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Abstract

One of the major open problems in complexity theory is proving super-logarithmic lower
bounds on the depth of circuits (i.e., P 6⊆ NC1). Karchmer, Raz, and Wigderson [KRW95]
suggested to approach this problem by proving that depth complexity behaves “as expected”
with respect to the composition of functions f � g. They showed that the validity of this
conjecture would imply that P 6⊆ NC1.

As a way to realize this program, Edmonds et. al. [EIRS01] suggested to study the “mul-
tiplexor relation” MUX, which is a simplification of functions. In this note, we present two
results regarding this relation:

• The multiplexor relation is “complete” for the approach of [KRW95] in the following sense:
if we could prove (a variant of) their conjecture for the composition f �MUX for every
function f , then this would imply P 6⊆ NC1.

• A simpler proof of a lower bound for the multiplexor relation due to [EIRS01]. Our proof
has the additional benefit of fitting better with the machinery used in previous works on
the subject.

1 Introduction

A major frontier of the research on circuit complexity is proving super-logarithmic lower bounds
on the depth complexity of an explicit function, i.e., proving that P 6⊆ NC1. Karchmer, Raz, and
Wigderson [KRW95] proposed to approach this problem by studying the (block-)composition of
boolean functions, defined as follows: if f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} are boolean
functions, then their composition f � g takes inputs in ({0, 1}n)m and is defined by

f � g(x1, . . . , xm) = f (g(x1), . . . , g(xm)) .

Let us denote by D(f) the minimal depth of a circuit that computes f with fan-in 2. It is easy to
see that D(f � g) ≤ D(f) + D(g). Karchmer, Raz, and Wigderson [KRW95] conjectured that this
upper bound is roughly optimal:

Conjecture 1.1 (The KRW conjecture). Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be
non-constant functions. Then

D(f � g) ≈ D(f) + D(g). (1)
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[KRW95] observed that this conjecture, if proved, would imply that P 6⊆ NC1. To see why,
consider the function F : {0, 1}2N → {0, 1}, which takes as input the truth table of a function
f : {0, 1}logN → {0, 1} and a string x ∈ {0, 1}N , and computes

F (f, x) = ( f � . . . � f︸ ︷︷ ︸
logN

log logN
times

)(x). (2)

It can be verified that x is indeed a valid input for the function f � . . . � f . We claim that F has

depth complexity ≈ log2 N
log logN : to see it, observe that we can fix f to be a (non-explicit) function

with maximal depth complexity of ≈ logN , and then the KRW conjecture implies that

D(F ) = D(f � . . . � f) ≈ logN

log logN
· D(f) ≈ log2N

log logN
.

In this note, we present two results toward realizing this approach. Below, we explain the relevant
background, and then describe our contribution in more detail.

Karchmer-Wigderson relations. [KRW95] suggested to study their conjecture using the frame-
work of Karchmer-Wigderson relations [KW90]. Given a function f : {0, 1}n → {0, 1}, the
Karchmer-Wigderson relation KWf (or “KW relation” for short) is the following communication
problem: Alice gets an input x ∈ f−1(1), and Bob gets as input y ∈ f−1(0). The goal of Alice and
Bob is to find a coordinate i ∈ [n] such that xi 6= yi. Karchmer and Wigderson [KW90] observed
that the communication complexity of KWf is exactly equal to D(f). This observation allows us
to study questions about depth complexity from the perspective of communication complexity.

Previous work on the KRW conjecture. As a first step toward resolving their conjecture,
[KRW95] suggested to prove it for the universal relation U , which is a simplification of KW relations.
This challenge was met by Edmonds et. al. [EIRS01], who proved the KRW conjecture for the
composition U � U , and an alternative proof was given later1 by H̊astad and Wigderson [HW93].

More recently, Gavinsky et. al. [GMWW17] proved a version of the KRW conjecture for compo-
sitions of the form f � U , where f can be any non-constant function, and this result was improved
quantitatively by Koroth and Meir [KM18]. In addition, the work of H̊astad on the shrinkage
exponent [H̊as98] implicitly proved the KRW conjecture for compositions of the form f �

⊕
, where⊕

is the parity function and f is any non-constant function. Dinur and Meir [DM18] gave an
alternative proof of the latter result using the framework of KW relations, thus being more in line
with the works of [KRW95, EIRS01, GMWW17, KM18].

A major difficulty in proving the KRW conjecture is that it requires us to prove a lower bound
for arbitrary choices of f and g. The previous works seem to suggest that the crux of the difficulty
lies in dealing with an arbitrary choice of the function g (since the previous works can already
handle an arbitrary choice of f). In this paper, we discuss a way to bypass the need to deal with
an arbitrary choice of g. To this end, we first discuss the multiplexor relation of [EIRS01].

The multiplexor relation. Instead of proving the full KRW conjecture, one could prove2 that
P 6⊆ NC1 by proving a depth lower bound directly on the function F of Equation (2). Proving a

1[HW93] appears to be earlier than [KRW95] and [EIRS01] in the citations because we cite the journal version of
those works. The conference versions of [KRW95] and [EIRS01] appeared in 1991.

2This approach was suggested by [EIRS01] and independently by Karchmer (see [HW93]).
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lower bound on F might be easier, since now the function f becomes part of the input, and thus
we can choose f in any way that serves our argument.

Motivated by this consideration, [EIRS01] defined the “multiplexor relation”, which is a KW
relation in which the function f is part of the input. Formally, the multiplexor relation MUXn

is the following communication problem: Alice gets a function f : {0, 1}n → {0, 1} and an input
x ∈ f−1(1). Bob gets the same function f and an input y ∈ f−1(0). Their goal is to find a
coordinate i ∈ [n] such that xi 6= yi.

The communication complexity of MUXn is known to be at most n+2 by a protocol of [TZ97].
It is easy to prove a corresponding lower bound of n− log logn+ Θ(1) using a counting argument.
However, such an argument does not fit well with the framework of KW relations. Thus, [EIRS01]
gave an alternative proof of a lower bound of Ω(n), based on an adversary argument. Our second
main contribution is a simpler version of that argument.

Our contribution. In this work, we study a composition of the form f �MUX, where f is an
arbitrary function. We propose a version of the KRW conjecture for this composition, and show3

that this conjecture implies that P 6⊆ NC1. In a sense, this shows that the MUX relation is
“complete” for the KRW conjecture. In particular, it provides a way to bypass the need to deal
with an arbitrary choice of g. In light of the previous works on the KRW conjecture, dealing
with the composition f �MUX might be within reach. We believe that proving the conjecture on
f �MUX is a good direction for separating P from NC, and we discuss it in Section 2.

Our second contribution is a simpler version of the lower bound on MUX of [EIRS01]. In
particular, our adversary argument should be easier to combine with the techniques used in previous
works on the KRW conjecture. Thus, this argument might be useful for proving the conjecture
on f �MUX. We present this result in Section 3.

Preliminaries. For n ∈ N, we denote [n]
def
= {1, . . . n}. We use the standard definitions of

communication complexity — see the book of Kushilevitz and Nisan [KN97] for more details.
Given Given a communication problem P , we denote the deterministic communication complexity
of P by C(P ).

2 The composition f �MUX

In this section, we define the composition f �MUX and discuss its applications to separating NC1

from P. As a warm-up for the definition of f �MUX, it is useful to recall how the KW relation of
the composed function f � g looks like. Let f : {0, 1}m → {0, 1} and g : {0, 1}n → {0, 1} be boolean
functions. In the KW relation KWf�g, Alice gets strings x1, . . . , xm ∈ {0, 1}n and Bob gets strings
y1, . . . , ym ∈ {0, 1}n. We define strings a, b ∈ {0, 1}m as follows:

a
def
= (g(x1), . . . , g(xm)), b

def
= (g(y1), . . . , g(ym)).

Those strings satisfy a ∈ f−1(1) and b ∈ f−1(0), and the goal of the players is to find i ∈ [m] and
j ∈ [n] such that (xi)j 6= (yi)j . Observe that this relation has an obvious protocol: The players
first solve KWf on a and b, thus obtaining a coordinate i ∈ [m] such that ai 6= bi (note that
a and b are indeed legal inputs for KWf ). Then, Alice and Bob solve KWg on xi and yi, thus
obtaining a coordinate j ∈ [n] where (xi)j 6= (yi)j (note that xi and yi are indeed legal inputs

3We need to make a small change in the KRW conjecture for this implication to hold. This change was suggested
by Avishay Tal.
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for KWg, since ai 6= bi implies g(xi) 6= g(yi)). The communication complexity of this protocol is
C(KWf ) + C(KWg), and the KRW conjecture can be viewed as saying that this obvious protocol
is roughly optimal.

The composition f �MUX is defined similarly, with the following modification: whenever the
players received an input of KWg in KWf�g, they will receive an input of MUX in f �MUX.

Definition 2.1. Let f : {0, 1}m → {0, 1} be a boolean function, and let n ∈ N. The relation
f �MUXn is the following communication problem. Alice gets strings x1, . . . , xm ∈ {0, 1}n and
functions g1, . . . , gm : {0, 1}n → {0, 1}. Bob gets strings y1, . . . , ym ∈ {0, 1}n and the same functions
g1, . . . , gm : {0, 1}n → {0, 1} as Alice. We define strings a, b ∈ {0, 1}m as follows:

a
def
= (g1(x1), . . . , gm(xm)), b

def
= (g1(y1), . . . , gm(ym)).

Those strings must satisfy a ∈ f−1(1) and b ∈ f−1(0), and the goal of the players is to find i ∈ [m]
and j ∈ [n] such that (xi)j 6= (yi)j .

It is not hard to see that the same obvious protocol from before works for f �MUX as well,
and therefore

C(f �MUXn) ≤ C(KWf ) + n+ 2.

It is therefore natural to conjecture that this obvious protocol is roughly optimal.

Conjecture 2.2 (The KRW conjecture for f � MUX). For every non-constant function f :
{0, 1}m → {0, 1} and n ∈ N, it holds that C(f �MUXn) ≥ C(KWf ) + n−O(log log n).

For the purpose of separating NC1 and P, it suffices to consider the following weaker version
of the (see discussion below).

Conjecture 2.3 (Weak conjecture for f �MUX). For every function f : {0, 1}m → {0, 1} and
n ∈ N, it holds that C(f �MUXn) ≥ C(KWf ) + ω(log n).

We believe that Conjecture 2.3 implies that P 6⊆ NC1. Unfortunately, we do not know how to
prove that implication. However, it turns out that a close variant of Conjecture 2.3 does imply that
P 6⊆ NC1. In order to state this variant, we use the following notion of “alternating protocols”:
those are protocols in which each player sends exactly one bit in each of her turns (i.e., Alice sends
one bit, then Bob sends one bit, then Alice sends one bit, etc.). Such protocols have been considered
in the past in the interactive coding literature (see, e.g., [KR13]).

Definition 2.4. We say that a communication protocol is alternating if in every transcript, the
bits at odd positions are transmitted by Alice, and the bits at even positions are transmitted by
Bob. Given a communication problem P , its alternating communication complexity CALT(P ) is the
minimal communication complexity of a deterministic alternating protocol that solves P .

We now state a variant of Conjecture 2.3 for alternating communication complexity, which does
imply that P 6⊆ NC1.

Conjecture 2.5 (Alternating conjecture for f � MUX). For every non-constant function f :
{0, 1}m → {0, 1} and n ∈ N, it holds that CALT(f �MUX) ≥ CALT(KWf ) + ω(log n).

Theorem 2.6. If Conjecture 2.5 holds then P 6⊆ NC1.

In the rest of this section we prove Theorem 2.6. As a warm-up, we first describe in Section 2.1
a natural (yet flawed) argument for showing that the original Conjecture 2.3 implies P 6⊆ NC1. We
then discuss a subtle issue in that argument, and explain how to resolve this issue for Conjecture 2.5
in Section 2.2.
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Discussion. We believe that attacking Conjecture 2.5 is a viable approach for separating P
from NC1. To justify this belief, let us consider first Conjecture 2.3: As explained in the intro-
duction, we already have similar results for compositions f � g where f is an arbitrary function
and g is a specific function. The proofs of those results usually rely on knowing what g is, and in
particular, the lower bound for KWf�g usually builds on a proof of a lower bound for KWg. This
makes it difficult to extend the previous results to work for an arbitrary choice of g. On the other
hand, MUX is a specific communication problem for which we have a proof of a lower bound, and
therefore it is conceivable that we could extend the previous results to f �MUX. This leads us to
hope that Conjecture 2.3 might be within reach.

Of course, as discussed above, what we need is a proof of Conjecture 2.5 rather than Con-
jecture 2.3. However, all the previous results on the KRW conjecture can be adapted to work for
alternating communication complexity rather easily. Thus, we believe that a proof of Conjecture 2.3
would likely yield a proof of Conjecture 2.5 as well.

2.1 On proving P 6⊆ NC1 from Conjecture 2.3

We present the flawed argument for showing that Conjecture 2.3 implies that P 6⊆ NC1. This
argument works by first “proving” that Conjecture 2.3 implies a certain weaker version of the
KRW conjecture, and then observing that the latter version implies P 6⊆ NC1.

We first state the weaker version of the KRW conjecture, which differs from the original in
two ways: The first difference is that we replace the inner function g with multiple inner func-
tions g1, . . . , gm. The second (and more important) difference is that rather than requiring the
lower bound to hold for every choice of g1, . . . , gm, we only require it to hold for some choice of
those functions.

Notation 2.7. Let f : {0, 1}m → {0, 1} and g1, . . . , gm : {0, 1}n → {0, 1} be boolean functions.
Then the function f ◦(g1, . . . , gm) : ({0, 1}n)m → {0, 1} is the function that takes as inputs m strings
x1, . . . , xm and outputs

f ◦ (g1, . . . , gm)(x1, . . . , xm) = f (g1(x1), . . . , gm(xm))

Conjecture 2.8 (Weak version of the KRW conjecture). For every non-constant function f :
{0, 1}m → {0, 1} and n ∈ N there exist functions g1, . . . , gm : {0, 1}n → {0, 1} such that

D (f ◦ (g1, . . . , gm)) ≥ D(f) + ω(log n).

Proposition 2.9. If Conjecture 2.8 holds then P 6⊆ NC1.

The proof of the last proposition is a simple variant of the argument of [KRW95] and other
folklore arguments, and we defer it to Section 2.3 below. Observe that Conjecture 2.8 indeed follows
from the KRW conjecture, by choosing g1 = . . . = gm to be some maximally-hard function whose
existence can be proved by a counting argument. We are now ready to “prove” that Conjecture 2.3
implies P 6⊆ NC1.

Conjecture 2.10. If Conjecture 2.3 holds then P 6⊆ NC1.

“Proof” of Conjecture 2.10. It suffices to show that Conjecture 2.3 implies Conjecture 2.8.
Suppose that Conjecture 2.8 is false, that is, there exists a non-constant function f : {0, 1}m such
that for all functions g1, . . . , gm it holds that

D (f ◦ (g1, . . . , gm)) ≤ D(f) +O(log n).
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We show that f is a counter-example for Conjecture 2.3, that is, we prove that C(f �MUX) ≤
C(KWf ) +O(log n).

Recall that in the communication problem f �MUX, Alice and Bob get strings x1, . . . , xm and
y1, . . . , ym respectively, and they both get functions g1, . . . , gm such that

f (g1(x1), . . . , gm(xm)) = 0

f (g1(y1), . . . , gm(ym)) = 1.

Their goal is to find i ∈ [m] and j ∈ [n] such that (xi)j 6= (yi)j . Now, observe that for every fixed
choice of g1, . . . , gm, this problem is exactly the KW relation of f ◦ (g1, . . . , gm), and therefore its
communication complexity is at most

D(f) +O(log n) ≤ C(KWf ) +O(log n)

by our assumption. Thus, the following protocol solves f �MUX using at most C(KWf )+O(log n)
bits: given their inputs, the players invoke the optimal protocol for KWf◦(g1,...,gm) on the strings
x1, . . . , xm and y1, . . . , ym, thus finding a solution for f �MUX. This protocol shows that C(f �
MUX) ≤ C(KWf ) +O(log n), as required. �

The flaw in the above “proof”. Unfortunately, the protocol for f �MUX in the above argu-
ment is not well-defined. The standard definition of a protocol (e.g., [KN97]) requires that, at any
given point during the execution of the protocol, an external observer is able to tell whose turn is
it to speak. In other words, given a partial transcript of the protocol, we should be able to tell who
sends the next bit, without looking at the inputs of the players. However, this is not the case in
the above protocol.

In order to tell who sends the next bit in the above protocol, we have to know the functions
g1, . . . , gm. For example, it could be the case that for some choices of g1, . . . , gm, Alice sends the
first bit, while for other choices Bob sends the first bit. The reason is that the question who sends
the first bit depends on the optimal protocol for KWf◦(g1,...,gm), which in turn depends on the choice
of g1, . . . , gm. However, the functions g1, . . . , gm are part of the inputs of the players, and are not
known to an external observer. Thus, the above protocol for f �MUX is not well-defined.

This subtle issue was studied in a more general context in the work of [HIMS18], and was
pointed out to us by Russel Impaglizazzo and Ivan Mihajlin.

2.2 Proving P 6⊆ NC1 using alternating protocols

As discussed above, the issue in proving P 6⊆ NC1 from Conjecture 2.3 stems from the fact that
optimal protocols for KWf◦(g1,...,gm) may have different speaking orders, depending on the choice of
g1, . . . , gm. Avishay Tal observed that this issue can be bypassed if we restrict ourselves to protocols
with a fixed order of speaking. For simplicity, we can restrict ourselves to alternating protocols.
The foregoing argument now goes through without additional difficulty. Below we provide the
formal details. We start by defining an “alternating analogue” of depth complexity.

Definition 2.11. We say that a circuit is alternating if all its gates in the odd layers are OR gates,
and all its gates in the even layers are even. Here, we define the output gate to be the first layer,
the gates that feed into the output gate to be the second layer, etc. Given a boolean function
h : {0, 1}k → {0, 1}, we define its alternating depth complexity DALT(h) to be the minimal depth
of an alternating circuit with fan-in 2 that computes h.
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It is easy to see that every circuit can be turned into an alternating circuit by at most doubling
its depth complexity, so for every h : {0, 1}k → {0, 1} it holds that

D(h) ≤ DALT(h) ≤ 2 · D(h). (3)

It is also not hard to verify that the Karchmer-Wigderson framework [KW90] implies that DALT(h) =
CALT(KWh) for every function h. We now have the following “alternating analogue” of Conjec-
ture 2.8 and Proposition 2.9.

Conjecture 2.12 (Weak version of the KRW conjecture). For every non-constant function f :
{0, 1}m → {0, 1} and n ∈ N there exist functions g1, . . . , gm : {0, 1}n → {0, 1} such that

DALT (f ◦ (g1, . . . , gm)) ≥ DALT(f) + ω(log n).

Proposition 2.13. If Conjecture 2.12 holds then P 6⊆ NC1.

The proof of the last proposition is similar to that of Proposition 2.9. By repeating exactly the
same argument, we get a function F : {0, 1}N → {0, 1} in P such that DALT(F ) = ω(logN). By
Equation (3), it follows that D(F ) = ω(logN), as required. We conclude with proving Theorem 2.6
using exactly the same argument as before, which now goes through.

Conjecture 2.5. For every non-constant function f : {0, 1}m → {0, 1} and n ∈ N, it holds that
CALT(f �MUXn) ≥ CALT(KWf ) + ω(log n).

Theorem 2.6. If Conjecture 2.5 holds then P 6⊆ NC1.

Proof. It suffices to prove that Conjecture 2.5 implies Conjecture 2.12. Suppose that Conjec-
ture 2.12 is false, that is, there exists a non-constant function f : {0, 1}m such that for all functions
g1, . . . , gm it holds that

DALT (f ◦ (g1, . . . , gm)) ≤ DALT(f) +O(log n).

We show that f is a counter-example for Conjecture 2.3, that is, we prove that CALT(f �MUX) ≤
CALT(KWf ) +O(log n).

Consider the following protocol for f �MUX: given their inputs g1, . . . , gm, x1, . . . , xm, and
y1, . . . , ym, the players invoke the optimal alternating protocol for KWf◦(g1,...,gm) on x1, . . . , xm,
and y1, . . . , ym, thus obtaining a solution for f �MUX. Clearly, this protocol is an alternating
protocol, since all the optimal protocols it invokes are alternating. In particular, this protocol is
well-defined, since the speaking order of the players does not depend on the choice of g1, . . . , gm.
The complexity of this protocol is the maximal complexity of an optimal alternating protocol for
KWf◦(g1,...,gm), and by our assumption this complexity is at most

CALT(KWf◦(g1,...,gm)) = DALT (f ◦ (g1, . . . , gm))

≤ DALT(f) +O(log n)

≤ CALT(f) +O(log n).

It follows that CALT(f �MUX) = CALT(KWf ) +O(log n), as required. �
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2.3 Proof of Proposition 2.9

In this section, we prove that Conjecture 2.8, restated next, implies that P 6⊆ NC1.

Conjecture 2.8. For every non-constant function f : {0, 1}m → {0, 1} and n ∈ N there exist
functions g1, . . . , gm : {0, 1}n → {0, 1} such that

D (f ◦ (g1, . . . , gm)) ≥ D(f) + ω(log n).

Suppose that Conjecture 2.8 holds. Then, there exists a function α : N→ N such that α(n) =
ω(log n) such that for every non-constant function f : {0, 1}m → {0, 1} and n ∈ N there exist
functions g1, . . . , gm : {0, 1}n → {0, 1} satisfying

D (f ◦ (g1, . . . , gm)) ≥ D(f) + α(n).

We prove that this assumption implies super-logarithmic lower bounds on the depth complexity of
the “iterated multiplexor function” of [EIRS01] (a.k.a. the “tree-evaluation function”). We start
by providing the definition of this function.

Definition 2.14. Let d, n ∈ N, and let Tn,d be the perfect n-ary tree of height d. The iterated
multiplexor function with d levels, denoted IMUXn,d, takes as input a labeling of the nodes of Tn,d,
such that every leaf ` is labeled with a bit x` ∈ {0, 1}, and every internal node v is labeled with
a function hv : {0, 1}n → {0, 1}. Given such a labeling, we assign to every node a binary value
in Tn,d recursively: the value of leaf ` is just its label x`, and the value of an internal node v is the
output of hv when invoked on the n values of v’s children. The output of IMUXh,d is the value of
the root of Tn,d.

It is not hard to see that the input of IMUXn,d is of length N
def
= nd + nd−1

n−1 · 2
n = Θ(nd−1 · 2n).

Below, we will prove that D(IMUXn,d) ≥ (d− 1) · α(n). This will imply the desired lower bound,
since by setting d− 1 = n

logn , we will obtain that the input length of IMUXn,d is N = Θ(22n) and
that

D(IMUXn,d) ≥ n

log n
· α(n) = ω(n) = ω(logN).

Hence, for this setting of d we will get that IMUXn,d is a function in P with super-logarithmic depth
complexity, thus establishing that P 6⊆ NC1. It remains to prove that D(IMUXn,d) ≥ (d−1)·α(n).
In fact, we show the following stronger result, which will conclude the proof.

Proposition 2.15. For every n, d ∈ N, there exists a labeling of the internal nodes of Tn,d such
that even if we hard-wire this labeling, the depth complexity of IMUXn,d is at least (d− 1) · α(n).

Proof. Fix n ∈ N. We prove the proposition by induction on d. For the base case of d = 1 there
is nothing to prove. Suppose that the proposition holds for some d ≥ 1, that is, that there exists a
labeling Ld of the internal nodes of Tn,d as in the proposition. We prove that the proposition holds
for d+ 1 by constructing an appropriate labeling Ld+1 for Tn,d+1.

Let Fd denote the function obtained from IMUXn,d by hard-wiring the labeling Ld, so D(Fd) ≥
(d − 1) · α(n). Observe that the input length of F is m

def
= nd (since this is the number of leaves

of Tn,d). By Conjecture 2.8, there exists functions g1, . . . , gm : {0, 1}n → {0, 1} such that

D (Fd ◦ (g1, . . . , gm)) ≥ D(Fd) + α(n) ≥ d · α(n).

Next, we construct the desired labeling Ld+1 of the internal nodes of Tn,d+1 as follows: the internal
nodes of depth at most d − 1 are labeled as in Ld, and the m = nd modes of depth d are labeled
with the functions g1, . . . , gm. Let Fd+1 be the function obtained from IMUXn,d by hard-wiring
the labeling Ld+1. Now, observe that the function Fd+1 is exactly the function Fd ◦ (g1, . . . , gm),
and therefore D(Fd+1) ≥ d · α(n), as required. �
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3 Simpler lower bound for MUX

Motivation. As discussed in the introduction, [EIRS01] proved a lower bound of Ω(n) on the
communication complexity of MUXn. While it is easy to prove such a lower bound using a counting
argument, the importance of the proof of [EIRS01] is that it was based on an adversary argument.
They hoped that such an argument would combine better with other arguments in the literature
on the KRW conjecture. In this section, we provide a simpler version of their proof. Our proof also
has an added benefit, to be discussed next.

Recall that an adversary argument works by taking a protocol Π that is “too efficient”, and
constructing a transcript of Π that makes an error. Usually, such a transcript is constructed in
iterations, where in each iteration the adversary chooses the next message to be transmitted. In
many proofs of this kind, the adversary simply chooses the message that reveals the smallest amount
of information (i.e., the one which is most likely to be transmitted, under some suitably chosen
distribution). On the other hand, the adversary of [EIRS01] chooses the next message using a rather
sophisticated strategy. This means that the adversary does not necessarily choose the message that
reveals the smallest amount of information, and in fact may choose a message that leaks a large
amount of information.

This property of the adversary of [EIRS01] makes it difficult to combine with other lower
bounds in the literature on the KRW conjecture. In particular, several of those lower bounds rely
on constructing adversaries that only reveal a small amount on information, and this property
cannot be guaranteed for the adversary of [EIRS01]. A nice feature of our proof is that we give a
more “traditional” adversary, which always chooses the message that reveals the smallest amount
of information. We thus hope that our proof could be used in combination with the previous works
to prove a lower bound on f �MUX.

The adversary. We prove that C(MUXn) ≥ n−1
7 . Assume for the sake of contradiction there

exists a protocol Π that solves MUXn by transmitting less than (n− 1)/7 bits. We design an ad-
versary that constructs an erroneous transcript of Π. Our adversary, like the adversary of [EIRS01],
constructs the transcript bit-by-bit, while preserving a certain invariant, to be discussed next.

Let us denote by π the partial transcript that was constructed so far. Given a string v ∈ {0, 1}n
and a function f : {0, 1}n → {0, 1}, we say the pair (v, f) is consistent if it satisfies the following
conditions:

• If f(v) = 1, then the pair (v, f) can be given as input to Alice (i.e., the transcript π is
consistent with Alice having the input (v, f)).

• If f(v) = 0, then the pair (v, f) can be given as input to Bob.

Let us denote the length of π by c. The invariant we preserve is that there exist a set V ⊆ {0, 1}n
of size at least 2n−7·c and a set F of functions from {0, 1}n to {0, 1} that satisfy the following
properties:

1. All the pairs in V × F are consistent.

2. The functions in F , when restricted to V , consist of all functions from V to {0, 1}.

It is obvious that when the transcript π is empty, the invariant holds: we can choose V = {0, 1}n
and F to be the set of all functions. The crux of the argument of [EIRS01] is to show that as long
as the protocol has not stopped, the transcript π can be extended by one bit while preserving the
above invariant.
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Let us first explain why this is sufficient in order to prove the lower bound. Given the protocol Π,
the adversary will construct a transcript π by starting from the empty transcript and extending it
bit-by-bit until the protocol halts. Let πfull be the full transcript that is obtained when the protocol
halts, and let i ∈ [n] be the output of πfull, so the input strings of Alice and Bob should differ on
the coordinate i. By assumption, the length of π is at most (n − 1)/7 bits, and by the invariant,
there exist sets V, F that satisfy the above properties such that |V | ≥ 4. In particular, the set V
contains two distinct strings x, y such that xi = yi. Moreover, by the invariant, the set F contains
a function f : {0, 1}n → {0, 1} such that f(x) = 1 and f(y) = 0, and such that the pairs (x, f) and
(y, f) are consistent. This means that we can give (x, f) and (y, f) as inputs to Alice and Bob.
However, this means that πfull is incorrect, since it claims that xi 6= yi.

In the rest of this section, we explain how a transcript π can be extended by one bit while
preserving the invariant. Fix a transcript π, and let V, F be the corresponding sets that exist by
the invariant. Without loss of generality, assume that it is Alice’s turn to speak at π. We also
assume without loss of generality that the every function f ∈ F has a different restriction to V , so
|F | = 2|V | (if there are multiple functions in F with the same restriction to V , we keep only one of
them). We show that there exists a message bit σ ∈ {0, 1} for Alice and sets V ′ ⊆ V, F ′ ⊆ F such
that the transcript π ◦ σ satisfies the invariant with V ′, F ′.

Extending the transcript. The main difficulty in constructing σ, V ′, F ′ is to guarantee the first
property of the invariant (i.e., that all the pairs in V ′ × F ′ are consistent) while also ensuring that
V ′ and F ′ are sufficiently large. Once this is achieved, the second property of the invariant is
obtained by a direct application of the Sauer-Shelah lemma (stated below). As discussed above,
the adversary of [EIRS01] obtained the first property of the invariant by a careful choice of the
bit σ.

Our adversary, on the other hand simply chooses σ to be “the most likely bit”: Let σ be the bit
that Alice transmits on most pairs (v, f) ∈ V × F such that f(v) = 1 (breaking ties arbitrarily).
Let W ⊆ V × F be the set of pairs (v, f) that are consistent with σ in the following sense: either
f(v) = 1 and Alice transmits σ when given input (v, f), or f(v) = 0. Observe that |W | ≥ 3

4 ·|V × F |
(since exactly half of the pairs (v, f) ∈ V × F satisfy f(v) = 1).

Next, we show that W can be modified to preserve the first property of the invariant. Clearly,
all the inputs in W are consistent, but in order to satisfy the invariant, W needs to be a transformed
into combinatorial rectangle. To this end, we show that there exist sufficiently large sets V0 ⊆ V
and F0 ⊆ F such that V0×F0 ⊆W . Our main observation is that this can be obtained by a direct
application of the Kövári-Sós-Turán theorem, stated below.

Theorem 3.1 (The Kövári-Sós-Turán theorem [KST54]). Let G be a bipartite graph with m vertices
on the left and n vertices on the right, such that the average degree on the left side is at least d.
Then, for every t ∈ N, the graph G contains a bi-clique with t vertices on the right and(

d− t
n− t

)t

·m

vertices on the left.

Since the Kövári-Sós-Turán theorem is central to our argument, we provide its proof in the
appendix. Now, consider the graph bipartite graph G whose left and right sets are F and V
respectively, and whose edges are determined by W . The average left degree of G is

|W |
|F |
≥

3
4 · |V × F |
|F |

=
3

4
· |V | .
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Thus, by Kövári-Sós-Turán theorem, the graph G contains a bi-clique with t
def
= 1

8 · |V | vertices on
the right and at least (

3
4 · |V | − t
|V | − t

)t

· |F | ≥
(

5

7

)t

· |F |

vertices on the right. In other words, there exist sets V0 ⊆ V and F0 ⊆ F such that V0 × F0 ⊆W ,

|V0| = 1
8 · |V |, and |F0| ≥

(
5
7

)|V0| · |F |. Thus, the set V0 × F0 satisfies the first property of the
invariant. In order to obtain the second property of the invariant, we use the Sauer-Shelah lemma,
stated next.

Theorem 3.2 (The Sauer-Shelah lemma [Sau72, She72]). Let S ⊆ {0, 1}N be such that |S| ≥∑d
j=0

(
N
j

)
. Then, there exists a set K ⊆ [N ] of d coordinates such that the projection of S to K

consists of all strings in {0, 1}K .

Let us denote by F0|V0 the set of functions obtained by projecting the the functions in F0 to V0.
Observe that

|F0|V0 | ≥
|F0|

2|V |−|V0|
≥
(
5
7

)|V0| · |F |
2|V |−|V0|

=

(
5

7

)|V0|
· 2|V |

2|V |−|V0|

=

(
5

7

)|V0|
· 2|V0| ≥ 2

1
2
·|V0|

By applying the Sauer-Shelah lemma4 to F0|V0 , and noting that 2
1
2
N ≥

∑N
10
j=0

(
N
j

)
, we obtain a set

V ′ ⊆ V0 of size at least 1
10 · |V0| such that F0|V ′ consists of all functions from V ′ to {0, 1}. Finally,

we set F ′ = F0 and observe that V ′ and F ′ satisfy the desired invariant since∣∣V ′∣∣ ≥ 1

10
· |V0| ≥

1

80
· |V | ≥ 2−7 · |V | ≥ 2n−7(c+1).

This concludes the proof.
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ideas and in particular for his permission to include his observation in this paper (see Section 2.2).
The aforementioned discussions took place at the Simons Institute for the Theory of Computing,
as part of the program on Lower Bounds in Computational Complexity.

A Proof of the Kövári-Sós-Turán theorem

In this appendix we prove the Kövári-Sós-Turán theorem, restated next.

Theorem 3.1. Let G be a bipartite graph with m vertices on the left and n vertices on the right,
such that the average degree on the left side is at least d. Then, for every t ∈ N, the graph G
contains a bi-clique with t vertices on the right and(

d− t
n− t

)t

·m

vertices on the left.

4Here, we view F0|V0 as a subset of {0, 1}|V0|.
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Proof. We may assume without loss of generality that t < d, since otherwise there is nothing to
prove. We prove the theorem by induction on t. We assume that the theorem holds for t, and prove
it for t+ 1.

Let G = (L ∪ R,E) be a bipartite graph, let m
def
= |L|, and let n

def
= |R|. Assume that the

average left degree (i.e., the average degree of the vertices in L) at least d . In other words, the
number of edges is at least d ·m, and therefore the average right degree is at least d

n ·m. Hence,

there exists a vertex v on the right which has at least d
n ·m neighbors.

Let us denote by L′ the set of neighbors of v, and let R′
def
= R−{v}. Now, let G′ be the induced

sub-graph on L′∪R′. Observe that the average left degree of G′ is at least d− 1, since every vertex
in L′ has all the neighbors it had in G except v. Thus, by the induction assumption, G′ contains a
bi-clique with t vertices on the right and(

d− 1− t
n− 1− t

)t

·
∣∣L′∣∣ ≥ (d− 1− t

n− 1− t

)t

· d
n
·m ≥

(
d− (t+ 1)

n− (t+ 1)

)t+1

·m.

vertices on the left. We now obtain the desired bi-clique in G by adding v to the bi-clique of G′. �
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