
LDPC Codes Achieve List Decoding Capacity∗

Jonathan Mosheiff1, Nicolas Resch1, Noga Ron-Zewi2, Shashwat Silas3, and Mary
Wootters3

1Carnegie Mellon University
2University of Haifa
3Stanford University

July 25, 2020

Abstract

We show that Gallager’s ensemble of Low-Density Parity Check (LDPC) codes achieves list-
decoding capacity with high probability. These are the first graph-based codes shown to have
this property. This result opens up a potential avenue towards truly linear-time list-decodable
codes that achieve list-decoding capacity.

Our result on list decoding follows from a much more general result: any local property
satisfied with high probability by a random linear code is also satisfied with high probability by
a random LDPC code from Gallager’s distribution. Local properties are properties characterized
by the exclusion of small sets of codewords, and include list-decoding, list-recovery and average-
radius list-decoding.

In order to prove our results on LDPC codes, we establish sharp thresholds for when local
properties are satisfied by a random linear code. More precisely, we show that for any local
property P, there is some R∗ so that random linear codes of rate slightly less than R∗ satisfy
P with high probability, while random linear codes of rate slightly more than R∗ with high
probability do not. We also give a characterization of the threshold rate R∗.

∗JM is partially supported by NSF grants CCF-1814603 and CCF-1563742. A significant portion of this work
was accomplished while JM was a postdoctoral fellow at the Weizmann Institute, partially supported by Irit Dinur’s
ERC-CoG grant 772839. NRe is partially supported by NSERC grant CGSD2-502898, NSF grants CCF-1422045,
CCF-1814603, CCF-1527110, CCF-1618280, CCF-1910588, NSF CAREER award CCF-1750808 and a Sloan Research
Fellowship. NRo Is partially supported by BSF grant 2014359 and ISF grant 735/20. SS and MW are partially
supported by NSF grants CCF-1844628, CCF-1814629, and a Sloan Research Fellowship. SS is partially supported
by a Google Graduate Fellowship.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 122 (2019)

1 Introduction

In this paper, we study sets C ⊂ Σn of strings of length n, with the combinatorial property that
not too many elements of C are contained in any small enough Hamming ball. In the language
of coding theory, such a C is a list-decodable code. List-decoding is an important primitive in
coding theory, with applications ranging from communication to complexity theory. However, as
discussed below, most constructions of capacity-achieving (aka, optimal) list-decodable codes are
fundamentally algebraic, despite a rich history of combinatorial—and in particular, graph-based—
constructions of error correcting codes.

We show that a random ensemble of Low-Density Parity-Check (LDPC) codes achieves list-
decoding capacity with high probability. LDPC codes are the prototypical example of graph-based
codes, and are popular both in theory and in practice because of their extremely efficient algorithms.
One of the motivations for this work is that we do not currently know any linear-time algorithms
for list-decoding any code up to capacity; since graph-based codes offer linear-time algorithms
for a variety of other coding-theoretic tasks, our result opens up the possibility of using these
constructions for linear-time list-decoding algorithms.

List Decoding. Formally, a code C ⊂ Σn is (α,L)-list-decodable if for all z ∈ Σn,

| {c ∈ C : dist(c, z) ≤ α} | ≤ L.

Above, dist(c, z) is the relative Hamming distance,

dist(c, z) =
1

n
| {i : ci 6= zi} |.

Elements c ∈ C are called codewords, Σ is called the alphabet, and n is called the length of the code.
The fundamental trade-off in list-decoding is between the parameter α and the size |C| of the

code, given that the list size L is reasonably small. We would like both α and |C| to be large, but
these requirements are at odds: the larger the code C is, the closer together the codewords have
to be, which means that α cannot be as large before some Hamming ball of radius α has many
codewords in it. The size of a code C is traditionally quantified by the rate R of C, which is defined
as

R =
log|Σ|(|C|)

n
.

The rate of C is a number between 0 and 1, and larger rates are better.
List-decoding has been studied since the work of Elias and Wozencraft in the 1950’s [Eli57,

Woz58], and by now we have a good understanding of what is possible and what is not. The
classical list-decoding capacity theorem states that there exist codes over alphabets of size |Σ| = q
and of rate R ≥ 1− hq(α)− ε which are (α, 1/ε)-list-decodable, where

hq(x) := x logq(q − 1)− x logq(x)− (1− x) logq(1− x) (1)

is the q-ary entropy function. Conversely, any such code with rate R ≥ 1 − hq(α) + ε must have
exponential list sizes, in the sense that there is some z ∈ Σn so that | {c ∈ C : dist(c, z) ≤ α} | =
expε,α(n).1

1Here and throughout the paper, exp(n) denotes 2Θ(n), and subscripts indicate that we are suppressing the
dependence on those parameters.

1

A code of rate R ≥ 1− hq(α)− ε that is (α,L)-list decodable for L = Oε,α(1) is said to achieve
list-decoding capacity, and a major question in list-decoding is which codes have this property. By
now we have three classes of examples. First, it is not hard to see that completely random codes
achieve list-decoding capacity with high probability. Second, a long line of work (discussed more
below) has established that random linear codes do as well: we say that a code over the alphabet
Σ = Fq is linear if it is a linear subspace of Fnq ,2 and a random linear code is a random subspace.
Third, there are several explicit constructions of codes which achieve list-decoding capacity; as
discussed below, most of these constructions rely importantly on algebraic techniques.

LDPC Codes. Graph-based codes, such as LDPC codes, are a class of codes which is notably
absent from the list of capacity-achieving codes above. Originally introduced by Gallager in the
1960’s [Gal62], codes defined from graphs have become a class of central importance in the past 30
years.

Here is one way to define a code using a graph. Suppose that G = (V,W,E) is a bipartite graph
with |V | = n and |W | = m for m ≤ n. Then G naturally defines a linear code C ⊂ Fnq of rate at
least 1−m/n as follows:

C =

c ∈ Fnq : ∀j ∈W,
∑
i∈Γ(j)

αi,jci = 0

 ,

where Γ(i) denotes the neighbors of i in G and αi,j ∈ Fq are fixed coefficients. (See Figure 1). That
is, each vertex in W serves as a parity check, and the code is defined as all possible labelings of
vertices in V which obey all of the parity checks. When the right-degree of G is small, the resulting
code is called a Low-Density Parity Check (LDPC) code.

LDPC codes and related constructions (in particular, Tanner codes [Tan81] and expander
codes [SS94, Zém01]) are notable for their efficient algorithms for unique decoding; in fact, the
only linear-time encoding/decoding algorithms we have for unique decoding (that is, list-decoding
with L = 1) are based on such codes.

Motivating question. We currently do not know of any linear-time algorithms to list-decode
any code to capacity. Since graph-based codes and LDPC codes in particular are notable for their
linear-time algorithms, this state of affairs motivates the following question:

Question 1.1. Are there (families) of LDPC codes that achieve list-decoding capacity?

1.1 Contributions

Motivated by Question 1.1, our contributions are as follows.

(1) We show that the answer to Question 1.1 is “yes.” More precisely, we show that random
LDPC codes (the same ensemble studied by Gallager in his seminal work nearly 60 years
ago [Gal62]), achieve list-decoding capacity with high probability.

2Here and throughout the paper, Fq denotes the finite field with q elements.

2

(2) In fact, we show a stronger result: random LDPC codes satisfy with high probability any local
property that random linear codes satisfy with high probability. We define local properties
precisely below; informally, a local property is one defined by the exclusion of certain bad
sets. List-decodability is a local property—it can be defined by the exclusion of any big set
of vectors that are too close together—and this answers Question 1.1.

(3) Along the way, we develop a characterization of the local properties that are satisfied with
high probability by a random linear code. We show that for any local property P, there is
a threshold R∗ so that random linear codes of rate slightly less than R∗ satisfy P with high
probability, while random linear codes of rate slightly greater than R∗ with high probability
do not. Moreover, we give a characterization of the threshold R∗.

In [GLM+20], the above characterization is used to compute lower bounds on the list-decoding
and list-recovery parameters of random linear codes. This additional application does not
directly relate to LDPC codes.

We describe each of these contributions in more detail below.

(1) Random LDPC codes achieve list-decoding capacity. We study the so-called “Gallager
ensemble” of binary LDPC codes introduced by Gallager in the 1960’s [Gal62], as well as its natural
generalization to larger alphabets.3

Fix a rate R ∈ (0, 1) and a sparsity parameter s, and let t = (1 − R)s. We assume that
t is an integer. To define the ensemble of random s-LDPC codes of rate R, we need to specify a
distribution on the underlying bipartite graphs and a distribution on the coefficients αi,j . We define
the distribution on graphs as follows. Let Gi = (V,Wi, Ei) for i = 1, . . . , t be independent uniformly
random (1, s)-regular bipartite graphs with a shared left vertex set V of size n and disjoint right
vertex sets Wi, each of size n/s. Then let G = (V,W,E) be the union of these graphs, where
W =

⋃t
i=1Wi. Finally, we choose the coefficients αi,j for (i, j) ∈ E to be uniformly random in F∗q .

The ensemble of random s-LDPC codes of rate R is illustrated in Figure 1.
Our main theorem about the list-decodability of random LDPC codes is a reduction from the

list-decodability of random linear codes:

Theorem 1.2. For any R ∈ (0, 1), ε > 0, prime power q, α ∈ (0, 1− 1/q) and L ≥ 1 there exists
s0 ≥ 1 such that the following holds for any odd s ≥ s0. Suppose that a random linear code of rate
R over Fq is (α,L)-list decodable with high probability. Then a random s-LDPC code of rate R− ε
over Fq is (α,L)-list decodable with high probability.

Remark 1.3 (The parity of s). All of our results hold for even s as well as odd s. However, the
proof is slightly simpler for odd s, so for clarity we state and prove the theorem in this case.

Instantiating this with a result of [GHK11] on list decoding of random linear codes, we get the
following corollary.

Corollary 1.4. For any prime power q, α ∈ (0, 1 − 1/q), and ε ∈ (0, 1 − hq(α)) there exists
L = Oα(1/ε) and s ≥ 1 so that a random s-LDPC code of rate 1− hq(α)− ε over Fq is (α,L)-list-
decodable with high probability.

3For binary codes, our definition coincides with Gallager’s. For larger alphabets our definition is somewhat
different: Gallager’s ensemble chooses the coefficients αi,j to be all ones, while we choose them to be random elements
of F∗q .

3

|W | = (1−R)n

Degree s

Each “layer” is a random (1, s)-regular
graph with n right vertices and n/s left
vertices. There are t = (1−R)s layers.

Each vertex j imposes a parity check on
its neighbors:

∑
i∈Γ(j) αi,jci = 0. We

choose the coefficients αi,j ∈ F∗q
uniformly at random.

|V | = n

Figure 1: A random (t, s)-regular bipartite graph that gives rise to a random s-LDPC code of rate R. Here,
we set t := s(1−R).

Remark 1.5 (Other parameter regimes). We state Corollary 1.4 as one example of what can be
obtained by combining Theorem 1.2 with one result on random linear codes. The result of [GHK11]
degrades as α→ 1−1/q, and so Corollary 1.4 degrades as well. However, there has been a great deal
of work on the list-decodability of random linear codes as α→ 1− 1/q (summarized in Section 1.2
below), and Theorem 1.2 implies that these results carry over to random LDPC codes as well.

(2) Random LDPC codes achieve any local property that random linear codes achieve.
Theorem 1.2 follows as a corollary of a much more general theorem. We show that any “local”
property that is satisfied by random linear codes with high probability is also satisfied by random
LDPC codes with high probability.

Informally, a local property is a property which can be defined by the exclusion of certain bad
sets. For example, a code C is (α,L)-list-decodable if it does not contain any sets B ⊂ Σn of size
larger than L so that B is contained in a Hamming ball of radius α. Along with list-decodability,
local properties include many related notions like list recovery, average-radius list decoding, and
erasure list decoding. A long line of work (discussed more in Section 1.2) has established that these
properties hold for random linear codes with high probability, so our reduction immediately implies
that they hold with high probability for LDPC codes as well.

Formally, we define a local property as follows. Let π : [n]→ [n] be a permutation on [n]. For
a string x ∈ Σn, we let π(x) ∈ Σn denote the string obtained by permuting the coordinates of x
according to π, and for a subset B ⊆ Σn, we let π(B) := {π(x) | x ∈ B}. We say that a collection
B of subsets of Σn is permutation invariant if for any B ∈ B and permutation π : [n]→ [n], we also
have that π(B) ∈ B.

Definition 1.6 (Local property). Let P = {Pn}n∈N, where each Pn is a property of length n codes
over Σ. We say that P is a b-local property if for any n ∈ N there exists a permutation-invariant
collection Bn of subsets of Σn, where |B| ≤ b for all B ∈ Bn, such that

C ⊆ Σn satisfies Pn ⇐⇒ B * C for all B ∈ Bn.

4

We say that a family of random codes C = {Cni}i∈N (where {ni} is an increasing sequence)
satisfies P with high probability if limi→∞ Pr[Cni satisfies Pni] = 1. Similarly, we say that C almost
surely does not satisfy P if limi→∞ Pr[Cni satisfies Pni] = 0.

A code property is monotone decreasing if given a code C satisfying P , it holds that every code
C ′ ⊆ C also satisfies P . Note that every local property is monotone decreasing.

A random linear code of rate R over Fq is defined4 as the kernel of a uniformly random matrix

H ∈ F(1−R)n×n
q . Notice that such a code has rate R with high probability.

For any n ∈ N and R ∈ [0, 1] such that R · n ∈ N, we denote a random linear length n code
of rate R by CnRLC(R). Likewise, given s, n and R such that s | n and R · s ∈ N, we denote a
random s-LDPC code of length n and rate R by CnsLDPC(R). Whenever we use these notations, it
is implicitly assumed that the relevant divisibility conditions are satisfied.

Let P = {Pn}n∈N be a monotone decreasing property of linear codes. We define

RnRLC(P) :=

{
sup {R ∈ [0, 1] : Pr[CnRLC(R) satisfies Pn] ≥ 1/2} if there is such an R

0 otherwise.
(2)

Remark 1.7. If P is a monotone decreasing property then the function Pr[CnRLC(R) satisfies Pn]
is monotone decreasing in R. This can be proved by a standard coupling argument, akin to [Bol01,
Thm. 2.1].

With the notation out of the way, we are ready to state our more general theorem about
random LDPC codes. Essentially, this theorem says that every local property that holds with high
probability for a random linear code also holds with high probability for a random s-LDPC code
of approximately the same rate. This approximation improves as s grows.

Theorem 1.8 (Main). Let P = (Pn)n∈N be a b-local property with R̄ := lim supn→∞R
n
RLC(P) < 1.

For any ε > 0 and prime power q, there exists s0 = s0(ε, R̄, q, b) ≥ 1 such that for any odd s ≥ s0

and any sequence {Rn}n∈N, if Rn ≤ RnRLC(P) − ε for all n, then the code ensemble CnsLDPC(Rn)
satisfies P with high probability.

Remark 1.9 (The dependence on ε, R̄, q, b). An inspection of the proof (see Remarks 4.2 and 5.3)
shows that we may take

s0 = O

(
b log(q) + log(q/ε)

h−1
q (1− R̄)

)
.

The existence of a reduction like the one in Theorem 1.8 is surprising, at least to the authors.
There is a lot more structure in a random LDPC code than in a random linear code. For example,
we know of linear-time unique decoding algorithms for random LDPC codes,5 but it is unlikely
that any efficient unique decoding algorithm exists for random linear codes.6 Thus it is unexpected
that this much more structured ensemble would share many properties—in a black-box way—with
random linear codes.

4There are a few natural ways to define a random linear code: for example we could also define it as a uniformly
random subspace of dimension Rn, or we could define it as the image of a uniformly random n × Rn matrix, or we
could define it as we do here, as the kernel of a uniformly random (1− R)n× n matrix. It can be shown that these
distributions are quite close to each other, and in particular, any property that holds for one with high probability
holds for the others.

5This follows, for example, from [SS94] because the underlying random graph is with high probability a good
expander.

6Unique decoding of random linear codes is related to the problem of Learning Noisy Parities (LNP) and Learning
With Errors (LWE), which are thought to be hard.

5

Remark 1.10 (A converse to Theorem 1.8?). One may be tempted to conjecture that the converse
of Theorem 1.8 holds as well. Namely, in the setting of Theorem 1.8, if Rni ≥ RniRLC(P) + ε
for all i, then the code ensemble CsLDPC(Rn) almost surely does not satisfy P. However, this
turns out to be false, due to the following example. Assume that q = 2 and consider the 1-local
property P := (Pn)n∈N, where Pn is the set of all length n linear codes that only contain even weight
codewords. It is not hard to see (e.g., using Theorem 2.8) that RnRLC(P) tends to 0 as n→∞. On
the other hand, if n

s is even, then every s-LDPC code (including, say, a code of rate 1
2) satisfies P,

contradicting this conjecture.
However, the above counter-example relies on a technicality involving divisibility criteria. It is

an interesting question whether a natural converse of Theorem 1.8 holds if we additionally assume
that P belongs to some natural class of “nicely behaved” properties that precludes counter-examples
of this sort.

(3) A characterization of local properties satisfied by random linear codes. In order
to prove Theorems 1.2 and 1.8, we develop a new characterization of the local properties satisfied
by a random linear code. Our formal theorem is given as Theorem 2.8. Informally, this theorem
implies that for any monotone decreasing property P, there is a sharp threshold R∗ so that random
linear codes of rate slightly less than R∗ with high probability satisfy P, while random linear codes
of rate slightly larger than R∗ with high probability do not. Moreover, we give a characterization
of R∗.

Formally, we have the following definition, recalling the definition of RnRLC(Rn) from (2).

Definition 1.11 (Sharpness for random linear codes). We say that the property P is sharp for
random linear codes if for every ε > 0 there holds:

• If Rn ≤ RnRLC(P)− ε for large enough n, then the code ensemble CnRLC(Rn) (n ∈ N) satisfies
P with high probability.

• If Rn ≥ RnRLC(P) + ε for large enough n, then the code ensemble CnRLC(Rn) (n ∈ N) almost
surely does not satisfy P.

If a property P is sharp, we sometimes refer to RnRLC(P) as the threshold for P.

Theorem 2.8 has two corollaries. The first is that local properties are sharp for random linear
codes:

Corollary 1.12. Every local property is sharp for random linear codes.

The second corollary of Theorem 2.8 is a characterization of RnRLC(P). This characterization
requires some definitions to state formally, so we defer the formal statement to Theorem 2.8.
However, it has an intuitive interpretation, which we sketch here.

Recall that a local property is defined by a permutation-invariant collection Bn of excluded sets.
For simplicity of exposition, suppose that all of the sets B ∈ Bn have size exactly b, and moreover
that they all have dimension exactly b. (This assumption is helpful for exposition but not necessary
for our analysis). In this case, it is easy to compute the probability that each individual set B ∈ Bn
is contained in CRLC(R) (see Fact 2.2):

Pr [B ⊆ CRLC(R)] = q−(1−R)nb.

6

Thus, we have
E |{B ∈ Bn : B ⊆ CRLC(R)}| = |Bn| · q−(1−R)nb.

Thus, as long as

R < RE
RLC(Bn) := 1− log |Bn|

nb
,

we are guaranteed by Markov’s inequality that with high probability, no elements of Bn appear in
CRLC(R). However, what if R > RE

RLC(Bn)? It turns out that the statement above is not tight: in
some cases it is likely that no elements of Bn appear in CRLC(R) even if the rate R is significantly
larger than RE

RLC(Bn). We give an example in Example 2.5 of when this can occur.
Our result in Theorem 2.8 pins down exactly when this can occur. Informally, it happens

only because some projection B′n of the collection Bn is more favorable than one might expect, in
the sense that RE

RLC(B′n) is larger than one might expect. In this case, the “correct” threshold is
precisely RE

RLC(B′n).
Thus, Theorem 2.8 also provides a characterization of which sorts of “bad” lists B (up to a

permutation of the coordinates) are contained in a random linear code of a particular rate. We
hope that this characterization will be useful in the study of random linear codes themselves, in
addition to random LDPC codes.

The full power of Theorem 2.8 (including the characterization of RnRLC(P) described above)
is used to prove Theorem 1.8. However, given Theorem 1.8, Theorem 1.2 readily follows from
Corollary 1.12 itself:

Proof of Theorem 1.2. Let P denote the property of being (α,L)-list-decodable. Note that P is a
local property: for any n ∈ N, take Bn to be the collection of all sets of L+1 vectors in Fnq contained
in some Hamming ball of radius α. Now, fix some R ∈ (0, 1) and assume that a random linear code
of rate R satisfies P with high probability. Corollary 1.12 implies that RnRLC(P) ≤ R+ on→∞(1).

Next, it is not hard to verify that lim supn→∞R
n
RLC(P) ≤ 1 − hq(α) < 1. Indeed, it follows

from the list-decoding capacity theorem (e.g. [LW18, Thm 1.1]) that for large enough n there are
no (α,L)-list-decodable codes of rate 1− hq(α) + ε. In particular, this means that a random linear
code of rate 1− hq(α) + ε almost surely does not satisfy P.

Theorem 1.8 now immediately yields Theorem 1.2.

We give a high-level overview of the proof of Theorem 1.8 in Section 2 below after a discussion
of related work in Section 1.2.

1.2 Related Work

List-decodability of random ensembles of codes. As mentioned above, it is not hard to see
that a completely random code C ⊂ Σn achieves list-decoding capacity. There has also been work
studying more structured random ensembles of codes, notably random linear codes. Zyablov and
Pinsker [ZP81] showed that random linear codes of rate 1−hq(α)− ε are (α,L)-list-decodable with
high probability, where L is independent of n but depends exponentially on 1/ε. Two decades later,
[GHSZ02] showed that there exist binary linear codes with list-size O(1/ε), and their techniques
were recently extended to hold with high probability in [LW18]. In the meantime, [GHK11] showed
that random linear codes over any constant-sized alphabet achieve capacity with L = O(1/ε) when
α is bounded away from 1− 1/q; [CGV13, Woo13, RW14, RW18] extended these results to get list
sizes nearly as good even for large α, although the problem is still open in some parameter regimes.

7

Several variants of list-decoding have been studied for random linear codes, including list-
recovery [RW18], average-radius list-decoding [Woo13, RW14, RW18], and list-recovery from era-
sures [Gur03].7 All of these properties are local, and so our main theorem implies that LDPC codes
satisfy them with high probability.

List-decodability of explicit codes. Obtaining explicit constructions of codes which achieve
list-decoding capacity was a major open problem until it was solved about a decade ago. The first
explicit codes to provably achieve capacity were the Folded Reed-Solomon Codes of Guruswami
and Rudra [GR08]. These codes are variants on the classic Reed-Solomon codes and are based on
polynomials over finite fields. Since then, there have been several constructions of such codes, also
based on algebraic techniques, including Univariate Multiplicity Codes [GW13, Kop15, KRSW18],
variants of Algebraic-Geometry Codes [GX12, GX13], and manipulations of these codes [DL12,
GK16, HRW17, KRRZ+19]. However, the state-of-the-art for explicit constructions still requires
quite large (but constant) alphabet and list sizes. These codes can be efficiently list-decoded in
polynomial time; the fastest algorithm is that of [HRW17, KRRZ+19], which runs in nearly-linear
time O(n1+o(1)).

While graph-based techniques have been used to modify the underlying algebraic constructions
(for example the expander-based distance-amplification technique of [AEL95] is used in [HRW17,
KRRZ+19] to obtain near-linear-time list-decoding), to the best of our knowledge there are no
results establishing list-decodability up to capacity for purely graph-based codes such as LDPC
codes or expander codes.8

Finally, we note that recent work [DHK+19] has given an algorithm to list-decode codes based
on high-dimensional expanders, but these results are far from list-decoding capacity.

LDPC Codes Achieve Capacity on the Binary Symmetric Channel. LDPC Codes have
been studied extensively in the context of unique decoding, especially in a model of random errors.
Informally, a code is said to achieve capacity on the Binary Symmetric Channel (BSC) if there is some
algorithm which can, with high probability, uniquely decode a code of rate R = 1− h2(α)− ε from
an α-fraction of random errors. It is known that Gallager’s LDPC codes nearly achieve capacity on
the BSC as n gets large, under maximum-likelihood decoding [Gal62, Gur06], and recently it was
shown that certain LDPC codes achieve capacity for smaller block lengths under efficient decoding
algorithms as well [KRU13]. Achieving capacity on the BSC is related to achieving list-decoding
capacity (in particular, the capacities are the same, R = 1 − hq(α)). However, there is no formal
connection along these lines, and to the best of our knowledge these results about the BSC do not
imply anything about the list-decodability of LDPC codes.

7 List-recovery is a generalization of list-decoding where the input is a list of sets Z1, . . . , Zn of size at most `
(instead of a received word z ∈ Σn, which can be seen as the ` = 1 case), and goal is to find all of the codewords
c ∈ C so that ci ∈ Zi for at least a 1 − α fraction of the i ∈ [n]. Average-radius list-decoding is a strengthening
of list-decoding where instead of requiring that no set of L + 1 codewords are all close to some z, we require that
no set of L + 1 codewords has small average distance to z. List-decoding from erasures is a weaker notion than
list-decoding, where z ∈ (Σ ∪ {⊥})n has some erased symbols, and the goal is to recover all c ∈ C which agree with
z on the observed coordinates.

8We note that [HW18] give capacity-achieving graph-based codes for zero-error list-recovery (with erasures), where
the input is lists Z1, . . . , Zn so that most lists have small size, and the goal is to return all codewords c ∈ C that
satisfy ci ∈ Zi for all i. It does not seem easy to adapt these techniques for general list-recovery and hence for
list-decoding.

8

Relationship to graph properties. Finally, we note that our results providing sharp thresholds
of local properties for random linear codes are reminiscent of classic results about local properties
of random graphs. We discuss this connection more in Remark 2.10.

1.3 Discussion and open questions

In this work, we answer Question 1.1 with a very strong “yes.” There are LDPC codes that achieve
list-decoding capacity, and moreover there are many of them, and moreover these codes also likely
satisfy any local property—that is, any property which can be defined by ruling out small bad sets
of codewords—which is likely satisfied by a random linear code. Our results raise several interesting
questions:

1. What other properties are local? We have shown that random LDPC codes satisfy with
high probability any local property that random linear codes satisfy with high probability.
There are several natural examples of local properties, including distance, list-decoding and
list-recovery. What other examples are there?

2. What other applications of Theorem 2.8 are there? In subsequent work [GLM+20], the
characterization of a sharp threshold for local properties of random linear codes (Theorem 2.8)
was already demonstrated to be useful beyond our work on LDPC codes. We hope to see
additional applications of this result. For example, Remark 2.9 implies that to prove that
CRLC(R− ε) satisfies a local property P with probability 1− 2−Ω(n), it suffices to show that
CRLC(R) satisfies P with some tiny probability (at least 2−o(n)). Are there situations where
this could be useful?

3. Derandomization? Our results hold for a random ensemble of LDPC codes. It is natural
to ask whether (or to what extent) this construction can be derandomized. In particular, it
does not seem as though the underlying graph being an expander would be sufficient.

4. Algorithms? Our results are combinatorial, but one of our main motivations is algorithmic.
At the moment we do not know of any truly linear-time list-decoding algorithms for any
capacity-achieving list-decodable codes. Since essentially all known linear-time algorithms in
coding theory arise from graph-based codes, such codes are a natural candidate for linear-time
list-decoding. Now that we know that random LDPC codes achieve list-decoding capacity
combinatorially, can we list-decode them efficiently?

1.4 Organization and main building blocks

In Section 2, we give a high-level overview of the proof of Theorem 1.8. This proof relies on three
building blocks:

• First, Lemma 2.7 establishes sharp thresholds for certain local properties, and effectively
characterizes the sorts of sets B ⊆ Fnq that are contained in a random linear code. We prove
this lemma in Section 3. Using Lemma 2.7 we prove Theorem 2.8, which pins down a sharp
threshold for any local property of a random linear code.

• Second, Lemma 2.13 shows that for a set B with a certain property called δ-smoothness, the
probability that B appears in a random s-LDPC code is not much larger than the probability

9

that it appears in a random linear code of the same rate. We prove this Lemma 2.13 in
Section 4 using Fourier analysis.

Together with Lemma 2.7, Lemma 2.13 implies that any property satisfied with high prob-
ability by a random linear code is also satisfied with high probability by a random s-LDPC
code of similar rate, provided that we can restrict our attention to δ-smooth sets B. It turns
out that for any code with good distance,9 we may indeed restrict our attention to such sets,
so it remains to show that random s-LDPC codes have good distance.

• Third, Theorem 2.14 shows that random s-LDPC codes do indeed have good distance with
high probability. This was already shown by Gallager in the binary case; we give an alternative
proof of this fact that also extends to large alphabets. We prove Theorem 2.14 in Section 5
using techniques from exponential families.

Together, these three building blocks can be used to establish Theorem 1.8, as we show next in
Section 2.

2 High-level idea: proof of Theorem 1.8

In this section we prove our main theorem (Theorem 1.8) using the building blocks outlined in
Section 1.4. We will establish these building blocks in later sections. The purpose of this section is
to give a high-level idea of the structure of the proof, deferring the technical parts to later sections.
However, we will need a few technical definitions, outlined in Section 2.1.

2.1 Notation and definitions

Because we are studying local properties, we need some notation around sets B ⊆ Fnq . For such a

set B of size `, it will be convienient to view B as a matrix M ∈ Fn×`q with the elements of B as
the columns. (The ordering of the columns will not matter.) We say that M is contained in a code
C ⊆ Fnq (written “M ⊂ C”) if all of the columns of M belong to C.

The notion of permutation-invariant properties leads us to think about permutations of the
rows of such a matrix M ∈ Fn×`q . Motivated by this, we define τM , the row distribution of M , as

follows: for any v ∈ F`q,

τM (v) :=
number of appearances of v as a row in M

n
.

Let Dn,` denote the collection of possible row distributions of matrices in Fn×`q , i.e., distributions

τ over F`q where τ(v) · n ∈ N for any v ∈ supp(τ).10 The number of possible row distributions of

matrices in Fn×`q is just the number of ways to partition n things into at most q` groups, so

|Dn,`| ≤
(
n+ q` − 1

q` − 1

)
. (3)

9The distance of a code is the minimum distance between any two codewords.
10Notice that Dn,` depends on q as well, but we suppress this dependence in the notation for readability.

10

For a distribution τ ∈ Dn,`, let Mn,τ denote the collection of matrices M ∈ Fn×`q with row dis-
tribution τ . We say that a code C contains τ to mean that M ⊂ C for some matrix M ∈ Mn,τ .
Let

Lτ = {n ∈ N | τ(u) · n is an integer for all u ∈ F`q}.

Note that for C to contain τ , a trivial necessary condition is that the length of C belongs to Lτ .
Let Pτ denote the `-local property of not containing any matrix from the set Mn,τ . Properties of
the form Pτ are particularly useful to us due to the following observation:

Observation 2.1 (Local property decomposition). Let P = (Pn)n∈N be an `-local property for
some ` ∈ N. Then, for every n ∈ N there exists Tn ⊆ Dn,` such that

C ⊆ Fnq satisfies Pn ⇐⇒ C satisfies Pτ for all τ ∈ Tn.

Proof. Note that for every τ ∈ Dn,`, the set of matrices Mn,τ is closed under row permutations.
The lemma now follows immediately from the definition of a local property.

Finally, let H(τ) and Hq(τ) denote the entropy and base-q-entropy of a random variable dis-
tributed according to τ :

H(τ) := −
∑

x∈supp(τ)

τ(x) log(τ(x)) and Hq(τ) :=
H(τ)

log q
.

Let
d(τ) := dim(span(supp(τ))).

We will work with the parity-check matrix view of a random s-LDPC code C. Let H ∈ F(1−R)n×n
q

be the adjacency matrix of the graph G in Figure 1 where the nonzero entries are given by the
coefficients αi,j of the parity checks. Then we can define a random s-LDPC code C as

C =
{
x ∈ Fnq : H · x = 0

}
.

We introduce some notation to talk about the structure of H, which we will use throughout the
paper. This is illustrated in Figure 2.

Let F ∈ {0, 1}(n/s)×n be the matrix F = (F1 | F2 | . . . | Fn/s), where each Fi ∈ {0, 1}(n/s)×s
has all-ones i-th row, and the rest of the rows are all-zeros. Let Π ∈ {0, 1}n×n be a random
permutation matrix, and let D ∈ Fn×nq be a diagonal matrix with diagonal entries that are uniform
in F∗q . Let H1, . . . ,H(1−R)·s be sampled independently according to the distribution F ·Π ·D. Then

let H ∈ F(1−R)n×n
q be the matrix obtained by stacking H1, . . . ,H(1−R)·s on top of each other (see

Figure 2). Then H is the parity-check matrix for a random s-LDPC code of rate R. We will refer
to each Hi as a “layer” of H.

We will also require the following standard facts:

Fact 2.2. A matrix M ∈ Fn×`q is contained in a random linear code C ⊆ Fnq of rate R with

probability q−(1−R)·rank(M)·n.

We include the proof of Fact 2.2 for completeness.

11

F =

111111
111111

111111
111111

111111

n
s

s

H =

H1

H2

H(1−R)·s

...

n
s

(1−R)n

n

Figure 2: The matrices F and H. Each layer Hi of H is drawn independently according to the distribution
F · Π ·D, where Π ∈ {0, 1}n×n is a random permutation and D ∈ Fn×n

q is a diagonal matrix with diagonal
entries that are uniform in F∗

q .

Proof. Let v1, . . . , vrank(M) be columns of M that form a basis for the column span of M . Then

for each vi, Pr [vi ∈ C] = q−(1−R)n. Since the vi are linearly independent, the events that they are
contained in a random linear code C are stochastically independent, and so the probability that all
rank(M) of these vectors are contained in C is q−(1−R)·rank(M)·n.

Fact 2.3 ([CS+04], Lemma 2.2). For any distribution τ ∈ Dn,`,

qHq(τ)·n ·
(
n+ q` − 1

q` − 1

)−1

≤ |Mn,τ | ≤ qHq(τ)·n.

2.2 Sharp thresholds for local properties for random linear codes

The first building block is Lemma 2.7 below, which shows that for every distribution τ ∈ Dn,`,
the property Pτ is sharp for random linear codes. Moreover we give a simple characterization of
RRLC(Pτ). As an easy corollary, we get Theorem 2.8, which generalizes Lemma 2.7 to any local
property, not necessarily of the form Pτ .

Before stating Lemma 2.7 we give some intuition. Fix some distribution τ over F`q. Let C
be a random linear code of length n ∈ Lτ and rate R. We seek a threshold rate, above which
C is likely to contain τ . It is natural to attempt a first-moment approach to this problem and
ask what is the expected number of matrices from Mn,τ which are contained in C. Note that
|Mn,τ | = qn·Hq(τ) · poly(n). Indeed, if u1, . . . , uq` are an enumeration of F`q, then Mn,τ is in one-

to-one correspondence with partitions on [n] into q` subsets of sizes nτ(u1), . . . , nτ(uq`). That is,

|Mn,τ | =
(

n
nτ(u1),...,nτ(u

q`
)

)
= qnHq(τ) · poly(n), where the last estimate follows from Fact 2.3, and

relies on our assumption that n ∈ Lτ .
Given M ∈Mn,τ , the code C contains M with probability q−n·(1−R)·d(τ) (see Fact 2.2). Hence,

in expectation, C contains roughly qn·(Hq(τ)−(1−R)·d(τ)) matrices from Mn,τ . In particular, this

expectation grows (resp. decays) exponentially in n, when R is larger (resp. smaller) than 1−Hq(τ)
d(τ) .

This motivates the following definition.

Definition 2.4 (Expectation threshold). Given a distribution τ over F`q, define the expectation-
threshold

RE
RLC(τ) := 1− Hq(τ)

d(τ)
.

12

It follows immediately from a first-moment argument that if R < RE
RLC(τ) then C satisfies Pτ

with probability 1− e−Ω(n). In particular, as n grows we get the lower bound

RnRLC(Pτ) ≥ RE
RLC(τ)− o(1). (4)

However, as the following example shows, this bound is not tight.

Example 2.5. Let q = 2, ` = 3 and consider the distribution τ over F3
2, given by the following

table:

u τ(u)

(1, 0, 0) 1/4

(0, 1, 0) 1/4

(1, 0, 1) 1/4

(0, 1, 1) 1/4

Every other vector 0

It is straightforward to compute RE
RLC(τ) = 1− H2(τ)

d(τ) = 1− 2
3 = 1

3 .

We claim that RnRLC(Pτ) is bounded away from RE
RLC(τ). Let A :=

(
1 0 0
0 1 0

)
∈ F2×3

2 represent
the linear map which projects a vector onto its first two coordinates. Let τ ′ denote the distribution
of Au, where u is a random vector sampled from τ . Thus, τ ′ is distributed as follows:

u τ ′(u)

(1, 0) 1/2

(0, 1) 1/2

Every other vector 0

Note that a code C which contains a matrix M from Mn,τ must contain the first two columns of
M : that is, the matrix MAT . Consequently, every code which satisfies Pτ ′ also satisfies Pτ , and
so RnRLC(Pτ) ≥ RnRLC(Pτ ′).

Finally, (4) yields

RnRLC(Pτ ′) ≥ RE
RLC(τ ′)− o(1) = 1− H2(τ ′)

d(τ ′)
− o(1) = 1− 1

2
− o(1) =

1

2
− o(1)

and we conclude that

RnRLC(Pτ) ≥ 1

2
− o(1) >

1

3
= RE

RLC(τ)

for large n.

In Example 2.5, the bound of RE
RLC(τ) was not tight, in that the rate can actually be much

higher than we would expect from a first-moment argument. The reason was that there was some
linear map A so that τ ′ = Aτ had a larger value of RE

RLC(τ ′). We will show below that this is the
only reason that RE

RLC(τ) might not be the right answer. To make this precise, we introduce the
following definition.

Definition 2.6 (Implied distribution). Let τ be a distribution over F`q and let A ∈ Fm×`q be a rank
m matrix for some m ≤ `. The distribution of the random vector Au, where u is randomly sampled
from τ , is said to be τ -implied. We denote the set of τ -implied distributions by Iτ .

13

Note that whenever τ ′ ∈ Iτ , a linear code satisfying Pτ ′ must also satisfy Pτ . Indeed, in the
setting of Definition 2.6 assume that C contains a matrix M ∈Mn,τ . By linearity, C also contains
the matrix MAT , which belongs to Mn,τ ′ . Hence, not satisfying Pτ implies not satisfying Pτ ′ .
Consequently, RnRLC(Pτ) ≥ RnRLC(Pτ ′).

Inequality (4) now yields the stronger bound

RRLC(Pτ)n ≥ max
τ ′∈Iτ

RE
RLC(τ ′)− o(1). (5)

Lemma 2.7 below essentially says that (5) is tight, and that Pτ is sharp for random linear codes.
We prove this Lemma in Section 3.

Lemma 2.7 (Sharp threshold for Pτ for random linear codes). Let ` ∈ N and let τ be a distribution
over F`q. Denote R∗τ = maxτ ′∈Iτ R

E
RLC(τ ′). Then

RnRLC(Pτ) = R∗τ ± on→∞(1).

for n ∈ Lτ . Moreover, Pτ is sharp for random linear codes. Specifically, fix any ε > 0, and let C
be a random linear code of rate R and length n ∈ Lτ . The following holds:

(i) If R ≤ R∗τ − ε, then
Pr [∃M ∈Mn,τ ,M ⊂ C] ≤ q−εn.

(ii) If R ≥ R∗τ + ε, then

Pr [∃M ∈Mn,τ ,M ⊂ C] ≥ 1−
(
n+ q2` − 1

q2` − 1

)3

· q−εn.

We now can conclude a more general result.

Theorem 2.8 (Sharp thresholds for local properties for random linear codes). Fix ` ∈ N. Let
P = (Pn)n∈N be an `-local property and let (Tn)n∈N be as in Observation 2.1. Then P is sharp for
random linear codes and

RnRLC(P) = min
τ∈Tn

max
τ ′∈Iτ

RE
RLC(τ ′)± on→∞(1).

Proof of Theorem 2.8. Denote
R∗n = min

τ∈Tn
max
τ ′∈Iτ

RE
RLC(τ ′)

and fix ε > 0. To prove the theorem, it suffices to show the following:

1. limn→∞ Pr [CnRLC(R∗n − ε) satisfies P] = 1

2. limn→∞ Pr [CnRLC(R∗n + ε) satisfies P] = 0.

For the first statement, let C = CnRLC(R∗n− ε). For each τ ∈ Tn, Lemma 2.7(i) guarantees that
Pr [C contains τ] ≤ q−εn. We take a union bound over all τ ∈ Tn noting that

|Tn| ≤ |Dn,`| ≤
(
n+ q` − 1

q` − 1

)
≤ (n+ q`)q

`

14

due to (3). This yields

Pr [C satisfies Pn] ≤ (n+ q`)q
` · q−εn ≤ on→∞(1).

We turn to the second statement. Let C = CnRLC(R∗n + ε), and let τ ∈ Tn such that

max
τ ′∈Iτ

RE
RLC(P ′τ) = R∗.

By Lemma 2.7(ii), C almost surely contains τ , which is a sufficient condition for the code not to
satisfy P.

Remark 2.9 (Probability of satisfying P in Theorem 2.8). Fix ε > 0. An inspection of the proof
of Theorem 2.8 shows that CnRLC(RnRLC(P) − ε) satisfies P with probability 1 − 2−Ω(n). Likewise,
CnRLC(RnRLC(P) + ε) satisfies P with probability 2−Ω(n).

Remark 2.10 (Relationship to random graphs). Lemma 2.7 has an analog in the theory of random
graphs. Fix a constant-sized graph H and let G be a random graph in the G(n, p) model. A natural
problem is to determine the threshold for the appearance of H as a sub-graph of G. The answer
(see for example [Bol01, Sec. 4.2]) is that a copy of H is likely to occur in G whenever p is large
enough so that every subgraph of H has, in expectation, ω(1) copies as subgraphs of G. To complete
the analogy, equate H with τ , and a subgraph of H with a τ -implied distribution.

We also mention the recent breakthrough result of Frankston et al., which studies this relation-
ship between thresholds and expectations of sub-structures in a more general framework [FKNP19].
However, since the properties that they study are not necessarily local, it is impossible for that work
to precisely pinpoint the thresholds, as we do in our work.

2.3 Probability that a matrix is contained in a random s-LDPC code

The second building block shows that given a matrix M ∈ Fn×`q , the probability that M is contained
in a random s-LDPC code is not much larger than that of appearing in a random linear code,
provided that M is δ-smooth (defined below).

Definition 2.11 (Smooth distribution). Let δ > 0. We say that a distribution τ over F`q is δ-

smooth if Prv∼τ [〈u, v〉 6= 0] ≥ δ for all u ∈ F`q \ {0}. If M ∈ Fn×`q is such that τM is δ-smooth, we
also say that M is δ-smooth.

Remark 2.12 (Relationship to distance). In coding-theoretic terms, τM is δ-smooth if and only
if the code

{
Mu : u ∈ F`q

}
has relative distance at least δ and M is full-rank. Indeed, the relative

weight of any codeword Mu in this code is

1

n

∑
i∈[n]

1〈u,eTi M〉6=0 = Pr
v∼τ

[〈u, v〉 6= 0].

The following lemma bounds the probability that a matrix with smooth row distribution is
contained in a random LDPC code with sufficiently large sparsity parameter. We prove this lemma
in Section 4.

15

Lemma 2.13 (Probability that a random LDPC code contains a matrix). For any δ, ε > 0, prime
power q, and ` ≥ 1 there exists s0 ≥ 1 such that the following holds for any odd s ≥ s0, and
sufficiently large n. Let M ∈ Fn×`q be δ-smooth. Then the probability p that M is contained in a
random s-LDPC code of length n and rate R satisfies

p ≤ q−(1−ε)·(1−R)·`·n.

Given a smooth distribution τ , in light of Fact 2.2, Lemma 2.13 says that the expected number
of matrices fromMn,τ in a random s-LDPC code is not much larger than this number for a random
linear code. If we ignore the constraint that τ must be smooth, then together with Lemma 2.7 the
above would imply Theorem 1.8. Indeed, if a distribution τ is unlikely to appear in a random linear
code then Lemma 2.7 shows that some τ -implied distribution τ ′ appears o(1) times in expectation
in the random linear code. By Lemma 2.13, τ ′ appears o(1) times in the random LDPC code as
well, so the LDPC code is unlikely to contain τ ′. Thus, it is also unlikely to contain τ . (Of course,
we cannot ignore the constraint that τ must be smooth; we will address this in our next building
block discussed in Section 2.4).

The proof of Lemma 2.13 proceeds by Fourier analysis. The basic idea is as follows: since C is a
random s-LDPC code, each parity-check corresponds (essentially) to an independent and uniformly
random set of s coordinates in [n].11 Thus, the probability that a matrix M ∈Mn,τ is in C can be
derived from the probability that s random vectors v1, . . . , vs ∼ τ sum to zero. This probability is
given by a convolution τ∗s(0) = τ ∗ τ ∗ · · · ∗ τ(0) of τ with itself s times. The convolution is in turn
controlled by s’th powers of the Fourier coefficients τ̂(w) of τ . As we will see, the condition that τ
be δ-smooth implies that the nonzero Fourier coefficients τ̂(w) are bounded away from 1, and this
means that if s is large enough, the contributions τ̂(w)s of the nonzero coefficients to τ∗s(0) will
become small.

2.4 Distance of random s-LDPC codes

As noted above, the first two building blocks show that for any δ-smooth distribution τ ∼ F`q, a
random LDPC code of rate slightly below RnRLC(Pτ) is unlikely to contain τ . The third and final
building block shows that we may restrict our attention to δ-smooth distributions.

As noted in Remark 2.12, the condition that M be δ-smooth is the same as the condition that
the code generated by M has relative distance at least δ. Thus, if C ⊂ Fnq has relative distance
at least δ, it does not contain any matrices that are not δ-smooth. Fortunately, it is well-known
that binary random s-LDPC codes have good distance, and that in fact the distance approaches
the Gilbert-Varshamov (GV) bound with high probability.12 Theorem 2.14 generalizes this result
to s-LDPC codes over any alphabet. Below, hq(x) is the q-ary entropy function (as in (1)).

Theorem 2.14 (Random LDPC codes achieve the GV bound). For any δ ∈ (0, 1−1/q), ε > 0, and
prime power q there exists s0 ≥ 1 such that the following holds for any s ≥ s0. Let R ≤ 1−hq(δ)−ε.
Then a random s-LDPC code of rate R over Fq has relative distance at least δ with high probability.

Remark 2.15 (Comparison to Gallager’s proof). Gallager’s proof for binary random s-LDPC codes
in [Gal62] uses generating functions. We give an alternative proof using ideas from exponential

11This is not exactly true because the parity checks that belong to the same layer are not independent; however,
we show that this does not significantly affect the probability of the event of interest.

12The GV bound refers to the rate-distance trade-off R = 1− hq(δ), which is approached by a random linear code.

16

families, which follows the approach of recent work by Linial and the first author [LM20]. Our
proof extends to random s-LDPC codes over any alphabet. We note that Gallager left it as an open
problem in [Gal62] to obtain a result like this for larger alphabets, but his definition was slightly
different than ours: the coefficients αi,j in his parity checks were all 1’s, while ours are taken
randomly from F∗q.

Despite having different frameworks, our proof and that of [Gal62] turn out to yield similar
equations. In particular our proof of Lemma 5.2 is very similar to the corresponding proof in
[Gal62] at a technical level. We highlight where the proofs diverge in Remark 5.9.

2.5 Proof of Theorem 1.8 from Lemma 2.7, Lemma 2.13 and Theorem 2.14

Theorem 1.8 now follows as an immediate consequence of the building blocks above. We restate
Theorem 1.8 here:

Theorem 1.8 (Main). Let P = (Pn)n∈N be a b-local property with R̄ := lim supn→∞R
n
RLC(P) < 1.

For any ε > 0 and prime power q, there exists s0 = s0(ε, R̄, q, b) ≥ 1 such that for any odd s ≥ s0

and any sequence {Rn}n∈N, if Rn ≤ RnRLC(P) − ε for all n, then the code ensemble CnsLDPC(Rn)
satisfies P with high probability.

Proof. Fix a sufficiently large odd integer s (depending on R̄, ε, q and b). For n ∈ N, let C :=
CnsLDPC(Rn) for some Rn ≤ RnRLC(P)− ε. Let Tn be as in Observation 2.1. Let

δ :=
h−1
q (1−R)

2
> 0.

Let D denote the event that the relative distance of C is at most δ.
Fix some τ ∈ Tn. Let τ ′ ∈ Iτ be a maximizer of RE

RLC(τ ′). We may assume that τ ′ is a

distribution over Fd(τ ′)
q . Indeed, otherwise, let A : span(supp(τ ′)) → Fd(τ ′)

q be a linear bijection,
and take the distribution of Au (for u ∼ τ ′) in place of τ ′ itself.

By Lemma 2.7, for n large enough,

Rn ≤ RnRLC(P)− ε
≤ RnRLC(Pτ)− ε

≤ RE
RLC(τ ′)− ε

2

= 1− Hq(τ
′)

d(τ ′)
− ε

2
,

where the first line is our assumption on Rn; the second line follows from the fact that any code
satisfying P must in particular satisfy Pτ ; the third line is Lemma 2.7; and the fourth line is the
definition of RE

RLC(τ ′).
Consider the case where τ ′ is δ-smooth. Let p denote the probability that C contains a given

matrix from Mn,τ ′ . By Lemma 2.13, for s large enough we have p ≤ q−(1− ε
4

)(1−Rn)·d(τ ′)·n. Thus,

17

the expected number of such matrices in C is at most

|Mn,τ ′ | · p ≤ qH(τ ′)·n · p

≤ q(H(τ ′)−(1− ε
4)(1−Rn)·d(τ ′))·n

≤ q
(
H(τ ′)−(1− ε

4
)
(
H(τ ′)
d(τ ′) + ε

2

)
·d(τ ′)

)
·n

= q(
ε
4
·H(τ ′)−(1− ε

4
) ε

2
·d(τ ′))·n

≤ q(
ε
4
·d(τ ′)−(1− ε

4
) ε

2
·d(τ ′))·n

= q−
ε
8
·d(τ ′)·n

≤ q−
ε
8
n. (6)

Here, we used the fact that H(τ ′) ≤ logq |supp(τ ′)| = d(τ ′).
On the other hand, assume that τ ′ is not δ-smooth. By Remark 2.12, if C contains τ ′ then the

event D must hold (in that setting of that remark, our assumption that the domain of τ ′ is Fd(τ ′)
q ,

is equivalent to M having full-rank). Since any code containing τ must also contain τ ′, Markov’s
inequality and (6) yield

Pr (C contains τ, and D does not hold) ≤ q−
ε
8
n.

Taking a union bound over all τ ∈ Tn and using (3), we get

Pr(C satisfies P, and D does not hold) ≤ q−
ε
8
n·|Tn| ≤ q−

ε
8
n·|Dn,`| ≤ q−

ε
8
n·
(
n+ q` − 1

q` − 1

)
≤ on→∞(1).

Finally, Theorem 2.14 says that D almost surely does not hold, and we conclude that C satisfies
P with high probability.

3 Sharp thresholds of local properties for random linear codes:
proof of Lemma 2.7

In this section we prove Lemma 2.7, which we restate below.

Lemma 2.7 (Sharp threshold for Pτ for random linear codes). Let ` ∈ N and let τ be a distribution
over F`q. Denote R∗τ = maxτ ′∈Iτ R

E
RLC(τ ′). Then

RnRLC(Pτ) = R∗τ ± on→∞(1).

for n ∈ Lτ . Moreover, Pτ is sharp for random linear codes. Specifically, fix any ε > 0, and let C
be a random linear code of rate R and length n ∈ Lτ . The following holds:

(i) If R ≤ R∗τ − ε, then
Pr [∃M ∈Mn,τ ,M ⊂ C] ≤ q−εn.

(ii) If R ≥ R∗τ + ε, then

Pr [∃M ∈Mn,τ ,M ⊂ C] ≥ 1−
(
n+ q2` − 1

q2` − 1

)3

· q−εn.

We note that statements (i) and (ii) of Lemma 2.7 also imply the rest of the lemma. Thus, it
suffices to prove them.

18

3.1 Proof of Statement (i)

Assume that τ is such that R∗τ = maxτ ′∈Iτ R
E
RLC(τ ′) satisfies

R ≤ R∗τ − ε .

Choose τ ′ ∈ Iτ achieving RE
RLC(τ ′) = R∗τ and let A ∈ Fm×`q be such that τ ′ is given by Av

for v ∼ τ . By Fact 2.2, a matrix M ′ ∈ Mn,τ ′ is contained in C = CnRLC(R) with probability
q−(1−R)·rank(M ′)·n = q−(1−R)·d(τ ′)·n, and so

Pr
[
∃M ∈Mn,τ ′ ,M ⊂ C

]
≤ |Mn,τ ′ | · q−(1−R)·d(τ ′)·n ≤ q(Hq(τ ′)−(1−R)·d(τ ′))·n ≤ q−εn,

where the first inequality follows by a union bound, the second applies Fact 2.3, and the final

inequality uses RE
RLC(τ ′) = 1− Hq(τ ′)

d(τ ′) ≥ R+ ε.

Finally, note that if C contains some matrix M ∈Mn,τ , then by linearity, M ′ := MAT ∈Mn,τ ′

is also contained in C. So we conclude

Pr [∃M ∈Mn,τ ,M ⊂ C] ≤ q−εn.

3.2 Proof of Statement (ii)

We now proceed to the second part of the theorem, which is more involved. Suppose that τ ∈ Dn,`
is such that R∗τ = maxτ ′∈Iτ R

E
RLC(τ ′) satisfies R ≥ R∗τ + ε.

First, we will argue that we may assume without loss of generality that d(τ) = `. By the

definition of d(τ), there is some matrix B ∈ Fd(τ)×`
q of rank d(τ) so that the distribution τ̃ given

by Bv, v ∼ τ has d(τ̃) = d(τ). We claim that

max
τ ′∈Iτ

RE
RLC(τ ′) ≤ R− ε

implies that
max
τ̃ ′∈Iτ̃

RE
RLC(τ̃ ′) ≤ R− ε.

To see this, we prove the contrapositive. Suppose that there is some τ̃ ′ ∈ Iτ̃ so that RE
RLC(τ̃ ′) >

R − ε. Then by the definition of Iτ̃ , there is some matrix A ∈ Fm×d(τ̃)
q so that τ̃ ′ is given by Aw,

w ∼ τ̃ . But this is the same as the distribution ABv, v ∼ τ , using the definition of τ̃ . Thus, τ̃ ′ ∈ Iτ ,

and this implies that maxτ ′∈Iτ R
E
RLC(τ ′) > R − ε. Finally, we observe that

(n+q2`−1
q2`−1

)
is increasing

in `, we conclude that to prove the statement (ii), we may as well work with the distribution τ̃ on

Fd(τ̃)
q . Thus, in the following we will assume that d(τ) = `.

For a matrix M ∈ Fn×`q , let XM be the indicator variable for the event that M ⊆ C, and let
X =

∑
M∈Mn,τ

XM . Our goal then is to show that X > 0 with high probability, and we do so by

showing that Var (X) = o(E2[X]).
We first show a lower bound on E[X]. By Facts 2.2 and 2.3,

E [X] = |Mn,τ | · q−(1−R)·`·n ≥ q(Hq(τ)−(1−R)·`)·n ·
(
n+ q` − 1

q` − 1

)−1

. (7)

19

Next we show an upper bound on Var (X). Given a pair of matrices M,M ′ ∈ Mn,τ , we let
(M |M ′) denote the (n× (2`))-matrix consisting of a left n× ` block equal to M , and a right n× `
block equal to M ′. Then in this notation we have

Var (X) =
∑

M,M ′∈Mn,τ

(
E[XM ·XM ′]− E[XM] · E[XM ′]

)

=
∑

M,M ′∈Mn,τ

(
Pr
[
(M |M ′) ⊆ C

]
− Pr[M ⊆ C] · Pr[M ′ ⊆ C]

)

=
∑

M,M ′∈Mn,τ

(
q−(1−R)·rank(M |M ′)·n − q−2·(1−R)·`·n

)
.

Notice that in the above sum, terms for which rank(M |M ′) = 2` vanish. Let

M :=

{
(M |M ′) |M,M ′ ∈Mn,τ and rank(M |M ′) < 2`

}
,

and
D := {τM : M ∈M}. (8)

Then we have

Var (X) ≤
∑
M∈M

q−(1−R)·rank(M)·n

=
∑
τ ′∈D

∑
M∈Mn,τ ′

q−(1−R)·rank(M)·n

=
∑
τ ′∈D
|Mn,τ ′ | · q−(1−R)·d(τ ′)·n.

≤
∑
τ ′∈D

q(Hq(τ ′)−(1−R)·d(τ ′))·n

where the last inequality follows by Fact 2.3. Finally, Claim 3.1 below shows that for any τ ′ ∈ D,

Hq(τ
′)− (1−R) · d(τ ′) ≤ 2(Hq(τ)− (1−R) · `)− ε,

which implies in turn that

Var (X) ≤ |D| · q2(Hq(τ)−(1−R)·`)·n · q−εn ≤
(
n+ q2` − 1

q2` − 1

)
· q2(Hq(τ)−(1−R)·`)·n · q−εn. (9)

Above, we used the fact that D ⊆ Dn,2` and applied (3). Combining (7) and (9), by Chebyshev’s
inequality we conclude that

Pr[X = 0] ≤ Var (X)

E2[X]
≤
(
n+ q2` − 1

q2` − 1

)3

· q−εn.

To complete the proof, we prove Claim 3.1 which we used above.

20

2`− d

2`

A1 A2

The rows of
(A1|A2) ∈ F(2`−d)×2`

q

are w1, . . . , w2`−d

The columns of this 2`× n matrix
are distributed according to τ ′

The columns of this `× n matrix are
distributed according to τ

The columns of this `× n matrix are also
distributed according to τ

= 0

Figure 3: Notation in the proof of Claim 3.1

Claim 3.1. Let D be as in (8). For any τ ′ ∈ D,

Hq(τ
′)− (1−R) · d(τ ′) ≤ 2(Hq(τ)− (1−R) · `)− ε.

Proof. In what follows, let d := d(τ ′), and V := span(supp(τ ′)) ⊆ F2`
q . Let w1, . . . , w2`−d ∈ F2`

q be

a basis for V ⊥. Let π1 : F2`
q → F`q (respectively, π2) denote the projection of a vector w ∈ F2`

q to the
first (respectively, last) ` coordinates. Finally, let A be the matrix whose rows are w1, . . . , w2`−d,

and let A1 ∈ F(2`−d)×`
q (A2, respectively) denote the matrix whose rows are π1(w1), . . . , π1(w2`−d)

(π2(w1), . . . , π2(w2`−d), respectively). See Figure 3 for a diagram of this notation.
We claim that all rows of A1 are linearly independent, and so rank(A1) = 2` − d. To see this

suppose in contradiction that π1(w1), . . . , π1(w2`−d) are linearly dependent. Then there exists a
non-trivial linear combination of w1, . . . , w2`−d that sums to a non-zero vector of the form (0, w).
But this means that π2(supp(τ ′)) = supp(τ) is orthogonal to w, in contradiction to our assumption
that span(supp(τ)) = F`q. Consequently, recalling that d(τ) = `, the distribution τ ′′ given by A1w

for w ∼ τ has d(τ ′′) = 2`− d. As τ ′′ ∈ Iτ , RE
RLC(τ ′′) ≤ R− ε.

Let Iq(X;Y) = Hq(X)−Hq(X | Y) denote the base-q mutual information of X and Y . Now for
v ∼ τ ′ we have,

Hq(τ
′) = Hq(v)

= Hq(π1(v)) +Hq(π2(v))− Iq(π1(v);π2(v))

= 2Hq(τ)− Iq(π1(v);π2(v))

≤ 2Hq(τ)− Iq(A1π1(v);−A2π2(v))

= 2Hq(τ)−Hq(A1π1(v))

≤ 2Hq(τ)− (1−R+ ε) · d(τ ′′)

= 2Hq(τ)− (1−R+ ε) · (2`− d),

where the first inequality follows since A1π1(v) +A2π2(v) = Av = 0, and the last inequality follows

because 1 − Hq(τ ′′)
d(τ ′′) = RE

RLC(τ ′′) ≤ R − ε. Rearranging, and recalling the assumption that 2` > d,
gives the desired conclusion.

21

4 Matrices contained in a random LDPC code: proof of Lemma 2.13

In this section we prove our second building block, Lemma 2.13, which we re-state below.

Lemma 2.13 (Probability that a random LDPC code contains a matrix). For any δ, ε > 0, prime
power q, and ` ≥ 1 there exists s0 ≥ 1 such that the following holds for any odd s ≥ s0, and
sufficiently large n. Let M ∈ Fn×`q be δ-smooth. Then the probability p that M is contained in a
random s-LDPC code of length n and rate R satisfies

p ≤ q−(1−ε)·(1−R)·`·n.

Remark 4.1 (The parity of s, again). Lemma 2.13 holds for even s as well as odd s, but the proof
is slightly simpler for odd s, so we state and prove it in this case for clarity. This is the only place
in the proof of Theorem 1.8 where we use the parity of s, and so this remark implies Remark 1.3.

We begin with some definitions from Fourier analysis which we will need.

4.1 Fourier-analytic facts

We give here some basic definitions and facts from Fourier analysis of functions on Fq. We refer the
reader to, for example, [LN94, O’D14] for more details and proofs of these facts. In what follows
assume that q = ph for a prime p. The trace map of Fq over Fp is the function tr : Fq → Fp given
by

tr(α) = α+ αp + αp
2

+ · · ·+ αp
h−1

.

For a function f : Fnq → C, we define the Fourier transform f̂ : Fnq → C of f by

f̂(y) = Ex∈Fnq
[
f(x) · χx(y)

]
,

where χx(y) = ω
tr(〈x,y〉)
p , and ωp = e2πi/p. Then we have the decomposition

f(x) =
∑
y∈Fnq

f̂(y) · χy(x) .

We define an inner product on the space of C-valued functions on Fnq by

〈f, g〉 = Ex∈Fnq
[
f(x) · g(x)

]
.

Plancherel’s identity then asserts that

〈f, g〉 =
∑
x∈Fnq

f̂(x) · ĝ(x).

An important special case is Parseval’s identity:

〈f, f〉 =
∑
x∈Fnq

|f̂(x)|2.

The convolution of a pair of functions f, g : Fnq → C is given by

(f ∗ g)(x) = Ey∈Fnq [f(y) · g(x− y)] .

Convolution interacts nicely with the Fourier transform:

f̂ ∗ g(x) = f̂(x) · ĝ(x).

Finally, we define inductively f∗1 := f , and f∗s = f∗(s−1) ∗ f for an integer s ≥ 2.

22

4.2 Proof of Lemma 2.13

Let H ∈ F((1−R)·n)×n
q be the parity-check matrix of C with layers H1, H2, . . . ,H(1−R)·s, as in

Section 2.1. Recall that each layer Hi is an independent sample from FDΠ, where F is as in
Figure 2, Π ∈ {0, 1}n×n is a random permutation matrix, and D ∈ Fn×nq is a diagonal matrix with
diagonal entries that are independent and uniformly random in F∗q . Let Λ be a random matrix
sampled according to the distribution DΠM . Then by independence of the layers,

Pr[M ⊆ C] = Pr[HM = 0]

=
(

Pr[H1M = 0]
)(1−R)·s

=
(

Pr[FDΠM = 0]
)(1−R)·s

=
(

Pr[FΛ = 0]
)(1−R)·s

. (10)

So it suffices to bound the probability that FΛ = 0.
Next observe that each row in Λ has the same marginal distribution P given by λv for v ∼

τM and uniformly random λ ∈ F∗q . Let Λ′ ∈ Fn×`q be a random matrix in which each row is
independently sampled according to P . We claim that

Pr[FΛ = 0] ≤ O
(
n
q`−1

2

)
· Pr[FΛ′ = 0]. (11)

Indeed,

Pr[FΛ = 0] = Pr
[
FΛ′ = 0 | τΛ′ = τM

]
=

Pr [FΛ′ = 0 ∧ τΛ′ = τM]

Pr [τΛ′ = τM]

≤ Pr [FΛ′ = 0]

Pr [τΛ′ = τM]
.

Now we have

Pr [τΛ′ = τM] =

(
n

n · τM (v1), . . . , n · τM (vq`)

)
·
∏
v∈F`q

τM (v)n·τM (v)

where v1, . . . , vq` are the elements of F`q. Noting that
∏
v∈F`q τM (v)n·τM (v) = qnHq(τm), (11) follows

from Fact 2.3.
Thus, it is enough to bound the probability that FΛ′ = 0. We can express this probability as

Pr
[
FΛ′ = 0

]
=

(
Pr

u1,...,us∼P

[
s∑
i=1

ui = 0

])n/s
=

(
q`·(s−1) · P ∗s(0)

)n/s
. (12)

Next we bound P ∗s(0). In terms of Fourier transform, we can write

P ∗s(0) =
∑
y∈F`q

P̂ ∗s(y) · χy(0) =
∑
y∈F`q

(
P̂ (y)

)s
.

23

Claim 4.3 below shows that P̂ (y) ≤ q−` ·
(

1− q
q−1 · δ

)
for any y ∈ F`q \ {0} (in particular, it’s a real

number), and by the assumption that s is odd this implies in turn that

P ∗s(0) =
(
P̂ (0)

)s
+

∑
y∈F`q\{0}

(
P̂ (y)

)s
≤ q−`·s + q−`·(s−1) ·

(
1− q

q − 1
· δ
)s

. (13)

Finally, combining Equations (10), (11), (12), and (13) we conclude that

Pr[M ⊆ C] ≤ O
(
n
q`−1

2
·(1−R)·s

)
·
(
q−` +

(
1− q

q − 1
· δ
)s)(1−R)·n

≤ q−(1−ε)·(1−R)·`·n,

where the last inequality holds for large enough s depending on δ, ε, q, `, and sufficiently large n.

Remark 4.2 (The choice of s). An inspection of the proof shows that we may take

s0 = O

 `

logq

(
1

1−δ/(1−1/q)

)
 .

In particular, noting that ` ≤ b and that

logq

(
1

1− δ/(1− 1/q)

)
=

1

ln(q)

∞∑
i=1

1

i

(
δ

1− 1/q

)i
,

this part of the proof requires us to take

s0 ≥ C0 ·
b log(q)

δ

for some constant C0 > 0. There is one other place in the proof of Theorem 1.8 that requires s0 to
be sufficiently large; we comment on this again in Remark 5.3.

Now, all that remains is to prove Claim 4.3 which we used above.

Claim 4.3. For any y ∈ F`q \ {0}, P̂ (y) ∈ R and

P̂ (y) ≤ q−` ·
(

1− q

q − 1
· δ
)
.

Proof of Claim 4.3. We have

P̂ (y) = q−` ·
∑
x∈F`q

P (x) · ωtr(〈y,x〉)
p

= q−` · Ev∼τMEλ∈F∗q
[
ω−tr(〈y,λv〉)
p

]
= q−` ·

(
Pr

v∼τM
[〈v, y〉 6= 0] · Eξ∈F∗q

[
ωtr(ξ)
p

]
+ Pr
v∼τM

[〈v, y〉 = 0] · Eλ∈F∗q
[
ωtr(0)
p

])
= q−` ·

(
Pr

v∼τM
[〈v, y〉 6= 0] · −1

q − 1
+ Pr
v∼τM

[〈v, y〉 = 0] · 1
)

≤ q−` ·
(
−δ
q − 1

+ (1− δ)
)

= q−` ·
(

1− q

q − 1
· δ
)
,

where the last inequality follows by assumption that τM is δ-smooth.

This completes the proof of Lemma 2.13.

24

5 Random LDPC codes achieve the GV bound: proof of Theo-
rem 2.14

In this section we prove Theorem 2.14, which shows that an LDPC code over any alphabet ap-
proaches the Gilbert-Varshamov bound with high probability. We restate the theorem below.

Theorem 2.14 (Random LDPC codes achieve the GV bound). For any δ ∈ (0, 1−1/q), ε > 0, and
prime power q there exists s0 ≥ 1 such that the following holds for any s ≥ s0. Let R ≤ 1−hq(δ)−ε.
Then a random s-LDPC code of rate R over Fq has relative distance at least δ with high probability.

5.1 Proof of Theorem 2.14, given a lemma

In this section we give an outline of the proof of Theorem 2.14 and prove the theorem based on
Lemma 5.2 that we state below and prove in subsequent subsections.

Our goal is to show that a random s-LDPC code C has good distance, or equivalently that there
are no low-weight codewords in C with high probability. To that end, we introduce the following
notation.

Definition 5.1. For λ ∈ (0, 1) such that λn is an integer, let Pλ = Pr[u ∈ C], where u ∈ Fnq has
weight λ. Note that this probability is the same for every u of weight λ, so Pλ is well-defined.

Our main challenge is to find sufficiently tight upper bounds on these terms Pλ for 0 < λ ≤ δ.
The proof proceeds by giving a bound on Pλ in terms of a certain function ϕ : (0, q−1

q]→ R≤0. We
will prove the following lemma below in Sections 5.2 and 5.3. We will define ϕ below in Section 5.2,
but for now we introduce its important properties in the following lemma (which we also prove
below).

Lemma 5.2. There is a function ϕ :
(

0, q−1
q

]
→ R≤0 which has the following properties.

1. For every λ ∈
(

0, q−1
q

]
,

logq Pλ ≤ ϕ(λ)(1−R)n.

2. The function ϕ satisfies

ϕ(λ) ≤ logq

(
1 + (q − 1)

(
1− q

q − 1
λ

)s)
− 1

for all λ ∈ (0, q−1
q].

3. The function ϕ(λ)
hq(λ) is strictly increasing in the range 0 < λ ≤ q−1

q .

Before we prove Lemma 5.2, we show how it implies Theorem 2.14.

Proof of Theorem 2.14. Our goal is to show that if C is a random s-LDPC code as in the statement
of Theorem 2.14, then with high probability there are no codewords in C of relative weight less

25

than δ. In the following, we assume without loss of generality that δn is an integer. Now

Pr[C has relative distance less than δ] ≤
δn∑
i=1

P i
n

∣∣∣∣{u ∈ Fnq | wt(u) =
i

n

}∣∣∣∣ (14)

≤
δn∑
i=1

P i
n
qnhq(

i
n

)

≤
δn∑
i=1

q(ϕ(i
n

)(1−R)+hq(
i
n

))n (15)

=

δn∑
i=1

q
nhq(

i
n

)

(
(1−R)ϕ(in)

hq(in)
+1

)
(16)

≤
δn∑
i=1

q
nhq(

i
n

)
(

(1−R)ϕ(δ)
hq(δ)

+1
)
. (17)

Above, (14) follows from the union bound, (15) from Item 1 of Lemma 5.2, and (17) from Item 3
of Lemma 5.2. By Item 2 of Lemma 5.2,

(1−R)ϕ(δ)

hq(δ)
+ 1 =

(1−R) ·
(

logq

(
1 + (q − 1)

(
1− q

q−1δ
)s)
− 1
)

hq(δ)
+ 1.

Recall our hypothesis that the rate of the code satisfies R ≤ 1−hq(δ)−ε, and so 1−R ≥ hq(δ)+ε.

Noting that logq

(
1 + (q − 1)

(
1− q

q−1δ
)s)
− 1 ≤ 0, we may thus bound the right hand side from

above by

(hq(δ) + ε) ·
(

logq

(
1 + (q − 1)

(
1− q

q−1δ
)s)
− 1
)

hq(δ)
+ 1

=

(
1 +

ε

hq(δ)

)
·
(

logq

(
1 + (q − 1)

(
1− q

q − 1
δ

)s)
− 1

)
+ 1

=

(
1 +

ε

hq(δ)

)
· logq

(
1 + (q − 1)

(
1− q

q − 1
δ

)s)
− ε

hq(δ)

≤
(

1 +
ε

hq(δ)

)
(q − 1)

ln(q)

(
1− qδ

q − 1

)s
− ε

hq(δ)
.

Thus, as long as s is sufficiently large in terms of δ, ε and q, we conclude that

(1−R)ϕ(δ)

hq(δ)
+ 1 ≤ − ε

2hq(δ)
≤ −ε

2
.

Hence, the right-hand side of (17) is upper bounded by

δn∑
i=1

q−
nhq(in)ε

2 .

This sum is dominated by its first term, so it is at most O(n−Ω(1)).

26

Remark 5.3 (The choice of s). An inspection of the proof above shows that it suffices to take
s & ln(q/ε)/δ. Thus, this part of the proof requires that s0 & ln(q/ε)/δ.

Remark 5.4 (Polynomially small failure probability). In the proof, we see that the failure proba-
bility, while o(1), is only polynomially small in n. In fact, this is tight: it is not hard to see that an
s-random LDPC code C (for s = O(1)) contains a codeword of weight 2 with probability n−O(1).

5.2 The function ϕ and proof of Lemma 5.2, Items 1 and 2

Let λ ∈
(

0, q−1
q

]
such that λn is an integer, and let u ∈ Fnq have weight λn. Let H1, . . . ,Ht be the

layers of the the parity-check matrix H of C, as in Figure 2. Note that the matrices H1, . . . ,Ht are
identically and independently distributed. In particular, the events Pr(Hiu = 0) are independent.
Hence,

Pλ = Pr[u ∈ C] = Pr[Hu = 0] = Pr[H1u = 0]t. (18)

Since the distribution of H1 is invariant to permutation of coordinates, this last probability does
not depend on the vector u as long as it is of relative weight λ. Hence,

Pr[H1u = 0] = Pr[H1ū = 0] = Pr[Fū = 0],

where ū is uniformly sampled from the set of all vectors of weight λ in Fnq . Therefore,

Pλ = Pr[Fū = 0]t,

where F is as in Figure 2.

We turn to bound this expression. Let β ∈
(

0, q−1
q

]
. Denote by µq(β) the distribution on Fq

which is 0 with probability 1 − β and uniform on F∗q with probability β. When β is clear from
context, we shorthand µq = µq(β). Let v ∈ Fnq be a random vector whose entries are i.i.d. random
variables sampled according to µq, which we denote by v ∼ µnq . Observe that the distribution of v,
conditioned on wt(v) = λ, is identical to the distribution of ū. Hence, by Bayes’ rule,

Pr[Fū = 0] = Pr[Fv = 0 | wt(v) = λ] = Pr[wt(v) = λ | Fv = 0] · Pr[Fv = 0]

Pr[wt(v) = λ]
≤ Pr[Fv = 0]

Pr[wt(v) = λ]
(19)

where the probabilities are over the choice of v ∼ µq(β)n.
We proceed to bound the right-hand side of (19). For the denominator, note that

Pr[wt(v) = λ] =

(
n

λn

)
βλn(1− β)(1−λ)n ≥ q−DKLq(λ‖β)n (20)

where above DKLq (x ‖ y) denotes the KL Divergence,

DKLq (x ‖ y) = −x logq
y

x
− (1− x) logq

1− y
1− x

for x ∈ [0, 1] and y ∈ (0, 1).

We next focus on the numerator. The following notation will be useful:

Definition 5.5. For k ∈ N, let

Vkq =

{
w ∈ Fkq :

k∑
i=1

wi = 0

}
.

27

Let f1, . . . , fn
s

denote the rows of the matrix F . Note that the vectors f1, . . . fn
s

have disjoint
supports, so the products fiv are independently and identically distributed. Hence, Pr[Fv = 0] =
Pr[f1v = 0]

n
s . Observe that the distribution of v is symmetric to multiplication of each entry by a

nonzero element of Fq. Consequently,

Pr
v∼µnq

[Fv = 0] = Pr
v∼µnq

[f1v = 0]
n
s = Pr

v∼µnq

[
s∑
i=1

vi = 0

]n
s

=

(
Pr
w∼µsq

[w ∈ Vsq]
)n/s

. (21)

The following lemma gives a closed form for this last expression.

Lemma 5.6.

Pr
w∼µsq

[w ∈ Vsq] =
1 + (q − 1)

(
1− qβ

q−1

)s
q

.

Proof. We proceed by induction. The base case (s = 0) is immediate. Now suppose that the
statement holds for s−1 and let π : Fsq → Fs−1

q denote the projection onto the first s−1 coordinates.
Then

Pr
w∼µsq

[w ∈ Vsq] = Pr
w∼µsq

[
π(w) ∈ Vs−1

q

]
· Pr
w∼µsq

[ws = 0] + Pr
w∼µsq

[
π(w) 6∈ Vs−1

q

]
· Pr
w∼µsq

[
ws = −

s−1∑
i=1

wi | π(w) 6∈ Vs−1
q

]

=
1 + (q − 1)

(
1− qβ

q−1

)s−1

q
· (1− β) +

1−
1 + (q − 1)

(
1− qβ

q−1

)s−1

q

 · β

q − 1

=
1

q
+

(
1− qβ

q − 1

)s(q − 1

q

)
,

which establishes the inductive hypothesis for s.

Motivated by the computations above, we can define the following useful shorthands:

Definition 5.7. For λ, β ∈ (0, q−1
q], define

Z(β) = Pr
w∼µsq

[
w ∈ Vsq

]
=

1 + (q − 1)
(

1− qβ
q−1

)s
q

, (22)

ψ(λ, β) = sDKLq (λ ‖ β) + logq Z(β)

From Equations (18), (19), (20) and (21), we conclude that

logq Pλ = t logq Pr[Fū = 0] ≤ tn

DKLq (λ ‖ β) +
logq

(
1 + (q − 1)

(
1− qβ

q−1

)s)
− 1

s

= (1−R)n

(
sDKLq (λ ‖ β) + logq

(
1 + (q − 1)

(
1− qβ

q − 1

)s)
− 1

)
= (1−R)nψ(λ, β) (23)

for every β ∈
(

0, q−1
q

]
. Above, we have used the choice t = (1−R)s.

This motivates the following definition:

28

Definition 5.8. Let Z and ψ be as in Definition 5.7. Define:

ϕ(λ) = inf
β∈(0, q−1

q
]
ψ(λ, β).

Definition 5.8, along with (23), implies that logq Pλ ≤ ϕ(λ), which establishes Item 2 of
Lemma 5.2. Next we establish Item 1 of Lemma 5.2. This follows from Definition 5.8, since

ϕ(λ) ≤ ψ(λ, λ) = logq

(
1 + (q − 1)

(
1− qλ

q − 1

)s)
− 1,

using the fact that DKLq (λ ‖ λ) = 0.
This almost completes the proof of Lemma 5.2, except for Item 3, which we establish in the

next section using calculus.

5.3 Proof of Item 3 of Lemma 5.2

In this section we prove Item 3, which will establish Lemma 5.2 and hence Theorem 2.14.

Remark 5.9 (Difference between [Gal62] and this proof). This is the part of the proof where
the technical similarity between our proof and Gallager’s breaks down. The part of [Gal62] which
corresponds to our Item 3 consists of an intricate analytic argument which does not seem (to us) to
generalize to larger alphabets. Thus, our proof has to rely on a different, more general, argument,
which we give below.

Before proving Item 3 of Lemma 5.2, we need to better understand the relation between a given
λ ∈ (0, q−1

q], and the β which minimizes the expression ψ(λ, β).

Lemma 5.10. Let λ ∈ (0, q−1
q]. Then, ψ(λ, β) is minimized by a unique β ∈ (0, q−1

q]. This β is
the only solution for

Ew∼µq(β)

[
wt(w) | w ∈ Vsq

]
= λ.

Proof. We compute the derivative.

d loge Z(β)

dβ
=

1

Prw∼µsq [w ∈ Vsq]
·
d
(

Prw∼µsq [w ∈ Vsq]
)

dβ

=
1

Prw∼µsq [w ∈ Vsq]
·
∑
w∈Vsq

d
(

β
q−1

)s·wt(w)
(1− β)s·(1−wt(w))

dβ

=

∑
w∈Vsq

((
β
q−1

)s·wt(w)
(1− β)s·(1−wt(w)) · s ·

(
wt(w)
β − 1−wt(w)

1−β

))
Prw∼µsq [w ∈ Vsq]

= s ·

(
Ew∼µsq

[
wt(w) | w ∈ Vsq

]
β

−
1− Ew∼µsq

[
wt(w) | w ∈ Vsq

]
1− β

)
. (24)

Also, it is not hard to see that

∂DKLq (λ ‖ β)

∂β
= logq e ·

(
1− λ
1− β

− λ

β

)
.

29

Consequently,

∂ψ(λ, β)

∂β
= s

∂DKLq (λ ‖ β)

∂β
+
d logq Z(β)

dβ

= logq e ·
(
s(1− λ)

1− β
− sλ

β
+
d loge Z(β)

dβ

)
= s · logq e ·

(
Ew∼µsq

[
wt(w) | w ∈ Vsq

]
− λ
)(1

1− β
+

1

β

)
.

We conclude that ∂ψ(λ,β)
∂β has the same sign as Ew∼µsq

[
wt(w) | w ∈ Vsq

]
− λs. The lemma now

follows from the following claim:

Claim 5.11. As β increases in the range (0, q−1
q] the function Ew∼µsq

[
wt(w) | w ∈ Vsq

]
strictly

increases from 0 to q−1
q .

Proof. Due to (22) and (24),

Ew∼µsq
[
wt(w) | w ∈ Vsq

]
=

(
d loge Z(β)

s · dβ
+

1

1− β

)
β(1− β)

=

 dZ(β)
dβ

s · Z(β)
+

1

1− β

β(1− β)

=

 −q
(

1− qβ
q−1

)s−1

1 + (q − 1)
(

1− qβ
q−1

)s +
1

1− β

β(1− β)

= β
1−

(
1− qβ

q−1

)s−1
· (1 + qβ)

1 + (q − 1)
(

1− qβ
q−1

)s , (25)

and the claim readily follows.

The proof of the lemma is thus concluded.

Lemma 5.10 and Claim 5.11 justify the following definition:

Definition 5.12. For λ ∈ (0, q−1
q], denote the β ∈ (0, q−1

q] which minimizes ψ(λ, β) by β(λ). The
inverse of this function is denoted λ(β).

By Lemma 5.10 and Equation (25),

λ(β) = β
1−

(
1− qβ

q−1

)s−1

1 + (q − 1)
(

1− qβ
q−1

)s . (26)

Remark 5.13. Unfortunately, there are good reasons to suspect that the function β(λ) has no
closed-form expression (see, e.g., the discussion about backward mapping in [WJ08, Sec. 3.4.2]),
so we prefer to work with its inverse.

30

It is convenient to extend the definition of these functions to the closed interval [0, q−1
q] by

taking limits, namely, λ(0) = β(0) = 0, and

ϕ(0) = lim
λ→0

ϕ(λ) = lim
λ→0

ψ(λ, β(λ)) lim
β→0

ψ(λ(β), β) = lim
β→0

DKLq (λ(β) ‖ β) + logq Z(β)

= lim
β→0

DKLq (λ(β) ‖ β) = lim
β→0
−λ(β) logq β = 0.

We are now able to prove Item 3 of Lemma 5.2.

Proof of Lemma 5.2, Item 3. Let α(λ) = ϕ(λ)
hq(λ) . The claim follows immediately from the four fol-

lowing claims:

Claim 5.14. α(q−1
q) = −1.

Claim 5.15. α(λ) < −1 for some λ ∈ (0, q−1
q).

Claim 5.16. There exists ε > 0 such that α(λ) > − s
2 for all λ ∈ (0, ε).

Claim 5.17. For each y ∈ (− s
2 ,−1], the equation α(λ) = y has at most one solution λ ∈ (0, q−1

q].

Indeed, Claims 5.14 and 5.17 show that α(λ) 6= 1 for λ < q−1
q . Since α is continuous, it is either

upper bounded or lower bounded by −1 in the whole range (0, q−1
q]. Claim 5.15 implies the former.

By Claim 5.17, if − s
2 < α(λ0) < −1 for some λ0 ∈ (0, q−1

q), then α must be strictly increasing in

the range [λ0,
q−1
q]. The lemma now follows from Claim 5.16. We proceed to prove these claims.

Proof of Claim 5.14. Note that α(q−1
q) = ϕ(q−1

q). Due to Item 2,

ϕ

(
q − 1

q

)
≤ −1.

In the reverse direction,

ϕ(λ) = min
β
ψ(λ, β) = min

β

(
s ·DKLq (λ ‖ β) + logq Z(β)

)
≥ min

β

(
s ·DKLq (λ ‖ β)

)
− 1 ≥ −1

for all λ. The first inequality above holds since Z(β) ≥ 1
q , due to (22) .

Proof of Claim 5.15. By Item 1,

α(λ) ≤
logq

(
1 + (q − 1)

(
1− q

q−1λ
)s)
− 1

hq(λ)
. (27)

Let λ = q−1
q − ε. As ε tends from above to 0, the numerator of (27)’s right-hand side is −1 + Θ(εs),

while the denominator is 1−Θ(ε2). Thus, for ε small enough, (27) yields α(λ) < −1.

31

Proof of Claim 5.16. Let

Z̄(β) = Pr
w∼Bsq

(
w ∈ Vsq ∧ wt(w) ≤ 2

s

)
= (1− β)s +

(
s

2

)
(1− β)s−2β2

and
ψ̄(β, λ) = sDKLq (λ ‖ β) + logq Z̄(β).

Clearly, ψ̄(β, λ) is a lower bound on ψ(β, λ), so

ϕ(λ) ≥ min
β∈(0, q−1

q
]
ψ̄(λ, β).

Note that

∂ψ̄(λ, β)

∂β
=

s

β(1− β)

 2(s− 1)(
1−β
β

)2
+
(
s
2

) − λ
 ,

Hence, for λ < 2
s , the minimum of ψ̄(λ, β) is attained at β0 = y

1+y , where

y =

(
λ

2(s− 1)−
(
s
2

)
λ

) 1
2

.

Therefore,

α(λ) =
ϕ(λ)

hq(λ)
≥ ψ̄(λ, β0)

hq(λ)
=
s

2

(
−1 +

λ
(
logq

(
2(s− 1)−

(
s
2

)
λ
)
− logq(1− λs)

)
+ (1− λ) logq(1− λ)

hq(λ)

)
.

For λ small enough, the right-hand side is clearly larger than − s
2 .

Proof of Claim 5.17. Denote β∗ = β(λ). Let y ∈ (− s
2 ,−1], and define the function ϕy(λ) =

ϕ(λ) − yhq(λ). We seek to show that ϕy(λ) has at most one root in the range (0, q−1
q]. This is a

consequence of the following three statements, proven below:

1.
dϕy(λ)
dλ has at most one extremal point in the open interval (0, q−1

q).

2.
dϕy(λ)
dλ (q−1

q) = 0.

3. ϕy(0) = 0.

Indeed, the first statement implies that
dϕy(λ)
dλ has at most two roots in the interval (0, q−1

q]. The

second statement says that one of these roots is at q−1
q , so

dϕy(λ)
dλ has at most one root in (0, q−1

q).

Consequently ϕy(λ) has at most one extremal point and two roots in [0, q−1
q]. Due to the third

statement, one of these roots is 0, so there can only be one root in (0, q−1
q]. We turn to prove these

statements.
Statement 3 is trivial. For Statement 2, note that in the derivative

dϕ(λ)

dλ
=
∂ψ(λ, β)

∂β β=β∗
· dβ

∗

dλ
+
∂ψ(λ, β)

∂λ β=β∗
,

32

the first term vanishes since ψ has a minimum at (λ, β∗). Hence,

dϕ(λ)

dλ
=
∂ψ(λ, β)

∂λ β=β∗
= s

∂DKLq (λ ‖ β)

∂λ β=β∗
= s logq

λ(1− β∗)
(1− λ)β∗

.

In particular, β(q−1
q) = q−1

q , so

dϕy(λ)

dλ λ= q−1
q

=
dϕ(λ)

dλ λ= q−1
q

− ydhq(λ)

dλ λ= q−1
q

= 0,

since, in the last transition, the two terms vanish.
We turn to Statement 1. Define the new variable x = 1 − qβ∗

q−1 . Note the following useful
relations, the second of which follows from Equation (26):

β∗ =
q − 1

q
(1− x) (28)

and
λ

1− λ
=

β∗

1− β∗
· 1− xs−1

1 + (q − 1)xs−1
. (29)

By (28) and (29),

dϕy(λ)

dλ
= s

∂DKLq (λ ‖ β)

∂λ |β=β∗
− ydhq(λ)

dλ

= s logq
λ(1− β∗)
(1− λ)β∗

+ y logq
λ

1− λ

= s logq
1− β∗

β∗
+ (s+ y) logq

λ

1− λ

= −y logq
1 + (q − 1)x

(q − 1)(1− x)
+ (s+ y) logq

1− xs−1

1 + (q − 1)xs−1
.

Now,
d2ϕy(λ)

dxdλ
· ln q =

−yq
(1 + (q − 1)x)(1− x)

− (s+ y)(s− 1)qxs−2

(1− xs−1) (1 + (q − 1)xs−1)
.

This second derivative vanishes when

−(s+ y)

y
=

(
1− xs−1

) (
1 + (q − 1)xs−1

)
(s− 1)(1 + (q − 1)x)(1− x)xs−2

.

Equivalently,

−(s+ y)

y
=

1

s− 1

s−2∑
i=0

x−i + (q − 1)xi+1

1 + (q − 1)x
. (30)

By examining each term of this sum separately, it is straightforward to verify that the right-hand
side of (30) is a convex function of x, which tends to ∞ (resp. 1) as x → 0 (resp. x → 1). Since
y > − s

2 , the left-hand side of (30) is larger than 1, so there is a unique x ∈ (0, 1) which solves (30).
Statement 1 follows.

This establishes Item 3 of Lemma 5.2.

Having completed the proof of Lemma 5.2, we have finished the proof of Theorem 2.14.

33

Acknowledgements

The first author would like to thank Yael Hacohen and Nati Linial for useful conversations. The
second author would like to thank Venkat Guruswami for helpful feedback on a draft of this work.

References

[AEL95] Noga Alon, Jeff Edmonds, and Michael Luby. Linear time erasure codes with nearly
optimal recovery. In Proceedings of IEEE 36th Annual Foundations of Computer Sci-
ence, pages 512–519. IEEE, 1995.

[Bol01] Béla Bollobás. Random Graphs, Second Edition, volume 73 of Cambridge Studies in
Advanced Mathematics. Cambridge University Press, 2001.

[CGV13] Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker. Restricted isometry
of fourier matrices and list decodability of random linear codes. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 432–442, 2013.

[CS+04] Imre Csiszár, Paul C Shields, et al. Information theory and statistics: A tutorial.
Foundations and Trends R© in Communications and Information Theory, 1(4):417–528,
2004.

[DHK+19] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon Ta Shma.
List decoding with double samplers. In Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms, pages 2134–2153. SIAM, 2019.

[DL12] Zeev Dvir and Shachar Lovett. Subspace evasive sets. In Proceedings of the forty-fourth
annual ACM symposium on Theory of computing, pages 351–358. ACM, 2012.

[Eli57] Peter Elias. List decoding for noisy channels. Wescon Convention Record, Part 2,
pages 94–104, 1957.

[FKNP19] Keith Frankston, Jeff Kahn, Bhargav Narayanan, and Jinyoung Park. Thresholds
versus fractional expectation-thresholds. arXiv preprint arXiv:1910.13433, 2019.

[Gal62] Robert G. Gallager. Low-density parity-check codes. IRE Trans. Information Theory,
8(1):21–28, 1962.

[GHK11] Venkatesan Guruswami, Johan H̊astad, and Swastik Kopparty. On the list-decodability
of random linear codes. IEEE Trans. Information Theory, 57(2):718–725, 2011.

[GHSZ02] Venkatesan Guruswami, Johan H̊astad, Madhu Sudan, and David Zuckerman. Combi-
natorial bounds for list decoding. IEEE Trans. Information Theory, 48(5):1021–1034,
2002.

[GK16] Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. Combina-
torica, 36(2):161–185, 2016.

34

[GLM+20] Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas,
and Mary Wootters. Bounds for list-decoding and list-recovery of random linear codes.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2020), 2020.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capac-
ity: Error-correction with optimal redundancy. IEEE Transactions on Information
Theory, 54(1):135–150, 2008.

[Gur03] Venkatesan Guruswami. List decoding from erasures: Bounds and code constructions.
IEEE Transactions on Information Theory, 49(11):2826–2833, 2003.

[Gur06] Venkatesan Guruswami. Iterative decoding of low-density parity check codes (a sur-
vey). arXiv preprint cs/0610022, 2006.

[GW13] Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants
of reed–solomon codes. IEEE Transactions on Information Theory, 59(6):3257–3268,
2013.

[GX12] Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers
and improved optimal rate list decoding. In Proceedings of the forty-fourth annual
ACM symposium on Theory of computing, pages 339–350. ACM, 2012.

[GX13] Venkatesan Guruswami and Chaoping Xing. List decoding Reed-Solomon, Algebraic-
Geometric, and Gabidulin subcodes up to the Singleton bound. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, pages 843–852. ACM,
2013.

[HRW17] Brett Hemenway, Noga Ron-Zewi, and Mary Wootters. Local list recovery of high-rate
tensor codes & applications. In 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 204–215. IEEE, 2017.

[HW18] Brett Hemenway and Mary Wootters. Linear-time list recovery of high-rate expander
codes. Information and Computation, 261:202–218, 2018.

[Kop15] Swastik Kopparty. List-decoding multiplicity codes. Theory of Computing, 11(5):149–
182, 2015.

[KRRZ+19] Swastik Kopparty, Nicolas Resch, Noga Ron-Zewi, Shubhangi Saraf, and Shashwat
Silas. On list recovery of high-rate tensor codes. Electronic Colloquium on Computa-
tional Complexity (ECCC), 2019.

[KRSW18] Swastik Kopparty, Noga Ron-Zewi, Shubhangi Saraf, and Mary Wootters. Improved
decoding of folded reed-solomon and multiplicity codes. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 212–223. IEEE, 2018.

[KRU13] Shrinivas Kudekar, Tom Richardson, and Rüdiger L Urbanke. Spatially coupled en-
sembles universally achieve capacity under belief propagation. IEEE Transactions on
Information Theory, 59(12):7761–7813, 2013.

35

[LM20] Nati Linial and Jonathan Mosheiff. On the weight distribution of random binary linear
codes. Random Structures & Algorithms, 56(1):5–36, 2020.

[LN94] Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge university press, 1994.

[LW18] Ray Li and Mary Wootters. Improved list-decodability of random linear binary codes.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2018.

[O’D14] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

[RW14] Atri Rudra and Mary Wootters. Every list-decodable code for high noise has abun-
dant near-optimal rate puncturings. In Proceedings of the forty-sixth annual ACM
symposium on Theory of computing, pages 764–773. ACM, 2014.

[RW18] Atri Rudra and Mary Wootters. Average-radius list-recovery of random linear codes.
In Proceedings of the 2018 ACM-SIAM Symposium on Discrete Algorithms, SODA,
2018.

[SS94] Michael Sipser and Daniel A Spielman. Expander codes. In Proceedings 35th Annual
Symposium on Foundations of Computer Science, pages 566–576. IEEE, 1994.

[Tan81] R Tanner. A recursive approach to low complexity codes. IEEE Transactions on
information theory, 27(5):533–547, 1981.

[WJ08] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential families,
and variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–305,
2008.

[Woo13] Mary Wootters. On the list decodability of random linear codes with large error rates.
In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 853–860, 2013.

[Woz58] Jack Wozencraft. List decoding. Quarter Progress Report, 48:90–95, 1958.

[Zém01] Gillés Zémor. On expander codes. IEEE Transactions on Information Theory,
47(2):835–837, 2001.

[ZP81] Victor Vasilievich Zyablov and Mark Semenovich Pinsker. List concatenated decoding.
Problemy Peredachi Informatsii, 17(4):29–33, 1981.

36

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

