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Abstract

In the Minimum Circuit Size Problem (MCSP[s(m)]), we ask if there is a circuit of size s(m) com-
puting a given truth-table of length n = 2m. Recently, a surprising phenomenon termed as hardness
magnification by [Oliveira and Santhanam, FOCS 2018] was discovered for MCSP[s(m)] and the re-
lated problem MKtP of computing time-bounded Kolmogorov complexity. In [Oliveira and Santhanam,
FOCS 2018], [Oliveira, Pich, and Santhanam, CCC 2019], and [McKay, Murray, and Williams, STOC
2019], it was shown that minor (n1+ε-style) lower bounds for MCSP[2o(m)] or MKtP[2o(m)] would
imply breakthrough circuit lower bounds such as NP 6⊂ P/poly, NP 6⊂ NC1, or EXP 6⊂ P/poly.

We consider the question: What is so special about MCSP and MKtP? Why do they admit this
striking phenomenon? One simple property is that all variants of MCSP (and MKtP) considered in prior
work are sparse languages. For example, MCSP[s(m)] has 2Õ(s(m)) yes-instances of length n = 2m, so
MCSP[2o(m)] is 2n

o(1)

-sparse.
We show that there is a hardness magnification phenomenon for all equally-sparse NP languages.

Formally, suppose there is an ε > 0 and a languageL ∈ NP which is 2n
o(1)

-sparse, andL /∈ Circuit[n1+ε].
Then NP does not have nk-size circuits for all k. We prove analogous theorems for De Morgan formulas,
B2-formulas, branching programs, AC0[6] and TC0 circuits, and more: improving the state of the art in
NP lower bounds against any of these models by an ε factor in the exponent would already imply NP
lower bounds for all fixed polynomials. In fact, in our proofs it is not necessary to prove a (say) n1+ε

circuit size lower bound for L: one only has to prove a lower bound against n1+ε-time nε-space deter-
ministic algorithms with nε advice bits. Such lower bounds are well-known for non-sparse problems.

Building on our techniques, we also show interesting new hardness magnifications for search-MCSP
and search-MKtP (where one must output small circuits or short representations of strings), showing
consequences such as ⊕P (or PP, PSPACE, and EXP) is not contained in P/poly (or NC1, AC0[6], or
branching programs of polynomial size). For instance, if there is an ε > 0 such that search-MCSP[2βm]
does not have De Morgan formulas of size n3+ε for all constants β > 0, then ⊕P 6⊂ NC1.

*Supported by NSF CCF-1741615 and a Google Faculty Research Award. Portions of this work were completed while L.C. and
R.W. were visiting the Simons Institute at UC Berkeley.
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1 Introduction

Recently there has been a surge of interest in hardness magnification [OS18, OPS19, MMW19], a set of
results showing how very weak lower bounds for certain problems would imply breakthrough separations in
computational complexity, such as NP 6⊂ P/poly or EXP 6⊂ NC1.

We illustrate the phenomena with three representative results. It has been shown that if there is an ε > 0
such that for all small enough constants β > 0,

1. If MCSP[2βm] doesn’t have n1+ε size circuits on input of length n = 2m, then NP 6⊂ P/poly [MMW19].

2. If Gap-MKtP[2βm, 2βm + O(m)] doesn’t have n3+ε size De Morgan formulas on input of length
n = 2m, then EXP 6⊂ NC1 [OPS19].

3. If Gap-MKtP[2βm, 2βm+O(m)] doesn’t have n1+ε size De Morgan formulas with unbounded XORs
at the bottom layer, then EXP 6⊂ NC1 [OPS19].

(For now, it is not important to know what MCSP[2βm] and Gap-MKtP[2βm, 2βm +O(m)] are, except
that they are problems in NP and EXP that are widely believed to be very hard to solve.) The above three
results show that “minor” lower bounds on parameterized versions of certain NP (or EXP) problems would
imply breakthrough lower bounds. Item (1) says that n1+ε size lower bounds for a certain NP problem
implies NP does not have polynomial size circuits; items (2) and (3) say that super-cubic De Morgan formula
lower bounds or super-linear De Morgan formula lower bounds (with unbounded XORs at the bottom) for a
certain EXP problem implies EXP does not have polynomial-size formulas.

Other examples of similar phenomenon are known, for n1−ε approximation to CLIQUE [Sri03], low-
depth circuit lower bounds for NC1 [AK10, CT19], sublinear-depth circuit lower bounds for P [LW13],
proof complexity [MP17], lower bounds for non-commutative arithmetic circuits [CILM18], and n1+ε-size
circuit lower bounds for MrKtP (The Minimum rKt Problem) [Oli19].

An Optimistic Perspective. Such results may suggest intriguing approaches to attacking central separa-
tion problems in complexity theory. For instance, [OPS19] (adapting [HS17]) showed Gap-MKtP[2βm, 2βm+
O(m)] does not have De Morgan formulas of size n2−ε. If this lower bound could be improved from n2−ε

to n3+ε, then by Item (2) above, major lower bounds in complexity theory would follow.
A concern about Item (2) is that the n3−o(1) formula-size lower bounds have resisted improvement for

over 20 years ([Hås98, Tal14, DM18, Bog18]), so new techniques are probably required for a n3+ε-size
lower bound. However, it is known that MOD2-Inner-Product satisfies the required lower bound in Item
(3), even for n2−ε size [Tal16]. The challenge then is to extend known those lower bound techniques to
problems in EXP, such as Gap-MKtP.

Over the years, complexity theory has developed ways to reason about the limits of lower bound tech-
niques. In particular, the natural proof barrier [RR97, NR04] shows, assuming widely accepted conjectures
in cryptography, if a proof technique is strong enough to efficiently prove hardness for a random function,
then it is unlikely to succeed on circuit classes (such as TC0) which can compute strong pseudorandom func-
tions. It has been argued that hardness magnification results offer a way to bypass the natural proofs barrier,
as the results only apply to special meta-problems such as MCSP and MKtP. The heuristic argument is that,
if a proof is based on hardness magnification, it is unlikely to work for a random function. (More precisely,
the proof method would violate the “largeness condition” of natural proofs.)

A Pessimistic Perspective. An alternative perspective is that hardness magnification results indicate “weak”
circuit lower bounds are even harder to prove than previously thought. Previously, it was understood that
super-polynomial lower bounds are very hard to prove, but there did not appear to be serious obstacles for
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proving “weak” (n1+ε or n2+ε size) lower bounds for various computational models. If we believe that cir-
cuit lower bounds such as NP 6⊂ P/poly are very hard to prove, then hardness magnification suggests there
should be other deep reasons why we cannot prove even small lower bounds for MCSP and other variants.

1.1 Our Results

Given the above discussions, a natural question arises: What is so special about MCSP and MKtP? Why
do they admit such a surprising phenomenon? This question is well-motivated from both the optimistic and
pessimistic perspectives. For the optimist, given the possibility of proving breakthrough complexity separa-
tions via hardness magnification, it is of central interest to understand for what classes of functions such a
phenomenon is possible, and to explore more possibilities of hardness magnification. For the pessimist, in
the heuristic argument that hardness magnification avoids the natural proof barrier [OS18], it is suggested
that hardness magnification crucially uses properties of MCSP or MKtP that do not hold for random func-
tions. Therefore, it is interesting to understand what properties of MCSP or MKtP suffice for hardness
magnification, to gain a better understanding on how natural proofs may be avoided. This understanding
may in turn inspire a new barrier to circuit lower bounds (recall we are assuming one is pessimistic).

Notation. We first introduce some notation to succinctly describe our results. The class Circuit[s] (a.k.a.
SIZE[s]) contains the problems solvable by a family of (fan-in two) circuits of size at most s(n). We also
consider constant-depth circuit classes of unbounded fan-in, such as ACd[m][s] (circuits of size s(n) and
depth d over AND, OR, NOT, and MODm gates) and TCd[s] (threshold circuits of size s(n) and depth d).
We measure the size of ACd[m] circuits by number of gates, and the size of TCd circuits by number of
wires. The class BP[s] contains problems solvable by a family of (deterministic) branching programs of size
at most s(n) (for a definition of branching programs, see [Juk12, Chapter 1.3]).

We consider formulas over the De Morgan basis U2 (NOT, AND(x, y), OR(x, y)), the basis of all
two-input Boolean functions B2, and extended U2-formulas where the leaves may be constants or parities
over input bits of arbitrary arity. We denote the corresponding classes for formulas of at most s leaves by
U2-Formula[s] (or simply Formula[s]), B2-Formula[s], and U2-Formula-⊕[s], respectively.

Usually n refers to the input length to problems such as MCSP or MKtP, and we often identify m
with log n. MCSP[s(m)] asks if a given truth table of length n = 2m has a circuit of size at most s(m).
MKtP[p(n)] asks if a given string of length n can be printed by a Turing Machine of description length c in
at most t steps, such that c+ log(t) ≤ p(n).

Hardness Magnification for All Sparse NP Languages. Observe MCSP[2βm] and MKtP[2βm] are sparse
languages in NP (or EXP) with n = 2m inputs. For exampe, MCSP[s(m)] has at most 2Õ(s(m)) yes-
instances of length n = 2m, since there are O(s(m) log s(m)) many circuits of size s(m). Our main result
shows, surprisingly, the subexponential sparsity of a language is already enough for a strong hardness mag-
nification result! That is, analogous weak circuit lower bounds as in [OS18, OPS19, MMW19] for any
equally-sparse NP language also imply major separations in circuit complexity.

Theorem 1.1. Let C be any complexity class such that ∃ · C = C (e.g., C = NP, MA, or AM).
If there is an ε > 0 and a family of languages {Lβ} (indexed over β ∈ (0, 1)) such that Lβ is a 2n

β
-sparse

language in C and for all β:

1. Lβ /∈ Circuit[n1+ε], then C 6⊂ Circuit[nk] for all k.

2. Lβ /∈ U2-Formula-⊕[n1+ε], then C 6⊂ Formula[nk] for all k.

3. Lβ /∈ B2-Formula[n2+ε], then C 6⊂ Formula[nk] for all k.
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4. Lβ /∈ U2-Formula[n3+ε], then C 6⊂ Formula[nk] for all k.

5. Lβ /∈ BP[n2+ε], then C 6⊂ BP[nk] for all k.

6. Lβ /∈ ACd+2[m][n1+ε], then C 6⊂ ACd[m][nk] for all k, for all constants d and even integers m ≥ 2.

7. Lβ /∈ TCd+O(log 1/ε)[n
1+ε], then C 6⊂ TCd[n

k] for all k, for all constants d.

Moreover, the converse of each item above also holds, except for the last two.

Theorem 1.1 says that, if the state-of-the-art NP lower bounds can be improved for these models [Hås98,
Neč66, IPS97] by an ε factor in the exponent, for any subexponentially sparse NP language, we would have
arbitrary fixed-polynomial NP bounds for these models. (As previously discussed, for U2-Formula-⊕ we
would only have to adapt existing n2−ε lower bounds [Tal16] to a sufficiently sparse NP language.)

Setting Lβ = MCSP[20.99βn] and C = NP in Theorem 1.1, we recover a main result of [MMW19],
although with a weaker (yet still very strong) consequence NP 6⊂ Circuit[nk] for all k. In earlier recent
work, [CMMW19] proved a result similar to Item (1) in the above theorem, but with the much weaker
consequence NEXP 6⊂ P/ poly.

Hardness Magnification against Uniform Algorithms with Small Advice. Given that the best known
explicit circuit size lower bound for NP (even ENP) functions is only (3 + 1/86 − o(1))n [FGHK16], it
is natural to wonder if we can further weaken the hypothesis “Lβ does not have n1+ε-size circuits”. We
observe that it is in fact enough to prove lower bounds against n1+ε-time nε-space deterministic algorithms
using nε bits of advice (a special case of n1+ε size circuits), or against O(n)-time randomized algorithms
(with constant failure probability) using nε bits of advice and only O(log n) random bits.

Theorem 1.2. Let C be any complexity class such that ∃ · C = C (e.g., C = NP, MA, or AM). If there is an
ε > 0 and a family of languages {Lβ} (indexed over β ∈ (0, 1)) such that Lβ is a 2n

β
-sparse language in

C and for all β,

• Lβ is not computable by an n1+ε-time nε-space deterministic algorithm with nε bits of advice, then
C 6⊂ Circuit[nk] for all k.

• Lβ is not computable by an O(n)-time randomized algorithm with nε bits of advice and O(log n)
random bits, then C 6⊂ Circuit[nk] for all k.

Moreover, the converse of each item above also holds.

An appealing aspect of Theorem 1.2 is that, without the sparsity requirement, such lower bounds can be
proved easily, by modifying the deterministic time hierarchy theorem (see Appendix A for details).

Theorem 1.3 (Adaptation of [HS65]). For all ε ∈ (0, 1), there is a (2n
ε · n)-sparse language L in time

n1+ε ·poly log(n) which is not computable by any n1+ε-time deterministic algorithm with nε bits of advice.

Therefore, if we could only make the language L of Theorem 1.3 sparser (note that we are allowed to
use L ∈ NP, instead of L ∈ TIME[n1+ε · poly log(n)] in Theorem 1.3), we would prove significant lower
bounds by Theorem 1.2. The sparsity requirement can even be made weaker, if we only want to show a
super-linear lower bound for NP (which is still notoriously open [FGHK16]).

Theorem 1.4. If there is an ε ∈ (0, 1) and a 2n
ε
-sparse language L ∈ NP which is not computable by any

Õ(n)-time deterministic algorithm with Õ(nε) bits of advice, then NP 6⊂ SIZE(n · logc n) for all c ≥ 1.
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As another example of lower bounds for sparse languages, we also observe that time-space trade-off
lower bounds for SAT [FLvMV05, Wil07] can be extended to hold for sparse languages. Let TS[T (n), S(n)]
denote the class of languages decidable by O(T (n))-time O(S(n))-space algorithms.

Theorem 1.5. For every c < φ, there is a 1-sparse language L ∈ coNTIME[n1+o(1)], such that L /∈
TS[nc, no(1)]. Here φ = 1+

√
5

2 = 1.618 · · · is the golden ratio.

Theorem 1.5 is surprising as it goes against the intuition that such time-space trade-offs relied cru-
cially on the NP-completeness of SAT: polynomially-sparse languages cannot be NP-complete (or coNP-
complete) unless P = NP [For79, Mah80]. The proof of Theorem 1.5 is deferred to Appendix B.

1.1.1 Stronger Hardness Magnification for search-MCSP and MKtP

Using similar ideas as the proof of Theorem 1.1, we can show that mild worst-case lower bounds for
search-MCSP or search-MKtP can imply super-polynomial lower bounds for a variety of well-studied non-
uniform models of computation:

Theorem 1.6. Let C ∈ {⊕P,PP,PSPACE}, and m ≤ s(m) ≤ 2(1−Ω(1))m. Let the input length n = 2m.

1. If search-MCSP[s(m)] /∈ Circuit[n · poly(s(m))], then C 6⊂ Circuit[poly(n)].

2. If search-MCSP[s(m)] /∈ U2-Formula-⊕[n · poly(s(m))], then C 6⊂ Formula[poly(n)].

3. If search-MCSP[s(m)] /∈ B2-Formula[n2 · poly(s(m))], then C 6⊂ Formula[poly(n)].

4. If search-MCSP[s(m)] /∈ U2-Formula[n3 · poly(s(m))], then C 6⊂ Formula[poly(n)].

5. If search-MCSP[s(m)] /∈ BP[n2 · poly(s(m))], then C 6⊂ BP[poly(n)].

6. If search-MCSP[s(m)] /∈ ACd+2[m∗][n · poly(s(m))], then C 6⊂ ACd[m∗][poly(n)], for all constants
d and even integers m∗ ≥ 2.

7. If there is an ε > 0 such that, for all small enough β > 0, search-MCSP[2βm] /∈ TCd+O(log 1/ε)[n
1+ε],

then C 6⊂ TCd[poly(n)], for all constants d.

Moreover, all above implications also hold for C = EXP, with search-MCSP replaced by search-MKtP.

Remark 1.7. Indeed, one can even enforce that the search-MCSP (search-MKtP) outputs the lexicograph-
ically first circuit (program) in the above theorem. This makes the problem harder, and the corresponding
lower bound easier to prove.

Comparison with Previous Works on MKtP. Oliveira and Santhanam [OS18] show that n1+ε-size lower
bounds for approximating MKtP[nβ] with additive errorO(log n) (for all small β > 0) would imply EXP /∈
P/poly. Oliveira, Pich and Santhanam [OPS19] generalize this connection to other computational models
listed in Theorem 1.6.

McKay, Murray and Williams [MMW19] improve some of these results, by showing that the same lower
bounds on exact search-MKtP problem already yield similar consequences.1 In particular, Item (1) and (a
weaker version of) Items (6) and (7) in our Theorem 1.6 were already proved by [MMW19]. However, their

1They also considered the oracle version of search-MKtP, which we do not discuss.
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techniques are not fine-grained enough to apply to more restricted models such as BP or Formula, or fixed
depth circuits such as ACd[m] and TCd.2

Our results on MKtP improve both of them, as they not only apply to all reasonable computational
models, including BP, Formula, or various fixed depth circuits, but also establish a connection with exact
search-MKtP.

Comparison with Previous Works on MCSP. [OPS19] show that n1+ε-size lower bounds for approx-
imating MCSP[2βm] with multiplicative error O(m) (for all small β > 0) would imply NP 6⊂ P/poly.
[MMW19] improve that by showing the same lower bounds on exact search-MCSP[2βm] suffice (that is,
they already proved Item (1) of Theorem 1.6). But these two sets of results on MCSP do not generalize to
more restricted computational models such as BP, Formula or various fixed depth circuits.

Our techniques are fine-grained enough to apply to all reasonable computational models, but with a
weaker conclusion such as ⊕P 6⊂ Formula[poly(n)], instead of NP 6⊂ Formula[poly(n)]. Still, such a
circuit lower bound would already imply major consequences in complexity theory, given that even NEXP ⊂
Formula[poly(n)] is still open.

Against Uniform Algorithms with Small Advice. Similar to the case of Theorem 1.2, we also show that
it suffices to prove lower bounds against n1+ε-time nε-space deterministic algorithms with nε bits of advice,
instead of Circuit[n1+ε].

Theorem 1.8.

• Let C ∈ {⊕P,PP,PSPACE}, and m ≤ s(m) ≤ 2(1−Ω(1))m. If search-MCSP[s(m)] on input length
n = 2m is not computable by an n ·poly(s(m))-time poly(s(m))-space deterministic algorithm with
poly(s(m)) bits of advice, then C 6⊂ Circuit[poly(n)].

• Let log n ≤ p(n) ≤ n1−Ω(1). If search-MKtP[p(n)] is not computable by an n · poly(p(n))-time
poly(p(n))-space deterministic algorithm with poly(p(n)) bits of advice, then EXP 6⊂ Circuit[poly(n)].

1.1.2 Hardness Magnification for Zero-Error Heuristics

We remark that our techniques can also be applied to some other settings considered in prior work [OS18].
In the following we discuss a hardness magnification phenomenon for lower bounds against zero-error
heuristics. A (zero-error) average-case algorithm A for a function f : {0, 1}n → {0, 1} is a deterministic
algorithm that always outputs a value in {0, 1, ?}, such that A is never incorrect and A outputs ? with
probability at most 1/n over uniform random n-bit inputs. (To implement this output behavior in Boolean
circuits, we let the circuit output two bits encoding 0, 1, or ?.)

Theorem 1.9. Let C be any circuit class (e.g., C could be Circuit, Formula, AC0[6], etc.). If there is an
ε > 0 and a family of languages {Lβ} (indexed over β ∈ (0, 1)) such that Lβ is a 2n

β
-sparse NP language

not solvable on average with zero error by C -circuits of size nε for all β, then NP 6⊂ C [nk] for all k.

Theorem 1.10. Let C be any circuit class (e.g., C = Circuit,Formula, or AC0[6]).

• Let s(m) ≥ m. If MCSP[s(m)] on input length n = 2m cannot be solved on average with zero error
by C [poly(s(m))], then NP 6⊂ C [poly(n)].

• Let p(n) ≥ log n. If MKtP[p(n)] cannot be solved on average with zero error by C [poly(p(n))], then
EXP 6⊂ C [poly(n)].

2Roughly speaking, their techniques seem to inherently induce at least a multiplicative constant factor increase in the depth, so
these techniques seem incapable of proving Items (6) or (7) in Theorem 1.6.
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Comparison with [OS18]. Oliveira and Santhanam [OS18] show that if for some k ≥ 1, c > 0, MCSP[mk]
on input length n = 2m is not solvable on average by AC0[2cm] circuits, then NP 6⊂ NC1. Our Theorem 1.10
implies the same consequence, while only assuming the average-case lower bound against Formula[poly(m)],
which is much weaker than AC0[2cm]. Oliveira and Santhanam also show that if for some k ≥ 1, c > 0

MCSP[mk] is not solvable on average by Circuit[2cm], then NP 6⊂ Circuit[2n
o(1)

]. We did not state a theorem
comparable to this result. However, our proof of Theorem 1.10 can easily show (just plug in different pa-
rameters) that the same consequence NP 6⊂ Circuit[2n

o(1)
] still follows even if we only assume average-case

lower bound against Circuit[2m
o(1)

].

1.2 Intuition

In this section we give a high-level description of our proof techniques.

Kernelization. The key component of our technique is a kernelization method for sparse NP languages L
(Theorem 3.4). In parameterized complexity, kernelization involves taking a problem instance with a “low
parameter” and producing a smaller instance (depending on the parameter), where these smaller instances
can potentially come from a different problem. Given L we design an auxiliary NP function H , such that L
can be efficiently decided on n-bit instances by making n queries to H with short query length (depending
logarithmically on the sparsity of L). This is a “Turing-kernelization” from L to H with respect to the
log-sparsity parameter.

Let L ∈ NP be a 2t-sparse language where t = t(n) ≤ nβ for a small constant β ∈ (0, 1). Using good
error correcting codes [Spi96] and expander-walk sampling, we can design a linear-time computable hash
function Mv : {0, 1}n → {0, 1}Θ(t) with short seed length |v| = O(t), such that a random seed v is likely
to make all yes-instances x′ ∈ Ln hash to a distinct value Mv(x

′).
Fix such a good seed v. Given a hash value h, an NP machine can then unambiguously find the x′ ∈ Ln

such that Mv(x
′) = h (if such an x′ exists): nondeterministically guess (x′, y), and reject if and only if

Mv(x
′) 6= h or y is not a witness for x′ ∈ Ln. Hence we can define an auxiliary NP function H(h, v, i, w),

which accepts if and only if there is an x′ ∈ Ln such that Mv(x
′) = h and x′i = w. Notice that H only takes

O(t) bits of input. With a good seed v as advice and oracle access to H , a deterministic algorithm OHdet can
compute Ln(x): we define OHdet(x) to accept if and only if for all i ∈ [n], H(Mv(x), v, i, xi) accepts. That
is, Odet compares its input x bit-by-bit with the unique yes-instance x′ (if it exists) that has the same hash
value as x, by making n queries to H .3

Hardness magnification for all sparse NP languages. Now we are ready to describe the first item of
Theorem 1.1. Suppose for contradiction that NP ⊂ Circuit[nk] for some k. For all small ε > 0, we choose
β = β(ε) = ε/(2k). Then given a 2n

β
-sparse NP language Ln, we define the auxiliary NP function H

taking O(t) ≤ O(nβ) bits of input, which can be implemented by a circuit of size O(tk) ≤ O(nkβ) ≤
O(nε/2). To compute Ln(x), the algorithm Odet first computes the linear function Mv(x), then returns
the AND of n oracle queries to H of length O(nβ). Implementing this with circuitry, we find that L is
computable with circuits of size Õ(n+ n · tk) < n1+ε.

Generalization to other computational models. The above result generalizes easily to the other compu-
tational models mentioned (the remaining items in Theorem 1.1), such as U2-Formula-⊕, TC0, and AC0[m].
We only need to observe two properties of the algorithm Odet: (1) the hash function Mv(x) that we used is
linear over F2 so it can be implemented with a small number of PARITY gates and wires, and (2) the output

3In fact, in the proof of Theorem 3.4 where we construct H , we use only n/t queries, which is more efficient.
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of Odet is an AND of non-adaptive queries to the H-oracle. Thus our circuits for L are ANDs of n copies
of H , which take O(t) bits of input from O(t) PARITYs over the n inputs.

Generalization to n1+ε time deterministic algorithms with nε advice. The above ideas extend to prove
Theorem 1.2, which shows it is enough to prove lower bounds against n1+ε-time deterministic algorithms
with nε bits of advice, which is a special case of n1+ε size circuits. The idea is simple: hardwire the good
seed v and the description of the O(tk)-size circuit for H into the advice string for Odet; the advice length
is then Õ(t+ tk) < nε.

Hardness Magnification for MKtP. Our kernelization technique can also be applied to prove hardness
magnification results for MCSP and MKtP (and their search versions, as in Theorem 1.6). We first describe
the proof for MKtP case, assuming EXP ⊂ Circuit[poly(n)]. For β ∈ (0, 1), consider the language L =
MKtP[nβ], which is 2t sparse for t = Θ(nβ). We modify the implementation of the “kernelization function”
H(h, v, i, w) as follows. Instead of guessing a string x′ ∈ MKtP[nβ], we (deterministically) enumerate all
Turing machines M of description length at most nβ , and compute its output x′ after simulating M for in
2n

β−|〈M〉| steps. Then x′ ∈ MKtP[nβ] (we skip it if M does not stop in time, or |x′| 6= n). Then we proceed
to verify whether Mv(x

′) = h and x′i = w.
As before, Odet(x) can decide MKtP[nβ] by querying H(Mv(x), v, i, xi). Moreover, the above imple-

mentation of H runs in deterministic 2O(t) time, where the constant in the big-O is independent of β, so
H ∈ EXP. By assumption, H has O(tk)-size circuits on input of Θ(t) bits. Then we can similarly obtain
n1+ε size circuits for MKtP[nβ].

Hardness Magnification for MCSP. To adapt the above proof to MCSP under the assumption that ⊕P
has polynomial-size circuits, we can similarly modify the implementation of the function H . Instead of
guessing a string x′ ∈ MCSP[2βm], we guess a circuit C of size at most 2βm with m inputs. The truth table
of C (call it tt(C)) is a yes-instance of MCSP[2βm]; we need to check thatMv(tt(C)) = h and tt(C)i = w.

Note that tt(C)i = w if and only if C(i) = w. To check Mv(tt(C)) = h efficiently, we use fully
explicit ε-biased sets Sn,ε ⊆ {0, 1}n (Theorem 2.4) to design a hash family so that each bit of the hash value
can be efficiently computed by a ⊕P oracle with only poly(t) input bits. In particular, our hash function
will compute 〈tt(C), wi〉 modulo 2, where tt(C) is the truth table of the guessed circuit C, and wi ∈ Sn,ε.
We can see that 〈tt(C), wi〉 can be computed in poly(t) given inputs C, n, i and a ⊕P oracle. Therefore,
the function H can now be implemented in NP⊕P. Toda’s theorem [Tod91] implies that NP⊕P ⊂ ⊕P/poly;
together with ⊕P ⊂ P/poly, we conclude NP⊕P ⊂ P/poly. Thus the function H has polynomial-size circuits
under the hypothesis, and we can complete the argument as before.

Hardness Magnification Against TC0 Circuits. To get our results for TC0 circuits (the last item of
Theorem 1.1 and Theorem 1.6), we make use of the recent construction of error correcting codes computable
by uniform and extremely sparse TC0 circuits [CT19].

Oliveira, Pich, and Santhanam [OPS19] also apply sparse TC0-computable error correcting codes to
prove hardness magnification results for TC0. Their argument requires the error correcting codes to have
an efficient decoder. As it is unclear how to decode the codes constructed in [CT19], one can only use a
construction in [Tel18] with a worse dependence on depth in their argument (they achieve O(1/ε) instead
of O(log ε−1) in Theorem 1.6). Our argument does not need an efficient decoder at all, so we can apply the
better construction from [CT19] to achieve a better magnification.

Moreover, to prove hardness magnification for MCSP against TC0, we further require that the codes
computable in TC0 are fully explicit. We observe that the codes are fully explicit using a ⊕P oracle (see
Theorem 2.7), which is enough for our application.
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2 Preliminaries

We use Õ(f) to denote O(f poly log f) throughout the paper. All logarithms are base-2. We say a language
L is f(n)-sparse if |Ln| ≤ f(n), whereLn = L∩{0, 1}n. We assume knowledge of basic complexity theory
(see [AB09, Gol08] for excellent references). We assume a RAM model when we describe algorithms.

For a complexity class C, we define ∃·C to be the class of languages L such that there is a relationR ∈ C
so that for all strings x, x ∈ L if and only if there is a poly(|x|)-length y such that R(x, y) accepts. So for
example, ∃ · NP = NP, ∃ ·MA = MA, and ∃ · coNP = Σ2P.

2.1 MCSP and MKtP

The Minimum Circuit Size Problem (MCSP) and its variant Minimum Kt Complexity Problem (MKtP,
[Lev84]) are studied in this paper. We first recall their definitions.

Definition 2.1 (MCSP). Let s : N→ N satisfy s(m) ≥ m for all m.
Problem: MCSP[s(m)].
Input: A function f : {0, 1}m → {0, 1}, presented as a truth table of n = 2m bits.
Decide: Does f have a (fan-in two) Boolean circuit C of size at most s(m)?

Definition 2.2 (MKtP). Let p : N→ N satisfy p(n) ≥ log n for all n.
Problem: MKtP[p(n)].
Input: A string x ∈ {0, 1}n.
Decide: Is there a Turing machine M of description length c that prints x in at most t steps, where

c+ log(t) ≤ p(n)?

We can also define the search versions of these two problems, search-MCSP and search-MKtP, where
a witness circuit C (or Turing Machine M ) should be output when the answer is YES.

2.2 ε-Biased Sets and Error Correcting Codes

Constructions of ε-biased sets are used several times in our hardness magnification constructions. We first
introduce ε-biased sets, and then state a fully explicit construction from [AGHP90].

Definition 2.3. Let ε ∈ (0, 1/2). A set S ⊆ {0, 1}n is ε-biased if for all non-zero v ∈ {0, 1}n,

Pr
w∈S

[〈v, w〉 = 0 over F2] ∈ (1/2− ε, 1/2 + ε).

Theorem 2.4 ([AGHP90]). For every positive n and ε ∈ (0, 1/2), there is an ε-biased set Sn,ε ⊆ {0, 1}n

of cardinality Õ(n2/ε2), such that, given inputs n, ε, i ∈ [|Sn,ε|] and j ∈ [n], one can compute the j-th bit
of the i-th vector from Sn,ε in poly(log n, log 1/ε) time.

We also need linear-time computable error correcting codes [Spi96, GI02].

Theorem 2.5 ([Spi96, GI02]). There is a linear error correcting code E (i.e., E is a linear function over
F2) with constant rate and constant minimum relative distance, such that E can be computed in O(n) time
and by an O(n)-size circuit family.4

We also need error correcting codes computable by uniform and extremely sparse TC0 circuits from [CT19]
(which builds on [GHK+13] and [CRVW02]).

4The code in [Spi96] requires a polynomial-time preprocessing stage, which is removed in the later work [GI02].
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Theorem 2.6 (Uniform Sparse TC0 Circuits For “Almost-Good” Codes [CT19]). For some universal con-
stants ρ > 0 and c0 > 1, and for all constant d ≥ 2, there is a deterministic polynomial-time algorithm Ad
that on the input 1n (where n is a sufficiently large power of two), outputs a TC0 circuit Cn such that:

1. Cn computes the encoding function of a linear code {0, 1}n → {0, 1}n̂ with constant relative distance
ρ > 0, where n̂ = n · exp(poly log log(n)).

2. Cn has depth d+ 2 and at most n1+c0·φ−d+o(1) wires, where φ = 1+
√

5
2 .

We also observe that the above construction is fully explicit with a ⊕P oracle.

Theorem 2.7. The linear code E of Theorem 2.6 is ⊕P-fully explicit, in that for all i and vectors vi ∈ Fn2
such that E(x)i := 〈x, vi〉, given input n, i ∈ [n̂] and j ∈ [n], the j-th bit of vi can be computed in
poly(log n) time with an oracle in ⊕P.

Remark 2.8. A crucial component of the proof of Theorem 2.6 in [CT19] is the lossless (bipartite) expander
construction of [CRVW02], which is fully explicit. That is, its neighbor function E : [N ] × [D] → [M ]
(map (u, i) to the i-th neighbor of the vertex u on the left) is computable in poly log(N) time. Given this
observation, it is easy to verify the construction in Section 5.1 of [CT19] is ⊕P-fully explicit.

2.3 Expander Graphs

Expander graphs and their strongly explicitly constructions are also served as important tools in our paper.
We first recall their definition, and state a strongly explicit construction from [RVW02].

Definition 2.9 (Expander Graphs). An n-vertex undirected graph G is an (n, d, λ)-expander graph if G
is d-regular and λ(G) ≤ λ, where λ(G) denotes the second largest eigenvalue (in absolute value) of the
normalized adjacency matrix of G (i.e., the adjacency matrix of G divided by d).

For constants d ∈ N and λ < 1, a family of graphs {Gn}n∈N is a (λ, d)-expander graph family if for
every n, Gn is an (n, d, λ)-expander graph.

Theorem 2.10 (Strongly Explicit Expanders, e.g., [GG81]). There exists a (λ, d)-expander graph family
{Gn} for some constants d ∈ N and λ < 1, such that there is an algorithm that on inputs n, v ∈ [n], i ∈ [d]
outputs the i-th neighbor of v in graph Gn in poly(log n) time.

We also need the following expander Chernoff bound, which shows that a random walk on an expander
graph behaves similarly to a sequence of i.i.d. random vertices.

Theorem 2.11 (Expander Chernoff Bound, [Gil98]). Let G be an (n, d, λ)-expander graph. Let f : [n] →
{0, 1} be a function on the vertices of G, and µ = Ev∈[n] f(v). Let v1, v2, . . . , vt be a random walk on G
(where v1 is uniformly chosen). Then for δ > 0,

Pr
v1,...,vt

[
1

t

t∑
i=1

f(vi) < µ− δ

]
≤ e−(1−λ)δ2t/4.

3 Kernelization of Sparse Languages

In this section we present kernelization constructions for generic sparse languages.
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3.1 The Hash Family

We begin by describing the hash families we use for kernelizing sparse languages. In short, we construct
a family of k-perfect linear hash functions that is very efficiently computable for a wide range of values
of k. The problem of constructing k-perfect hash families has a long history (see for example [SS90,
FKS84, AYZ95, NSS95]). For example, in their famous FPT paper on color-coding, Alon, Yuster, and
Zwick [AYZ95] derandomize the color-coding method by showing there are k-perfect hash families from
{0, 1}n to {0, 1}log(k), where each function in the family takesO(k)+log n bits to specify, and each function
can be efficiently evaluated given its specification. For our purposes, we want our functions to also be linear
over F2, so that their formula complexity is guaranteed to be low. One can easily obtain a family of k-
perfect linear hash functions by choosing random linear transformations from {0, 1}n to {0, 1}2 log(k)+O(1).
However, uniform random matrices take too many bits to describe; we achieve a short seed length using
standard tools from pseudorandomness: error-correcting codes, ε-biased sets, and expander walks. These
constructions are likely folklore; we did not find an explicit reference.

Definition 3.1 (k-Perfect Linear Hash Family). Let n ∈ N, and let k be an integer in [n, 2n]. We say that a
family of functions {Mv : {0, 1}n → {0, 1}t} is a k-perfect linear hash family if:

1. (Succinct) Each Mv is specified by an O(log k)-bit seed v, and t ≤ O(log k).

2. (Spreading) For all S ⊆ {0, 1}n with |S| ≤ k, there is a seed v such that |{Mv(x) | x ∈ S}| = |S|.
We say such a v is a good seed for S.

3. (Linear) For all seeds v and i ∈ [t], the i-th bit of Mv(x) can be expressed as (〈x,wv,i〉 mod 2) for
some wv,i ∈ {0, 1}n.

We first show that such hash functions can be constructed in linear time and with linear-size circuits.

Lemma 3.2 (Linear-Time Construction of Perfect Linear Hash Functions). There is a d > 0 such that for
all k(n) ∈ [n, 2n/ logd n], there is a k-perfect linear hash family {Mv} (for every n), anO(n)-time algorithm
A, and an O(n)-size circuit family {Cn}, such that for all (v, x) ∈ {0, 1}O(log k(n))+n, A(v, x) = Mv(x) =
Cn(v, x).

Proof of Lemma 3.2. Let E : {0, 1}n → {0, 1}n/cr be the linear error correcting code from Theorem 2.5,
where the constant cr ∈ (0, 1) is the rate of the code. For all distinct x, y ∈ S (i.e., where x 6= y), we have

Pr
v0∈[n/cr]

[E(x)v0 6= E(y)v0 ] ≥ cd,

where constant cd ∈ (0, 1) is the relative distance of E.
Let G be the strongly explicit expander graph on the vertex set [n/cr] (with constant parameters λ <

1, d ∈ N) from Theorem 2.10. Let t = c · log(k) for a constant c > 0 to be specified later. Given the vector
of t elements v = (v1, v2, . . . , vt) ∈ [n/cr]

t, we define

Mv(x) := (E(x)v1 , E(x)v2 , . . . , E(x)vt) ∈ {0, 1}t.

For all distinct x, y ∈ S, by the Expander Chernoff Bound (Theorem 2.11), if v = (v1, v2, . . . , vt) is a
random walk on G, then

Pr
v

[Mv(x) = Mv(y)] ≤ Pr
v

[
1

t

t∑
i=1

[E(x)vi 6= E(y)vi ] < cd/2

]
≤ e−(1−λ)(cd/2)2t/4.
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Now let S ⊆ {0, 1}n satisfy |S| ≤ k. Choosing t = c · log(k) for a sufficiently large constant c > 0, and
union-bounding over all

(
k
2

)
distinct pairs (x, y), we have

Pr
v

[for every pair of distinct x, y ∈ S, Mv(x) 6= Mv(y)] ≥ 0.99.

Note that a walk on G of length t can be specified by O(log n + t) = O(t) bits. Hence we have a
O(t)-bit good seed for S. We can recover the vertices v1, . . . , vt from these O(t) bits, by computing all
relevant edges of the expander graph in time (and circuit size)

t · poly log(n) ≤ O(log k) poly log(n) ≤ O(n/ logd n) poly log(n).

Setting d to be sufficiently large, this time bound is O(n).
Finally, the computation of Mv involves computing E on the input x, and extracting a subset of t bits of

E(x). We already argued that the subset of t bits can be computed in O(n) time and size; the computation
of E can be also done in O(n) time and size, by Theorem 2.5. This completes the proof.

Next, we show that the same family of hash functions can also be implemented in a fully explicit way,
where each bit of the vectors defining the hash functions can be computed in polylog time.

Lemma 3.3 (Fully Explicit Perfect Linear Hash Functions). There is a d > 0 such that for all k(n), there
is a k-perfect linear hash family {Mv} (for every n) such that for all j ∈ [n], the j-th bit of the vector wv,i
definingMv can be computed in log(k) ·poly log(n) time and space. It follows thatMv(x) can be computed
in n · log(k) · poly log(n) time and log(k) · poly log(n) space on any input (v, x).

Proof of Lemma 3.3. Let W = {w1, . . . , w`} ⊆ {0, 1}n be the fully explicit 0.1-biased set constructed in
Theorem 2.4, where ` = poly(n). For all distinct x, y ∈ {0, 1}n, since W is 0.1-biased we have

Pr
v0∈[`]

[〈x,wv0〉 6= 〈y, wv0〉] ≥ 0.4.

Given a vector of t = O(log k) elements v = (v1, v2, . . . , vt) ∈ [`]t, we define

Mv(x) := (〈x,wv1〉, 〈x,wv2〉, . . . , 〈x,wvt〉) ∈ {0, 1}t.

Now let S ⊆ {0, 1}n satisfy |S| ≤ k. By an analogous expander-walk argument as in the proof of
Lemma 3.2, we conclude there is an O(t)-bit good seed v for S.

To compute the j-th bit of wvi , we first compute vi from the O(t)-bit seed in t · poly(log n) ≤ log(k) ·
poly(log n) time. SinceW is fully explicit, we can then compute the j-th bit ofwvk in poly(log n) time.

3.2 Kernelization

Analogous to the definition of sparsity for languages, define the sparsity of a function f : {0, 1}n → {0, 1}
to be |f−1(1)|. The main theorem of this section is that every sparse f has a corresponding “kernel” function
H taking only O(log |f−1(1)|) inputs which can be used to efficiently compute f .

Theorem 3.4. Let f : {0, 1}n → {0, 1} be any function of sparsity Ssparse, where log n ≤ log(Ssparse) ≤
n1−Ω(1). There is a functionH : {0, 1}Θ(logSsparse) → {0, 1} computable in nondeterministicO(n) time with
one oracle query to f , and a deterministic O(n)-time algorithm Odet computing f with O(logSsparse) bits
of advice, making O(n/ logSsparse) non-adaptive queries to H . Odet can also be computed by a O(n)-size
circuit with O(n/ logSsparse) H-oracle gates.

Proof. Let Ln = f−1(1) ⊆ {0, 1}n denote the language determined by f . Applying Lemma 3.2, let
Mv(x) : {0, 1}n → {0, 1}t be a hash function with length-t seed v, for some t = Θ(logSsparse), where
there exists a good seed v such that Mv is injective on Ln (all values Mv(x) are distinct, over all x ∈ Ln).
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The Function H . Now we define the function H by giving an algorithm for it.

Algorithm 1: The algorithm H .

1 Given an input h ∈ {0, 1}t, a seed v ∈ {0, 1}t, an integer i ∈ [n], and a bitstring w ∈ {0, 1}t:
2 Guess an x ∈ {0, 1}n. Set xj = 0 for j = n+ 1, . . . , n+ t.
3 If f(x) = 1, Mv(x) = h, and x[i...(i+t−1)] = w then accept else reject.

Note that guessing x and computing Mv(x) can be done in O(n) time. Therefore Algorithm 1 runs
in nondeterministic O(n) time with oracle f . By definition, it queries f at most once on any computation
path. Intuitively, H on (h, v, i, w) accepts if and only if there is an x such that f(x) = 1, the hash function
indexed by v hashes x to h, and the t-bit block x[i...(i+t−1)] equals the t-bit string w.

The Deterministic Oracle Algorithm Odet with Advice. Now we describe the deterministic oracle algo-
rithm Odet which computes f given oracle H .

Algorithm 2: The algorithm Odet.

1 Given an input x ∈ {0, 1}n, and given a good v ∈ {0, 1}t for Ln as advice:
2 Compute h = Mv(x).
3 Accept if for all i ∈ {1, 1 + t, 1 + 2t, . . . } ∩ [n], H(h, v, i, x[i...(i+t−1)]) = 1. Reject otherwise.

NoteOdet makesO(n/t) queries toH and each query has lengthO(t), so its total running time isO(n).
We can also hardwire the advice and compute Odet by an O(n)-size circuit with H-oracle gates.

If f(x) = 1, then every call to H accepts (by guessing x). If f(x) = 0, then by assumption on the
advice v, there is at most one x′ such that f(x′) = 1 andMv(x) = Mv(x

′), but we must have x[i...(i+t−1)] 6=
x′[i...(i+t−1)] for some i, so at least one of the H-oracle queries rejects.

If we simply replace the hash function Mv(x) in the above proof by the fully explicit version from
Lemma 3.3, then the resulting implementation of Odet runs in n · poly(t) time and poly(t) space.

Corollary 3.5. The oracle algorithmOdet in Theorem 3.4 can be implemented to run inO(n·poly logSsparse)
time and O(poly logSsparse) space with an oracle for H .

By a simple modification we obtain a randomized version of Theorem 3.4. It will be used later for
proving Theorem 1.2.

Theorem 3.6. Let f : {0, 1}n → {0, 1} be a function of sparsity Ssparse, where log n ≤ log(Ssparse) ≤
n1−Ω(1). There is a function H : {0, 1}Θ(logSsparse) → {0, 1}, computable in nondeterministic O(n) time
with one oracle query to f , and a randomizedO(n)-time algorithmOrand computing f (with one-sided error
probability 0.01) using O(log n) random bits, O(logSsparse) bits of advice, and only O(1) non-adaptive
oracle queries to H .

Proof sketch. We slightly modify the algorithms Odet and H from the proof of Theorem 3.4. Let E :
{0, 1}n → {0, 1}n/cr be the error correcting code from Theorem 2.5. Modify the function H so that it takes
another two input parameters i′ ∈ [n/cr], w′ ∈ {0, 1}, and have H reject if E(x)i′ 6= w′, i.e., the i′-th bit of
the code of x is not equal to w′.

This modified function H is still computable in nondeterministic O(n) time (with oracle f ), since E(x)
can be computed in linear time.

Our new algorithm Orand works as follows on an input x. Instead of querying H for O(n/t) times, we
only make O(1) (non-adaptive) queries. For each query, we pick a random i′ ∈ [n/cr], and send i′, Ev(x)i′

as the two new parameters to the H oracle.
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If f(x) = 1, then Orand(x) accepts with probability 1.
If f(x) = 0, since E has constant relative distance, every query to H is rejected with constant probabil-

ity. Repeating O(1) times (non-adaptively), the error probability is reduced to 0.01.

4 Hardness Magnification for All Sparse NP Languages

In this section, we prove our hardness magnification results for all sparse NP languages against various
computational models.

4.1 Hardness Magnification for Non-Uniform Models

We first prove Theorem 1.1 below, which is based on our kernelization results in Section 3.

Reminder of Theorem 1.1. Let C be any complexity class such that ∃ · C = C (e.g., C = NP, MA, or AM).
If there is an ε > 0 and a family of languages {Lβ} (indexed over β ∈ (0, 1)) such that Lβ is a 2n

β
-sparse

language in C and for all β:

1. Lβ /∈ Circuit[n1+ε], then C 6⊂ Circuit[nk] for all k.

2. Lβ /∈ U2-Formula-⊕[n1+ε], then C 6⊂ Formula[nk] for all k.

3. Lβ /∈ B2-Formula[n2+ε], then C 6⊂ Formula[nk] for all k.

4. Lβ /∈ U2-Formula[n3+ε], then C 6⊂ Formula[nk] for all k.

5. Lβ /∈ BP[n2+ε], then C 6⊂ BP[nk] for all k.

6. Lβ /∈ ACd+2[m][n1+ε], then C 6⊂ ACd[m][nk] for all k, for all constants d and even integers m ≥ 2.

7. Lβ /∈ TCd+O(log 1/ε)[n
1+ε], then C 6⊂ TCd[n

k] for all k, for all constants d.

Moreover, the converse of each item above also holds, except for the last two.

Proof. We will only prove the theorem for the case when C = NP. But it is easy to see that we only use the
property that ∃ · NP = NP.

The Circuit case. We first prove the case for Circuit, and then argue it for other computational models.
The ⇐ direction can be proved by a simple padding argument. Set ε = 1. For every β ∈ (0, 1), by

assumption, there is a language Lβ ∈ NP without n2/β size circuits. Then we can define another language
L′β ∈ NP as {x10(|x|1/β−|x|−1) | x ∈ Lβ}. Clearly, L′β does not have n1+ε = n2 size circuits, and it is

a 2n
β

-sparse language. This padding argument also works for other computational models (except the last
two items in the theorem statement).

The ⇒ direction is the hardness magnification part. Suppose NP ⊂ Circuit[nk] for a constant k. We
wish to show for any ε > 0, there is a β > 0 such that every 2n

β
-sparse NP language has n1+ε-size circuits.

Let ε > 0, and β = β(ε) to be specified later. Let L ∈ NP be a 2n
β

-sparse language and t = t(n) = nβ .
Applying Theorem 3.4, we define the “kernel” function Ht on Θ(t) input bits; by Algorithm 1 it is decided
in nondeterministicO(n) = poly(t) time using one Ln-oracle query. Note that Algorithm 1 actually returns
the answer of the Ln-oracle, provided that the other two conditions in Line 3 (Algorithm 1) hold. Hence,
Ht is in ∃ · NP = NP, and has an O(tk)-size circuit. Recall that Ln = OHtdet (in an input to Ht, we also use
O(log n) bits to specify the input length n), where Odet can be implemented by an O(n)-size circuit with
O(n/t) Ht-oracle gates. We replace the oracle gates by a small circuit for Ht, and obtain a circuit for Ln of
size O((n/t) · tk + n). Setting β = ε/k completes the proof.
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The AC0[m] case. The proof is very similar to the Circuit case. Suppose NP ⊂ ACd[m][nk] for a constant
k and an even integer m. To implement Odet, recall that the hash function Mv used by Odet is linear over
F2, so Mv(x) can be computed by O(t) XOR gates (which can be simulated by MODm gates when m is
even). The outputs of these gates are fed into O(n/t) Ht oracles in parallel, and then an AND is taken
over the outputs of the Ht oracles. Using O(n/t) copies of O(tk)-size ACd[m] circuits for Ht ∈ NP, we
obtain an ACd+2[m] circuit (with XOR gates at the bottom layer and an AND gate at the top) for Ln of size
O((n/t) · tk). Again, setting β = ε/k completes the proof.

The U2-Formula, B2-Formula, and U2-Formula-⊕ cases. The above proof for AC0[m] also works for
formulas. The differences in the sizes (n1+ε, n2+ε, or n3+ε) lie solely in the complexity of computing the
bottom XOR layer with these various models. An XOR gate over at most n input bits can be computed by a
U2-formula of size O(n2), by a B2-formula of size O(n), and XOR gates are “free” on the leaves of U2-⊕
formulas.

The branching program (BP) case. Again the proof is similar. Suppose NP ⊂ BP[nk]. Then Ht has
branching programs of size O(tk). Each bit fed to oracle Ht is either fixed, or an XOR over at most n input
bits, each of which can be computed by a branching program of size O(n). Therefore the output of every
Ht call can be computed by a branching program of size O(n · tk) on inputs of length n. Finally, the AND
of all O(n/t) Ht calls can be computed by a branching program of size O(n · tk · (n/t)). Again, setting
β = ε/k completes the proof.

The threshold circuit (TC0) case. Our argument is similar to the AC0 case. Suppose NP ⊂ TCd[n
k] for

a constant k. We replace the error correcting code used in Lemma 3.2 by the code E : {0, 1}n → {0, 1}n̂
from Theorem 2.6, and adjust Odet and H in Theorem 3.4 accordingly. Then Odet needs to compute E(x)
in order to get the hash value Mv(x). By Theorem 2.6, this could be done by a (d′ + 2)-depth TC0 circuit
with n1+c0φ−d

′
+o(1) wires for any constant d′ ≥ 2. Then we feed them into O(n/t) copies of TCd circuits

with tk wires each, and obtain a (d+ d′ + 3)-depth TC0 circuit for Odet with O((n/t)tk + n1+c0φ−d
′
+o(1))

wires. Setting β = ε/k and d′ = O(log 1/ε) completes the proof.

4.2 Hardness Magnification for Uniform Algorithms with a Small Amount of Advice

Next we observe that it in fact suffices to consider n1+ε time deterministic algorithm with nε bits of advice,
instead of n1+ε circuits in the Item (1) of Theorem 1.1. Formally, we have

Reminder of Theorem 1.2 Let C be any complexity class such that ∃ · C = C (e.g., C = NP, MA, or AM).
If there is an ε > 0 and a family of languages {Lβ} (indexed over β ∈ (0, 1)) such that Lβ is a 2n

β
-sparse

language in C and for all β,

• Lβ is not computable by an n1+ε-time nε-space deterministic algorithm with nε bits of advice, then
C 6⊂ Circuit[nk] for all k.

• Lβ is not computable by an O(n)-time randomized algorithm with nε bits of advice and O(log n)
random bits, then C 6⊂ Circuit[nk] for all k.

Moreover, the converse of each item above also holds.

Proof. We will only prove our theorem for the case when C = NP. But it is easy to see that we only use the
property that ∃ · NP = NP.
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To show the⇐ direction, we apply the same padding argument from the proof of Theorem 1.1, showing
that for all β > 0 there is a 2n

β
-sparse NP language L′β without n10-size circuits. Then L′β is not computable

by an O(n2)-time deterministic algorithm with O(n) bits of advice, otherwise (by a standard translation of
algorithms into circuits) L′β would have o(n10)-size circuits. Similarly, L′β is not computable by an O(n)-
time randomized algorithm with O(n) advice and O(log n) random bits, since derandomizing it would also
lead to o(n10)-size circuits.

To show the ⇒ direction, we prove the contrapositive. Suppose NP ⊂ Circuit[nk] for some constant
k. We need to show that for all ε > 0, there is a β > 0 such that all 2n

β
-sparse NP languages admit an

n1+ε-time deterministic algorithm with nε bits of advice, as well as an O(n) time randomized algorithm
(with constant error probability) with nε bits of advice and O(log n) random bits.

For any ε > 0, let β = β(ε) be a constant to be determined later. LetL be a 2n
β

-sparse NP language. Let
t = t(n) = Θ(nβ). Applying Theorem 3.4 and Corollary 3.5, we can define a “kernel” function Ht ∈ NP
on Θ(t) input bits, such that Ln = OHtdet, whereOdet is anO(n·tc)-timeO(tc)-space deterministic algorithm
(for some constant c > 0) with O(t) bits of advice, making O(n/t) queries to Ht. We hardwire the tk-size
circuit for Ht into advice, so the answer of each query can be computed in Õ(tk) time and space. We
set β = ε/(k + c), so Odet runs in n1+ε time and nε space with nε bits of advice. Similarly, applying
Theorem 3.6, we can obtain a randomized algorithm Orand solving L in O(n) time with nε advice bits and
O(log n) random bits.

The sparsity requirement can be further weakened, if we only ask for a quasi-linear circuit size bound.

Reminder of Theorem 1.4 If there is an ε ∈ (0, 1) and a 2n
ε
-sparse L ∈ NP which is not computable by

any Õ(n)-time deterministic algorithm with Õ(nε) advice, then NP 6⊂ SIZE(n · logc n) for all c ≥ 1.

Proof. We prove the constrapositive. Suppose NP ⊂ SIZE(n · logc n) for some c ≥ 1. We show that for all
ε ∈ (0, 1), every 2n

ε
-sparse language L ∈ NP can then be decided by an n · poly log(n)-time deterministic

algorithm with Õ(nε) bits of advice.
Let t = t(n) = Θ(nε). Applying Theorem 3.4, we can define another language H ∈ NP such that

Ln = OHtdet, where Odet is an O(n)-time deterministic algorithm with O(t) bits of advice, which makes
O(n/t) queries to Ht. We hardwire the Õ(t)-size circuit for Ht into our advice, so the answer of each query
can be computed in Õ(t) time. So Odet runs in O(n · poly log(t)) time with Õ(nε) bits of advice.

4.3 Hardness Magnification for Zero-Error Heuristics

A (zero-error) average-case algorithm A of a function f : {0, 1}n → {0, 1} is a deterministic algorithm that
always outputs a value in {0, 1, “?”}, such that: (1) A is never incorrect; (2) A outputs “?” with probability
at most 1/n over uniform random inputs.

Reminder of Theorem 1.9 Let C be any circuit class (e.g., C could be Circuit, Formula, AC0[6], etc.). If
there is an ε > 0 and a family of languages {Lβ} (indexed over β ∈ (0, 1)) such that for all β, Lβ is a
2n

β
-sparse NP language not solvable on average with zero error by C -circuits of size nε, then NP does not

have nk-size circuits in C , for all k.

Proof. Suppose NP ⊂ C [nk] for some k (i.e., NP has nk-size circuits from C ). It suffices to show that for
every ε > 0, there is a β > 0 such that every 2n

β
-sparse L ∈ NP can be solved on average with zero error

by C [nε].
For any ε > 0, let β = β(ε) = ε/(2k), and let t = t(n) = nβ + log n. Define function Ht(h)

as following: if there exists x ∈ Ln such that x[1...t] = h, then Ht(h) = 1; otherwise Ht(h) = 0
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(in an input to Ht, we also use O(log n) bits to specify the input length n). Note that H ∈ NP, so
Ht can be computed by a C -circuit of size tk < nε. To solve Ln(x) on average, we simply return 0 if
Ht(x[1...t]) rejects, and return “?” if Ht(x[1...t]) accepts. Obviously this algorithm is never incorrect. More-
over, Prx∈R{0,1}n [Ht(x[1...t]) accepts] ≤ 2n

β
/2t ≤ 1/n. Hence L can be solved on average with zero error

by C -circuits of size nε.

Reminder of Theorem 1.10 Let C be any circuit class (e.g., C = Circuit,Formula, or AC0[6]).

• Let s(m) ≥ m. If MCSP[s(m)] on input length n = 2m cannot be solved on average with zero error
by C [poly(s(m))], then NP 6⊂ C [poly(n)].

• Let p(n) ≥ log n. If MKtP[p(n)] cannot be solved on average with zero error by C [poly(p(n))], then
EXP 6⊂ C [poly(n)].

Proof. Our proof is similar to Theorem 1.9. We first prove the MCSP case. Note that MCSP[s(m)] has
sparsity Ssparse = 2100s(m) log s(m). Let t = logSsparse + log n. Define function H(h) as following: if there
exists x ∈ MCSP[s(m)] such that x[1...t] = h, then H(h) = 1; otherwise H(h) = 0 (in an input to Ht, we
also useO(log n) bits to specify the input length n). Observe thatH ∈ NP, as we can guess a witness circuit
C of size s(m), and check whether C(i) = hi for all 1 ≤ i ≤ t. So Ht can be computed by a C -circuit
of size poly(t). Thus by the same argument in the proof of Theorem 1.9, we can decide MCSP[s(m)] on
average with zero error by C -circuits of size poly(s(m)).

For the MKtP case, the proof is similar as above. We define H in the same way, and simply note that H
is solved in deterministic exponential time by straightforwardly enumerating and simulating every possible
Turing machine.

5 Better Hardness Magnification for search-MCSP and MKtP

In this section we discuss hardness magnification for search-MCSP[s(m)] and search-MKtP[p(n)]. To work
with circuits and formulas, we assume the output is a fixed-length string for convenience. We assume the
output for search-MCSP[s(m)] is always an (L + 1)-length string where L = 100s(m) log s(m), being
either 0L+1 (for NO instance) or 1〈Cpadded〉 where 〈Cpadded〉 = 〈C〉10 · · · 0 is the (padded) description of a
witness circuit. Similarly we assume the output for search-MKtP[p(n)] is either 0L+1 or 1〈Mpadded〉 where
|〈Mpadded〉| = L = p(n) + 1.

Reminder of Theorem 1.6 Let C ∈ {⊕P,PP,PSPACE}, and m ≤ s(m) ≤ 2(1−Ω(1))m. Let the input
length n = 2m.

1. If search-MCSP[s(m)] /∈ Circuit[n · poly(s(m))], then C 6⊂ Circuit[poly(n)].

2. If search-MCSP[s(m)] /∈ U2-Formula-⊕[n · poly(s(m))], then C 6⊂ Formula[poly(n)].

3. If search-MCSP[s(m)] /∈ B2-Formula[n2 · poly(s(m))], then C 6⊂ Formula[poly(n)].

4. If search-MCSP[s(m)] /∈ U2-Formula[n3 · poly(s(m))], then C 6⊂ Formula[poly(n)].

5. If search-MCSP[s(m)] /∈ BP[n2 · poly(s(m))], then C 6⊂ BP[poly(n)].

6. If search-MCSP[s(m)] /∈ ACd+2[m∗][n · poly(s(m))], then C 6⊂ ACd[m∗][poly(n)], for all constants
d and even integers m∗ ≥ 2.
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7. If there is an ε > 0 such that, for all small enough β > 0, search-MCSP[2βm] /∈ TCd+O(log 1/ε)[n
1+ε],

then C 6⊂ TCd[poly(n)], for all constants d.

Moreover, all above implications also hold for C = EXP, with search-MCSP replaced by search-MKtP.

5.1 Results for search-MKtP

Using ideas similar to Theorem 3.4, we first prove a lemma showing that search-MKtP can be solved with
short non-adaptive queries to an oracle in EXP. Prior work [MMW19] proved a similar result requiring
(highly) adaptive query access; as far as we can tell, their approach cannot be used to prove tight hardness
magnification results for more restricted classes such as branching programs and Boolean formulas, as in
Theorem 1.6.

Lemma 5.1. There exists a language H ∈ EXP (specified by Algorithm 3) such that, for any p(n) ≥
log n, there is a deterministic O(n · p(n))-time algorithm Odet computing search-MKtP[p(n)] (specified by
Algorithm 4) with oracle access to H (only making non-adaptive queries to Ht where t = Θ(p(n))) with
O(p(n)) bits of advice.

Proof. Note that MKtP[p(n)] is a Ssparse-sparse language for some Ssparse = 2Θ(p(n)). Our proof is similar
to that of Theorem 3.4.

We apply Lemma 3.2 and define the hash function Mv : {0, 1}n → {0, 1}t specified by t-bit seed
v, where t = Θ(logSsparse) = Θ(p(n)). There is a good seed v such that for any two different x, y ∈
MKtP[p(n)], Mv(x) 6= Mv(y).

The function H . Let L = p(n) + 1. Now we define the function H analogous to Algorithm 1.

Algorithm 3: The algorithm H specialized for search-MKtP[p(n)].

1 Given an input h ∈ {0, 1}t, a seed v ∈ {0, 1}t, an integer i ∈ [n], a bitstring w ∈ {0, 1}t, and an
integer j ∈ {0, 1, . . . , L}.

2 By enumerating every Turing Machine M with k := p(n)− |〈M〉| ≥ 0, find the lexicographically
smallest 〈M〉 such that within 2k steps M outputs x ∈ {0, 1}n satisfying
Mv(x) = h, x[i...(i+t−1)] = w. Accept if 〈Mpadded〉j = 1. Reject if M is not found or
〈Mpadded〉j = 0.

The parameter j refers to the index for the output string of search-MCSP. We assume 〈Mpadded〉0 = 1.
Note that n and p(n) should also be considered as part of the input to H . It’s easy to see that H runs in

deterministic 2O(p(n)) time on input length Θ(p(n)), so H ∈ EXP.

The Deterministic Oracle Algorithm Odet with Advice. Next we describe the deterministic oracle algo-
rithm Odet which computes search-MKtP. OHdet takes O(p(n)) bits of advice, runs in O(Ln) = O(n · p(n))
time, and makes O(Ln/t) = O(n) non-adaptive queries to H . For NO instance, the output is 0L+1. For
YES instance it outputs 1〈Mpadded〉 corresponding to the lexicographically smallest witness Turing Machine
〈M〉.

Proof of Theorem 1.6 (search-MKtP). We only prove the case for C = EXP and Circuit. For other com-
putational models, our argument is similar to the proof of Theorem 1.1 (note that for the TC0 result we need
to use the code from Theorem 2.6).

We prove the contrapositive. Suppose EXP ⊂ P/poly. We want to show search-MKtP[p(n)] admits
n · poly(p(n))-size circuits. Recall that the algorithm H defined in Lemma 5.1 is in EXP, so H has tk-
size circuit on input length t, for some constant k. For t = t(n) = Θ(p(n)), by Lemma 5.1, OHtdet solves
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Algorithm 4: The algorithm Odet specialized for search-MKtP[p(n)].

1 Given an input x ∈ {0, 1}n, and oracle access to H .
2 Given a good seed v ∈ {0, 1}t for MKtP[p(n)] as advice.
3 for j ∈ {0, 1, . . . , L} do
4 Compute h = Mv(x).
5 if for all i ∈ {1, 1 + t, 1 + 2t, . . . } ∩ [n], H(h, v, i, x[i...(i+t−1)], j) = 1 then
6 Output 1.

7 else
8 Output 0.

search-MKtP[p(n)], where Odet is an O(n · p(n))-time deterministic algorithm with O(t) bits of advice,
which makes O(n) non-adaptive queries to oracle Ht.

We can hard-wire the O(t) bits of advice into the circuit. This yields an O(p(n)k · n + n · p(n))-size
circuit for search-MKtP[p(n)].

5.2 Results for search-MCSP

Recall that n = 2m. First we prove a lemma analogous to Lemma 5.1.

Lemma 5.2. There exists a languageH ∈ (Σ2P)⊕P (specified by Algorithm 5) such that, for any s(m) ≥ m,
there is a deterministic n ·poly(s(m))-time algorithm Odet computing search-MCSP[s(m)] with oracle ac-
cess to H (only making non-adaptive queries to Ht where t = Θ(s(m) log s(m))) with O(s(m) log s(m))
bits of advice.

Proof. Note that MCSP[s(m)] is an Ssparse-sparse language where log(Ssparse) = Θ(s(m) log s(m)). We
apply Lemma 3.3 (fully explicit version) and define hash function Mv : {0, 1}n → {0, 1}t specified by
length-t seed v, where t = Θ(s(m) log s(m)). There is a good seed v such that for any two different
x, y ∈ MCSP[s(m)], Mv(x) 6= Mv(y).

The Function H . Now we define the function H . Note that m and s(m) should also be considered
as part of the input to H . Let L = 100s(m) log s(m). For a circuit C with m input bits, let tt(C) =
C(1)C(2) . . . C(2m) denote the truth table of C.

Algorithm 5: The algorithm H specialized for search-MCSP[s(m)].

1 Given an input h ∈ {0, 1}t, a seed v ∈ {0, 1}t, an integer i ∈ [n], a bitstring w ∈ {0, 1}t, and an
integer j ∈ {0, 1, . . . , L}.

2 Guess a circuit C of size s(m) with m input bits. Accept if Mv(tt(C)) = h,
(tt(C))[i...(i+t−1)] = w, 〈Cpadded〉j = 1, and for every C ′ of size s(m) that is lexicographically
smaller than C, Mv(tt(C

′)) 6= h. Reject otherwise.

By Lemma 3.3, for any k ∈ [t],Mv(tt(C))k = 〈tt(C), wv,k〉, where the j-th bit ofwv,k can be computed
in poly(t) time. Then we can compute this dot product using a ⊕P oracle taking poly(t) bits of input. It
simply counts (modulo 2) the number of j ∈ [n] such that C(j) = (wv,k)j = 1. Hence H ∈ (Σ2P)⊕P.

The Deterministic Oracle Algorithm Odet with Advice. The algorithm Odet is essentially the same
as in the proof of Lemma 5.1 for search-MKtP (see Algorithm 4). It takes O(t) bits of advice, runs in
O(L · n poly(t)) ≤ n · poly(t) time, and makes O(Ln/t) = O(n) non-adaptive queries to Ht. For NO
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instance, the output is 0L+1. For YES instance it outputs 1〈Cpadded〉 corresponding to the lexicographically
smallest witness circuit C.

Proof of Theorem 1.6 (search-MCSP).

C = ⊕P. We prove the case for Circuit. For other computational models, our argument is similar to the
proof of Theorem 1.1. (Note that for the TC0 result we need to use the code E from Theorem 2.6. To make
Lemma 5.2 work, we use the fact that E is ⊕P-fully explicit, and that ⊕P⊕P = ⊕P.)

Note that (Σ2P)⊕P ⊆ BPP⊕P ⊂ P⊕P/poly = ⊕P/poly, where the first inclusion follows from Fortnow’s
proof [For09] of Toda’s first lemma [Tod91].

Suppose ⊕P ⊂ Circuit[poly(n)]. Then (Σ2P)⊕P ⊂ ⊕P/poly ⊆ Circuit[poly(n)], so the algorithm
H defined in Lemma 5.2 has tk-size circuit on input length t, for some constant k. Let t = t(n) =
Θ(s(m) log s(m)). Then using the same argument as in the proof for search-MKtP in the previous section,
we can show that search-MCSP[s(m)] admits n · poly(s(m))-size circuits.

C = PP. We prove the case for Formula. For other computational models the proof follows similarly.
Suppose P ⊆ PP ⊂ Formula[poly(n)]. Then PPP ⊂ P/poly, by hardwiring polynomial-sized formulas

simulating the PP oracle, as advice. Hence ⊕P ⊆ PPP ⊂ P/poly. Since P ⊂ Formula[poly(n)], we also
have P/poly ⊂ Formula[poly(n)]. Therefore ⊕P ⊂ Formula[poly(n)]. The rest of the proof follows from
the C = ⊕P case.

C = PSPACE. The proof directly follows from ⊕P ⊆ PSPACE.

We can also prove a result for uniform deterministic algorithms with a small amount of advice similar
to Theorem 1.2.

Reminder of Theorem 1.8

• Let C ∈ {⊕P,PP,PSPACE}, and m ≤ s(m) ≤ 2(1−Ω(1))m. If search-MCSP[s(m)] on input length
n = 2m is not computable by an n · poly(s(m)) time poly(s(m)) space deterministic algorithm with
poly(s(m)) bits of advice, then C 6⊂ Circuit[poly(n)].

• Let log n ≤ p(n) ≤ n1−Ω(1). If search-MKtP[p(n)] is not computable by an n · poly(p(n)) time
poly(p(n)) space deterministic algorithm with poly(p(n)) bits of advice, then EXP 6⊂ Circuit[poly(n)].

Proof sketch. We slightly modify the proof for Theorem 1.6 in the previous two sections: use the hash
function Mv from Lemma 3.3 (fully explicit version), so that Odet can compute Mv(x) using small space
and small advice (as in the proof of Theorem 1.2).

6 Open Problems

Our results suggest several further directions in hardness magnification to study. Here we highlight two.

• First, the most interesting open question is whether Theorem 1.1 or Theorem 1.2 can be applied
to prove actual circuit lower bounds. Along the same lines, are there any other natural sparse NP
languages for which one can prove some concrete lower bounds?
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• Second, is it possible to show hardness magnification results for “denser” variants of MCSP[s(m)] or
MKtP[s(m)], such as MCSP[2m/m3]?5 The hardness magnification in this work and [OS18, OPS19,
MMW19] crucially depend on the condition that s(m) is 2o(m) or smaller.
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A Time Hierarchy Theorem Made Sparse

Here we show that an adaptation of the classical deterministic time hierarchy theorem [HS65] already gives
us the required lower bound in Theorem 1.1, although it is (unfortunately) not as sparse as we would like
for lower bound applications.

Reminder of Theorem 1.3 For all ε ∈ (0, 1), there is a language L decidable in n1+ε · poly log(n) time
that is (2n

ε · n)-sparse but not computable in n1+ε time with nε bits of advice.

Proof. This is a simple adaptation of the classical time hierarchy theorem.
Consider the following algorithm M : given an input x ∈ {0, 1}n, it treats the first nε bits as an advice

α ∈ {0, 1}nε , and the next log n bits as an integer i ∈ [n]. If the rest n − nε − log n bits are not all-zero,
M outputs 0 immediately. Otherwise, M(x) simulates Mi (the i-th RAM machine) on the input x for n1+ε

steps, if Mi terminates with an output t, it outputs 1− t, and otherwise outputs 0.
Now, for any n1+ε time deterministic algorithm with advice sequence {αn}n∈N such that |αn| = nε,

suppose it is implemented by the i-th RAM machine. Then for sufficiently large input length n, we know
that for the input zn = αn ◦ bin(i) ◦ 0(n−nε−logn) (bin(i) is the binary representation of i), we have that
M(zn) = 1 − Mi(zn) by the way M is constructed. Therefore, M cannot be computed by any n1+ε

deterministic algorithm with nε bits of advice.
It is easy to see that the simulation runs in n1+ε · poly log(n) time, and L is 2n

ε · n sparse.
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B Time-space Trade-off Lower Bounds Made 1-Sparse

In this section we prove Theorem 1.5 (restated below). The proof follows the same structure of [Wil07,
Section 4.2], with the observation that the proofs there also work with 1-sparse languages.

Reminder of Theorem 1.5 For every c < φ, there is a 1-sparse language L ∈ coNTIME[n1+o(1)], such
that L /∈ TS[nc, no(1)]. Here φ = 1+

√
5

2 = 1.618 · · · is the golden ratio.

Let 1-SPARSE denote the class of 1-sparse languages (languages with at most one yes-instance per input
length). Let DTS[t] denote TS[t1+o(1), to(1)]. For a complexity class C and a time constructible function f ,
define (∃f(n))C to be the class of problems that can be solved by some nondeterministic machine N that,
on input x, writes an f(n)1+o(1) bit string nondeterministically to a special tape, then feeds the input 〈x, y〉
to a machine from class C. The class (∀f(n))C is defined similarly (with co-nondeterministic machines).

We first show that the “No Complementary Speedup” theorem [CS76] (see also [Wil07, Theorem 3.3.1])
can be adapted to 1-sparse languages.

Lemma B.1 (“No Complementary Speedup” for 1-sparse languages). For time constructible t(n) ≥ n,

1-SPARSE ∩ coNTIME[t] 6⊆ NTIME[o(t)].

Proof Sketch. On unary input 1n, diagonalize against the NTIME machine running in time t(n), encoded
by n.

Next, we show that the “Speedup lemma” [FvM00] can also be adapted to 1-sparse languages.

Lemma B.2 (“Speedup lemma” for 1-sparse languages). For b = tΩ(1),

1-SPARSE ∩ DTS[t] ⊆ (∃b)(1-SPARSE ∩ (∀ log t)DTS[t/b]).

Proof Sketch. For a 1-sparse language L solved by a machine ML in DTS[t], on an input x we guess b
strings s1, . . . , sb of length to(1), where si is intended to be the memory state of ML at the (i · t/b)-th step
of ML running on x. (Without loss of generality, we assume b divides t.) Since L is 1-sparse and ML

is deterministic, there exists at most one sequence (x, s1, . . . , sb) such that si’s are valid memory states
leading to the accepting state, given input x. To check that a guessed sequence is correct, we universally
guess i = 1, . . . , b and simulate the computation from si−1 for t/b steps to see if si is reached.

With the above adapted speedup lemma, we can show that the “Conditional Speedup Theorem” of [Wil06,
Wil07] can also be adapted to hold for 1-sparse languages.

Lemma B.3 (adaptation of [Wil07, Lemma 4.2.1]). Let c ∈ (1, 2). Define the sequence d(1) := 2, d(k) :=
1 + d(k − 1)/c. If 1-SPARSE ∩ coNTIME[n1+o(1)] ⊆ DTS[nc] then for all k ≥ 1,

1-SPARSE ∩ DTS[nd(k)] ⊆ (∃n)
(
1-SPARSE ∩ (∀ log n)DTS[n]

)
.

Proof. We proceed by induction on k. The k = 1 case 1-SPARSE ∩ DTS[n2] ⊆ (∃n)(1-SPARSE ∩
(∀ log n)DTS[n]) directly follows from the Speedup Lemma (Lemma B.2). For the inductive step, as-
sume 1-SPARSE ∩ coNTIME[n1+o(1)] ⊆ DTS[nc] and 1-SPARSE ∩ DTS[nd(k)] ⊆ (∃n)(1-SPARSE ∩
(∀ log n)DTS[n]). Observe that for c < 2, d(k) ≥ c. By padding and the inductive hypothesis,

1-SPARSE∩ coNTIME[nd(k)/c] ⊆ 1-SPARSE∩DTS[nd(k)] ⊆ (∃n)(1-SPARSE∩ (∀ log n)DTS[n]). (1)

By the Speedup Lemma (Lemma B.2),

1-SPARSE ∩ DTS[n1+d(k)/c] ⊆ (∃n)(1-SPARSE ∩ (∀ log n)DTS[nd(k)/c]),
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where the (∀ log n)DTS[nd(k)/c] part corresponds to a coNTIME computation that takes an input of length
n1+o(1) (the input together with a list of guessed memory states) and runs in nd(k)/c+o(1) time. By equa-
tion (1) above, this co-nondeterministic computation can be replaced with a Σ2 computation running in
n1+o(1) time. Therefore

1-SPARSE ∩ DTS[n1+d(k)/c] ⊆ (∃n)(∃n)(1-SPARSE ∩ (∀ log n)DTS[n])

⊆ (∃n)(1-SPARSE ∩ (∀ log n)DTS[n]).

Theorem B.4 (“Conditional Speedup” for 1-sparse languages, adapting [Wil06], [Wil07, Theorem 4.2.1]).
Let c ∈ (1, 2). If 1-SPARSE ∩ coNTIME[n1+o(1)] ⊆ DTS[nc] then for all ε > 0,

1-SPARSE ∩ DTS[n
c
c−1
−ε] ⊆ (∃n)

(
1-SPARSE ∩ (∀ log n)DTS[n]

)
.

Proof Sketch. The proof directly follows from the observation that sequence d(k) defined in Lemma B.3
monotonically converges to c/(c− 1).

Finally, we are ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let c ∈ (1, φ), and assume for contradiction that

1-SPARSE ∩ coNTIME[n1+o(1)] ⊆ DTS[nc].

For any ε > 0, by padding,

1-SPARSE ∩ coNTIME[n
1
c−1
−ε] ⊆ 1-SPARSE ∩ DTS[n

c
c−1
−cε].

By Theorem B.4,

1-SPARSE ∩ DTS[n
c
c−1
−cε] ⊆ (∃n)

(
1-SPARSE ∩ (∀ log n)DTS[n]

)
⊆ (∃n)

(
1-SPARSE ∩ coNTIME[n1+o(1)]

)
.

Combining the above two, we have

1-SPARSE ∩ coNTIME[n
1
c−1
−ε] ⊆ (∃n)

(
1-SPARSE ∩ coNTIME[n1+o(1)]

)
⊆ (∃n)DTS[nc] ⊆ NTIME[nc],

which contradicts “No Complementary Speedup” (Lemma B.1) when 1/(c−1)−ε > c. For c ∈ (1, φ), set-
ting ε = (1/(c−1)−c)/2 > 0 suffices. Hence, there is a 1-sparse languageL solvable in coNTIME[n1+o(1)],
such that L /∈ DTS[nc].

We cannot seem to extend the full argument of [Wil07, Wil08] to improve the time lower bound to
n2 cos(π/7). Moreover, we only seem to be able to prove our time-space lower bound for 1-sparse languages
in coNP, rather than sparse languages in NP. Given the results of this paper, we consider both of these
stumbling blocks to be interesting open problems which may have further consequences for hardness mag-
nification.
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