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Abstract

Interactive oracle proofs (IOPs) are a hybrid between interactive proofs and PCPs. In an
IOP the prover is allowed to interact with a verifier (like in an interactive proof) by sending
relatively long messages to the verifier, who in turn is only allowed to query a few of the bits
that were sent (like in a PCP). Efficient IOPs are currently at the core of leading practical
implementations of highly efficient proof-systems.

In this work we construct, for a large class of NP relations, IOPs in which the communica-
tion complexity approaches the witness length. More precisely, for any NP relation for which
membership can be decided in polynomial-time with bounded polynomial space (e.g., SAT,
Hamiltonicity, Clique, Vertex-Cover, etc.) and for any constant γ > 0, we construct an IOP with
communication complexity (1 + γ) · n, where n is the original witness length. The number of
rounds, as well as the number of queries made by the IOP verifier, are constant.

This result improves over prior works on short IOPs/PCPs in two ways. First, the com-
munication complexity in these short IOPs is proportional to the complexity of verifying the
NP witness, which can be polynomially larger than the witness size. Second, even ignoring the
difference between witness length and non-deterministic verification time, prior works incur (at
the very least) a large constant multiplicative overhead to the communication complexity.

In particular, as a special case, we also obtain an IOP for CircuitSAT with communication
complexity (1+γ) · t, for circuits of size t and any constant γ > 0. This improves upon the prior
state-of-the-art work of Ben Sasson et al. (ICALP, 2017) who construct an IOP for CircuitSAT
with communication length c · t for a large (unspecified) constant c ≥ 1.

Our proof leverages the local testability and (relaxed) local correctability of high-rate tensor
codes, as well as their support of a sumcheck-like procedure. In particular, we bypass the barrier
imposed by the low rate of multiplication codes (e.g., Reed-Solomon, Reed-Muller or AG codes)
- a key building block of all known short PCP/IOP constructions.

∗This is an updated and revised version of an extended abstract that has appeared at FOCS 2020 (see [RR19] for
a full version). For simplicity and clarity of presentation, we have decided to omit some of the results from [RR19].
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1 Introduction

The celebrated PCP Theorem, established in the early 90’s [BFLS91, FGL+96, AS98, ALM+98],
shows that it is possible to encode any NP witness in such a way that the veracity of the witness can
be verified by reading only a constant number of bits from the encoding. This foundational result
has had a transformative effect on TCS with diverse applications in cryptography and complexity
theory.

A basic and natural question that has drawn a great amount of interest is what is the minimal
overhead in encoding that is needed to allow for such local checking of an NP witness. While the
original PCP theorem only guarantees a polynomial overhead, a beautiful line of work has culmi-
nated in remarkably short PCPs. More precisely, the works of Ben Sasson and Sudan [BS08] com-
bined with that of Dinur [Din07] yield PCPs of length t ·polylog(t) for any time t non-deterministic
computation.

A central open question in the area is whether poly-logarithmic overhead is indeed necessary, or
can one construct truly linear length PCPs. Actually, since the question is highly dependent on the
computational model (since transitions between standard computational models usually involve at
the very least a logarithmic overhead), a cleaner formalization of this question is the following:

Does the NP-complete language1 CircuitSAT
have a PCP whose length is linear in the given circuit?

Beyond its intrinsic interest, this question also has implications to the construction of efficient
proof-systems that build on PCPs [Kil92, Mic00, BCS16] as well as to the field of hardness of ap-
proximation [Din16, MR17, App17, BCG+17, ARW17]. The state-of-the-art is a result of [BKK+16]
who construct a linear length PCP for CircuitSAT albeit with only nε query complexity, for any
desired constant ε > 0. This result falls well short of the desired goal of constant query complexity
(and has the additional drawback that the verification is non-uniform).

Motivated by the goal of constructing such short PCPs and their applications to the construction
of efficient proof-systems, Ben Sasson et al. [BCS16] recently proposed a natural generalization
of PCPs called interactive oracle proofs, or IOPs for short.2 An IOP is an interactive protocol
(similarly to an interactive proof), but in each round the prover can send a long message from
which the verifier is allowed to read only a few bits (i.e., PCP-style access to the prover messages).
Ben Sasson et al. [BCG+17] later constructed an IOP for CircuitSAT in which the communication
complexity is O(t), thereby demonstrating that local proofs with constant overhead exist, if one
allows for interaction.

A recent exciting sequence of works [BBHR18, BCR+19, BBHR19, BGKS20] has leveraged the
efficiency of IOPs to construct highly efficient succinct argument schemes which are now at the core
of leading practical implementations [BCR+19].

1Recall that the language CircuitSAT consists of the set of all satisfiable Boolean circuits, and that there is an
O(t · log t)-time reduction from NTIME(t) to CircuitSAT [PF79].

2The same notion was proposed independently by Reingold et al. [RRR21] (who used the term probabilistically
checkable interactive proof ) but for a different motivation - facilitating the construction of doubly-efficient interactive
proofs.
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1.1 Our results

In this work we construct IOPs with nearly optimal communication complexity. As our first main
result, which actually follows from a more general statement that will be elaborated on in Sec-
tion 1.1.1, we construct an IOP for CircuitSAT in which the communication complexity is (1 +γ) · t,
for circuits of size t and for any constant γ > 0.

Theorem 1 (Informally Stated, see Theorem 3.1 and Remark 1.2). For any constant γ, ε > 0,
CircuitSAT has a constant-round and constant-query IOP in which the communication complexity is
(1 +γ) · t, where t is the circuit size. The IOP has perfect completeness and soundness error ε. The
verifier runs in time Õ(t) and the prover runs in time poly(t) (given the satisfying assignment).

Theorem 1 should be contrasted with the main result of [BCG+17], who give an IOP for CircuitSAT
with communication complexity c · t, for a constant c ≥ 1 that is left unspecified.3 While the
communication complexity in Theorem 1 is shorter than that in [BCG+17], the round complexity
is slightly larger (Indeed, while we have not attempted to optimize the round complexity, a naive
implementation seems to require 6 rounds, whereas [BCG+17] has only 3 rounds).

The proof of Theorem 1 relies on techniques developed in Meir’s [Mei13] code-based proof of the
IP = PSPACE Theorem, see Section 1.2.

Remark 1.1. The fact that the soundness error in Theorem 1 is an arbitrarily small constant
is non-trivial, since naive repetition increases the communication complexity. Also, we note that
the IOP in Theorem 1 can be extended to sub-constant values of γ = γ(t) > 0 and ε = ε(t) >

0 (simultaneously) at the cost of increasing the query complexity to poly
(

1
γ , log(1/ε)

)
(and no

overhead to the round complexity).4 This leads to an IOP with communication complexity (1+o(1))·t
and negligible soundness error, but with poly-logarithmic query complexity. For simplicity and
clarity the details are omitted from the current version, see the previous version [RR19] for details.

1.1.1 Approaching the witness length

When considering a generic NP relation R, the result of Theorem 1, the main result in [BCG+17],
and essentially all short PCP constructions, only yield constructions in which the communication
scales with the verification complexity of R, rather than with the length of the original NP witness.
Essentially, this is because PCPs — in order to facilitate local checking — typically encode the
entire computation (rather than just the witness) via a suitable error correcting code.

For example, consider checking the 3-Colorability of a (connected) graph G = (V,E). Using any
of the known PCPs or IOPs in the literature would give proof length or communication complexity
Ω(|E|), which can be quadratically larger than the length of the natural NP witness (which has
length O(|V |)). Alternatively, checking the satisfiability of a given CNF formula φ with m clauses
and n variables is only known to have PCPs and IOPs of proof length or communication complexity
Ω(m+n), but has a standard NP witness of length n (which again can be significantly smaller than
m+ n).

3We estimate that c is at least 3 · 63 = 648. This is since the [BCG+17] IOP includes three codewords, each of
which is a tensor (of dimension ≥ 3) of an AG code. The AG code has rate 1 − 1

q−1
, using an alphabet of size q2

(for any prime power q). However, since they encode binary messages, the effective rate is (1− 1
q−1

)/ log(q2), which
achieves its maximum (over prime powers) at q = 4.

4The fact that the soundness error can be reduced is non-trivial: straightforward error reduction by repetition can
significantly increase the communication complexity.
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This limitation actually turns out to be inherent for PCPs. Fortnow and Santhanam [FS11]
showed that constructing PCPs whose length is a fixed polynomial of the witness length is impossible,
unless NP ⊆ co-NP/poly.

Interestingly however, Kalai and Raz [KR08] show that the picture changes drastically if one
allows for interaction. In particular, their work yields IOPs with communication complexity that
is polynomial in the witness size for a large class of NP relations, with poly-logarithmic query
complexity.5 We improve upon the result of [KR08] by constructing IOPs, also for a large class
of NP relations, in which the communication complexity is (1 + γ) · n, where n is the length of
the original NP witness, rather than poly(n) as in [KR08], and with constant query and round
complexities.

The class of relations that we can support consists of all NP relations that can be verified in
polynomial-time with bounded polynomial space.6 In particular, we obtain IOPs with communica-
tion approaching the witness length for many natural NP problems, such as: SAT, Hamiltonicity,
TSP, all 21 of Karp’s original NP-complete problems7 [Kar75], etc.

Theorem 2 (Informally Stated, see Theorem 3.1). Let R be an NP relation which can be verified in
polynomial-time with bounded polynomial space (i.e., space nξ for some sufficiently small constant
ξ > 0). Then for any constant γ, ε > 0, the relation R has a constant-round and constant-query
IOP with communication complexity (1 +γ) ·n, where n is the original witness length. The IOP has
perfect completeness and soundness error ε. The verifier runs in quasi-linear time and the prover
runs in polynomial-time (given the NP witness).

Remark 1.2. It is worth emphasizing that every language in NP has a corresponding NP relation
which can be verified in polynomial time with small space. Indeed, this follows directly from the
Cook-Levin theorem. However, the Cook-Levin transformation incurs a polynomial blowup to the
witness size (corresponding to the non-deterministic verification time of the relation). The point
of Theorem 2 is that for NP relations which a priori can be verified in polynomial time with small
space, we do not need to pay this additional (potentially large) overhead.

Still, by applying Theorem 2 to CircuitSAT using the NP relation arising from the Cook-Levin
theorem (in which the witness includes, in addition to the satisfying assignment, the values of all of
the gates in the circuit), we obtain an IOP for CircuitSAT with communication complexity (1+γ) · t,
where t is the circuit size. Thus, Theorem 1 follows as an immediate corollary of Theorem 2.8

5Kalai and Raz [KR08] consider a restricted model (in fact a predecessor) of IOPs called interactive PCPs. Their
result, combined with followup works [GKR15, RRR21], yields IOPs with communication complexity that is polyno-
mial in the witness size for all NP relations that can be verified in either bounded depth, or bounded space. Jumping
ahead, we remark that our results can also be interpreted as interactive PCPs (see Remark 1.3).

6We emphasize that the machine verifying the relation is allowed read-many access to the witness (in contrast to
the much more restricted complexity class NL in which the verifier has read-once access to the witness). For further
discussion, see [Gol08, Section 5.3.1].

7For all but 2 of Karp’s 21 problems, it is straightforward to see that their natural NP relation can be verified in
polynomial time with bounded polynomial space. The two exceptions are: feedback vertex set and feedback arc set. In
these two problems, given a graph G one needs to decide whether there is a small set of vertices (resp., edges) whose
removal makes the graph acyclic. The natural NP witness for these problems is a specification of the set of vertices
(resp., edges) to be removed. While we are unaware of a deterministic bounded space algorithm for checking whether
a (directed) graph is a-cyclic, it is straightforward to show that this problem is in co-NL. Using an unpublished
extension [RRR17] of the [RRR21] protocol to NL (and therefore also co-NL [Imm88, Sze87]) one can obtain short
IOPs also for these two problems.

8We note that we cannot use only the satisfying assignment as the witness, since there are circuits whose evaluation
require a linear space in the number of variables.
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Similarly to Theorem 1, we can extend Theorem 2 to sub-constant values of γ = γ(n) > 0
and ε = ε(n) > 0, at the cost of increasing the query complexity to poly( 1

γ , log(1/ε)) (and no
overhead to the round complexity), leading to communication complexity (1+o(1))·n and negligible
soundness error, but with poly-logarithmic query complexity (omitted from the current version, see
the previous version [RR19] for details).

The communication complexity in Theorem 2 is very close to optimal, under the following plau-
sible complexity theoretic conjecture. Loosely speaking, the randomized strong exponential time
hypothesis (RSETH) states that SAT is not contained in BPTIME

(
2(1−γ)·n) for any constant γ > 0

(where n here is the number of variables in the formula). The work of Goldreich and H̊astad
[GH98] shows that only languages in BPTIME(2b · poly(n)) have constant-round public-coin inter-
active proofs (let alone IOPs) in which the prover sends at most b bits. Put together, these two
facts imply that SAT does not have a (constant-round and public-coin) IOP in which the prover
sends less than (1 − γ) · n bits, unless RSETH is false. For a more precise statement and further
details, see Appendix A.

We also mention that the limitation in Theorem 2 to relations computable in space nξ (for a
sufficiently small constant ξ > 0) is inherited from the work of [RRR21], on which we build. In
this work we have not made an attempt to optimize the constant ξ. However, we believe that ξ
could potentially be any constant smaller than 1

2 (i.e., leading to a space bound of n0.499). On
the other hand, a recent follow-up work of Nassar and Rothblum [NR22] gives evidence that some
space bound is inherent.

Remark 1.3. Our results can also be interpreted as interactive PCPs (IPCP) [KR08], a more
restricted model than IOPs in which the prover first sends a single long message to which the verifier
has oracle access (like a PCP), followed by short interactive protocol with sublinear communication
during which the verifier reads the prover’s messages in full (like an interactive proof).

Specifically, Theorem 2 (see Theorem 3.1) gives an IPCP in which the first message has length
(1 + γ) · n and constant query complexity, and the rest of the communication is of length nβ, for
arbitrarily small constants γ, β > 0. Alternatively, optimizing the communication complexity, we
can obtain an IPCP in which the first message has length (1+2−(logm)1−ε0 ) ·n and query complexity
2(logm)1−ε0 , and the rest of the communication has length 2(logm)1−ε0 , where m is the input length,
n is the witness length, and ε0 > 0 is a small absolute constant (omitted from the current version,
see the previous version [RR19]). These results should be contrasted with the main result of [KR08]
that gives IPCP in which the first message has length poly(n) with constant query complexity (in
fact, one query suffices), and the rest of the communication has length polylog(n).

1.1.2 Interactive oracle proofs of proximity with sublinear communication complexity

Loosely speaking, proofs of proximity are proof-systems in which the verifier runs in sublinear
time. Since the verifier cannot even read its own input, we only require that she rejects inputs
that are far from the language. Various models of proofs of proximity have been considered in
the literature, depending on the type of communication with the prover. In particular, PCP-style
access [BGH+06, DR06], interactive proofs [EKR04, RVW13], non-interactive proofs [GR18], as
well as an IOP variant [BCS16, RRR21].

As a technical step toward proving Theorem 2, we also construct short interactive oracle proofs
of proximity (IOPP). In an IOPP, the verifier is given oracle access to an implicit input w and is
allowed to communicate with an all powerful but untrusted prover (who sees all of w). In each
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round of the interaction the prover sends a long message and the verifier can choose to read a few of
the bits of the message, as well as a few bits of w. At the end of the interaction the verifier should
accept if w belongs to the language and should reject (with high probability) if w is far from the
language (no matter what the prover does).

Theorem 3 (Informally Stated, see Theorem 3.2). Let L be a language that can be decided in
polynomial-time with bounded-polynomial space. Then, for any constant γ, β > 0, the language L
has a constant-round and constant-query IOPP with communication complexity γ · n. The verifier
runs in time nβ, and the prover runs in time poly(n).

We remark that the communication complexity in Theorem 3 is actually less than even the input
length n. At first glance this may seem quite surprising as, by the aforementioned work [GH98]
(see also [GVW02]), we do not expect IOPs for NP with communication that is shorter than the
witness length. Indeed, the key difference which enables such short communication is the fact that
Theorem 3 is for deterministic languages.

We remark that Theorem 3 is optimal in several ways. First, the work of Kalai and Roth-
blum [KR15] implies that there exists a language L∗ ∈ Logspace such that any IOP for L∗ with
communication complexity o(n) must have query complexity ω(1), under a strong but plausible
cryptographic assumption (i.e., exponentially hard cryptographic pseudorandom generators com-
putable in logarithmic space). Second, a bound on the space complexity of L is inherent under the
widely believed assumption that P is not contained in SPACE(Õ(n)) (c.f., [Gol18, Theorem 1.4]).

Remark 1.4. Interestingly, since the communication complexity is strictly less than the input size,
Theorem 3 is non-trivial even if we ignore the fact the verifier only reads a small part of the proof.
Thus, the result can also be viewed as an interactive proof of proximity (IPP) [EKR04, RVW13].
As a point of comparison, note that [RVW13, RRR21, RR20] also construct IPPs with sublinear
communication for bounded-space computations, but in a different parameter regime: the results in
[RVW13, RRR21, RR20] have a much smaller communication complexity (e.g., O(

√
n)) but on the

other hand do not support constant query complexity as in Theorem 3.

1.2 Techniques

Next we give an overview of the proof of Theorem 2 (from which Theorem 1 follows, see Remark 1.2).
As a warmup, we focus here on a high level overview of a short IOP for 3SAT (i.e., rather than
all bounded space relations) and with only some non-trivial query complexity (i.e., Õ(

√
n) rather

than constant). Later, in Section 1.2.1, we discuss the additional steps needed to generalize to any
bounded-space relation and with constant query complexity.

Let φ : {0, 1}n → {0, 1} be a 3CNF formula and let γ > 0. We construct an IOP for proving that
φ is satisfiable with communication complexity (1 + γ) · n and query complexity Õ(

√
n) (note that

the witness here is the satisfying assignment, and so the witness length is n). To construct the IOP,
our starting point is the following rough outline shared by most PCP and IOP constructions:

1. The prover provides an error-corrected encoding of the computation (either as part of the
PCP or as the first message of the IOP).

2. The error-correcting code is chosen so that there is way for the verifier to check that the given
alleged codeword is actually a valid codeword. For example, this can be done if the above
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code is locally testable and (relaxed) locally correctable,9 or by providing an auxiliary proof
that the codeword is close to being valid (as in [BS08]).

3. Lastly, the PCP/IOP is designed to have a mechanism for ensuring that the message encoded
within the codeword - an alleged computation - is indeed a valid and accepting computation.

Our construction also shares this basic schema but departs significantly in the details. Let us
focus first on Step 1. The first main difference here is that in our construction we only provide an
encoding of the NP witness (i.e., the satisfying assignment in the case of 3SAT) rather than the
entire computation (which includes also the values of all the clauses in φ). Intuitively, this makes
our job harder when handling Step 3. The second main difference, on which we elaborate next, is
that the code that we use in Step 1 is a high rate code which is not a multiplication code.

Multiplication codes and how to avoid10 them. Loosely speaking, a multiplication code
[Mei13, Mei14] is a linear11 error correcting code C, over a finite field F, so that the vector space
span{c1 ? c2 : c1, c2 ∈ C}, where c1 ? c2 denotes entry-wise multiplication (over F), is itself a code
(i.e., it has large relative distance12). The archtypical example of a multiplication code is the
Reed-Solomon code (since the product of two sufficiently low degree polynomials is a low degree
polynomial). As elegantly articulated in the works of Meir [Mei13, Mei14], the multiplication
property is leveraged in PCP and IOP constructions to facilitate checking of non-linear relations
that arise in the computation (e.g., verifying correctness of AND gates).

Unfortunately, all known multiplications codes (e.g., the Reed-Solomon code [RS60], the Reed-
Muller code [Mul54, Ree54], low rate tensor codes [Mei13, Mei14] or AG codes [Sti06, BKK+16])
have rate13 less than 1

2 , and this is inherent [Ran13]. Since we are aiming for rate close to 1, we
cannot afford to encode the entire computation using such a code.

Instead, we encode the satisfying assignment w using a high rate binary code C : {0, 1}n →
{0, 1}(1+γ/2)·n with constant relative distance (which is not a multiplication code). Beyond having
high rate and constant relative distance, we will also need for C to be (1) locally testable, (2)
(relaxed) locally correctable, and (3) support a certain “sumcheck-like property”, elaborated on
below.

It turns out that the tensor product of a high-rate binary code of constant relative distance
satisfies all the aforementioned properties. Given a linear code C0 : {0, 1}n0 → {0, 1}n′0 , consider
the (two-dimensional) tensor product code C0 ⊗ C0 : {0, 1}n0×n0 → {0, 1}n′0×n′0 ; we will define the
tensor product formally in Definition 2.11, but for now, we will view the codewords of C0 ⊗ C0 as
n′0×n′0 matrices with the constraints that the rows and columns are all codewords of the base code
C0.

9 Informally, a code is said to be locally testable if, given a string w, it is possible to determine whether w is
a codeword of C, or far from all codewords in C, by reading only a small part of w. A code is said to be locally
correctable if, given a codeword c that has been partially corrupted by some errors, it is possible to recover any
coordinate of c by reading only a small part of the corrupted version of c. Finally, in relaxed local correction, the
local corrector is additionally allowed to abort whenever a corruption is detected.

10Actually, our construction does use multiplication codes (specifically the Reed-Muller or Low Degree Extension
code). What we avoid is explicitly sending an encoding of the computation (or witness) via a multiplication code.

11A code C : Fn → Fn
′

is linear if it is a linear transformation over F.
12The (minimal) relative distance of C is the minimal relative Hamming distance of every two (distinct) codewords,

i.e., the minimum fraction of coordinates on which any pair of codewords differ.
13The rate of a code C : Σn → Σn

′
is defined as n/n′, and it measures the amount of redundancy in encoding.
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It is well-known that the tensor product operation squares the rate and the relative distance of
the base code. In particular, if the base code has high-rate and constant relative distance, then so
does its tensor product. Moreover, a recent line of work [BS06, BV15, Vid15, KMRS17, GRR18]
has established the local testability and relaxed local correctability of high-rate tensor codes.14

Hence, we take C : {0, 1}n → {0, 1}(1+γ/2)·n to be a tensor product of some high-rate base code
C0. Given a satisfying assignment w ∈ {0, 1}n for φ, the prover in our IOP first sends C(w) (which
has length (1 + γ

2 ) · n). Next, addressing Step 2 in the outline, we observe that C is indeed locally
testable and relaxed locally correctable with query complexity O(

√
n).

Thus, we are left with the question of how to implement Step 3, which is the key technical
challenge. This is where we use the “sumcheck-like” property of our code C. To explain our
approach we first take a brief detour into the classical method for constructing PCPs due to [BFL91,
BFLS91]. Our presentation follows [Sud00].

A quick recap of classical PCP techniques. Imagine momentarily that the prover can provide
an encoding of the satisfying assignment w under the low degree extension code (a variant of the
Reed Muller code). This code is very “PCP-friendly” but has very poor rate.

In more detail, let F be a finite field of size |F| � log n and let ŵ : Flogn → F be the unique
multilinear polynomial such that for every i ∈ {0, 1}logn it holds that ŵ(i) = wi, where we identify
{0, 1}logn with [n] in the natural way. The existence of such a (unique) polynomial, referred to
as the multilinear extension of w, basically follows from interpolation, see Section 2.3 for details.
Observe that the truth table of ŵ has super-polynomial length and so we cannot afford for the
prover to send ŵ. Nevertheless, let us assume for now that the verifier also has oracle access to ŵ.

Consider the polynomial P : (Flogn)3 × F3 → F of total degree O(log n) defined as:

P (i1, i2, i3, b1, b2, b3) = Îφ(i1, i2, i3, b1, b2, b3) ·
(
ŵ(i1)− b1

)
·
(
ŵ(i2)− b2

)
·
(
ŵ(i3)− b3

)
, (1)

where Îφ is a multilinear extension of a Boolean function Iφ that on input (i1, i2, i3, b1, b2, b3) ∈
{0, 1}3 logn+3 outputs 1 if the clause (xi1 = b1)∨ (xi2 = b2)∨ (xi3 = b3) appears in φ and otherwise
outputs 0. The significance of P is that it has the following easy-to-verify property: P is identically
0 in the hypercube {0, 1}3 logn+3 if and only if ŵ corresponds to a satisfying assignment for φ.

Thus, we only need to check that indeed P |{0,1}3 logn+3 ≡ 0. This can be done using a variant of

the classical (interactive) sumcheck protocol [LFKN92].15 More specifically, and without getting
into the details, there exists a constant round interactive proof with sublinear communication
complexity for checking whether a given low degree polynomial Q : Fm → F is identically 0 in
{0, 1}m. Most importantly, the verifier in the protocol only needs oracle access to Q and moreover,
only makes a single query to Q.

It is very instructive to think of the above protocol as an interactive reduction - a central notion in
our work. Generally speaking, in an interactive reduction a (computationally) complex claim about
an input w is reduced, by interaction with a prover, to a much simpler claim about w. Completeness
means that if the original claim was true then the honest prover will make the verifier generate a
true (and simpler) claim, whereas soundness means that if the original claim was false, then no

14Local testability actually requires the dimension of the tensor product to be at least 3 [Val05, GM12]. For
simplicity we ignore this fact in this high-level overview.

15Since we aim for query complexity Õ(
√
n), we can use a constant-round variant of sumcheck with communication

O(
√
n).
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matter what the prover does, with high probability, either the verifier rejects or it generates a false
claim. Since the claim has been simplified, intuitively, progress has been made.

We emphasize that in an interactive reduction the verifier doesn’t get any form of access to the
input w - it merely reduces the complexity of claims about w, without ever seeing it. For example,
the above protocol (for checking whether the polynomial Q vanishes on the hypercube) can be
viewed as an interactive reduction from a claim about 2m values of Q to a claim about a single
value.

Using this reduction, applied to the polynomial P , the prover and verifier can reduce the satisfi-
ability of the formula φ to a claim about a single point of the polynomial P . The verifier can now
directly check this claim, via Eq. (1), by making three queries to ŵ.16

Taking a step back, what we started off with was a claim that w is a satisfying assignment for
φ and we ended up with claims about three particular values of ŵ. Thus, we can view this entire
process itself as an interactive reduction from the claim that the assignment w satisfies the formula
φ to claims about three specific points of its low degree extension ŵ. We emphasize that in this
interactive reduction, which we denote by Πreduce, the verifier only needs to get φ and doesn’t need
any form of access to w.

Back to our IOP construction. If we could afford for the prover to send ŵ then at this point
we would be done - after sending ŵ, the prover and verifier run Πreduce and then the verifier checks
the three claims about ŵ by reading the three corresponding points from the prover’s first message
(using also the local testability and correctability of the low degree extension).

Alas, in our actual IOP the prover can only send a high-rate encoding C(w) and cannot afford
to send ŵ. Still, we can use Πreduce to our advantage. In particular, after the prover sends C(w),
the two parties run Πreduce. The reduction generates claims about three values of ŵ. We are now
faced with a (potentially) simpler task. Given oracle access to C(w), we merely need to check the
three claims about ŵ. For simplicity let us focus on one of these three claims, that is, a claim of
the form ŵ(z) = b (where z ∈ Flogn and b ∈ F).

It is natural to wonder at this point whether checking that ŵ(z) = b, given oracle access to C(w),
is any simpler than checking that φ(w) = 1. We would like to argue that the answer is affirmative.
In particular, since the low degree extension is a linear code (over the field F), the claim ŵ(z) = b is
linear - i.e., it can be rephrased as a claim of the form 〈λz, w〉 = b, for some λz ∈ Fn (that depends
only on z ∈ Flogn).

Thus, we need a procedure for checking a linear claim about w, given oracle access to C(w).
Observing that C is a tensor code, a natural approach is to use the classical sumcheck protocol.
Recall that the sumcheck protocol is an interactive proof for computing

∑
i∈[n]wi, given oracle

access to C(w). While the protocol was originally designed specifically for the low degree extension
code, it was later abstracted by Meir [Mei13], who showed that it can be applied to any tensor
code.

The discussion so far comes close to resolving our problem. The difficulty that remains is that
we would like to check that 〈λz, w〉 = b whereas the sumcheck protocol supports claims of the
form 〈1, w〉 = b, where 1 is the all 1’s vector. That is, the sumcheck protocol seems limited to the
particular linear claim in which all coefficients are equal to 1. Unfortunately, the linear claim in
question (corresponding to the vector λz) does not have this form. Before proceeding, we remark

16Here we also use the fact that the verifier can compute Îφ by itself in Õ(n) time, see Section 2.3 for details.

10



that if C were a multiplication code then we could have easily handled this difficulty be applying
the sumcheck protocol to the codeword C(w) ? C(λz).

Sumcheck for rank 1 tensor coefficients. While we do not know how to extend the sumcheck
protocol to handle linear claims with arbitrary coefficients, following [Mei13], we show that it is
possible to extend it to handle a particular form of coefficient structure. Luckily, the vector λz has
a suitable form.

More specifically, we show how to extend the sumcheck protocol to computing linear claims of
the form 〈λ,w〉 for any λ ∈ Fn which corresponds to a rank 1 matrix of dimension

√
n ×
√
n (or

more generally to any rank 1 tensor). That is, we assume that there exist λ1, λ2 ∈ F
√
n such that

λ = λ1 ⊗ λ2 (where ⊗ denotes the tensor product, and we view λ simultaneously as a vector in Fn
and as a matrix in F

√
n×F

√
n in the natural way). The fact that λz has this structure follows from

the fact that the low degree extension is itself a tensor code.
Thus, we would like to use the sumcheck protocol to compute 〈λ1 ⊗ λ2, w〉. Let C0 : {0, 1}n0 →

{0, 1}n′0 be a systematic17 linear code such that C = C0⊗C0. Thus, n0 =
√
n and n′0 =

√
(1 + γ

2 ) · n.

Let c = C(w). We view c as an n′0 × n′0 dimensional matrix in the natural way, and denote its
(i, j)-th entry by c(i, j).

In our sumcheck variant, the (honest) prover sends the message π ∈ Fn′0 which is defined as
π(j) =

∑
i∈[n0] λ1(i) · c(i, j), for every j ∈ [n′0]. In other words, π is computed by taking a linear

combination of the first n0 rows of c, with coefficients corresponding to λ1.
At first glance it may seem as though π is a codeword of C0. This is actually not true since C0

is linear over the field GF(2) whereas we are using coefficients in a different (and larger) field F.
Nevertheless, if we choose F to be an extension field of GF(2), then with some elementary algebraic
manipulations, we can show that π can be decomposed into log2(|F|) codewords of C0.

The verifier, given a string π̃ which is allegedly equal to π, first checks that π̃ indeed consists of
the aforementioned log(|F|) codewords and rejects otherwise. Since both π and π̃ are composed of
codewords, this test ensures us that if they differ then they must differ on a constant fraction of
coordinates. The verifier then chooses a random j0 ∈ [n′0] and checks that π̃(j0) =

∑
i∈[n0] λ1(i) ·

c(i, j0) by reading the j0-th column of c. Assuming that the prover sent π̃ 6= π, with constant
probability over the choice of j0 it holds that π̃(j0) 6= π(j0) =

∑
i∈[n0] λ1(i) · c(i, j0) and so the

verifier rejects. Since we can now assume that the prover actually sent π, the verifier can simply
output

∑
j∈[n0] λ2(j) · π(j) =

∑
i,j∈[n0] λ1(i) · λ2(j) · c(i, j) = 〈λ1 ⊗ λ2, w〉 as desired.

This concludes the description of the warmup. Observe that the communication complexity is
(1 + γ

2 ) ·n+ Õ(
√
n) ≤ (1 +γ) ·n and the query complexity is O(̃

√
n) as promised. In fact, a variant

of this protocol only requires the verifier to make a single query to c (and additional Õ(
√
n) queries

to the prover’s messages).

A brief digest: Interactive code switching. The key idea in the above proof is that, using
interaction, we are able to “switch” between different tensor codes during the protocol. More specif-
ically, we implicitly use a (low-rate) multiplication code to check correctness of the computation,
but are able to use a high-rate tensor code for actually encoding the witness. The key facilitator
for switching between these codes is the power of the sumcheck protocol.

17We say that C is systematic if the message appears as the beginning of every codeword.
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This approach is inspired by Meir’s [Mei13] combinatorial proof of the IP = PSPACE theorem.
In Meir’s protocol, which is an abstraction of the [GKR15] protocol, claims about larger tensor
codewords are reduced to claims about smaller tensor codewords via the sumcheck protocol.

1.2.1 Additional steps from warmup to Theorem 2

Constant query complexity. The approach outlined so far only yields an IOP with Õ(
√
n) query

complexity. To obtain a result with constant query complexity we follow the usual route - query
reduction via composition [AS98]. In more detail, rather than actually performing the queries we
will ask the prover to provide a constant query PCP, or more precisely a PCP of proximity (PCPP),
that the verifier would have accepted had it read these queries. Since the PCPP is applied to an
input of length Õ(

√
n) we can afford to use existing constant-query PCPP constructions (e.g., those

with poly-logarithmic overhead [BS08, Din07, Mie09]). A similar type of IOP composition was
used also in [BCG+17] and as in their work, we utilize interaction to pay only polynomially in the
randomness complexity of the so-called “outer” IOP (rather than exponentially as in standard PCP
composition).

Actually making this idea go through is somewhat more technically invloved. For example, we
need to ensure that our base IOP (with Õ(

√
n) query complexity) is robust (i.e., the verifier cannot

be made to accept even if the prover is allowed to flip a constant fraction of its answers a posteriori).
We also need the outer IOP verifier to run in sublinear time. We defer the details to the technical
sections.

Extending to general bounded-space computations. When trying to extend our approach
past 3SAT, we observe that the main property that we used is that 3SAT has an interactive reduction
to a linear claim about the witness, where the linear claim has a rank 1 tensor structure.

Using the doubly-efficient interactive proofs of Reingold et al. [RRR21] we show that a similar
statement holds for any NP relation computable in polynomial-time with bounded polynomial-
space. This basically follows from the fact that the verifier in [RRR21] runs in sublinear time
given access to the low degree extension of its input. Plugging in the [RRR21] protocol instead
of Πreduce lets us obtain a high-rate IOP for any non-deterministic bounded space computation,
thereby proving Theorem 2.

Remark 1.5. One can replace the [RRR21] protocol with the doubly efficient interactive proof-
system of Goldwasser et al. [GKR15] to obtain an IOP approaching the witness length also for
NP relations that can be verified in small depth (rather than small space). However, the resulting
IOP only has poly-logarithmic query complexity due to the poly-logarithmic number of rounds in
[GKR15].

1.3 Subsequent work and open problems

Prover Efficiency. A key bottleneck in leading modern implementations of succinct argument
systems18 is the overhead incurred by the prover. For IOP based arguments, the communication
complexity is a lower bound on the IOP prover efficiency. Since we have managed to minimize the

18An argument system is a proof system that is sound against computationally bounded cheating provers.
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communication complexity, it is tempting to ask whether it is possible to achieve linear overhead
for the IOP prover.

In a sequence of follow up works [BCG20, BCL22, GLS+21, RR22], which all build on our code-
switching technique, this goal has indeed been realized. In particular [RR22] constructs IOPs in
which the prover can be implemented by a strictly linear-size Boolean circuit.

Shorter PCPs. As mentioned above, the work of [FS11] shows that SAT does not have a PCP with
length that is a fixed polynomial in the witness size (let alone proof length approaching the witness
length), unless NP ⊆ co-NP/poly. This still leaves open the possibility that an interesting sub-class
of NP relations has such short proofs. Somewhat along this vein, a recent work of Ben Eliezer et
al. [BFLR20] constructs a PCPP with length n · (log n)o(1) but for a very specific problem. In
particular, the question of whether CircuitSAT has a linear length constant-query PCP remains
wide open.

A major difficulty in trying to adapt our approach (as well as previous approaches) is that
we apply an interactive version of the sumcheck protocol that has sub-linear communication. In
contrast, the only way in which we know how to make the sumcheck protocol non-interactive (i.e.,
by specifying the answers of all possible queries of the verifier) leads to super-linear proof length.

A starting point may be to try to obtain PCPs for CircuitSAT of proof length approaching t with
any non-trivial query complexity (we note that while [BKK+16] constructed a PCP for CircuitSAT
of length O(t) with non-trivial query complexity, the hidden constant in the O(·) notation is very
large). A positive answer to this question would have to bypass the use of multiplication codes in
a fundamentally different way than in our protocol (which capitalizes on interaction). Moreover,
we note that for the case of linear length locally testable and correctable codes, a key for reducing
the query complexity was indeed to first construct such codes of rate approaching 1 and non-trivial
sublinear query complexity [BV15, Vid15, KSY14, KMRS17]. (And the case of obtaining linear
length locally-testable codes with constant query complexity was recently settled [DEL+22, PK22].)

Hardness of approximation. A major application of PCPs is showing hardness of approxima-
tion for central optimization problems (see, e.g., [FGL+96, H̊as01]). A fascinating open question,
pointed out by [BCG+17, ARW17], is whether IOPs may have similar implications. In particular, a
major barrier in applying the traditional PCP methodology for obtaining hardness of approximation
results in fine-grained complexity is the overhead in the length of existing PCPs. For example, to
show that GapSAT is 2(1−ε)·n hard based on SETH, one would need a PCP with overhead 1+ε′. (In
particular, note that a PCP of length, say, 100n would only roughly yield hardness of 2n/100.) Inter-
estingly, recent breakthrough results bypassed this barrier by relying on interactive proof machinery
[ARW17, Rub18, CGL+19]. It is natural to ask whether short IOPs such as those constructed in this
work can be used to establish new or improved hardness of approximation results. We remark that
(not necessarily short) IOPs have been used in the recent works of Arnon et al. [ACY22b, ACY22a]
to derive hardness of approximation results.

1.4 Organization

We start with preliminaries in Section 2. In Section 3 we state our main results and also introduce
the main definitions and lemmas that will be used in the proof. These lemmas are proved in
Sections 4 to 6. In Section 7 we use the results obtained in the previous sections to construct our
IOPP and in Section 8 we construct our IOP.
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2 Preliminaries

We will often view a string x ∈ Σn, over an alphabet Σ, as a function x : [n] → Σ. In particular,
the i-th entry of x is denoted x(i). The relative distance between strings x, y ∈ Σn, over a finite
alphabet Σ, is the fraction of coordinates i ∈ [n] on which x and y differ, and is denoted by
dist(x, y) := |{i ∈ [n] : x(i) 6= y(i)}| /n. The relative distance of x ∈ Σn from a non-empty set
S ⊆ Σn is dist(x, S) = miny∈S dist(x, y).

We will use finite fields extensively throughout this work. For sake of efficient implementation
of the field operations, we need the field to be constructible.

Definition 2.1. We say that an ensemble of finite fields F = (Fn)n∈N is constructible if elements
in Fn can be represented by O(log(|Fn|)) bits and field operations (i.e., addition, subtraction, mul-
tiplication, inversion and sampling random elements) can all be performed in polylog(|Fn|) time
given this representation.

Lemma 2.2 (see [Sho88]). For every S = S(n) ≥ 1, there exists a constructible field ensemble
F = (Fn)n, where each Fn has scharacteristic 2 and size O(S(n)).

2.1 Interactive oracle proofs

We next define the notion of interactive oracle proof, due to [BCS16, RRR21]. We will give a
general definition that applies to promise problems, which will allow us to model settings in which
the input has some particular structure (e.g., is encoded under an error-correcting code). As we
will often be interested in verifiers that run in sub-linear time, we will also view the input as being
separated into two parts x = (xexp, ximp), where the verifier explicitly reads the explicit input xexp,
but only has oracle access to the implicit input ximp (we will sometimes consider languages in which
either the explicit or the implicit inputs are empty). For simplicity, we restrict our attention to
the public-coin setting which means that all of the verifier’s messages simply consist of uniformly
random coins.

Definition 2.3 (Interactive oracle proof (IOP)). An `-round (public coin) interactive oracle proof
(IOP) with soundness error ε for a promise problem (YES,NO) is a pair (P,V) of probabilistic algo-
rithms satisfying the following properties.

• Prover P’s Input: P receives as input x = (xexp, ximp).

• Verifier V’s Input: V receives as input xexp, and is also given oracle access to ximp.

• Communication phase: P and V interact for ` rounds, where V’s messages are uniformly
random strings R1, . . . , R`.

• Query phase: At the end of the interaction, V makes (non-adaptive) queries to the implicit
input ximp and P’s messages, where the location of the queries only depends on the explicit
input xexp and V’s randomness string R = (R1, . . . , R`), and decides whether to accept or
reject based on the value of these queries, the explicit input xexp, and the randomness string
R.

• Completeness: If x ∈ YES, then when V interacts with P, it accepts with probability 1.
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• Soundness: If x ∈ NO, then for any prover strategy P∗, when V interacts with P∗, it accepts
with probability at most ε.

The key parameters that we will care about are:

• Round complexity: the number of rounds `.

• Query Complexity: the number of bits q that the verifier reads from the implicit input
ximp and P’s messages.

• Communication complexity: the total length cc of P’s messages.

• Randomness complexity: the total length r of V’s randomness string R = (R1, . . . , R`).

• Verifier running time: the total time TV it takes for V to generate its randomness string
R = (R1, . . . , R`), compute the query locations, given the explicit input xexp and the random-
ness string R, and decide whether to accept or reject based on the query values, the explicit
input xexp, and the randomness string R.

• Prover running time: the total time TP it takes for P to compute its messages. In the
context of interactive oracle proof for NP languages we will often assume that the prover is
also given as an auxiliary input a witness w proving that the input x belongs to the language.

We note that the notion of PCP corresponds to the special case of IOP, where the round com-
plexity is ` = 1.

A particular special case of interest is that of IOPs of proximity [BCS16, RRR21], or IOPP for
short. For a pair language L ⊆ {(xexp, ximp) ∈ {0, 1}∗ × {0, 1}∗} and xexp ∈ {0, 1}∗, we use the
notation Lxexp := {ximp : (xexp, ximp) ∈ L}.

Definition 2.4 (Interactive oracle proof of proximity (IOPP)). An `-round IOP of α-proximity
(α-IOPP) with soundness error ε for a pair language L ⊆ {(xexp, ximp) ∈ {0, 1}∗ × {0, 1}∗} is an
`-round IOP with soundness error ε for the promise problem (YES,NO), where YES = L and
NO = {(xexp, y) : y is α-far from Lxexp}.

We refer to α as the proximity parameter of the IOPP. If L has no explicit input, then an `-round
α-IOPP with soundness error ε forL is an `-round IOP with soundness error ε for the promise problem
(YES,NO), where YES = L and NO = {y : y is α-far from L}. Once more, we note that the notion
of PCPP corresponds to the special case of IOPP, when the round complexity is ` = 1.

2.1.1 Composition

A key benefit of IOPPs is that they facilitate composition. Specifically, one can compose an “outer”
robust IOP which has small communication complexity but large query complexity, with an “inner”
IOPP which has large communication complexity, but small query complexity, to obtain the best
of both worlds: an IOP with small communication and query complexities. We begin with the
definition of a robust IOP.

Definition 2.5 (Robustness). We say that an IOP (P,V) for a promise problem (YES,NO) is
(α, ε)-robust if the soundness requirement is replaced with the following stronger requirement:
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• Robustness: If x ∈ NO, then for any prover strategy P∗, when V interacts with P∗, then the
answers to the queries that V makes to the implicit input ximp and P’s messages are α-close
to any view that would make V accept with probability at most ε.

We refer to α as the Robustness parameter of the IOP. To also reduce the verifier running time
in composition, it will also be useful that each query location in the outer IOP can be computed
quickly, as per the following definition.

Definition 2.6. We say that V is s-succinct if the location of each individual query to the implicit
input ximp and P’s messages can be computed in time s, given the explicit input xexp and V’s
randomness string R = (R1, . . . , R`).

Lemma 2.7. (Composition) Suppose that the following hold:

• (Outer IOP:) Let (YES,NO) be a promise problem with implicit input length n. Suppose that
there exists an `-round (α, ε)-robust IOP (P,V) for (YES,NO) with communication complexity
cc(n), query complexity q(n), randomness complexity r(n), verifier running time TV(n), and
prover running time TP(n). Suppose furthermore that V is s(n)-succinct.

• (Inner IOPP:) Let L(P,V) denote the pair language consisting of all pairs ((xexp, R), y), so
that V accepts on explicit input xexp, randomness string R, and query values y. Suppose that
there exists an `′-round α-IOPP (P ′,V ′) with soundness error ε′ for the pair language L(P,V)

with communication complexity cc′(n′), query complexity q′(n′), verifier running time TV ′(n
′),

and prover running time TP ′(n
′), where n′ denotes the implicit input length of L(P,V).

Then there exists an (` + `′)-round IOP (P ′′,V ′′)with soundness error ε + ε′ for (YES,NO)
with communication complexity cc(n) + cc′(q(n)), query complexity q′(q(n)), verifier running time
r(n) + TV ′(q(n)) · s(n), and prover running time TP(n) + TV(n) + TP ′(q(n)). Moreover, the first
(deterministic) message of P ′′ is identical to that of P.

The use of proof composition originates in [AS98], and is articulated as a composition of a robust
PCP with a PCPP in [BGH+06, DR06]. The extension to IOPs is from [BCG+17]. As our setting
is slightly different than that of [BCG+17] (in particular, we care about very small factors in the
communication complexity), we provide a full proof of Lemma 2.7 in Appendix B.

Lastly, we shall make use of the following PCPP due to [Mie09] as the “inner IOPP” in our
composition steps.

Theorem 2.8 ([Mie09, Theorem 1]). Let L be a pair language decidable in time T = T (m + n),
where m,n are the explicit and implicit input lengths, respectively. Then for any constant α > 0,
there exists an α-PCPP with soundness error 1

2 for L with length Õ(T ), constant query complexity,
verifier running time poly(m, log n, log(T )), and prover running time poly(m,n, T ).

Remark 2.9. We remark that [Mie09, Theorem 1] does not explicitly state the prover’s running
time but it can be verified that the prover can be implemented in polynomial-time. We also note that
follow up works obtain prover running time that is quasi-linear (rather than merely polynomial) in
the original computation [BCGT13].

Instantiating the inner IOPP in Lemma 2.7 with the PCPP given in Theorem 2.8, readily implies
the following useful corollary.
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Corollary 2.10. The following holds for any constant α, ε′ > 0. Let (YES,NO) be a promise
problem, where m,n are the explicit and implicit input lengths, respectively. Suppose that there exists
an `-round (α, ε)-robust IOP (P,V) for (YES,NO) with communication complexity cc(n), query
complexity q(n), randomness complexity r(n), verifier running time TV(n), and prover running
time TP(n). Suppose furthermore that V is s(n)-succinct.

Then there exists an (` + 1)-round IOP (P ′,V ′) with soundness error ε + ε′ for (YES,NO) with
communication complexity cc(n) + Õ(TV(n)), constant query complexity, verifier running time
poly (m, r(n), s(n), log(TV(n))), and prover running time TP(n) + poly(m,TV(n)). Moreover, the
first (deterministic) message of P ′ is identical to that of P.

2.2 Error-correcting codes

Let Σ be a finite alphabet, and n, n′ be positive integers (the message length and the block length,
respectively). An (error-correcting) code is an injective map C : Σn → Σn′ . The elements in the
domain of C are called messages, and the elements in the image of C are called codewords. The
rate of a code C : Σn → Σn′ is the ratio ρ := n

n′ . The relative distance dist(C) of C is the maximum
δ > 0 such that for every pair of distinct messages x, y ∈ Σn it holds that dist(C(x), C(y)) ≥ δ.
We say that C is systematic if the message is a prefix of the corresponding codeword, i.e., for every
x ∈ Σn there exists z ∈ Σn′−n such that C(x) = (x, z). If Σ = F for some finite field F, and C is a
linear map between the vector spaces Fn and Fn′ then we say that C is linear.

In this work we will typically want error-correcting codes that are defined for an infinite sequence
of message lengths I ⊆ N. Thus, a code ensemble C = {Cn : Σn → Σn′}n∈I is a countable collection
of error correcting codes, one for each message length n ∈ I. We say that C has rate ρ ∈ (0, 1) and
relative distance δ ∈ (0, 1) if for any n ∈ I, the code Cn has rate at least ρ and relative distance at
least δ. We say that C is T -time encodable if given x ∈ Σn, the codeword Cn(x) can be generated in
time T (n). The code is linear-time encodable (resp., quasi-linear time encodable) if it is encodable
in time O(n) (resp., Õ(n)).

2.2.1 Tensor codes

A main ingredient in our IOPs is the tensor product code, defined as follows (see, e.g., [Sud01,
DSW06]).

Definition 2.11 (Tensor product code). The tensor (product) code of linear codes C1 : Fn1 → Fn′1
and C2 : Fn2 → Fn′2 is the code C1 ⊗ C2 : Fn1×n2 → Fn′1×n′2, where the encoding (C1 ⊗ C2)(M) of
any message M ∈ Fn1×n2 is obtained by first encoding each column of M with the code C1, and
then encoding each resulting row with the code C2.

Note that by linearity, the codewords of C1 ⊗ C2 are n′1 × n′2 matrices (over the field F) whose
columns belong to the code C1, and whose rows belong to the code C2. It is also known that the
converse is true: any n′1×n′2 matrix, whose columns belong to the code C1, and whose rows belong
to the code C2, is a codeword of C1⊗C2. Furthermore, swapping the order of encodings, encoding
first each row of M with the code C2, and then encoding each resulting column with the code C1,
results in the same codeword.

The following effects of the tensor product operation on the classical parameters of the code are
well known.
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Fact 2.12. Suppose that C1 : Fn1 → Fn′1, C2 : Fn2 → Fn′2 are linear codes of rates ρ1, ρ2 and relative
distances δ1, δ2 that can be encoded in times T1, T2, respectively. Then, the tensor code C1 ⊗ C2 is
a linear code of rate ρ1 · ρ2 and relative distance δ1 · δ2 that can be encoded in time n′2 · T1 + n′1 · T2.

For a linear code C : Fn → Fn′ , let C⊗1 := C and C⊗t := C ⊗ C⊗(t−1), for any t ≥ 2. As in
the 2-dimensional case, the codewords of C⊗t : Fnt → F(n′)t can be viewed as t-dimensional cubes,
satisfying that their projection on any axis-parallel line is a codeword of C. Once more, we have
that the converse is also true. Moreover, by Fact 2.12, if C is a linear code of rate ρ and relative
distance δ that can be encoded in time T , then C⊗t is a linear code of rate ρt and relative distance
δt that can be encoded in time t · (n′)t−1 · T .

2.3 Low degree extension

Let F be a finite field, H ⊆ F an additive subgroup of F and let m ∈ N. Let Î : Fm × Fm → F be
the individual degree |H| − 1 polynomial defined as:

Î(x, z)
def
=
∏
i∈[m]

∏
h∈H\{0}

zi − xi + h

h
. (2)

The following fact can be verified by inspection.

Fact 2.13. For every h, h′ ∈ Hm it holds that Î(h, h′) = 1 if h = h′ and Î(h, h′) = 0 otherwise.

Proposition 2.14. For every function φ : Hm → F, there exists a unique extension of φ into an
individual degree |H| − 1 polynomial φ̂ : Fm → F, which agrees with φ on Hm (i.e., φ̂|Hm ≡ φ).

Proof. Consider the polynomial φ̂(x) =
∑

h∈Hm φ(h) · Î(x, h). The fact that φ̂ and φ agree on Hm

follows from Fact 2.13. Uniqueness follows from the fact that any two individual degree |H| − 1
polynomials that agree on Hm, agree everywhere.

The polynomial φ̂ is called the low degree extension of φ relative to F, H and m.

2.4 The sumcheck protocol

We use (a slight variant of) the celebrated sumcheck protocol of [LFKN92] for verifying the sum
of a low-degree polynomial Q over all inputs in a subcube Hm ⊆ Fm. This variant allows for a
trade-off between the number of rounds and the total amount of communication.

Lemma 2.15 (The Sumcheck Protocol, see e.g., [RRR21, Lemma 7.1]). Let H = (Hn)n∈N and
F = (Fn)n∈N be constructible finite field ensembles, so that Fn is an extension field of Hn for any
n ∈ N. For every m = m(n) ≥ 1 and round parameter ` = `(n) ≥ 1, where `(n) divides m(n) for
any n ∈ N, there exists an interactive protocol (P,V) satisfying the following properties:

• Prover P’s Input: P receives as input a polynomial Q : Fmn → Fn of individual degree
d = d(n), and a scalar a ∈ Fn.

• Verifier V’s Input: V receives as input n ∈ N.

• Communication phase: P and V interact for ` rounds, where V’s messages are uniformly
random strings R1, . . . , R`.
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• Query phase: At the end of the interaction, V computes a point z ∈ Fmn , depending only on
V’s randomness string R = (R1, . . . , R`). It then reads the entire P’s messages, and based
on the content of these messages and the randomness string R, it either rejects, or outputs z
and a scalar b ∈ Fn.

• Completeness: If
∑

h∈Hmn Q(h) = a, then when V interacts with P, with probability 1, the
output of V is (z, b) such that Q(z) = b.

• Soundness: If
∑

h∈Hmn Q(h) 6= a, then for any prover strategy P∗, when V interacts with P∗,
the probability that V outputs (z, b) such that Q(z) = b is at most d·m

|Fn| .

The communication complexity is ` · (d+ 1)m/` · log |Fn|+m · log |Fn|. The verifier runs in time
` · dO(m/`) · polylog(|Fn|), and the prover runs in time |Hn|m · ` · dO(m/`) · polylog(|Fn|).

3 Main results and claims

3.1 Formal statement of our results

Our main result, which is proved in Section 8, is an IOP for every NP relation that can be veri-
fied in polynomial time with bounded polynomial space, in which the communication complexity
approaches the witness length.

Theorem 3.1 (IOP for NP). There exists a fixed absolute constant ξ > 0 such that the following
holds. Let L ∈ NP with corresponding relation RL in which the instances have length m and
witnesses have length n, where n and m are polynomially related, and such that RL can be decided
in time poly(n) with space nξ. Also, we assume that m ≥ n (i.e., instances are not shorter than
their corresponding witnesses).19

Then for any constant γ, ε > 0, there exists a constant round IOP with soundness error ε for L
with communication complexity (1+γ) ·n and constant query complexity. The verifier runs in time
Õ(m), and the prover runs in time poly(m) (given a witness).

Our second main result, proved in Section 7, is an IOPP for bounded space computations in
which the communication complexity is slightly less than the input length.

Theorem 3.2 (IOPP for bounded-space computations). For any constant β > 0, there exists a
constant ξ > 0 such that the following holds. Let L be a language with no explicit input that can be
decided in time poly(n) with space nξ. Then for any constant γ, ε, α > 0, there exists a constant
round α-IOPP with soundness error ε for L with communication complexity γ ·n and constant query
complexity. The verifier runs in time nβ, and the prover runs in time poly(n).

3.2 Main claims

In this section we introduce the main claims that will be used to establish our results.
We say that a pair language L has implicit length sequence (resp., input length sequence) I, for

I ⊆ N, if for any x = (xexp, ximp) ∈ L it holds that |ximp| ∈ I (resp., |x| ∈ I). For an integer t > 1,

19This requirement can be handled by simply padding the input with 0’s if necessary. This increases the input size
by at most n.
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we let It = {it | i ∈ N}, that is, It contains all integers that are t-th powers. For a finite field F and
for t vectors λ1, . . . , λt ∈ Fn, we denote by λ1 ⊗ · · · ⊗ λt ∈ Fnt the t-dimensional tensor satisfying
that (λ1 ⊗ · · · ⊗ λt)(̄i) = λ1(i1) · · ·λt(it) for any ī = (i1, . . . , it) ∈ [n]t.

We start by defining the notion of a tensor interactive reduction, which is an interactive protocol
for a pair language L, whose output is t vectors λ1, . . . , λt and a scalar b, where the condition
〈λ1 ⊗ · · · ⊗ λt, ximp〉 = b is interpreted as accepting, and 〈λ1 ⊗ · · · ⊗ λt, , ximp〉 6= b is interpreted as
rejecting.

Definition 3.3 (Tensor interactive reduction). Let t > 1 be an integer, let L be a pair language
with implicit length sequence It, and let F = {Fn}n∈It be a constructible ensemble of finite fields
of characteristic 2. An `-round t-dimensional tensor interactive reduction with soundness error ε for L
over F is an interactive protocol (P,V) satisfying the following properties:

• Prover P’s Input: P receives as input x = (xexp, ximp).

• Verifier V’s Input: V receives as input xexp.

• Communication phase: P and V interact for ` rounds, where V’s messages are uniformly
random strings R1, . . . , R`.

• Query phase: At the end of the interaction, V computes t vectors λ1, . . . , λt ∈ (Fn)n
1/t

,
depending only on the explicit input xexp and V’s randomness string R = (R1, . . . , R`), where
n is the implicit input length. It then reads the entire P’s messages, and based on the content
of these messages, the explicit input xexp, and the randomness string R, it either rejects or
outputs λ1, . . . , λt, and a scalar b ∈ Fn.

• Completeness: If x ∈ L, then when V interacts with P, with probability 1, the output of V
is (λ1, . . . , λt, b) such that 〈λ1 ⊗ · · · ⊗ λt, ximp〉 = b.

• Soundness: If x /∈ L, then for any prover strategy P∗, when V interacts with P∗, the
probability that V outputs (λ1, . . . , λt, b) such that 〈λ1 ⊗ · · · ⊗ λt, ximp〉 = b is at most ε.

We note that we allow the verifier in the tensor interactive reduction to read all of the prover’s
messages. This is simply because the messages will be quite short (and later on we will even further
reduce the query complexity via composition).

For an integer t > 1, a code ensemble C = {Cn : {0, 1}n → {0, 1}n′}n∈It , and an ensemble
F = {Fn}n∈It of finite fields of characteristic 2, we let L(C,F , t) denote the pair language

L(C,F , t) :=

{((
λ1, . . . , λt, b

)
, w

)
: ∃x ∈ {0, 1}n s.t. w = Cn(x) and 〈λ1 ⊗ · · · ⊗ λt, x〉 = b

}
, (3)

where λ1, . . . , λt ∈ (Fn)n
1/t

and b ∈ Fn are the explicit input, and w ∈ {0, 1}n′ is the implicit input.

The next lemma, proved in Section 4, shows how to combine a t-dimensional tensor interactive
reduction for a language L, together with an IOPP for L(C,F , t), to obtain an IOPP for L.

Lemma 3.4 (Code switching). Let t > 1 be an integer, let L be a pair language with implicit length
sequence It, and let F = {Fn}n∈It be a constructible ensemble of finite fields of characteristic 2.
Let C = {Cn : {0, 1}n → {0, 1}n′}n∈It be a systematic linear code ensemble of rate 1−γ and relative
distance δ that can be encoded in time T . Suppose that the following exist:
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• An `-round t-dimensional tensor interactive reduction (P,V) with soundness error ε for L
over F with communication complexity cc(n), verifier running time TV(n), and prover running
time TP(n), where n is the implicit input length of L.

• An `′-round α-IOPP (P ′,V ′), for α < δ
2 , with soundness error ε′ for L(C,F , t) as given in (3)

with communication complexity cc′(n′), query complexity q′(n′), verifier running time TV ′(n
′),

and prover running time TP ′(n
′), where n′ is the implicit input length of L(C,F , t). Suppose

furthermore that the query locations only depend on the verifier’s randomness string.

Then, there exists an (` + `′)-round α
1−γ -IOPP (P ′′,V ′′) with soundness error ε + ε′ for L with

communication complexity γ
1−γ ·n+cc(n)+cc′(n′), query complexity cc(n)+q′(n′), verifier running

time TV(n)+TV ′(n
′), and prover running time T (n)+TP(n)+TV(n)+TP ′(n

′). Moreover, the com-
munication phase consists of a single message of P ′′ which is the non-systematic part of Cn(ximp)
(i.e., of length γ

1−γ ·n), followed by cc(n) + cc′(n′) additional communication, and the total number

of queries made by V ′′ to the implicit input and the first message of P ′′ is the same as the number
of queries made by V ′ to the implicit input.

The following lemma, proved in Section 5, establishes the existence of a tensor interactive reduc-
tion for a large class of languages.

Lemma 3.5 (Tensor interactive reduction). The following holds for any constant t > 1. Let L
be a language with no explicit input and with input length sequence It that can be decided in time
poly(n) with space s = s(n) ≥ log n. Let F = {Fn}n∈It be a constructible ensemble of finite fields
of characteristic 2, where polylog(n) ≤ |Fn| ≤ poly(n) for any n ∈ It.

Then for any constant β > 0, there exists a constant round t-dimensional tensor interactive
reduction with soundness error 1

2 for L over F with communication complexity and verifier running
time nβ · poly(s) and prover running time poly(n).

Lastly, the following lemma, proved in Section 6, states the existence of a code ensemble C for
which the language L(C,F , t) given in (3) has an efficient IOPP.

Lemma 3.6 (IOPP for L(C,F , t)). The following holds for any constant integer t > 1 and δ > 0.
Let B = {Bn : {0, 1}n → {0, 1}n′}n∈N be a systematic linear code ensemble of relative distance δ
that can be encoded in quasi-linear time, and let C = {Cn = (Bn1/t)⊗t}n∈It. Let F = {Fn}n∈It be
a constructible ensemble of finite fields of characteristic 2, where |Fn| ≤ poly(n) for any n ∈ It.

Then for any constant α > 0, there exists a constant round α-IOPP with soundness error 1
2 for

L(C,F , t) as given in (3) with communication complexity, query complexity, and verifier running
time Õ(n2/t) and prover running time poly(n). Moreover, the verifier makes a constant number
of queries to the implicit input, where the location of each of these queries only depends on its
randomness string.

4 Code switching

In this section we prove the Code Switching Lemma (Lemma 3.4). The IOPP (P ′′,V ′′) for L is
given in Fig. 1 below.
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IOPP (P ′′,V ′′) for L on input x = (xexp, ximp):

Communication phase:

1. P ′′ sends the non-systematic part z of Cn(ximp) of length γ
1−γ · n.

2. P ′′ and V ′′ interact for ` rounds according to the communication phase of the tensor interactive
reduction (P,V) for L over F on explicit input xexp and implicit input ximp; Let R = (R1, . . . , R`)
denote V’s randomness string.

3. P ′′ computes the t vectors λ1, . . . , λt ∈ (Fn)n
1/t

and the scalar b ∈ Fn, based on the explicit input
xexp, the randomness string R, and the messages of P.

4. P ′′ and V ′′ interact for `′ rounds according to the communication phase of the IOPP (P ′,V ′) for
L(C,F , t) on explicit input (λ1, . . . , λt, b) and implicit input (ximp, z).

Query phase:

1. V ′′ reads all of the messages of P; If V rejects, then V ′′ rejects and aborts. Otherwise, V ′′ computes
(λ1, . . . , λt, b) based on the explicit input xexp, V’s randomness string R, and the messages of P.

2. V ′′ makes q′ queries to the implicit input ximp, to z, and to the messages of P ′ according to the query
phase of the IOPP (P ′,V ′) (noting that the location of these queries only depends on V’s randomness
string), and accepts if and only if V ′ accepts.

Figure 1: IOPP (P ′′,V ′′) for L

It can be verified that the round complexity, communication complexity, query complexity, ver-
ifier running time, and prover running time are all as claimed, and that the requirements in the
“moreover” part are satisfied. Next we show completeness and soundness.

Completeness. Suppose that x = (xexp, ximp) ∈ L. Then, by the completeness property of the
protocol (P,V), with probability 1, V outputs (λ1, . . . , λt, b) satisfying 〈λ1 ⊗ · · · ⊗ λt, ximp〉 = b.
Consequently, ((λ1, . . . , λt, b), (ximp, z)) = ((λ1, . . . , λt, b), Cn(ximp)) ∈ L(C,F , t), and V ′ will accept
with probability 1. We conclude that in this case V ′′ accepts with probability 1.

Soundness. Suppose that ximp is α
1−γ -far from Lxexp . Fix a cheating prover strategy (P ′′)∗. We

assume without loss of generality that (P ′′)∗ is deterministic and denote the first message that it
sends (on input x = (xexp, ximp)) by z̃.

Suppose first that (ximp, z̃) is α-far from the code Cn. In this case, we also have that (ximp, z̃) is
α-far from (L(C,F , t))(λ1,...,λt,b), and so V ′ will reject with probability at least 1− ε′, in which case
V ′′ will also reject. We conclude that in the case that (ximp, z̃) is α-far from the code Cn, V ′′ will
reject with probability at least 1− ε′.

Next assume that (ximp, z̃) is α-close to some codeword Cn(y). First observe that our assump-

tion that dist((ximp, z̃), Cn(y)) ≤ α implies that dist(ximp, y) ≤ α·n′
n = α

1−γ . By assumption that
ximp is α

1−γ -far from Lxexp , this implies in turn that y /∈ Lxexp , so (xexp, y) /∈ L. Consequently,

with probability at least 1 − ε, V will either reject (in which case V ′′ will also reject), or output
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(λ1, . . . , λt, b) satisfying 〈λ1 ⊗ · · · ⊗ λt, y〉 6= b.
We claim that in the latter case (ximp, z̃) is α-far from (L(C,F , t))(λ1,...,λt,b), and so V ′ will reject

with probability at least 1−ε′, in which case V ′′ will also reject. To see this, suppose in contradiction
that (ximp, z̃) is α-close to some codeword Cn(y′) with 〈λ1 ⊗ · · · ⊗ λt, y′〉 = b. Then we have that
Cn(y) and Cn(y′) are distinct codewords (since 〈λ1 ⊗ · · · ⊗ λt, y〉 6= b but 〈λ1 ⊗ · · · ⊗ λt, y′〉 = b)
that are both of distance at most α from (ximp, z̃). By the triangle inequality and our assumption
that α < δ

2 this implies in turn that dist(Cn(y), Cn(y′)) ≤ 2α < δ, a contradiction.
We conclude that in the case that (ximp, z̃) is α-close to the code Cn, V ′′ will reject with probability

at least (1− ε) · (1− ε′) ≥ 1− ε− ε′.

5 Tensor interactive reduction

In this section we prove Lemma 3.5. The proof is largely based on a result of Reingold et al.
[RRR21].

Theorem 5.1 (Doubly efficient interactive proofs for bounded space computations [RRR21, see
Corollary 9 and Theorem 10]). Let L be a language that can be decided in time poly(n) with space
s = s(n) ≥ log n. Let F = (Fn)n∈N and H = (Hn)n∈N be constructible finite field ensembles such
that Hn ⊆ Fn, |Hn| = Ω(log n), and poly(|Hn|) ≤ |Fn| ≤ poly(n) for any n ∈ N.

Then for any constant β > 0, there exists a constant round public-coin interactive proof with
soundness error 1

2 for L with communication complexity nβ · poly(s), verifier running time Õ(n) +
nβ · poly(s), and prover running time poly(n). Moreover, the verifier runs in time nβ · poly(s)
given only oracle access to the low degree extension x̂ of the input x ∈ {0, 1}n relative to Fn, Hn

and dimension m = log|Hn|(n), where the location of the verifier queries to x̂ only depends on its
randomness string.

Throughout this section we refer to the protocol of Theorem 5.1 as the RRR protocol. At a
high level, we would like to prove Lemma 3.5 by simply running the RRR protocol wrt to L. At
first glance this seems problematic since the RRR verifier needs to get x as its input, whereas our
reduction does not have any access whatsoever to x.

To overcome this difficulty we rely on the furthermore clause of Theorem 5.1, which states that
all that the RRR verifier needs is oracle access to the low degree extension of x. Since the prover
can provide (alleged) values for the queries that the verifier would like to make, all that we need
to ensure is that the prover’s claims about the low degree extension of x are correct. By relying
on the fact that the low degree extension is a tensor code, it is possible to show that the verifier
simply generates linear claims, where the coefficients of these linear claims have a rank 1 tensor
structure, as required by Lemma 3.5.

The main issue that we encounter when trying to implement this high-level approach is that the
verifer in Lemma 3.5 should output a single claim about the low degree extension of x, whereas
the RRR verifier may make many queries to x̂ (which corresponds to generating many linear
claims). We show how to handle this issue, and generically reduce the number of queries to the low
degree extension (via interaction), in Section 5.1 below. Then, in Section 5.2 we use this to derive
Lemma 3.5.
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5.1 Interactive query reduction for low-degree extension

In this section we show how, using interaction, one can reduce the number of queries to the low
degree extension encoding.

The “traditional” way to (interactively) reduce the number of queries q to the low degree exten-
sion code (originating in [KR08, GKR15]) is to take a low degree curve passing through all the q
points (as well as some additional points), ask the prover for the evaluation on all points on the
curve and (1) check that the provided values are consistent with a low degree polynomial and (2)
check the correctness on a single random point. To make this approach work, one needs to use a
large field F of cardinality |F| ≥ q. We would like to avoid the use of such a large field and so we
do not follow this approach.

A natural generalization that has been considered in the literature (see, e.g., [RRR21]) is to use
a high dimensional (low degree) manifold rather than a (univariate) curve. Unfortunately, this idea
seems to introduce a quadratic dependence on q (to both communication and verification time),
which again we would like to avoid. Instead, we take a new approach based on the sumcheck
protocol, which is described next.

Lemma 5.2. Let F = (Fn)n∈N and H = (Hn)n∈N be constructible finite field ensembles so that
Hn ⊆ Fn, |Hn| ≤ polylog(n), and |Fn| ≤ poly(n) for any n ∈ N. Let (P,V) be a public-coin
interactive proof with soundness error ε for a language L, in which V only makes q(n) queries to
the low degree extension x̂ of the input x ∈ {0, 1}n relative to Fn, Hn, and dimension m = log|Hn|(n),
where the location of the verifier queries to x̂ only depends on its randomness string.

Then there exists a public-coin interactive proof (P ′,V ′) with soundness error ε+O(m · |Hn|/|Fn|)
for L, in which V ′ similarly receives oracle access to x̂ but only makes a single query to x̂, where the
location of this query only depends on its randomness string. For every parameter ` ∈ [m], we can
implement the foregoing interactive proof with an additional ` rounds of communication, additive
overhead of q(n) · log n+ ` · nO(1/`) to the communication complexity, q(n) · polylog(n) + ` · nO(1/`)

verification time overhead, and poly(n) prover time overhead.

Proof. Let x ∈ {0, 1}n be an input to the protocol, and let F := Fn, H := Hn, and q := q(n) . Since
|H|m = n we can identify Hm with [n] in some canonical way. Recall that the low degree extension
of x relative to F, H, and m is the (unique) individual degree |H| − 1 polynomial x̂ : Fm → F that
agrees with x on Hm (see Section 2.3).

We start with an intuitive description and then proceed to a formal description of the protocol.
The prover P ′ and verifier V ′ exactly emulate the communication phase of (P,V). Then, during
the query phase, the verifier V needs to make some ≤ q queries to x̂. Let {i1, . . . , iq} ⊆ Fm be the
locations that V wants to query (i.e., V wants to obtain the values x̂(ij) for all j ∈ [q]). The prover
P ′ sends to the verifier V ′ a list of alleged values for all these points. That is, values (y1, . . . , yq)
which the prover claims are equal to (x̂(i1), . . . , x̂(iq)).

Given (y1, . . . , yq), the verifier V ′ checks that V accepts given these answers (and immediately
rejects otherwise). Thus, V ′ only needs to verify the claim

∀j ∈ [q], yj = x̂(ij). (4)

To do so, V ′ selects at random r1, . . . , rq ∈ F. Observe that if Eq. (4) holds, then
∑

j rjyj =∑
j rj x̂(ij). Otherwise however (i.e., if Eq. (4) does not hold) then, with probability 1 − 1/|F|, it

holds that
∑

j rjyj 6=
∑

j rj x̂(ij). In other words, after choosing r1, . . . , rq, it suffices for V ′ to check
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the identity ∑
j

rjyj =
∑
j

rj x̂(ij). (5)

By definition of the low degree extension (see Proposition 2.14), the RHS of Eq. (5) can be expressed
as
∑

j rj
∑

h∈Hm x̂(h) · Î(ij , h) (see Section 2.3 for the definition of Î and more background on the

low degree extension). Define Q(λ) = x̂(λ) ·
(∑

j rj · Î(ij , λ)
)

. Observe that Q is an individual

degree 2(|H| − 1) polynomial in λ and that Eq. (5) is equivalent to checking that
∑

h∈Hm Q(h) is
equal to some fixed value. We can perform this test using the sumcheck protocol (see Lemma 2.15)
which requires only a single query to Q (which itself can be emulated using a single query to x̂).
We proceed to a formal description of the protocol, given in Fig. 2 below.

Protocol (P ′,V ′) for L on input x:

Communication phase:

1. P ′ and V ′ emulate the communication phase of the protocol (P,V) for L on input x; Let R =
(R1, . . . , R`′) denote V’s randomness string.

2. P ′ computes the query set I = {i1, . . . , iq}, based on the randomness string R, and sends values
(y1, . . . , yq) such that yj = x̂(ij) for any j ∈ [q].

3. V ′ chooses at random r1, . . . , rq ∈ F and sends them to P ′.

4. P ′ and V ′ run the sumcheck protocol (see Lemma 2.15) wrt the claim
∑
h∈Hm Q(h) =

∑
j rjyj , where

Q(λ) = x̂(λ) ·
(∑

j rj · Î(ij , λ)
)

.

Query phase:

1. Let ỹ1, . . . , ỹq be the values that are sent by the prover on Step 2. V ′ checks that V accepts given
the answer sequence ỹ1, . . . , ỹq and P’s messages; If not, it rejects and aborts.

2. If the sumcheck verifier rejects on Step 4, then V ′ rejects and aborts; Otherwise, let z ∈ Fm and
b ∈ F be the output of the sumcheck verifier on Step 4. V ′ computes x̂(z) ·

∑
j rj · Î(ij , z) using a

single query to x̂ (noting that z only depends on V ′’s randomness string), and accepts if and only if
this value equals to b.

Figure 2: Protocol (P ′,V ′) for L

It can be verified that the round complexity, communication complexity, query complexity, ver-
ifier running time, and prover running time are all as claimed. Next we show completeness and
soundness.
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Completeness. Suppose that x ∈ L. By completeness of (P,V), on Step 1 P ′ generates queries
i1, . . . , iq ∈ Fm such that V accepts given the answer sequence {yj = x̂(ij)}j . Observe that

∑
h∈Hm

Q(h) =
∑
h∈Hm

x̂(h) ·

∑
j

rj · Î(ij , h)


=
∑
j

rj
∑
h∈Hm

x̂(h) · Î(ij , h)

=
∑
j

rj x̂(ij)

=
∑
j

rjyj

and so by the completeness of Lemma 2.15, the sumcheck verifier outputs a claim (z, b) such that
indeed Q(z) = b. Thus, the verifier accepts when checking that b = x̂(z) ·

∑
j rj · Î(ij , z).

Soundness. Suppose that x 6∈ L. By the soundness of (P,V), with probability at least 1 − ε
(over the coins of V) it holds that if P ′ sends ỹj = yj for all j ∈ [q], then V ′ will reject. Assume
that the latter holds. Then, to avoid having V ′ immediately reject, P ′ must send ỹj∗ 6= yj∗ for some
j∗ ∈ [q]. Thus, with probability 1− 1/|F| over the choice of r1, . . . , rq, it holds that∑

j

rj ỹj 6=
∑
j

rjyj =
∑
j

rj x̂(ij) =
∑
j

rj
∑
h∈Hm

x̂(h) · Î(ij , h) =
∑
h∈Hm

Q(h).

Therefore, the sumcheck protocol is invoked on a false claim and with probability 1−O(m · |H|/|F|),
the sumcheck verifier either rejects or outputs z ∈ Fm and b ∈ F such that Q(z) 6= b. Assuming the
latter, V ′ rejects when checking that b = x̂(z) ·

∑
j rj · Î(ij , z) = Q(z). Thus, overall, the verifier

accepts with probability at most ε+O(m · |H|/|F|).

5.2 Proof of Lemma 3.5

Next we prove Lemma 3.5, based on the above Theorem 5.1 and Lemma 5.2.
Let F = (Fn)n∈N and H = (Hn)n∈N be constructible finite field ensembles of characteristic 2 such

that Hn ⊆ Fn, |Hn| = Θ(log n), and poly(|Hn|) ≤ |Fn| ≤ poly(n) for any n ∈ N. Let m = log|Hn|(n).
We choose Hn so that m is an integer divisible by t.

By Theorem 5.1, there exists a constant-round public-coin interactive proof (P,V) with soundness
error 1/2 for L with communication complexity nβ · poly(s) and prover running time poly(n). By
the moreover part of Theorem 5.1, the verifier V runs in time nβ · poly(s) given oracle access to
the low degree extension of the input x (relative to Fn, Hn and m). Moreover, the location of the
verifier queries to x̂ only depends on its randomness string. We repeat this protocol a constant
number of times (in parallel) to reduce the soundness error to 1

4 .
At this point we apply the transformation of Lemma 5.2 to (P,V) to obtain an interactive proof

with soundness error 1
4 +O(m·|Hn|/|Fn|) ≤ 1

2 in which the verifier only needs to make a single query
to the low degree extension of x, where the location of this query only depends on its randomness
string. Since the prover can provide an (alleged) value for this query, we can view the verifier as
simply outputting a single claim about the low degree extension of x. Moreover, for a sufficiently
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large constant `, the resulting protocol has asymptotically the same communication complexity and
verifier and prover running times.

Let (z, b) ∈ Fmn × Fn be the claim generated by the verifier. That is, the verifier would like to
check that x̂(z) = b (where x̂ : Fmn → Fn is the low degree extension of x). Using Proposition 2.14,
this precisely corresponds to

∑
h∈Hmn x(h) · Î(z, h) = b, a linear claim about x. In more detail,

consider a vector λ ∈ Fnn defined as λ(h) = Î(z, h) for every h ∈ Hm
n (recall that we associate the

set [n] with Hm
n ). Then the claim that the verifier generates is that 〈λ, x〉 = b. Observe further

that since Î(z, h) =
∏m
i=1 Î(zi, hi), and m is divisible by t, it holds that

λ = λ1 ⊗ · · · ⊗ λm = λ′1 ⊗ · · · ⊗ λ′t,

where λi(g) = Î(zi, g) for g ∈ Hn, and λ′i = λ(i−1)·m
t

+1 ⊗ · · · ⊗ λi·mt for any i = 1, . . . , t. Finally,

note that λ′1, . . . , λ
′
t only depend on the verifier’s randomness string.

6 IOPP for L(C,F , t)
In this section we prove Lemma 3.6, showing the existence of an efficient IOPP for the language
L(C,F , t), as given in Eq. (3) above. The IOPP relies on known properties of tensor codes such as
the sumcheck protocol [LFKN92, Mei13], local testing [BV15, Vid15], and a relaxed local correcting
procedure [GRR18].

We start with the following lemma, which provides a sumcheck protocol for rank 1 tensor coef-
ficients that is very similar to our desired IOPP, except that we assume that the verifier is given
oracle access to a genuine codeword. To simulate this access when the implicit input is arbitrary
we shall later combine this protocol with local testing (to reject inputs that are far from the code)
and relaxed local correction (to decode the input to the nearest codeword) procedures for tensor
codes.

Lemma 6.1 (Sumcheck protocol for rank 1 tensor coefficients). The following holds for any integer
t > 1 and δ > 0. Let C = {Cn : {0, 1}n → {0, 1}n′}n∈N be a systematic linear code ensemble of
relative distance δ that can be encoded in time T = T (n), and let F = {Fn}n∈N be a constructible
finite field ensemble of characteristic 2. Let (YES,NO) be the following promise problem:

YES =
{

((λ1, . . . , λt, b), C
⊗t
n (x)) : 〈λ1 ⊗ · · · ⊗ λt, x〉 = b

}
,

NO =
{

((λ1, . . . , λt, b), C
⊗t
n (x)) : 〈λ1 ⊗ · · · ⊗ λt, x〉 6= b

}
,

where λ1, . . . , λt ∈ Fnn and b ∈ Fn are the explicit input, and C⊗tn (x) ∈ {0, 1}[n′]t is the implicit
input, where x ∈ {0, 1}[n]t.

Then there exists a t-round IOP with soundness error 1− δt for the promise problem (YES,NO)
with communication complexity t ·n′ · log(|Fn|), query complexity t ·n′ · log(|Fn|)+1, verifier running
time t · T (n) · polylog(|Fn|), and prover running time t2 · n′ · nt−1 · polylog(|Fn|). Moreover, the
verifier makes a single query to the implicit input, where the location of this query only depends on
its randomness string.

We prove the above Lemma 6.1 in Section 6.1. The next lemma gives an IOPP for verifying
membership in a tensor code.
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Lemma 6.2. (Local testing protocol for tensor codes). The following holds for any constant integer
t > 1 and δ > 0. Let C = {Cn : {0, 1}n → {0, 1}n′}n be a systematic linear code ensemble of
relative distance δ that can be encoded in time T = T (n). Then for any constant α > 0, there
exists a 2-round α-IOPP with soundness error 1

2 for the language L =
⋃
nC
⊗t
n (where we view

the input to L as the implicit input and there is no explicit input) with communication complexity
n′ · Õ(T (n)), constant query complexity, verifier running time polylog(T (n)), and prover running
time poly(T (n)).

Lemma 6.2 follows by composing the local tester for tensor codes of [Vid15] with an inner PCPP
to reduce the query complexity. For completeness, we provide a full proof of this lemma in Appendix
C.1. Finally, the following lemma gives a relaxed local correction protocol for tensor codes.

Lemma 6.3. (Relaxed local correction protocol for tensor codes). The following holds for any
constant integer t > 1 and δ > 0. Let C = {Cn : {0, 1}n → {0, 1}n′}n be a systematic linear
code ensemble of relative distance δ that can be encoded in time T = T (n). Let (YES,NO) be the
following promise problem:

YES =
{

(̄i, w) : w ∈ C⊗tn
}
,

NO =

{
(̄i, w) : dist(w, c) <

(
δ

4

)t
for c ∈ C⊗tn with w(̄i) 6= c(̄i)

}
,

where ī ∈ [n′]t is the explicit input, and w ∈ {0, 1}[n′]t is the implicit input.
Then there exists a 2-round IOP with soundness error 1

2 for the promise problem (YES,NO) with

communication complexity Õ(T (n)), constant query complexity, verifier running time polylog(T (n)),
and prover running time poly(T (n)).

Lemma 6.3 follows by composing a robust version of the relaxed local corrector for tensor codes
of [GRR18] with an inner PCPP to reduce the query complexity. For completeness, we provide a
full proof of this lemma in Appendix C.2.

Next we prove Lemma 3.6, based on the above Lemmas 6.1 to 6.3.

Proof of Lemma 3.6. On explicit input λ1, . . . , λt ∈ (Fn)n
1/t

and b ∈ Fn and implicit input w ∈
{0, 1}n′ , the prover and the verifier run the sumcheck protocol for rank 1 tensor coefficients given
by Lemma 6.1 for the base code Bn1/t (recalling that Cn = (Bn1/t)⊗t), suppose that this protocol
queries the ī’th entry of w. The prover and the verifier then run the local testing protocol given by

Lemma 6.2 for the base code Bn1/t and proximity parameter α′ := min{α,
(
δ
4

)t} on input w, and
the relaxed local correction protocol given by Lemma 6.3 for the base code Bn1/t on explicit input
ī and implicit input w. If the verifier in any of the executions rejects, the verifier rejects, otherwise
it accepts.

It can be readily verified that the round complexity, communication complexity, query complexity,
verifier running time, and prover running time are all as claimed, and that the requirements in the
“moreover” part are satisfied. Completeness is also straightforward. Next we show soundness.

To this end, suppose that w ∈ {0, 1}n′ is α-far from L(C,F , t)(λ1,...,λt,b). If w is α′-far from the
code Cn = (Bn1/t)⊗t, then the verifier in the local testing protocol will reject with probability at

least 1
2 . Hence, we may assume that w is α′-close to a codeword c = Cn(x), where α′ = min{α,

(
δ
4

)t}.
By assumption that w is α-far from L(C,F , t)(λ1,...,λt,b), this implies in turn that 〈λ1⊗· · ·λt, x〉 6= b.
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Moreover, if w(̄i) 6= c(̄i), then the verifier in the relaxed local correction protocol will reject with
probability at least 1

2 , and so we may assume that w(̄i) = c(̄i).
But this implies in turn that the sumcheck protocol is exectued on the codeword c = Cn(x) which

satisfies that 〈λ1⊗· · ·⊗λt, x〉 6= b, and consequently the verifier will reject with probability at least
δt. Finally, the rejection probability can be increased to 1

2 by executing the protocol independently
O(1/δt) times, and accepting if and only if all invocations accepts. As t and δ are constant, this will
only incur a constant multiplicative overhead in the communication complexity, query complexity,
verifier running time, and prover running time.

6.1 Sumcheck for rank 1 tensor coefficients

In this section we prove Lemma 6.1, giving a sumcheck protocol for rank 1 tensor coefficients. The
proof is based on the ubiquitous sumcheck protocol [LFKN92], or rather its extension to tensor
codes [Mei13]. Our construction differs in two ways from the standard sumcheck protocol. First,
in contrast to the typical usage, here we do not merely compute a sum of the coordinates of the
message, but allow certain linear combinations (corresponding to a rank 1 tensor). Second, we
allow the coefficients to lie in an extension field of the field over which our code is defined.

In what follows, fix a basis An for Fn over the binary field F2, where we view Fn as a log(|Fn|)
dimensional vector space over F2 in the natural way (e.g., An can be the standard basis). Every
element in Fn can be expressed as a linear combination of the basis elements. Extending this fact
to vectors, any y ∈ Fnn can be expressed as y =

∑
a∈An a · y|a, where y|a ∈ (F2)n for any a ∈ An.

The sumcheck protocol for rank 1 tensor coefficients is given in Fig. 3 below.
It can be verified that the round complexity, communication complexity, query complexity, ver-

ifier running time, and prover running time are all as claimed (the verifier running time follows
since checking whether a given string y ∈ {0, 1}n′ is a codeword of Cn can be done by encoding
the systematic part of y via the code Cn, and checking whether the resulting codeword equals y),
and that the requirements in the ’moreover’ part are satisfied. Next we show completeness and
soundness.

We first note the following.

Claim 6.4. For any ` = 1, . . . , t− 1, we have that

w`(r`) =
∑
j∈[n]

λ`+1(j) · w`+1(j).

Proof. By Eq. (6) we have that,∑
j∈[n]

λ`+1(j) · w`+1(j) =
∑
j∈[n]

λ`+1(j)
∑

i`+2,...,it∈[n]

λ`+2(i`+2) · · ·λt(it) · c(r1, . . . , r`, j, i`+2, . . . , it)

=
∑

i`+1,...,it∈[n]

λ`+1(i`+1) · · ·λt(it) · c(r1, . . . , r`, i`+1, . . . , it)

= w`(r`).
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Sumcheck

• Explicit input: λ1, . . . , λt ∈ Fnn and b ∈ Fn.

• Implicit input: A codeword c = C⊗tn (x) ∈ {0, 1}[n′]t , where x ∈ {0, 1}[n]t .

Communication phase:

For ` = 1, ..., t:

1. Consider the string w` ∈ Fn′

n defined as:

w`(j) =
∑

i`+1,...,it∈[n]

λ`+1(i`+1) · · ·λt(it) · c(r1, . . . , r`−1, j, i`+1, . . . , it), (6)

for every j ∈ [n′]. The prover computes w` and sends it to the verifier.

2. The verifier sends a uniform random r` ∈ [n′].

Query phase:

1. The verifier sets b0 ← b.

2. For ` = 1, ..., t:

(a) Let w̃` be the string sent by the prover, which is allegedly equal to w`. The verifier checks that
w̃`|a is a codeword of Cn for any a ∈ An and that

∑
j∈[n] λ`(j) · w̃`(j) = b`−1; If not, then it

rejects and aborts.

(b) The verifier sets b` ← w̃`(r`).

3. The verifier explicitly queries c(r1, . . . , rt), and accepts if and only if c(r1, . . . , rt) = bt.

Figure 3: Sumcheck protocol for rank 1 tensor coefficients

Completeness. Completeness relies on the following claim.

Claim 6.5. Suppose that 〈λ1⊗· · ·⊗λt, x〉 = b. Then when V interacts with P, for any ` = 1, . . . , t
it holds that ∑

j∈[n]

λ`(j) · w`(j) = b`−1.

Proof. For ` = 1, we have that∑
j∈[n]

λ1(j) · w1(j) =
∑
j∈[n]

λ1(j)
∑

i2,...,it∈[n]

λ2(i2) · · ·λt(it) · c(j, i2, . . . , it)

=
∑

i1,...,it∈[n]

λ1(i1) · · ·λt(it) · c(i1, . . . , it)

= 〈λ1 ⊗ · · · ⊗ λt, x〉
= b0.
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For ` = 2, . . . , t, by Claim 6.4, we have that∑
j∈[n]

λ`(j) · w`(j) = w`−1(r`−1) = b`−1.

Next assume that 〈λ1 ⊗ · · · ⊗ λt, x〉 = b. We first claim that for any ` = 1, . . . , t, w`|a is a
codeword of Cn for any a ∈ An. To see this, note that by the properties of tensor codes, for any
fixed i`+1, . . . , it ∈ [n] we have that c(r1, . . . , r`−1, ·, i`+1, . . . , it) is a codeword of C. Consequently,

w` =
∑

i`+1,...,it∈[n]

λ`+1(i`+1) · · ·λt(it) · c(r1, . . . , r`−1, ·, i`+1, . . . , it)

is a linear combination of codewords of Cn with coefficients in Fn. By linearity, this implies in
turn that w`|a is a codeword of Cn for any a ∈ An. Moreover, by Claim 6.5, we have that∑

j∈[n] λ`(j) · w`(j) = b`−1 for any ` = 1, . . . , t. We conclude that all verifier’s checks on Step 2a
will pass with probability 1.

Moreover, we clearly have that c(r1, . . . , rt) = wt(rt) = bt, and consequently the verifier’s check
on Step 3 will pass with probability 1 as well. We conclude that all tests will pass with probability
1, and so the verifier accepts with probability 1.

Soundness. Fix a deterministic prover strategy P∗. Soundness relies on the following claims.

Claim 6.6. Suppose that in some round ` ∈ {1, . . . , t − 1},
∑

j∈[n] λ`(j) · w`(j) 6= b`−1, and the
verifier’s checks on Step 2a pass. Then with probability at least δ over the choice of r` it holds that∑

j∈[n] λ`+1(j) · w`+1(j) 6= b`.

Proof. By our assumption that the verifier’s checks on Step 2a pass, we have that
∑

j∈[n] λ`(j) ·
w̃`(j) = b`−1. By our assumption that

∑
j∈[n] λ`(j) · w`(j) 6= b`, this implies in turn that w` 6= w̃`,

and so w`|a 6= w̃`|a for some a ∈ An. Moreover, we have that both w`|a and w̃`|a are codewords
of Cn, and since Cn has relative distance δ, these two codewords differ on at least a δ-fraction of
the coordinates. But this means that w` and w̃` differ on at least a δ-fraction of the coordinates,
and so with probability at least δ over the choice of r` it holds that w`(r`) 6= w̃`(r`). Recalling
that on the one hand w`(r`) =

∑
j∈[n] λ`+1(j) · w`+1(j) by Claim 6.4, and on the other hand

w̃`(r`) = b` by Step 2b, we conclude that in this case
∑

j∈[n] λ`+1(j) ·w`+1(j) 6= b`. So it holds that∑
j∈[n] λ`+1(j) · w`+1(j) 6= b` with probability at least δ over the choice of r`, as stated.

Next assume that 〈λ1 ⊗ · · · ⊗ λt, x〉 6= b, we shall show that the verifier rejects with probability
at least δt. First, we may assume that all verifier’s check on Step 2a pass, otherwise the verifier
clearly rejects. First note that by our assumption that 〈λ1 ⊗ · · · ⊗ λt, x〉 6= b, we have that∑

j∈[n]

λ1(j) · w1(j) =
∑
j∈[n]

λ1(j)
∑

i2,...,it∈[n]

λ2(i2) · · ·λt(it) · c(j, i2, . . . , it)

=
∑

i1,...,it∈[n]

λ1(i1) · · ·λt(it) · c(i1, . . . , it)

= 〈λ1 ⊗ · · · ⊗ λt, x〉
6= b0.
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Consequently, by Claim 6.6, assuming that all verifier’s checks on Step 2a pass, with probability
at least δ over the choice of r1 we have that

∑
j∈[n] λ2(j) ·w2(j) 6= b1. If this is the case, then with

probability at least δ over the choice of r2, we have that
∑

j∈[n] λ3(j) ·w3(j) 6= b2. Continuing this

way, we have that
∑

j∈[n] λt(j) · wt(j) 6= bt−1 with probability at least δt−1.
Assuming this, and by assumption that

∑
j∈[n] λt(j) · w̃t(j) = bt−1, the above gives that wt 6= w̃t.

As before, this implies in turn that wt and w̃t differ on at least a δ-fraction of the coordinates, and
so with probability at least δ over the choice of rt we have that wt(rt) 6= w̃t(rt). Recalling that
wt(rt) = c(r1, . . . , rt) and bt = w̃t(rt), we conclude that in this case the verifier will reject on Step
3 with probability at least δ over the choice of rt.

We conclude that in the case when 〈λ1 ⊗ · · · ⊗ λt, x〉 6= b, the verifier rejects with probability at
least δt.

7 IOPP for bounded space computation

In this section, building on the results established in Sections 4 to 6, we construct a short IOPP for
bounded space languages, thereby proving Theorem 3.2. Actually, we will prove the following more
general lemma, from which Theorem 3.2 immediately follows. The additional technical details in
this lemma will be useful for us in Section 8 when we construct a (short) IOP for NP.

Lemma 7.1. For any constant β > 0, there exists an integer t > 1 so that the following holds for
any constant γ, δ > 0. Let L be a language with no explicit input and with input length sequence
It that can be decided in time poly(n) with space s = s(n) ≥ log n. Let B = {Bn : {0, 1}n →
{0, 1}n′}n∈N be a systematic linear code ensemble of rate 1− γ and relative distance δ that can be
encoded in quasi-linear time, and let C = {Cn = (Bn1/t)⊗t}n∈It.

Then for any constant α > 0, there exists a constant round α-IOPP with soundness error 1
2 for

L with communication complexity ( 1
(1−γ)t − 1) · n+ nβ · poly(s), constant query complexity, verifier

running time nβ · poly(s), and prover running time poly(n). Moreover, the communication phase
consists of a single prover message which is the non-systematic part of Cn(x) of length ( 1

(1−γ)t−1)·n,

followed by nβ · poly(s) additional communication.

Proof of Theorem 3.2. Let ξ = ξ(β) > 0 be a sufficiently small constant to be determined later on,
and let t := b2/ξc + 1. Let L̄ be the language obtained by padding each input belonging to L of

length n with n̄−n zeros, where n̄ :=
(
dn1/te

)t ≤ (1+o(1))·n. Let B = {Bn : {0, 1}n → {0, 1}n′}n∈N
be any systematic linear code ensemble of rate

(
1

1+γ/2

)1/t
and constant relative distance that can

be encoded in quasi-linear time.
Applying Lemma 7.1 on the language L̄ and the code ensemble B gives a constant round α-IOPP

with soundness error 1
2 for L with communication complexity γ

2 ·n̄+nO(ξ), constant query complexity,

verifier running time nO(ξ), and prover running time poly(n). Moreover, the communication phase
consists of a single prover message which is the non-systematic part of Cn̄(x ◦ 0n̄−n) of length γ

2 · n̄,

followed by nO(ξ) additional communication.
Theorem 3.2 then follows by letting ξ > 0 be a sufficiently small constant depending on β, and

noting that the soundness error can be reduced to any constant ε > 0 by repeating the protocol
independently a constant number of times, and accepting if and only if all invocations accept. Since
the first prover message is deterministic, one does not need to repeat this message, and therefore
the protocol has the same asymptotic guarantees.
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To prove the above Lemma 7.1, we first use Lemmas 3.4 to 3.6, established in Sections 4 to 6, to
construct a constant-round short robust IOPP for bounded space languages with sublinear query
complexity. Later we shall use Corollary 2.10 to reduce the query complexity to a constant by
composition.

Lemma 7.2. The following holds for any constant β, γ, δ > 0 and integer t > b2/βc. Let L be
a language with no explicit input and with input length sequence It that can be decided in time
poly(n) with space s = s(n) ≥ log n. Let B = {Bn : {0, 1}n → {0, 1}n′}n∈N be a systematic linear
code ensemble of rate 1− γ and relative distance δ that can be encoded in quasi-linear time, and let
C = {Cn = (Bn1/t)⊗t}n∈It.

Then for any constant α > 0, there exists a constant round (Ω(1), 1
2)-robust α-IOPP for L with

communication complexity ( 1
(1−γ)t −1) ·n+nβ ·poly(s), query complexity and verifier running time

nβ · poly(s), and prover running time poly(n). Moreover, the communication phase consists of a
single prover message which is the non-systematic part of Cn(x) of length ( 1

(1−γ)t − 1) · n, followed

by nβ · poly(s) additional communication.

To prove the above lemma, we shall also need the following lemma which shows how to turn a
constant round IOP with a certain structure into a robust IOP.

Lemma 7.3. Let (P,V) be a constant round IOP with soundness error ε for a promise problem
(YES,NO) with no explicit input, satisfying the following properties:

• The communication phase consists of a single prover message of length cc, followed by cc′

additional communication.

• The verifier makes a constant number of queries to the input and the first prover message,
and reads all the rest of the prover’s messages of total length cc′.

Suppose furthermore that (P,V) has verifier running time TV and prover running time TP .
Then there exists a constant round (Ω(1), ε)-robust IOP (P ′,V ′) for (YES,NO) with communica-

tion complexity cc +O(cc′), query complexity O(cc′), verifier running time TV +O(cc′), and prover
running time TP +O(cc′). Moreover, the first message of P ′ is identical to that of P, and the rest
of the communication has length O(cc′).

We prove the above lemma in Section 7.1. We now turn to the proof of Lemma 7.2.

Proof of Lemma 7.2. Let F = {Fn}n∈It be a constructible ensemble of finite fields of characteristic
2, where each Fn has size polylog(n). By Lemma 3.5, there exists a constant round t-dimensional
tensor interactive reduction with soundness error 1

2 for L over F with communication complexity
and verifier running time nβ · poly(s) and prover running time poly(n).

Let α′ := min{α · (1 − γ)t, δ
t

2 }. By Lemma 3.6, there exists a constant round α′-IOPP with
soundness error 1

2 for L(C,F , t) with communication, query complexity, and verifier running time

Õ(n2/t) and prover running time poly(n). Moreover, the verifier makes a constant number of queries
to the implicit input, where the location of each of these queries only depends on its randomness
string.

We further note that the soundness error in both protocols can be reduced to 1
4 by repeating the

protocols independently a constant number of times, while incurring only a constant multiplicative
overhead to all parameters.
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Lemma 3.4 implies in turn the existence of a constant round α-IOPP with soundness error 1
2

for L with communication complexity ( 1
(1−γ)t − 1) · n + nβ · poly(s) + Õ(n2/t), query complexity

and verifier running time nβ · poly(s) + Õ(n2/t), and prover running time poly(n). Moreover, the
communication phase consists of a single prover message which is the non-systematic part of Cn(x)
of length ( 1

(1−γ)t − 1) · n, followed by nβ · poly(s) + Õ(n2/t) additional communication, and the
verifier makes a constant number of queries to both the input and the first prover message. We
may further assume that the verifier reads all prover messages, except for the first message, as this
does not change the asymptotic query complexity of the verifier.

Finally, Lemma 7.3 implies the existence of a constant round (Ω(1), 1
2)-robust α-IOPP for L

with communication complexity ( 1
(1−γ)t − 1) · n + nβ · poly(s) + Õ(n2/t), query complexity and

verifier running time nβ · poly(s) + Õ(n2/t), and prover running time poly(n). Moreover, the
communication phase consists of a single prover message which is the non-systematic part of Cn(x)
of length ( 1

(1−γ)t − 1) · n, followed by nβ · poly(s) + Õ(n2/t) additional communication. Lemma 7.2

then follows by our assumption that t > b2/βc.

Next we prove Lemma 7.1, based on Lemma 7.2 and Corollary 2.10.

Proof of Lemma 7.1. We apply Corollary 2.10 on the robust IOPP given by Lemma 7.2 to reduce
the query complexity.

In more detail, let β′ = β′(β) ∈ (0, β) be a sufficiently small constant to be determined later on,
and let t := b2/β′c+1. By Lemma 7.2, there exists a constant round (Ω(1), 1

2)-robust α-IOPP for L
with communication complexity ( 1

(1−γ)t −1) ·n+nβ
′ ·poly(s), query complexity and verifier running

time nβ
′ ·poly(s), and prover running time poly(n). Moreover, the communication phase consists of

a single prover message which is the non-systematic part of Cn(x) of length ( 1
(1−γ)t −1) ·n, followed

by nβ
′ · poly(s) additional communication.

Applying Corollary 2.10 on the resulting IOPP gives a constant round α-IOPP with soundness er-
ror 3

4 for L with communication complexity ( 1
(1−γ)t −1) ·n+nβ

′ ·poly(s), constant query complexity,

verifier running time nO(β′) · poly(s), and prover running time poly(n). Moreover, the communica-
tion phase consists of a single prover message which is the non-systematic part of Cn(x) of length
( 1

(1−γ)t − 1) · n, followed by nβ
′ · poly(s) additional communication. Lemma 7.1 then follows by

letting β′ be a sufficiently small constant, depending on β, and noting that the soundness error can
be reduced to 1

2 by repeating the protocol independently a constant number of times. Since the
first prover message is deterministic, one does not need to repeat this message, and so the protocol
has the same asymptotic guarantees.

7.1 Robustness

In this section we prove Lemma 7.3, which shows how to turn a constant round IOP with a certain
structure into a robust IOPP.

Let ` = O(1) denote the number of rounds in the protocol (P,V), and let m1, . . . ,m` denote the
prover messages. Let q = O(1) denote the total number of queries made by the verifier to the input
x and the message m1. Let E be the systematic linear-time encodable code ensemble of [Spi96] of
constant rate ρ > 0 and constant relative distance δ > 0.

The protocol (P ′,V ′) is obtained from (P,V) via the following modifications. First, for simplicity,
assume that mi has length exactly cc′ for any i > 1, which can be achieved by padding zeros to
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shorter messages. In the communication phase, in the first round P ′ sends w1 = m1, and in each
round i = 2, . . . , `, P ′ first encodes mi ∈ {0, 1}cc

′
via the code E, and then sends the resulting

codeword wi = E(mi) ∈ {0, 1}cc′/ρ to V ′. Let w̃1, . . . , w̃` denote the messages of P ′ in the modified
protocol, which are allegedly equal to w1, . . . , w`.

In the query phase, V ′ first makes q queries to the input x and to w̃1 according to the query
phase of the protocol (P,V), where each of the q queries is repeated for cc′/ρ times; If for any
of these queries, the answers to the repeated queries are not identical, then V ′ rejects and aborts
(these seemingly redundant queries are needed to guarantee robustness). Then V ′ reads w̃i for each
i = 2, . . . , `, and checks that it is a codeword of E (which can be done by encoding the systematic
part of w̃i via the code E, and checking that the resulting codeword is identical to w̃i); If any of
these messages is not a codeword of E, then V ′ rejects and aborts. Finally, V ′ accepts if and only if
V accepts when given the values of the q queries made to the input x and to w̃1, and the systematic
part of w̃i for i = 2, . . . , `.

It can be verified that the round complexity, communication complexity, query complexity, veri-
fier running time, and prover running time of the protocol (P ′,V ′) are all as claimed, and that the
requirements in the ’moreover’ part are satisfied. Completeness is also straightforward. Next we
show that the protocol (P ′,V ′) is (α, ε)-robust for α := δ

2(`+q) = Ω(1). To this end, assume that
x ∈ NO, and recall that the verifier’s view consists of the values a1, . . . , aq of the q queries made
to the input x and to w̃1, where each such query is repeated cc′/ρ times, followed by all messages
w̃i ∈ {0, 1}cc′/ρ for i = 2, . . . , `. For i = 2, . . . , `, let ci = E(m̃i) be the codeword that is closest to
w̃i.

Next assume that v = ((ui)i∈[q], (vi)i=2,...,`) is a view that is α-close to the verifier’s view, where

ui, vi ∈ {0, 1}cc
′/ρ for all i. If there exists i ∈ [q] so that the entries in ui are non-identical then

the verifier clearly rejects. Hence we may assume that for any i ∈ [q] all values in ui are identical.
Moreover, by assumption that v is α-close to the verifier’s view, we must have that for any i ∈ [q]
all entries in ui are equal to ai. Similarly, if there exists i ∈ {2, . . . , `} so that vi is not a codeword of
E, then the verifier clearly rejects. Hence we may assume that all vi are codewords of E. Moreover,
by assumption that v is α-close to the verifier’s view, we must have that dist(vi, w̃i) <

δ
2 for any

i ∈ {2, . . . , `}. But since E has relative distance at least δ, this implies in turn that vi = ci for
any i = 2, . . . , `. But by assumption that x ∈ NO, and by the soundness property of the protocol
(P,V), we have that V rejects with probability at least 1 − ε on the view ((ai)i∈[q], (m̃i)i=2,...,`).
Consequently, V ′ also rejects v with probability at least 1− ε.

8 IOP for NP

We now prove Theorem 3.1, which gives a short IOP for NP languages. The proof of this theorem
relies on the following lemma that, loosely speaking, shows how to transform an IOPP for determin-
istic languages into an IOP for non-deterministic languages. This transformation is analogous to
the known transformation from PCPPs for P to PCPs for NP [BGH+06, DR06]. The main difference
however is that, since we cannot afford even a constant blowup in communication, we have to be
extremely careful when composing and in particular use some specific properties of the underlying
IOPP.

Lemma 8.1. The following holds for any constant γ, δ > 0. Let L ∈ NP with corresponding
relation RL, in which the instances have length m and witnesses have length n, where m ≥ n. Let

35



E = {Em : {0, 1}m → {0, 1}m̃}m∈N be a code ensemble of relative distance δ that can be encoded in
quasi-linear time, and let C = {Cn : {0, 1}n → {0, 1}n′}n∈N be a systematic linear code ensemble
of rate 1 − γ that can be encoded in quasi-linear time. Further assume that n divides m̃, and let
Cm,n := C m̃

n
+1 ⊗ Cn.

Let L′ =
{

(Em(x), w) : (x,w) ∈ RL
}

, where we view the tuple (Em(x), w) as the implicit

input to L′ and there is no explicit input. Suppose that there exists an `-round δ
2 -IOPP (P,V)

with soundness error ε for L′ with query complexity q(m,n), verifier running time TV(m,n), and
prover running time TP(m,n). Suppose furthermore that the communication phase consists of a
single prover message which is the non-systematic part of Cm,n(Em(x), w), followed by cc(m,n)
additional communication.

Then there exists an `-round IOP (P ′,V ′) with soundness error ε for L with communication
complexity 1

1−γ · n + cc(m,n), query complexity q(m,n), verifier running time TV(m,n) + Õ(m),

and prover running time TP(m,n) + Õ(m) (given a witness). Moreover, the communication phase
consists of a single prover message Cn(w) of length 1

1−γ · n, followed by cc(m,n) additional com-
munication.

The proof of the above lemma is deferred to Section 8.1. Next we prove our Main Theorem 3.1
based on this lemma.

Proof of Theorem 3.1. Let L ∈ NP with corresponding relation RL in which the instance x has
length m and the witness w has length n, where n ≤ m ≤ na for a constant a. Let β = 1/(2a)
(so that mβ ≤

√
n), and let t be the integer guaranteed by Lemma 7.1 for the constant β. Let

E = {Em : {0, 1}m → {0, 1}m̃}m∈N be the systematic linear code ensemble of [Jus72] of constant
rate and constant relative distance δ that can be encoded in time poly(m) with space polylog(m),
or alternatively, in time Õ(m) with space Õ(m). Let B = {Bn : {0, 1}n → {0, 1}n′}n∈N be any

systematic linear code ensemble of rate
(

1
1+γ/2

)1/t
and constant relative distance that can be

encoded in time Õ(n).

For an integer n, let n̄ :=
(
dn1/te

)t ≤ (1 + o(1))n. We first claim that without loss of generality
we may assume that n divides m̃, and that both m̃

n +1 and n belong to It. To achieve this, one can
pad w with zeros to obtain a string of length n̄, noting that this does not change the asymptotic
guarantees of the theorem. Moreover, one can pad Em(x) with zeros to obtain a string of length
m̂ := 2t · b̄ · n̄ − n̄ = O(m), where b := d m̃n e, noting that this only decreases the rate and relative

distance of Em by a constant factor. Note that indeed n̄ divides m̂, and that m̂
n̄ + 1, n̄ ∈ It. Thus

we may assume that n divides m̃, and that m̃
n + 1, n ∈ It, and we let

Cm,n := (B( m̃
n

+1)1/t)
⊗t ⊗ (Bn1/t)⊗t = (B( m̃

n
+1)1/t ⊗Bn1/t)⊗t.

Let L′ =
{

(Em(x), w) : (x,w) ∈ RL
}

. Next observe that membership in L′ can be decided in time
poly(m) with space polylog(m) +nξ ≤ O(nξ) (since membership in Em can be verified by encoding
the systematic part of a given string y in time poly(m) with space polylog(m), and checking
whether the resulting codeword equals y). Thus, applying Lemma 7.1 on L′ gives a constant
round δ

2 -IOPP with soundness error 1
2 for L′ with constant query complexity, verifier running time

mβ · nO(ξ) ≤ n1/2+O(ξ), and prover running time poly(m). Moreover, the communication phase
consists of a single prover message which is the non-systematic part of Cm,n(Em(x), w), followed
by n1/2+O(ξ) additional communication.

36



Lemma 8.1 implies in turn the existence of a constant round IOP with soundness error 1
2 for L with

communication complexity (1 + γ
2 ) ·n+n1/2+O(ξ), constant query complexity, verifier running time

Õ(m)+n1/2+O(ξ), and prover running time poly(m) (given a witness). Moreover, the communication
phase consists of a single prover message ((Bn1/t)⊗t)(w) of length (1 + γ

2 ) · n, followed by n1/2+O(ξ)

additional communication. Theorem 3.1 then follows for a sufficiently small constant ξ > 0, and
noting that the soundness error can be reduced to any constant ε > 0 by repeating the protocol
independently a constant number of times. Since the first prover message is deterministic, one does
not need to repeat this message.

8.1 From IOPP for P to IOP for NP

In this section we prove Lemma 8.1, which gives a transformation from IOPPs for deterministic
languages to IOPs for non-deterministic languages.

The IOP (P ′,V ′) for L proceeds as follows. Recall that V ′ gets as input x ∈ {0, 1}m, and P ′
gets x ∈ {0, 1}m and a witness w ∈ {0, 1}n, where n divides m̃. In the communication phase, P ′
first sends w to V ′. Then P ′ and V ′ run the IOPP (P,V) for L′ with respect to the implicit input
(Em(x), w) (we once again emphasize that (Em(x), w) is an implicit input to the IOPP and there
is no explicit input),20 except that the first prover message is the non-systematic part of Cn(w)
instead of the non-systematic part of Cm,n(Em(x), w).

In the query phase, V ′ emulates the queries of V to the codeword c := Cm,n(Em(x), w), as follows.
We view the message (Em(x), w) ∈ {0, 1}m̃+n as an ( m̃n + 1)× n matrix M , whose first m̃

n rows are
(Em(x))1, . . . , (Em(x)) m̃

n
, where (Em(x))i denotes the i-th block of Em(x) ∈ {0, 1}m̃ of length n,

and whose m̃
n + 1 row is w ∈ {0, 1}n. The codeword c can then be obtained by encoding each row

of M via the code Cn, and encoding each resulting column via the code C m̃
n

+1.

The verifier V ′ first computes the first m̃
n rows of c by encoding each block (Em(x))i with the code

Cn, which takes time m̃
n · Õ(n) = Õ(m) (recall that V ′ has explicit access to x, and so can compute

these encodings by itself). Then to compute an entry c(i, j), V ′ first retrieves the systematic part
of the j’th column by making an additional query to the j’th entry of Cn(w), and then computes
c(i, j) by encoding the systematic part of the j’th column via the code C m̃

n
+1, which takes time at

most Õ(mn ).
It can be verified that the round complexity, communication complexity, query complexity, ver-

ifier running time, and prover running time are all as claimed, and that the requirements in the
’moreover’ part are satisfied. Completeness is also straightforward. Next we show soundness.

To this end, fix x 6∈ L and a cheating prover strategy (P ′)∗. We assume without loss of generality
that (P ′)∗ is deterministic and denote its first message by w∗ (an alleged encoding of a witness).
Observe that since x 6∈ L and |x| ≥ |w∗|, the pair (E(x), w∗) is at least δ

2 -far from L′. Thus, by
soundness of the IOPP (P,V) for L′, the verifier accepts with probability at most ε.

20Note that we cannot use x as an explicit input to the IOPP. Syntactically, this is because the IOPP that we
eventually use is for languages that do not have an explicit input. More fundamentally however, while we could have
extended that IOPP to support an explicit input x ∈ {0, 1}m, this would introduce a poly(m) dependence in the
communication and verification time that we would like to avoid.
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A Optimal communication complexity for IOPs

In this section we show the communication complexity in our IOP is close to optimal under the
randomized strong exponential time hypothesis (RSETH) assumption. We first formally state the
RSETH:

Definition A.1 (RSETH). The randomized strong exponential time hypothesis (RSETH) states
that for every ε > 0 there exists k such that the language k-SAT (consisting of satisfiable k-CNF
formulas on n variables) is not contained in BPTIME

(
2(1−ε)·n).

We will also use the following result due to Goldreich and H̊astad [GH98].

Theorem A.2 ([GH98, Proposition 6]). If L has a constant-round public-coin interactive proof in
which the prover sends at most b bits to the verifier, then L ∈ BPTIME(2b · poly(n)) (where n is
the input length).

We remark that the conclusion stated in [GH98, Proposition 6] is that L ∈ BPTIME(2O(b) ·
poly(n)) but inspection of their proof shows that it actually implies the stronger form as given in
Theorem A.2 (i.e., L ∈ BPTIME

(
2b · poly(n)

)
).

From Theorem A.2 we immediately derive the following conclusion:

Corollary A.3. If RSETH holds then for every γ > 0 there exists a k such that k-SAT does not
have a constant-round public-coin interactive proof in which the prover sends less than (1 − γ) · n
bits.

B IOP Composition

In this section we prove Lemma 2.7, restated below, which gives a composition method for IOPs.

Lemma 2.7. (Composition) Suppose that the following hold:

• (Outer IOP:) Let (YES,NO) be a promise problem with implicit input length n. Suppose that
there exists an `-round (α, ε)-robust IOP (P,V) for (YES,NO) with communication complexity
cc(n), query complexity q(n), randomness complexity r(n), verifier running time TV(n), and
prover running time TP(n). Suppose furthermore that V is s(n)-succinct.

• (Inner IOPP:) Let L(P,V) denote the pair language consisting of all pairs ((xexp, R), y), so
that V accepts on explicit input xexp, randomness string R, and query values y. Suppose that
there exists an `′-round α-IOPP (P ′,V ′) with soundness error ε′ for the pair language L(P,V)

with communication complexity cc′(n′), query complexity q′(n′), verifier running time TV ′(n
′),

and prover running time TP ′(n
′), where n′ denotes the implicit input length of L(P,V).

Then there exists an (` + `′)-round IOP (P ′′,V ′′)with soundness error ε + ε′ for (YES,NO)
with communication complexity cc(n) + cc′(q(n)), query complexity q′(q(n)), verifier running time
r(n) + TV ′(q(n)) · s(n), and prover running time TP(n) + TV(n) + TP ′(q(n)). Moreover, the first
(deterministic) message of P ′′ is identical to that of P.

Proof. The composed protocol (P ′′,V ′′) is given in Fig. 4.

It can be verified that the round complexity, communication complexity, query complexity, veri-
fier running time, and prover running time are all as stated, and that the ’moreover’ part is satisfied
as well. Next we show completeness and soundness.
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The composed protocol (P ′′,V ′′) for (YES,NO) on input x = (ximp, xexp):

Communication phase:

1. P ′′ and V ′′ interact for ` rounds according to the communication phase of the outer IOP (P,V)
for (YES,NO) on explicit input xexp and implicit input ximp; Let R = (R1, . . . , R`) denote V’s
randomness string.

2. P ′′ computes the query set I, based on the explicit input xexp and the randomness string R; Let y
denote the restriction of the implicit input ximp and the messages of P to the query set I.

3. P ′′ and V ′′ interact for `′ rounds according to the communication phase of the inner IOPP (P ′,V ′)
for L(P,V) on explicit input (xexp, R) and implicit input y.

Query phase:

V ′′ makes q′ queries to the implicit input ximp and the messages of P and P ′ according to the query phase
of the IOPP (P ′,V ′), and accepts if and only if V ′ accepts.

Figure 4: The Composed Protocol (P ′′,V ′′)

Completeness. Suppose that x = (xexp, ximp) ∈ YES. Then by the completeness property of the
outer IOP (P,V), the verifier V accepts given xexp, R, and y with probability 1. Consequently, by
the completeness proprety of the inner IOPP (P ′,V ′), the verifier V ′ will accept with probability 1.
We conclude that in this case V ′′ accepts with probability 1.

Soundness. Suppose that x = (xexp, ximp) ∈ NO, and let (P ′′)∗ be a prover strategy. By the
robustness property of the outer IOP (P,V), with probability at least 1 − ε, y is α-far from any
view that would make V accepts. Consequently, by the soundness property of the inner IOPP
(P ′,V ′), the verifier V ′ will reject with probability at least 1 − ε′. We conclude that in this case
V ′′ rejects with probability at least (1− ε) · (1− ε′). Consequently, the soundness error is at most
1− (1− ε) · (1− ε′) ≤ ε+ ε′.

C Local testing and relaxed local correction protocols for tensor
codes

C.1 Local testing protocol for tensor codes

In this section we prove Lemma 6.2, restated below, which gives a local testing protocol for tensor
codes.

Lemma 6.2. (Local testing protocol for tensor codes). The following holds for any constant integer
t > 1 and δ > 0. Let C = {Cn : {0, 1}n → {0, 1}n′}n be a systematic linear code ensemble of
relative distance δ that can be encoded in time T = T (n). Then for any constant α > 0, there
exists a 2-round α-IOPP with soundness error 1

2 for the language L =
⋃
nC
⊗t
n (where we view

the input to L as the implicit input and there is no explicit input) with communication complexity
n′ · Õ(T (n)), constant query complexity, verifier running time polylog(T (n)), and prover running
time poly(T (n)).
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The proof follows by composing the following local testing procedure for tensor codes from [Vid15]
with an inner PCPP to reduce the query complexity.

Theorem C.1 (Local testing of tensor codes, [Vid15], Theorem 3.1). The following holds for any
integer t > 1 and δ > 0. Let C : {0, 1}n → {0, 1}n′ be a systematic linear code of relative distance
δ. Then there exists a randomized oracle algorithm A satisfying the following properties.

• Input: A gets oracle access to a string w ∈ {0, 1}[n′]t.

• Query complexity: A makes (n′)2 queries to w.

• Completeness: If w is a codeword of C⊗t, then A accepts with probability 1.

• Robustness: If dist(w,C⊗t) ≥ α, then, in expectation, A’s view is (δO(t) · α)-far from an
accepting view.

If C can be encoded in time T , then A has running time O(n′ · T ). Moreover, the randomness
complexity of A is O(t log(n′)), and the location of each individual query can be computed in time
O(t log(n′)).

Remark C.2. We remark on the following differences from [Vid15, Theorem 3.1]:

1. [Vid15, Theorem 3.1] only bounds the rejection probability of the (n′)2-query test that chooses
a random two-dimensional axis-parallel plane (according to some specified distribution), and
checks that the projection of w to the plane is a codeword of C⊗C. However, the proof shows
that this test is robust, in the sense that the average view of the tester is (δO(t) · α)-far from
C ⊗ C.

2. The running time is not stated explicitly in [Vid15]. However, checking whether a given string
w′ ∈ {0, 1}n′×n′ is a codeword of C⊗C can be done by first encoding the systematic part of w′

via C ⊗C, and then checking that the resulting codeword equals w′. As C ⊗C can be encoded
in time O(n′ · T ) (cf., Fact 2.12), this results in a total running time of O(n′ · T ).

3. Randomness complexity is not stated explicitly in [Vid15]. However, inspection shows that
the randomness complexity required for sampling the random two-dimensional plane, as well
as the time required for computing the location of each individual point in this plane are
O(t log(n′)).

Next we prove Lemma 6.2, based on the above Theorem C.1.

Proof of Lemma 6.2. We apply Corollary 2.10 on the local tester given by Theorem C.1 (which is
in particular also a 1-round robust IOPP for the language L =

⋃
nC
⊗t
n ).

In more detail, by Theorem C.1 and Markov’s inequality, there exists a 1-round (δO(t) · α, 1 −
δO(t) · α)-robust α-IOPP (P,V) for the language L =

⋃
nC
⊗t
n with no communication complexity,

query complexity (n′)2, randomness complexity O(log(n′)), verifier running time O(n′ · T (n)), and
no prover running time. Moreover, V is O(log(n′))-succinct.

Consequently, by Corollary 2.10 there exists a 2-round α-IOPP (P ′,V ′) with soundness error
1− δO(t) ·α for L with communication complexity n′ · Õ(T (n)), constant query complexity, verifier
running time polylog(T (n)), and prover running time poly(T (n)), where we used that T (n) ≥ n′.
Finally, the soundness error can be reduced to 1

2 by repeating the protocol independently a constant
number of times, and accepting if and only if all invocations accept.
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C.2 Relaxed local correction protocol for tensor codes

In this section we prove Lemma 6.3, restated below, which gives a relaxed local correction protocol
for tensor codes.

Lemma 6.3. (Relaxed local correction protocol for tensor codes). The following holds for any
constant integer t > 1 and δ > 0. Let C = {Cn : {0, 1}n → {0, 1}n′}n be a systematic linear
code ensemble of relative distance δ that can be encoded in time T = T (n). Let (YES,NO) be the
following promise problem:

YES =
{

(̄i, w) : w ∈ C⊗tn
}
,

NO =

{
(̄i, w) : dist(w, c) <

(
δ

4

)t
for c ∈ C⊗tn with w(̄i) 6= c(̄i)

}
,

where ī ∈ [n′]t is the explicit input, and w ∈ {0, 1}[n′]t is the implicit input.
Then there exists a 2-round IOP with soundness error 1

2 for the promise problem (YES,NO) with

communication complexity Õ(T (n)), constant query complexity, verifier running time polylog(T (n)),
and prover running time poly(T (n)).

The proof follows by composing the following robust relaxed local correction procedure for tensor
codes with an inner PCPP to reduce the verifier’s running time and query complexity.

Lemma C.3 (Relaxed local correction of tensor codes). The following holds for any integer t > 1
and δ > 0. Let C : {0, 1}n → {0, 1}n′ be a systematic linear code of relative distance δ. Then there
exists a randomized oracle algorithm A satisfying the following properties.

• Input: A takes as input a tuple ī ∈ [n′]t, and also gets oracle access to a string w ∈ {0, 1}[n′]t.

• Query complexity: A makes 2tn′ queries to w.

• Completeness: If w is a codeword of C⊗t, then A accepts with probability 1.

• Robustness: If dist(w, c) <
(
δ
4

)t
for some codeword c ∈ C⊗t with c(̄i) 6= w(̄i), then with

probability at least
(
δ
4

)t
, the view of A is δ

8t -far from an accepting view.

If C can be encoded in time T , then A has running time O(t · T ). Moreover, the randomness
complexity of A is t2 log(n′), and the location of each individual query can be computed in time
O(t log(n′)).

Remark C.4. Usually a relaxed local corrector is defined as a randomized oracle algorithm that is
allowed to output either a symbol in {0, 1} or a special symbol ⊥. The completeness requirement
then is that if w is a codeword of C⊗t, then A outputs w(̄i) with probability 1, while the soundness
requirement is that if w is sufficiently close to a codeword c of C⊗t, then A outputs a symbol in
{c(̄i),⊥} with sufficiently high probability. Note, however, that our relaxed local corrector can be
modified to satisfy these requirements, by outputting ⊥ if it rejects, and outputting w(̄i) otherwise.
To facilitate composition, it will be more convenient for us to work with our (stronger) requirements.

Lemma C.3 is a robust version of [GRR18, Lemma 5.5.]. For completeness, we provide a full
proof in Appendix C.2.1 below. Next we prove Lemma 6.3, based on Lemma C.3.
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Proof of Lemma 6.3. We apply Corollary 2.10 on the relaxed local corrector given by Lemma C.3
(which is in particular also a 1-round robust IOP).

In more detail, by Lemma C.3, there exists a 1-round ( δ8t , 1 −
(
δ
4

)t
)-robust IOP (P,V) for the

promise problem (YES,NO) with no communication complexity, query complexity O(n′), random-
ness complexity O(log(n′)), verifier running time O(T (n)), and no prover running time. Moreover,
V is O(log(n′))-succinct.

Consequently, by Corollary 2.10 there exists a 2-round IOP (P ′,V ′) with soundness error 1−δO(t)

for (YES,NO) with communication complexity Õ(T (n)), constant query complexity, verifier running
time polylog(T (n)), and prover running time poly(T (n)), where we used that T (n) ≥ n′. Finally,
the soundness error can be reduced to 1

2 by repeating the protocol independently a constant number
of times, and accepting if and only if all invocations accept.

C.2.1 Relaxed local correction for tensor codes

In this section we prove Lemma C.3, which gives a robust relaxed local correction procedure for
tensor codes. The relaxed local corrector A is given in Fig. 5 below.

Relaxed Local Corrector A

Input: Coordinate ī = (i1, . . . , it) ∈ [n′]t, oracle access to w ∈ {0, 1}[n′]t

1. For ` = 1, ..., t:

(a) Pick uniform random indices r
(`)
`+1, . . . , r

(`)
t ∈ [n′].

(b) Consider the string w` ∈ {0, 1}n
′

defined as:

w`(j) = w(i1, . . . , i`−1, j, r
(`)
`+1, . . . , r

(`)
t ),

for every j ∈ [n′]. Query all points in w`, as well as n′ additional copies of w`(i`).
a

(c) Check that w` is a codeword of C, and that all n′ + 1 copies of w`(i`) are identical; If not,
reject and abort.

2. Accept and abort.

a These (seemingly redundant) queries are made in order to get robustness.

Figure 5: Relaxed Local Corrector for Tensor Codes

It can be verified that query complexity and the running time are as claimed (the running time
follows since checking whether a given string y ∈ {0, 1}n′ is a codeword of C can be done by
encoding the systematic part of y via the code C, and checking whether the resulting codeword
equals y), and that the requirements in the moreover part are satisfied. Next we show completeness
and robustness.

Completeness. Suppose that w is a codeword of C⊗t. Then by properties of tensor codes, we
have that w` is a codeword of C for any ` = 1, . . . , t. Consequently, for any ` = 1, . . . , t, A will not
reject in Step 1c. But in this case it will accept on Step 2, as required.
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Robustness. Suppose that dist(w, c) <
(
δ
4

)t
for some codeword c ∈ C⊗t with c(̄i) 6= w(̄i). For

` = 1, . . . , t+ 1, let
ĉ` := c(i1, . . . , i`−1, ·, . . . , ·) ∈ C⊗(t−`+1),

and
ŵ` := w(i1, . . . , i`−1, ·, . . . , ·) ∈ {0, 1}[n

′]t−`+1
.

Note that ŵ1 = w, ĉ1 = c, ŵt+1 = w(̄i), and ĉt+1 = c(̄i). Robustness relies on the following claim.

Claim C.5. Suppose that for some ` ∈ {1, . . . , t} it holds that dist(ŵ`, ĉ`) <
(
δ
4

)t−`+1
, but

dist(ŵ`+1, ĉ`+1) ≥
(
δ
4

)t−`
. Then on the `-th iteration, with probability at least 1

2 ·
(
δ
4

)t−`
over the

choice of r
(`)
`+1, . . . , r

(`)
t on Step 1a, any v ∈ {0, 1}2n′ that is δ

8 -close to the view of A on Step 1b
causes A to reject.

Proof. Fix ` ∈ {1, . . . , t}, and suppose that dist(ŵ`, ĉ`) <
(
δ
4

)t−`+1
, but dist(ŵ`+1, ĉ`+1) ≥

(
δ
4

)t−`
.

Then by assumption that dist(ŵ`, ĉ`) <
(
δ
4

)t−`+1
, with probability at least 1 − 1

2 ·
(
δ
4

)t−`
over the

choice of r
(`)
`+1, . . . , r

(`)
t , we have that

dist(w`, c`) ≤
δ

2
, (7)

where c` := c(i1, . . . , i`−1, ·, r
(`)
`+1, . . . , r

(`)
t ). On the other hand, by the assumption that dist(ŵ`+1, ĉ`+1) ≥(

δ
4

)t−`
, with probability at least

(
δ
4

)t−`
over the choice of r

(`)
`+1, . . . , r

(`)
t , we have that

w`(i`) = w(i1, . . . , i`, r
(`)
`+1, . . . , r

(`)
t ) 6= c(i1, . . . , i`, r

(`)
`+1, . . . , r

(`)
t ) = c`(i`). (8)

Next assume that both events (7) and (8) above hold, which happens with probability at least
1
2 ·
(
δ
4

)t−`
. Suppose that v ∈ {0, 1}2n′ is δ

8 -close to the view of A on Step 1b on the `-th iteration,

we shall show that v causes A to reject. Let v = (v(1), v(2)) where v(1), v(2) ∈ {0, 1}n′ .
First observe that by our assumption that v is δ

8 -close to A’s view, we have that dist(v(1), w`) ≤ δ
4 .

By Eq. (7) and the triangle inequality, this implies in turn that dist(v(1), c`) ≤ 3δ
4 . Since c` ∈ C,

and C has relative distance δ, we conclude that either v(1) = c`, or v(1) /∈ C. In the latter case A
clearly rejects, and so we may assume that v(1) = c`.

Next observe that by our assumption that v is δ
8 -close to A’s view, we also have that at least

a (1 − δ
4)-fraction of the entries in v(2) are equal to w`(i`). On the other hand, by sEq. (8), we

have that c`(i`) 6= w`(i`). We conclude that there exists an entry in v(2) that is not identical to
c`(i`) = v(1)(i`), and consequently A rejects on v.

Next observe that by our assumptions that dist(w, c) <
(
δ
4

)t
and c(̄i) 6= w(̄i), we have that

dist(ŵ1, ĉ1) <
(
δ
4

)t
, but dist(ŵt+1, ĉt+1) = 1 =

(
δ
4

)0
. Consequently, there exists ` ∈ {1, . . . , t} for

which dist(ŵ`, ĉ`) <
(
δ
4

)t−`+1
, but dist(ŵ`+1, ĉ`+1) ≥

(
δ
4

)t−`
. But by the above Claim C.5, this

implies in turn that with probability at least 1
2 ·
(
δ
4

)t−` ≥ ( δ4)t, any view that is δ
8 -close to A’s view

on Step 1b on the `-th iteration, would cause it to reject. We conclude that with probability at
least

(
δ
4

)t
, any view that is δ

8t -close to A’s view will cause A to reject.
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