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1 Introduction

In this paper, we study sets C ⊂ Σn of strings of length n, with the combinatorial property that
not too many elements of C are contained in any small enough Hamming ball. In the language
of coding theory, such a C is a list-decodable code. List-decoding is an important primitive in
coding theory, with applications ranging from communication to complexity theory. However, as
discussed below, most constructions of capacity-achieving (aka, optimal) list-decodable codes are
fundamentally algebraic, despite a rich history of combinatorial—and in particular, graph-based—
constructions of error correcting codes.

We show that a random ensemble of Low-Density Parity-Check (LDPC) codes achieves list-
decoding capacity with high probability. LDPC codes are the prototypical example of graph-based
codes, and are popular both in theory and in practice because of their extremely efficient algorithms.
One of the motivations for this work is that we do not currently know any linear-time algorithms
for list-decoding any code up to capacity; since graph-based codes offer linear-time algorithms
for a variety of other coding-theoretic tasks, our result opens up the possibility of using these
constructions for linear-time list-decoding algorithms.

List Decoding. Formally, a code C ⊂ Σn is (α,L)-list-decodable if for all z ∈ Σn,

| {c ∈ C : dist(c, z) ≤ α} | ≤ L.

Above, dist(c, z) is relative Hamming distance,

dist(c, z) =
1

n
| {i : ci 6= zi} |.

Elements c ∈ C are called codewords, Σ is called the alphabet, and n is called the length of the code.
The fundamental trade-off in list-decoding is between the parameter α and the size |C| of the

code, given that the list size L is reasonably small. We would like both α and |C| to be large, but
these requirements are at odds: the larger the code C is, the closer together the codewords have
to be, which means that α cannot be as large before some Hamming ball of radius α has many
codewords in it. The size of a code C is traditionally quantified by the rate R of C, which is defined
as

R =
log|Σ|(|C|)

n
.

The rate of C is a number between 0 and 1, and larger rates are better.
List decoding has been studied since the work of Elias and Wozencraft in the 1950’s [Eli57,

Woz58], and by now we have a good understanding of what is possible and what is not. The
classical list-decoding capacity theorem states that there exist codes over alphabets of size |Σ| = q
and of rate R ≥ 1− hq(α)− ε which are (α, 1/ε)-list-decodable, where

hq(x) := x logq(q − 1)− x logq(x)− (1− x) logq(1− x) (1)

is the q-ary entropy function. Conversely, any such code with rate R ≥ 1 − hq(α) + ε must have
exponential list sizes, in the sense that there is some z ∈ Σn so that | {c ∈ C : dist(c, z) ≤ α} | =
expε,α(n).1

1Here and throughout the paper, exp(n) denotes 2Θ(n), and subscripts indicate that we are suppressing the
dependence on those parameters.

1



A code of rate R ≥ 1− hq(α)− ε that is (α,L)-list decodable for L = Oε,α(1) is said to achieve
list-decoding capacity, and a major question in list-decoding is which codes have this property. By
now we have three classes of examples. First, it is not hard to see that completely random codes
achieve list-decoding capacity with high probability. Second, a long line of work (discussed more
below) has established that random linear codes do as well: we say that a code over the alphabet
Σ = Fq is linear if it is a linear subspace of Fnq ,2 and a random linear code is a random subspace.
Third, there are several explicit constructions of codes which achieve list-decoding capacity; as
discussed below, these constructions all rely importantly on algebraic techniques.

LDPC Codes. Graph-based codes, such as LDPC codes, are a class of codes which is notably
absent from the list of capacity-achieving codes above. Originally introduced by Gallager in the
1960’s [Gal62], codes defined from graphs have become a class of central importance in the past 30
years.

Here is one way to define a code using a graph. Suppose that G = (V,W,E) is a bipartite graph
with |V | = n and |W | = m for m ≤ n. Then G naturally defines a linear code C ⊂ Fnq of rate at
least 1−m/n as follows:

C =

c ∈ Fnq : ∀j ∈W,
∑
i∈Γ(j)

αi,jci = 0

 ,

where Γ(i) denotes the neighbors of i in G and αi,j ∈ Fq are fixed coefficients. (See Figure 1). That
is, each vertex in W serves as a parity check, and the code is defined as all possible labelings of
vertices in V which obey all of the parity checks. When the right-degree of G is small, the resulting
code is called a Low-Density Parity Check (LDPC) code.

LDPC codes and related constructions (in particular, Tanner codes [Tan81] and expander
codes [SS94, Zém01]) are notable for their efficient algorithms for unique decoding; in fact, the
only linear-time encoding/decoding algorithms we have for unique decoding (that is, list decoding
with L = 1) are based on such codes.

Motivating question and our results. We currently do not know of any purely combinatorial
constructions of capacity-achieving list-decodable codes. We also currently do not know of any
linear-time algorithms to list-decode any code to capacity. Since graph-based codes and LDPC
codes in particular are notable for their linear-time algorithms, this state of affairs motivates the
following question:

Question 1.1. Are there (families) of LDPC codes that achieve list-decoding capacity?

In this work we show that the answer to Question 1.1 is “yes.” In fact, we show a stronger
result: random LDPC codes (the same ensemble studied by Gallager in his seminal work nearly
60 years ago [Gal62]), satisfy with high probability any sufficiently nice (“local”) property that
random linear codes satisfy with high probability. It turns out that list-decodability is such a
property, and this answers Question 1.1. Along the way, we develop a characterization of sets of
codewords contained in a random linear code, which may be of independent interest. We describe
our main results in more detail below.

2Here and throughout the paper, Fq denotes the finite field with q elements.
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|W | = (1−R)n

Degree s

Each “layer” is a random (1, s)-regular
graph with n right vertices and n/s left
vertices. There are t = (1−R)s layers.

Each vertex imposes a parity check on its
neighbors:

∑
i∈Γ(j) αi,jci = 0. We choose

the coefficients αi,j ∈ F∗q uniformly at
random.

|V | = n

Figure 1: A random (t, s)-regular bipartite graph that gives rise to a random s-LDPC code of rate R. Here,
we set t := s(1−R).

1.1 Main Results

Random LDPC codes achieve list-decoding capacity. We study the so-called “Gallager
ensemble” of binary LDPC codes introduced by Gallager in the 1960’s [Gal62], as well as its
natural generalization to larger alphabets.3

Fix a rate R ∈ (0, 1) and a sparsity parameter s, and let t = (1 − R)s. We assume that
t is an integer. To define the ensemble of random s-LDPC codes of rate R, we need to specify a
distribution on the underlying bipartite graphs and a distribution on the coefficients αi,j . We define
the distribution on graphs as follows. Let Gi = (V,Wi, Ei) for i = 1, . . . , t be independent uniformly
random (1, s)-regular bipartite graphs with a shared left vertex set V of size n and disjoint right
vertex sets Wi, each of size n/s. Then let G = (V,W,E) be the union of these graphs, where
W =

⋃t
i=1Wi. Finally, we choose the coefficients αi,j for (i, j) ∈ E to be uniformly random in F∗q .

The ensemble of s-random LDPC codes of rate R is illustrated in Figure 1.
Our main theorem about the list-decodability of random LDPC codes is a reduction from the

list-decodability of random linear codes:

Theorem 1.2. For any R ∈ (0, 1), ε > 0, prime power q, and L ≥ 1 there exists s0 ≥ 1 such that
the following holds for any odd s ≥ s0. Suppose that a random linear code of rate R over Fq is
(α,L)-list decodable with high probability. Then a random s-LDPC code of rate R − ε over Fq is
(α,L)-list decodable with high probability.

Remark 1.3 (The parity of s). All of our results hold for even s as well as odd s. However, the
proof is slightly simpler for odd s, so for clarity we state and prove the theorem in this case.

Instantiating this with a result of [GHK11] on list decoding of random linear codes, we get the
following corollary.

3For binary codes, our definition coincides with Gallager’s. For larger alphabets our definition is somewhat
different: Gallager’s ensemble chooses the coefficients αi,j to be all ones, while we choose them to be random elements
of F∗q .
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Corollary 1.4. For any prime power q, α ∈ (0, 1 − 1/q), and ε ∈ (0, 1 − hq(α)) there exists
L = Oα(1/ε) and s ≥ 1 so that a random s-LDPC code of rate 1− hq(α)− ε over Fq is (α,L)-list-
decodable with high probability.

Remark 1.5 (Other parameter regimes). We state Corollary 1.4 as one example of what can be
obtained by combining Theorem 1.2 with one result on random linear codes. The result of [GHK11]
degrades as α→ 1−1/q, and so Corollary 1.4 degrades as well. However, there has been a great deal
of work on the list-decodability of random linear codes as α→ 1− 1/q (summarized in Section 1.2
below), and Theorem 1.2 implies that these results carry over to random LDPC codes as well.

Random LDPC codes achieve any local property that random linear codes achieve.
Theorem 1.2 follows as a corollary of a much more general theorem. We show that any “local”
property which is satisfied by random linear codes with high probability is also satisfied by random
LDPC codes with high probability.

Informally, a local property is a property which can be defined by the exclusion of certain bad
sets. For example, a code C is (α,L)-list-decodable if it does not contain any sets B ⊂ Σn of size
larger than L so that B is contained in a Hamming ball of radius α. Along with list-decodability,
local properties include many related notions like list recovery, average-radius list decoding, and
erasure list decoding. A long line of work (discussed more in Section 1.2) has established that these
properties hold for random linear codes with high probability, so our reduction immediately implies
that they hold with high probability for LDPC codes as well.

Formally, we define a local property as follows. Let π : [n]→ [n] be a permutation on [n]. For
a string x ∈ Σn, we let π(x) ∈ Σn denote the string obtained by permuting the coordinates of x
according to π, and for a subset B ⊆ Σn, we let π(B) := {π(x) | x ∈ B}. We say that a collection
B of subsets of Σn is permutation invariant if for any B ∈ B we also have that π(B) ∈ B.

Definition 1.6 (Local property). Let P = {Pn}n∈N, where each Pn is a property of length n codes
over Σ. We say that P is a b-local property if for any n ∈ N there exists a permutation-invariant
collection Bn of subsets of Σn, where |B| ≤ b for all B ∈ Bn, such that

C ⊆ Σn satisfies Pn ⇐⇒ B * C for all B ∈ Bn.

We say that a random ensemble of codes C = {Cn}n∈N satisfies P with high probability if
limn→∞ Pr[Cn satisfies Pn] = 1.

A random linear code of rate R over Fq is defined4 as the kernel of a uniformly random matrix

H ∈ F(1−R)n×n
q . Notice that such a code has rate R with high probability.

Our main theorem is that any local property which is satisfied with high probability by a random
linear code is also satisfied with high probability by a random LDPC code:

Theorem 1.7 (Main). For any R ∈ (0, 1), ε > 0, prime power q, and b ≥ 1 there exists s0 ≥ 1
such that the following holds for any odd s ≥ s0. Let P be a b-local property, and suppose that a
random linear code of rate R over Fq satisfies P with high probability. Then a random s-LDPC
code of rate R− ε over Fq satisfies P with high probability.

4There are a few natural ways to define a random linear code: for example we could also define it as a uniformly
random subspace of dimension Rn, or we could define it as the image of a uniformly random n × Rn matrix, or we
could define it as we do here, as the kernel of a uniformly random (1− R)n× n matrix. It can be shown that these
distributions are quite close to each other, and in particular, any property that holds for one with high probability
holds for the others.
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Remark 1.8 (The dependence on ε,R, q, b). The parameter s0 depends on ε,R, q and b. An
inspection of the proof (c.f. Remarks 4.3 and 5.3) shows that we may take

s0 = O

(
b log(q) + log(q/ε)

h−1
q (1−R− ε)

)
.

Theorem 1.2 follows immediately from Theorem 1.7. Indeed, (α,L)-list-decodability is a local
property: for any n ∈ N, let Bn be the collection of all sets of L+ 1 vectors in Fnq contained in some
Hamming ball of radius α.

The existence of a reduction like the one in Theorem 1.7 is surprising, at least to the authors.
There is a lot more structure in a random LDPC code that in a random linear code. For example,
we know of linear-time unique decoding algorithms for random LDPC codes,5 but it is unlikely
that any efficient unique decoding algorithm exists for random linear codes.6 Thus it is unexpected
that this much more structured ensemble would share many properties—in a black-box way—with
random linear codes.

We give a high-level overview of the proof of Theorem 1.7 in Section 2 below after a discussion
of related work in Section 1.2.

1.2 Related Work

List-decodability of random ensembles of codes. As mentioned above, it is not hard to see
that a completely random code C ⊂ Σn achieves list-decoding capacity. There has also been work
studying more structured random ensembles of codes, notably random linear codes. Zyablov and
Pinsker [ZP81] showed that random linear codes of rate 1−hq(α)− ε are (α,L)-list-decodable with
high probability, where L is independent of n but depends exponentially on 1/ε. Two decades later,
[GHSZ02] showed that there exist binary linear codes with list-size O(1/ε), and their techniques
were recently extended to hold with high probability in [LW18]. In the meantime, [GHK11] showed
that random linear codes over any alphabet achieve capacity with L = O(1/ε) when α is bounded
away from 1 − 1/q; [CGV13, Woo13, RW14, RW18] extended these results to get list sizes nearly
as good even for large α, although the problem is still open in some parameter regimes.

Several variants of list-decoding have been studied for random linear codes, including list-
recovery [RW18], average-radius list-decoding [Woo13, RW14, RW18], and list-recovery from era-
sures [Gur03].7 All of these properties are local, and so our main theorem implies that LDPC codes
satisfy them with high probability.

List-decodability of explicit codes. Obtaining explicit constructions of codes which achieve
list-decoding capacity was a major open problem until it was solved about a decade ago. The first

5This follows, for example, from [SS94] because the underlying random graph is with high probability a good
expander.

6Unique decoding of random linear codes is related to the problem of Learning Noisy Parities (LNP) and Learning
With Errors (LWE), which are thought to be hard.

7 List-recovery is a generalization of list-decoding where the input is a list of sets Z1, . . . , Zn of size at most `
(instead of a received word z ∈ Σn, which can be seen as the ` = 1 case), and goal is to find all of the codewords c ∈ C
so that ci ∈ Zi for at least a 1−α fraction of the i ∈ [n]. Average-radius list-decoding is strengthening of list-decoding
where instead of requiring that no set of L+ 1 codewords has all codewords close to some z, we require that no set
of L+ 1 codewords is on-average close to z. List-decoding from erasures is a weaker notion than list-decoding, where
z ∈ (Σ ∪ {⊥})n has some erased symbols, and the goal is to recover all c ∈ C which agree with z on all the observed
places.
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explicit codes to provably achieve capacity were the Folded Reed-Solomon Codes of Guruswami
and Rudra [GR08]. These codes are variants on the classic Reed-Solomon codes and are based on
polynomials over finite fields. Since then, there have been several constructions of such codes, also
based on algebraic techniques, including Univariate Multiplicity Codes [GW13, Kop15, KRSW18],
variants of Algebraic-Geometry Codes [GX12, GX13], and manipulations of these codes [DL12,
GK16, HRW17, KRRZ+19]. However, the state-of-the-art for explicit constructions still requires
quite large (but constant) alphabet and list sizes. These codes can be efficiently list-decoded in
polynomial time; the fastest algorithm is that of [HRW17, KRRZ+19], which runs in nearly-linear
time O(n1+o(1)).

While graph-based techniques have been used to modify the underlying algebraic constructions
(for example the expander-based distance-amplification technique of [AEL95] is used in [HRW17,
KRRZ+19] to obtain near-linear-time list-decoding), to the best of our knowledge there are no
results establishing list-decodability up to capacity for purely graph-based codes such as LDPC
codes or expander codes.8

LDPC Codes Achieve Capacity on the Binary Symmetric Channel. LDPC Codes have
been studied extensively in the context of unique decoding, especially in a model of random errors.
Informally, a code is said to achieve capacity on the Binary Symmetric Channel (BSC) if there is some
algorithm which can, with high probability, uniquely decode a code of rate R = 1− h2(α)− ε from
an α-fraction of random errors. It is known that Gallager’s LDPC codes nearly achieve capacity on
the BSC as n gets large, under maximum-likelihood decoding [Gal62, Gur06], and recently it was
shown that certain LDPC codes achieve capacity for smaller block lengths under efficient decoding
algorithms as well [KRU13]. Achieving capacity on the BSC is related to achieving list-decoding
capacity (in particular, the capacities are the same, R = 1 − hq(α)). However, there is no formal
connection along these lines, and to the best of our knowledge these results about the BSC do not
imply anything about the list-decodability of LDPC codes.

1.3 Discussion and open questions

In this work, we answer Question 1.1 with a very strong “yes.” There are LDPC codes that achieve
list-decoding capacity, and moreover there are many of them, and moreover these codes also likely
satisfy any local property—that is, any property which can be defined by ruling out small bad sets
of codewords—which is likely satisfied by a random linear code. However, we feel that our results
are just the tip of the iceberg. They raise several interesting questions:

1. What other properties are local? We have shown that random LDPC codes satisfy with
high probability any local property that random linear codes satisfy with high probability.
There are several natural examples of local properties, including distance, list-decoding and
list-recovery. What other examples are there?

2. Derandomization? Our results hold for a random ensemble of LDPC codes. It is natural
to ask whether (or to what extent) this construction can be derandomized. In particular, it
does not seem as though the underlying graph being an expander would be sufficient.

8We note that [HW18] give capacity-achieving graph-based codes for zero-error list-recovery (with erasures), where
the input is lists Z1, . . . , Zn so that most lists have small size, and the goal is to return all codewords c ∈ C that
satisfy ci ∈ Zi for all i. It does not seem easy to adapt these techniques for general list-recovery and hence for
list-decoding.
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3. Algorithms? Our results are combinatorial, but one of our main motivations is algorithmic.
At the moment we do not know of any truly linear-time list-decoding algorithms for any
capacity-achieving list-decodable codes. Since essentially all known linear-time algorithms in
coding theory arise from graph-based codes, such codes are a natural candidate for linear-time
list-decoding. Now that we know that random LDPC codes achieve list-decoding capacity
combinatorially, can we list-decode them efficiently?

1.4 Organization

In Section 2, we give a high-level overview of the proof of our main theorem, Theorem 1.7. This
proof relies on three building blocks:

• First, Theorem 2.2 characterizes the sorts of sets B ⊂ Σn that are contained in a random
linear code. We prove this theorem in Section 3. As discussed in Section 2.2, this result is
reminiscent of results about local properties of random graphs.

• Second, Lemma 2.5 shows that sets B that meet the characterization above are contained
in an s-random LDPC code with roughly the same probability that they are contained in a
random linear code, provided that the s-random LDPC code has good distance: the distance
of a code is the minimum distance between any two codewords. We prove this lemma in
Section 4 using Fourier analysis.

• Third, Theorem 2.6 shows that s-random LDPC codes do indeed have good distance. This
was already shown by Gallager in the binary case; we give an alternative proof of this fact
that also extends to large alphabets. We prove Theorem 2.6 in Section 5 using techniques
from exponential families.

2 High-level idea: proof of Theorem 1.7

In this section we prove our main theorem (Theorem 1.7) using the building blocks outlined in
Section 1.4. We will establish these building blocks in later sections. The purpose of this section is
to give a high-level idea of the structure of the proof, deferring the technical parts to later sections.

2.1 Notation and definitions

Because we are studying local properties, we need some notation around sets B ⊆ Fnq . For such a

set B of size `, it will be convienient to view B as a matrix M ∈ Fn×`q with the elements of B as
the columns. (The ordering of the columns will not matter). We say that M is contained in a code
C ⊆ Fnq (written “M ⊂ C”) if all of the columns of M belong to C.

The notion of permutation-invariant properties leads us to think about permutations of the
rows of such a matrix M ∈ Fn×`q . Motivated by this, we define the row distribution of M to be τM :

that is, for any v ∈ F`q we let

τM (v) :=
number of appearances of v as a row in M

n
.
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Let Dn,` denote the collection of possible row distributions of matrices in Fn×`q , i.e., distributions

τ over F`q where τ(v) · n ∈ N for any v ∈ Supp(τ).9 The number of possible row distributions of

matrices in Fn×`q is just the number of ways to partition n things into at most q` groups, so

|Dn,`| ≤
(
n+ q` − 1

q` − 1

)
. (2)

For a distribution τ ∈ Dn,`, let Mn,τ denote the collection of matrices M ∈ Fn×`q with row distri-
bution τ .

Finally, let H(τ) and Hq(τ) denote the entropy and base-q-entropy of a random variable dis-
tributed according to τ :

H(τ) := −
∑

x∈Supp(τ)

τ(x) log(τ(x)) and Hq(τ) :=
H(τ)

log q
.

Let
d(τ) := dim(span(Supp(τ))).

We next define an implicitly rare distribution, which will be key in our characterization of what
row distributions appear in a random linear code (Theorem 2.2 below).

Definition 2.1 (Implicitly rare distribution). We say that a distribution τ over F`q is γ-rare if

Hq(τ) < γ · d(τ).

We say that τ is γ-implicitly rare if there exists a matrix A ∈ Fm×`q such that the distribution Av
for v ∼ τ is γ-rare.

Example 1 (Implicitly rare distribution). Consider the distribution τ on F`q which is uniform on
vectors whose first coordinate is in the set S ⊂ Fq for some set S 6= {0} of size |S| < q. Then τ is
γ-implicitly rare for γ > logq(|S|). Indeed, let A = [1 0 . . . 0] ∈ F1×n

q be the matrix which projects
onto the first coordinate. and consider the distribution τ ′ on Fq given by A · v, v ∼ τ . Then τ ′ is a
distribution on F1

q with Hq(τ
′) = logq(|S|) and d(τ ′) = 1.

We will work with the parity-check matrix view of a random s-LDPC code C. Let H ∈ F(1−R)n×n
q

be the adjacency matrix of the graph G in Figure 1 where the nonzero entries are given by the
coefficients αi,j of the parity checks. Then we can define a random s-LDPC code C as

C =
{
x ∈ Fnq : H · x = 0

}
.

We introduce some notation to talk about the structure of H, which we will use throughout the
paper. This is illustrated in Figure 2.

Let F ∈ {0, 1}(n/s)×n be the matrix F = (F1 | F2 | . . . | Fn/s), where each Fi ∈ {0, 1}(n/s)×s
has all-ones i-th row, and the rest of the rows are all-zeros. Let Π ∈ {0, 1}n×n be a random
permutation matrix, and let D ∈ Fn×nq be a diagonal matrix with diagonal entries that are uniform
in F∗q . Let H1, . . . ,H(1−R)·s be sampled independently according to the distribution F ·Π ·D. Then

let H ∈ F(1−R)n×n
q be the matrix obtained by stacking H1, . . . ,H(1−R)·s on top of each other (see

Figure 2). Then H is the parity-check matrix for a random s-LDPC code of rate R. We will refer
to each Hi as a “layer” of H.

9Notice that Dn,` depends on q as well, but we suppress this dependence in the notation for readability.
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F =

111111
111111

111111
111111

111111

n
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s

H =

H1

H2

H(1−R)·s

...

n
s

(1−R)n

n

Figure 2: The matrices F and H. Each layer Hi of H is drawn independently according to the distribution
F · Π ·D, where Π ∈ {0, 1}n×n is a random permutation and D ∈ Fn×n

q is a diagonal matrix with diagonal
entries that are uniform in F∗

q .

2.2 Characterization of matrices contained in a random linear code

The first building block is Theorem 2.2, which provides a characterization of matrices that are
contained in a random linear code with high probability in terms of their row distributions. We
prove this theorem in Section 3.

Theorem 2.2 (Characterization of matrices contained in random linear code). Suppose that τ ∈
Dn,` is a (1 − R − ε)-implicitly rare distribution. Let C ⊆ Fnq be a random linear code of rate R.
Then

Pr [∃M ∈Mn,τ ,M ⊂ C] ≤ q−εn.

Conversely, suppose that τ ∈ Dn,` is not (1−R+ ε)-implicitly rare. Let C ⊆ Fnq be a random linear
code of rate R. Then

Pr [∃M ∈Mn,τ ,M ⊂ C] ≥ 1−
(
n+ q2` − 1

q2` − 1

)3

· q−εn.

Theorem 2.2 can be seen as an analog to known results for local properties of random graphs.
A local graph property is a property of a graph that is characterized by the graph containing, or
not containing, a certain constant-sized subgraph. This notion is comparable to a linear code
containing, or not containing, a constant number of codewords having a certain row distribution
when viewed as matrix columns. In the case of graphs, the property should be permutation-
invariant with regard to vertex labeling; in the linear code case, it should be permutation-invariant
with regard to coordinate labeling.

Intuitively, the probability that a certain graph appears as a subgraph of G(n, p) grows as p
approaches 1. It is well-known (see for example [Bol01, Sec. 4.2]) that for any constant-sized graph
H there is some threshold pH0 such that the expected number of appearances of H as a subgraph
of G(n, p) either tends to 0 or ∞ depending on whether p is smaller or larger than pH0 .

Similarly, in the linear code setting, the probability that some matrix with a certain row dis-
tribution is contained in a random linear code of rate R grows as R approaches 1. Moreover, it is
not hard to show that the expected number of appearances of a matrix M of row distribution τ

either tends to 0 or ∞ depending on whether R is smaller or larger than 1− Hq(τ)
d(τ) , or equivalently

on whether Hq(τ) is smaller or larger than (1 − R) · d(τ). This corresponds to our notion of rare
distribution.

9



Note that if H appears as a subgraph of G, then all subgraphs of H also appear as subgraphs
of G. Thus G(n, p) contains an H-subgraph with high probability only if any subgraph H ′ of H
is also contained in G(n, p) with high probability. It turns out that this condition is in fact both
necessary and sufficient, and G(n, p) contains an H-subgraph with probability tending either to 0
or 1 depending on whether p is smaller or larger than the minimum of pH

′
0 over all subgraphs H ′

of H.
In our setting, if a linear code C contains a matrix M , then it also contains any linear image of

M , which corresponds to our notion of implicitly rare distribution. Theorem 2.2 then shows that a
random linear code of rate R contains a matrix M with certain row distribution τ with probability

tending to either 0 or 1 depending on whether R is smaller or larger than the minimum of 1− Hq(τ ′)
d(τ ′)

over all linear images τ ′ of τ . Interestingly, Theorem 2.2 is proven using similar methods to those
used to prove the analogous facts about random graphs.

2.3 Matrices contained in a random s-LDPC code

The second building block shows that any implicitly rare distribution that also happens to be
δ-smooth (defined below) is unlikely to show up in a random LDPC code.

Definition 2.3 (Smooth distribution). We say that a distribution τ over F`q is δ-smooth if for any

u ∈ F`q \ {0}, Prv∼τ [〈u, v〉 6= 0] ≥ δ.

Remark 2.4 (Relationship to distance). In coding-theoretic terms, a matrix M is δ-smooth if and
only if the code

{
Mu : u ∈ F`q

}
has relative distance at least δ. Indeed, the relative weight of any

codeword Mu in this code is

1

n

∑
i∈[n]

1〈u,eTi M〉6=0 = Pr
v∼τ

[〈u, v〉 6= 0].

The following lemma bounds the probability that a matrix with smooth and implicitly rare row
distribution is contained in a random LDPC code with sufficiently large sparsity parameter. We
prove this lemma in Section 4.

Lemma 2.5 (Matrices contained in a random s-LDPC code). For any δ, ε > 0, prime power q,
and ` ≥ 1, there exists s0 ≥ 1 such that the following holds for any odd s ≥ s0, and sufficiently large
n. Suppose that τ ∈ Dn,` is a δ-smooth and (1−R− ε)-implicitly rare distribution. Let C ⊆ Fnq be
a random s-LDPC code. Then

Pr [∃M ∈Mn,τ ,M ⊂ C] ≤ q−εn/2.

If we ignore the requirement of smoothness, the conclusion of Lemma 2.5 for random LDPC
codes is the same as the conclusion of Theorem 2.2. In particular, the two together imply that any
smooth class Mn,τ which is unlikely to appear in a random linear code is also unlikely to appear
in a random LDPC code.

The proof of Lemma 2.5 proceeds by Fourier analysis. The basic idea is as follows: since C is a
random s-LDPC code, each parity-check corresponds (essentially) to an independent and uniformly
random set of s coordinates in [n].10 Thus, the probability that a matrix M ∈Mn,τ is in C can be

10This is not exactly true because the parity checks that belong to the same layer are not independent; however,
we show that this does not make a large difference to the argument.
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derived from the probability that s random vectors v1, . . . , vs ∼ τ sum to zero. This probability is
given by a convolution τ∗s(0) = τ ∗ τ ∗ · · · ∗ τ(0) of τ with itself s times. The convolution is in turn
controlled by s’th powers of the Fourier coefficients τ̂(w) of τ . As we will see, the condition that τ
be δ-smooth implies that the nonzero Fourier coefficients τ̂(w) are bounded away from 1, and this
means that if s is large enough, the contributions τ̂(w)s of the nonzero coefficients to τ∗s(0) will
become small. Then we can take a union bound over all matrices M ∈Mn,τ .

2.4 Distance of random s-LDPC codes

As noted above, the first two building blocks show that any δ-smooth classMn,τ behaves the same
for random linear matrices as it does for random LDPC matrices. The third and final building
block shows that we may restrict our attention to δ-smooth matrices.

As noted in Remark 2.4, the condition that M be δ-smooth is the same as the condition that
the code generated by M has relative distance at least δ. Thus, if C ⊂ Fnq has relative distance δ, it
only contains δ-smooth matrices. Fortunately, it is well-known that binary random s-LDPC codes
have good distance, and that in fact the distance approaches the Gilbert-Varshamov (GV) bound
with high probability.11 Theorem 2.6 generalizes this result to s-LDPC codes over any alphabet.
Below we recall that hq(x) (as in (1)) is the q-ary entropy function.

Theorem 2.6 (Random LDPC codes achieve the GV bound). For any δ ∈ (0, 1−1/q), ε > 0, and
prime power q there exists s0 ≥ 1 such that the following holds for any s ≥ s0. Let R ≤ 1−hq(δ)−ε.
Then a random s-LDPC code of rate R over Fq has relative distance at least δ with high probability.

Remark 2.7 (Comparison to Gallager’s proof). Gallager’s proof for binary random s-LDPC codes
in [Gal62] uses generating functions. We give an alternative proof using ideas from exponential
families, which follows the approach of recent work by Linial and the first author [LMar]. Our
proof extends to random s-LDPC codes over any alphabet. We note that Gallager left it as an open
problem in [Gal62] to obtain a result like this for larger alphabets, but his definition was slightly
different than ours: the coefficients αi,j in his parity checks were all ones, while ours are taken
randomly from F∗q.

Despite having different frameworks, our proof and that of [Gal62] turn out to yield similar
equations. In particular our proof of Lemma 5.2 is very similar to the corresponding proof in
[Gal62] at a technical level. We highlight where the proofs diverge in Remark 5.9.

2.5 Proof of Theorem 1.7 from Theorem 2.2, Lemma 2.5 and Theorem 2.6

Our main theorem (Theorem 1.7) now follows as an immediate consequence of the building blocks
above. We restate Theorem 1.7 here:

Theorem (Main theorem (Theorem 1.7), restated). For any R ∈ (0, 1), ε > 0, prime power q,
and b ≥ 1 there exists s0 ≥ 1 such that the following holds for any odd s ≥ s0. Let P be a b-local
property, and suppose that a random linear code of rate R over Fq satisfies P with high probability.
Then a random s-LDPC code of rate R− ε over Fq satisfies P with high probability.

Proof. Let C := {Cn}n∈N be a random s-LDPC code of rate R− ε over Fq, where s is a sufficiently
large odd integer (depending on R, ε, q, and b). Let P = {Pn}n∈N, and for n ∈ N let Bn be the

11The GV bound refers to the rate-distance trade-off R = 1− hq(δ), which is approached by a random linear code.
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collection of subsets of Fnq defining Pn. By the linearity of C, we may assume that each set B ∈ Bn
contains linearly independent elements. Let

δ := h−1
q (1−R) > 0.

For n ∈ N, let Mn be the collection of matrices corresponding to sets B ∈ Bn, and let Dn be the
collection of row distributions of matrices M ∈Mn that are δ-smooth, and let En be the collection
of row distributions of matrices M ∈ Mn that are not δ-smooth. In this notation, our goal is to
show that with probability tending to 1, the code Cn does not contain any matrix M ∈ Mn,τ for
τ ∈ Dn ∪ En.

Since the rate of C is R−ε, we have δ = h−1
q (1−R(C)−ε). Thus, Theorem 2.6 and Remark 2.4

imply that with probability 1 − o(1), C does not contain any matrices M that are not δ-smooth,
and in particular does not contain M ∈Mn,τ for any τ ∈ En.

Next, fix τ ∈ Dn. Assuming that n is sufficiently large, Theorem 2.2, together with our as-
sumption that a random linear code of rate R over Fq satisfies P with high probability, imply
that τ is γ-implicitly rare for γ = 1 − R + ε/2 = 1 − (R − ε) − ε/2. Lemma 2.5 implies in turn
that Cn contains some matrix M ∈ Mn,τ with probability at most q−εn/4. Finally, noting that

|Dn| ≤ |
⋃b
`=1Dn,`| ≤ b ·

(n+qb−1
qb−1

)
by (2), we conclude that Cn contains some matrix M ∈Mn,τ for

τ ∈ Dn with probability at most

|Dn| · q−εn/4 ≤ b ·
(
n+ qb − 1

qb − 1

)
· q−εn/4,

which goes to 0 as n → ∞. Thus, by a union bound the probability that cn contains any matrix
M ∈Mn,τ for τ ∈ Dn ∪ En also tends to 0 as n→∞, and this completes the proof.

3 Characterization of matrices contained in a random linear code:
proof of Theorem 2.2

In this section we prove Theorem 2.2, which we restate below.

Theorem (Characterization of matrices contained in random linear code (Theorem 2.2, restated)).
Suppose that τ ∈ Dn,` is a (1−R− ε)-implicitly rare distribution. Let C ⊆ Fnq be a random linear
code of rate R. Then

Pr [∃M ∈Mnτ ,M ⊂ C] ≤ q−εn.

Conversely, suppose that τ ∈ Dn,` is not (1−R+ ε)-implicitly rare. Let C ⊆ Fnq be a random linear
code of rate R. Then

Pr [∃M ∈Mnτ ,M ⊂ C] ≥ 1−
(
n+ q2` − 1

q2` − 1

)3

· q−εn.

The proof uses the following standard facts.

Fact 3.1. A matrix M ∈ Fn×`q is contained in a random linear code C ⊆ Fnq of rate R with

probability q−(1−R)·rank(M)·n.

We include the proof of Fact 3.1 for completeness.
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Proof. Let v1, . . . , vrank(M) be columns of M that form a basis for the column span of M . Then

for each vi, Pr [vi ∈ C] = q−(1−R)n. Since the vi are linearly independent, the events that they are
contained in a random linear code C are stochastically independent, and so the probability that all
rank(M) of these vectors are contained in C is q−(1−R)·rank(M)·n.

Fact 3.2 ([CS+04], Lemma 2.2). For any distribution τ ∈ Dn,`,

2H(τ)·n ·
(
n+ q` − 1

q` − 1

)−1

≤ |Mn,τ | ≤ 2H(τ)·n.

3.1 Implicitly rare distributions are unlikely to appear in a random linear code

We begin by proving the first part of the theorem, that Pr [∃M ∈Mnτ ,M ⊂ C] ≤ q−εn when τ is
(1−R− ε)-implicitly rare.

Let τ ∈ Dn,` be (1−R− ε)-implicitly rare. Let A ∈ Fm×`q be such that the distribution τ ′ given
by Av for v ∼ τ is (1 − R − ε)-rare. By Fact 3.1, a matrix M ′ ∈ Mn,τ ′ is contained in C with
probability q−(1−R)·rank(M ′)·n = q−(1−R)·d(τ ′)·n, and so

Pr
[
∃M ∈Mn,τ ′ ,M ⊂ C

]
≤ |Mn,τ ′ | · q−(1−R)·d(τ ′)·n ≤ q(Hq(τ ′)−(1−R)·d(τ ′))·n ≤ q−εn,

where the first inequality follows by Fact 3.2, and the second inequality follows since τ ′ is (1−R−ε)-
rare. Finally, note that if C contains some matrix M ∈ Mn,τ , then by linearity, M ′ := MAT ∈
Mn,τ ′ is also contained in C. So we conclude

Pr [∃M ∈Mn,τ ,M ⊂ C] ≤ q−εn.

3.2 Distributions that are not implicitly rare are likely to appear in a random
linear code

We now proceed to the second part of the theorem, which is more involved. Suppose that τ ∈ Dn,`
is not 1−R+ ε implicitly rare.

First, by the linearity of C, we may assume that d(τ) = `. Indeed, by the definition of d(τ),

there is some matrix B ∈ Fd(τ)×`
q so that the distribution τ ′ given by Bv, v ∼ τ has d(τ ′) = d(τ). If

τ is not (1−R+ε)-implicitly rare, then neither is τ ′ (because if the distribution given by Aw,w ∼ τ ′

was rare for some A ∈ Fm×d(τ)
q , then the distribution given by ABv, v ∼ τ is also rare). Moreover,

by linearity of C we have that M ⊆ C if and only if M · BT ⊆ C. Thus, noting that
(n+q`−1
q`−1

)
is

increasing in `, we may as well work with the distribution τ ′ on Fd(τ ′)
q and set ` = d(τ ′). Thus, in

the following we will assume that d(τ) = `.
For a matrix M ∈ Fn×`q , let XM be the indicator variable for the event that M ⊆ C, and let

X =
∑

M∈Mn,τ
XM . Our goal then is to show that X > 0 with high probability, and we do so by

showing that Var (X) = o(E2(x)).
We first show a lower bound on E[X]. By Facts 3.1 and 3.2,

E [X] = |Mn,τ | · q−(1−R)·`·n ≥ q(Hq(τ)−(1−R)·`)·n ·
(
n+ q` − 1

q` − 1

)−1

. (3)
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Next we show an upper bound on Var (X). Given a pair of matrices M,M ′ ∈ Mn,τ , we let
(M |M ′) denote the (n× (2`))-matrix consisting of a left n× ` block equals to M , and a right n× `
block equals to M ′. Then in this notation we have

Var (X) =
∑

M,M ′∈Mn,τ

(
E[XM ·XM ′ ]− E[XM ] · E[XM ′ ]

)

=
∑

M,M ′∈Mn,τ

(
Pr
[
(M |M ′) ⊆ C

]
− Pr[M ⊆ C] · Pr[M ′ ⊆ C]

)

=
∑

M,M ′∈Mn,τ

(
q−(1−R)·rank(M |M ′)·n − q−2·(1−R)·`·n

)
.

Notice that in the above sum, terms for which rank(M |M ′) = 2` vanish. Let

M :=

{
(M |M ′) |M,M ′ ∈Mn,τ and rank(M |M ′) < 2`

}
,

and
D := {τM |M ∈M}. (4)

Then we have

Var (X) ≤
∑
M∈M

q−(1−R)·rank(M)·n

=
∑
τ ′∈D

∑
M∈Mn,τ ′

q−(1−R)·rank(M)·n

=
∑
τ ′∈D
|Mn,τ ′ | · q−(1−R)·d(τ ′)·n.

≤
∑
τ ′∈D

q(Hq(τ ′)−(1−R)·d(τ ′))·n

where the last inequality follows by Fact 3.2. Finally, Claim 3.3 below shows that for any τ ′ ∈ D,

Hq(τ
′)− (1−R) · d(τ ′) ≤ 2(Hq(τ)− (1−R) · `)− ε,

which implies in turn that

Var (X) ≤ |D| · q2(Hq(τ)−(1−R)·`)·n · q−εn ≤
(
n+ q2` − 1

q2` − 1

)
· q2(Hq(τ)−(1−R)·`)·n · q−εn. (5)

Above, we used the fact that D ⊆ Dn,2` and applied (2). Combining (3) and (5), by Chebyshev’s
inequality we conclude that

Pr[X = 0] ≤ Var (X)

E2(X)
≤
(
n+ q2` − 1

q2` − 1

)3

· q−εn.

To complete the proof, we prove Claim 3.3 which we used above.
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2`− d

2`

A1 A2

The rows of
(A1|A2) ∈ F(2`−d)×2`

q

are w1, . . . , w2`−d

The columns of this 2`× n matrix
are distributed according to τ ′

The columns of this `× n matrix are
distributed according to τ

The columns of this `× n matrix are also
distributed according to τ

= 0

Figure 3: Notation in the proof of Claim 3.3

Claim 3.3. Let D be as in (4). For any τ ′ ∈ D,

Hq(τ
′)− (1−R) · d(τ ′) ≤ 2(Hq(τ)− (1−R) · `)− ε.

Proof. In what follows, let d := d(τ ′), and V := span(Supp(τ ′)) ⊆ F2`
q . Let w1, . . . , w2`−d ∈ F2`

q be

a basis for V ⊥. Let π1 : F2`
q → F`q (π2, respectively) denote the projection of a vector w ∈ F2`

q to the
first (last, respectively) ` coordinates. Finally, let A be the matrix whose rows are w1, . . . , w2`−d,

and let A1 ∈ F(2`−d)×`
q (A2, respectively) denote the matrix whose rows are π1(w1), . . . , π1(w2`−d)

(π2(w1), . . . , π2(w2`−d), respectively). See Figure 3 for a diagram of this notation.
We claim that all rows of A1 are linearly independent, and so rank(A1) = 2` − d. To see this

suppose in contradiction that π1(w1), . . . , π1(w2`−d) are linearly dependent. Then there exists a
non-trivial linear combination of w1, . . . , w2`−d that sums to a non-zero vector of the form (0, w).
But this means that π2(Supp(τ ′)) = Supp(τ) is orthogonal to w, in contradiction to our assumption
that Supp(τ) = F`q. Consequently, recalling that d(τ) = `, the distribution τ ′′ given by A1w for
w ∼ τ has d(τ ′′) = 2`− d.

Let Iq(X;Y ) = I(X;Y )/ log(q) denote the base-q mutual information of X and Y . Now for
v ∼ τ ′ we have,

Hq(τ
′) = Hq(v)

= Hq(π1(v)) +Hq(π2(v))− Iq(π1(v);π2(v))

= 2Hq(τ)− Iq(π1(v);π2(v))

≤ 2Hq(τ)− Iq(A1π1(v);−A2π2(v))

= 2Hq(τ)−Hq(A1π1(v))

≤ 2Hq(τ)− (1−R+ ε) · d(τ ′′)

= 2Hq(τ)− (1−R+ ε) · (2`− d),

where the first inequality follows since A1π1(v) +A2π2(v) = Av = 0, and the last inequality follows
by assumption that τ is not (1−R+ ε)-implicitly rare. Rearranging, and recalling the assumption
that 2` > d, gives the desired conclusion.
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4 Matrices contained in a random LDPC code: proof of Lemma 2.5

In this section we prove our second building block, Lemma 2.5, which we re-state below.

Lemma (Matrices contained in a random s-LDPC code (Lemma 2.5, restated) ). For any δ, ε > 0,
prime power q, and ` ≥ 1, there exists s0 ≥ 1 such that the following holds for any odd s ≥ s0, and
sufficiently large n. Suppose that τ ∈ Dn,` is a δ-smooth and (1−R−ε)-implicitly rare distribution.
Let C ⊆ Fnq be a random s-LDPC code. Then

Pr [∃M ∈Mn,τ ,M ⊂ C] ≤ q−εn/2.

Remark 4.1 (The parity of s, again). Lemma 2.5 holds for even s as well as odd s, but the proof
is slightly simpler for odd s, so we state and prove it in this case for clarity. This is the only place
in the proof of Theorem 1.7 where we use the parity of s, and so this remark implies Remark 1.3.

We begin with some definitions from Fourier analysis which we will need.

4.1 Fourier-analytic facts

We give here some basic definitions and facts from Fourier analysis of functions over Fq. We refer
the reader to, for example, [LN94, O’D14] for more details and proofs of these facts. In what follows
assume that q = ph for a prime p. The trace map of Fq over Fp is the function tr : Fq → Fp given
by

tr(α) = α+ αp + αp
2

+ · · ·+ αp
h−1

.

For a function f : Fnq → C, we define the Fourier transform f̂ : Fnq → C of f by

f̂(y) = Ex∈Fnq [f(x) · χx(y)] ,

where χx(y) = ω
tr(〈x,y〉)
p , and ωp = e2πi/p. Then we have the decomposition

f(x) =
∑
y∈Fnq

f̂(y) · χy(x).

We define an inner product on the space of C-valued functions on Fnq by

〈f, g〉 = Ex∈Fnq
[
f(x) · g(x)

]
.

Plancherel’s identity then asserts that

〈f, g〉 =
∑
x∈Fnq

f̂(x) · ĝ(x).

An important special case is Parseval’s identity:

〈f, f〉 =
∑
x∈Fnq

|f̂(x)|2.

The convolution of a pair of functions f, g : Fnq → C is given by

(f ∗ g)(x) = Ey∈Fnq [f(y) · g(x− y)] .

Convolution interacts nicely with the Fourier transform:

f̂ ∗ g(x) = f̂(x) · ĝ(x).

Finally, we define inductively f∗1 := f , and f∗s = f∗(s−1) ∗ f for an integer s ≥ 2.

16



4.2 Proof of Lemma 2.5

The main technical lemma in the proof of Lemma 2.5 shows that the probability that a matrix with
smooth row distribution is contained in a random LDPC with sufficiently large sparsity parameter
is roughly the same as in a random linear code (cf., Fact 3.1).

Lemma 4.2. For any δ, ε > 0, prime power q, and ` ≥ 1 there exists s0 ≥ 1 such that the following
holds for any odd s ≥ s0, and sufficiently large n. Let M ∈ Fn×`q be a matrix, and suppose that τM
is δ-smooth. Then M is contained in a random s-LDPC C ⊆ Fnq of rate R with probability at most

q−(1−ε)·(1−R)·`·n.

We prove the above lemma in Section 4.3. Next we show how it implies Lemma 2.5.

Proof of Lemma 2.5. Let A ∈ Fm×`q be such that the distribution τ ′ given by Av for v ∼ τ is
(1−R− ε)-rare. Without loss of generality we may assume that rank(A) = m. Otherwise, we can

replace A with a submatrix A′ ∈ Frank(A)×`
q whose rows are a basis for the row-span of A, noting

that the distribution τ ′′ given by A′v for v ∼ τ satisfies that Hq(τ
′′) = Hq(τ

′) and d(τ ′′) = d(τ ′).
Next observe that the distribution τ ′ is δ-smooth: indeed, for u ∈ Fmq \ {0} we have that

Pr
v∼τ

[〈u,Av〉 6= 0] = Pr
v∼τ

[〈ATu, v〉 6= 0] ≥ δ,

where the last inequality follows since ATu 6= 0 by assumption that rank(A) = m.
By Lemma 4.2, a matrixM ′ ∈Mn,τ ′ is contained in C with probability at most q−(1−ε/2)·(1−R)·d(τ ′)·n,

and so C contains some matrix M ′ ∈Mn,τ ′ with probability at most

|Mn,τ ′ |·q−(1−ε/2)·(1−R)·d(τ ′)·n ≤ q(Hq(τ ′)−(1−ε/2)·(1−R)·d(τ ′))·n ≤ q((1−R−ε)−(1−ε/2)·(1−R))·d(τ ′)·n ≤ q−εn/2,

where the first inequality follows by Fact 3.2, and the second inequality follows since τ ′ is (1−R−ε)-
rare.

Finally, note that if C contains some matrix M ∈Mn,τ , then by linearity, M ′ := MAT ∈Mn,τ ′

is also contained in C. So we conclude that C contains some matrix M ∈ Mn,τ with probability
at most q−εn/2.

4.3 Proof of Lemma 4.2

Let H ∈ F((1−R)·n)×n
q be the parity-check matrix of C with layers H1, H2, . . . ,H(1−R)·s, as in

Section 2.1. Recall that each layer Hi is an independent sample from FDΠ, where F is as in
Figure 2, Π ∈ {0, 1}n×n is a random permutation matrix, and D ∈ Fn×nq is a diagonal matrix with
diagonal entries that are independent and uniformly random in F∗q . Let Λ be a random matrix
sampled according to the distribution DΠM . Then by independence of the layers,

Pr[M ⊆ C] = Pr[HM = 0]

=
(

Pr[H1M = 0]
)(1−R)·s

=
(

Pr[FDΠM = 0]
)(1−R)·s

=
(

Pr[FΛ = 0]
)(1−R)·s

. (6)

So it suffices to bound the probability that FΛ = 0.
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Next observe that each row in Λ has the same marginal distribution P given by λv for v ∼ τM
and uniform random λ ∈ F∗q . Let Λ′ ∈ Fn×`q be a random matrix in which each row is independently
sampled according to P . We claim that

Pr[FΛ = 0] ≤ O
(
n
q`−1

2

)
· Pr[FΛ′ = 0]. (7)

Indeed,

Pr[FΛ = 0] = Pr
[
FΛ′ = 0 | τΛ′ = τM

]
=

Pr [FΛ′ = 0 ∧ τΛ′ = τM ]

Pr [τΛ′ = τM ]

≤ Pr [FΛ′ = 0]

Pr [τΛ′ = τM ]
.

Now we have

Pr [τΛ′ = τM ] =

(
n

n · τM (v1), . . . , n · τM (vq`)

)
·
∏
v∈F`q

τM (v)n·τM (v)

where v1, . . . , vq` are the elements of F`q, and then (7) follows from Stirling’s approximation.
Thus, it is enough to bound the probability that FΛ′ = 0. We can express this probability as

Pr
[
FΛ′ = 0

]
=

(
Pr

u1,...,us∼P

[
s∑
i=1

ui = 0

])n/s
=

(
q`·(s−1) · P ∗s(0)

)n/s
. (8)

Next we bound P ∗s(0). In terms of Fourier transform, we can write

P ∗s(0) =
∑
y∈F`q

P̂ ∗s(y) · χy(0) =
∑
y∈F`q

(
P̂ (y)

)s
.

Claim 4.4 below shows that P̂ (y) ≤ q−` ·
(

1− q
q−1 · δ

)
for any y ∈ F`q \ {0}, and by the assumption

that s is odd this implies in turn that

P ∗s(0) =
(
P̂ (0)

)s
+

∑
y∈F`q\{0}

(
P̂ (y)

)s
≤ q−`·s + q−`·(s−1) ·

(
1− q

q − 1
· δ
)s

. (9)

Finally, combining Equations (6), (7), (8), and (9) we conclude that

Pr[M ⊆ C] ≤ O
(
n
q`−1

2
·(1−R)·s

)
·
(
q−` +

(
1− q

q − 1
· δ
)s)(1−R)·n

≤ q−(1−ε)·(1−R)·`·n,

where the last inequality holds for large enough s depending on δ, ε, q, `, and sufficiently large n.

Remark 4.3 (The choice of s). An inspection of the proof shows that we may take

s0 = O

 `

logq

(
1

1−δ/(1−1/q)

)
 .
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In particular, noting that ` ≤ b and that

logq

(
1

1− δ/(1− 1/q)

)
=

1

ln(q)

∞∑
i=1

1

i

(
δ

1− 1/q

)i
,

this part of the proof requires us to take

s0 ≥ C0 ·
b log(q)

δ

for some constant C0 > 0. There is one other place in the proof of Theorem 1.7 that requires s0 to
be sufficiently large; we comment on this in Remark 5.3.

Now, all that remains is to prove Claim 4.4 which we used above.

Claim 4.4. For any y ∈ F`q \ {0},

P̂ (y) ≤ q−` ·
(

1− q

q − 1
· δ
)
.

Proof of Claim 4.4. We have

P̂ (y) = q−` ·
∑
x∈F`q

P (x) · ωtr(〈y,x〉)
p

= q−` · Ev∼τMEλ∈F∗q
[
ωtr(〈y,λv〉)
p

]
= q−` ·

(
Pr

v∼τM
[〈v, y〉 6= 0] · Eξ∈F∗q

[
ωtr(ξ)
p

]
+ Pr
v∼τM

[〈v, y〉 = 0] · Eλ∈F∗q
[
ωtr(0)
p

])
= q−` ·

(
Pr

v∼τM
[〈v, y〉 6= 0] · −1

q − 1
+ Pr
v∼τM

[〈v, y〉 = 0] · 1
)

≤ q−` ·
(
−δ
q − 1

+ (1− δ)
)

= q−` ·
(

1− q

q − 1
· δ
)
,

where the last inequality follows by assumption that τM is δ-smooth.

This completes the proof of Lemma 4.2.

5 Random LDPC codes achieve the GV bound: proof of Theo-
rem 2.6

In this section we prove Theorem 2.6, which shows that an LDPC code over any alphabet approaches
the Gilbert-Varshamov bound with high probability. We restate the theorem below.

Theorem (Random LDPC codes achieve the GV bound (Theorem 2.6, restated)). For any δ ∈
(0, 1 − 1/q), ε > 0, and prime power q there exists s0 ≥ 1 such that the following holds for any
s ≥ s0. A random s-LDPC code of rate R ≥ 1 − hq(δ) − ε over Fq has relative distance at least δ
with high probability.
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5.1 Proof of Theorem 2.6, given a lemma

In this section we give an outline of the proof of Theorem 2.6 and prove the theorem based on
Lemma 5.2 that we state below and prove in subsequent subsections.

Our goal is to show that a random s-LDPC code C has good distance, or equivalently that there
are no low-weight codewords in C with high probability. To that end, we introduce the following
notation.

Definition 5.1. For λ ∈ (0, 1) such that λn is an integer, let Pλ = Pr[u ∈ C], where u ∈ Fnq has
weight λ. Note that this probability is the same for every u of weight λ, so Pλ is well-defined.

Our main challenge is to find sufficiently tight upper bounds on these terms Pλ for 0 < λ ≤ δ.
The proof proceeds by giving a bound on Pλ in terms of a certain function ϕ : (0, q−1

q ]→ R≤0. We
will prove the following lemma below in Sections 5.2 and 5.3. We will define ϕ below in Section 5.2,
but for now we introduce its important properties in the following lemma (which we also prove
below).

Lemma 5.2. There is a function ϕ :
(

0, q−1
q

]
→ R≤0 which has the following properties.

1. For every λ ∈
(

0, q−1
q

]
,

logq Pλ ≤ ϕ(λ)(1−R)n.

2. The function ϕ satisfies

ϕ(λ) ≤ logq

(
1 + (q − 1)

(
1− q

q − 1
λ

)s)
− 1

for all λ ∈ (0, q−1
q ].

3. The function ϕ(λ)
hq(λ) is strictly increasing in the range 0 < λ ≤ q−1

q .

Before we prove Lemma 5.2, we show how it implies Theorem 2.6.

Proof of Theorem 2.6. Our goal is to show that if C is a random s-LDPC code as in the statement
of Theorem 2.6, then with high probability there are no codewords in C of relative weight less than
δ. In the following, we assume without loss of generality that δn is an integer. Now

Pr[C has relative distance less than δ] ≤
δn∑
i=1

P i
n

∣∣∣∣{u ∈ Fnq | wt(u) =
i

n

}∣∣∣∣ (10)

≤
δn∑
i=1

P i
n
qnhq(

i
n

)

≤
δn∑
i=1

q(ϕ( i
n

)(1−R)+hq(
i
n

))n (11)

=

δn∑
i=1

q
nhq(

i
n

)

(
(1−R)ϕ( in )

hq( in )
+1

)
(12)

≤
δn∑
i=1

q
nhq(

i
n

)
(

(1−R)ϕ(δ)
hq(δ)

+1
)
. (13)
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Above, (10) follows from the union bound, (11) from Item 1 of Lemma 5.2, and (13) from Item 3
of Lemma 5.2. By Item 2 of Lemma 5.2,

(1−R)ϕ(δ)

hq(δ)
+ 1 =

(1−R) ·
(

logq

(
1 + (q − 1)

(
1− q

q−1δ
)s)
− 1
)

hq(δ)
+ 1.

Recall our hypothesis that the rate of the code satisfies R ≤ 1−hq(δ)−ε, and so 1−R ≥ hq(δ)+ε.

Noting that logq

(
1 + (q − 1)

(
1− q

q−1δ
)s)
− 1 ≤ 0, we may thus bound the right hand side from

above by

(hq(δ) + ε) ·
(

logq

(
1 + (q − 1)

(
1− q

q−1δ
)s)
− 1
)

hq(δ)
+ 1

=

(
1 +

ε

hq(δ)

)
·
(

logq

(
1 + (q − 1)

(
1− q

q − 1
δ

)s)
− 1

)
+ 1

=

(
1 +

ε

hq(δ)

)
· logq

(
1 + (q − 1)

(
1− q

q − 1
δ

)s)
− ε

hq(δ)

≤
(

1 +
ε

hq(δ)

)
(q − 1)

ln(q)

(
1− qδ

q − 1

)s
− ε

hq(δ)
.

Thus, as long as s is sufficiently large in terms of δ, ε and q, we conclude that

(1−R)ϕ(δ)

hq(δ)
+ 1 ≤ − ε

2hq(δ)
≤ −ε

2
.

Hence, the right-hand side of (13) is upper bounded by

δn∑
i=1

q−
nhq( in )ε

2 .

This sum is dominated by its first term, so it is at most O(n−Ω(1)).

Remark 5.3 (The choice of s). An inspection of the proof above shows that it suffices to take
s & ln(q/ε)/δ. Thus, this part of the proof requires that s0 & ln(q/ε)/δ.

Remark 5.4 (Polynomially small failure probability). In the proof, we see that the failure proba-
bility, while o(1), is only polynomially small in n. In fact, this is tight: it is not hard to see that an
s-random LDPC code C (for s = O(1)) contains a codeword of weight 2 with probability n−O(1).

5.2 The function ϕ and proof of Lemma 5.2, Items 1 and 2

Let λ ∈
(

0, q−1
q

]
such that λn is an integer, and let u ∈ Fnq have weight λn. Let H1, . . . ,Ht be the

layers of the the parity-check matrix H of C, as in Figure 2. Note that the matrices H1, . . . ,Ht are
identically and independently distributed. In particular, the events Pr(Hiu = 0) are independent.
Hence,

Pλ = Pr[u ∈ C] = Pr[Hu = 0] = Pr[H1u = 0]t. (14)
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Since the distribution of H1 is invariant to permutation of coordinates, this last probability does
not depend on the vector u as long as it is of relative weight λ. Hence,

Pr[H1u = 0] = Pr[H1ū = 0] = Pr[Fū = 0],

where ū is uniformly sampled from the set of all vectors of weight λ in Fnq . Therefore,

Pλ = Pr[Fū = 0]t,

where F is as in Figure 2.

We turn to bound this expression. Let β ∈
(

0, q−1
q

]
. Denote by µq(β) the distribution on Fq

which is 0 with probability 1 − β and uniform on F∗q with probability β. When β is clear from
context, we shorthand µq = µq(β). Let v ∈ Fnq be a random vector whose entries are i.i.d. random
variables sampled according to µq, which we denote by v ∼ µnq . Observe that the distribution of v,
conditioned on wt(v) = λ, is identical to the distribution of ū. Hence, by Bayes’ rule,

Pr[Fū = 0] = Pr[Fv = 0 | wt(v) = λ] = Pr[wt(v) = λ | Fv = 0] · Pr[Fv = 0]

Pr[wt(v) = λ]
≤ Pr[Fv = 0]

Pr[wt(v) = λ]
(15)

where the probabilities are over the choice of v ∼ µq(β)n.
We proceed to bound the right-hand side of (15). For the denominator, note that

Pr[wt(v) = λ] =

(
n

λn

)
βλn(1− β)(1−λ)n ≥ q−DKLq(λ‖β)n (16)

where above DKLq (x ‖ y) denotes the KL Divergence,

DKLq (x ‖ y) = −x logq
y

x
− (1− x) logq

1− y
1− x

for x ∈ [0, 1] and y ∈ (0, 1).

We next focus on the numerator. The following notation will be useful:

Definition 5.5. For k ∈ N, let

Vkq =

{
w ∈ Fkq :

k∑
i=1

wi = 0

}
.

Let f1, . . . , fn
s

denote the rows of the matrix F . Note that the vectors f1, . . . fn
s

have disjoint
supports, so the products fiv are independently and identically distributed. Hence, Pr[Fv = 0] =
Pr[f1v = 0]

n
s . Observe that the distribution of v is symmetric to multiplication of each entry by a

nonzero element of Fq. Consequently,

Pr
v∼µnq

[Fv = 0] = Pr
v∼µnq

[f1v = 0]
n
s = Pr

v∼µnq

[
s∑
i=1

vi = 0

]n
s

=

(
Pr
w∼µsq

[w ∈ Vsq]
)n/s

. (17)

The following lemma gives a closed form for this last expression.

Lemma 5.6.

Pr
w∼µsq

[w ∈ Vsq] =
1 + (q − 1)

(
1− qβ

q−1

)s
q

.
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Proof. We proceed by induction. The base case (s = 0) is immediate. Now suppose that the
statement holds for s−1 and let π : Fsq → Fs−1

q denote the projection onto the first s−1 coordinates.
Then

Pr
w∼µsq

[w ∈ Vsq] = Pr
w∼µsq

[
π(w) ∈ Vs−1

q

]
· Pr
w∼µsq

[ws = 0] + Pr
w∼µsq

[
π(w) 6∈ Vs−1

q

]
· Pr
w∼µsq

[
ws = −

s−1∑
i=1

wi | π(w) 6∈ Vs−1
q

]

=
1 + (q − 1)

(
1− qβ

q−1

)s−1

q
· (1− β) +

1−
1 + (q − 1)

(
1− qβ

q−1

)s−1

q

 · β

q − 1

=
1

q
+

(
1− qβ

q − 1

)s(q − 1

q

)
,

which establishes the inductive hypothesis for s.

Motivated by the computations above, we can define the following useful shorthands:

Definition 5.7. For λ, β ∈ (0, q−1
q ], define

Z(β) = Pr
w∼µsq

[
w ∈ Vsq

]
=

1 + (q − 1)
(

1− qβ
q−1

)s
q

, (18)

ψ(λ, β) = sDKLq (λ ‖ β) + logq Z(β)

From Equations (14), (15), (16) and (17), we conclude that

logq Pλ = t logq Pr[Fū = 0] ≤ tn

DKLq (λ ‖ β) +
logq

(
1 + (q − 1)

(
1− qβ

q−1

)s)
− 1

s


= (1−R)n

(
sDKLq (λ ‖ β) + logq

(
1 + (q − 1)

(
1− qβ

q − 1

)s)
− 1

)
= (1−R)nψ(λ, β) (19)

for every β ∈
(

0, q−1
q

]
. Above, we have used the choice t = (1−R)s.

This motivates the following definition:

Definition 5.8. Let Z and ψ be as in Definition 5.7. Define:

ϕ(λ) = inf
β∈(0, q−1

q
]
ψ(λ, β).

Definition 5.8, along with (19), implies that logq Pλ ≤ ϕ(λ), which establishes Item 2 of
Lemma 5.2. Next we establish Item 1 of Lemma 5.2. This follows from from Def 5.8, since

ϕ(λ) ≤ ψ(λ, λ) = logq

(
1 + (q − 1)

(
1− qλ

q − 1

)s)
− 1,

using the fact that DKLq (λ ‖ λ) = 0.
This almost completes the proof of Lemma 5.2, except for Item 3, which we establish in the

next section using calculus.
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5.3 Proof of Item 3 of Lemma 5.2

In this section we prove Item 3, which will establish Lemma 5.2 and hence Theorem 2.6.

Remark 5.9 (Difference between [Gal62] and this proof). This is the part of the proof where
the technical similarity between our proof and Gallager’s breaks down. The part of [Gal62] which
corresponds to our Item 3 consists of an intricate analytic argument which does not seem (to us) to
generalize to larger alphabets. Thus, our proof has to rely on a different, more general, argument,
which we give below.

Before proving Item 3 of Lemma 5.2, we need to better understand the relation between a given
λ ∈ (0, q−1

q ], and the β which minimizes the expression ψ(λ, β).

Lemma 5.10. Let λ ∈ (0, q−1
q ]. Then, ψ(λ, β) is minimized by a unique β ∈ (0, q−1

q ]. This β is
the only solution for

Ew∼µq(β)

[
wt(w) | w ∈ Vsq

]
= λ.

Proof. We compute the derivative.

d loge Z(β)

dβ
=

1

Prw∼µsq [w ∈ Vsq]
·
d
(

Prw∼µsq [w ∈ Vsq]
)

dβ

=
1

Prw∼µsq [w ∈ Vsq]
·
∑
w∈Vsq

d
(

β
q−1

)s·wt(w)
(1− β)s·(1−wt(w))

dβ

=

∑
w∈Vsq

((
β
q−1

)s·wt(w)
(1− β)s·(1−wt(w)) · s ·

(
wt(w)
β − 1−wt(w)

1−β

))
Prw∼µsq [w ∈ Vsq]

= s ·

(
Ew∼µsq

[
wt(w) | w ∈ Vsq

]
β

−
1− Ew∼µsq

[
wt(w) | w ∈ Vsq

]
1− β

)
. (20)

Also, it is not hard to see that

∂DKLq (λ ‖ β)

∂β
= logq e ·

(
1− λ
1− β

− λ

β

)
.

Consequently,

∂ψ(λ, β)

∂β
= s

∂DKLq (λ ‖ β)

∂β
+
d logq Z(β)

dβ

= logq e ·
(
s(1− λ)

1− β
− sλ

β
+
d loge Z(β)

dβ

)
= s · logq e ·

(
Ew∼µsq

[
wt(w) | w ∈ Vsq

]
− λ
)( 1

1− β
+

1

β

)
.

We conclude that ∂ψ(λ,β)
∂β has the same sign as Ew∼µsq

[
wt(w) | w ∈ Vsq

]
− λs. The lemma now

follows from the following claim:
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Claim 5.11. As β increases in the range (0, q−1
q ] the function Ew∼µsq

[
wt(w) | w ∈ Vsq

]
strictly

increases from 0 to q−1
q .

Proof. Due to (18) and (20),

Ew∼µsq
[
wt(w) | w ∈ Vsq

]
=

(
d loge Z(β)

s · dβ
+

1

1− β

)
β(1− β)

=

 dZ(β)
dβ

s · Z(β)
+

1

1− β

β(1− β)

=

 −q
(

1− qβ
q−1

)s−1

1 + (q − 1)
(

1− qβ
q−1

)s +
1

1− β

β(1− β)

= β
1−

(
1− qβ

q−1

)s−1
· (1 + qβ)

1 + (q − 1)
(

1− qβ
q−1

)s , (21)

and the claim readily follows.

The proof of the lemma is thus concluded.

Lemma 5.10 and Claim 5.11 justify the following definition:

Definition 5.12. For λ ∈ (0, q−1
q ], denote the β ∈ (0, q−1

q ] which minimizes ψ(λ, β) by β(λ). The
inverse of this function is denoted λ(β).

By Lemma 5.10 and Equation (21),

λ(β) = β
1−

(
1− qβ

q−1

)s−1

1 + (q − 1)
(

1− qβ
q−1

)s . (22)

Remark 5.13. Unfortunately, there are good reasons to suspect that the function β(λ) has no
closed-form expression (see, e.g., the discussion about backward mapping in [WJ08, Sec. 3.4.2]),
so we prefer to work with its inverse.

It is convenient to extend the definition of these functions to the closed interval [0, q−1
q ] by

taking limits, namely, λ(0) = β(0) = 0, and

ϕ(0) = lim
λ→0

ϕ(λ) = lim
λ→0

ψ(λ, β(λ)) lim
β→0

ψ(λ(β), β) = lim
β→0

DKLq (λ(β) ‖ β) + logq Z(β)

= lim
β→0

DKLq (λ(β) ‖ β) = lim
β→0
−λ(β) logq β = 0.

We are now able to prove Item 3 of Lemma 5.2.

Proof of Lemma 5.2, Item 3. Let α(λ) = ϕ(λ)
hq(λ) . The claim follows immediately from the four fol-

lowing claims:
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Claim 5.14. α( q−1
q ) = −1.

Claim 5.15. α(λ) < −1 for some λ ∈ (0, q−1
q ).

Claim 5.16. There exists ε > 0 such that α(λ) > − s
2 for all λ ∈ (0, ε).

Claim 5.17. For each y ∈ (− s
2 ,−1], the equation α(λ) = y has at most one solution λ ∈ (0, q−1

q ].

Indeed, Claims 5.14 and 5.17 show that α(λ) 6= 1 for λ < q−1
q . Since α is continuous, it is either

upper bounded or lower bounded by −1 in the whole range (0, q−1
q ]. Claim 5.15 implies the former.

By Claim 5.17, if − s
2 < α(λ0) < −1 for some λ0 ∈ (0, q−1

q ), then α must be strictly increasing in

the range [λ0,
q−1
q ]. The lemma now follows from Claim 5.16. We proceed to prove these claims.

Proof of Claim 5.14. Note that α( q−1
q ) = ϕ( q−1

q ). Due to Item 2,

ϕ

(
q − 1

q

)
≤ −1.

In the reverse direction,

ϕ(λ) = min
β
ψ(λ, β) = min

β

(
s ·DKLq (λ ‖ β) + logq Z(β)

)
≥ min

β

(
s ·DKLq (λ ‖ β)

)
− 1 ≥ −1

for all λ. The first inequality above holds since Z(β) ≥ 1
q , due to (18) .

Proof of Claim 5.15. By Item 1,

α(λ) ≤
logq

(
1 + (q − 1)

(
1− q

q−1λ
)s)
− 1

hq(λ)
. (23)

Let λ = q−1
q − ε. As ε tends from above to 0, the numerator of (23)’s right-hand side is −1 + Θ(εs),

while the denominator is 1−Θ(ε2). Thus, for ε small enough, (23) yields α(λ) < −1.

Proof of Claim 5.16. Let

Z̄(β) = Pr
w∼Bsq

(
w ∈ V ∧ wt(w) ≤ 2

s

)
= (1− β)s +

(
s

2

)
(1− β)s−2β2

and
ψ̄(β, λ) = sDKLq (λ ‖ β) + logq Z̄(β).

Clearly, ψ̄(β, λ) is a lower bound on ψ(β, λ), so

ϕ(λ) ≥ min
β∈(0, q−1

q
]
ψ̄(λ, β).

Note that

∂ψ̄(λ, β)

∂β
=

s

β(1− β)

 2(s− 1)(
1−β
β

)2
+
(
s
2

) − λ
 ,
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Hence, for λ < 2
s , the minimum of ψ̄(λ, β) is attained at β0 = y

1+y , where

y =

(
λ

2(s− 1)−
(
s
2

)
λ

) 1
2

.

Therefore,

α(λ) =
ϕ(λ)

hq(λ)
≥ ψ̄(λ, β0)

hq(λ)
=
s

2

(
−1 +

λ
(
logq

(
2(s− 1)−

(
s
2

)
λ
)
− logq(1− λs)

)
+ (1− λ) logq(1− λ)

hq(λ)

)
.

For λ small enough, the right-hand side is clearly larger than − s
2 .

Proof of Claim 5.17. Denote β∗ = β(λ). Let y ∈ (− s
2 ,−1], and define the function ϕy(λ) =

ϕ(λ) − yhq(λ). We seek to show that ϕy(λ) has at most one root in the range (0, q−1
q ]. This is a

consequence of the following three statements, proven below:

1.
dϕy(λ)
dλ has at most one extremal point in the open interval (0, q−1

q ).

2.
dϕy(λ)
dλ ( q−1

q ) = 0.

3. ϕy(0) = 0.

Indeed, the first statement implies that
dϕy(λ)
dλ has at most two roots in the interval (0, q−1

q ]. The

second statement says that one of these roots is at q−1
q , so

dϕy(λ)
dλ has at most one root in (0, q−1

q ).

Consequently ϕy(λ) has at most one extremal point and two roots in [0, q−1
q ]. Due to the third

statement, one of these roots is 0, so there can only be one root in (0, q−1
q ]. We turn to prove these

statements.
Statement 3 is trivial. For Statement 2, note that in the derivative

dϕ(λ)

dλ
=
∂ψ(λ, β)

∂β β=β∗
· dβ

∗

dλ
+
∂ψ(λ, β)

∂λ β=β∗
,

the first term vanishes since ψ has a minimum at (λ, β∗). Hence,

dϕ(λ)

dλ
=
∂ψ(λ, β)

∂λ β=β∗
= s

∂DKLq (λ ‖ β)

∂λ β=β∗
= s logq

λ(1− β∗)
(1− λ)β∗

.

In particular, β( q−1
q ) = q−1

q , so

dϕy(λ)

dλ λ= q−1
q

=
dϕ(λ)

dλ λ= q−1
q

− ydhq(λ)

dλ λ= q−1
q

= 0,

since, in the last transition, the two terms vanish.
We turn to Statement 1. Define the new variable x = 1 − qβ∗

q−1 . Note the following useful
relations, the second of which follows from Equation (22):

β∗ =
q − 1

q
(1− x) (24)
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and
λ

1− λ
=

β∗

1− β∗
· 1− xs−1

1 + (q − 1)xs−1
. (25)

By (24) and (25),

dϕy(λ)

dλ
= s

∂DKLq (λ ‖ β)

∂λ |β=β∗
− ydhq(λ)

dλ

= s logq
λ(1− β∗)
(1− λ)β∗

+ y logq
λ

1− λ

= s logq
1− β∗

β∗
+ (s+ y) logq

λ

1− λ

= −y logq
1 + (q − 1)x

(q − 1)(1− x)
+ (s+ y) logq

1− xs−1

1 + (q − 1)xs−1
.

Now,
d2ϕy(λ)

dxdλ
· ln q =

−yq
(1 + (q − 1)x)(1− x)

− (s+ y)(s− 1)qxs−2

(1− xs−1) (1 + (q − 1)xs−1)
.

This second derivative vanishes when

−(s+ y)

y
=

(
1− xs−1

) (
1 + (q − 1)xs−1

)
(s− 1)(1 + (q − 1)x)(1− x)xs−2

.

Equivalently,

−(s+ y)

y
=

1

s− 1

s−2∑
i=0

x−i + (q − 1)xi+1

1 + (q − 1)x
. (26)

By examining each term of this sum separately, it is straightforward to verify that the right-hand
side of (26) is a convex function of x, which tends to ∞ (resp. 1) as x → 0 (resp. x → 1). Since
y > − s

2 , the left-hand side of (26) is larger than 1, so there is a unique x ∈ (0, 1) which solves (26).
Statement 1 follows.

This establishes Item 3 of Lemma 5.2.

Having completed the proof of Lemma 5.2, we have finished the proof of Theorem 2.6.
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