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Abstract

The problem of constructing hitting-set generators for polynomials of low de-
gree is fundamental in complexity theory and has numerous well-known applica-
tions. We study the following question, which is a relaxation of this problem: Is it
easier to construct a hitting-set generator for polynomials p : Fn → F of degree d
if we are guaranteed that the polynomial vanishes on at most an ε > 0 fraction of
its inputs? We will specifically be interested in tiny values of ε� d/|F|. This ques-
tion was first considered by Goldreich and Wigderson (STOC 2014), who studied a
specific setting geared for a particular application, and another specific setting was
later studied by the third author (CCC 2017).

In this work our main interest is a systematic study of the relaxed problem, in its
general form, and we prove results that significantly improve and extend the two
previously-known results. Our contributions are of two types:

• Over fields of size 2 ≤ |F| ≤ poly(n), we show that the seed length of any
hitting-set generator for polynomials of degree d ≤ n.49 that vanish on at most
ε = |F|−t of their inputs is at least Ω ((d/t) · log(n)).

• Over F2, we show that there exists a (non-explicit) hitting-set generator for
polynomials of degree d ≤ n.99 that vanish on at most ε = |F|−t of their inputs
with seed length O ((d− t) · log(n)). We also show a polynomial-time com-
putable hitting-set generator with seed length O

(
(d− t) ·

(
2d−t + log(n)

))
.

In addition, we prove that the problem we study is closely related to the fol-
lowing question: “Does there exist a small set S ⊆ Fn whose degree-d closure is
very large?”, where the degree-d closure of S is the variety induced by the set of
degree-d polynomials that vanish on S.
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1 Introduction

Let Pn,q,d denote the set of all polynomials Fn → F of total degree d over the field of
size q = |F|. We think of n as sufficiently large, and of the degree d and the field size q
as functions of n. For simplicity, throughout the paper we assume that d < n.1

A fundamental problem in complexity theory is that of constructing hitting-set gen-
erators for low-degree polynomials. Recall that a Hitting-Set Generator (HSG) for Pn,q,d is
a function H : {0, 1}` → Fn such that for every non-zero polynomial p ∈ Pn,q,d there
exists s ∈ {0, 1}` satisfying p(H(s)) 6= 0 (see Definition 11); in other words, every non-
zero polynomial p ∈ Pn,q,d does not vanish on at least one element in the hitting-set
S =

{
H(s) : s ∈ {0, 1}`

}
. The two main measures of efficiency for HSGs are the seed

length ` (equivalently, the size of the hitting-set S as a multiset) and the computational
complexity of H as a function (i.e., the computational complexity of generating an ele-
ment of the hitting-set S given its index s).

A standard linear-algebraic argument yields a lower bound of Ω (d · log (n/d)) on
the seed length of any HSG for Pn,q,d, and a standard probabilistic argument shows that
there exists a HSG forPn,q,d with matching seed length O (d · log(n/d) + log log(q)) (see
Facts 14 and 15). Naturally, the probabilistic upper-bound does not guarantee that the
function H is efficiently-computable. Thus, the main open problem concerning HSGs
for Pn,q,d is to construct efficiently-computable HSGs with seed length that matches
the known lower bound. This well-known problem (as well as a variant that refers
to pseudorandom generators as in Definition 13) has attracted a significant amount of
attention over the years; see, e.g., [NN93; LVW93; LV98; KS01; Bog05; BV10; BHS08;
Lov09; Vio09b; Lu12; CTS13; ST18], and the related survey by Viola [Vio09a].

Several years ago, Goldreich and Wigderson [GW14, Section 5] considered a relaxed
version of the foregoing problem. In general terms, what they asked is the following:

Does the HSG problem become easier if we are guaranteed that the polyno-
mial vanishes rarely (i.e., has very few roots)?

Note that, intuitively, we expect that the relaxed problem will indeed be easier: This
is both since there are less polynomials that vanish rarely (than arbitrary polynomials),
and since for any such polynomial p, almost all inputs will “hit” p.

In their original paper, Goldreich and Wigderson considered a specific instance of
this problem, geared for a particular application (see Section 1.2 for details). In this
paper our goal is to study the relaxed problem in and of itself, in a systematic and general
way. Our motivation for doing so is three-fold. First, this is a special (and potentially-
easy) case of the classical HSG problem, and thus constitutes a potential path to make
progress on the classical problem. Secondly, the relaxed question is of independent
interest as part of the broad study of quantified derandomization, which was initiated
in the original work of Goldreich and Wigderson [GW14] (see also, e.g., [Tel19; CT19;

1Most of our results also carry on to the setting of d > n, albeit with less “clean” parametrizations.
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DMO+19]). And thirdly, as polynomial-based constructions are ubiquitous in complex-
ity theory, any progress in our understanding of structured classes of polynomials or in
related HSG constructions may be valuable for other explicit constructions.

To be more formal, denote by Pn,q,d,ε the set of polynomials p ∈ Pn,q,d such that
Prx∈Fn [p(x) = 0] ≤ ε; that is, Pn,q,d,ε is the set of degree-d polynomials that vanish
rarely, where the notion of “rarely” is parametrized by the parameter ε. The two main
questions we consider in this context are:

• The combinatorial question: What is the minimal size of a hitting-set for Pn,q,d,ε?
Equivalently, we ask what is the minimal seed length of any HSG for Pn,q,d,ε. This
question is combinatorial since it refers to the existence of a HSG, regardless of its
computational complexity.

• The computational question: For which values of ε > 0 can we construct a
HSG for Pn,q,d,ε with small seed length that will be efficiently-computable? In other
words, can we simultaneously optimize not only the seed length but also the com-
putational complexity of HSGs for Pn,q,d,ε?

1.1 Context and previous work

Let us first delineate some trivial values for ε. To do so, first recall that we expect
a random polynomial to vanish on q−1 of its inputs. Now, by the Schwartz-Zippel
lemma, any non-zero p ∈ Pn,q,d has at most an ε = d/q fraction of roots; this bound is
quite good when q is large compared to d, and in general, for abitrary d and q, any non-
zero polynomial vanishes on at most 1− δ of its inputs, where δ ≥ q−d/(q−1) denotes
the relative distance of the Reed-Muller code of degree d over Fq. Therefore, the value
ε = 1− δ represents the general case (i.e., the case of hitting any non-zero polynomial).
Remarkably, we also have a minimal non-zero value that ε can have: By a theorem of
Warning [War35], every polynomial in Fn

q → Fq of degree d that vanishes somewhere
vanishes on at least a q−d fraction of its inputs. Therefore, hitting polynomials that
vanish on ε < q−d fraction of their inputs is trivial, since such polynomials have no
zeroes. It will be useful to denote ε = q−t from now on.

q−d q−1 1− δ

Figure 1: The two extremal values of ε (i.e., ε = q−d and ε = 1− δ) and the expected
ε = q−1 for a random polynomial. (The parameter δ denotes the relative distance of the
corresponding q-ary Reed-Muller code RM(n, d).)

Referring to the combinatorial question, the standard probabilistic argument men-
tioned before shows there exists a HSG forPn,q,d,ε with seed length O(log log(|Pn,q,d,ε|)).
Thus, the combinatorial question is intimately connected to the long-standing open
problem of determining the weight distribution of the Reed-Muller code, i.e., counting the
number of polynomials in Pn,q,d that vanish on precisely ε > 0 of their inputs, for every
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ε > 0. The latter problem has been studied since the late 60’s (see, e.g., [BS69; KT70]),
but is currently settled only for d = 2 (see [SB70; McE69]). Only recently have general
results been obtained for d > 2, and the bounds in these results are asymptotic (rather
than precise bounds) and hold only over F2 (see [KLP12; ASW15]). More generally, this
problem is a special case of the well-known problem of studying weight distributions
of (classes of) linear codes, which is typically tackled using weight enumerator polyno-
mials (for relevant background see, e.g., [MS77, Chapter 5]). Note, however, that the
weight distribution problem is more general, since it refers to all non-trivial values of
ε > 0, whereas in our setting we focus only on tiny values of ε.

Another related line of works focuses on structural properties of biased polynomials.
Fixing a polynomial p : Fn → F and looking at the distribution over F that is obtained
by evaluating p at a random point, we can ask whether this distribution is close to uni-
form, or whether it is far from uniform, in which case we call the polynomial biased. A
sequence of works showed that biased polynomials are very “structured”, in the sense
that they can be determined by a relatively-small number of polynomials of lower de-
gree (see [GT09; KL08; HS10; Bha14; BHT15; BBG16]). Our setting is much more specific
than the setting in these works, since their assumption is only that the polynomial is bi-
ased, whereas our assumption is that the polynomial is biased in a very specific manner
(i.e., one output-value has tiny weight ε > 0). Thus, the results in these works typically
do not seem sufficiently strong to be useful in our more specific setting.2

Goldreich and Wigderson [GW14, Section 5], who were motivated by a specific ap-
plication in circuit complexity (derandomization ofAC0[⊕]), constructed a polynomial-
time computable HSG for the setting of q = 2 and ε = 2−(d−O(1)) = O(2−d) (for details
see Section 1.2). Thus, they gave an upper-bound for the computational question, which
holds only for F2 polynomials with extremely few roots. In a subsequent work by the
third author [Tel19], two combinatorial lower bounds were proved for the setting of
q = poly(n) and ε = q−O(1) (again, for details see Section 1.2). Thus, the subsequent
work showed lower bounds for the combinatorial question, which hold only for polyno-
mials over Fpoly(n) with a relatively-large number of roots (i.e., only mildly less roots
than the expected value of ε = q−1). In both previous works, ad-hoc arguments were
used to obtain the corresponding results.

1.2 Our main results

Our first main result is a general lower bound for the combinatorial problem. For con-
text, in [Tel19] it was shown that when q = poly(n), any HSG for Pn,d,q,q−O(1) requires a

seed of length Ω(dΩ(1) · log(n/dΩ(1))); and any HSG with constant density3 for Pn,d,q,q−1

requires a seed of length Ω(d · log(n/d)). Thus, both previous lower bounds referred
to the setting of q = poly(n) and of ε = q−O(1) (i.e., t = O(1)).

The following result shows a lower bound that is both significantly stronger, and –

2One exception is the field F2, in which the notions of bias and of “vanish rarely” converge. Indeed,
the proofs of our results for F2 use insights developed in this sequence of works.

3A hitting-set S for a class P has density ε > 0 if for every p ∈ P it holds that Prs∈S[p(s) 6= 0] ≥ ε.
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more importantly – applies to a far broader parameter setting. In particular, the follow-
ing result applies to a general q ≤ poly(n) and to values of ε = q−t almost up to the
extreme value of ε = q−d, and gives a lower bound of Ω((d/t) · log(n)):

Theorem 1 (lower bound over general fields) For every constant c > 1 there exists a
constant γ > 0 such that the following holds. For every n, q, d, t ∈ N such that 2 ≤ q ≤ nc

is a prime power, d ≤ n.49, and t ≤ γ · d, any HSG for Pn,q,d,q−t requires a seed of length
Ω ((d/t) · log(n)).

Let us parse the meaning of the lower bound in Theorem 1. For comparison, recall
that there exists a HSG for all polynomials of degree d ≤ n.49 with seed length O(d ·
log(n)). Theorem 1 tells us that the relaxation of only requiring to “hit” polynomials
that vanish with probability q−t can “buy” a factor of at most 1/t in the seed length. In
particular, there does not exist a significantly smaller hitting-set for polynomials that
vanish with probability q−O(1). Perhaps surprisingly, this is also true for polynomials
that vanish with probability q−do(1)

(since the lower bound remains almost linear in
d · log(n)). Only for polynomials that vanish with probability q−dΩ(1)

does our lower
bound imply that a significantly smaller hitting-set might exist; and at an “extreme”
value of q−Ω(d), our lower bound does not rule out a polynomial-sized hitting-set.

For technical statements that include various extensions and improvements of The-
orem 1 (and in particular also hold for polynomials of higher degree n.49 < d ≤ γ · n),
see the beginning of Section 6, and specifically Theorems 28, 33, and 34.4

Now, still referring to the combinatorial question, we observe that a result of Kauf-
mann, Lovett, and Porat [KLP12], which upper-bounds the number of biased F2 poly-
nomials (i.e., analyzes the weight distribution of the Reed-Muller code over F2), yields
a corresponding existential upper-bound. Specifically:

Theorem 2 (upper-bound over F2, following [KLP12]) Let n, d, t ∈N where d > t. Then,
there exists a (non-explicit) hitting-set for Pn,2,d,2−t with seed length O

(
(d− t) · log( n

d−t )
)
.

Note that while the lower bound in Theorem 1 holds for any finite field, the upper
bound in Theorem 2 holds only over F2. Nevertheless, comparing Theorems 1 and 2
(for F = F2 and d ≤ n.49) reveals that there is still a significant gap between the upper-
bound and the lower-bound: The lower bound is of the form (d/t) · log(n), whereas the
existential upper bound is of the form (d− t) · log(n). For example, the lower bound
indicates that there might exist a significantly smaller hitting-set for the relaxed problem
when t = dΩ(1), whereas the existential upper bound is significantly better than the one
for the original problem only for t = d− dΩ(1).

Our last main result is computational and shows an explicit construction of a HSG.
As mentioned above, Goldreich and Wigderson [GW14] constructed a polynomial-time
computable HSG with seed length O(log(n)) that “hits” polynomials Fn

2 → F2 of de-
gree d that vanish on O(2−d) of their inputs (for any d ∈ N). We prove a significantly
more general result, by constructing an explicit HSG for Pn,2,d,2−t for any t < d−O(1):

4In these technical results, the log(n) term in the lower bound in Theorem 1 is replaced by a more
complicated term that depends on d and on t, for example log(n.99 · (t/d)).
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Theorem 3 (explicit upper-bound over F2) Let n ∈ N be sufficiently large, and let d >
t + 4 be integers. Then, there exists a polynomial-time computable HSG for Pn,2,d,2−t with seed
length O

(
(d− t) ·

(
2d−t + log( n

d−t )
))

.

Note that the original result from [GW14] is the special case of Theorem 3 when t =
d−O(1). Also note that the seed length of the explicit HSG from Theorem 3 depends
exponentially on d− t, whereas the seed length of the non-explicit HSG from Theorem 2
depends linearly on d− t. We also comment that the result is actually slightly stronger,
and asserts that for any r ∈ N there exists a polynomial-time computable HSG for⋃

d Pn,2,d,qd−r with seed length O(r · (2r + log(n/r))); that is, for every r there is a single
HSG that works for all degrees d with t = d− r.

Below, in Table 1, we present an informal summary of the main results mentioned
above, and compare them to previously-known results.

Seed length Field Size ε

Lower bounds

[Tel19] Ω(dΩ(1) · log(n/dΩ(1))) q = poly(n) q−O(1)

Thm 1 Ω((d/t) · log n) (d ≤ n.49) 2 ≤ q ≤ poly(n) q−t

Thm 28 Ω((d/t) · log(n.99 · t/d)) (d/t / q · n.01) 2 ≤ q ≤ poly(n) q−t

Upper bounds

[GW14] O(log n) (explicit) q = 2 2−d+O(1)

Thm 2 O((d− t) log( n
d−t ) (non-explicit) q = 2 2−t

Thm 3 O((d− t) · (2d−t + log( n
d−t )) (explicit) q = 2 2−t

Table 1: An informal summary of our results and comparison to previous results.

1.3 The connection to small sets with large degree-d closures

In addition to our lower-bounds and upper-bounds for the problem of HSGs for poly-
nomials that vanish rarely, we also tie this problem to the study of a clean and elegant
algebraic question; namely, to the study of the degree-d closure of a set S ⊆ Fn, which
was recently initiated by Nie and Wang [NW15].

Using terminology from algebraic geometry, the degree-d closure of a set S ⊆ Fn is a
finite-degree analogue of the Zariski closure of S, and is defined as the variety induced
by the set of degree-d polynomials Fn → F that vanish on S. In more detail, let us first
define the degree-d ideal of S to be I (d)(S) = {p ∈ Pd : ∀s ∈ S, p(s) = 0}, where Pd is
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the set of degree-d polynomials Fn → F.5 Then, the degree-d closure of S is defined by:

Cl(d)(S) = {x ∈ Fn : ∀p ∈ I (d)(S), p(x) = 0} .

As an example, observe that the degree-d closure of any d + 1 points on a fixed line
in Fn contains the entire line. As another example, recall that the closure of any Kakeya
set in Fn

q with respect to homogeneous degree-(q− 1) polynomials is the entire domain
Fn

q (this was proved by Dvir [Dvi09, Section 3] towards showing that any Kakeya set is
necessarily of size at least (q+n−1

n )).
Following the latter example, it is natural to ask whether there exists a very small set

S ⊆ Fn whose degree-d closure is very large. An initial observation towards answering
this question is that a set S ⊆ Fn has maximal degree-d closure (i.e., Cl(d)(S) = Fn) if
and only if S is a hitting-set for degree-d polynomials. (This is since in both cases, the
only degree-d polynomial that vanishes on S is the zero polynomial.)

Observation 4 (maximal closure ⇐⇒ hitting-set). A set S ⊆ Fn is a hitting-set for (all)
degree-d polynomials if and only if

∣∣∣Cl(d)(S)∣∣∣ = qn.

Loosely speaking, the main result of Nie and Wang [NW15] extends Observation 4

by showing that that for any S ⊆ Fn it holds that
∣∣∣Cl(d)(S)∣∣∣ ≤ |S|

(n+d
d )
· |F|n. The meaning

of this result is that, while there exist sets of size |S| = (n+d
d ) whose degree-d closure is

Fn, the degree-d closure of smaller sets decreases by a factor of at least |S|
(n+d

d )
.6

We take another approach to extending Observation 4, by by establishing a con-
nection between the study of small sets with large closures and the study of HSGs for
polynomials that vanish rarely. Specifically, we show two-way implications between
the statement that S is a hitting-set generator for polynomials that vanish rarely, and the
statement that S has large closure. In more detail, we relate hitting-sets for polynomials
that vanish with probability q−t to sets with closure of size qn−t:

Theorem 5 (small sets with large closures versus hitting-sets for polynomials that vanish
rarely). Let F be a field of size q, let n ∈N and t < d < n, and let S ⊆ Fn. Then,

1. If
∣∣∣Cl(d)(S)∣∣∣ > qn−t, then S is a hitting-set for Pn,q,d,q−t .

2. If S is a hitting-set for Pn,q,d,q−t , then
∣∣∣Cl(d/2(t+1))(S)

∣∣∣ > 1
2 · qn−t.

Notice that Theorem 5 does not show a complete equivalence between the two no-
tions, since in the second item the closure refers to degree d/2t rather than to degree d.

5Note that I (d)(S) is not an actual ideal in the ring of n-variate polynomials over F, since multiplying
p ∈ I (d)(S) by another polynomial does not necessarily preserve the degree of p.

6Another result along these lines was recently proved by Beelen and Datta [BD18], who showed a tight
upper-bound on the size of the variety induced by any subspace of degree-d polynomials (rather than only
for varieties induced by a subspace of the form I (d)(S) for some S ⊆ Fn).
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Thus, intuitively, Theorem 5 asserts that constructing a small set with a large degree-
d closure is at least as hard as constructing a hitting-set for polynomials that vanish
rarely; and while it also gives a converse reduction (in the second item), it is never-
theless possible that constructing a hitting-set for polynomials that vanish rarely is an
easier problem. We also remark that the first item in Theorem 5 is almost immediate,
whereas the second item requires more work (see Section 7 for details).

Lastly, we comment that one can obtain an upper-bound on the size of Cl(d)(S) for
small sets S ⊆ Fn by combining the first item in Theorem 5 with our lower bound
from Theorem 1. (This is since the former asserts that sets with closure of size qn−t

are hitting-sets for Pn,q,d,q−t , whereas the latter asserts that any such hitting-set must
be large.) However, the bounds obtained in this way are not stronger than the known
bounds proved in [NW15]. For more details see Section 7.

2 Overview of our techniques

2.1 Combinatorial lower bounds from low-degree dispersers

The proofs of our lower bounds on HSGs for polynomials that vanish rarely rely on
a complexity-theoretic approach, rather than on a direct algebraic analysis. Specifically,
we reduce the problem of constructing HSGs for arbitrary polynomials to the problem
of constructing HSGs for polynomials that vanish rarely; since we already know lower
bounds for the former, we obtain lower bounds for the latter.

Specifically, given an arbitrary non-zero polynomial p0 : Fm → F, we will use a
form of “error-reduction” for polynomials (akin to error-reduction for probabilistic al-
gorithms; see below) to obtain another polynomial p : Fn → F such that:

1. The polynomial p vanishes rarely.

2. Any non-zero input for p can be mapped into a small list of inputs for p0 that
contains a non-zero input for p0.

To define p, fix a (k, δ)-disperser Disp : Fn × {0, 1}` → Fm, for appropriate parame-
ters k and δ that we will determine in a moment.7 Then, p is the result of the following
procedure: Given z ∈ Fn, compute the 2` inputs {Disp(z, i)}i∈{0,1}` , evaluate p0 at each
of these inputs, and output the disjunction of these evaluations; that is:

p(z) =
∨

i∈{0,1}`
p0 (Disp(z, i)) .

The disperser Disp has the property that for every set T ⊆ Fm of density at least δ it
holds that Prz∈Fn [∀i Disp(z, i) /∈ T] ≤ ε = 2k/qn. We take T to be the set of elements in
Fn on which p0 does not vanish, and take δ to be the density of T (i.e., δ is the distance
of the corresponding Reed-Muller code); we also let k = (n − t) · log(q). Then, the

7A (k, δ)-disperser Disp : Fn × {0, 1}` → Fm is a function such that for every T ⊆ Fm satisfying
|T|/|F|m ≥ δ, for all but at most 2k of the inputs z ∈ Fn there exists i ∈ {0, 1}` such that Disp(z, i) ∈ T.
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polynomial p vanishes on at most an ε = 2k/qn = q−t fraction of its inputs. Also, any
non-zero input z ∈ Fn for p can be mapped to a list of 2` inputs {xi = Disp(z, i)}i∈{0,1}`

for p0 such that for some i ∈ {0, 1}` it holds that p0(xi) 6= 0, as we wanted.
The reduction above shows that if there exists a HSG with seed length s for poly-

nomials Fn → F of degree d = deg(p) that vanish with probability ε, then there exists
a corresponding HSG with seed length s + ` for all non-zero polynomials Fm → F

of degree d0 = deg(p0). The known lower bound on the latter, which asserts that
s + ` = Ω(d0 · log(m/d0)), yields a corresponding lower bound on the former.

While this is indeed our main idea, it unfortunately does not quite work as-is. The
main challenge is that the reduction above incurs significant overheads that crucially de-
teriorate the lower bound. Most importantly, the degree of the polynomial increases
(from d0 = deg(p0) to d = deg(p)), and the number of variables also increases (from
m to n); this affects us since we are interested in a lower bound as a function of n and
d, whereas our lower bound is a function of m and d0. Moreover, the lower bound de-
teriorates by an additive factor of `, since each non-zero input z ∈ Fn for p yields 2`

inputs for p0, one of which is guaranteed to be non-zero. Thus, we want to modify the
reduction above, in order to minimize the blowup in the degree and in the number of
variables, and also minimize the seed length ` of the disperser.

A coding-theoretic perspective. One can view the procedure described above as am-
plifying the weight (i.e., the fraction of non-zero coordinates) of a codeword in the Reed-
Muller code. At first glance, this task seems similar to the task of amplifying the distance
of linear error-correcting codes; in particular, the disperser-based technique described
above is technically reminiscent of the well-known distance amplification technique of
Alon et al. [ABN+92].8 However, the crucial difference is that we are interested in ampli-
fying the weight to be much larger than 1− 1/q, and indeed our resulting subcode (of
polynomials that vanish rarely) is a small and non-linear subcode of the Reed-Muller
code. Moreover, as explained above, we will be particularly interested in the degree
blow-up, which is a parameter specific to polynomial-based codes.

Warm-up: The setting of d � q. For simplicity, let us assume that q = poly(n) and
that d ≤ n.99. In this case the fraction δ of non-zeroes of p0 is very close to one and we
only need Disp to be a (k, .99)-disperser for k = (n− t) · log(q).

Note that to compute p at an input z ∈ Fn, we wish to compute Dispi(z) = Disp(z, i)
as a function of z for each fixed value i of the seed. Since we want p to have degree as low
as possible, we are interested in objects that we call low-degree dispersers: Informally,
a disperser Disp : Fn × {0, 1}` → Fm has low degree if for any i ∈ {0, 1}` and j ∈ [m],
the polynomial qi,j(z) = Disp(z, i)j (i.e., qi,j(z) is the jth output element of Disp(z, i) as a
function of z) has low degree (see Definitions 16 and 17). Note that in our argument we
only need the existence of a low-degree disperser (i.e., we do not need the low-degree

8The main differences are that we will use a specific disperser that is different from theirs, to minimize
the degree blow-up; and that we handle alphabet reduction differently (using an OR function instead of
code concatenation), since our target weight is much larger than 1− 1/q.
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disperser to be efficiently computable); however, the dispersers that are obtained via
naive probabilistic arguments do not have low degree.

Fortunately, in the current “warm-up” setting we can get a good (albeit non-optimal)
lower bound even using the “naive disperser” that just performs uniform sampling:
That is, the disperser that treats its input z ∈ Fn as n/m substrings of length m, and
treats its seed as an index i ∈ [n/m], and outputs the ith substring of length m in z. Note
that this disperser is linear (i.e., has degree one), since for a fixed seed, each output
element is a projection of a corresponding input element.

We do encounter one other problem in implementing our idea in this setting, which
is the degree blow-up that comes from the fact that p computes the OR function on the
outputs of the disperser (recall that the OR function of 2` inputs has maximal degree
(q− 1) · 2`). To circumvent this problem, we replace the OR function with a multivalued
OR function. Specifically, observe that in the reduction above it suffices that on any
non-zero input y ∈ F2` , the OR function will output some non-zero element (rather than
map any non-zero y to 1 ∈ F). In contrast to the OR function, there exists a multivalued
OR function of 2` elements with degree roughly 2` (see Proposition 10).

Working out the precise parameters, this approach transforms any p0 of degree
d0 into a corresponding p of degree d = d0 · 2` = d0 · t · log(q), and for every t ≤
d/O(log(q)) implies a lower bound of Ω(d0 · log(m/d0)) − ` = Ω(d/t) on the seed
length of HSGs for polynomials that vanish with probability q−t. To improve this lower
bound to match the bound stated in Theorem 1, we use a disperser that is better than
the naive one, and utilize the techniques that are outlined below (see Section 6).

The more challenging setting of d � q. Observe that in the argument above we
“paid” for the seed length ` of the disperser twice: One loss was a blow-up of 2` in the
degree (since the multivalued OR function has degree 2`), and the other loss was that
the lower bound on the seed length of the HSG decayed additively in ` (because our
reduction maps any non-zero input for p to a list of 2` inputs for p0). Also note that the
first loss decreases the lower bound itself, whereas the second loss limits the values of
t to which the lower bound applies (to ones for which `� d0 · log(m/d0)).

When d� q these two losses may deteriorate our lower bound much more severely
than in the “warm-up” setting. This is because when q was large we instantiated the
disperser with the parameter δ = Ω(1), and hence its seed length was relatively small,
whereas in our current setting the value of δ = q−d0/(q−1) may be much smaller.9

Over prime fields this problem can be overcome by starting not from a lower bound
for hitting all degree-d0 polynomials, but rather from a lower bound for hitting a large
subcode of the corresponding Reed-Muller code (i.e., a subcode with dimension linear
in (m+d0

d0
)) that still has distance Ω(1); see Appendix B for an explanation. To overcome

the problem also over non-prime fields, we show a general method that, regardless of
the disperser, allows us to “pay” only an O(t) factor in the degree blow-up, instead of the 2`

9To demonstrate the problem, note that over fields of constant size, even a disperser with optimal
parameters would yield a quadratic degree blow-up, regardless of t; that is, d ≥ 2` · d0 ≥ 2log(t·log(q)/δ) ·
d0 = Ωq((d0)

2 · t), compared to the previous blow-up of d = Ωq(d0 · t) when we had δ = Ω(1).
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factor. This method does not prevent the additive loss of ` in the seed length, and we
will explain how this additive loss affects us in the end of the current section.

To explain this method, fix a disperser, and recall that our goal is to “hit” the set
G ⊆ Fn of inputs z such that for some i ∈ {0, 1}` it holds that p0(Disp(z, i)) 6= 0 (since
any z ∈ G maps to 2` inputs, one of which “hits” the original polynomial p0). We think
of the polynomial p above as a test of its input z ∈ Fn that distinguishes between G
and Fn \G (i.e., p vanishes precisely on Fn \G). Our initial approach to hit G was to
construct a HSG for the test p, which would output some z ∈ G.

The key observation is that constructing a HSG for p is an “overkill”. Specifically,
to hit G, we can replace the test p by a distribution p over tests that distinguishes between
G and Fn \ G, with high probability, and still deduce that any HSG for the tests in the
support of p outputs some z ∈ G. That is, we replace the test p for G by a randomized
test p for G such that the polynomials in the support of p have lower degree than p,
and show that “hitting” the polynomials in the support of p still allows us to “hit”
G. Moreover, since p “tests” a dense set G with small error, by an averaging argument
almost all of the polynomials in the support of p vanish rarely; thus, it suffices to “hit”
only the polynomials in the support of p that vanish rarely.

More accurately, let us instantiate our disperser with k = (n− 2t) · log(q), instead
of k = (n− t) · log(q), such that the density of G is 1− q−2t (this is to allow for some
slackness in the parameters). Then, the following holds:

Lemma 6 (informal; see Section 4) Assume there exists a distribution p over polynomials
Fn → F such that for every z ∈ G it holds that Pr[p(z) 6= 0] ≥ 1− q−2t and for every z /∈ G
it holds that Pr[p(z) = 0] = 1. Further assume that every polynomial in the support of p has
degree O(d · t). Then, any hitting-set for polynomials of degree O(d · t) that vanish on at most
2q−t of their inputs contains some z ∈ G.

Our construction of the specific distribution p that we use is simple: Starting from
the construction of p above, instead of taking an OR of the evaluations of p0 on the
entire output-set of the disperser (i.e., on all seeds), we sample from the seeds of the dis-
perser. More accurately, to sample a polynomial f ∼ p, we uniformly sample 2t vectors
a(1), ..., a(2t) ∈ F2` , and output the polynomial

f (z) = ORj∈[2t]

(
∑
i∈2`

a(j)
i · p0(Disp(z, i))

)
.

To see why this distribution works, observe that if z ∈ G then a random F-linear
sum of the elements {Disp(x, i)}i∈{0,1}` will be non-zero with probability 1− 1/q, whereas
if z /∈ G then such a sum will be zero, with probability one. Thus, a random polynomial
in p computes the disjunction of 2t such random sums, and it is straightforward to see
that its “error probability” is q−2t and its degree is O(d0 · t) (assuming that the disperser
is linear). Using Lemma 6, any HSG for polynomials of degree O(d0 · t) that vanish on
at most q−2t of their inputs outputs some z ∈ G. We therefore reduced the problem
of constructing a HSG for p0 to the problem of constructing a HSG for polynomials of
degree d = O(d0 · t) that vanish on at most q−2t of their inputs.
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The last missing piece is that we need a concrete disperser to instantiate the argu-
ment with, and the parameters of the disperser will determine the lower bound that we
get. Furthermore, recall that we are losing an additive factor of ` in the lower bound,
and thus any lower bound that we get using this approach applies only to values of
t such that ` � d0 · log(m/d0). Specifically, the approach above gives the following
lemma (for simplicity, we state it only for linear dispersers):

Lemma 7 (linear dispersers yield lower bounds on HSGs for polynomials that vanish
rarely; informal, see Corollary 26) Let d0 < m be integers, let F be a field of size q, and
let t ∈ N. Assume that for k = (n − 2t) · log(q) and δ = q−d0/(q−1) there exists a linear
(k, δ)-disperser Disp : Fn × {0, 1}` → Fm. Then, for d = 4d0 · t, if ` ≤ d

8t · log(mt/d), then
the seed length for any HSG for Pn,q,d,2q−t is Ω ((d/t) · log (mt/d)).

Note that to get a good lower bound using Lemma 7 we want a linear disperser
Fn

q ×{0, 1}` → Fm
q for large min-entropy k = (n− 2t) · log(q) that has small seed length

` and large output length m.10 In particular, if there exists a linear disperser with optimal
parameters, then a lower bound of Ω((d/t) · log(nt/d)) would follow for essentially
all settings of the parameters (see Corollary 27).

Our lower bounds (i.e., Theorem 1 and its extensions) will be proved by instanti-
ating Lemma 7 with specific useful dispersers. To prove Theorem 1 and some of its
extensions (i.e., Theorems 28 and 33), we use a linear disperser that we obtain by mod-
ifying the extractor by Shaltiel and Umans [SU05]; the original extractor works over
the binary alphabet, and we modify it to a linear disperser over an arbitrary field Fq
(see Section 6 for details). We prove another lower bound, which applies only to fields
of constant size (see Theorem 34), using a linear disperser that is based on the recent
construction of “linear 1-local expanders” by Goldreich [Gol16], following Viola and
Wigderson [VW17] (see Section 6.3). More details are given in Section 6.

2.2 Explicit upper bound over F2

To construct the explicit HSG for polynomials Fn
2 → F2 that vanish rarely in Theorem 3

we generalize a construction of [GW14], by extending a proof approach from [Tel19]. In
high-level, we reduce the problem of constructing a HSG for polynomials that vanish
rarely to the problem of constructing a PRG for arbitrary low-degree polynomials, and
then use the explicit PRG of Viola [Vio09b] for low-degree polynomials.

In more detail, we say that a polynomial p : Fn
2 → F2 is approximated by a distribu-

tion h over polynomials h : Fn
2 → F2 if for every x ∈ Fn

2 it holds that Prh[h(x) = p(x)] ≥
.99. Our first step is to show that any polynomial p ∈ Pn,2,d,q−t can be approximated
by a distribution h over polynomials of degree d− t. To do so, let ∆a(p) be the direc-
tional derivative of p in direction a ∈ Fn

2 (i.e., the function ∆a p(x) = p(x + a) + p(x)).
We sample h ∼ h by uniformly sampling ~a = a(1), ..., a(k) ∈ Fn

2 , where k = t −O(1),

10Moreover, since our error δ = q−d0/(q−1) might be large, we want good dependency of the parameters
` and m on the error δ.
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and outputting the polynomial h~a = ∆a(k)∆a(k−1) ...∆a(1)(p) + 1; that is, we derive p in k
random directions, and “negate” the output.

Note that indeed deg(h~a) = d − t + O(1). Now, for any fixed x ∈ Fn
2 and non-

empty S ⊆ [k], the probability over ~a that p
(

x + ∑i∈S a(i)
)

= 1 is at least 1 − 2−t

(since p vanishes with probability at most 2−t, and x + ∑i∈S a(i) is uniform in Fn
2 ). Thus,

by a union bound, with probability at least .99 over the choice of ~a, for every non-
empty S ⊆ [k] it holds that p

(
x + ∑i∈S a(i)

)
= 1. In this case, we have that h~a(x) =

∑S⊆[k] p
(

x + ∑i∈S a(i)
)
+ 1 = p(x) + (2k − 1) + 1 = p(x). Hence, the distribution h

also has the property that for every x ∈ Fn
2 it holds that Pr[h(x) = p(x)] ≥ .99.

Our next observation is similar to the “randomized tests” technique mentioned in
Section 2.1: We show that if a distribution h over low-degree polynomials approximates
p, then a pseudorandom generator for the polynomials in the support of h (with suffi-
ciently small constant error) also “hits” p (for a proof see Section 4). Combining the two
claims, we get a reduction from the problem of constructing a HSG for Pn,2,d,q−t to the
problem of constructing a PRG (with small constant error) for arbitrary polynomials of
degree d− t +O(1). Thus, the PRG of Viola [Vio09b] for such polynomials, which uses
a seed of length O((d− t) · (2d−t + log(n))), is also a HSG for Pn,2,d,2−t .

On the tightness of the reduction above. Recall that there is a gap between the seed
length of the explicit HSG above and the seed length of the non-explicit HSG from The-
orem 2, which is O

(
(d− t) · log( n

d−t )
)
. We note that to close this gap, one does not

need to improve the reduction detailed above, but only the explicit PRG for arbitrary poly-
nomials (i.e., Viola’s construction). Specifically, if there exists an explicit PRG for all
polynomials of degree d′ = d− t + O(1) with seed length O(d′ · log(n/d′)) (matching
the non-explicit upper-bound for such PRGs), then the reduction above yields a HSG
for Pn,2,d,2−t with seed length O((d− t) · log(n/(d− t))).

3 Preliminaries

We denote random variables by boldface. For an alphabet Σ and n ∈N, we denote the
uniform distribution over Σn by un, where Σ will be clear from context.

3.1 Polynomials over finite fields

We consider multivariate polynomials over a finite field. A polynomial p : Fn → F of
degree d can be viewed as a codeword in the corresponding Reed-Muller code; thus, if
p is non-zero, then the relative distance of the corresponding Reed-Muller code, which
is stated below, lower bounds the fraction of inputs on which p does not vanish.

Theorem 8 (distance of the Reed-Muller code; see, e.g., [GRS19, Lemma 9.4.1]). For
any d, q ∈ N, let a = bd/(q− 1)c and b = d (mod q− 1). The relative distance of the
Reed-Muller code of degree d over alphabet q is δRM(d, q) = q−a · (1− b/q) ≥ q−d/(q−1).
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The OR : Fk → F function maps any non-zero input z ∈ Fk \ {0k} to 1 ∈ F, and maps
0k to zero. We consider a generalization of this function, which we call multivalued OR;
a multivalued OR function maps any non-zero z ∈ Fk \ {0k} to some non-zero element
(i.e., different non-zero inputs may yield different outputs), while still mapping 0k to
zero. That is:

Definition 9 (multivalued OR functions) For any finite field F, we say that a polynomial
mvOR : Fk → F is a multivalued OR function if mvOR(0k) = 0, but mvOR(x) 6= 0 for every
x 6= 0k.

For a fixed field F there are many different k-variate multivalued OR functions. In-
deed, the standard OR function is a multivalued OR function, but it has maximal degree
k · (q− 1) as a polynomial. We will need k-variate multivalued OR functions that are
of much lower degree (i.e., degree approximately k); such functions can be constructed
relying on well-known techniques in algebraic geometry (see [Tel19, Proposition 7.3]
for the construction, and see e.g. [CLO15, Exercise 8] for a reference to the well-known
underlying techniques):

Proposition 10 (low-degree multivalued OR function) Let F be a finite field and let k ∈
N. Then, there exists a multivalued OR function mvOR : Fk → F that is computable by a
polynomial of degree less than 2k.

3.2 Hitting-set Generators

We recall the standard definitions of hitting-set generators (HSGs), of hitting-set gener-
ators and of pseudorandom generators (PRGs). Recall that HSGs for a class of polyno-
mials need to produce a set of inputs such that any polynomial from the class evaluates
to non-zero on some input in the set. That is:

Definition 11 (hitting-set generator) Fix a field F, and let d, n ∈N. A function H : {0, 1}` →
Fn is a hitting-set generator for a set of functions P ⊆ {Fn → F} if for every non-zero
function p ∈ P there exists s ∈ {0, 1}` satisfying p(H(s)) 6= 0. In this case, the set
S = {H(s) : s ∈ {0, 1}`} is called a hitting-set for P .

Definition 12 (explicit hitting-set generators) Let `, q, d : N → N, let {Fq(n)}n∈N such
that for every n ∈ N it holds that Fq(n) is a field of size q(n), and let H = {Hn : {0, 1}`(n) →
Fn

q(n)} such that for every n ∈ N it holds that Hn is a hitting-set generator for polynomials of
degree d(n). We say that H is polynomial-time computable if there exists an algorithm that
gets as input s ∈ {0, 1}` and outputs Hn(s) in time poly(`, log(q), n).

The standard definition of PRGs for polynomials in p : Fn → F that we will use is
as follows. Consider the distribution over F that is obtained by uniformly choosing
x ∈ Fn and outputting p(x), and the distribution over F that is obtained by choosing
a seed s for a PRG G and outputting p(G(s)). We require that the statistical distance
between the two distributions is small. That is:
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Definition 13 (pseudorandom generator) Fix a field F, let d, n ∈ N, and let ρ > 0. A
function G : {0, 1}` → Fn is a pseudorandom generator with error ρ for polynomials of
degree d if for every polynomial p : Fn → F of degree at most d it holds that

∑
σ∈F

∣∣∣ Pr
s∈{0,1}`

[p(G(s)) = σ]− Pr
x∈Fn

[p(x) = σ]
∣∣∣ ≤ ρ .

An alternative standard definition of PRGs for polynomials requires that the “char-

acter distance”
∣∣∣Ex∈Fn [ep(x)] − Ex[ep(G(s))]

∣∣∣ will be small, where e is any (fixed, non-
trivial) character of F. The “character distance” and the statistical distance are equiva-
lent, up to a multiplicative factor of

√
q− 1 (see [Lov09, Lemma 2.4]).

Lastly, we recall the standard lower bound on the size of hitting-sets for polynomials
of degree d (for completeness, we include its proof) and state the complementary upper-
bound that is obtained by a standard probabilistic argument.

Fact 14 (lower bound on the size of hitting-sets for linear subspaces) Let F be a finite
field, let n ∈ N, and let C ⊆ {Fn → F} be a linear subspace of dimension D = dim(C).
Then, any hitting-set for C has at least D points. In particular, for any d < n, any hitting-set
for degree-d polynomials Fn → F has size at least (n+d

d ), and correspondingly the seed length
of any hitting-set generator for such polynomials is at least d · log(n/d).

Proof: Assume towards a contradiction that S ⊆ Fn is a hitting-set for C with D − 1
points. Consider a generator matrix M for the linear subspace C, which is a full-rank
D × |F|n matrix over F whose D rows span C. Let MS be the projection of M to the
D− 1 columns corresponding to the points in S.

Since MS is a D × (D − 1) matrix, there exists a non-trivial linear combination of
the rows of MS that yields the all-zero row. Now, since S is a hitting-set for C, the
only function in C that vanishes on all of S is the all-zero function; in particular, any
non-trivial linear combination of the rows of MS that yields the all-zero row (which
induces a corresponding function in C that vanishes on S) also yields the all-zero row
in M. Thus, we obtain a non-trivial linear combination of the rows of M that yields the
all-zero row, contradicting the hypothesis that M is full-rank.

The “in particular” part follows since the dimension of the corresponding Reed-
Muller code (which is a linear subspace of Fn) is D = (n+d

d ) > (n
d) > (n/d)d, where we

used the hypothesis that d < n.

Fact 15 (upper bound on the size of hitting-sets) Let F be a finite field, let n ∈ N, and
let d < n. Then, there exists a (non-explicit) hitting-set generator for polynomials Fn → F of
degree d with seed length O(d · log(n/d) + log log(q)).

Proof: The number of degree-d polynomials is at most q(
n+d

d ), and each of them vanishes
on at most 1− δ of its inputs, where δ ≥ q−d/(q−1) is the distance of the corresponding
Reed-Muller code. Thus, if we randomly choose

O
(
(1/δ) ·

(
n + d

d

)
· log(q)

)
< O

(
qd/(q−1) ·

(
2n
d

)
· log(q)

)
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elements in Fn, with high probability we obtain a hitting-set for degree-d polynomials.
The number of bits that we need to sample an element from this hitting-set is

O
(

d
q− 1

· log(q) + d · log(n/d) + log log(q)
)
< O (d · log(n/d) + log log(q)) .

3.3 Dispersers and extractors

We recall the standard definition of dispersers Disp : [N] × {0, 1}` → [M], where we
identify the domain N with the vector space Fn and the range M with the vector space
Fm.

Definition 16 (disperser) Let F be a finite field of size q = |F|. A function Disp : Fn ×
{0, 1}` → Fm is a (k, δ)-disperser if for every T ⊆ Fm of size |T| ≥ δ · qm, the probability over
x ∈ Fn that for all i ∈ {0, 1}` it holds that Disp(x, i) /∈ T is less than 2k/qn. The value ` is the
seed length of the disperser.

In this work we are interested in dispersers that can be computed by low-degree
polynomials. Specifically, we require that for each fixed seed s ∈ {0, 1}` and output
index i ∈ [m], the function that maps any z ∈ Fn to the ith output of Disp at z with seed
s (i.e., z 7→ Disp(z, s)i) has low degree as a polynomial Fn → F.

Definition 17 (degree of a disperser) We say that a disperser Disp : Fn × {0, 1}` → Fm

has degree d if for every fixed s ∈ {0, 1}` and i ∈ [m], the polynomial ps,i : Fn → F defined
by ps,i(z) = Disp(z, s)i is of degree at most d. If d = 1, then we say the disperser is linear.

Recall that there are two standard dispersers that are linear: The naive disperser,
which treats its input z ∈ Fn as a list of samples from Fm and its seed as an index of a
sample in this list; and the subspace sampler, which treats its input as the description
of an affine subspace in Fm and its seed as an index of an element in the subspace.
Nevertheless, these dispersers have disadvantages (small output length and large seed
length, respectively), and in our results we will use more sophisticated linear dispersers
(see Section 6 for details).

Alternatively, one can verify that Definition 16 is equivalent to the following defi-
nition: Disp is a (k, δ)-disperser if for any random variable x ∼ Fn with min-entropy11

k, the support of Disp(x, u`) covers at least (1 − δ)qm elements from Fm. Although
dispersers will be our main pseudorandom object, we will sometimes work with the
stronger notion of an extractor. While in dispersers we only care about covering almost
all of Fm, in extractors we want to do it uniformly, i.e., we require Ext(x, u`) to be δ-close
to the uniform distribution um over Fm. Formally:

Definition 18 (extractor) Let F be a finite field of size q = |F|. A function Ext : Fn ×
{0, 1}` → Fm is a (k, δ)-extractor if for every random variable x ∼ Fn with min-entropy k it
holds that Ext(x, u`) is δ-close to um. The value ` is the seed length of the extractor.

11A random variable x has min-entropy k if for every x ∈ supp(x) is holds that Pr[x = x] ≤ 2−k.
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As the support size of a distribution which is δ-close to um is at least (1− δ)qm, any
(k, δ)-extractor is readily a (k, δ)-disperser.

4 Randomized tests

The proofs of both our upper bounds and of our lower bounds will rely on a general
observation that we now explain. The observation is essentially from [Tel19, Sections
2.1 & 4], following a proof idea from [BV10].

Assume that we want to deterministically find an element in a set G ⊆ Fn. A stan-
dard way to do so is to show that G can by decided by a simple algorithm p (e.g., p is
a low-degree polynomial), which we think of as a simple test. Then, a hitting-set gen-
erator for p outputs an element in G. Our goal now is to find an element in G using
a hitting-set generator for tests that are simpler than p. The basic observation is that
if G can be decided, with high probability, by a distribution p over simple tests, then a
hitting-set generator with small density for the tests in the support of p outputs an ele-
ment in G (see [Tel19, Observation 2.1]). The advantage is that instead of constructing
a deterministic test p we can now construct a randomized test p, whose complexity is
potentially lower than that of p; that is, the complexity of the tests in the support of the
distribution p may be lower than the complexity of the deterministic test p.

The observation above can be extended in various ways (see [Tel19] for details),
and we will apply it in two specific settings. In the first setting, the set G is dense
(i.e., Prx∈Fn [x ∈ G] ≥ .99), and can be decided by a distribution p over polynomials
with small “one-sided” error (i.e., every x ∈ G is accepted with high probability, and
every x /∈ G is rejected with probability one). We show that in this case, any hitting-set
generator for the polynomials in the support of p that vanish rarely outputs an element
in G (and this holds without any density requirement from the HSG).

Lemma 19 (randomized tests, a special case) Let ε, ρ > 0 such that ε + ρ < 1, and let
G ⊆ Fn be such that Prx∈Fn [x ∈ G] ≥ 1− ε. Assume that there exists a distribution p over
polynomials p : Fn → F such that:

1. For every fixed x ∈ G it holds that Pr[p(x) 6= 0] ≥ 1− ρ.

2. For every fixed x /∈ G it holds that Pr[p(x) = 0] = 1.

Let w be a distribution over Fn such that for every p : Fn → F in the support of p that
vanishes on at most a

√
ρ + ε fraction of its inputs there exists w ∼ w such that p(w) 6= 0.

Then, there exists w ∼ w such that w ∈ G.

Proof: Consider the behavior of a random polynomial p ∼ p on a pseudorandom input
w ∼ w. On the one hand, we have that

Pr[p(w) = 0] ≥ Pr[w /∈ G] ·min
x/∈G
{Pr[p(x) = 0]} = Pr[w /∈ G] . (4.1)
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On the other hand, denote by P the set of polynomials in the support of p that
vanish on at most

√
ρ + ε of the inputs x ∈ Fn; then, we have that

Pr[p(w) 6= 0] ≥ Pr[p ∈ P] ·min
p∈P
{Pr[p(w) 6= 0]} . (4.2)

Next, note that

Pr
x∈Fn

[p(x) 6= 0] ≥ Pr
x∈Fn

[x ∈ G] ·min
x∈G
{Pr[p(x) 6= 0]} > 1− (ρ + ε) ,

so by using Markov’s inequality we get that Pr[p ∈ P] > 1−√ρ + ε > 0. Plugging this
into Eq. (4.2), we deduce that Pr[p(w) 6= 0] > 0, or equivalently that Pr[p(w) = 0] < 1.
Thus, using Eq. (4.1) we deduce that Pr[w /∈ G] < 1.

In the second setting that we will be interested in, we want to “fool” a polynomial
p : Fn → F using a pseudorandom generator for polynomials that are simpler than p
(e.g., they are of lower degree). This is indeed possible if there is a distribution h over
polynomials that are simpler than p such that for every fixed x ∈ Fn → F it holds that
Pr[h(x) = p(x)] is high. In the following statement, it is useful to think of ζ : F→ C as
a non-trivial character, which implies that maxv,w∈F{|ζ(v)− ζ(w)|} = 2.

Lemma 20 (randomized tests, a PRG version for polynomials; see Lemma 4.4 in [Tel19],
extending Lemma 23 in [BV10]) Let n ∈ N, let F be any finite field, let ε > 0. Also, let
ζ : F → C, and let δ = maxv,w∈F{|ζ(v)− ζ(w)|}. Let p : Fn → F, and assume that there
exists a distribution h over polynomials Fn → F such that for every fixed x ∈ Fn it holds
that Pr[h(x) = p(x)] ≥ 1− ε. Finally, let w be a distribution over Fn such that for every
polynomial h in the support of h it holds that

∣∣∣Ex∈Fn [ζ(h(x))]−E[ζ(h(w))]
∣∣∣ ≤ ε. Then,∣∣∣Ex∈Fn [ζ(p(x))]−E[ζ(p(w))]

∣∣∣ ≤ (2δ + 1) · ε .

Since the proof of Lemma 20 is simple, we include it for completeness.

Proof of Lemma 20: Let un be the uniform distribution over Fn. For simplicity of no-
tation, define p′ = ζ ◦ p : Fn → C, and for every h in the support of h, define h′ =
ζ ◦ h : Fn → C. Also denote by h′ the distribution that is obtained by sampling h ∼ h
and outputting h′ = ζ ◦ h. By the triangle inequality,∣∣∣E[p′(un)]−E[p′(w)]

∣∣∣ ≤ ∣∣∣E[p′(un)]−E[h′(un)]
∣∣∣

+
∣∣∣E[h′(un)]−E[h′(w)]

∣∣∣
+
∣∣∣E[h′(w)]−E[p′(w)]

∣∣∣ . (4.3)
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To upper bound the first item in Equation (4.3), note that∣∣∣E[p′(un)]−E[h′(un)]
∣∣∣ ≤ Ex∼Fn,h∼h

[∣∣∣p′(x)− h′(x)
∣∣∣]

≤ Ex∈Fn

[
Pr

h∼h
[h(x) 6= p(x)] · max

v,w∈F
{|ζ(v)− ζ(w)|}

]
≤ δ · ε ,

where the last inequality holds because for every fixed x ∈ Fn we have that Prh∼h[h(x) 6=
p(x)] ≤ ε. The third item in Equation (4.3) is similarly upper bounded by δ · ε, by re-
placing the uniform choice of x ∈ Fn with a choice of x ∼ w.

To upper bound the second item in Equation (4.3), note that∣∣∣E[h′(un)]−E[h′(w)]
∣∣∣ ≤ Eh∼h

[∣∣∣E[h′(un)]−E[h′(w)]
∣∣∣] ≤ ε ,

where we used the hypothesis that for every polynomial h in the support of h it holds

that
∣∣∣Ex∈Fn [ζ(h(x))]−E[ζ(h(w))]

∣∣∣ ≤ ε.

Applying Lemma 20 to the special case of F = F2 with ζ(x) = (−1)x, we obtain the
following useful corollary:

Corollary 21 (randomized tests applied to PRGs for F2 polynomials) Let n ∈ N and
let ε > 0. Let p : Fn

2 → F2, and assume that there exists a distribution h over polynomials
Fn

2 → F2 such that for every fixed x ∈ Fn
2 it holds that Pr[h(x) = p(x)] ≥ 1− ε. Finally, let

w be a distribution over Fn
2 such that for every polynomial h in the support of h it holds that∣∣∣Prx∈Fn

2
[h(x) = 1]− Pr[h(w) = 1]

∣∣∣ ≤ ε. Then,∣∣∣ Pr
x∈Fn

2

[p(x) = 1]− Pr[p(w)]
∣∣∣ ≤ 5ε .

5 Upper bounds over F2

In this section we prove Theorems 2 and 3; that is, we construct explicit and non-explicit
hitting-set generators for polynomials Fn

2 → F2 that vanish rarely.
We define the weight of a polynomial p : Fn → F to be wt(p) = Prx∈Fn [p(x) 6= 0].

Indeed, in this paper we are interested in polynomials with very high weight. Kauf-
man, Lovett, and Porat [KLP12] proved a near-tight upper-bound on the number of
polynomials with very low weight when F = F2; as a consequence, we get the follow-
ing non-explicit hitting-set generator on polynomials Fn

2 → F2 that vanish rarely:

Theorem 22 (non-explicit HSGs for F2 polynomials that vanish rarely, following [KLP12])
Let n, d, t ∈ N where t < d ≤ n. Then, the number of polynomials in Fn

2 → F2 that van-
ish with probability at most 2t−d is at most 2O(d2·t/(d−t+1)!·nd−t+1). In particular, there exists a
hitting-set generator for this set of polynomials with seed length O

(
(d− t) · log

( n
d−t

))
.
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Proof: We define an injective mapping Φ : {Fn
2 → F2} → {Fn

2 → F2} that maps every
degree-d polynomial p that vanishes on at most 2−t of its inputs to a degree-d polyno-
mial Φ(p) whose weight is at most 2−t. Indeed, the mapping is simply Φ(p) = p + 1
(i.e., for every x ∈ Fn

2 it holds that Φ(p)(x) = p(x) + 1). By [KLP12, Theorem 14]
(using the parameter values k = d − t + 1 and ε = 2−t), the number of polynomi-
als with weight at most 2−t is at most 2O(d2·t/(d−t+1)!·nd−t+1). Since Φ is injective, the
number of polynomials that vanish on at most 2−t of their inputs is also at most N =

2O(d2·t/(d−t+1)!·nd−t+1).
Thus, a set of O(log(N)) = O(d2 · t/(d− t+ 1)! · nd−t+1) uniformly-chosen elements

in Fn
2 “hits”, with high probability, every polynomial that vanishes on at most 2−t of its

inputs. The seed length required to sample from such a set is

O
(
(d− t + 1) · log(n) + log(d · t)− (d− t) · log(d− t)

)
= O

(
(d− t + 1) · log(n)− (d− t) · log(d− t)

)
(d · t ≤ n2)

= O
(
(d− t) · log(n/(d− t))

)
.

We mention that Abbe, Shpilka, and Wigderson [ASW15] proved a tighter upper-
bound on the number of polynomials with low weight, which replaces the d2 term
in the result in [KLP12, Theorem 14] by a smaller term. It is still an open problem to
replace this term by some universal constant (such a result would match a lower bound
from [KLP12, Lemma 15]). However, even a solution to this open problem would not
improve the result in Theorem 22.12

To construct an explicit (i.e., polynomial-time computable) hitting-set generator for
polynomials Fn

2 →F2 that vanish rarely, we generalize results from previous works [GW14;
Tel19]. For the construction we will need the pseudorandom generator of Viola [Vio09b]
for low-degree polynomials.

Theorem 23 (Viola’s PRG for low-degree polynomials [Vio09b]) For n, d′ ∈N and ε > 0,
there exists a polynomial-time computable pseudorandom generator for polynomials Fn

2 → F2

of degree d′ with seed length d′ · log(n) + O(d′ · 2d′ · log(1/ε)).

Theorem 24 (explicit hitting-set generator for F2 polynomials that vanish rarely) For
every n, d, t ∈ N such that d > t + 4 there exists a polynomial-time computable hitting-set
generator with seed length O

(
(d− t) ·

(
2d−t + log(n)

))
for the set of polynomials Fn

2 → F2
of degree d that vanish on at most 2−t of their inputs.

Proof: We show that for every polynomial p : Fn
2 → F2 of degree d that vanishes on at

most 2−t of its inputs there exists a distribution h over polynomials Fn
2 → F2 of degree

12This is because in our application we refer to the seed length, in which case the term d2 only “con-
tributes” the term log(d · t) < 2 · log(n), which is dominated by the term O((d− t) · log(n)).
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(d − t) + 4 such that for every x ∈ Fn
2 it holds that Pr[p(x) = h(x)] ≥ 15/16. Then,

we use Corollary 21 to deduce that any pseudorandom generator with error 1/16 for
polynomials of degree (d − t) + 4 is also a pseudorandom generator for p with error
less than 1/2 (and is thus a hitting-set generator for p, which vanishes on at most half
of its inputs). In particular, we use the pseudorandom generator from Theorem 23 for
polynomials of degree d− t + 4, which has seed length O

(
(d− t) ·

(
2d−t + log(n)

))
.

To define the distribution h, recall that the discrete directional derivative operator
on polynomials p : Fn

2 → F2 for direction a ∈ Fn
2 is defined by ∆a(p) = p(x + a) + p(x).

The iterated operator for ~a = a(1), ..., a(k) ∈ Fn·t
2 is defined in the natural way, and

∆~a(p) = ∑S⊆[k] p
(

x + ∑i∈S a(i)
)

. For k = t− 4, sampling h ∼ h is done by uniformly

and independently choosing~a = a(1), ..., a(k) ∈ Fn
2 , and outputting the polynomial

h = h~a = ∆~a(p) + 1.

Note that h is of degree d− k = (d− t) + 4, and that for every x ∈ Fn
2 , the probability

that h(x) = p(x) is at least 15/16. This is the case since for every fixed x ∈ Fn
2 , if for

every non-empty S ⊆ [k] it holds that p(x + ∑i∈S a(i)) = 1 then h(x) = p(x) + (2k −
1) + 1 = p(x); and for every non-empty S ⊆ [k], the probability over the choice of h
that p(x + ∑i∈S a(i)) = 1 is at least 1− 2−t.

6 Lower bounds over general finite fields

In this section we prove our lower bounds on the seed length of HSGs for polynomials
that vanish rarely. First, in Section 6.1 we give the general framework for deriving
lower bounds from low-degree dispersers, corresponding to the high-level description
in Section 2.1 (i.e., we prove Lemma 7). Then, we prove three incomparable lower
bounds, by instantiating this framework with specific dispersers that are suitable for
the corresponding parameter settings.

Our first and main lower bound, which is presented in Section 6.2, is a generaliza-
tion of Theorem 1. This lower bound is of the form Ω((d/t) · log(n1−Ω(1)t/d)), and
holds under complicated conditions on the degree d and on t; in particular, for d ≤ n.49

as in Theorem 1, it holds for all values of t up to Ω(d). (See Theorem 28.)
Then, in Section 6.3 we prove two additional lower bounds, which hold in two more

specific settings but have advantages over the foregoing bound. The first lower bound
holds only when d ≤ q (i.e., when the corresponding Reed-Muller code has distance
Ω(1)); this lower bound is of the same form as in Theorem 28, but holds for higher
degrees up to d ≤ n1−Ω(1) without complicated conditions on d and t (see Theorem 33).
The second lower bound holds only over fields of constant size; this lower bound is of
the stronger form Ω((d/t) · log(nt/d)),13 and holds for degrees d up to Ω(n), but only
for value of t /

√
d (see Theorem 34).

13Recall, from Corollary 27, that this is the lower is that would be obtained if there exists a linear dis-
perser with optimal parameters.
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6.1 Sampling from the seeds of a disperser

In this section we prove general results that use low-degree dispersers to reduce hitting
arbitrary polynomials to hitting polynomials that vanish rarely (and thus deduce lower
bounds for the latter); this follows the high-level explanations that were presented in
Section 2.1. The following proposition specifies the reduction itself, and the subsequent
corollary specifies the lower bounds that we can obtain using the reduction.

Proposition 25 (reducing hitting polynomials to hitting polynomials that vanish rarely
by sampling from the seeds of a disperser) Let m, d0 ∈ N, let F be a field of size q, and
let δ = δRM(d0, q). For k < log(qn), let ε = 2k/qn, let ρ < 1− ε, and let r = logq(1/ρ).
Assume that:

1. There exists a (k, δ)-disperser Disp : Fn × {0, 1}` → Fm of degree dDisp ∈N.

2. There exists a hitting-set W ⊆ Fn for polynomials Fn → F of degree d = 2d0 · r · dDisp

that vanish on at most
√

ρ + ε of their inputs.

Then, there exists a hitting-set W0 ⊆ Fm for polynomials Fm → F of degree d0 such that
|W0| ≤ |W| · 2`.

Proof: For L = 2`, let W0 = {Disp(z, i) : z ∈ W, i ∈ [L]}. We will prove that W0 is a
hitting-set for polynomials Fm → F of degree d0.

To do so, fix any non-zero polynomial f : Fm → F of degree d0. Let V = {x ∈
Fm : f (x) = 0} be the set of points on which f vanishes, and let G = {z ∈ Fn : ∃i ∈
[L],Disp(z, i) /∈ V} be the set of inputs z ∈ Fn for Disp such that for some i ∈ [L] it
holds that f does not vanish on Disp(z, i). Note that G has density at least 1− ε; this
is the case since |V|/qm ≤ 1− δ (and recall that δ is the distance of the corresponding
Reed-Muller code and f is non-zero), and since Disp is a (k, δ)-disperser.

Note that W0 is a hitting-set for f if and only if Prz∈W [z ∈ G] > 0. We will prove that
Prz∈W [z ∈ G] > 0 using Lemma 19. To construct the distribution p over polynomials
in Fn → F needed for the hypothesis of the lemma, fix a multivalued OR polynomial
mvOR : Fr → F of degree less than 2r as in Proposition 10. Then, sampling p ∼ p is
equivalent to the following random process:

Uniformly and independently choose α(1), ..., α(r) ∈ FL, and output the poly-
nomial p(z) = mvOR

(
∑i∈[L] α

(1)
i · f (Disp(z, i)), ..., ∑i∈[L] α

(r)
i · f (Disp(z, i))

)
.

Note that each p ∼ p has degree less than d = dDisp · d0 · 2r. Also note that for
any z /∈ G we have that Pr[p(z) = 0] = 1, whereas for any z ∈ G we have that
Pr[p(z) 6= 0] ≥ 1 − q−r = 1 − ρ. Using Lemma 19 and the hypothesis that W is a
hitting-set for polynomials that vanish on at most

√
ρ + ε of their inputs, we deduce

that Prz∈W [z ∈ G] > 0, as we wanted.

Using the reduction from Proposition 25, and relying on the unconditional lower
bound from Fact 14, we obtain the following result, which uses low-degree dispersers
to deduce lower bounds on HSGs for polynomials that vanish rarely:
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Corollary 26 (a lower bound by sampling from the seeds of a disperser) Let m, d0 ∈ N

such that d0 < m, let F be a field of size q, and let δ = δRM(d0, q). For t ∈ N and k =
(n− 2t) · log(q), assume that there exists a linear (k, δ)-disperser Disp : Fn × {0, 1}` → Fm.
Then, any hitting-set W ⊆ Fn for polynomials in Fn → F of degree d = 4d0 · t that vanish on
at most

√
2 · q−t of their inputs has size at least (m+d0

d0
) · 2−`. In particular, the seed length for

any such hitting-set is at least

Ω
(

d
t
· log

(
m · t

d

))
,

provided that t ≤ log(mt/d)
8` · d.

Proof: We use Proposition 25 with the parameter values ε = ρ = q−2t ≤ 1/4 (such
that r = 2t) and dDisp = 1, and rely on the fact that any hitting-set W0 ⊆ Fm for
all polynomials Fm → F of degree d0 has size at least (m+d0

d0
) (i.e., on Fact 14). The

seed length (in bits) for sampling from the hitting-set is thus at least d0 · log(m/d0)−
` = d

4t · log(4mt/d)− ` ≥ Ω((d/t) · log(mt/d), where the last inequality is due to the
hypothesis that d

4t · log(mt/d) ≥ 2`.

Finally, note that if there exists a linear (k, δ)-disperser Fn
q × {0, 1}` → Fm

q with
optimal parameters, then we get a lower bound of Ω((d/t) · log(nt/d)) for essentially
all settings of the parameters. That is:

Corollary 27 (lower bounds assuming an optimal linear disperser) Assume that for every
n, q, k ∈ N and δ > 0 there exists a linear (k, δ)-disperser Disp : Fn

q × {0, 1}` → Fm
q where

` = log(n · log(q)− k) + log(1/δ) +O(1) and m · log(q) = k + `− log log(1/δ)−O(1).
Then, for every constant c > 1 there exists a constant γ > 0 such that the following holds.

Let n, q, d, t ∈N such that q ≤ 2nc
, and d < n/2, and t ≤ γ · n, and q−1

log(q) · log(nt/d) ≥

1/γ. Then, the seed length of any HSG for Pn,q,d,
√

2·q−t is at least Ω
(

d
t · log

( n·t
d

))
.

Proof: Let d0 = d/4t, and let a = d0/(q − 1) such that δ = δRM(d0, q) ≥ q−a. When
instantiating the hypothesized linear disperser with parameters n and k = (n − 2t) ·
log(q) and δ = q−a, it has seed length ` = O(log(t · log(q)) + (d/4t) · (log(q)/(q −
1))) and output length m = Ω(n). Relying on Corollary 26, we get a lower bound of
Ω ((d/t) · log(n · (t/d))), assuming that d0 < m (which holds since we assumed that
d < n/2) and that t ≤ log(nt/d)

8` · d. Thus, we just need to verify the latter condition.
We verify the condition by a case analysis. The first case is when t ≥

√
d/4(q− 1),

which implies that the seed length is ` = O(log(t · log(q))). The condition in this case
holds since log(nt/d) = Ω(log(n)) and q ≤ 2poly(n), which implies that log(nt/d)

8` =

Ω(1). The second case is when t <
√

d/4(q− 1), which implies that the seed length
is ` = O((d/t) · log(q)/(q− 1)). The condition in this case holds if and only if q−1

log(q) ·
log(nt/d) is larger than a sufficiently large constant, which is our hypothesis.
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6.2 The main lower bound: Proof of Theorem 1

In this section we prove lower bounds that hold also when the degree is much larger
than the field size (i.e., d � q). Specifically, we will prove the following, more general
version of Theorem 1:

Theorem 28 (a lower bound using the Shaltiel-Umans linear disperser; a more general
version of Theorem 1) For any two constants γ > 0 and γ′ > 0 there exists a constant
γ′′ > 0 such that the following holds. Let n, d, t, q ∈ N such that q ≤ n1/γ′ is a prime power,
d ≤ n/4, and:

• (essentially all values of ε = q−t) t ≤ γ′′ · log(nt/d)
log(n) · d.

• (auxiliary condition that holds for typical settings) q−1
log(q) · log(nt/d) ≥ 1/γ′′.

• (main condition: d/t is upper-bounded) d/t ≤ γ′′ ·min
{

q−1
log(q) · n

γ, n1−(γ+γ′)
}

.

Then, the seed length of any HSG for Pn,q,d,
√

2·q−t is at least Ω
(

d
t · log

(
n1−(γ+γ′)·t

d

))
.

To deduce Theorem 1 from Theorem 28, note that if we are willing to assume that
d ≤ n.49, then we can choose γ = .499 and γ′ > 0 that is sufficiently small, and the three
conditions in Theorem 28 hold for every q ≤ n1/γ′ and t ≤ γ′′ · d.

To prove Theorem 28 we will instantiate Corollary 26 with a linear disperser that we
will construct relying on the extractor of Shaltiel and Umans [SU05]. Recall that [SU05]
constructed an extractor Ext : {0, 1}n × {0, 1}` → {0, 1}m by first constructing what
they called a q-ary extractor, whose output lies in a field of size poly(n) and only sat-
isfies a relatively-weak unpredictability requirement, and then transforming the q-ary
extractor to a standard extractor over the binary alphabet (the transformation follows
an idea of Ta-Shma, Zuckerman, and Safra [TSZS06]).

We want to construct a low-degree disperser Disp : Fn
q × {0, 1}` → Fq where the

field Fq is of size much smaller than poly(n) (i.e., q ≤ nγ′ for some small constant
γ′ > 0). To do so, we take as a starting-point their construction of a q0-ary extractor
from [SU05], where q0 = poly(n), and then generalize their transformation of q0-ary
extractors to standard extractors (and in particular dispersers) such that the resulting
extractor is both over the field Fq, rather than over a binary alphabet, and linear.

Towards presenting the construction, let us first recall the definition of q0-ary ex-
tractors and the main construction of such objects from [SU05].

Definition 29 (q0-ary extractor) For n, k, m, ` ∈ N and ρ > 0, and a prime power q0 ∈ N,
we say that Ext0 : Fn

q0
×{0, 1}` → Fm

q0
is a (k, ρ) q0-ary extractor if for every random variable

x over Fn
q0

with min-entropy at least k, and every i ∈ [m], and every function P : Fi−1
q0
→ F

ρ−2

q0 ,
it holds that Prx∼x,u∼u`

[P(Ext0(x, u)1, ...,Ext0(x, u)i−1) 3 Ext0(x, u)i] ≤ ρ.

Theorem 30 ([SU05, Theorem 4.5, Item 1]) There exists a universal constant c > 1 such
that the following holds. Let n0, q0, k, m, r, h ∈N and ρ > 0 such that q0 is a prime power, and
the following inequalities hold:
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1. (Sufficiently large auxiliary parameters h and r) n0 ≤ (h+r−1
r ).

2. (Sufficiently large field) q0 ≥ c · (h·r)
2

ρ4 .

3. (Sufficiently small output length) m ≤ k−log(1/ρ)
c·h·r·log(q0)

.

Then, there exists an r× r matrix A over Fq0 such that the following holds. Let Ext0 : F
n0
q0 ×

{0, 1}r·log(q0) → Fm
q0

be defined by Ext0(x, v) = px(A1 · v) ◦ px(A2 · v) ◦ ... ◦ px(Am · v),
where v is interpreted as an element in Fr

q0
, and px : Fr

q0
→ Fq0 is the r-variate polynomial of

total degree h− 1 whose coefficients are specified by x. Then, Ext0 is a (k, ρ) q0-ary extractor.

Note that in [SU05] the input of the extractor is represented in binary and inter-
preted as n0 elements in Fq, whereas in Theorem 30 we considered the input as n0 ele-
ments in Fq. The two formulations are equivalent, since a random variable over F

n0
q0 has

min-entropy k if and only if the corresponding random variable over {0, 1}n0·log(q0) has
min-entropy k. Also note that [SU05, Lemma 4.4] showed that A can be constructed in
time qO(r)

0 (by an exhaustive search over the field F(q0)r ), and deduced that the extractor
is efficiently computable; however, we will not use this property of the extractor.

We now present the transformation of q0-ary extractors to standard extractors whose
inputs and outputs are vectors over Fq, where q � q0; as mentioned above, the proof
generalizes an idea from [TSZS06]. The intuition for this transformation is the follow-
ing. Consider the output distribution of a q0-ary extractor as consisting of blocks of
elements from Fq, where each block represents a single element from Fq0 ; by defini-
tion, the output distribution of a q0-ary extractor is “next-element unpredicatable”, and
hence the distribution of elements from Fq is a block source (see, e.g., [Vad12, Section
6.3.1]). Following Nisan and Zuckerman [NZ96], we compose the q0-ary extractor with
a strong extractor over Fq that outputs a single element (and maps each block to a sin-
gle element) and obtain an extractor over Fq. We will specifically use a single-output
extractor that is obtained from a linear list-decodable code (see, e.g., [TSZ04, Claim 4.1]),
relying on well-known constructions of such codes.14

Proposition 31 (transforming a q0-ary extractor into a standard extractor over Fq) Let
ρ > 0, let q be a prime power, let q0 = q∆ for some ∆ ∈ N, and let C : F∆

q → F∆̄
q be a

(1− 1/q− ρ, ρ−2)-list-decodable code. Assume that Ext0 : F
n0
q0 × {0, 1}`0 → Fm

q0
is a (k, ρ)

q0-ary extractor. Let Ext : Fn
q × {0, 1}` → Fm

q , where n = n0 · ∆ and ` = `0 + log(∆̄), be
defined by

Ext(x, (y, j)) = C(Ext0(x̂, y)1)j ◦ ... ◦ C(Ext0(x̂, y)m)j ,

where x̂ ∈ F
n0
q0 is the vector that is represented by x ∈ F

n0·∆
q . Then, Ext is a (k, 2qm · ρ)-

extractor.
14In fact, since in our case the output of the q0-ary extractor is not only unpredictable but also unpre-

dictable by predictors that output a list of elements, we use a simpler proof that does not go through the
notion of strong extractors.
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Proof: Assuming towards a contradiction that Ext is not a (k, 2qm · ρ)-extractor, we will
show that Ext0 is not a (k, ρ) q0-ary extractor. For simplicity, throughout the argument
we do not distinguish between x ∈ F

n0·∆
q and x̂ ∈ F

n0
q0 .

Since Ext is not a (k, 2qm · ρ)-extractor, there exists a random variable x over Fn
q with

min-entropy at least k such that Ext(x, u`) is (2qm · ρ)-far from the uniform distribution
over Fm

q . By a standard argument showing that next-element unpredictability of a dis-
tribution implies that the distribution is close to uniform (see Appendix A), there exists
an index i ∈ [m] and a function f : Fi−1

q → Fq such that

Pr
x∼x,(y,j)∼u`

[ f (Ext(x, (y, j))1, ...,Ext(x, (y, j))i−1) = Ext(x, (y, j))i] > 1/q + 2ρ . (6.1)

For any fixed (x, y) ∈ Fn
q × {0, 1}`0 , let cx,y be the string that is obtained by encod-

ing each of the first i − 1 output elements of Ext0(x, y) by the code C; that is, cx,y =

C(Ext0(x, y)1), ...,C(Ext0(x, y)i−1) ∈ (F∆̄
q )

i−1. Also, for any j ∈ [∆̄], let c(j)
x,y ∈ Fi−1

q be
the string that is obtained by projecting each of the i − 1 symbols of cx,y into its jth

coordinate; that is, c(j)
x,y = C(Ext0(x, y)1)j, ...,C(Ext0(x, y)i−1)j. Note that

c(j)
x,y = Ext(x, (y, j))1, ...,Ext(x, (y, j))i−1.

It follows from Equation (6.1) by an averaging argument that for at least a ρ-fraction
of the pairs (x, y) ∈ Fn

q × {0, 1}` it holds that

1/q + ρ < Pr
j∈[∆̄]

[ f (Ext(x, (y, j))1, ...,Ext(x, (y, j))i−1) = Ext(x, (y, j))i]

= Pr
j∈[∆̄]

[ f (c(j)
x,y) = C(Ext0(x, y)i)j] ;

in other words, with probability at least ρ over choice of (x, y), for more than a 1/q + ρ

fraction of the coordinates j ∈ [∆̄] it holds that f (c(j)
x,y) correctly outputs the jth coordi-

nate of C(Ext0(x, y)i).

Let us now construct a predictor P : Fi−1
q0
→ F

ρ−2

q0 for Ext0 that succeeds with prob-
ability more than ρ. The predictor P gets i − 1 inputs Ext0(x, y)1, ...,Ext0(x, y)i−1, and
computes r = f

(
c(1)x,y

)
, ..., f

(
c(∆̄)x,y

)
∈ F∆̄

q . We think of r as a possibly-corrupt codeword

in the code C. Since C is (1− 1/q − ρ, ρ−2)-list-decodable, there are at most ρ−2 mes-
sages whose encoding is of distance at most 1− 1/q− ρ from r; the predictor outputs
this list. By the argument above, with probability at least ρ over choice of (x, y) it holds
that r will be of distance less than 1− 1/q− ρ from C(Ext0(x, y)i). For every such (x, y),
the list that P outputs will contain Ext0(x, y)i.

We now combine Theorem 30 and Proposition 31 to obtain a linear (k, δ)-disperser
Fn

q × {0, 1}` → Fm
q with output length m = k/nΩ(1) and seed length ` = O(log(n/δ)).
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Theorem 32 (an adaptation of the Shaltiel-Umans extractor to a linear disperser over
general finite fields) For any two constants γ, γ′ > 0 the following holds. Let n, k, q ∈ N

such that k ≥ nγ+γ′ and q ≤ n1/γ′ , and let δ ≥ 2−nγ+log(2qn). Then, there exists a linear (k, δ)-
disperser Disp : Fn

q × {0, 1}` → Fm
q , where ` = Oγ′(log(n/δ)) and m = Ωγ′

(
k/nγ+γ′

)
.

Proof: For a sufficiently large universal constant c ∈ N, we choose q0 to be a power
of q in the interval [(nq/δ)c, (nq/δ)2c], denote ∆ = logq(q0) = O(log(n/δ)), and let

n0 = n/∆. We also let h =
⌈

nγ′
⌉

, let r = O(1) be a sufficiently large constant, let

m = cγ′ · k/nγ+γ′ , where cγ′ > 0 is a sufficiently small constant that depends on γ′, and
let ρ = δ/2qm. We instantiate Theorem 30 with the foregoing parameters, to obtain a
q0-ary (k, ρ)-extractor Ext0 : F

n0
q0 × {0, 1}O(log(n)) → Fm

q0
. (The conditions of Theorem 30

hold due to our hypothesized lower bounds for k and for δ.)
We now want to use Proposition 31 to transform Ext0 into a standard extractor.

As a list-decodable code we use the concatenation of the Reed-Solomon code with the
Hadamard code over Fq, which yields a linear code F∆

q → F∆̄
q with relative distance

1 − 1/q − ρ2 such that ∆̄ = O(∆/ρ2)2.15 By an appropriate version of the Johnson
bound (see, e.g., [GS01, Theorem 1]), the code is (1− 1/q− ρ, ρ−2)-list-decodable. Using
Proposition 31 with this code, we obtain a (k, δ)-extractor Ext : Fn

q × {0, 1}` → Fm
q ,

where ` = O(log(n)) + log(∆̄) = O(log(n/δ)).
Finally, let us verify that Ext is linear. Recall that for any fixed seed (y, j) ∈ {0, 1}r·log(q0)+log(∆̄)

and output location i ∈ [m], we want to show that the function that outputs the ith out-
put element of Ext(x, (y, j)) is linear. To see this, note that the ith output element of
Ext(x, (y, j)) can be computed from x ∈ Fn

q by first computing a predetermined output
element of Ext0(x, y), which we denote by zy,i(x) ∈ F∆

q , and then computing the jth

output element of C(zy,i(x)), where C : F∆
q → F∆̄

q is a linear code. Thus, it suffices to
show that the mapping of x ∈ Fn

q to zy,i ∈ F∆
q is Fq-linear; this is indeed the case since

zy,i(x) is the evaluation of the multivariate polynomial px over Fq0 whose coefficients
are described in x (i.e., each block of ∆ elements in x describes a coefficient of px) at the
fixed point in Fr

q0
described by y.

Finally, we deduce our lower bound from Theorem 28 using Corollary 26 with the
linear disperser from Theorem 32.

Proof of Theorem 28: Let d0 = d/4t, and let a = d0/(q− 1) such that δ = δRM(d0, q) ≥
q−a. We instantiate the linear disperser from Theorem 32 with parameters n and k =
(n− 2t) · log(q) and δ = q−a ≥ 2−nγ+log(2qn), and with the parameters γ > 0 and γ′ > 0.
The conditions of Theorem 32 hold due to our hypotheses that d/t ≤ γ′′ · q−1

log(q) · n
γ

(which implies that δ ≥ 2−nγ+log(2qn)) and that d ≤ n/4 (which implies that k = Ω(n)).
For these parameters, the disperser has seed length ` = O(log(n/δ)) = O(log(n) +
(d/4t) · (log(q)/(q− 1))) and output length m = Ω(n1−(γ+γ′)).

15We use this specific code merely for simplicity, and since its sub-optimal parameters do not signifi-
cantly affect the final parameters of the construction.
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Relying on Corollary 26, we get a lower bound of Ω
(
(d/t) · log(n1−(γ+γ′) · (t/d))

)
,

assuming that d0 < m (which holds since d/4t < γ′′ · n1−(γ+γ′)) and that t ≤ log(nt/d)
8` · d.

Thus, we just need to verify the latter condition.
We verify the condition by a case analysis. The first case is when log(n) > d log(q)

4t(q−1) ,
which implies that the seed length is ` = O(log(n)); then, the condition that we want
holds due to our hypothesis t ≤ γ′′ · log(nt/d)

log(n) · d. In the second case we have that
d log(q)
4t(q−1) ≥ log(n), which implies that the seed length is ` = O

(
d log(q)
t(q−1)

)
; then, the condi-

tion holds since we assumed that q−1
log(q) · log(nt/d) ≥ 1/γ′′.

6.3 Improved lower bounds in two special cases

In this section we extend Theorem 28 by proving the two additional lower bounds that
were described in the beginning of Section 6. Recall that these lower bounds have
advantages over the lower bound in Theorem 28 but hold only in two specific settings.

The first lower bound is for the setting of d ≤ q. Recall, from Section 2, that this
setting is relatively easier to handle, since the corresponding Reed-Muller code has
constant relative distance. To prove the lower bound we will instantiate Corollary 26
with the disperser from Theorem 30 used with the error parameter δ = Ω(1).16

Theorem 33 (a lower bound when d ≤ q) For any constant η > 0 there exists a constant
η′ > 0 such that following holds. Let n, q, d, t ∈ N such that q is a prime power, and d/t ≤
min{3q, η′ · n1−2η}, and t ≤ η′ · d. Then, the seed length of any HSG for Pn,q,d,

√
2·q−t is at

least Ω
(

d
t · log

(
n1−η ·t

d

))
.

Proof: Let d0 = d/4t, and note that d0 ≤ (3/4) · q, which implies that δ = δRM(d0, q) ≥
1/4. We instantiate the disperser from Theorem 30 with parameters n and k = (n −
2t) · log(q) and δ = 1/4, and with γ = γ′ = η/2. For such parameters, this disperser
has seed length ` = O(log(n)) and output length m = Ω(n1−η). The statement follows
using Corollary 26 with the parameters m, q, d0, t and with this disperser; the require-
ment that d0 < m is satisfied since d/t ≤ η′ · n1−2η < m, and the requirement that
t ≤ log(mt/d)

8` · d is satisfied since log(mt/d) = Ω(log(n)), relying on the hypothesis that
t/d ≤ n1−2η .

The second lower bound holds only over fields of constant size. Recall that this
lower bound is of the stronger form Ω((d/t) · log(nt/d)) (as in Corollary 27), and holds
even for high degrees up to Ω(n), and for every t /

√
d. More accurately:

Theorem 34 (a lower bound using the local-expander disperser) For every constant prime
power q there exists a constant αq > 0 such that the following holds. Let n, d, t ∈ N such that

16Additional lower bounds for this setting, which admit different trade-offs between the lower bound
itself and the requirements on d/t, can be proved by instantiating Corollary 26 with other dispersers (e.g.,
with the naive disperser or with the subspace sampler). For simplicity, we omit these statements.
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2 · (q− 1) ≤ d ≤ n/22(q−1) and t ≤ αq ·
√

log(nt/d) ·
√

d. Then, the seed length of any HSG

for Pn,q,d,
√

2·q−t is at least Ω
(

d
t · log

( n·t
d

))
.

To prove Theorem 34, we will instantiate Corollary 26 with linear dispersers that can
be obtained from the recent construction of linear 1-local expanders over a constant-
sized alphabet by Goldreich [Gol16], following Viola and Wigderson [VW17]. Let us
first recall the definition of linear 1-local functions and Goldreich’s result:

Definition 35 (linear local functions) We say that a function f : Fn
q → Fm

q is linear 1-local
if each output bit of f is an Fq-linear function of a single input bit of f .

Note that the composition of linear 1-local functions is linear 1-local. Then, Goldre-
ich [Gol16], proved that there exist expanders over Fn

q whose neighbor functions are
1-local Fq-linear functions. Specifically:

Theorem 36 (local expanders [Gol16]) Let Fq be a field of constant size. Then, for any
sufficiently large n ∈ N there exists an expander (i.e., a graph with a constant spectral gap)
G = ([qn], E) of degree ∆ = Oq(1) that satisfies the following. For each i ∈ [∆], the ith

neighbor function fi : [qn]→ [qn] of the graph is a linear 1-local function.

We now use a standard transformation of expanders to extractors: The input to the
extractor is a name of a vertex, the seed specifies the directions in a walk of suitable
length, and the output is the final vertex in the corresponding walk (that starts from
the input vertex and proceeds according to the seed). The crucial point is that for every
fixed seed, the output of the extractor is obtained by applying fixed neighbor functions
(which correspond to the walk specified in the seed) to the input; in particular, since
the neighbor functions are linear, the resulting disperser is also linear.

Theorem 37 (expanders yield good extractors; see, e.g., Theorem 6.22 in [Vad12]) For
any q, n ∈ N, let G = ([qn], E) be an expander (i.e., a graph with a constant spectral gap)
of degree ∆ = O(1). For k < n · log(q) and δ > 0, let Disp : Fn

q × {0, 1}` → Fn
q , where

` = r · log(∆) and r = O(n · log(q)− k + log(1/δ)), be defined as follows. For every x ∈ Fm
q

and w ∈ {0, 1}`, consider the r-long walk on G that starts from x, and let Disp(x, w) be the
final vertex in this walk. Then, Disp is a (k, δ)-disperser.

Theorem 38 (a linear disperser from a local expander) Let Fq be a field of constant size, let
n ∈N be sufficiently large, and for a, t ∈N let k = (n− 2t) · log(q) and δ = q−a. Then, there
exists a linear (k, δ)-disperser Disp : Fn

q × {0, 1}` → Fn
q , where ` = Oq(t + a). Moreover, the

function that maps x to {Disp(x, w)}w∈{0,1}` is linear 1-local.

Proof: We use the disperser from Theorem 37, instantiated with the expander from
Theorem 36, and with error parameter δ = q−a and with k = (n− 2t) · log(q).

To show that the mapping x 7→ {Disp(x, w)}w∈{0,1}` is linear 1-local, fix any w ∈ [2`],
and let us focus on the wth output element of Disp. Recall that the wth output ele-
ment is the final vertex in a walk of length r that starts at the input x ∈ Fn

q to Disp

28



and whose steps are described by w. In particular, let f1, ..., f∆ be the neighbor func-
tions of G, and let (i1, ..., ir) ∈ [∆]r be the r steps taken in the fixed walk w; then,
Disp(x)w = fir( fir−1(...( fi1(x))...)). Since each of the neighbor functions is a linear 1-
local function, their composition is also linear 1-local. Hence, for every w ∈ {0, 1}` it
holds that Disp(·)w is a linear 1-local function.

We now prove Theorem 34 by instantiating Corollary 26 with the linear disperser
from Theorem 38:

Proof of Theorem 34: Let d0 = d/4t, and let a = d0/(q− 1) such that δ = δRM(d0, q) ≥
q−a. When instantiating the disperser from Theorem 38 with parameters n and k =
(n− 2t) · log(q) and δ = q−a, it has seed length ` = Oq(t + a). Relying on Corollary 26,
we get a lower bound of Ω ((d/t) · log(nt/d)), assuming that t ≤ log(nt/d)

8` · d. Thus, we
just need to verify the latter condition.

Note that t ≤ log(nt/d)
8` · d if and only if t · (t + a) ≤ cq · log(nt/d) · d, where cq is a

constant that depends only on q. Since t · (t + a) = t2 + d/4(q− 1), it suffices to prove
that

t2 + d/4(q− 1) ≤ cq · log(nt/d) · d ⇐⇒

t ≤ √cq ·
√
(log(nt/d)− 1/4(q− 1)) ·

√
d .

Finally, since d ≤ n/22(q−1) we have that log(nt/d) − 1/4(q − 1) ≥ 1
2 · log(nt/d).

Hence, it suffices that t ≤ (
√

cq/2) ·
√

log(nt/d) ·
√

d, which holds due to our hy-
pothesis (using αq =

√
cq/2).

7 Small sets with a large degree-d closure

In this section we establish a connection between the study of HSGs for polynomials
that vanish rarely, and the study of small sets with large degree-d closures, which was
recently initiated by Nie and Wang [NW15]. To do so let us first define the degree-d
closure of a set S ⊆ Fn:

Definition 39 (degree-d closure) Let F be a finite field, and let n, d ∈ N. Then, for any
S ⊆ Fn, we define the degree-d closure of S, denoted Cl(d)(S), by Cl(d) = {x ∈ Fn : ∀p ∈
I(S), p(x) = 0}, where I(S) = {p : Fn → F : deg(p) = d ∧ ∀s ∈ S, p(s) = 0}.

We now prove Theorem 5, which shows two reductions. Loosely speaking, we
show that any set with degree-d closure of size qn−t is a hitting-set for polynomials that
vanish with probability at most q−t; and we show that any hitting-set for polynomials
that vanish with probability at most q−t has degree-d′ closure of size qn−t/2, for d′ that
is not much smaller than d.

Theorem 40 (small sets with large closures are equivalent to hitting-sets for polyno-
mials that vanish rarely; Theorem 5, restated) Let F be a field of size q, let n ∈ N and
t < d < n, and let S ⊆ Fn. Then,
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1. If
∣∣∣Cl(d)(S)∣∣∣ > qn−t, then S is a hitting-set for Pn,q,d,q−t .

2. If S is a hitting-set for Pn,q,d,q−t , then
∣∣∣Cl(d/2(t+1))(S)

∣∣∣ > 1
2 · qn−t.

Proof: For the first statement, let S ⊆ Fn be such that
∣∣∣Cl(d)(S)∣∣∣ > qn−t. Then, every

degree-d polynomial that vanishes on S also vanishes on more than qn−t of the inputs.
It follows that S is a hitting-set for Pn,q,d,q−t .

For the second statement, for d′ = d/2(t + 1), assuming that
∣∣∣Cl(d′)(S)∣∣∣ ≤ 1

2 · qn−t,
we construct a degree-d polynomial that vanishes on S and that vanishes on at most
qn−t inputs in Fn (and it follows that S is not a hitting-set for Pn,q,d,q−t ).

To construct the polynomial, let T1 = Fn \ Cl(d′)(S). Note that for every x ∈ T1
there exists a degree-d′ polynomial px that vanishes on S, but does not vanish at x. We
can thus construct a collection P1 of degree-d′ polynomials such that for every x ∈ T1
there exists a corresponding px ∈ P1 satisfying px(x) 6= 0. (Indeed, a single polynomial
might “cover” two distinct inputs, i.e. px = py for x 6= y.)

Now, consider the distribution p1 over polynomials Fn → F that is defined by

p1(z) = ∑
x∈T1

cx · px(z) ,

where the coefficients cx are uniformly and independently chosen in F. Note that p1 is
supported by polynomials of degree d′ that vanish on S. Also note that for any fixed
z ∈ T1 we have that

Pr[p1(z) = 0] = Pr

[
∑

x∈T1

cx · px(z) = 0

]

= E{cx}x∈T1\{z}

[
Pr

[
cz · pz(z) = − ∑

x∈T1\{z}
cx · px(z)

]]
,

which equals 1/q since pz(z) 6= 0. Therefore, there exists a fixed polynomial p of degree
d′ that vanishes on S and on at most 1/q of the inputs in T1.

We now repeat this step t additional times, while maintaining the invariant that for
every x ∈ Ti there exists a polynomial px ∈ Pi such that px(x) 6= 0. Specifically, for
i = 2, ..., t + 1, we let Ti = Ti−1 ∩ {x ∈ Ti : pi−1(x) = 0} and Pi = Pi−1 \ {pi−1}. Note
that |Ti| ≤ |Ti−1|/q, and that for every x ∈ Ti there exists px ∈ Pi such that px(x) 6= 0.
We again define a distribution pi(z) = ∑x∈Ti

cx · px(z), and using the same argument as
above, we deduce that there exists a fixed polynomial pi of degree d′ that vanishes on
S and on at most 1/q of the inputs in Ti.

After t + 1 steps we obtain t + 1 polynomials p1, ..., pt+1 of degree d′ that vanish

on S such that
∣∣∣{x /∈ Cl(d)(S) : ∀i ∈ [t], pi(x) = 0}

∣∣∣ ≤ |T1|/qt+1 ≤ 1
2 · q−t. Let p :

Fn → F be the multivalued OR of p1, ..., pt+1, defined by p(x) = mvOR(p1(x), ..., pt(x)).
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Note that deg(p) < 2(t + 1) · d′ = d, and that p vanishes on S. Thus, denoting δ =∣∣∣Cl(d′)(S)∣∣∣/qn ≤ 1
2 · q−t, we have that

Pr
x∈Fn

[p(x) = 0] = δ + (1− δ) · q−(t+1) < q−t ,

which implies that p ∈ Pn,q,d,q−t . Hence, S is not a hitting-set for Pn,q,d,q−t .

As mentioned in Section 1.3, we can obtain an upper-bound on the size of Cl(d)(S)
for any sufficiently-small set S, by combining Theorem 28 and the first item of Theo-
rem 40. Specifically, we can deduce that for every 2 ≤ q ≤ poly(n) and d ≤ n.49 and
t ≤ γ · d (where γ > 0 is a sufficiently small constant), any set S of size |S| ≤ nγ·(d/t)

satisfies
∣∣∣Cl(d)(S)∣∣∣ ≤ qn−t. However, this corollary is superseded by the upper-bound

of [NW15], who showed that for any S ⊆ Fn it holds that
∣∣∣Cl(d)(S)∣∣∣ ≤ |S|

(n+d
d )
· qn.

Indeed, since the problem of constructing small sets with large degree-d closures is
at least as hard as the problem of constructing HSGs for polynomials that vanish rarely
(due to the first item of Theorem 40), it might be inherent that a direct lower bound
on the former problem is stronger than a lower bound that is obtained via a reduction
from the latter problem.
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Appendix A Next-element unpredictability over large alpha-
bets

Recall that, as proved by Yao [Yao82], if a distribution w over {0, 1}m is next-bit un-
predictable, then w is close to the uniform distribution. In this appendix we prove a
generalized version of this claim that applies also to distributions over Σm where Σ is
an alphabet of arbitrary size.

Proposition 41 (next-element unpredictability implies closeness to uniform, over ar-
bitrary alphabets) Let Σ be a set of size q = |Σ|, let w be a distribution over Σm, and
assume that the statistical distance between w and the uniform distribution on Σm, denoted
um, is at least ρ > 0. Then, there exists i ∈ [m] and a function P : Σi−1 → Σ such that
Pr[wi = P(w1, ..., wi−1)] > 1/q + ρ/qm,.

Proof: Let h(0) = un, and for i ∈ [m] let h(i) be the distribution over Σm such that its
first i elements are sampled from w and its last m− i elements are sampled uniformly
and independently. By a standard hybrid argument, for some i ∈ [m] it holds that the
statistical distance between h(i−1) and h(i) is at least ρ/m. Hence, there exists T : Σi →
{0, 1} such that

Pr[T(h(i)
1,...i) = 1]− Pr[T(h(i−1)

1,...,i ) = 1] > ρ/m .

Now, for any w1, ..., wi−1 ∈ Σi−1, let

P(w1, ..., wi−1) = argmaxz∈Σ {Pr [wi = z|w1,...,i−1 = w1,...,i−1]} .

Denote Prw∼w[wi = P(w1,...,i−1)]
def
== (1/q+ δ), where δ ∈ [0, 1]. Our goal is to prove

that δ > ρ/qm. By the definition of P, for every z ∈ Σ and w1,...,i−1 ∈ Σi−1 we have that

Ew∼w [Pr[wi = z|w1,...,i−1 = w1,...,i−1]] ≤ 1/q + δ .
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Thus, we have that

Pr[T(h(i)
1,...i) = 1]− Pr[T(h(i−1)

1,...,i ) = 1]

= Eui+1,...,n∼un,w1,...,i−1∼w

[
∑
z∈Σ

Pr[wi = z|w1,...,i−1 = w1,...,i−1] · T(w1, ..., wi−1, z, ui+1, ..., un)

− 1
q
· ∑

z∈Σ
T(w1, ..., wi−1, z, ui+1, ..., un)

]
≤ Eui+1,...,n∼un,w1,...,i−1∼w

[
∑
z∈Σ

(1/q + δ) · T(w1, ..., wi−1, z, ui+1, ..., un)

− 1
q
· T(w1, ..., wi−1, z, ui+1, ..., un)

]
≤ q · δ ,

which implies that δ > ρ/qm.

Appendix B An alternative argument for lower bounds

In this appendix we describe an alternative argument for proving a lower bound on
the size of hitting-sets for polynomials that vanish rarely; this argument was suggested
to us by an anonymous reviewer. We note in advance that this argument is known to
work only for prime fields (for reasons that will be explained below), and that our main
reason for presenting it is since it is simple and elegant. For simplicity, we first present
the argument only for the field F2.

Recall, from the “warm-up” in Section 2.1, that a lower bound on the seed length
of any hitting-set generator for Pn,q,d,t can be proved quite easily (i.e., with the naive
disperser and without “randomized tests”) when the corresponding Reed-Muller code
has constant relative distance. The main technical ingredient underlying the alternative
argument is the existence of a large subcode of the Reed-Muller code that has constant
relative distance; the existence of such a subcode can be deduced using the following
lemma by Ben-Eliezer, Hod, and Lovett [BHL12]. Towards stating the lemma, we define
the bias of a function f : Fn

2 → F2 to be bias( f ) = Prx∈Fn
2
[ f (x) = 0]− Prx∈Fn

2
[ f (x) =

1] = 2 Prx[ f (x) = 0]− 1. The following is showed in [BHL12]:

Lemma 42 (a random F2-polynomial is unbiased [BHL12, Lemma 2]) For every constant
ε > 0 there exist constants α, β > 0 such that the following holds. For n ∈ N and d ≤
(1− ε) · n, let p be a uniformly-chosen degree-d polynomial in Fn

2 → F2. Then, it holds that

Pr
[∣∣∣ bias(p)

∣∣∣ > 2−α·(n/d)
]
≤ 2−β·(n+d

d ).

Loosely speaking, the fact that a random degree-d polynomial is unbiased implies
that the difference between two random degree-d polynomials is unbiased, or in other
words that two random degree-d polynomials disagree on≈ 1/2 of their inputs. Hence,
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when independently choosing many random degree-d polynomials, with high proba-
bility the subcode spanned by them has distance close to 1/2; that is, there exists a large
subcode of the Reed-Muller code with relative distance close to 1/2. In more detail:

Corollary 43 (a large subcode of the Reed-Muller code with constant relative distance)
For every ε > 0 there exists γ > 0 such that the following holds. For every sufficiently large
n ∈ N and d ≤ n.99 there exists a linear subcode of the [n, d] Reed-Muller code over F2 that
has dimension at least γ · (n+d

d ) and relative distance at least 1/2− ε.

Proof: Fix ε > 0, and let γ > 0 be sufficiently small. For two polynomials f1, f2 : Fn
2 →

F2, let agr( f1, f2) = Prx∈Fn
2
[ f1(x) = f2(x)] = Prx[ f1(x)− f2(x) = 0] = 1

2 + bias[ f1 −
f2]/2. Denoting a uniformly-chosen degree-d polynomial Fn

2 → F2 by p, we choose
D′ = γ · (n+d

d ) polynomials b1, ..., bD′ ∼ p, and denote the subcode of the Reed-Muller
code spanned by these polynomials by C ′ = {f1, ..., fT}, for T ≤ 2D′ .

First note that with high probability T = 2D′ , or in other words the bi-s are lin-
early independent. This is the case since if we choose the bi-s sequentially, then at
each iteration i ∈ [D′], the probability that bi lies in the subspace spanned by the i− 1
previously-chosen polynomials is at most 2(i−1)−(n+d

d ) < 2D′−(n+d
d ) = o(1/D′).

Now, conditioned on the event that T = 2D′ , note that for every fixed i ∈ [2D′ ] it
holds that fi is uniformly distributed (i.e., its marginal distribution is p). Thus, for every
fixed i ∈ [2D′ ] we have that

Pr[∃j 6= i : agr(fi, fj) > 1/2 + ε] = Pr[∃j 6= i : bias(fi − fj) > 2ε]

= ∑
p∈supp(p)

Pr[fi = p] · Pr[∃j 6= i : bias(p− fj) > 2ε]

< 2D′ · Pr[bias(p) > 2ε] · ∑
p∈supp(p)

Pr[fi = p]

≤ 2(γ−β)·(n+d
d ) , (Lemma 42)

where β = β(ε) and we used the fact that 2−α·(n/d) ≤ 2ε′ for every constant α = α(ε)
and large enough n. Taking γ < β to be a sufficiently small constnat, the above is o(1).
Therefore, with high probability over choice of b1, ..., bD′ , the linear subcode induced
by our choice has dimension D′ and relative distance at least 1/2− ε′.

We now prove the lower bound. Loosely speaking, using the simple reduction that
was described in the “warm-up” in Section 2.1, we show that if there exists a small
hitting-set for degree-d polynomials Fn

2 → F2 that vanish rarely then there exists a
small hitting-set for the large subcode from Corollary 43.

Theorem 44 (a lower bound using subcodes of the Reed-Muller code) There exists a
universal constant α > 0 such that the following holds. For any sufficiently large n ∈ N,
d ≤ n.99, and t ∈ N such that t < α · d, the seed length of any hitting-set generator for
Pn,2,d,2−t is at least Ω((d/t) · log(n)).
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Proof: Let δ > 0 be a sufficiently small constant, let n ∈ N be sufficiently large, let
d ≤ (1− ε) · n, and let t < d. Assume towards a contradiction that there exists a hitting-
set S ⊆ Fn

2 for Pn,2,d,2−t of size δ · (n+d/t
d/t ).

Now, let d0 = bd/4tc, let t′ = 2t, and let m = bn/t′c. Let C ′ ⊆ Fm
2 be a linear

subcode of the Reed-Muller code Fm
2 → F2 of degree d0 that has dimension γ · (m+d0

d0
)

and relative distance at least .49, whose existence is guaranteed by Corollary 43.
We construct a hitting-set for C ′ as follows. For every polynomial p ∈ C ′, consider

the polynomial p′ : Fm·t′
2 → F2 such that p′(z) = mvOR(p(z(1)), ..., p(z(t

′))), where we
think of z = z(1), ..., z(t

′) such that for each i it holds that z(i) is an m-bit string. Note that
the degree of p′ is less than 4d0 · t ≤ d, and that Prz∈Ft′ ·m

2
[p′(z) = 0] = Prx∈Fm

2
[p(x) =

0]t
′ ≤ 2−t. By our assumption that S is a hitting-set for Pn,2,d,2−t , there exists z ∈ S such

that p′(z) 6= 0, which implies that for some i ∈ [t′] it holds that p(z(i)) 6= 0.
Thus, the set S0 = {z(i) : z ∈ S, i ∈ [t′]} is a hitting-set for C ′ of size at most 2t · |S|.

Now, relying on Fact 14, any hitting-set for C ′ is of size at least dim(C ′) = γ · (m+d0
d0

),

and hence |S| ≥ γ · (m+d0
d0

)/t. The seed length for sampling from S is thus at least

Ω (d0 · log((m + d0)/d0)− log(t)) = Ω ((d/t) · log(n/d)− log(t)) ,

which simplifies to Ω((d/t) · log(n)) relying on the hypotheses that d ≤ n.99 and t ≤
α · d, for a sufficiently small universal constant α > 0.

To generalize the foregoing argument to fields other than F2, note that the only place
where we used the fact that the field is F2 is when deducing the existence of a large
subcode of the Reed-Muller code (i.e., in Corollary 43, which relied on Lemma 42).
The argument can be generalized to any prime field, relying on a generalization of
Lemma 42 to arbitrary prime fields that was recently proved by Beame, Gharan, and
Yang [BGY18]. However, we are not aware of an analogous result for non-prime fields.
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