
On Hitting-Set Generators for Polynomials that Vanish
Rarely

Dean Doron∗, Amnon Ta-Shma†, and Roei Tell‡

September 9, 2019

Abstract

We study the following question: Is it easier to construct a hitting-set generator
for polynomials p : Fn → F of degree d if we are guaranteed that the polynomial
vanishes on at most an ε > 0 fraction of its inputs? We will specifically be inter-
ested in tiny values of ε � d/|F|. This question was first asked by Goldreich and
Wigderson (STOC 2014), who studied a specific setting geared for an application,
and another specific setting was later studied by the third author (CCC 2017).

In this work our main interest is a systematic study of the problem itself, in its
general form, and we prove results that significantly extend and improve the two
previously-known results. Our contributions are of two types:

• Over fields of size 2 ≤ |F| ≤ poly(n), we show that the seed length of any
hitting-set generator for polynomials of degree d ≤ n.49 that vanish on at most
ε = |F|−t of their inputs is at least Ω ((d/t) · log(n)).

• Over F2, we show that there exists a (non-explicit) hitting-set generator for
polynomials of degree d ≤ n.99 that vanish on at most ε = |F|−t of their inputs
with seed length O ((d− t) · log(n)). We also show a polynomial-time com-
putable hitting-set generator with seed length O

(
(d− t) ·

(
2d−t + log(n)

))
.

In addition, we prove that the problem we study is closely related to the follow-
ing question: “Does there exist a small set S ⊆ Fn whose degree-d closure is very
large?”, where the degree-d closure of S is the variety induced by the set of degree-
d polynomials that vanish on S. We then use our lower bounds on hitting-sets for
polynomials that vanish rarely to deduce lower bounds for this question.

∗Department of Computer Science, Stanford University. Email: ddoron@stanford.edu. This work
was done while being at Tel-Aviv University (supported by the Israel science Foundation grants no.
994/14 and 952/18 and by Len Blavatnik and the Blavatnik Family foundation) and at the University
of Texas at Austin (supported by NSF Grant CCF-1705028).
†The Blavatnik School of Computer Science, Tel-Aviv University. Email: amnon@tau.ac.il. Sup-

ported by ISF grant 18/952 and by Len Blavatnik and the Blavatnik Family foundation.
‡Department of Computer Science and Applied Mathematics, Weizmann Institute of Science. Email:

roei.tell@weizmann.ac.il. Supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No. 819702).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 119 (2019)

Contents

1 Introduction 1
1.1 Context and previous work . 2
1.2 Our main results . 3
1.3 An application: Small sets with large degree-d closures 5

2 Overview of our techniques 7
2.1 Combinatorial lower bounds from low-degree dispersers 7
2.2 Explicit upper bound over F2 . 11

3 Preliminaries 12

4 Randomized tests 15

5 Upper bounds over F2 18

6 Lower bounds over general finite fields 20
6.1 Sampling from the seeds of a disperser . 20
6.2 The main lower bound: Proof of Theorem 1 23
6.3 Improved lower bounds in two special cases 27

7 Small sets with a large degree-d closure 29

Appendix A Next-element unpredictability over large alphabets 34

i

1 Introduction

Let Pn,q,d denote the set of all polynomials Fn → F of total degree d over the field of
size q = |F|. We think of n as sufficiently large, and of the degree d and the field size q
as functions of n. For simplicity, throughout the paper we assume that d < n.1

A Hitting-Set Generator (HSG) for Pn,q,d is a function H : {0, 1}` → Fn such that for
every non-zero polynomial p ∈ Pn,q,d there exists s ∈ {0, 1}` satisfying p(H(s)) 6= 0
(see Definition 12); in other words, every non-zero polynomial p ∈ Pn,q,d does not
vanish on at least one element in the hitting-set S =

{
H(s) : s ∈ {0, 1}`

}
. We say that H

has density ρ > 0 if for every non-zero polynomial p ∈ Pn,q,d it holds that p does not
vanish on at least ρ · |S| elements of S. The two main measures of efficiency for HSGs
are the seed length ` (equivalently, the size of S as a multiset) and the complexity of H
as a function (i.e., the complexity of generating an element of S given its index s).

A standard linear-algebraic argument yields a lower bound of Ω (d · log (n/d)) on
the seed length of any HSG for degree-d polynomials Fn → F (for a proof see Fact 16).
Complementing this, a standard probabilistic argument shows that there exists a HSG
with density Ω(q−d/(q−1)) and seed length O (d · log(n/d) + log log(q)) for such poly-
nomials (see Fact 17). Naturally, the probabilistic upper-bound does not guarantee that
the function H is efficiently-computable. Thus, the main open problem in this context
is to construct efficiently-computable HSGs with seed length that matches the known
lower bound. This problem (as well as a variant that refers to pseudorandom generators
as in Definition 15) has attracted a significant amount of attention over the years (see,
e.g., [NN93; LVW93; LV98; KS01; Bog05; BV10; BHS08; Lov09; Vio09b; Lu12; CTS13;
ST18], and the related survey by Viola [Vio09a]).

Several years ago, Goldreich and Wigderson [GW14, Section 5] considered a relaxed
version of the HSG problem. In general terms, what they asked is the following:

Does the HSG problem become easier if we are guaranteed that the polyno-
mial vanishes rarely (i.e., has very few roots)?

Note that, intuitively, we expect that the relaxed HSG problem will indeed be easier:
This is both since there are less polynomials that vanish rarely (than arbitrary polyno-
mials), and since for any such polynomial p, almost all inputs will “hit” p.

In their original paper, Goldreich and Wigderson considered a specific instance of
this problem, geared for a particular application (see Section 1.2 for details). However,
our main interest is in the problem itself, in its general form. To be more formal, let
Pn,q,d,ε be the set of polynomials p ∈ Pn,q,d such that Prx∈Fn [p(x) = 0] ≤ ε. The two
main questions we consider in this context are:

• The combinatorial question: What is the minimal size of a hitting-set for Pn,q,d,ε?
Equivalently, we ask what is the minimal seed length of any HSG for Pn,q,d,ε. This
question is combinatorial since it refers to the existence of a HSG, regardless of its
computational complexity.

1Most of our results also carry on to the setting of d > n, albeit with less “clean” parametrizations.

1

• The computational question: For which values of ε > 0 can we construct a
HSG for Pn,q,d,ε with small seed length that will be efficiently-computable? In other
words, can we simultaneously optimize not only the seed length but also the com-
putational complexity of HSGs for Pn,q,d,ε?

1.1 Context and previous work

Let us first delineate some trivial values for ε. To do so, first recall that we expect
a random polynomial to vanish on q−1 of its inputs. Now, by the Schwartz-Zippel
lemma, any non-zero p ∈ Pn,q,d has at most an ε = d/q fraction of roots; this bound is
quite good when q is large compared to d, and in general, for abitrary d and q, any non-
zero polynomial vanishes on at most 1− δ of its inputs, where δ ≥ q−d/(q−1) denotes
the relative distance of the Reed-Muller code of degree d over Fq. Therefore, the value
ε = 1− δ represents the general case (i.e., the case of hitting any non-zero polynomial).
Remarkably, we also have a minimal non-zero value that ε can have: By a theorem of
Warning [War35], every polynomial in Fn

q → Fq of degree d that vanishes somewhere
vanishes on at least a q−d fraction of its inputs. Therefore, hitting polynomials that
vanish on ε < q−d fraction of their inputs is trivial, since such polynomials have no
zeroes. It will be useful to denote ε = q−t from now on.

q−d q−1 1− δ

Figure 1: The two extremal values of ε (i.e., ε = q−d and ε = 1− δ) and the expected
ε = q−1 for a random polynomial. (The parameter δ denotes the relative distance of the
corresponding q-ary Reed-Muller code RM(n, d).)

Referring to the combinatorial question, the standard probabilistic argument men-
tioned before shows there exists a HSG forPn,q,d,ε with seed length O(log log(|Pn,q,d,ε|)).
Thus, the combinatorial question is intimately connected to the long-standing open
problem of determining the weight distribution of the Reed-Muller code, i.e., counting the
number of polynomials in Pn,q,d that vanish on precisely ε > 0 of their inputs, for every
ε > 0. The latter problem has been studied since the late 60’s (see, e.g., [BS69; KT70]),
but is currently settled only for d = 2 (see [SB70; McE69]). Only recently have general
results been obtained for d > 2, and the bounds in these results are asymptotic (rather
than precise bounds) and hold only over F2 (see [KLP12; ASW15]). More generally, this
problem is a special case of the well-known problem of studying weight distributions
of (classes of) linear codes, which is typically tackled using weight enumerator polyno-
mials (for relevant background see, e.g., [MS77, Chapter 5]). Note, however, that the
weight distribution problem is more general, since it refers to all non-trivial values of
ε > 0, whereas in our setting we focus only on tiny values of ε.

Another related line of works focuses on structural properties of biased polynomials.
Fixing a polynomial p : Fn → F and looking at the distribution over F that is obtained
by evaluating p at a random point, we can ask whether this distribution is close to uni-

2

form, or whether it is far from uniform, in which case we call the polynomial biased. A
sequence of works showed that biased polynomials are very “structured”, in the sense
that they can be determined by a relatively-small number of polynomials of lower de-
gree (see [GT09; KL08; HS10; Bha14; BHT15; BBG16]). Our setting is much more specific
than the setting in these works, since their assumption is only that the polynomial is bi-
ased, whereas our assumption is that the polynomial is biased in a very specific manner
(i.e., one output-value has tiny weight ε > 0). Thus, the results in these works typically
do not seem sufficiently strong to be useful in our more specific setting.2

Goldreich and Wigderson [GW14, Section 5], who were motivated by a specific ap-
plication in circuit complexity (derandomization ofAC0[⊕]), constructed a polynomial-
time computable HSG for the setting of q = 2 and ε = 2−(d−O(1)) = O(2−d) (for details
see Section 1.2). Thus, they gave an upper-bound for the computational question, which
holds only for F2 polynomials with extremely few roots. In a subsequent work by the
third author [Tel19], two combinatorial lower bounds were proved for the setting of
q = poly(n) and ε = q−O(1) (again, for details see Section 1.2). Thus, the subsequent
work showed lower bounds for the combinatorial question, which hold only for polyno-
mials over Fpoly(n) with a relatively-large number of roots (i.e., only mildly less roots
than the expected value of ε = q−1). In both previous works, ad-hoc arguments were
used to obtain the corresponding results.

1.2 Our main results

Our first main result is a general lower bound for the combinatorial problem. For con-
text, in [Tel19] it was shown that when q = poly(n), any HSG for Pn,d,q,q−O(1) requires a

seed of length Ω(dΩ(1) · log(n/dΩ(1))); and any HSG with constant density for Pn,d,q,q−1

requires a seed of length Ω(d · log(n/d)). Thus, both previous lower bounds referred
to the setting of q = poly(n) and of ε = q−O(1) (i.e., t = O(1)).

The following result shows a lower bound that is both significantly stronger, and –
more importantly – applies to a far broader parameter setting. In particular, the follow-
ing result applies to a general q ≤ poly(n) and to values of ε = q−t almost up to the
extreme value of ε = q−d, and gives a lower bound of Ω((d/t) · log(n)):

Theorem 1 (lower bound over general fields) For every constant c > 1 there exists a
constant γ > 0 such that the following holds. For every n, q, d, t ∈ N such that 2 ≤ q ≤ nc is
a prime power, d ≤ n.49, and t ≤ γ · d, any HSG with density ρ = 2q−t for Pn,q,d,q−t requires
a seed of length Ω ((d/t) · log(n)).

Before parsing and interpreting the lower bound in Theorem 1, note first that the
lower bound only applies to HSGs with (small) positive density ρ > 0; this is similar
to the previously-known lower bound for q = poly(n) and t = 1. Nevertheless, the
density requirement in our result (i.e., ρ = 2q−t) is very mild, and in some settings it is

2One exception is the field F2, in which the notions of bias and of “vanish rarely” converge. Indeed,
the proofs of our results for F2 use insights developed in this sequence of works.

3

so small that ρ · |S| < 1 and so the density requirement can be completely removed.3

Moreover, recall that in our setting the polynomials evaluate to non-zero on almost all
of Fn; thus, Theorem 1 implies a lower bound for the seed length of any Pseudorandom
Generator (PRG) for such polynomials (see Section 3.2).

Now let us parse the meaning of the lower bound in Theorem 1. For comparison,
recall that there exists a HSG for all polynomials of degree d ≤ n.49 with seed length
O(d · log(n)). Theorem 1 tells us that the relaxation of only requiring to “hit” polynomi-
als that vanish with probability q−t can “buy” a factor of at most 1/t in the seed length.
In particular, there does not exist a significantly smaller hitting-set for polynomials that
vanish with probability q−O(1). Perhaps surprisingly, this is also true for polynomi-
als that vanish with probability q−do(1)

(since the lower bound remains almost linear in
d · log(n)). Only for polynomials that vanish with probability q−dΩ(1)

does our lower
bound imply that a significantly smaller hitting-set might exist; and at an “extreme”
value of q−Ω(d), our lower bound does not rule out a polynomial-sized hitting-set.

For technical statements that include various extensions and improvements of The-
orem 1 (and in particular also hold for polynomials of higher degree n.49 < d ≤ γ · n),
see the beginning of Section 6, and specifically Theorems 30, 35, and 36.4

Now, still referring to the combinatorial question, we observe that a result of Kauf-
mann, Lovett, and Porat [KLP12], which upper-bounds the number of biased F2 poly-
nomials (i.e., analyzes the weight distribution of the Reed-Muller code over F2), yields
a corresponding existential upper-bound. Specifically:

Theorem 2 (upper-bound over F2, following [KLP12]) Let n, d, t ∈N where d > t. Then,
there exists a (non-explicit) hitting-set for Pn,2,d,q−t with seed length O

(
(d− t) · log(n

d−t)
)
.

Note that while the lower bound in Theorem 1 holds for any finite field, the upper
bound in Theorem 2 holds only over F2. Nevertheless, comparing Theorems 1 and 2
(for F = F2 and d ≤ n.49) reveals that there is still a significant gap between the upper-
bound and the lower-bound: The lower bound is of the form (d/t) · log(n), whereas the
existential upper bound is of the form (d− t) · log(n). For example, the lower bound
indicates that there might exist a significantly smaller hitting-set for the relaxed problem
when t = dΩ(1), whereas the existential upper bound is significantly better than the one
for the original problem only for t = d− dΩ(1).

Our last main result is computational and shows an explicit construction of a HSG.
As mentioned above, Goldreich and Wigderson [GW14] constructed a polynomial-time
computable HSG with seed length O(log(n)) that “hits” polynomials Fn

2 → F2 of de-
gree d that vanish on O(2−d) of their inputs (for any d ∈ N). We prove a significantly
more general result, by constructing an explicit HSG for Pn,2,d,2−t for any t < d−O(1):

Theorem 3 (explicit upper-bound over F2) Let n ∈ N be sufficiently large, and let d >
t + 4 be integers. Then, there exists a polynomial-time computable HSG for Pn,2,d,2−t with seed
length O

(
(d− t) ·

(
2d−t + log(n

d−t)
))

.

3This is the case, e.g., when t >
√

d · log(n).
4In these technical results, the log(n) term in the lower bound in Theorem 1 is replaced by a more

complicated term that depends on d and on t, for example log(n.99 · (t/d)).

4

Note that the original result from [GW14] is the special case of Theorem 3 when t =
d−O(1). Also note that the seed length of the explicit HSG from Theorem 3 depends
exponentially on d− t, whereas the seed length of the non-explicit HSG from Theorem 2
depends linearly on d− t. We also comment that the result is actually slightly stronger,
and asserts that for any r ∈ N there exists a polynomial-time computable HSG for⋃

d Pn,2,d,qd−r with seed length O(r · (2r + log(n/r))); that is, for every r there is a single
HSG that works for all degrees d with t = d− r.

Below, in Table 1, we present an informal summary of the main results mentioned
above, and compare them to previously-known results.

Seed length Field Size ε

Lower bounds

[Tel19] Ω(dΩ(1) · log(n/dΩ(1))) q = poly(n) q−O(1)

Thm 1 Ω((d/t) · log n) (d ≤ n.49) 2 ≤ q ≤ poly(n) q−t

Thm 30 Ω((d/t) · log(n.99 · t/d)) (d/t / q · n.01) 2 ≤ q ≤ poly(n) q−t

Upper bounds

[GW14] O(log n) (explicit) q = 2 2−d+O(1)

Thm 2 O((d− t) log(n
d−t) (non-explicit) q = 2 2−t

Thm 3 O((d− t) · (2d−t + log(n
d−t)) (explicit) q = 2 2−t

Table 1: An informal summary of our results and comparison to previous results.

1.3 An application: Small sets with large degree-d closures

In addition to our lower-bounds and upper-bounds for the problem of HSGs for poly-
nomials that vanish rarely, we also closely relate this problem to a clean and elegant
algebraic question. For a set S ⊆ Fn, we define the degree-d closure of S, denoted by
Cl(d)(S), to be the variety that is induced by the set of degree-d polynomials that vanish
on S. Formally, let us define the degree-d ideal of S, denoted I (d)(S) to be:

I (d)(S) = {p : Fn → F : deg(p) ≤ d ∧ ∀s ∈ S, p(s) = 0} ,

and the degree-d closure of S to be:

Cl(d)(S) = {x ∈ Fn : ∀p ∈ I (d)(S), p(x) = 0} .

Equivalently, Cl(d)(S) is the maximal set such that if a degree-d polynomial p : Fn →
F vanishes on all of S, then it necessarily vanishes also on all of Cl(d)(S).

5

As an example, observe that the degree-d closure of any d + 1 points on a fixed line
in Fn contains the entire line. As another example, recall that the degree-(q− 1) closure
of any Kakeya set in Fn

q is the entire domain Fn
q (see [Dvi09, Section 3], who also proved

that any Kakeya set is necessarily of size at least (q+n−1
n)).

Following the latter example, it is indeed natural to ask whether there exists a very
small set S ⊆ Fn whose degree-d closure is all of Fn. This question has a very simple
answer: We observe that sets with maximal degree-d closure (i.e., Cl(d)(S) = Fn) are
equivalent to hitting-sets for degree-d polynomials (since in both cases, the only degree-d
polynomial that vanishes on the set is the zero polynomial).

Observation 4 (maximal closure ⇐⇒ hitting-set). A set S ⊆ Fn is a hitting-set for (all)
degree-d polynomials if and only if

∣∣∣Cl(d)(S)∣∣∣ = qn.

Thus, the minimal size of a set S whose degree-d closure is the entire domain is
Θ((n+d

d)). Naturally, our next question is what happens when we only require that S
has a large closure, rather than a maximal closure? Specifically, how small can S be if
we only require that |Cl(d)(S)| ≥ qn−t for some t ∈ N? Extending Observation 4, we
show that this question is closely-related to the question of hitting-sets for polynomials
of degree d that vanish rarely, and specifically with probability ε = q−t:

Theorem 5 (small sets with large closures versus hitting-sets for polynomials that vanish
rarely). Let F be a field of size q, let n ∈N and t < d < n, and let S ⊆ Fn. Then,

1. If
∣∣∣Cl(d)(S)∣∣∣ > qn−t, then S is a hitting-set for Pn,q,d,q−t .

2. If S is a hitting-set for Pn,q,d,q−t , then
∣∣∣Cl(d/2(t+1))(S)

∣∣∣ > 1
2 · qn−t.

Notice that Theorem 5 does not show a complete equivalence between the two no-
tions, since in the second item, the closure refers to degree d/2t rather than to degree
d. We also remark that the first item in Theorem 5 is almost immediate, whereas the
second item requires more work (see Section 7 for details).

As a consequence of the first item in Theorem 5 and of our lower bound from Theo-
rem 1 (on the size of hitting-sets for Pn,q,d,q−t), we also obtain a lower bound on the size
of sets with a large degree-d closure (i.e., closure of size at least qn−t). Specifically:

Corollary 6 (closures of small sets are small) For every constant c > 1 there exists a con-
stant γ > 0 such that the following holds. For every n, q, d, t ∈ N such that 2 ≤ q ≤ nc

is a prime power, d ≤ n.49, and t ≤ γ · d, any set S ⊆ Fn
q of size |S| ≤ nγ·(d/t) satisfies∣∣∣Cl(d)(S)∣∣∣ ≤ qn−t.

Additional lower bounds on the size of sets with large degree-d closures can be
obtained (using the first item of Theorem 5) as immediate corollaries of our technical
extensions of Theorem 1 (i.e., of Theorems 30, 35, and 36).

6

2 Overview of our techniques

2.1 Combinatorial lower bounds from low-degree dispersers

The proofs of our lower bounds on HSGs for polynomials that vanish rarely rely on
a complexity-theoretic approach, rather than on a direct algebraic analysis. Specifically,
we reduce the problem of constructing HSGs for arbitrary polynomials to the problem
of constructing HSGs for polynomials that vanish rarely; since we already know lower
bounds for the former, we obtain lower bounds for the latter.

Specifically, given an arbitrary non-zero polynomial p0 : Fm → F, we will use a
form of “error-reduction” for polynomials (akin to error-reduction for probabilistic al-
gorithms; see below) to obtain another polynomial p : Fn → F such that:

1. The polynomial p vanishes rarely.

2. Any non-zero input for p can be mapped into a small list of inputs for p0 that
contains a non-zero input for p0.

To define p, fix a (k, δ)-disperser Disp : Fn × {0, 1}` → Fm, for appropriate parame-
ters k and δ that we will determine in a moment.5 Then, p is the result of the following
procedure: Given z ∈ Fn, compute the 2` inputs {Disp(z, i)}i∈{0,1}` , evaluate p0 at each
of these inputs, and output the disjunction of these evaluations; that is:

p(z) =
∨

i∈{0,1}`
p0 (Disp(z, i)) .

The disperser Disp has the property that for every set T ⊆ Fm of density at least δ it
holds that Prz∈Fn [∀i Disp(z, i) /∈ T] ≤ ε = 2k/qn. We take T to be the set of elements in
Fn on which p0 does not vanish, and take δ to be the density of T (i.e., δ is the distance
of the corresponding Reed-Muller code); we also let k = (n − t) · log(q). Then, the
polynomial p vanishes on at most an ε = 2k/qn = q−t fraction of its inputs. Also, any
non-zero input z ∈ Fn for p can be mapped to a list of 2` inputs {xi = Disp(z, i)}i∈{0,1}`

for p0 such that for some i ∈ {0, 1}` it holds that p0(xi) 6= 0, as we wanted.
The reduction above shows that if there exists a HSG with seed length s for poly-

nomials Fn → F of degree d = deg(p) that vanish with probability ε, then there exists
a corresponding HSG with seed length s + ` for all non-zero polynomials Fm → F

of degree d0 = deg(p0). The known lower bound on the latter, which asserts that
s + ` = Ω(d0 · log(m/d0)), yields a corresponding lower bound on the former.

While this is indeed our main idea, it unfortunately does not quite work as-is. The
main challenge is that the reduction above incurs significant overheads that crucially de-
teriorate the lower bound. Most importantly, the degree of the polynomial increases
(from d0 = deg(p0) to d = deg(p)), and the number of variables also increases (from
m to n); this affects us since we are interested in a lower bound as a function of n and

5A (k, δ)-disperser Disp : Fn × {0, 1}` → Fm is a function such that for every T ⊆ Fm satisfying
|T|/|F|m ≥ δ, for all but at most 2k of the inputs z ∈ Fn there exists i ∈ {0, 1}` such that Disp(z, i) ∈ T.

7

d, whereas our lower bound is a function of m and d0. Moreover, the lower bound de-
teriorates by an additive factor of `, since each non-zero input z ∈ Fn for p yields 2`

inputs for p0, one of which is guaranteed to be non-zero. Thus, we want to modify the
reduction above, in order to minimize the blowup in the degree and in the number of
variables, and also minimize the seed length ` of the disperser.

A coding-theoretic perspective. One can view the procedure described above as am-
plifying the weight (i.e., the fraction of non-zero coordinates) of a codeword in the Reed-
Muller code. At first glance, this task seems similar to the task of amplifying the distance
of linear error-correcting codes; in particular, the disperser-based technique described
above is technically reminiscent of the well-known distance amplification technique of
Alon et al. [ABN+92].6 However, the crucial difference is that we are interested in ampli-
fying the weight to be much larger than 1− 1/q, and indeed our resulting subcode (of
polynomials that vanish rarely) is a small and non-linear subcode of the Reed-Muller
code. Moreover, as explained above, we will be particularly interested in the degree
blow-up, which is a parameter specific to polynomial-based codes.

Warm-up: The setting of d � q. For simplicity, let us assume that q = poly(n) and
that d ≤ n.99. In this case the fraction δ of non-zeroes of p0 is very close to one and we
only need Disp to be a (k, .99)-disperser for k = (n− t) · log(q).

Note that to compute p at an input z ∈ Fn, we wish to compute Dispi(z) = Disp(z, i)
as a function of z for each fixed value i of the seed. Since we want p to have degree as low
as possible, we are interested in objects that we call low-degree dispersers: Informally,
a disperser Disp : Fn × {0, 1}` → Fm has low degree if for any i ∈ {0, 1}` and j ∈ [m],
the polynomial qi,j(z) = Disp(z, i)j (i.e., qi,j(z) is the jth output element of Disp(z, i) as a
function of z) has low degree (see Definitions 18 and 19). Note that in our argument we
only need the existence of a low-degree disperser (i.e., we do not need the low-degree
disperser to be efficiently computable); however, the dispersers that are obtained via
naive probabilistic arguments do not have low degree.

Fortunately, in the current “warm-up” setting we can get a good (albeit non-optimal)
lower bound even using the “naive disperser” that just performs uniform sampling:
That is, the disperser that treats its input z ∈ Fn as n/m substrings of length m, and
treats its seed as an index i ∈ [n/m], and outputs the ith substring of length m in z. Note
that this disperser is linear (i.e., has degree one), since for a fixed seed, each output
element is a projection of a corresponding input element.

We do encounter one other problem in implementing our idea in this setting, which
is the degree blow-up that comes from the fact that p computes the OR function on the
outputs of the disperser (recall that the OR function of 2` inputs has maximal degree
(q− 1) · 2`). To circumvent this problem, we replace the OR function with a multivalued
OR function. Specifically, observe that in the reduction above it suffices that on any

6The main differences are that we will use a specific disperser that is different from theirs, to minimize
the degree blow-up; and that we handle alphabet reduction differently (using an OR function instead of
code concatenation), since our target weight is much larger than 1− 1/q.

8

non-zero input y ∈ F2` , the OR function will output some non-zero element (rather than
map any non-zero y to 1 ∈ F). In contrast to the OR function, there exists a multivalued
OR function of 2` elements with degree roughly 2` (see Proposition 11).

Working out the precise parameters, this approach transforms any p0 of degree
d0 into a corresponding p of degree d = d0 · 2` = d0 · t · log(q), and for every t ≤
d/O(log(q)) implies a lower bound of Ω(d0 · log(m/d0)) − ` = Ω(d/t) on the seed
length of HSGs for polynomials that vanish with probability q−t. To improve this lower
bound to match the bound stated in Theorem 1, we use a disperser that is better than
the naive one, and utilize the techniques that are outlined below (see Section 6).

The more challenging setting of d � q. Observe that in the argument above we
“paid” for the seed length ` of the disperser twice: One loss was a blow-up of 2` in the
degree (since the multivalued OR function has degree 2`), and the other loss was that
the lower bound on the seed length of the HSG decayed additively in ` (because our
reduction maps any non-zero input for p to a list of 2` inputs for p0). Also note that the
first loss decreases the lower bound itself, whereas the second loss limits the values of
t to which the lower bound applies (to ones for which `� d0 · log(m/d0)).

When d� q these two losses may deteriorate our lower bound much more severely
than in the “warm-up” setting. This is because when q was large we instantiated the
disperser with the parameter δ = Ω(1), and hence its seed length was relatively small,
whereas in our current setting the value of δ = q−d0/(q−1) may be much smaller.7

To overcome this problem we show a general method that, regardless of the dis-
perser, allows us to “pay” only an O(t) factor in the degree blow-up, instead of the 2` factor.
This method does not prevent the additive loss of ` in the seed length, and we will
explain how this additive loss affects us in the end of the current section.

To explain this method, fix a disperser, and recall that our goal is to “hit” the set
G ⊆ Fn of inputs z such that for some i ∈ {0, 1}` it holds that p0(Disp(z, i)) 6= 0 (since
any z ∈ G maps to 2` inputs, one of which “hits” the original polynomial p0). We think
of the polynomial p above as a test of its input z ∈ Fn that distinguishes between G
and Fn \G (i.e., p vanishes precisely on Fn \G). Our initial approach to hit G was to
construct a HSG for the test p, which would output some z ∈ G.

The key observation is that constructing a HSG for p is an “overkill”. Specifically,
to hit G, we can replace the test p by a distribution p over tests that distinguishes between G
and Fn \G, with high probability, and still deduce that any HSG with small density for
the tests in the support of p outputs some z ∈ G.8 That is, we replace the test p for G
by a randomized test p for G such that the polynomials in the support of p have lower
degree than p, and show that “hitting” the polynomials in the support of p still allows
us to “hit” G. Moreover, since p “tests” a dense set G with small error, by an averaging

7To demonstrate the problem, note that over fields of constant size, even a disperser with optimal
parameters would yield a quadratic degree blow-up, regardless of t; that is, d ≥ 2` · d0 ≥ 2log(t·log(q)/δ) ·
d0 = Ωq((d0)

2 · t), compared to the previous blow-up of d = Ωq(d0 · t) when we had δ = Ω(1).
8The required density is determined both by the density of G and by the error of p in distinguishing

between G and Fn \G; see Lemma 7.

9

argument almost all of the polynomials in the support of p vanish rarely; thus, it suffices
to “hit” only the polynomials in the support of p that vanish rarely.

More accurately, let us instantiate our disperser with k = (n− 2t) · log(q), instead
of k = (n− t) · log(q), such that the density of G is 1− q−2t (this is to allow for some
slackness in the parameters). Then, the following holds:

Lemma 7 (informal; see Section 4) Assume there exists a distribution p over polynomials
Fn → F such that for every z ∈ G it holds that Pr[p(z) 6= 0] ≥ 1− q−2t and for every z /∈ G
it holds that Pr[p(z) = 0] ≥ 1− q−2t. Further assume that every polynomial in the support of
p has degree O(d · t). Then, any hitting-set with density at least q−t for polynomials of degree
O(d · t) that vanish on at most 2q−t of their inputs contains some z ∈ G.

Our construction of the specific distribution p that we use is simple: Starting from
the construction of p above, instead of taking an OR of the evaluations of p0 on the
entire output-set of the disperser (i.e., on all seeds), we sample from the seeds of the dis-
perser. More accurately, to sample a polynomial f ∼ p, we uniformly sample 2t vectors
a(1), ..., a(2t) ∈ F2` , and output the polynomial

f (z) = ORj∈[2t]

(
∑
i∈2`

a(j)
i · p0(Disp(z, i))

)
.

To see why this distribution works, observe that if z ∈ G then a random F-linear
sum of the elements {Disp(x, i)}i∈{0,1}` will be non-zero with probability 1− 1/q, whereas
if z /∈ G then such a sum will be zero, with probability one. Thus, a random polynomial
in p computes the disjunction of 2t such random sums, and it is straightforward to see
that its “error probability” is q−2t and its degree is O(d0 · t) (assuming that the disperser
is linear). Using Lemma 7, any HSG with density at least q−t for polynomials of degree
O(d0 · t) that vanish on at most q−2t of their inputs outputs some z ∈ G. We therefore
reduced the problem of constructing a HSG for p0 to the problem of constructing a HSG
for polynomials of degree d = O(d0 · t) that vanish on at most q−2t of their inputs.

The last missing piece is that we need a concrete disperser to instantiate the argu-
ment with, and the parameters of the disperser will determine the lower bound that we
get. Furthermore, recall that we are losing an additive factor of ` in the lower bound,
and thus any lower bound that we get using this approach applies only to values of
t such that ` � d0 · log(m/d0). Specifically, the approach above gives the following
lemma (for simplicity, we state it only for linear dispersers):

Lemma 8 (linear dispersers yield lower bounds on HSGs for polynomials that vanish
rarely; informal, see Corollary 28) Let d0 < m be integers, let F be a field of size q, and
let t ∈ N. Assume that for k = (n − 2t) · log(q) and δ = q−d0/(q−1) there exists a linear
(k, δ)-disperser Disp : Fn × {0, 1}` → Fm. Then, for d = 4d0 · t, if ` ≤ d

8t · log(mt/d), then
the seed length for any HSG for Pn,q,d,2q−t is Ω ((d/t) · log (mt/d)).

Note that to get a good lower bound using Lemma 8 we want a linear disperser
Fn

q ×{0, 1}` → Fm
q for large min-entropy k = (n− 2t) · log(q) that has small seed length

10

` and large output length m.9 In particular, if there exists a linear disperser with optimal
parameters, then a lower bound of Ω((d/t) · log(nt/d)) would follow for essentially
all settings of the parameters (see Corollary 29).

Our lower bounds (i.e., Theorem 1 and its extensions) will be proved by instanti-
ating Lemma 8 with specific useful dispersers. To prove Theorem 1 and some of its
extensions (i.e., Theorems 30 and 35), we use a linear disperser that we obtain by mod-
ifying the extractor by Shaltiel and Umans [SU05]; the original extractor works over
the binary alphabet, and we modify it to a linear disperser over an arbitrary field Fq
(see Section 6 for details). We prove another lower bound, which applies only to fields
of constant size (see Theorem 36), using a linear disperser that is based on the recent
construction of “linear 1-local expanders” by Goldreich [Gol16], following Viola and
Wigderson [VW17] (see Section 6.3). More details are given in Section 6.

2.2 Explicit upper bound over F2

To construct the explicit HSG for polynomials Fn
2 → F2 that vanish rarely in Theorem 3

we generalize a construction of [GW14], by extending a proof approach from [Tel19]. In
high-level, we reduce the problem of constructing a HSG for polynomials that vanish
rarely to the problem of constructing a PRG for arbitrary low-degree polynomials, and
then use the explicit PRG of Viola [Vio09b] for low-degree polynomials.

In more detail, we say that a polynomial p : Fn
2 → F2 is approximated by a distribu-

tion h over polynomials h : Fn
2 → F2 if for every x ∈ Fn

2 it holds that Prh[h(x) = p(x)] ≥
.99. Our first step is to show that any polynomial p ∈ Pn,2,d,q−t can be approximated
by a distribution h over polynomials of degree d− t. To do so, let ∆a(p) be the direc-
tional derivative of p in direction a ∈ Fn

2 (i.e., the function ∆a p(x) = p(x + a) + p(x)).
We sample h ∼ h by uniformly sampling ~a = a(1), ..., a(k) ∈ Fn

2 , where k = t −O(1),
and outputting the polynomial h~a = ∆a(k)∆a(k−1) ...∆a(1)(p) + 1; that is, we derive p in k
random directions, and “negate” the output.

Note that indeed deg(h~a) = d − t + O(1). Now, for any fixed x ∈ Fn
2 and non-

empty S ⊆ [k], the probability over ~a that p
(

x + ∑i∈S a(i)
)

= 1 is at least 1 − 2−t

(since p vanishes with probability at most 2−t, and x + ∑i∈S a(i) is uniform in Fn
2). Thus,

by a union bound, with probability at least .99 over the choice of ~a, for every non-
empty S ⊆ [k] it holds that p

(
x + ∑i∈S a(i)

)
= 1. In this case, we have that h~a(x) =

∑S⊆[k] p
(

x + ∑i∈S a(i)
)
+ 1 = p(x) + (2k − 1) + 1 = p(x). Hence, the distribution h

also has the property that for every x ∈ Fn
2 it holds that Pr[h(x) = p(x)] ≥ .99.

Our next observation is similar to the “randomized tests” technique mentioned in
Section 2.1: We show that if a distribution h over low-degree polynomials approximates
p, then a pseudorandom generator for the polynomials in the support of h (with suffi-
ciently small constant error) also “hits” p (for a proof see Section 4). Combining the two
claims, we get a reduction from the problem of constructing a HSG for Pn,2,d,q−t to the

9Moreover, since our error δ = q−d0/(q−1) might be large, we want good dependency of the parameters
` and m on the error δ.

11

problem of constructing a PRG (with small constant error) for arbitrary polynomials of
degree d− t +O(1). Thus, the PRG of Viola [Vio09b] for such polynomials, which uses
a seed of length O((d− t) · (2d−t + log(n))), is also a HSG for Pn,2,d,2−t .

On the tightness of the reduction above. Recall that there is a gap between the seed
length of the explicit HSG above and the seed length of the non-explicit HSG from The-
orem 2, which is O

(
(d− t) · log(n

d−t)
)
. We note that to close this gap, one does not

need to improve the reduction detailed above, but only the explicit PRG for arbitrary poly-
nomials (i.e., Viola’s construction). Specifically, if there exists an explicit PRG for all
polynomials of degree d′ = d− t + O(1) with seed length O(d′ · log(n/d′)) (matching
the non-explicit upper-bound for such PRGs), then the reduction above yields a HSG
for Pn,2,d,2−t with seed length O((d− t) · log(n/(d− t))).

3 Preliminaries

We denote random variables by boldface. For an alphabet Σ and n ∈N, we denote the
uniform distribution over Σn by un, where Σ will be clear from context.

3.1 Polynomials over finite fields

We consider multivariate polynomials over a finite field. A polynomial p : Fn → F of
degree d can be viewed as a codeword in the corresponding Reed-Muller code; thus, if
p is non-zero, then the relative distance of the corresponding Reed-Muller code, which
is stated below, lower bounds the fraction of inputs on which p does not vanish.

Theorem 9 (distance of the Reed-Muller code; see, e.g., [GRS19, Lemma 9.4.1]). For
any d, q ∈ N, let a = bd/(q− 1)c and b = d (mod q− 1). The relative distance of the
Reed-Muller code of degree d over alphabet q is δRM(d, q) = q−a · (1− b/q) ≥ q−d/(q−1).

The OR : Fk → F function maps any non-zero input z ∈ Fk \ {0k} to 1 ∈ F, and maps
0k to zero. We consider a generalization of this function, which we call multivalued OR;
a multivalued OR function maps any non-zero z ∈ Fk \ {0k} to some non-zero element
(i.e., different non-zero inputs may yield different outputs), while still mapping 0k to
zero. That is:

Definition 10 (multivalued OR functions) For any finite field F, we say that a polynomial
mvOR : Fk → F is a multivalued OR function if mvOR(0k) = 0, but mvOR(x) 6= 0 for every
x 6= 0k.

For a fixed field F there are many different k-variate multivalued OR functions. The
standard OR function is a multivalued OR function, but it has maximal degree k · (q− 1)
as a polynomial. We will need k-variate multivalued OR functions that are of much
lower degree (i.e., degree approximately k); such functions were constructed in [Tel19]:

12

Proposition 11 (low-degree multivalued OR function; see [Tel19, Proposition 7.3]).
Let F be a finite field and let k ∈ N. Then, there exists a multivalued OR function
mvOR : Fk → F that is computable by a polynomial of degree less than 2k.

3.2 Hitting-set Generators

We recall the standard definitions of hitting-set generators (HSGs), of hitting-set gener-
ators with density ρ > 0, and of pseudorandom generators (PRGs). Recall that HSGs
for a class of polynomials need to produce a set of inputs such that any polynomial
from the class evaluates to non-zero on some input in the set. That is:

Definition 12 (hitting-set generator) Fix a field F, and let d, n ∈N. A function H : {0, 1}` →
Fn is a hitting-set generator for polynomials of degree d if for every non-zero polynomial
p : Fn → F of degree at most d there exists s ∈ {0, 1}` satisfying p(H(s)) 6= 0. In this
case, the set S = {H(s) : s ∈ {0, 1}`} is called a hitting-set for polynomials of degree d.

Definition 13 (explicit hitting-set generators) Let `, q, d : N → N, let {Fq(n)}n∈N such
that for every n ∈ N it holds that Fq(n) is a field of size q(n), and let H = {Hn : {0, 1}`(n) →
Fn

q(n)} such that for every n ∈ N it holds that Hn is a hitting-set generator for polynomials of
degree d(n). We say that H is polynomial-time computable if there exists an algorithm that
gets as input s ∈ {0, 1}` and outputs Hn(s) in time poly(`, log(q), n).

We say that a hitting-set generator has density ρ > 0 if any non-zero polynomial
(from the corresponding class) evaluates to non-zero on at least a ρ fraction of the out-
puts of the generator.

Definition 14 (hitting-set generator with density) Fix a field F, let d, n ∈N, and let ρ > 0.
We say that a hitting-set generator H : {0, 1}` → Fn is a hitting-set generator for polynomials
of degree d has density ρ if for every non-zero polynomial p : Fn → F of degree at most d it
holds that Prs[p(H(s)) 6= 0] ≥ ρ.

The standard definition of PRGs for polynomials in p : Fn → F that we will use is
as follows. Consider the distribution over F that is obtained by uniformly choosing
x ∈ Fn and outputting p(x), and the distribution over F that is obtained by choosing
a seed s for a PRG G and outputting p(G(s)). We require that the statistical distance
between the two distributions is small. That is:

Definition 15 (pseudorandom generator) Fix a field F, let d, n ∈ N, and let ρ > 0. A
function G : {0, 1}` → Fn is a pseudorandom generator with error ρ for polynomials of
degree d if for every polynomial p : Fn → F of degree at most d it holds that

∑
σ∈F

∣∣∣ Pr
s∈{0,1}`

[p(G(s)) = σ]− Pr
x∈Fn

[p(x) = σ]
∣∣∣ ≤ ρ .

An alternative standard definition of PRGs for polynomials requires that the “char-

acter distance”
∣∣∣Ex∈Fn [ep(x)] − Ex[ep(G(s))]

∣∣∣ will be small, where e is any (fixed, non-
trivial) character of F. The “character distance” and the statistical distance are equiva-
lent, up to a multiplicative factor of

√
q− 1 (see [Lov09, Lemma 2.4]).

13

Lastly, we recall the standard lower bound on the size of hitting-sets for polynomials
of degree d (for completeness, we include its proof) and state the complementary upper-
bound that is obtained by a standard probabilistic argument.

Fact 16 (lower bound on the size of hitting-sets) Let F be a finite field, let n ∈ N, and
let d ≤ n · (q − 1). Then, any hitting-set for polynomials Fn → F of degree d has size at
least (n+d

d). In particular, if d < n, then the seed length of any hitting-set generator for such
polynomials is at least d · log(n/d).

Proof: Recall that the number of monomials Fn → F of degree at most d is (n+d
d). Let

S ⊆ Fn be a hitting-set for polynomials Fn → F of degree d, and assume towards
a contradiction that |S| < (n+d

d). Consider a system of |S| linear equations in (n+d
d)

unknowns, where the unknowns are the coefficients of a polynomial p : Fn → F of
degree d, and each equation corresponds to w ∈ S and poses the requirement that
p(w) = 0. Since |S| < (n+d

d) and the system is homogeneous, there is more than one
solution for this system, which implies that there is a non-zero polynomial that vanishes
on all of S, a contradiction. The “in particular” part follows since (n+d

d) > (n
d) > (n/d)d,

where we used the hypothesis that d < n.

Fact 17 (upper bound on the size of hitting-sets) Let F be a finite field, let n ∈ N, and let
d < n. Then, there exists a (non-explicit) hitting-set generator with density q−d/(q−1)/2 for
polynomials Fn → F of degree d with seed length O(d · log(n/d) + log log(q)).

Proof: The number of degree-d polynomials is at most q(
n+d

d), and each of them vanishes
on at most 1− δ of its inputs, where δ ≥ q−d/(q−1) is the distance of the corresponding
Reed-Muller code. Thus, if we randomly choose

O
(
(1/δ) ·

(
n + d

d

)
· log(q)

)
< O

(
qd/(q−1) ·

(
2n
d

)
· log(q)

)
elements in Fn, with high probability we obtain a hitting-set with density at least δ/2 ≥
q−d/(q−1)/2 for degree-d polynomials. The number of bits that we need to sample an
element from this hitting-set is

O
(

d
q− 1

· log(q) + d · log(n/d) + log log(q)
)
< O (d · log(n/d) + log log(q)) .

3.3 Dispersers and extractors

We recall the standard definition of dispersers Disp : [N] × {0, 1}` → [M], where we
identify the domain N with the vector space Fn and the range M with the vector space
Fm.

14

Definition 18 (disperser) Let F be a finite field of size q = |F|. A function Disp : Fn ×
{0, 1}` → Fm is a (k, δ)-disperser if for every T ⊆ Fm of size |T| ≥ δ · qm, the probability over
x ∈ Fn that for all i ∈ {0, 1}` it holds that Disp(x, i) /∈ T is less than 2k/qn. The value ` is the
seed length of the disperser.

In this work we are interested in dispersers that can be computed by low-degree
polynomials. Specifically, we require that for each fixed seed s ∈ {0, 1}` and output
index i ∈ [m], the function that maps any z ∈ Fn to the ith output of Disp at z with seed
s (i.e., z 7→ Disp(z, s)i) has low degree as a polynomial Fn → F.

Definition 19 (degree of a disperser) We say that a disperser Disp : Fn × {0, 1}` → Fm

has degree d if for every fixed s ∈ {0, 1}` and i ∈ [m], the polynomial ps,i : Fn → F defined
by ps,i(z) = Disp(z, s)i is of degree at most d. If d = 1, then we say the disperser is linear.

Recall that there are two standard dispersers that are linear: The naive disperser,
which treats its input z ∈ Fn as a list of samples from Fm and its seed as an index of a
sample in this list; and the subspace sampler, which treats its input as the description
of an affine subspace in Fm and its seed as an index of an element in the subspace.
Nevertheless, these dispersers have disadvantages (small output length and large seed
length, respectively), and in our results we will use more sophisticated linear dispersers
(see Section 6 for details).

Alternatively, one can verify that Definition 18 is equivalent to the following defi-
nition: Disp is a (k, δ)-disperser if for any random variable x ∼ Fn with min-entropy10

k, the support of Disp(x, u`) covers at least (1 − δ)qm elements from Fm. Although
dispersers will be our main pseudorandom object, we will sometimes work with the
stronger notion of an extractor. While in dispersers we only care about covering almost
all of Fm, in extractors we want to do it uniformly, i.e., we require Ext(x, u`) to be δ-close
to the uniform distribution um over Fm. Formally:

Definition 20 (extractor) Let F be a finite field of size q = |F|. A function Ext : Fn ×
{0, 1}` → Fm is a (k, δ)-extractor if for every random variable x ∼ Fn with min-entropy k it
holds that Ext(x, u`) is δ-close to um. The value ` is the seed length of the extractor.

As the support size of a distribution which is δ-close to um is at least (1− δ)qm, any
(k, δ)-extractor is readily a (k, δ)-disperser.

4 Randomized tests

The proofs of both our upper bounds and of our lower bounds will rely on the following
general observation, which is essentially from [Tel19, Sections 2.1 & 4] (following a
proof idea from [BV10]).

Assume that we want to deterministically find an element in a set G ⊆ Fn. A stan-
dard way to do so is to show that G can by decided by a simple algorithm p (e.g., p is

10A random variable x has min-entropy k if for every x ∈ Supp(x) is holds that Pr[x = x] ≤ 2−k.

15

a low-degree polynomial), which we think of as a simple test. Then, a hitting-set gen-
erator for p outputs an element in G. Our goal now is to find an element in G using a
hitting-set generator for tests that are simpler than p. The basic observation is that if G
can be decided, with high probability, by a distribution p over simple tests, then a hitting-
set generator with small density for the simple tests in the support of p outputs an
element in G (see [Tel19, Observation 2.1]). The advantage is that instead of construct-
ing a deterministic test p we can now construct a randomized test p, whose complexity
is potentially lower than that of p; that is, the complexity of the tests in the support of
the distribution p may be lower than the complexity of the deterministic test p.

The observation itself can be extended in various ways (see [Tel19] for details); we
will need to apply it in two specific settings. In the first setting, the set G is dense (i.e.,
Prx∈Fn [x ∈ G] ≥ .99), and can be decided, with high probability, by a distribution p
over low-degree polynomials. We show that in this case, a hitting-set generator with
small density for low-degree polynomials that vanish rarely contains an element in G.

Lemma 21 (randomized tests, a special case) Let ε, ρ > 0, and let G ⊆ Fn be such that
Prx∈Fn [x ∈ G] ≥ 1− ε. Assume that there exists a distribution p over polynomials p : Fn → F

such that:

1. For every fixed x ∈ G it holds that Pr[p(x) 6= 0] ≥ 1− ρ.

2. For every fixed x /∈ G it holds that Pr[p(x) = 0] ≥ 1− ρ.

Let w be a distribution over Fn such that for every p : Fn → F in the support of p that
vanishes on at most a

√
ρ + ε fraction of its inputs it holds that Pr[p(w) 6= 0] ≥ ρ

1−√ρ+ε
.

Then, Pr[w ∈ G] > 0.

Proof: Consider the behavior of a random polynomial p ∼ p on a pseudorandom input
w ∼ w. On the one hand, we have that

Pr[p(w) = 0] ≥ Pr[w /∈ G] ·min
x/∈G
{Pr[p(x) = 0]}

≥ Pr[w /∈ G] · (1− ρ) . (4.1)

Now, denote by P the set of polynomials in the support of p that vanish on at most√
ρ + ε of the inputs x ∈ Fn. Note that

Pr[p ∈ P] > 1−
√

ρ + ε ;

this is the case since

Pr
x∈Fn

[p(x) 6= 0] ≥ Pr
x∈Fn

[x ∈ G] ·min
x∈G
{Pr[p(x) 6= 0]}

≥ (1− ε) · (1− ρ)

> 1− (ρ + ε) ,

16

and using Markov’s inequality. Relying on the hypothesis that for every p ∈ P it holds
that Pr[p(w) 6= 0] ≥ ρ

1−√ρ+ε
, it follows that

Pr[p(w) 6= 0] ≥ Pr[p ∈ P] ·min
p∈P
{Pr[p(w) 6= 0]} > ρ , (4.2)

and combining Equations (4.1) and (4.2) we deduce that

Pr[w /∈ G] ≤ Pr[p(w) = 0]
1− ρ

< 1 .

In the second setting that we will be interested in, we want to “fool” a polynomial
p : Fn → F using a pseudorandom generator for polynomials that are simpler than p
(e.g., they are of lower degree). This is indeed possible if there is a distribution h over
polynomials that are simpler than p such that for every fixed x ∈ Fn → F it holds that
Pr[h(x) = p(x)] is high. In the following statement, it is useful to think of ζ : F→ C as
a non-trivial character, which implies that maxv,w∈F{|ζ(v)− ζ(w)|} = 2.

Lemma 22 (randomized tests, a PRG version for polynomials; see Lemma 4.4 in [Tel19],
extending Lemma 23 in [BV10]) Let n ∈ N, let F be any finite field, let ε > 0. Also, let
ζ : F → C, and let δ = maxv,w∈F{|ζ(v)− ζ(w)|}. Let p : Fn → F, and assume that there
exists a distribution h over polynomials Fn → F such that for every fixed x ∈ Fn it holds
that Pr[h(x) = p(x)] ≥ 1− ε. Finally, let w be a distribution over Fn such that for every
polynomial h in the support of h it holds that

∣∣∣Ex∈Fn [ζ(h(x))]−E[ζ(h(w))]
∣∣∣ ≤ ε. Then,∣∣∣Ex∈Fn [ζ(p(x))]−E[ζ(p(w))]

∣∣∣ ≤ (2δ + 1) · ε .

Since the proof of Lemma 22 is simple, we include it for completeness.

Proof of Lemma 22: Let un be the uniform distribution over Fn. For simplicity of no-
tation, define p′ = ζ ◦ p : Fn → C, and for every h in the support of h, define h′ =
ζ ◦ h : Fn → C. Also denote by h′ the distribution that is obtained by sampling h ∼ h
and outputting h′ = ζ ◦ h. By the triangle inequality,∣∣∣E[p′(un)]−E[p′(w)]

∣∣∣ ≤ ∣∣∣E[p′(un)]−E[h′(un)]
∣∣∣

+
∣∣∣E[h′(un)]−E[h′(w)]

∣∣∣
+
∣∣∣E[h′(w)]−E[p′(w)]

∣∣∣ . (4.3)

To upper bound the first item in Equation (4.3), note that∣∣∣E[p′(un)]−E[h′(un)]
∣∣∣ ≤ Ex∼Fn,h∼h

[∣∣∣p′(x)− h′(x)
∣∣∣]

≤ Ex∈Fn

[
Pr

h∼h
[h(x) 6= p(x)] · max

v,w∈F
{|ζ(v)− ζ(w)|}

]
≤ δ · ε ,

17

where the last inequality holds because for every fixed x ∈ Fn we have that Prh∼h[h(x) 6=
p(x)] ≤ ε. The third item in Equation (4.3) is similarly upper bounded by δ · ε, by re-
placing the uniform choice of x ∈ Fn with a choice of x ∼ w.

To upper bound the second item in Equation (4.3), note that∣∣∣E[h′(un)]−E[h′(w)]
∣∣∣ ≤ Eh∼h

[∣∣∣E[h′(un)]−E[h′(w)]
∣∣∣] ≤ ε ,

where we used the hypothesis that for every polynomial h in the support of h it holds

that
∣∣∣Ex∈Fn [ζ(h(x))]−E[ζ(h(w))]

∣∣∣ ≤ ε.

Applying Lemma 22 to the special case of F = F2 with ζ(x) = (−1)x, we obtain the
following useful corollary:

Corollary 23 (randomized tests applied to PRGs for F2 polynomials) Let n ∈ N and
let ε > 0. Let p : Fn

2 → F2, and assume that there exists a distribution h over polynomials
Fn

2 → F2 such that for every fixed x ∈ Fn
2 it holds that Pr[h(x) = p(x)] ≥ 1− ε. Finally, let

w be a distribution over Fn
2 such that for every polynomial h in the support of h it holds that∣∣∣Prx∈Fn

2
[h(x) = 1]− Pr[h(w) = 1]

∣∣∣ ≤ ε. Then,∣∣∣ Pr
x∈Fn

2

[p(x) = 1]− Pr[p(w)]
∣∣∣ ≤ 5ε .

5 Upper bounds over F2

In this section we prove Theorems 2 and 3; that is, we construct explicit and non-explicit
hitting-set generators for polynomials Fn

2 → F2 that vanish rarely.
We define the weight of a polynomial p : Fn → F to be wt(p) = Prx∈Fn [p(x) 6= 0].

Indeed, in this paper we are interested in polynomials with very high weight. Kauf-
man, Lovett, and Porat [KLP12] proved a near-tight upper-bound on the number of
polynomials with very low weight when F = F2; as a consequence, we get the follow-
ing non-explicit hitting-set generator on polynomials Fn

2 → F2 that vanish rarely:

Theorem 24 (non-explicit HSGs for F2 polynomials that vanish rarely, following [KLP12])
Let n, d, t ∈ N where t < d ≤ n. Then, the number of polynomials in Fn

2 → F2 that van-
ish with probability at most 2t−d is at most 2O(d2·t/(d−t+1)!·nd−t+1). In particular, there exists a
hitting-set generator for this set of polynomials with seed length O

(
(d− t) · log

(n
d−t

))
.

Proof: We define an injective mapping Φ : {Fn
2 → F2} → {Fn

2 → F2} that maps every
degree-d polynomial p that vanishes on at most 2−t of its inputs to a degree-d polyno-
mial Φ(p) whose weight is at most 2−t. Indeed, the mapping is simply Φ(p) = p + 1
(i.e., for every x ∈ Fn

2 it holds that Φ(p)(x) = p(x) + 1). By [KLP12, Theorem 14]
(using the parameter values k = d − t + 1 and ε = 2−t), the number of polynomi-
als with weight at most 2−t is at most 2O(d2·t/(d−t+1)!·nd−t+1). Since Φ is injective, the

18

number of polynomials that vanish on at most 2−t of their inputs is also at most N =

2O(d2·t/(d−t+1)!·nd−t+1).
Thus, a set of O(log(N)) = O(d2 · t/(d− t+ 1)! · nd−t+1) uniformly-chosen elements

in Fn
2 “hits”, with high probability, every polynomial that vanishes on at most 2−t of its

inputs. The seed length required to sample from such a set is

O
(
(d− t + 1) · log(n) + log(d · t)− (d− t) · log(d− t)

)
= O

(
(d− t + 1) · log(n)− (d− t) · log(d− t)

)
(d · t ≤ n2)

= O
(
(d− t) · log(n/(d− t))

)
.

We mention that Abbe, Shpilka, and Wigderson [ASW15] proved a tighter upper-
bound on the number of polynomials with low weight, which replaces the d2 term
in the result in [KLP12, Theorem 14] by a smaller term. It is still an open problem to
replace this term by some universal constant (such a result would match a lower bound
from [KLP12, Lemma 15]). However, even a solution to this open problem would not
improve the result in Theorem 24.11

To construct an explicit (i.e., polynomial-time computable) hitting-set generator for
polynomials Fn

2 →F2 that vanish rarely, we generalize results from previous works [GW14;
Tel19]. For the construction we will need the pseudorandom generator of Viola [Vio09b]
for low-degree polynomials.

Theorem 25 (Viola’s PRG for low-degree polynomials [Vio09b]) For n, d′ ∈N and ε > 0,
there exists a polynomial-time computable pseudorandom generator for polynomials Fn

2 → F2

of degree d′ with seed length d′ · log(n) + O(d′ · 2d′ · log(1/ε)).

Theorem 26 (explicit hitting-set generator for F2 polynomials that vanish rarely) For
every n, d, t ∈ N such that d > t + 4 there exists a polynomial-time computable hitting-set
generator with seed length O

(
(d− t) ·

(
2d−t + log(n)

))
for the set of polynomials Fn

2 → F2
of degree d that vanish on at most 2−t of their inputs.

Proof: We show that for every polynomial p : Fn
2 → F2 of degree d that vanishes on at

most 2−t of its inputs there exists a distribution h over polynomials Fn
2 → F2 of degree

(d − t) + 4 such that for every x ∈ Fn
2 it holds that Pr[p(x) = h(x)] ≥ 15/16. Then,

we use Corollary 23 to deduce that any pseudorandom generator with error 1/16 for
polynomials of degree (d − t) + 4 is also a pseudorandom generator for p with error
less than 1/2 (and is thus a hitting-set generator for p, which vanishes on at most half
of its inputs). In particular, we use the pseudorandom generator from Theorem 25 for
polynomials of degree d− t + 4, which has seed length O

(
(d− t) ·

(
2d−t + log(n)

))
.

11This is because in our application we refer to the seed length, in which case the term d2 only “con-
tributes” the term log(d · t) < 2 · log(n), which is dominated by the term O((d− t) · log(n)).

19

To define the distribution h, recall that the discrete directional derivative operator
on polynomials p : Fn

2 → F2 for direction a ∈ Fn
2 is defined by ∆a(p) = p(x + a) + p(x).

The iterated operator for ~a = a(1), ..., a(k) ∈ Fn·t
2 is defined in the natural way, and

∆~a(p) = ∑S⊆[k] p
(

x + ∑i∈S a(i)
)

. For k = t− 4, sampling h ∼ h is done by uniformly

and independently choosing~a = a(1), ..., a(k) ∈ Fn
2 , and outputting the polynomial

h = h~a = ∆~a(p) + 1.

Note that h is of degree d− k = (d− t) + 4, and that for every x ∈ Fn
2 , the probability

that h(x) = p(x) is at least 15/16. This is the case since for every fixed x ∈ Fn
2 , if for

every non-empty S ⊆ [k] it holds that p(x + ∑i∈S a(i)) = 1 then h(x) = p(x) + (2k −
1) + 1 = p(x); and for every non-empty S ⊆ [k], the probability over the choice of h
that p(x + ∑i∈S a(i)) = 1 is at least 1− 2−t.

6 Lower bounds over general finite fields

In this section we prove our lower bounds on the seed length of HSGs for polynomials
that vanish rarely. First, in Section 6.1 we give the general framework for deriving
lower bounds from low-degree dispersers, corresponding to the high-level description
in Section 2.1 (i.e., we prove Lemma 8). Then, we prove three incomparable lower
bounds, by instantiating this framework with specific dispersers that are suitable for
the corresponding parameter settings.

Our first and main lower bound, which is presented in Section 6.2, is a generaliza-
tion of Theorem 1. This lower bound is of the form Ω((d/t) · log(n1−Ω(1)t/d)), and
holds under complicated conditions on the degree d and on t; in particular, for d ≤ n.49

as in Theorem 1, it holds for all values of t up to Ω(d). (See Theorem 30.)
Then, in Section 6.3 we prove two additional lower bounds, which hold in two more

specific settings but have advantages over the foregoing bound. The first lower bound
holds only when d ≤ q (i.e., when the corresponding Reed-Muller code has distance
Ω(1)); this lower bound is of the same form as in Theorem 30, but holds for higher
degrees up to d ≤ n1−Ω(1) without complicated conditions on d and t (see Theorem 35).
The second lower bound holds only over fields of constant size; this lower bound is of
the stronger form Ω((d/t) · log(nt/d)),12 and holds for degrees d up to Ω(n), but only
for value of t /

√
d (see Theorem 36).

6.1 Sampling from the seeds of a disperser

In this section we prove general results that use low-degree dispersers to reduce hitting
arbitrary polynomials to hitting polynomials that vanish rarely (and thus deduce lower
bounds for the latter); this follows the high-level explanations that were presented in

12Recall, from Corollary 29, that this is the lower is that would be obtained if there exists a linear dis-
perser with optimal parameters.

20

Section 2.1. The following proposition specifies the reduction itself, and the subsequent
corollary specifies the lower bounds that we can obtain using the reduction.

Proposition 27 (reducing hitting polynomials to hitting polynomials that vanish rarely
by sampling from the seeds of a disperser) Let m, d0 ∈ N, let F be a field of size q, and let
δ = δRM(d0, q). For k < log(qn), let ε = 2k/qn, ρ > 0 and r = logq(1/ρ), and assume that:

1. There exists a (k, δ)-disperser Disp : Fn × {0, 1}` → Fm of degree dDisp ∈N.

2. There exists a hitting-set W ⊆ Fn with density more than ρ
1−√ρ+ε

for polynomials Fn →
F of degree d = 2d0 · r · dDisp that vanish on at most

√
ρ + ε of their inputs.

Then, there exists a hitting-set W0 ⊆ Fm for polynomials Fm → F of degree d0 such that
|W0| ≤ |W| · 2`.

Proof: For L = 2`, let W0 = {Disp(z, i) : z ∈ W, i ∈ [L]}. We will prove that W0 is a
hitting-set for polynomials Fm → F of degree d0.

To do so, fix any non-zero polynomial f : Fm → F of degree d0. Let V = {x ∈
Fm : f (x) = 0} be the set of points on which f vanishes, and let G = {z ∈ Fn : ∃i ∈
[L],Disp(z, i) /∈ V} be the set of inputs z ∈ Fn for Disp such that for some i ∈ [L] it holds
that f does not vanish on Disp(z, i). Note that G has density at least 1− ε; this is the
case since |V|/qm ≤ 1− δ (because δ is the distance of the corresponding Reed-Muller
code and f is non-zero), and Disp is a (k, δ)-disperser.

Note that W0 is a hitting-set for f if and only if Prz∈W [z ∈ G] > 0. We will prove that
Prz∈W [z ∈ G] > 0 using Lemma 21. To construct the distribution p over polynomials
in Fn → F needed for the hypothesis of the lemma, fix a multivalued OR polynomial
mvOR : Fr → F of degree less than 2r as in Proposition 11. Then, sampling p ∼ p is
equivalent to the following random process:

Uniformly and independently choose α(1), ..., α(r) ∈ FL, and output the poly-
nomial p(z) = mvOR

(
∑i∈[L] α

(1)
i · f (Disp(z, i)), ..., ∑i∈[L] α

(r)
i · f (Disp(z, i))

)
.

Note that each p ∼ p is has degree less than d = dDisp · d0 · 2r. Also note that
for any z /∈ G we have that Pr[p(z) = 0] = 1, whereas for any z ∈ G we have that
Pr[p(z) 6= 0] ≥ 1 − q−r = 1 − ρ. Using Lemma 21 and the hypothesis that W is a
hitting-set with density ρ

1−√ρ+ε
for polynomials that vanish on at most

√
ρ + ε of their

inputs, we deduce that Prz∈W [z ∈ G] > 0, as we wanted.

Using the reduction from Proposition 27, and relying on the unconditional lower
bound from Fact 16, we obtain the following results, which uses low-degree dispersers
to deduce lower bounds on HSGs for polynomials that vanish rarely:

Corollary 28 (a lower bound by sampling from the seeds of a disperser) Let m, d0 ∈ N

such that d0 < m, let F be a field of size q, and let δ = δRM(d0, q). For t ∈ N and k =
(n− 2t) · log(q), assume that there exists a linear (k, δ)-disperser Disp : Fn × {0, 1}` → Fm.

21

Then, any hitting-set W ⊆ Fn with density more than q−2t

1−
√

2·q−t for polynomials in Fn → F of

degree d = 4d0 · t that vanish on at most
√

2 · q−t of their inputs has size at least (m+d0
d0

) · 2−`.
In particular, the seed length for any such hitting-set is at least

Ω
(

d
t
· log

(
m · t

d

))
,

provided that t ≤ log(mt/d)
8` · d.

Proof: We use Proposition 27 with the parameter values ε = ρ = q−2t (such that r = 2t)
and dDisp = 1, and rely on the fact that any hitting-set W0 ⊆ Fm for all polynomials
Fm → F of degree d0 has size at least (m+d0

d0
) (i.e., on Fact 16). The seed length (in bits)

for sampling from the hitting-set is thus at least d0 · log(m/d0)− ` = d
4t · log(4mt/d)−

` ≥ Ω((d/t) · log(mt/d), where the last inequality is due to the hypothesis that d
4t ·

log(mt/d) ≥ 2`.

Finally, note that if there exists a linear (k, δ)-disperser Fn
q × {0, 1}` → Fm

q with
optimal parameters, then we get a lower bound of Ω((d/t) · log(nt/d)) for essentially
all settings of the parameters. That is:

Corollary 29 (lower bounds assuming an optimal linear disperser) Assume that for every
n, q, k ∈ N and δ > 0 there exists a linear (k, δ)-disperser Disp : Fn

q × {0, 1}` → Fm
q where

` = log(n · log(q)− k) + log(1/δ) +O(1) and m · log(q) = k + `− log log(1/δ)−O(1).
Then, for every constant c > 1 there exists a constant γ > 0 such that the following holds.

Let n, q, d, t ∈N such that q ≤ 2nc
, and d < n/2, and t ≤ γ · n, and q−1

log(q) · log(nt/d) ≥

1/γ. Then, the seed length of any HSG with density more than q−2t

1−
√

2·q−t for Pn,q,d,
√

2·q−t is at

least Ω
(

d
t · log

(n·t
d

))
.

Proof: Let d0 = d/4t, and let a = d0/(q − 1) such that δ = δRM(d0, q) ≥ q−a. When
instantiating the hypothesized linear disperser with parameters n and k = (n − 2t) ·
log(q) and δ = q−a, it has seed length ` = O(log(t · log(q)) + (d/4t) · (log(q)/(q −
1))) and output length m = Ω(n). Relying on Corollary 28, we get a lower bound of
Ω ((d/t) · log(n · (t/d))), assuming that d0 < m (which holds since we assumed that
d < n/2) and that t ≤ log(nt/d)

8` · d. Thus, we just need to verify the latter condition.
We verify the condition by a case analysis. The first case is when t ≥

√
d/4(q− 1),

which implies that the seed length is ` = O(log(t · log(q))). The condition in this case
holds since log(nt/d) = Ω(log(n)) and q ≤ 2poly(n), which implies that log(nt/d)

8` =

Ω(1). The second case is when t <
√

d/4(q− 1), which implies that the seed length
is ` = O((d/t) · log(q)/(q− 1)). The condition in this case holds if and only if q−1

log(q) ·
log(nt/d) is larger than a sufficiently large constant, which is our hypothesis.

22

6.2 The main lower bound: Proof of Theorem 1

In this section we prove lower bounds that hold also when the degree is much larger
than the field size (i.e., d � q). Specifically, we will prove the following, more general
version of Theorem 1:

Theorem 30 (a lower bound using the Shaltiel-Umans linear disperser; a more general
version of Theorem 1) For any two constants γ > 0 and γ′ > 0 there exists a constant
γ′′ > 0 such that the following holds. Let n, d, t, q ∈ N such that q ≤ n1/γ′ is a prime power,
d ≤ n/4, and:

• (essentially all values of ε = q−t) t ≤ γ′′ · log(nt/d)
log(n) · d.

• (auxiliary condition that holds for typical settings) q−1
log(q) · log(nt/d) ≥ 1/γ′′.

• (main condition: d/t is upper-bounded) d/t ≤ γ′′ ·min
{

q−1
log(q) · n

γ, n1−(γ+γ′)
}

.

Then, the seed length of any HSG with density more than q−2t

1−
√

2·q−t for Pn,q,d,
√

2·q−t is at least

Ω
(

d
t · log

(
n1−(γ+γ′)·t

d

))
.

To deduce Theorem 1 from Theorem 30, note that if we are willing to assume that
d ≤ n.49, then we can choose γ = .499 and γ′ > 0 that is sufficiently small, and the three
conditions in Theorem 30 hold for every q ≤ n1/γ′ and t ≤ γ′′ · d.

To prove Theorem 30 we will instantiate Corollary 28 with a linear disperser that we
will construct relying on the extractor of Shaltiel and Umans [SU05]. Recall that [SU05]
constructed an extractor Ext : {0, 1}n × {0, 1}` → {0, 1}m by first constructing what
they called a q-ary extractor, whose output lies in a field of size poly(n) and only sat-
isfies a relatively-weak unpredictability requirement, and then transforming the q-ary
extractor to a standard extractor over the binary alphabet (the transformation follows
an idea of Ta-Shma, Zuckerman, and Safra [TSZS06]).

We want to construct a low-degree disperser Disp : Fn
q × {0, 1}` → Fq where the

field Fq is of size much smaller than poly(n) (i.e., q ≤ nγ′ for some small constant
γ′ > 0). To do so, we take as a starting-point their construction of a q0-ary extractor
from [SU05], where q0 = poly(n), and then generalize their transformation of q0-ary
extractors to standard extractors (and in particular dispersers) such that the resulting
extractor is both over the field Fq, rather than over a binary alphabet, and linear.

Towards presenting the construction, let us first recall the definition of q0-ary ex-
tractors and the main construction of such objects from [SU05].

Definition 31 (q0-ary extractor) For n, k, m, ` ∈ N and ρ > 0, and a prime power q0 ∈ N,
we say that Ext0 : Fn

q0
×{0, 1}` → Fm

q0
is a (k, ρ) q0-ary extractor if for every random variable

x over Fn
q0

with min-entropy at least k, and every i ∈ [m], and every function P : Fi−1
q0
→ F

ρ−2

q0 ,
it holds that Prx∼x,u∼u`

[P(Ext0(x, u)1, ...,Ext0(x, u)i−1) 3 Ext0(x, u)i] ≤ ρ.

23

Theorem 32 ([SU05, Theorem 4.5, Item 1]) There exists a universal constant c > 1 such
that the following holds. Let n0, q0, k, m, r, h ∈N and ρ > 0 such that q0 is a prime power, and
the following inequalities hold:

1. (Sufficiently large auxiliary parameters h and r) n0 ≤ (h+r−1
r).

2. (Sufficiently large field) q0 ≥ c · (h·r)
2

ρ4 .

3. (Sufficiently small output length) m ≤ k−log(1/ρ)
c·h·r·log(q0)

.

Then, there exists an r× r matrix A over Fq0 such that the following holds. Let Ext0 : F
n0
q0 ×

{0, 1}r·log(q0) → Fm
q0

be defined by Ext0(x, v) = px(A1 · v) ◦ px(A2 · v) ◦ ... ◦ px(Am · v),
where v is interpreted as an element in Fr

q0
, and px : Fr

q0
→ Fq0 is the r-variate polynomial of

total degree h− 1 whose coefficients are specified by x. Then, Ext0 is a (k, ρ) q0-ary extractor.

Note that in [SU05] the input of the extractor is represented in binary and inter-
preted as n0 elements in Fq, whereas in Theorem 32 we considered the input as n0 ele-
ments in Fq. The two formulations are equivalent, since a random variable over F

n0
q0 has

min-entropy k if and only if the corresponding random variable over {0, 1}n0·log(q0) has
min-entropy k. Also note that [SU05, Lemma 4.4] showed that A can be constructed in
time qO(r)

0 (by an exhaustive search over the field F(q0)r), and deduced that the extractor
is efficiently computable; however, we will not use this property of the extractor.

We now present the transformation of q0-ary extractors to standard extractors whose
inputs and outputs are vectors over Fq, where q � q0; as mentioned above, the proof
generalizes an idea from [TSZS06]. The intuition for this transformation is the follow-
ing. Consider the output distribution of a q0-ary extractor as consisting of blocks of
elements from Fq, where each block represents a single element from Fq0 ; by defini-
tion, the output distribution of a q0-ary extractor is “next-element unpredicatable”, and
hence the distribution of elements from Fq is a block source (see, e.g., [Vad12, Section
6.3.1]). Following Nisan and Zuckerman [NZ96], we compose the q0-ary extractor with
a strong extractor over Fq that outputs a single element (and maps each block to a sin-
gle element) and obtain an extractor over Fq. We will specifically use a single-output
extractor that is obtained from a linear list-decodable code (see, e.g., [TSZ04, Claim 4.1]),
relying on well-known constructions of such codes.13

Proposition 33 (transforming a q0-ary extractor into a standard extractor over Fq) Let
ρ > 0, let q be a prime power, let q0 = q∆ for some ∆ ∈ N, and let C : F∆

q → F∆̄
q be a

(1− 1/q− ρ, ρ−2)-list-decodable code. Assume that Ext0 : F
n0
q0 × {0, 1}`0 → Fm

q0
is a (k, ρ)

q0-ary extractor. Let Ext : Fn
q × {0, 1}` → Fm

q , where n = n0 · ∆ and ` = `0 + log(∆̄), be
defined by

Ext(x, (y, j)) = C(Ext0(x̂, y)1)j ◦ ... ◦ C(Ext0(x̂, y)m)j ,

13In fact, since in our case the output of the q0-ary extractor is not only unpredictable but also unpre-
dictable by predictors that output a list of elements, we use a simpler proof that does not go through the
notion of strong extractors.

24

where x̂ ∈ F
n0
q0 is the vector that is represented by x ∈ F

n0·∆
q . Then, Ext is a (k, 2qm · ρ)-

extractor.

Proof: Assuming towards a contradiction that Ext is not a (k, 2qm · ρ)-extractor, we will
show that Ext0 is not a (k, ρ) q0-ary extractor. For simplicity, throughout the argument
we do not distinguish between x ∈ F

n0·∆
q and x̂ ∈ F

n0
q0 .

Since Ext is not a (k, 2qm · ρ)-extractor, there exists a random variable x over Fn
q with

min-entropy at least k such that Ext(x, u`) is (2qm · ρ)-far from the uniform distribution
over Fm

q . By a standard argument showing that next-element unpredictability of a dis-
tribution implies that the distribution is close to uniform (see Appendix A), there exists
an index i ∈ [m] and a function f : Fi−1

q → Fq such that

Pr
x∼x,(y,j)∼u`

[f (Ext(x, (y, j))1, ...,Ext(x, (y, j))i−1) = Ext(x, (y, j))i] > 1/q + 2ρ . (6.1)

For any fixed (x, y) ∈ Fn
q × {0, 1}`0 , let cx,y be the string that is obtained by encod-

ing each of the first i − 1 output elements of Ext0(x, y) by the code C; that is, cx,y =

C(Ext0(x, y)1), ...,C(Ext0(x, y)i−1) ∈ (F∆̄
q)

i−1. Also, for any j ∈ [∆̄], let c(j)
x,y ∈ Fi−1

q be
the string that is obtained by projecting each of the i − 1 symbols of cx,y into its jth

coordinate; that is, c(j)
x,y = C(Ext0(x, y)1)j, ...,C(Ext0(x, y)i−1)j. Note that

c(j)
x,y = Ext(x, (y, j))1, ...,Ext(x, (y, j))i−1.

It follows from Equation (6.1) by an averaging argument that for at least a ρ-fraction
of the pairs (x, y) ∈ Fn

q × {0, 1}` it holds that

1/q + ρ < Pr
j∈[∆̄]

[f (Ext(x, (y, j))1, ...,Ext(x, (y, j))i−1) = Ext(x, (y, j))i]

= Pr
j∈[∆̄]

[f (c(j)
x,y) = C(Ext0(x, y)i)j] ;

in other words, with probability at least ρ over choice of (x, y), for more than a 1/q + ρ

fraction of the coordinates j ∈ [∆̄] it holds that f (c(j)
x,y) correctly outputs the jth coordi-

nate of C(Ext0(x, y)i).

Let us now construct a predictor P : Fi−1
q0
→ F

ρ−2

q0 for Ext0 that succeeds with prob-
ability more than ρ. The predictor P gets i − 1 inputs Ext0(x, y)1, ...,Ext0(x, y)i−1, and
computes r = f

(
c(1)x,y

)
, ..., f

(
c(∆̄)x,y

)
∈ F∆̄

q . We think of r as a possibly-corrupt codeword

in the code C. Since C is (1− 1/q − ρ, ρ−2)-list-decodable, there are at most ρ−2 mes-
sages whose encoding is of distance at most 1− 1/q− ρ from r; the predictor outputs
this list. By the argument above, with probability at least ρ over choice of (x, y) it holds
that r will be of distance less than 1− 1/q− ρ from C(Ext0(x, y)i). For every such (x, y),
the list that P outputs will contain Ext0(x, y)i.

We now combine Theorem 32 and Proposition 33 to obtain a linear (k, δ)-disperser
Fn

q × {0, 1}` → Fm
q with output length m = k/nΩ(1) and seed length ` = O(log(n/δ)).

25

Theorem 34 (an adaptation of the Shaltiel-Umans extractor to a linear disperser over
general finite fields) For any two constants γ, γ′ > 0 the following holds. Let n, k, q ∈ N

such that k ≥ nγ+γ′ and q ≤ n1/γ′ , and let δ ≥ 2−nγ+log(2qn). Then, there exists a linear (k, δ)-
disperser Disp : Fn

q × {0, 1}` → Fm
q , where ` = Oγ′(log(n/δ)) and m = Ωγ′

(
k/nγ+γ′

)
.

Proof: For a sufficiently large universal constant c ∈ N, we choose q0 to be a power
of q in the interval [(nq/δ)c, (nq/δ)2c], denote ∆ = logq(q0) = O(log(n/δ)), and let

n0 = n/∆. We also let h =
⌈

nγ′
⌉

, let r = O(1) be a sufficiently large constant, let

m = cγ′ · k/nγ+γ′ , where cγ′ > 0 is a sufficiently small constant that depends on γ′, and
let ρ = δ/2qm. We instantiate Theorem 32 with the foregoing parameters, to obtain a
q0-ary (k, ρ)-extractor Ext0 : F

n0
q0 × {0, 1}O(log(n)) → Fm

q0
. (The conditions of Theorem 32

hold due to our hypothesized lower bounds for k and for δ.)
We now want to use Proposition 33 to transform Ext0 into a standard extractor.

As a list-decodable code we use the concatenation of the Reed-Solomon code with the
Hadamard code over Fq, which yields a linear code F∆

q → F∆̄
q with relative distance

1 − 1/q − ρ2 such that ∆̄ = O(∆/ρ2)2.14 By an appropriate version of the Johnson
bound (see, e.g., [GS01, Theorem 1]), the code is (1− 1/q− ρ, ρ−2)-list-decodable. Using
Proposition 33 with this code, we obtain a (k, δ)-extractor Ext : Fn

q × {0, 1}` → Fm
q ,

where ` = O(log(n)) + log(∆̄) = O(log(n/δ)).
Finally, let us verify that Ext is linear. Recall that for any fixed seed (y, j) ∈ {0, 1}r·log(q0)+log(∆̄)

and output location i ∈ [m], we want to show that the function that outputs the ith out-
put element of Ext(x, (y, j)) is linear. To see this, note that the ith output element of
Ext(x, (y, j)) can be computed from x ∈ Fn

q by first computing a predetermined output
element of Ext0(x, y), which we denote by zy,i(x) ∈ F∆

q , and then computing the jth

output element of C(zy,i(x)), where C : F∆
q → F∆̄

q is a linear code. Thus, it suffices to
show that the mapping of x ∈ Fn

q to zy,i ∈ F∆
q is Fq-linear; this is indeed the case since

zy,i(x) is the evaluation of the multivariate polynomial px over Fq0 whose coefficients
are described in x (i.e., each block of ∆ elements in x describes a coefficient of px) at the
fixed point in Fr

q0
described by y.

Finally, we deduce our lower bound from Theorem 30 using Corollary 28 with the
linear disperser from Theorem 34.

Proof of Theorem 30: Let d0 = d/4t, and let a = d0/(q− 1) such that δ = δRM(d0, q) ≥
q−a. We instantiate the linear disperser from Theorem 34 with parameters n and k =
(n− 2t) · log(q) and δ = q−a ≥ 2−nγ+log(2qn), and with the parameters γ > 0 and γ′ > 0.
The conditions of Theorem 34 hold due to our hypotheses that d/t ≤ γ′′ · q−1

log(q) · n
γ

(which implies that δ ≥ 2−nγ+log(2qn)) and that d ≤ n/4 (which implies that k = Ω(n)).
For these parameters, the disperser has seed length ` = O(log(n/δ)) = O(log(n) +
(d/4t) · (log(q)/(q− 1))) and output length m = Ω(n1−(γ+γ′)).

14We use this specific code merely for simplicity, and since its sub-optimal parameters do not signifi-
cantly affect the final parameters of the construction.

26

Relying on Corollary 28, we get a lower bound of Ω
(
(d/t) · log(n1−(γ+γ′) · (t/d))

)
,

assuming that d0 < m (which holds since d/4t < γ′′ · n1−(γ+γ′)) and that t ≤ log(nt/d)
8` · d.

Thus, we just need to verify the latter condition.
We verify the condition by a case analysis. The first case is when log(n) > d log(q)

4t(q−1) ,
which implies that the seed length is ` = O(log(n)); then, the condition that we want
holds due to our hypothesis t ≤ γ′′ · log(nt/d)

log(n) · d. In the second case we have that
d log(q)
4t(q−1) ≥ log(n), which implies that the seed length is ` = O

(
d log(q)
t(q−1)

)
; then, the condi-

tion holds since we assumed that q−1
log(q) · log(nt/d) ≥ 1/γ′′.

6.3 Improved lower bounds in two special cases

In this section we extend Theorem 30 by proving the two additional lower bounds that
were described in the beginning of Section 6. Recall that these lower bounds have
advantages over the lower bound in Theorem 30 but hold only in two specific settings.

The first lower bound is for the setting of d ≤ q. Recall, from Section 2, that this
setting is relatively easier to handle, since the corresponding Reed-Muller code has
constant relative distance. To prove the lower bound we will instantiate Corollary 28
with the disperser from Theorem 32 used with the error parameter δ = Ω(1).15

Theorem 35 (a lower bound when d ≤ q) For any constant η > 0 there exists a constant
η′ > 0 such that following holds. Let n, q, d, t ∈ N such that q is a prime power, and d/t ≤
min{3q, η′ · n1−2η}, and t ≤ η′ · d. Then, the seed length of any HSG with density more than

q−2t

1−
√

2·q−t for Pn,q,d,
√

2·q−t is at least Ω
(

d
t · log

(
n1−η ·t

d

))
.

Proof: Let d0 = d/4t, and note that d0 ≤ (3/4) · q, which implies that δ = δRM(d0, q) ≥
1/4. We instantiate the disperser from Theorem 32 with parameters n and k = (n −
2t) · log(q) and δ = 1/4, and with γ = γ′ = η/2. For such parameters, this disperser
has seed length ` = O(log(n)) and output length m = Ω(n1−η). The statement follows
using Corollary 28 with the parameters m, q, d0, t and with this disperser; the require-
ment that d0 < m is satisfied since d/t ≤ η′ · n1−2η < m, and the requirement that
t ≤ log(mt/d)

8` · d is satisfied since log(mt/d) = Ω(log(n)), relying on the hypothesis that
t/d ≤ n1−2η .

The second lower bound holds only over fields of constant size. Recall that this
lower bound is of the stronger form Ω((d/t) · log(nt/d)) (as in Corollary 29), and holds
even for high degrees up to Ω(n), and for every t /

√
d. More accurately:

Theorem 36 (a lower bound using the local-expander disperser) For every constant prime
power q there exists a constant αq > 0 such that the following holds. Let n, d, t ∈ N such that

15Additional lower bounds for this setting, which admit different trade-offs between the lower bound
itself and the requirements on d/t, can be proved by instantiating Corollary 28 with other dispersers (e.g.,
with the naive disperser or with the subspace sampler). For simplicity, we omit these statements.

27

2 · (q− 1) ≤ d ≤ n/22(q−1) and t ≤ αq ·
√

log(nt/d) ·
√

d. Then, the seed length of any HSG

with density more than q−2t

1−
√

2·q−t for Pn,q,d,
√

2·q−t is at least Ω
(

d
t · log

(n·t
d

))
.

To prove Theorem 36, we will instantiate Corollary 28 with linear dispersers that can
be obtained from the recent construction of linear 1-local expanders over a constant-
sized alphabet by Goldreich [Gol16], following Viola and Wigderson [VW17]. Let us
first recall the definition of linear 1-local functions and Goldreich’s result:

Definition 37 (linear local functions) We say that a function f : Fn
q → Fm

q is linear 1-local
if each output bit of f is an Fq-linear function of a single input bit of f .

Note that the composition of linear 1-local functions is linear 1-local. Then, Goldre-
ich [Gol16], proved that there exist expanders over Fn

q whose neighbor functions are
1-local Fq-linear functions. Specifically:

Theorem 38 (local expanders [Gol16]) Let Fq be a field of constant size. Then, for any
sufficiently large n ∈ N there exists an expander (i.e., a graph with a constant spectral gap)
G = ([qn], E) of degree ∆ = Oq(1) that satisfies the following. For each i ∈ [∆], the ith

neighbor function fi : [qn]→ [qn] of the graph is a linear 1-local function.

We now use a standard transformation of expanders to extractors: The input to the
extractor is a name of a vertex, the seed specifies the directions in a walk of suitable
length, and the output is the final vertex in the corresponding walk (that starts from
the input vertex and proceeds according to the seed). The crucial point is that for every
fixed seed, the output of the extractor is obtained by applying fixed neighbor functions
(which correspond to the walk specified in the seed) to the input; in particular, since
the neighbor functions are linear, the resulting disperser is also linear.

Theorem 39 (expanders yield good extractors; see, e.g., Theorem 6.22 in [Vad12]) For
any q, n ∈ N, let G = ([qn], E) be an expander (i.e., a graph with a constant spectral gap)
of degree ∆ = O(1). For k < n · log(q) and δ > 0, let Disp : Fn

q × {0, 1}` → Fn
q , where

` = r · log(∆) and r = O(n · log(q)− k + log(1/δ)), be defined as follows. For every x ∈ Fm
q

and w ∈ {0, 1}`, consider the r-long walk on G that starts from x, and let Disp(x, w) be the
final vertex in this walk. Then, Disp is a (k, δ)-disperser.

Theorem 40 (a linear disperser from a local expander) Let Fq be a field of constant size, let
n ∈N be sufficiently large, and for a, t ∈N let k = (n− 2t) · log(q) and δ = q−a. Then, there
exists a linear (k, δ)-disperser Disp : Fn

q × {0, 1}` → Fn
q , where ` = Oq(t + a). Moreover, the

function that maps x to {Disp(x, w)}w∈{0,1}` is linear 1-local.

Proof: We use the disperser from Theorem 39, instantiated with the expander from
Theorem 38, and with error parameter δ = q−a and with k = (n− 2t) · log(q).

To show that the mapping x 7→ {Disp(x, w)}w∈{0,1}` is linear 1-local, fix any w ∈ [2`],
and let us focus on the wth output element of Disp. Recall that the wth output ele-
ment is the final vertex in a walk of length r that starts at the input x ∈ Fn

q to Disp

28

and whose steps are described by w. In particular, let f1, ..., f∆ be the neighbor func-
tions of G, and let (i1, ..., ir) ∈ [∆]r be the r steps taken in the fixed walk w; then,
Disp(x)w = fir(fir−1(...(fi1(x))...)). Since each of the neighbor functions is a linear 1-
local function, their composition is also linear 1-local. Hence, for every w ∈ {0, 1}` it
holds that Disp(·)w is a linear 1-local function.

We now prove Theorem 36 by instantiating Corollary 28 with the linear disperser
from Theorem 40:

Proof of Theorem 36: Let d0 = d/4t, and let a = d0/(q− 1) such that δ = δRM(d0, q) ≥
q−a. When instantiating the disperser from Theorem 40 with parameters n and k =
(n− 2t) · log(q) and δ = q−a, it has seed length ` = Oq(t + a). Relying on Corollary 28,
we get a lower bound of Ω ((d/t) · log(nt/d)), assuming that t ≤ log(nt/d)

8` · d. Thus, we
just need to verify the latter condition.

Note that t ≤ log(nt/d)
8` · d if and only if t · (t + a) ≤ cq · log(nt/d) · d, where cq is a

constant that depends only on q. Since t · (t + a) = t2 + d/4(q− 1), it suffices to prove
that

t2 + d/4(q− 1) ≤ cq · log(nt/d) · d ⇐⇒

t ≤ √cq ·
√
(log(nt/d)− 1/4(q− 1)) ·

√
d .

Finally, since d ≤ n/22(q−1) we have that log(nt/d) − 1/4(q − 1) ≥ 1
2 · log(nt/d).

Hence, it suffices that t ≤ (
√

cq/2) ·
√

log(nt/d) ·
√

d, which holds due to our hy-
pothesis (using αq =

√
cq/2).

7 Small sets with a large degree-d closure

In this section we formally state Theorem 5 and prove it. Towards stating the theorem,
let us define the degree-d closure of a set:

Definition 41 (degree-d closure) Let F be a finite field, and let n, d ∈ N. Then, for any
S ⊆ Fn, we define the degree-d closure of S, denoted Cl(d)(S), by Cl(d) = {x ∈ Fn : ∀p ∈
I(S), p(x) = 0}, where I(S) = {p : Fn → F : deg(p) = d ∧ ∀s ∈ S, p(s) = 0}.

Theorem 42 (small sets with large closures are equivalent to hitting-sets for polyno-
mials that vanish rarely; Theorem 5, restated) Let F be a field of size q, let n ∈ N and
t < d < n, and let S ⊆ Fn. Then,

1. If
∣∣∣Cl(d)(S)∣∣∣ > qn−t, then S is a hitting-set for Pn,q,d,q−t .

2. If S is a hitting-set for Pn,q,d,q−t , then
∣∣∣Cl(d/2(t+1))(S)

∣∣∣ > 1
2 · qn−t.

29

Proof: For the first statement, let S ⊆ Fn be such that
∣∣∣Cl(d)(S)∣∣∣ > qn−t. Then, every

degree-d polynomial that vanishes on S also vanishes on more than qn−t of the inputs.
It follows that S is a hitting-set for Pn,q,d,q−t .

For the second statement, for d′ = d/2(t + 1), assuming that
∣∣∣Cl(d′)(S)∣∣∣ ≤ 1

2 · qn−t,
we construct a degree-d polynomial that vanishes on S and that vanishes on at most
qn−t inputs in Fn (and it follows that S is not a hitting-set for Pn,q,d,q−t).

To construct the polynomial, let T1 = Fn \ Cl(d′)(S). Note that for every x ∈ T1
there exists a degree-d′ polynomial px that vanishes on S, but does not vanish at x. We
can thus construct a collection P1 of degree-d′ polynomials such that for every x ∈ T1
there exists a corresponding px ∈ P1 satisfying px(x) 6= 0. (Indeed, a single polynomial
might “cover” two distinct inputs, i.e. px = py for x 6= y.)

Now, consider the distribution p1 over polynomials Fn → F that is defined by

p1(z) = ∑
x∈T1

cx · px(z) ,

where the coefficients cx are uniformly and independently chosen in F. Note that p1 is
supported by polynomials of degree d′ that vanish on S. Also note that for any fixed
z ∈ T1 we have that

Pr[p1(z) = 0] = Pr

[
∑

x∈T1

cx · px(z) = 0

]

= E{cx}x∈T1\{z}

[
Pr

[
cz · pz(z) = − ∑

x∈T1\{z}
cx · px(z)

]]
,

which equals 1/q since pz(z) 6= 0. Therefore, there exists a fixed polynomial p of degree
d′ that vanishes on S and on at most 1/q of the inputs in T1.

We now repeat this step t additional times, while maintaining the invariant that for
every x ∈ Ti there exists a polynomial px ∈ Pi such that px(x) 6= 0. Specifically, for
i = 2, ..., t + 1, we let Ti = Ti−1 ∩ {x ∈ Ti : pi−1(x) = 0} and Pi = Pi−1 \ {pi−1}. Note
that |Ti| ≤ |Ti−1|/q, and that for every x ∈ Ti there exists px ∈ Pi such that px(x) 6= 0.
We again define a distribution pi(z) = ∑x∈Ti

cx · px(z), and using the same argument as
above, we deduce that there exists a fixed polynomial pi of degree d′ that vanishes on
S and on at most 1/q of the inputs in Ti.

After t + 1 steps we obtain t + 1 polynomials p1, ..., pt+1 of degree d′ that vanish

on S such that
∣∣∣{x /∈ Cl(d)(S) : ∀i ∈ [t], pi(x) = 0}

∣∣∣ ≤ |T1|/qt+1 ≤ 1
2 · q−t. Let p :

Fn → F be the multivalued OR of p1, ..., pt+1, defined by p(x) = mvOR(p1(x), ..., pt(x)).
Note that deg(p) < 2(t + 1) · d′ = d, and that p vanishes on S. Thus, denoting δ =∣∣∣Cl(d′)(S)∣∣∣/qn ≤ 1

2 · q−t, we have that

Pr
x∈Fn

[p(x) = 0] = δ + (1− δ) · q−(t+1) < q−t ,

which implies that p ∈ Pn,q,d,q−t . Hence, S is not a hitting-set for Pn,q,d,q−t .

30

References

[ABN+92] N. Alon, J. Bruck, J. Naor, M. Naor, and R. M. Roth. “Construction of
Asymptotically Good Low-rate Error-correcting Codes Through Pseudo-
random Graphs”. In: IEEE Transactions on Information Theory 38.2 (1992),
pp. 509–516.

[ASW15] Emmanuel Abbe, Amir Shpilka, and Avi Wigderson. “Reed-Muller codes
for random erasures and errors”. In: IEEE Transactions on Information Theory
61.10 (2015), pp. 5229–5252.

[BBG16] Arnab Bhattacharyya, Abhishek Bhowmick, and Chetan Gupta. “On higher-
order Fourier analysis over non-prime fields”. In: Proc. 20th International
Workshop on Randomization and Approximation Techniques in Computer Sci-
ence (RANDOM). 2016, Art. No. 23, 29.

[Bha14] Arnab Bhattacharyya. “Polynomial decompositions in polynomial time”.
In: Proc. 22nd European Symposia on Algorithms. 2014, pp. 125–136.

[BHS08] Markus Bläser, Moritz Hardt, and David Steurer. “Asymptotically Optimal
Hitting Sets Against Polynomials”. In: Proceedings of the 35th International
Colloquium on Automata, Languages and Programming, Part I. Proc. 35th Inter-
national Colloquium on Automata, Languages and Programming (ICALP).
2008, pp. 345–356.

[BHT15] Arnab Bhattacharyya, Pooya Hatami, and Madhur Tulsiani. “Algorithmic
regularity for polynomials and applications”. In: Proc. 26th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA). 2015, pp. 1870–1889.

[Bog05] Andrej Bogdanov. “Pseudorandom generators for low degree polynomi-
als”. In: Proc. 37th Annual ACM Symposium on Theory of Computing (STOC).
2005, pp. 21–30.

[BS69] E. R. Berlekamp and N. J. A. Sloane. “Restrictions on weight distribution
of Reed-Muller codes”. In: Information and Control 14 (1969), pp. 442–456.

[BV10] Andrej Bogdanov and Emanuele Viola. “Pseudorandom bits for polynomi-
als”. In: SIAM Journal of Computing 39.6 (2010), pp. 2464–2486.

[CTS13] Gil Cohen and Amnon Ta-Shma. “Pseudorandom Generators for Low De-
gree Polynomials from Algebraic Geometry Codes”. In: Electronic Collo-
quium on Computational Complexity: ECCC 20 (2013), p. 155.

[Dvi09] Zeev Dvir. “On the size of Kakeya sets in finite fields”. In: Journal of the
American Mathematical Society 22.4 (2009), pp. 1093–1097.

[Gol16] Oded Goldreich. “Deconstructing 1-local expanders”. In: Electronic Collo-
quium on Computational Complexity: ECCC 23 (2016), p. 152.

[GRS19] Venkatesan Guruswami, Atri Rudra1, and Madhu Sudan. Essential Coding
Theory. Accessed at https://cse.buffalo.edu/faculty/atri/
courses/coding-theory/book/web-coding-book.pdf. 2019.

31

https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf

[GS01] Venkatesan Guruswami and Madhu Sudan. “Extensions to the Johnson
Bound”. Manuscript. 2001.

[GT09] Ben Green and Terence Tao. “The distribution of polynomials over finite
fields, with applications to the Gowers norms”. In: Contributions to Discrete
Mathematics 4.2 (2009), pp. 1–36.

[GW14] Oded Goldreich and Avi Widgerson. “On derandomizing algorithms that
err extremely rarely”. In: Proc. 46th Annual ACM Symposium on Theory of
Computing (STOC). Full version available online at Electronic Colloquium on
Computational Complexity: ECCC, 20:152 (Rev. 2), 2013. 2014, pp. 109–118.

[HS10] Elad Haramaty and Amir Shpilka. “On the structure of cubic and quartic
polynomials”. In: Proc. 42nd Annual ACM Symposium on Theory of Comput-
ing (STOC). 2010, pp. 331–340.

[KL08] Tali Kaufman and Shachar Lovett. “Worst Case to Average Case Reduc-
tions for Polynomials”. In: Proc. 49th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS). 2008, pp. 166–175.

[KLP12] Tali Kaufman, Shachar Lovett, and Ely Porat. “Weight distribution and list-
decoding size of Reed-Muller codes”. In: IEEE Transactions on Information
Theory 58.5 (2012), pp. 2689–2696.

[KS01] Adam R. Klivans and Daniel Spielman. “Randomness efficient identity
testing of multivariate polynomials”. In: Proc. 33rd Annual ACM Sympo-
sium on Theory of Computing (STOC). 2001, pp. 216–223.

[KT70] Tadao Kasami and Nobuki Tokura. “On the weight structure of Reed-Muller
codes”. In: IEEE Transactions on Information Theory IT-16 (1970), pp. 752–759.

[Lov09] Shachar Lovett. “Unconditional pseudorandom generators for low-degree
polynomials”. In: Theory of Computing 5 (2009), pp. 69–82.

[Lu12] Chi-Jen Lu. “Hitting set generators for sparse polynomials over any finite
fields”. In: Proc. 27th Annual IEEE Conference on Computational Complexity
(CCC). 2012, pp. 280–286.

[LV98] Daniel Lewin and Salil Vadhan. “Checking polynomial identities over any
field: towards a derandomization?” In: Proc. 30th Annual ACM Symposium
on Theory of Computing (STOC). 1998, pp. 438–447.

[LVW93] M. Luby, B. Velickovic, and A. Wigderson. “Deterministic approximate
counting of depth-2 circuits”. In: Proc. 2nd Israel Symposium on Theory and
Computing Systems. 1993, pp. 18–24.

[McE69] R. J. McEliece. “Quadratic forms over finite fields and second- order Reed-
Muller codes”. In: Space Program Summary 3.37–58 (1969), pp. 28–33.

[MS77] F. J. MacWilliams and N. J. A. Sloane. The theory of error-correcting codes. II.
North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.

32

[NN93] Joseph Naor and Moni Naor. “Small-bias probability spaces: efficient con-
structions and applications”. In: SIAM Journal of Computing 22.4 (1993),
pp. 838–856.

[NZ96] Noam Nisan and David Zuckerman. “Randomness is Linear in Space”. In:
Journal of Computer and System Sciences 52.1 (1996), pp. 43–52.

[SB70] Neil J. A. Sloane and Elwyn R. Berlekamp. “Weight enumerator for second-
order Reed-Muller codes”. In: IEEE Transactions on Information Theory IT-16
(1970), pp. 745–751.

[ST18] Rocco A. Servedio and Li-Yang Tan. “Luby-Veličković-Wigderson revis-
ited: improved correlation bounds and pseudorandom generators for depth-
two circuits”. In: Proc. 22nd International Workshop on Randomization and Ap-
proximation Techniques in Computer Science (RANDOM). Vol. 116. 2018, Art.
No. 56, 20.

[SU05] Ronen Shaltiel and Christopher Umans. “Simple extractors for all min-
entropies and a new pseudorandom generator”. In: Journal of the ACM 52.2
(2005), pp. 172–216.

[Tel19] Roei Tell. “Improved Bounds for Quantified Derandomization of Constant-
Depth Circuits and Polynomials”. In: Computational Complexity. 2019.

[TSZ04] Amnon Ta-Shma and David Zuckerman. “Extractor codes”. In: IEEE Trans-
actions on Information Theory 50.12 (2004), pp. 3015–3025.

[TSZS06] Amnon Ta-Shma, David Zuckerman, and Shmuel Safra. “Extractors from
Reed-Muller codes”. In: Journal of Computer and System Sciences 72.5 (2006),
pp. 786–812.

[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical
Computer Science. Now Publishers, 2012.

[Vio09a] Emanuele Viola. “Guest Column: correlation bounds for polynomials over
0 1.” In: SIGACT News 40 (Feb. 2009), pp. 27–44.

[Vio09b] Emanuele Viola. “The sum of d small-bias generators fools polynomials of
degree d”. In: Computational Complexity 18.2 (2009), pp. 209–217.

[VW17] Emanuele Viola and Avi Wigderson. “Local Expanders”. In: Computational
Complexity (2017).

[War35] Ewald Warning. “Bemerkung zur vorstehenden Arbeit von Herrn Cheval-
ley”. In: Abhandlungen aus dem Mathematischen Seminar der Universität Ham-
burg 11 (1935), pp. 76–83.

[Yao82] Andrew C. Yao. “Theory and Application of Trapdoor Functions”. In: Proc.
23rd Annual IEEE Symposium on Foundations of Computer Science (FOCS).
1982, pp. 80–91.

33

Appendix A Next-element unpredictability over large alpha-
bets

Recall that, as proved by Yao [Yao82], if a distribution w over {0, 1}m is next-bit un-
predictable, then w is close to the uniform distribution. In this appendix we prove a
generalized version of this claim that applies also to distributions over Σm where Σ is
an alphabet of arbitrary size.

Proposition 43 (next-element unpredictability implies closeness to uniform, over ar-
bitrary alphabets) Let Σ be a set of size q = |Σ|, let w be a distribution over Σm, and
assume that the statistical distance between w and the uniform distribution on Σm, denoted
um, is at least ρ > 0. Then, there exists i ∈ [m] and a function P : Σi−1 → Σ such that
Pr[wi = P(w1, ..., wi−1)] > 1/q + ρ/qm,.

Proof: Let h(0) = un, and for i ∈ [m] let h(i) be the distribution over Σm such that its
first i elements are sampled from w and its last m− i elements are sampled uniformly
and independently. By a standard hybrid argument, for some i ∈ [m] it holds that the
statistical distance between h(i−1) and h(i) is at least ρ/m. Hence, there exists T : Σi →
{0, 1} such that

Pr[T(h(i)
1,...i) = 1]− Pr[T(h(i−1)

1,...,i) = 1] > ρ/m .

Now, for any w1, ..., wi−1 ∈ Σi−1, let

P(w1, ..., wi−1) = argmaxz∈Σ {Pr [wi = z|w1,...,i−1 = w1,...,i−1]} .

Denote Prw∼w[wi = P(w1,...,i−1)]
def
== (1/q+ δ), where δ ∈ [0, 1]. Our goal is to prove

that δ > ρ/qm. By the definition of P, for every z ∈ Σ and w1,...,i−1 ∈ Σi−1 we have that

Ew∼w [Pr[wi = z|w1,...,i−1 = w1,...,i−1]] ≤ 1/q + δ .

Thus, we have that

Pr[T(h(i)
1,...i) = 1]− Pr[T(h(i−1)

1,...,i) = 1]

= Eui+1,...,n∼un,w1,...,i−1∼w

[
∑
z∈Σ

Pr[wi = z|w1,...,i−1 = w1,...,i−1] · T(w1, ..., wi−1, z, ui+1, ..., un)

− 1
q
· ∑

z∈Σ
T(w1, ..., wi−1, z, ui+1, ..., un)

]
≤ Eui+1,...,n∼un,w1,...,i−1∼w

[
∑
z∈Σ

(1/q + δ) · T(w1, ..., wi−1, z, ui+1, ..., un)

− 1
q
· T(w1, ..., wi−1, z, ui+1, ..., un)

]
≤ q · δ ,

which implies that δ > ρ/qm.

34

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

