
Lower Bounds for (Non-monotone) Comparator
Circuits∗

Anna Gál† Robert Robere‡

Abstract

Comparator circuits are a natural circuit model for studying the concept of
bounded fan-out computations, which intuitively corresponds to whether or not
a computational model can make “copies” of intermediate computational steps.
Comparator circuits are believed to be weaker than general Boolean circuits, but
they can simulate Branching Programs and Boolean formulas. In this paper we
prove the first superlinear lower bounds in the general (non-monotone) version
of this model for an explicitly defined function. More precisely, we prove that
the n-bit Element Distinctness function requires Ω((n/ log n)3/2) size comparator
circuits.

1 Introduction

One of the central open problems in circuit complexity is to prove superlinear lower
bounds on the size of general Boolean circuits for explicitly defined functions. While
theorists have been outstandingly successful at analyzing some restricted circuit models
— for instance, exponential lower bounds are known when the circuit is monotone [22], or
bounded-depth [11] — the progress remains modest for less restricted classes of circuits:

1. The best lower bounds for the Boolean formula size of explicit functions over n
variables are of the form Ω(n3−o(1)) [12, 18, 26, 5, 7, 19, 27, 4, 8]. The first such
bound is due to H̊astad [12] and the current largest bound (improving lower order
terms) is due to Tal [27].

2. The best lower bounds for branching programs, which capture small-space compu-
tation and can simulate formulas, are Ω((n/ log n)2) for the deterministic model by
Nechiporuk [21] and Ω(n3/2/ log n) for the non-deterministic- and parity- models
by Pudlák1 [15], and Karchmer and Wigderson [15], respectively.

∗Part of this work was done while visiting the Simons Institute for the Theory of Computing in
Berkeley.
†University of Texas at Austin, Email: panni@cs.utexas.edu
‡DIMACS at Rutgers University and Institute for Advanced Study in Princeton, Email:

robere@cs.toronto.edu
1Pudlák’s result is unpublished, and referenced by Karchmer and Wigderson in their paper [15].

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 128 (2019)

3. The best lower bounds for span programs over GF (2), which can simulate all of
the above models, is Ω(n3/2/ log n) by Beimel, Gál, and Paterson [3], following the
initial Ω(n log log log∗ n) lower bounds by Karchmer and Wigderson [15].

4. Finally (and, perhaps, most notoriously) the best lower bounds for general Boolean
circuits are 5n− o(n), due to Iwama and Morizumi [13].

Improving any of these lower bounds is an outstanding open problem; however, the
problem of proving any superlinear lower bound on general Boolean circuits is perhaps
the most interesting. Span programs form a remarkable model here, since they can
simulate all models above for which we have superlinear lower bounds — this means
that improving the lower bounds for span programs is one of the outstanding open
question at the “frontier” of current techniques for proving lower bounds in general
non-monotone circuit models.

In this paper we introduce a new problem at the frontier: the complexity of non-
monotone comparator circuits. A comparator circuit is a circuit composed purely of
comparator gates, each of which maps a pair of bits (x, y) to (x ∧ y, x ∨ y). It is
known that, just like span programs, comparator circuits can efficiently simulate non-
deterministic branching programs [6], and thus lower bounds for comparator circuits
imply lower bounds on branching programs and formulas. However, like branching pro-
grams, comparator circuits are known to be stronger than boolean formulas, as it is
easy to construct comparator circuits computing Parity in O(n) size (unlike formulas,
which require Ω(n2) size [16]). Similarly, like span programs, comparator circuits are
believed to be weaker than general non-monotone circuits [6, 24]. However, it appears
that comparator circuits may be incomparable to, or possibly even stronger than span
programs: the class of functions computable by polynomial-size comparator circuits is
conjectured to be incomparable to NC [25], and this conjecture is supported by oracle
separations [6]. In contrast, the class of functions computable by polynomial-size span
programs over finite fields is contained in NC2. Furthermore, while we already had su-
perlinear lower bounds for span programs [3, 15], there have been no superlinear lower
bounds known for the comparator circuit size of any explicit function.

Continuing the line of work proving superlinear lower bounds for formulas, branching
programs, and span programs, we prove the first superlinear lower bounds on the size
of comparator circuits computing an explicit Boolean function. Let n = 2m logm, and
let EDn : {0, 1}n → {0, 1} be the n-bit Element Distinctness function, which takes m
integers in the range {1, 2, . . . ,m2} as input (each encoded as 2 logm bits) and outputs
1 iff all of the integers are distinct. Our main result is the following:

Theorem 1.1. The size of any comparator circuit computing the n-bit Element Dis-
tinctness function EDn is at least Ω((n/ log n)3/2).

The above result is interesting for several reasons. First, it provides a new and
natural class of circuits for which we can obtain superlinear size lower bounds, and thus
represents progress towards the goal of proving superlinear lower bounds for general
non-monotone circuits. A second reason is that the techniques we employ are notably

2

different than those used in previous lower bounds for non-monotone models. The
current best Ω(n3−o(1)) lower bounds for formulas follow by restriction based techniques,
which we do not use for our lower bounds. In fact, as we discuss in Section 5, there
seem to be obstacles to obtaining superlinear lower bounds for comparator circuits
this way. Instead, we use a generalized version of the classic Nechiporuk method [21],
which was used for obtaining the current best lower bounds for branching programs
and span programs stated above. However, it is not possible to apply Nechiporuk’s
method directly to estimate the number of gates of comparator circuits, because the
partial computations corresponding to subcircuits over disjoint subsets of inputs may
significantly overlap (see Remark 4.3 and Section 1.2 for more details.) Instead, we need
to exploit some interesting structure of comparator circuits to enable a more general
version of the method. For these reasons we believe that our above lower bound (and
comparator circuits more generally) are particularly interesting.

1.1 Comparator Circuits and Bounded Fanout Computation

Let us first describe comparator circuits more formally. As stated above, a comparator
gate computes the map (x, y) 7→ (x ∧ y, x ∨ y) where x, y ∈ {0, 1}; that is, the gate
outputs both the AND and the OR of its input bits. A comparator circuit is a Boolean
circuit whose inputs are labeled by input literals (i.e. either variables xi or their negations
xi), and is composed entirely of comparator gates; the comparator circuit is said to be
monotone if no input literal is negated. We emphasize here that every comparator gate
in the circuit has exactly two inputs and two outputs, and the (Boolean) output of the
circuit is obtained by fixing some designated output of a comparator gate in the circuit.

The definition of a comparator gate suggests a convenient method of visualizing such
circuits, depicted in Figure 1. We draw m lines from left-to-right — we call these lines
wires2 — that are initially labeled with input literals or the Boolean constants 0, 1. We
connect wires together with comparator gates : each gate is drawn connecting a pair of
wires; one of the inputs is drawn with a circle (representing the output of the ∧ gate)
and the other with an arrow (representing the output of the ∨ gate).

Figure 1: Examples of comparator circuits, with outputs designated. The left is a simple
monotone comparator circuit, the right is a non-monotone comparator circuit for parity.

2We note that this differs from the standard usage of the word “wires” in circuit complexity, which
is usually used to mean the edges in the underlying directed graph of the circuit.

3

The most studied examples of comparator circuits in the literature are sorting net-
works, which are typically studied in a more general (i.e. non-Boolean) setting. A sorting
network is a mathematical model of a sorting algorithm which is input-oblivious : the
algorithm performs the same sequence of compare-and-swap operations on its input se-
quence of integers for all possible inputs. There are n wires traveling from left to right,
each labeled with a distinct input variable, and a sequence of comparator gates connect-
ing the wires. (Note that a comparator gate, intuitively, just sorts its inputs in order,
with the larger input sent to the ∨ output and the smaller to the ∧ output.) The goal is
to construct the fastest network — where fastest can mean “shallowest”, with the small-
est depth connecting inputs to outputs, or with the fewest possible comparator gates
— that sorts all n inputs. Shallow sorting networks have many applications in theory
and practice, and thus have been extensively studied in theoretical computer science,
with much effort spent on finding the shallowest possible networks (see [1, 2, 17, 9]). A
restricted version of comparator circuits appeared implicitly in a paper by Graham [10].
His model is equivalent to read once comparator circuits, where each literal is used on at
most one wire. Graham [10] showed that there exists a Boolean function on 11 variables
that cannot be computed by this model, and it was proved by Robere [23] that the s, t-
connectivity problem cannot be solved by read once monotone comparator circuits.

Studying comparator circuits as a circuit model for general computation arguably
began with the work of Subramanian [25], who showed that comparator circuits are
a natural model for extending the study of bounded fan-out circuits beyond Boolean
formulas. Subramanian considered different classes of circuits depending on whether or
not the gates in the circuit could simulate a COPY gate: that is, the gate that takes
some input x and outputs two copies of x. For example, when a gate can “fan-out”
its output then we are allowing the gate to implicitly copy its output many times over.
On the other hand, it is easy to see that a circuit constructed of comparator gates can
not simulate a COPY gate, as the Hamming weight of the output of a comparator gate
is always the same as the Hamming weight of the input of a comparator gate. Thus
comparator circuits form an interesting intermediate class between Boolean formulas
and Boolean circuits: they cannot create copies of intermediate computations, and so
are apparently weaker than Boolean circuits; but, the ability to compute AND and OR
simultaneously makes them apparently more powerful than Boolean formulas.

Let CC denote the class of languages computable by AC0-uniform polynomial-size
comparator circuits. This complexity class has an interesting characterization as the
class of problems reducible to the stable marriage problem [25]. Closer to our purposes,
Subramanian showed that if a circuit composed from gates chosen from a set S has
“bounded fanout”, in the sense that the gates from S cannot simulate a COPY gate,
and all the gates in S compute monotone functions, then the corresponding circuit value
problem for circuits with gates from S is either in NC or is CC-hard [25]. Despite their
inability to copy, polynomial-size comparator circuits can compute everything in NL
[20, 6] (which is conjectured to be strictly more powerful than polynomial-size Boolean
formulas), and appear to be incomparable with NC [25]. Therefore, CC is a natural
class to continue the study of bounded fan-out computation past NC1, along with being
a candidate for a class C satisfying NL ⊂ C ⊂ P and C 6= NC. The computational

4

complexity of the class CC was recently analyzed by Cook, Filmus and Le [6] where,
among other things, the question of uniformity and oracle separations with other classes
was addressed.

However, a natural question left open by [6] is that of lower bounds. In the mono-
tone case, since monotone comparator circuits are simulated by monotone circuits, ex-
ponential lower bounds are implied by the known lower bounds for monotone circuits
(for instance, by Razborov [22]), and exponential separations between monotone com-
parator circuits and monotone circuits have been proved in [24]. Lower bounds for
general Boolean circuits imply lower bounds for comparator circuits, but other than
such implications, we are not aware of any previous nontrivial lower bounds for gen-
eral (non-monotone) comparator circuits. In particular, before our work, no superlinear
lower bounds have been obtained for comparator circuits computing an explicit Boolean
function.

1.2 Main Results and Techniques

To prove Theorem 1.1 we recruit a classic tool from non-monotone circuit lower bounds:
the Nechiporuk method [21]. This method was invented by Nechiporuk to prove lower
bounds on the size of deterministic branching programs and formulas, and is currently
one of the few techniques capable of proving superlinear lower bounds against non-
monotone computation. The idea of the method is as follows, in the setting of branching
programs (the argument for formulas is identical, see e.g. [29]). Consider a branching
program B computing a Boolean function f on n variables. First, observe that fixing
the values outside of a subset S ⊆ [n] of the variables to constants results in a branching
program that computes a subfunction of the original function on the variables in the
subset S. It follows that as we range over all substitutions to [n] \ S, the number
of different branching programs obtained must be at least as large as the number of
different subfunctions of f on S. Thus, to obtain a lower bound, take any partition of
the input variables [n] = Y1 ∪ Y2 ∪ · · · ∪ Yn and let hi be the number of nodes of the
branching program B labeled with variables from the set Yi. Recall that the size of a
deterministic branching program is the number of its nodes, and each node is labeled by
exactly one input variable. Thus, the size of the branching program B is |B| =

∑
i hi

and, in turn, we can lower-bound each hi by relating it to the number of subfunctions
of f on the variables Yi obtained by restricting [n] \ Yi in all possible ways. This yields
lower bounds for functions with large number of different subfunctions.

The Nechiporuk method works well for branching programs as the sets of nodes
of the program associated with disjoint subsets of inputs are disjoint. The situation
is similar for Boolean formulas: each leaf of the formula is labeled by a variable (or
negated variable), and again the sets of leaves associated with disjoint subsets of inputs
are disjoint. In fact, this property (that the subcircuits corresponding to disjoint subsets
of inputs are disjoint) is true for all prior applications of the method. For example, in
the application to non-deterministic and parity branching programs [15], the edges of
the program are now labeled by variables, and thus the sets of edges corresponding to
disjoint subsets of variables are disjoint. Similarly, in span programs over GF (2) [3],

5

the rows are labeled by variables and so once again, subsets of rows corresponding to
disjoint subset of variables are disjoint.

In principle, one could imagine generalizing this method to other circuit models, as
long as the subcomputations corresponding to disjoint subsets of input variables do not
overlap much. On the negative side, the method can provably not be applied to general
Boolean circuits [28], which intuitively makes sense as circuits can copy intermediate
computations as many times as they like.

So: what about comparator circuits? At first glance it seems like the method should
not be applicable to comparator circuits either, since the circuits contain gates with
fanout two, and this implies that the computation of the circuits on disjoint sets of vari-
ables can badly overlap, just like general Boolean circuits and unlike formulas, branching
programs or span programs. Indeed, as we discuss in Remark 4.3, the set of gates of a
comparator circuit contributing to the computation on a given subset of variables can
potentially involve all the gates of the original circuit.

We can, however, overcome this problem. Our key observation is the following: the
idea of Nechiporuk’s method may be still applicable in situations where the subcompu-
tations badly overlap, as long as we are able to bound the size of the computation by
some (not too fast growing) function of the number of occurrences of input literals. This
is simply because the occurrences of input literals (or in other words the input queries)
made by the computation will always be disjoint over disjoint subsets of variables.

Let us elaborate further in the case of comparator circuits. In comparator circuits,
the number of wires — which, we recall, refers to the number of distinct left-to-right
lines in Figure 1 — corresponds exactly to the number of occurrences of input literals
in the circuit. The fact that comparator circuits cannot simulate COPY gates suggests
the following question. If F is a Boolean formula with ` leaves then it is easy to see
that the number of internal gates s of F is exactly s = ` − 1. In other words, the size
of the formula F is linearly related to the number of its leaves, and this is a result of
F having bounded fanout. Does a similar relation hold for comparator circuits between
gates and wires?

First, observe that since each gate in the comparator circuit connects two wires, in
order for each wire to be connected to the output gate we must have `− 1 ≤ s, where s
is the number of gates, just like in formulas. However, is it the case that s = O(`)? Or
even s = O(poly(`))? Surprisingly, we are able to show that s ≤

(
`
2

)
assuming that none

of the gates in the circuit are “useless” in a specific technical sense and can be removed
(cf. Section 3); furthermore, we show that this relationship is sharp. For the special
case of read once comparator circuits, essentially this statement was proved implicitly
by Graham [10].

Theorem 1.2. Let C be any comparator circuit with ` wires and s gates such that every
gate in C is useful. Then s ≤ `(`− 1)/2.

It is precisely this relationship between wires and gates which allows us to overcome
the “overlapping subcomputations” issue in applying Nechiporuk’s method, and it seems
to be a remarkable property of this model. Furthermore, our final superlinear lower
bound is on the number of wires of the circuit, instead of the number of the gates. As

6

far as we know, our results are the first generalization of Nechiporuk’s method to such
a scenario.

2 Definitions

For any positive integer m let [m] := {1, 2, . . . ,m}, and if n is an integer satisfying
m ≤ n let [m,n] := {m,m+ 1, . . . , n}. If S is a set then ℘(S) denotes the power set of
S.

Throughout we will be interested in Boolean functions f : {0, 1}n → {0, 1}. If
x ∈ {0, 1}n then xi is the value of the ith bit in x. If x, y ∈ {0, 1}n are binary strings
then x ≤ y if xi ≤ yi for all i ∈ [n]. If x ∈ {0, 1}n then |x| is the Hamming weight of x.

A comparator gate is the function C : {0, 1}2 → {0, 1}2 computing the map (x, y) 7→
(x∧y, x∨y). It is natural to think of a comparator gate C as “sorting” the input (x, y),
as the smaller input goes to the first coordinate and the larger input goes to the second.
A comparator circuit is a circuit composed of comparator gates with arbitrary Boolean
literals as input. For later convenience, we use the following, alternative definition of a
comparator circuit. A comparator circuit C is defined by a tuple (W,G, I, o), where

• W is a set of elements called wires,

• I : W → {x1, . . . , xn, x1, . . . , xn, 0, 1} is an initial labeling of each wire with an
input literal or Boolean constant,

• G ⊆ W 2 is an ordered list of comparator gates,

• o ∈ W is the designated output wire.

Each comparator gate g = (i, j) ∈ G is specified by the pair of wires the gate connects:
the AND output of the gate is interpreted as the first coordinate and the OR output
of the gate is interpreted as the second coordinate. A comparator circuit computes
a Boolean function in the natural way: given an assignment to the input literals, we
evaluate the comparator gates one by one in order according to G, and then output
the Boolean value labeled on the output wire, o. We define the size of the comparator
circuit to be the number of gates in the circuit, and note that the number of wires in
the circuit will also be an interesting complexity measure.

3 Wires vs. Gates in Comparator Circuits

Definition 3.1. Let C be a comparator circuit with m wires, let g = (i, j) be a gate
in C, and let vi(x), vj(x) be the values of the wires i, j, respectively, on input x just
before applying the gate g. Then g is useful if there is a pair of inputs x, y to C such
that (vi(x), vj(x)) = (1, 0) and (vi(y), vj(y)) = (0, 1). If g is not useful then we say it is
useless.

7

Equivalently, if a gate g is useless then for every pair of inputs (x, y) either (vi(x), vj(x)) =
(vi(y), vj(y)) or vi = vj for one of x, y. The next proposition states that gates that are
not useful can be removed without loss of generality.

Proposition 3.2. Let C be a comparator circuit with ` wires and s gates computing
some Boolean function f . Then there exists a comparator circuit C ′ with (at most) `
wires and s′ ≤ s gates computing f such that every gate in C ′ is useful. Moreover, the
labels of the wires that are not removed remain the same in C ′ as in C.

Proof. Let g = (i, j) be any gate in C such that g is not useful. Let vi(x), vj(x) be the
values of the wires i, j before applying g on input x. Since g is not useful, then it follows
that for every pair of inputs x, y to the circuit either (vi(x), vj(x)) = (vi(y), vj(y)) or
one of x, y satisfies vi = vj.

Let O ⊆ {0, 1}n be the set of inputs such that for all x ∈ O, exactly one of vi(x), vj(x)
is 1. Since g is useless, it follows that either (vi(x), vj(x)) = (0, 1) for every x in O or
(vi(x), vj(x)) = (1, 0) for every x in O.

Assume that the outputs of g are ordered so that g(0, 1) = (0, 1) and g(1, 0) = (0, 1).
The proof for the other type of gates is symmetric. Consider the following two cases.

Case 1: For all x ∈ O, (vi(x), vj(x)) = (0, 1).
We claim that for all x ∈ {0, 1}n, applying g does not change the value of any

wire, and so g can be removed without affecting the computation C. This is because
for every x ∈ {0, 1}n, either x ∈ O and so applying g does not change any value (since
g(0, 1) = (0, 1)), or x 6∈ O, and by the definition of the set O we must have vi(x) = vj(x),
and so applying g will not change the values of the wires.

Case 2: For all x ∈ O, (vi(x), vj(x)) = (1, 0).
By definition g(1, 0) = (0, 1), and so we perform the following operation: remove

g, and for each wire i, j find the first gate h using that wire as an input. If it is the
same gate for both wires, then h is redundant, so remove it and continue searching
forward along each wire. Otherwise, let hi = (k, `) where exactly one of k, ` is i and let
hj = (k′, `′) where exactly one of k′, `′ is j. Let the wire i feed into the gate hj and the
wire j feed into the gate hi. Switching the wires this way will simulate the action of the
gate g that we just eliminated.

Once you have found a non-redundant gate h for each of the two wires {i, j} (or if
no such gate exists), then stop.

To see that this operation does not affect the output of the circuit, consider the
following two cases:

1. vi(x) = vj(x). In this case, performing this operation will not affect the computa-
tion of the circuit as either of the h gates will receive the same input, regardless
of which wire they are connected to.

2. vi(x) 6= vj(x). In this case, (vi(x), vj(x)) = (1, 0), and g(1, 0) = (0, 1), so by
removing g and switching the inputs of the h gates we ensure that in the new
circuit the computation will be the same.

8

By proceeding from the inputs of the circuit to the outputs we can apply this oper-
ation to remove every useless gate in the circuit. In each case, the output of the circuit
will not be affected.

Finally, notice that if a wire is not connected to any remaining gate in C ′, we may
remove it, except if the wire is designated as the output of the circuit. The wires that
are not removed, retain the same label as in the original circuit C, and the proof of the
proposition is complete.

Now we can prove the main theorem of this section, which we restate from the
Introduction.

Theorem 1.2. Let C be any comparator circuit with ` wires and s gates such that every
gate in C is useful. Then s ≤ `(`− 1)/2.

Proof. For j = 1, 2, . . . , s let gj denote the jth gate of C, and let Cj be the subcircuit
of C consisting of the first j gates of C. Let C0 be the circuit C with all of its gates
removed. We say that two inputs x, y ∈ {0, 1}n are useful with respect to the pair (i, j)
if wi(x) = 1, wi(y) = 0 and wj(x) = 0, wj(y) = 1, where wi, wj are the outputs of wires
i and j of the comparator circuit C. If there exist two inputs x, y ∈ {0, 1}n that are
useful with respect to (i, j) then we say that (i, j) is a useful pair.

Let Uj denote the collection of all useful pairs in the circuit Cj. We show that the
size of Uj decreases by at least one after applying each gate: that is |Uj| ≤ |Uj−1| − 1
for all j. Since |U0| ≤

(
`
2

)
, it follows that the number of gates in C is at most

(
`
2

)
.

Let 1 ≤ j ≤ s be an integer, and suppose the gate gj connects two wires (a, b). Since
gj is useful we have that (a, b) is a useful pair in Uj−1. It is also clear that (a, b) 6∈ Uj,
as applying the gate gj removes all useful inputs with respect to (a, b). However, we are
not finished, as applying the gate gj could have introduced a new useful pair (c, d): so,
(c, d) ∈ Uj and (c, d) 6∈ Uj−1. The proof will be complete once we prove the following
claim, which states that if such a new useful pair is introduced, then there must exist
another distinct useful pair that was removed.

Claim. Suppose there exists a useful pair (c, d) ∈ Uj such that (c, d) 6∈ Uj−1. Then there
is another useful pair (α, β), uniquely associated with (c, d), such that (α, β) 6= (a, b),
(α, β) ∈ Uj−1, and (α, β) 6∈ Uj.

Proof of Claim. It is clear that while (c, d) 6= (a, b), it cannot be the case that c, d 6∈
{a, b}: that is, at least one of c or d must be equal to a or b. This is because applying
the gate gj only modifies the outputs of wires a and b, and so any new useful pair must
include one of these modified outputs.

First assume that c = a (and we note that the other cases (c = b, d = a, d = b) follow
by nearly identical proofs). It follows that (a, d) ∈ Uj and (a, d) 6∈ Uj−1. We show that
this implies that (b, d) ∈ Uj−1 and (b, d) 6∈ Uj. For any wire t let vt denote the output
of the tth wire before applying the gate gj, and let wt denote the output of the tth wire
after applying the gate gj. Since (a, d) is a useful pair it follows that there exists a pair
of inputs x, y ∈ {0, 1}n such that wa(x) = 1, wd(x) = 0 and wa(y) = 0, wd(y) = 1. Now,
since (a, d) 6∈ Uj−1 we can deduce the values of va, vb, and vd on inputs x and y. It is

9

obvious that vd(x) = wd(x) and vd(y) = wd(y) as the gate gj is not connected to the
wire d. We can also conclude that va(x) = vb(x) = 1, as the gate gj connects a to b and
wa(x) = 1 (for if vb(x) = 0, then wa(x) 6= 1, as the 1 would have been moved to the ∨
output of gj). Finally, since (a, d) 6∈ Uj−1 we know that va(y) = 1 and vb(y) = 0. For
if va(y) = 0, it would follow that (a, d) is a useful pair in Uj−1 (a contradiction). Thus
va(y) = 1, and since wa(y) = 0, the only possibility is that the gate gj moved a 1 from
wire a to wire b on input y. We now record the values of va, vb, vd and wa, wb, wd on
inputs x and y:

x y
va 1 1
vb 1 0
vd 0 1

wa 1 0
wb 1 1
wd 0 1

By examining the table it is easy to see that (b, d) is a useful pair in Uj−1, as
vb(x) = 1, vd(x) = 0 and vb(y) = 0, vd(y) = 1. We show that (b, d) 6∈ Uj, proving the
claim in this case.

To see this, suppose that (b, d) ∈ Uj. Then there must exist an input z such that
wb(z) = 0, wd(z) = 1, on which we can similarly deduce the values of va, vb, vd. Clearly
vd(z) = 1 since the gate gj connects the two wires (a, b). Since wb(z) = 0, it must be
that va(z) = vb(z) = 0. However, this means that va(z) = 0, vd(z) = 1, and from the
table we can see that va(x) = 1, vd(x) = 0. This means that (a, d) is a useful pair in
Uj−1, a contradiction!

We make a final remark on the uniqueness property. We technically have four cases
to prove here, as the new useful pair must be in one of the following forms:

1. (a, d)

2. (b, d)

3. (c, a)

4. (c, b)

In the proof above we showed that if the new useful pair is of the form (a, d), then this
implies that (b, d) ∈ Uj−1 and (b, d) 6∈ Uj. In the other three cases (which proceed by
identical proofs), other uniquely associated pairs are introduced. In general, if α ∈ {a, b}
and β ∈ {a, b}, β 6= α, and the new useful pair is of the form (α, d) then the same proof
shows that (β, d) is in Uj−1 and not in Uj. Similarly, if the new useful pair is of the
form (c, α) then a similar proof shows that (c, β) is in Uj−1 and not in Uj. These facts
together prove uniqueness.

10

To see that the upper bound given in the previous theorem is sharp, consider the
following comparator circuit Cn which sorts its n inputs via the “bubble sort” method:
the circuit incrementally bubbles the largest value from the top wire down as far as it
can go, and then the second wire, and so on. It is not hard to see that the resulting
circuit has n wires and

(
n
2

)
gates.

4 Lower Bound for Element Distinctness

Let n = 2m logm, and recall the definition of the Element Distinctness function EDn:
it takes n = 2m logm input bits divided into m blocks of 2 logm bits each, interpreted
as m integers in the range {1, . . . ,m2}, and decides whether all m numbers are distinct.

In this section we prove our main lower bound, restated here for convenience:

Theorem 1.1. The size of any comparator circuit computing the n-bit Element Dis-
tinctness function EDn is at least Ω((n/ log n)3/2).

We note that the lower bound holds for any function with a similar number of
subfunctions; for instance, the Indirect Storage Access function [29].

We will need the following Lemma. Recall that in a comparator circuit, each of the
wires is labeled with either a constant 0, 1, some input variable or its negation.

Lemma 4.1. Let ` ≥ 1 be an integer. For any fixed labeling of ` wires, the number
of different Boolean functions that can be computed by comparator circuits with ` wires
with the given labeling is at most ``

2
.

Proof. By Proposition 3.2, every comparator circuit C with ` wires is equivalent to
another comparator circuit C ′ with (at most) ` wires that has no useless gates. By
Theorem 1.2 the number of gates of C ′ is at most

(
`
2

)
. Recall also that C ′ keeps the

same labeling of the wires (that are not removed) as C; and if a wire is not connected
to any remaining gate in C ′, we may remove it, except if the wire is designated as the
output of the circuit.

To prove the lemma it is enough to estimate the number of different comparator
circuits with at most ` wires of a given labeling and at most

(
`
2

)
gates. For each gate,

there are at most
(
`
2

)
choices for the pair of wires it takes as inputs, and two choices for

the ordering of the ∧ output and ∨ output of the gate. In addition, we have at most `
choices to designate one of the wires as the output. Thus the number of possible such

comparator circuits is at most ` · (2
(
`
2

)
)(

`
2) ≤ (`)(`2).

Remark 4.2. We can also bound the number of different Boolean functions on n vari-
ables that are computed by comparator circuits with s gates by (2(n + 1)s)2s using a
similar counting argument. Note that here we do not assume a fixed labeling, and we
use that the number of wires is at most the number of gates, assuming that each wire is
connected to the output gate.

If the subsets of gates used in subcircuits over disjoint subsets of inputs would not
overlap much, then a straightforward application of Nechiporuk’s method seemingly would

11

yield nearly quadratic lower bounds using this counting argument. However, as we dis-
cuss in some more details in Remark 4.3, the subsets of gates can badly overlap. Thus,
even though a counting argument in terms of gates is available, Nechiporuk’s argument
is not applicable directly to the gates of comparator circuits.

Note that we could have also stated a similar bound for comparator circuits with `
wires and n input variables, without considering a fixed labeling of the wires. We find
the current version of Lemma 4.1 more convenient for our purposes. We are now ready
to prove Theorem 1.1.

Proof. (of Theorem 1.1) We prove the stronger statement, that the number of wires
of any comparator circuit computing EDn is at least Ω((n/ log n)3/2). Recall that the
size of a comparator circuit is the number of its gates, and the number of gates in a
comparator circuit with w wires, where each wire is connected to the output gate, is at
least w − 1. Thus, a lower bound on the number of wires implies lower bounds on the
size of the comparator circuit.

Partition the n = 2m logm input variables into m groups of 2 logm variables each,
such that the variables in the i-th group represent the i-th integer in the input. For
i = 1, . . . ,m let Si be the set of variables in the i-th group. Let Ni denote the number of
different subfunctions over the variables in Si that can be obtained by fixing all variables
outside Si to constants. It is known (see e.g. [14]) that Ni = 2Ω(n) for each i = 1, . . . ,m.

Let C be a comparator circuit computing EDn with w wires. Let wi denote the
number of wires of C labeled by a variable from the i-th group. Then w =

∑m
i=1 wi.

For a given i ∈ [m], consider a fixed assignment α of constants 0 or 1 to all variables
outside of Si. Consider the resulting comparator circuit Ci,α over the variables in Si.
Applying Proposition 3.2 to Ci,α we can obtain a comparator circuit C ′i,α over variables
from Si with no useless gates. Notice that if a wire is labeled by constant 0 or 1 then any
gate directly using this wire must be useless (in the formal sense of Definition 3.1). Note
also that after removing all useless gates, wires with constant label are not connected
to any remaining gates. Thus, they can be removed, except when designated as the
output wire. Note however, that if a wire with constant label that is not connected to
any gate is designated as the output wire, then the function computed is constant 1 or
0. Thus, unless the function computed by C ′i,α is constant, all wires in C ′i,α are labeled
by variables or their negation from Si, regardless of the particular assignment α.

This fact has two important consequences for us. First, it means that the number
of wires of C ′i,α is at most wi. Second, it means that for given i, unless the function
computed by C ′i,α is constant, the wires of C ′i,α have the same labels (by variables or
negated variables from Si) regardless of the particular assignment α. (To see this, recall
that in Proposition 3.2 the labels of the wires that are not removed remain the same as
in the original circuit.)

This allows us to conclude using Lemma 4.1 that Ni ≤ 2 + w
(w2

i)
i for i = 1, . . . ,m.

Thus, we have for i = 1, . . . ,m that

w2
i ≥

log(Ni − 2)

logwi
≥ Ω(n)

logwi
.

12

Note that if logwi >
1
2

log n then wi ≥
√
n. On the other hand, if logwi ≤ 1

2
log n

then we get w2
i ≥

Ω(n)
logn

. Thus, for i = 1, . . . ,m we have wi ≥ Ω(
√
n√

logn
), which yields

w ≥ Ω((n/ log n)3/2).

Remark 4.3. It is crucial in the above argument that the set of wires used by the
subcircuits C ′i,α is the same for fixed i regardless of the assignment α, and that these sets
do not overlap for different values of i. One could try to consider a similar argument
directly for gates instead of wires. For instance, one could define Gi,α as the set of gates
participating in the circuit C ′i,α, and consider Gi = ∪Gi,α. But for different assignments
α, the circuits C ′i,α may retain different gates of the original circuit, and the sets Gi

may badly overlap. In particular, for some values of i, Gi may contain all gates of the
original circuit.

5 Conclusion and Future Work

In this paper we have proved the first superlinear lower bound on the size of comparator
circuits computing an explicit Boolean function. As we have remarked above, we actually
prove a superlinear lower bound on the number of wires, or equivalently, input queries,
of any comparator circuit for EDn, which is stronger than a lower bound on the number
of gates. Furthermore, by our Theorem 1.2, there is at most a quadratic separation
between the number of wires and the number of gates in any minimal comparator
circuit. A natural problem is to try and prove a lower bound on the number of gates
directly. However, as we discuss above in Remark 4.3 this would require a different
technique.

We remark that it seems quite difficult to apply restriction techniques to obtain wire
lower bounds for comparator circuits. This is for a simple reason: observe that restricting
one input to a single comparator will restrict exactly one output of the gate and re-wire
the other input to the other output. This implies that if we have a comparator circuit
with m wires, and we restrict values to t of them, then we are left with a new comparator
circuit with exactly m−t unrestricted wires after propagating this rewiring process. Note
that some wires could possibly be removed if they are “separated” from the output gate,
but, if the topology of the circuit is highly connected (e.g. is an expander) then we should
expect this to be very unlikely.

Finally, we remark on a second natural open problem. As we discuss in the intro-
duction, the key structural property of comparator circuits that enabled us to apply
Nechiporuk’s method to comparator circuits is Theorem 1.2, relating the number of
wires to the number of gates. The crucial intuition in the proof of this Theorem is that
comparator circuits cannot copy intermediate computations. There is a rich structure
of circuit classes extending comparator circuits which cannot copy intermediate compu-
tations, as explored by Subramanian [25]. Can one extend any of our results to these
more general classes?

13

References

[1] Miklós Ajtai, János Komlós, and Endre Szemerédi. An O(n log n) sorting network.
In the proceedings of STOC 1983, 1-9.

[2] Kenneth E. Batcher. Sorting networks and their applications. Proceedings of AFIPS
Spring Joint Comput. Conf. 32:307-314, 1968.

[3] A. Beimel, A. Gál and M. Paterson: Lower bounds for monotone span programs.
Computational Complexity 6 (1996/97), pp. 29-45. Preliminary version in Proc.
36th IEEE FOCS, Milwaukee WI 1995, pp. 674–681.

[4] A. Bogdanov. Small bias requires large formulas. Electronic Colloquium on Com-
putational Complexity (ECCC), 24:91, 2017.

[5] R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining
circuit lower bound proofs for meta-algorithms. Computational Complexity, 24(2):
pp. 333–392, 2015.

[6] Stephen A. Cook, Yuval Filmus, and Dai Tri Man Le. The complexity of the com-
parator circuit value problem. ACM Trans. on Computation Theory 6(1) (2014).

[7] I. Dinur and O. Meir. Toward the KRW composition conjecture: Cubic formula
lower bounds via communication complexity. In 31st Conference on Computational
Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pp. 3:1–3:51, 2016.

[8] A. Gál, A. Tal, A. Trejo Nunez. Cubic Formula Size Lower Bounds Based on Com-
positions with Majority, In Proceedings of ITCS 2019, pp. 35:1-35:13 (2019).

[9] Michael T. Goodrich. Zig-zag sort: a simple deterministic data-oblivious sorting
algorithm running in O(n log n) time. In the proceedings of STOC 2014, 684-693.

[10] R. J. Graham. A mathematical study of a model of magnetic domain interactions
Bell. Syst. Tech. Journal, 49, No. 8, pp. 1627-1644, 1970.

[11] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In the pro-
ceedings of STOC 2000, 378-387.

[12] Johan H̊astad. The Shrinkage Exponent of de Morgan Formulas is 2. SIAM Journal
on Computing, 27(1): 48-64, 1998.

[13] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n−o(n) for Boolean
circuits. MFCS 2002, 353-364, 2002.

[14] Stasys Jukna. Boolean function complexity. Springer-Verlag, Berlin-Heidelberg,
2012.

[15] Maurico Karchmer and Avi Wigderson. On span programs. In Proc. 8th Ann.
Symp. Structure in Complexity Theory, IEEE 1993, pp. 102–111.

14

[16] V.M. Khrapchenko (1971). A method of obtaining lower bounds for the complexity
of Π-schemes, Math. Notes Acad. of Sci. USSR 10 (1972) 474479.

[17] Donald Knuth. The art of computer programming, volume 3: sorting and searching.
Addison-Wesley, 1997.

[18] I. Komargodski and R. Raz. Average-case lower bounds for formula size. In Sym-
posium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June
1-4, 2013, pages 171–180, 2013.

[19] I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for
de morgan formula size: Matching worst-case lower bound. SIAM Journal on
Computing, 46(1):37–57, 2017.

[20] E.W. Mayr and A. Subramanian. The complexity of circuit value and network
stability. Journal of Computer and System Sciences, 44(2):302323, 1992.

[21] E. I. Nechiporuk. A Boolean function Doklady of the Academy of Sciences of the
USSR (in Russian) 169(4), 765-766, 1966. English translation in Soviet Mathematics
Doklady, 7(4) 999-1000.

[22] A. A. Razborov. Lower bounds on the monotone complexity of some Boolean func-
tion. Soviet Math. Dokl. 31:354-357 (1985).

[23] Robert Robere, Manuscript, 2015.

[24] Robert Robere, Toniann Pitassi, Benjamin Rossman, Stephen A. Cook. Exponential
Lower Bounds for Monotone Span Programs. In Proceedings of FOCS 2016, 406-
415.

[25] Ashok Subramanian. The computational complexity of the circuit value and network
stability problems. PhD Thesis, Stanford University, 1990.

[26] Avishay Tal. Shrinkage of de morgan formulae by spectral techniques. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadel-
phia, PA, USA, October 18-21, 2014, pages 551–560, 2014.

[27] Avishay Tal. Formula lower bounds via the quantum method. In Proceedings of the
49th Annual ACM Symposium on Theory of Computing, (STOC 2017), 1256–1268,
2017.

[28] D. Uhlig. Boolean functions with a large number of subfunctions and small com-
plexity and depth. In the Proceedings of the 8th FCT, 395404, 1991.

[29] Ingo Wegener. The complexity of Boolean functions. Wiley-Teubner Series in Com-
puter Science, 1987.

15 ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

