 we are done; if s0 = 0 then e0e1s

2
2 = 0 (since y2 coefficient in C2 is zero),

which implies e1s2 = 0 since e0 6= 0 (else p(x) is reducible). If s2 = 0 we are done; if e1 = 0 then
e2

0s
2
2 = 0 (since xy2 coefficient in C2 is zero). Again, e0 6= 0 so s2 = 0 so the first point follows.
Finally, for the second point, assume s1 = 0. Then s0s2 · (e0 + e1e2) = 0 since the coefficient

of x2y = 0 in C2. Note e0 6= −e1e2 since otherwise p(x) is reducible: p(x) = (x − e2)(x2 − e1).
However, if s0 = 0 then, as shown in the proof of the first point, s2 = 0; therefore s1 = 0 implies
s2 = 0. Conversely, if s2 = 0 then e0s0s1 = 0 (coefficient of xy2 in C2 is zero), so s0s1 = 0. If
s0 = 0 then e0s

2
1 = 0 (coefficient of x2y in C2 is zero). Thus s2 = 0 implies s1 = 0, and we are

done.

Remark. In our LTNM code in the next section, we will use (Eaff ,Daff) to encode a random
w ∈ F and so the high entropy encoding is not necessary. The precise claim we use is stated
below. The proof is the same as above since if C0(x, y) · C1(x, y) 6≡ C2(x, y) as polynomials, then
C0(w, r) · C1(w, r) = C2(w, r) holds with probability at most 4/|F| over w, r ∼ F.

Claim 10. Let f : K → K be affine of the form f(x) = sx + t for s, t ∈ K such that s 6= 0 and
(s, t) 6= (1, 0). Then Prw,r∼F

[
Daff

(
f(w + r · σ + wr · σ2)

)
6= ⊥

]
≤ 4/|F|.

8.2 A LTNM Code via Composition

Composition Overview. The local test of our main construction from Section 3.4 passes when-
ever codewords are tampered by a coordinate-wise affine function. Thus, in order to use our main
construction to build a fully LTNM code, we must modify the test in such a way so that it fails
whenever a non-trivial affine tampering function is used. We do this in two steps. First, we mod-
ify the local tester so that it locally decodes a specified polynomial evaluation. Second, the tester
checks that the evaluation recovered is a valid codeword of (Eaff ,Daff), if not it outputs ⊥. Essen-
tially, the reason this works is that the local decoder will output⊥ unless the codeword is tampered
with an affine function, in which case the evaluation recovered is an affine function of the original
evaluation. If the original evaluation is a random valid codeword of (Eaff ,Daff) then by Claim 10,
the recovered evaluation is a valid codeword only if the affine tampering function is trivial.
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Notations. As in the previous section, let K/F be a degree 3 extension with F−basis {1, σ, σ2}.
Let k ≥ 5 and d ≥ 2. As in the rest of the paper, let A be the set of 3−planes in Fk and C = Fk. In
this section, we use B and Ā to denote the set of lines and 4−planes respectively(note, the second
usage is different from rest of the paper where we used Ā to denote A×ΓA). Let p = (1, 0, . . . , 0) ∈
Fk.

Construction. Let Eaff() denote the procedure which draws w, r ∼ F, and outputs the value
w + r · σ +wr · σ2 ∈ K; let Daff be the decoding algorithm from the previous section. Let m ∈ K
be a message.

• Enc(m): Draw v ∼ Eaff(); and Φ ∼ Γ such that Φ(0) = m and Φ(p) = v; output
{

(a,Φa)
}

a∈A
.

• Dec
(
{(a, α)}a∈A

)
: Find Φ ∈ Γ such that (a, α) = (a,Φ|a) for all a ∈ A. If such Φ exists, and if

Daff

(
Φ(p)

)
6= ⊥, output m = Φ(0), otherwise output ⊥.

• Test
(
{(a, α)}a∈A

)
: Draw b ∼ B(p), c1, c2, c3 ∼ C(b), c, c′ ∼ C, a1 ∼ A(c, c1), a2 ∼ A(c, c′, c2),

a3 ∼ A(c′, c3). Read (a1, α1), (a2, α2), (a3, α3) and do the following.

1) Check that α1|c = α2|c and α2|c′ = α3|c′; if not output 0; if so use interpolation to
recover β ∈ ΓB, the unique degree 2 polynomial such that β|ci = αi|ci for i = 1, 2, 3;
let v = β|p.

2) If Daff(v) 6= ⊥, output 1; otherwise output 0.

Theorem 5. Let `, ε as in theorem 1. Then the code (Enc,Dec,Test) above is a (`, ε′)−locally
testable, non-malleable code against F , the family of coordinate-wise tampering functions where
ε′ = O(ε1/2).

Proof. Fix a tampering function f = {fa}a ∈ F . We prove that (Enc,Dec,Test) is LTNMC using
the sufficient conditions of Claim 1. The first condition is trivial. For all distinct {ha}a, {h′a}a ∈ H,
PrΦ,a

[
ha(Φ|a) = h′a(Φ|a)

]
= O

(
|F|−1

)
, as before. Therefore, it remains to exhibbit a list Lf ⊂ H

of size at most |Lf | ≤ ` such that val ≤ O(ε1/2) where

val := PrΦ,rand

[
Test passes & (α̃1, α̃2, α̃3) /∈

{(
ha1(Φ|a1), ha2(Φ|a2), ha3(Φ|a3)

)
: {ha}a ∈ Lf

}]
,

where α̃i = fai(Φ|ai). In the course of the proof of Theorem 1 from Section 4, a similar list L′f ⊂ G
of size at most |L′f | ≤ ` was constructed such that

PrΦ,(c,a1,a2)

[
α̃1|c = α̃2|c & (α̃1, α̃2) /∈

{(
ga1(Φ|a1), ga2(Φ|a2)

)
: {ga}a ∈ L′f

}]
≤ ε,

where this probability is over Φ ∼ Γ and c ∼ C, a1, a2 ∼ A(c). Our list Lf ⊂ H is the set of trivial
(i.e., constant or affine) {ga}a ∈ L′f . The quantity val can now be bounded

val ≤ PrΦ,rand

[
E1 ∨ E′1 ∨ E2 ∨ E3

]
for the following events:
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E1: α̃1|c = α̃2|c & (α̃1, α̃2) /∈
{(

ga1(Φ|a1), ga2(Φ|a2)
)

: {ga}a ∈ L′f
}

;

E′1: α̃2|c′ = α̃3|c′ & (α̃2, α̃3) /∈
{(

g′a2(Φ|a2), g′a3(Φ|a3)
)

: {g′a}a ∈ L′f
}

;

E2: the {ga}a, {g′a}a ∈ G which agree with f from E1 and E′1 are distinct and such that
ga2(Φ|a2) = g′a2(Φ|a2);

E3: the same {ga}a ∈ G results from E1 and E′1; this {ga}a ∈ G is non-trivial, but the affine
check passes: Daff(ṽ) 6= ⊥.

The marginal distribution on a2 from rand is uniform, so PrΦ,rand

[
E2

]
= O

(
|F|−1

)
. By Claim 10,

PrΦ,rand

[
E3

]
≤ 4/|F|. We prove PrΦ,rand

[
E1

]
≤ ε1/2 + O

(
|F|−1

)
. The same holds for E′1, and

the result follows. Towards bounding PrΦ,rand

[
E1

]
, note that drawing Φ ∼ Γ uniformly, rather

than uniformly subject to Φ(0) = m and Φ(p) = v changes the probability by at most O
(
|F|−1

)
.

Therefore, in the calculation below, we assume Φ ∼ Γ. We have

PrΦ,rand

[
E1

]2
= EΦ,c∼C,a2∼A(c)

[
Pra1∼rand(c,a2)

[
E1

]]2

≤ EΦ,c,a2

[
Pra1∼rand(c,a2)

[
E1

]2]
≤ EΦ,c,a2

[
Pra1,a3∼rand(c,a2)

[
α̃1|c = α̃2|c = α̃3|c & (α̃1, α̃2, α̃3) /∈ L′f

]]
+O(|F|−1),

where “(α̃1, α̃2, α̃3) /∈ L′f” is shorthand for

(α̃1, α̃2, α̃3) /∈
{(

ga1(Φ|a1), ga2(Φ|a2), ga3(Φ|a3)
)

: {ga}a ∈ L′f
}

and the O(|F|−1) term in the second line accounts for the case when there are {ga}a, {g′a}a ∈ L′f
such that ga2(Φ|a2) = g′a2(Φ|a2) holds. Note that if α̃1 = ga1(Φ|a1), and α̃2 6= ga2(Φ|a2), then
α̃1|c = α̃2|c occurs with probability O

(
|F|−1

)
. It follows that

PrΦ,rand

[
E1

]2 ≤ Pr Φ,c,a2
a1,a3∼rand(c,a2)

[
α̃1|c = α̃3|c & (α̃1, α̃3) /∈ L′f

]
+O

(
|F|−1

)
.

Therefore, it suffices to show that for all c ∈ C, the distribution which draws a2 ∼ A(c), a1, a3 ∼
rand(c, a2) and outputs (a1, a3) is within statistical distance O

(
|F|−1

)
of uniform on A(c)2. The

distribution rand(c, a2) draws c2 ∼ C(a2), c1 ∼ C(b), where b is the line through p and c2, and
outputs a1 ∼ A(c, c1). This is equivalent to drawing c1 ∼ C(a2) and outputting a1 ∼ A(c, c1),
where a2 is the 4−plane containing a2 and p. Thus the distribution which draws a2 ∼ A(c) and
then a1, a3 ∼ rand(c, a2), outputting (a1, a2, a3) can be equivalently described by drawing a1, a3 ∼
A(c), ci ∼ C(ai) for i = 1, 3, a2 ∼ A(c, p, c1, c3) (i.e., a random 4−plane containing c, p, c1, c3),
a2 ∼ A(c, a2) and outputting (a1, a2, a3). In the previous calculation we have ignored error terms of
size O

(
|F|−1

)
. Thus the marginal distribution on (a1, a3) is O

(
|F|−1

)
−close to uniform on A(c),

and the result follows.
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A Sampler Replacement

In the body we used the following fact with (ε′, δ′) = (ε, δ) and ρ = ζ = ε.

Fact 3 (Restated). Let ε, δ, ε′, δ′, ε∗, δ∗, ρ, ζ > 0 be such that δ∗(ε∗−ε−ε′−2ρ−ζ) ≥ δ′/ζ+δ/ρ.
Suppose A/B/C is such that:

• A/C, B/C and B(a)
/
C(a) are 0−biregular for all a ∈ A; and

• A/C is (ε, δ)−sampling and A(c)
/
B(c) is (ε′, δ′)−sampling for all c ∈ C.

Then A/B is (ε∗, δ∗)−sampling.

Proof. Fix ε, δ, ε′, δ′, ε∗, ρ, ζ > 0 and A/B/C as in the statement. Let B′ ⊂ B be a set of size
|B′| = λ · |B|, and let A′ ⊂ A be the set of a ∈ A such that

∣∣Prb∼B(a)(b ∈ B′) − λ
∣∣ > ε∗, let

ν = |A′|/|A|. We must show that ν ≤
(
δ′/ζ + δ/ρ

)/
(ε∗ − ε− ε′ − 2ρ− ζ). We have

ε∗ < Ea∼A′

[∣∣Prb∼B(a)(b ∈ B′)− λ
∣∣] ≤ Ea∼A′

[∣∣∣Ec∼C(a)

[
Prb∼B(a,c)(b ∈ B′)

]
− λ
∣∣∣]

≤ E a∼A′
c∼C(a)

[∣∣∣Prb∼B(a,c)(b ∈ B′)− λ(c)
∣∣∣]+ Ea∼A′

[∣∣∣Ec∼C(a)

[
λ(c)

]
− Ec∼C

[
λ(c)

]∣∣∣],
where for c ∈ C, λ(c) := Prb∼B(c)(b ∈ B′). We have used the biregularity of B(a)

/
C(a) for all

a ∈ A and that Ec∼C
[
λ(c)

]
= λ, which follows from biregularity of B/C. Let RHS1 and RHS2

be the two expectations on the right hand side of the equation above. We bound RHS1 and RHS2

separately. Note,

RHS2 ≤ ε+ 2ρ+ ν−1 · Pra∼A

[∣∣∣Ec∼C(a)

[
λ(c)

]
− Ec∼C

[
λ(c)

]∣∣∣ > ε+ 2ρ

]
≤ ε+ 2ρ+ ν−1 · δ/ρ.

Thus, it suffices to show that RHS1 ≤ ζ + ε′+ ν−1 · δ′/ζ . Let C ′ ⊂ C be the set of c ∈ C such that
Pr a∼A′

c′∼C(a)
(c′ = c) < ζ/|C|. Clearly, Pr a∼A′

c∼C(a)
(c ∈ C ′) < ζ . Also, whenever c /∈ C ′, we have

ν · ζ ≤ ν · |C| · Pr a∼A
c′∼C(a)

[
c′ = c

∣∣a ∈ A′] = Pr c′∼C
a∼A(c′)

[
a ∈ A′

∣∣c′ = c
]

= Pra∼A(c)

[
a ∈ A′

]
.

We have used the biregularity of A/C. This gives

RHS1 < ζ + ε′ + max
c/∈C′

{
Pra∼A(c)

[∣∣∣Prb∼B(a,c)(b ∈ B′)− λ(c)
∣∣∣ > ε′

]/
Pra∼A(c)(a ∈ A′)

}
≤ ζ + ε′ + ν−1 · δ′/ζ,

and the result follows.
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