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Abstract

The concept of matrix rigidity was first introduced by Valiant in [Val77]. Roughly speaking, a matrix
is rigid if its rank cannot be reduced significantly by changing a small number of entries. There has
been extensive interest in rigid matrices as Valiant showed in [Val77] that rigidity can be used to prove
arithmetic circuit lower bounds.

In a surprising result, Alman and Williams showed that the (real valued) Hadamard matrix, which
was conjectured to be rigid, is actually not very rigid. This line of work was extended by [DE17] to a
family of matrices related to the Hadamard matrix, but over finite fields. In our work, we take another
step in this direction and show that for any abelian group G and function f : G → C, the matrix given
by Mxy = f(x− y) for x, y ∈ G is not rigid. In particular, we get that complex valued Fourier matrices,
circulant matrices, and Toeplitz matrices are all not rigid and cannot be used to carry out Valiant’s
approach to proving circuit lower bounds. Our results also hold when we consider matrices over a fixed
finite field instead of the complex numbers. This complements a recent result of Goldreich and Tal [GT16]
who showed that Toeplitz matrices are nontrivially rigid (but not enough for Valiant’s method). Our
work differs from previous non-rigidity results in that those works considered matrices whose underlying
group of symmetries was of the form Fnp with p fixed and n tending to infinity, while in the families of
matrices we study, the underlying group of symmetries can be any abelian group and, in particular, the
cyclic group ZN , which has very different structure. Our results also suggest natural new candidates for
rigidity in the form of matrices whose symmetry groups are highly non-abelian.

Our proof for matrices over C has four parts. The first extends the results of [AW16, DE17] to
generalized Hadamard matrices over the complex numbers via a new proof technique. The second part
handles the N ×N Fourier matrix when N has a particularly nice factorization that allows us to embed
smaller copies of (generalized) Hadamard matrices inside of it. The third part uses results from number
theory to bootstrap the non-rigidity for these special values of N and extend to all sufficiently large N .
The fourth and final part involves using the non-rigidity of the Fourier matrix to show that the group
algebra matrix, given by Mxy = f(x− y) for x, y ∈ G, is not rigid for any function f and abelian group
G. Once we complete the proof for matrices over C, we introduce a few additional tools for extending
our results to finite fields.
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1 Introduction

1.1 Background

A major goal in complexity theory is to prove lower bounds on the size and depth of arithmetic circuits
that compute certain functions. One specific problem that remains open despite decades of effort is to find
functions for which we can show super-linear size lower bounds for circuits of logarithmic depth. In [Val77],
Valiant introduced the notion of matrix rigidity as a possible method of proving such lower bounds for
arithmetic circuits. More precisely, over a field F, an m × n matrix M is said to be (r, s)-rigid if any
m × n matrix of rank at most r differs from M in at least s entries. Valiant showed that for any linear
function f : Fn → Fn that can be computed by an arithmetic circuit of size O(n) and depth O(log n), the
corresponding matrix can be reduced to rank O( n

log logn ) by changing O(n1+ε) entries for any ε > 0. Thus,
to prove a circuit lower bound for a function f , it suffices to lower bound the rigidity of the corresponding

matrix at rank O( n
log logn ). We call a matrix Valiant-rigid if it is

(
O( n

log logn ), O(n1+ε)
)

-rigid for some ε > 0,

i.e. sufficiently rigid for Valiant’s method to yield circuit lower bounds. Over any infinite field, Valiant shows
that almost all n× n matrices are (r, (n− r)2)-rigid for any r, while over a finite field one can get a similar
result with a logarithmic loss in the sparsity parameter. Despite extensive work, explicit constructions of
rigid matrices have remained elusive.

Over infinite (or very large) fields, there are ways to construct highly rigid matrices using either alge-
braically independent entries or entries that have exponentially large description (see [Lok06,KLPS14,Lok00])
1. However, these constructions are not considered to be fully explicit as they do not tell us anything about
the computational complexity of the corresponding function. Ideally, we would be able to construct rigid
0, 1-matrices, but even a construction where the entries are in a reasonably simple field (such as the Fourier

matrix) would be a major breakthrough. The best known constructions of such matrices are (r,O(n
2

r log n
r ))-

rigid (see [SSS97,Fri93]). There has also been work towards constructing semi-explicit rigid matrices, which
require O(n) bits of randomness (instead of the usual O(n2)), as such a construction would still yield circuit
lower bounds through Valiant’s approach 2. The best result in this realm (see [GT16]) shows that random

Toeplitz matrices are (r, n3

r2 logn )-rigid with high probability. Note that both of these bounds become trivial
when r is n

log logn .
Many well-known families of matrices, such as Hadamard matrices and Fourier transform matrices, have

been conjectured to be Valiant-rigid [L+09]. However, a recent line of works (see [AW16, DE17]) shows
that certain well-structured matrices are not rigid. Alman and Williams show in [AW16] that the 2n × 2n

Hadamard matrix, given by Hxy = (−1)x·y as x and y range over {0, 1}n, is not Valiant-rigid over Q. Along
similar lines, Dvir and Edelman show in [DE17] that group algebra matrices for the additive group Fnp , given
by Mxy = f(x− y) where f : Fnp → Fp and x, y range over Fnp , are not Valiant-rigid over Fp (where we view
p as fixed and n goes to infinity). The Hadamard matrix and the group algebra matrices for Fnp satisfy the
property that for any ε > 0, there exists an ε′ > 0 such that it is possible to change at most N1+ε entries
and reduce the rank to N1−ε′ (where N denotes the size of the matrix). The proofs of both results rely on
constructing a matrix determined by a polynomial P (x, y) that agrees with the given matrix on almost all
entries and then arguing that the constructed matrix has low rank.

1.2 Our Contribution

In this paper, we show that several broad families of matrices, including Fourier, circulant and Toeplitz
matrices3, are all not Valiant-rigid. The families of matrices we consider in our work have very different
underlying group structure than those considered in previous works. Both [AW16, DE17] analyze matrices

1It remains open to construct a matrix that is Valiant-rigid, even if we only require that the entries live in a number field of
dimension polynomial in the size of the matrix.

2Note however, that it is easy to construct rigid matrices with O(n1+ε) bits of randomness for any ε > 0 (for example by
taking a random matrix with at most nε non-zeros per row) but this is not sufficient for Valiant’s approach.

3It is not hard to see that rigidity of circulant and Toeplitz matrices is essentially the same question so for the sake of
consistency with our (group theoretic) approach we will primarily consider circulant matrices.
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constructed from an underlying group of the form Fnp with p fixed and n tending to infinity. Fourier and
circulant matrices, which we focus on, are analogs of the Hadamard and group algebra matrices4 for a cyclic
group ZN . Since any abelian group can be decomposed into simple building blocks of the form ZN , our
results extend to all abelian groups (see details below). While most natural constructions of matrices are
highly symmetric, our results suggest that matrices that are symmetric under abelian groups are not rigid
and that perhaps we should look toward less structured matrices, or matrices whose symmetry group is
non-abelian, as candidates for rigidity.

We now move into a more technical overview of our paper. Define the regular-rigidity of a matrix A,
rA(r), as the minimum value of s such that it is possible to change at most s entries in each row and column
of A to obtain a matrix of rank at most r. The notion of regular-rigidity is weaker than the usual notion of
rigidity (and is also weaker than the commonly used notion of row-rigidity) as if A is an n × n matrix and
A is (r, ns)-rigid then rA(r) ≥ s. Note that this actually makes our results stronger as we will show that the
matrices we consider are not regular-rigid.

In general, matrices that we deal with will be over C except in Sections 7-8 where we extend our results
to matrices over finite fields. The dn×dn generalized Hadamard matrix Hd,n has rows and columns indexed

by Znd and entries Hxy = ωx·y where ω = e
2πi
d . Throughout this paper, we use the term Hadamard matrix to

refer to any generalized Hadamard matrix. We use FN to denote the N ×N Fourier transform matrix. Our
main result, that all Fourier matrices are not rigid enough to carry out Valiant’s approach, is stated below.

Theorem 1.1 (Fourier Matrices are Not Rigid). Let FN denote the N ×N Fourier transform matrix. For
any fixed 0 < ε < 0.1 and N sufficiently large,

rFN

(
N

2ε6(logN)0.35

)
≤ N15ε

One key idea in our work is the observation that, if a large family of matrices A are all diagonalizable
by a single matrix M then, the rigidity of any matrix A ∈ A implies the rigidity of the single matrix M .
This situation happens, e.g., when A is the family of circulant matrices and M is the Fourier matrix. This
simple, yet crucial observation allows us to deduce the non-rigidity of a larger family of matrices.

Theorem 1.2. [Circulant Matrices are not Rigid] Let 0 < ε < 0.1 be fixed. For all sufficiently large N , if
M is an N ×N circulant matrix over C,

rFN

(
N

2ε6(logN)0.35

)
≤ N15ε

Remark. We will show later in Section 7 that the same result holds if we let M be an N × N circulant
matrix with entries over a finite field Fq and require that N is sufficiently large compared to ε, q.

Also notice that since any Toeplitz matrix of size at most N
2 can be embedded in an N × N circulant

matrix, the above implies an analogous result for all Toeplitz matrices. While [GT16] shows nontrivial
rigidity lower bounds for rank much smaller than N , our results imply that there are actually no nontrivial
rigidity lower bounds for rank close to N .

With a bit more work, it is possible to prove the non-rigidity of group algebra matrices for any abelian
group.

Theorem 1.3. Let 0 < ε < 0.1 be fixed. Let G be an abelian group and f : G → C be a function. Let
M be a matrix with rows and columns indexed by elements x, y ∈ G and entries Mxy = f(x − y). If |G| is
sufficiently large then

rM

(
2|G|

2ε8(log |G|)0.32

)
≤ |G|38ε

Remark. Similar to the previous theorem, we prove an analogous result for matrices with entries over a
finite field Fq in Section 8.

4While group algebra matrices are supposed to be defined as Mxy = f(x − y), we will work with Mxy = f(x + y) in the
body of our paper for technical reasons. Note that the two definitions differ only in a permutation of the rows and thus have
the same rigidity.
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1.3 Proof Overview

We now take a more detailed look at the techniques used in the proof of Theorem 1.1.

1.3.1 Generalized Hadamard Matrices

The first step in the proof of Theorem 1.1 is proving the following result that all Hadamard matrices are not
rigid.

Theorem 1.4 (Hadamard Matrices are not Rigid). For fixed d and 0 < ε < 0.1, there exists an ε′ such that

for all sufficiently large n, rHd,n

(
dn(1−ε

′)
)
≤ dnε

Note that Theorem 1.4 generalizes the main result of [AW16] (which only deals with d = 2). Also, given
any dn × dn matrix of the form Mxy = f(x − y) with f : Znd → C, we can permute its rows so that it is
diagonalized by Hd,n. Thus, we can apply the diagonalization trick mentioned above and obtain the following
result, which extends the work in [DE17] to matrices over C.

Corollary 1.5. Let f be a function from Znd → C and let M be a dn×dn matrix with Mxy = f(x−y). Then

for any fixed d and 0 < ε < 0.1, there exists an ε′ > 0 such that for all sufficiently large n, rM
(
dn(1−ε

′)
)
≤ dnε

1.3.2 Fourier Matrices

Equipped with the machinery for Hadamard matrices, we can complete the proof of Theorem 1.1. Our proof
consists of two steps. First we show that for integers N of a very special form, the N ×N Fourier matrix is
not rigid because it can be decomposed into submatrices with Hadamard-type structure. We say an integer
N is well-factorable if it is a product of distinct primes q1, . . . , ql such that for all i, qi−1 has no large prime
power divisors. We will make this notion more precise later, but informally, the first step is as follows:

Theorem 1.6. Let FN denote the N × N Fourier transform matrix. For any fixed 0 < ε < 0.1 and
well-factorable integer N , we have

rFN

(
N

2ε6(logN)0.36

)
≤ N7ε

The main intuition is that if N is a product of distinct primes q1, . . . , ql, then within the Fourier matrix
FN , we can find submatrices whose rows and columns can be indexed by Z∗q1 ⊗ · · ·⊗Z∗ql . This multiplicative
structure can be replaced by the additive structure of Zq1−1⊗ · · · ⊗Zql−1. We can then factor each additive
group Zqi−1 into prime power components. If q1 − 1, . . . , ql − 1 all have no large prime power divisors, we
expect prime powers to be repeated many times when all of the terms are factored. This allows us to find
submatrices with Zld additive structure for which we can apply tools such as Theorem 1.4 and Corollary 1.5
to reduce the rank while changing a small number of entries. We then bound the rank and total number of
entries changed over all submatrices to deduce that FN is not rigid.

The second step of our proof that Fourier matrices are not rigid involves extending Theorem 1.6 to all
values of N . The diagonalization trick gives that N × N circulant matrices are not rigid when N is well-
factorable. We then show that for N ′ < N

2 , we can rescale the columns of the N ′ ×N ′ Fourier matrix and

embed it into an N ×N circulant matrix. As long as N ′ is not too much smaller than N (say N ′ > N
(logN)2 ),

we get that the N ′×N ′ Fourier matrix is not rigid. Thus, for each well-factorable N and all N ′ in the range
N

(logN)2 < N ′ < N
2 , the N ′ × N ′ Fourier transform matrix is not rigid. We then use a number theoretic

result of [BH98] to show that the gaps between well-factorable integers are not too large. Thus, the above
intervals cover all integers as N runs over all well-factorable numbers, finishing the proof.

1.4 Organization

In Section 2, we introduce notation and prove several basic results that we will use throughout the paper. In
Section 3, we show that Hadamard and several closely related families of matrices are not rigid. In Section
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4, we show that N ×N Fourier matrices are not rigid when N satisfies certain number-theoretic properties.
In Section 5, we complete the proof that all Fourier matrices are not rigid. We then deduce that all Toeplitz
matrices are not rigid. In Section 6, we use the results from the previous section to show that group algebra
matrices for abelian groups are not rigid. Through Sections 2-6, we work with matrices over C for ease of
exposition. In Section 7 and Section 8, we sketch how to modify the proofs in the previous sections to deal
with “missing” roots of unity over a finite field. Finally, in Section 9, we discuss a few open questions and
possible directions for future work.

2 Preliminaries

Throughout this paper, we let d ≥ 2 be an integer and ω = e
2πi
d be a primitive dth root of unity. When we

consider an element of Znd , we will view it as an n-tuple with entries in the range [0, d− 1]. When we say a
list of dn elements x1, . . . , xdn is indexed by Znd , we mean that each xi is labeled with an element of Znd such
that all labels are distinct and the labels of x1, . . . , xdn are in lexicographical order.

2.1 Basic Notation

We will frequently work with tuples, say I = (i1, . . . , in) ∈ Znd . Below we introduce some notation for dealing
with tuples that will be used later on.

Definition 2.1. For a tuple I, we let Ii denote its ith entry. For instance if I = (i1, . . . , in) then Ik = ik.

Definition 2.2. For an n-tuple I = (i1, i2, . . . , in), define the polynomial over n variables xI = xi11 . . . x
in
n .

Definition 2.3. For ω a dth root of unity and an n-tuple I = (i1, i2, . . . , in) ∈ Znd , we define ω[I] =
(ωi1 , . . . , ωin).

Definition 2.4. For a function f : Znd → C, define the n-variable polynomial Pf as

Pf =
∑
I∈Znd

f(I)xI

Definition 2.5. For an n-tuple I = (i1, i2, . . . , in), we define the set perm(I) to be a set of n-tuples consisting
of all distinct permutations of the entries of I. Similarly, for a set of n-tuples S, we define perm(S) to be
the set of all n-tuples that can be obtained by permuting the entries of some element of S.

Definition 2.6. We say a set S ⊆ Znd is symmetric if for any I ∈ S, perm(I) ⊆ S.

Definition 2.7. For a set of n-tuples S, let red(S) denote the set of equivalence classes under permutation
of entries in S. Let rep(S) be a set of n-tuples formed by taking one representative from each equivalence
class in red(S) (note rep(S) is not uniquely determined but this will not matter for our use).

Note that if rep(S) = {I1, . . . , Ik}, then the sets perm(I1), perm(I2), . . . , perm(Ik) are disjoint and their
union contains S. If the set S is symmetric then their union is exactly S.

2.2 Special Families of Matrices

We now define notation for working with a few special families of matrices.

Definition 2.8. An N ×N matrix M is called a Toeplitz matrix if Mij depends only on i− j. An N ×N
matrix M is called a Hankel matrix if Mij depends only on i+ j. Note that the rows of any Toeplitz matrix
can be permuted to obtain a Hankel matrix so any non-rigidity results we show for one family also hold for
the other.
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Definition 2.9. For an abelian group G and a function f : G → C, let MG(f) denote the |G| × |G|
matrix (over C) whose rows and columns are indexed by elements x, y ∈ G and whose entries are given by
Mxy = f(x+ y). When it is clear what G is from context, we will simply write M(f). We let VG denote the
family of matrices MG(f) as f ranges over all functions from G to C. We call VG the family of adjusted group
algebra matrices for the group G. When G is a cyclic group, we call the matrices in VG adjusted-circulant.

Compared to the usual group algebra (and circulant) matrices defined by Mxy = f(x − y), the matrix
MG(f) differs only in a permutation of the rows. In the proceeding sections, we will work with MG(f) for
technical reasons, but it is clear that the same non-rigidity results hold for the usual group algebra matrices.
Similarly, we will use adjusted-circulant and Hankel matrices as it is clear that the same non-rigidity results
hold for circulant and Toeplitz matrices. Also note that adjusted-circulant matrices are a special case of
Hankel matrices.

Definition 2.10. Let Hd,n denote the dn × dn Hadamard matrix, i.e. the matrix whose rows and columns

are indexed by n-tuples I, J ∈ Znd and whose entries are HIJ = ωI·J where ω = e
2πi
d . When n = 1, we define

Fd = Hd,1 and call Fd a Fourier matrix.

2.3 Matrix Rigidity

Here, we review basic notation for matrix rigidity.

Definition 2.11. For a matrix M and a real number r, we define RM (r) to be the smallest number s for
which there exists a matrix A with at most s nonzero entries and a matrix B of rank at most r such that
M = A+B. If RM (r) ≥ s, we say M is (r, s)-rigid.

Definition 2.12. For a matrix M and a real number r, we define rM (r) to be the smallest number s for
which there exists a matrix A with at most s nonzero entries in each row and column and a matrix B of
rank at most r such that M = A+B. If rM (r) ≥ s, we say M is (r, s)-regular rigid.

It is clear that if a matrix is (r, ns)-rigid, then it must be (r, s)-regular rigid. In proceeding sections, we
will show that various matrices are not ( N

log logN , N
ε)-regular rigid for any ε > 0 and this will imply that

Valiant’s method for showing circuit lower bounds in [Val77] cannot be applied.

2.4 Preliminary Results

Next, we mention several basic results that will be useful in the proofs later on.

Claim 2.13. Hd,n = Fd ⊗ · · · ⊗ Fd︸ ︷︷ ︸
n

where ⊗ denotes the Kronecker product.

Proof. This can easily be verified from the definition.

Claim 2.14. Hd,nH
∗
d,n = dnI where H∗d,n is the conjugate transpose of Hd,n and I is the identity matrix.

Proof. We verify that FdF
∗
d = dI, and then using the previous claim, we deduce that Hd,nH

∗
d,n = dnI.

Claim 2.15. Let f : Znd → C be a function. Let ω be a dth root of unity and set Pf =
∑
I∈Znd

f(I)xI . Let

D = Hd,nMZnd (f)Hd,n. Then D is a diagonal matrix with diagonal entries dnPf (ω[J]) as J ranges over Znd .

Proof. First, we analyze the product MZnd (f)Hd,n. This is a dn × dn matrix and its rows and columns can
naturally be indexed by tuples I, J ∈ Znd . The entry with row indexed by I and column indexed by J is∑

I′∈Znd

f(I + I ′)ωI
′·J = ω−I·J

∑
I′∈Znd

f(I + I ′)ω(I′+I)·J = ω−I·JPf (ω[J])

Therefore, the columns of MZnd (f)Hd,n are multiples of the columns of H∗d,n. In fact, the column of

MZnd (f)Hd,n indexed by J is Pf (ω[J]) times the corresponding column of H∗d,n. Since Hd,nH
∗
d,n = dnI,

D must be a diagonal matrix whose entries on the diagonal are dnPf (ω[J]) as J ranges over Znd .

5



Plugging n = 1 into the above gives:

Claim 2.16. Let M be a d× d adjusted-circulant matrix. Then FdMFd is a diagonal matrix.

Claim 2.15 gives us a characterization of the rank of matrices of the form MZnd (f).

Claim 2.17. Let f : Znd → C be a function. Let ω be a dth root of unity and say Pf =
∑
I∈Znd

f(I)xI has C

roots among the set {(ωi1 , . . . , ωin)|(i1, . . . , in) ∈ Znd}. Then rank(MZnd (f)) = dn − C.

Proof. Consider the product D = Hd,nMZnd (f)Hd,n. Note that Hd,n is clearly invertible by Claim 2.14.
Therefore, it suffices to compute the rank of D. By Claim 2.15, D must be a diagonal matrix whose entries
on the diagonal are dnPf (ω[J]) as J ranges over Znd . The rank of D is the number of nonzero diagonal entries
which is simply dn − C

As mentioned in the introduction, we can relate the rigidity of a matrix to the rigidity of matrices that
it diagonalizes.

Lemma 2.18. If B = A∗DA where D is a diagonal matrix and rA(r) ≤ s then rB(2r) ≤ s2. The same
inequality holds also for B′ = ADA.

Proof. Let E be the matrix with at most s nonzero entries in each row and column such that A − E has
rank at most r. We have

B − E∗DE = A∗D(A− E) + (A∗ − E∗)DE

Since rank(A−E) ≤ r, rank(B −E∗DE) ≤ 2r. Also, E∗DE has at most s2 nonzero entries in each row and
column so rB(2r) ≤ s2. The second part can be proved in the exact same way with A∗ replaced by A.

In light of Lemma 2.18, Claim 2.16, and Claim 2.15, proving non-rigidity for d × d circulant matrices
reduces to proving non-rigidty for Fd and proving non-rigidity for group algebra matrices for Znd reduces to
proving non-rigidity for Hd,n. Below, we show that these statements are actually equivalent.

Claim 2.19. It is possible to rescale the rows and columns of Hd,n to get a matrix of the form MZnd (f) for
some symmetric function f : Znd → C. In particular, it is possible to rescale the rows and columns of Fd to
get an adjusted-circulant matrix.

Proof. Let ζ be such that ζ2 = ω. Multiply each row of Hd,n by ζ(I·I) and each column by ζ(J·J) to get a
matrix H ′. We have

H ′IJ = ζ(I+J)·(I+J)

For a tuple x = (x1, . . . , xd) ∈ Znd , we define f(x) = ζx
2
1+···+x

2
d . To complete the proof, it suffices to show

that f : Znd → C is well defined. To do this, we will show that ζx
2

depends only on the residue of x mod d.

If d is odd, we can choose ζ to be a dth root of unity and the claim is clear. If d is even ζ(x+d)
2

= ζx
2

ζ2dx+d
2

but since 2dx+ d2 is a multiple of 2d, ζ2dx+d
2

= 1 and thus ζ(x+d)
2

= ζx
2

.

3 Non-rigidity of Generalized Hadamard Matrices

In this section, we show that the Hadamard matrix Hd,n becomes highly non-rigid for large values of n. The
precise result is stated below.

Theorem 3.1. Let N = dn for positive integers d, n. Let 0 < ε < 0.1 and assume n ≥ d2(log d)2

ε4 . Then

rHd,n(N
1− ε4

d2 log d ) ≤ N ε.

First we prove a few lemmas about symmetric polynomials that we will use in the proof of Theorem 3.1.
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Lemma 3.2. Let Tm denote the set of tuples in Znd such that at least m entries are equal to 0. Say
rep(Tm) = {I1, . . . , Ik}. Consider the polynomials P1(x1, . . . , xn), . . . , Pk(x1, . . . , xn) defined by

Pi(x1, . . . , xn) =
∑

I∈perm(Ii)

xI

For any complex numbers y1, . . . , ym, and any polynomial Q(xm+1, . . . xn) that is symmetric and degree at
most d− 1 in each of its variables, there exist coefficients c1, . . . , ck such that

Q(xm+1, . . . , xn) =
∑

ciPi(y1, . . . ym, xm+1, . . . , xn)

Proof. It suffices to prove the statement for all Q of the form∑
I′′∈perm(I′)

xI
′′

where I ′ ∈ Zn−md . We will prove this by induction on the degree. Clearly one of the Ii is (0, 0 . . . 0), so one
of the polynomials Pi(x1, . . . , xn) is constant. This finishes the case when Q has degree 0. Now we do the
induction step. Note that we can extend I ′ to an element of Tm by setting the first m entries equal to 0.
Call this extension I and say that I ∈ perm(Ii). We have∑

I′′∈perm(I′)

xI
′′

= Pi(y1, . . . , ym, xm+1, . . . , xn)−R(y1, . . . , ym, xm+1, . . . xn)

R(y1, . . . , ym, xm+1, . . . xn), when viewed as a polynomial in xm+1, . . . , xn (since y1, . . . , ym are complex
numbers that we can plug in), is symmetric and of lower degree than the left hand side. Thus, using the
induction hypothesis, we can write R in the desired form. This completes the induction step.

The key ingredient in the proof of Theorem 3.1 is the following lemma which closely resembles the main
result in [DE17], but deals with matrices over C.

Lemma 3.3. Let f : Znd → C be a symmetric function on the n variables. Let N = dn. Let 0 < ε < 0.1 and

assume n ≥ d2(log d)2

ε4 . Then rM(f)(N
1− ε4

d2 log d ) ≤ N ε.

Let δ = ε2, m = dn
(
1−δ
d

)
e and let S denote the set of all tuples (i1, i2, . . . , in) ∈ Znd such that the

entries indexed 1, 2, . . .m are equal to 0, the entries indexed m+ 1, . . . , 2m are equal to 1 and in general for
0 ≤ i ≤ d− 1, the entries indexed im+ 1, . . . , (i+ 1)m are equal to i. Note |S| = dn−dm ≈ dδn = N ε2 (since
n− dm is approximately δn).

The main idea will be to change f in a small number of locations so that it has many zeros in the set
{ω[I]|I ∈ Znd} in order to make use of Claim 2.17. More precisely, first we will change f to f ′ by changing
its values in at most N ε places so that f ′ is still symmetric in all of the variables and

Pf ′
(
ω[I]
)

= 0 ∀I ∈ S

Note that although the size of S is small, the fact that f ′ is symmetric implies that f ′ also vanishes on
perm(S), which covers almost all of Znd . Once we have shown the above, we quantitatively bound the
number of entries changed between M(f) and M(f ′) and also the rank of M(f ′) to complete the proof of
Lemma 3.3. To do the first part, we need the following sub-lemma.

Lemma 3.4. Let T denote the set of all tuples (i1, i2, . . . , in) ∈ Znd such that at least n
(
1− δ

)
of the entries

are 0. By changing the values of f only on elements of T , we can obtain f ′ satisfying

Pf ′
(
ω[I]
)

= 0 ∀I ∈ S (1)
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Proof. We interpret (1) as a system of linear equations where the unknowns are the values of f ′ at various
points. Let rep(T ) = {J1, J2, . . . , Jk} for J1, J2, . . . Jk ∈ T . Since we must maintain that f ′ is symmetric,
there are essentially k variables each corresponding to an equivalence class of tuples under permutations.
Each equivalence class is of the form perm(Jj) and we denote the corresponding variable by mj . The system
of equations in (1) can be rewritten in the form

k∑
j=1

mj

∑
J∈perm(Jj)

ωI·J +
∑
J′ /∈T

f(J ′)ωI·J
′

= 0 ∀I ∈ S

If we let rep(S) = {I1, I2, . . . , Il}, the system has exactly l distinct equations corresponding to each element
of rep(S) due to our symmetry assumptions. Let M denote the l × k coefficient matrix represented by
Mij =

∑
J∈perm(Jj)

ωIi·J . To show that the system has a solution, it suffices to show that the column span
of M is full. This is equivalent to showing that for each i = 1, 2, . . . l there exist coefficients a1, a2, . . . , ak
such that

k∑
j=1

aj ·
∑

J∈perm(Jj)

ωIi·J 6= 0

k∑
j=1

aj ·
∑

J∈perm(Jj)

ωIi′ ·J = 0 ∀i′ 6= i

Fix an index i0. We can view each equation above as a polynomial in ω[Ii] given by

P (x1, . . . , xn) =

k∑
j=1

aj
∑

J∈perm(Jj)

xJ

and the problem becomes equivalent to constructing a polynomial that vanishes on ω[Ii] if and only if i 6= i0.
Note that only the entries xdm+1, . . . , xn matter as we have x1 = · · · = xm = 1, . . . , x(d−1)m+1 = · · · =

xdm = ωd−1 for all points we consider.

For Ii = (i1, i2, . . . in), let I ′i denote the sub-tuple (idm+1, . . . , in). The problem is equivalent to constructing
a polynomial

Q(xdm+1, . . . , xn) = P (1, 1, . . . , ωd−1, . . . , ωd−1, xdm+1, . . . xn)

such that Q vanishes on ω[I′i] if and only if i 6= i0.

Lemma 3.2 implies that by choosing the coefficients a1, . . . , ak, we can make Q be any polynomial that
is symmetric in xdm+1, . . . , xn and degree at most d− 1 in each of the variables.

Now consider the polynomial

Qi0(xdm+1, . . . , xn) =
∑

I′∈perm(I′i0
)

(
xddm+1 − 1

xdm+1 − ωI′0
)
. . .

(
xdn − 1

xn − ωI′(n−dm)

)
(note this is a polynomial with coefficients in C since each of the factors reduces to a degree d−1 polynomial)

It is clear that the above polynomial is symmetric in all of the variables and satisfies the degree constraint
so we know we can choose suitable coefficients a1, . . . , ak. We claim that the polynomial we construct does

not vanish on ω[I′i0
] but vanishes on ω[I′i] for i 6= i0. Indeed, the product(

xddm+1 − 1

xdm+1 − ωI′0
)
. . .

(
xdn − 1

xn − ωI′(n−dm)

)
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is 0 if and only if (xdm+1, . . . , xn) 6= I ′. However, there is exactly one I ′ ∈ perm(I ′i0) with I ′ = I ′i0 and none
with I ′ = I ′i for i 6= i0 since I1, I2, . . . , Il are representatives of distinct equivalence classes under permutation
of entries. This means that the polynomial Qi0 we constructed has the desired properties and completes the
proof that the system is solvable.

Proof of Lemma 3.3. Since M(f) = (M(f)−M(f ′))+M(f ′), to complete the proof of Lemma 3.3, it suffices
to bound the number of nonzero entries in M(f)−M(f ′) and the rank of M(f ′).

The number of nonzero entries in each row and column of (M(f) − M(f ′)) is at most |T |. This is ex-
actly the number of elements of Znd with at least n

(
1− δ

)
entries equal to 0. Using standard tail bounds on

the binomial distribution, the probability of a random n-tuple having at least that many 0s is at most

e−nD(1−δ|| 1d ) = e−n
(
(1−δ) log(d(1−δ))+δ log( dδ

d−1 )
)

= d−n(1−δ)e−n
(
(1−δ) log(1−δ)+δ log( dδ

d−1 )
)

where D(·||·) denotes KL-divergence. For δ < 0.01, the above is at most d−n(1−
√
δ) and thus we change at

most dεn entries in each row and column.
By Claim 2.17, the rank of M(f ′) is at most dn− |perm(S)|. Equivalently, this is the number of n-tuples

such that some element in {0, 1, . . . , d − 1} appears less than
(
1−δ
d

)
n times. We use Hoeffding’s inequality

and then union bound over the d possibilites to get the probability that a randomly chosen n-tuple in Znd is
outside S is at most

de−2
δ2n
d2 = e−2

δ2n
d2

+log d

When n > d2(log d)2

δ2 , the above is at most d
− ε4n
d2 log d and thus the rank of M(f ′) is at most d

(
1− ε4

d2 log d

)
n
,

completing the proof of Lemma 3.3.

Proof of Theorem 3.1. Applying Claim 2.19 and Lemma 3.3 we immediately get the desired.

Using Theorem 3.1, Lemma 2.18, and Claim 2.15, we get the following result which extends Lemma 3.3
to matrices where f is not symmetric.

Corollary 3.5. For any function f : Znd → C and any 0 < ε < 0.1 such that n ≥ d2(log d)2

ε4 , we have

rM(f)(2N
1− ε4

d2 log d ) ≤ N2ε

where N = dn.

4 Non-rigidity for Fourier Matrices of Well-Factorable Size

Our goal in this section is to show that we can find infinitely many values of N for which the Fourier matrix
FN is highly non-rigid. The integers N we analyze will be products of many distinct primes qi with the
property that qi − 1 is very smooth (has all prime factors small). For these values of N , we can decompose
the matrix FN into several submatrices that are closely related to Hadamard matrices. We then apply the
results from the previous section to show that each submatrix is non-rigid and aggregate over the submatrices
to conclude that FN is non-rigid.

We first show precisely how to construct N . We rely on the following number theoretic result, found
in [BH98], that allows us to find a large set of primes qi for which qi − 1 is very smooth.

Definition 4.1. For a positive integer m, let P+(m) denote the largest prime factor of m. For a fixed
positive integer a, let

πa(x, y) = |{p|a < p ≤ x, P+(p− a) ≤ y}|

where p ranges over all primes. In other words, πa(x, y) is the number of primes at most x such that p− a
is y-smooth.
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Theorem 4.2 ( [BH98]). There exist constants x0, C such that for β = 0.2961, x > x0 and y ≥ xβ we have
5

π1(x, y) >
x

(log x)C

Throughout the remainder of this paper, set C0 = C + 1 where C is the constant in Theorem 4.2. The
properties that we want N to have are stated in the following two definitions.

Definition 4.3. We say a prime q is (α, x)-good if the following properties hold.

• x
(log x)C0

≤ q ≤ x

• All prime powers dividing q − 1 are at most xα

Definition 4.4. We say an integer N is (l, α, x)-factorable if the following properties hold.

• N = q1 . . . ql where q1, . . . , ql are distinct primes

• q1, . . . , ql are all (α, x)-good

To show the existence of (l, α, x)-factorable integers, it suffices to show that there are many (α, x)-good
primes. This is captured in the following lemma.

Lemma 4.5. For a fixed constant C0, any parameter α > 0.2961, and sufficiently large x (possibly depending
on α), there are at least 10x

(log x)C0
distinct (α, x)-good primes.

Proof of Lemma 4.5. Let y = xβ where β = 0.2961. By Theorem 4.2, for sufficiently large x, we can find at
least d x

(log x)C
− x

(log x)C0
e primes p1, . . . , pl between x

(log x)C0
and x such that all prime factors of pi − 1 are

at most xβ . Eliminate all of the pi such that one of the prime powers in the prime factorization of pi − 1 is
more than xα. Note that there are at most xβ distinct primes that divide pi − 1 for some i. Thus, there are
at most xβ log x different prime powers bigger than xα that divide some pi − 1. Each of these prime powers
can divide at most x1−α of the elements {p1, . . . , pl}, so in total, we eliminate at most x1−α+β log x of the
pi. Thus, for sufficiently large x, the number of (α, x)-good primes is at least

x

(log x)C
− x

(log x)C0
− x1−α+β log x ≥ x

2(log x)C

For simplicity, we will set α = 0.3 by default.

Definition 4.6. A prime is said to be x-good if it is (0.3, x)-good. An integer N is said to be (l, x)-factorable
if it is (l, 0.3, x)-factorable.

Lemma 4.5 implies that for all sufficiently large x and l ≤ x
(log x)C0

(where C0 is an absolute constant),

we can find (l, x)-factorable integers. We now show that if we choose x sufficiently large and N to be
(l, x)-factorable for some x

(log x)C0+100 ≤ l ≤ x
(log x)C0+10 , then FN is highly non-rigid.

Theorem 4.7. Let 0 < ε < 0.1 be some constant. For x sufficiently large and N a (l, x)-factorable number
with x

(log x)C0+100 ≤ l ≤ x
(log x)C0+10 , we must have

rFN

(
N

2ε6(logN)0.36

)
≤ N7ε

In order to prove Theorem 4.7, we will first prove a series of preliminary results that characterize the
structure of Fourier and Hadamard matrices.

5 [BH98] proves the same inequality with πa(x, y) for any integer a where x0 may depend on a and C is an absolute constant.

10



4.1 Structure of Hadamard and Fourier Matrices

Lemma 4.8. Let n = x1x2 . . . xj for pairwise relatively prime positive integers x1, . . . , xj. There exists a
permutation of the rows and columns of Fn, say F ′ such that

F ′ = Fx1
⊗ · · · ⊗ Fxj

where ⊗ denotes the Kronecker product.

Proof. Let γ be a primitive nth root of unity. For i = 1, 2, . . . j, let γi = γ
ci
n
xi where ci is chosen such that

ci
n
xi
≡ 1 mod xi. Note this is possible since x1, . . . , xj are pairwise relatively prime. γi is a primitive xi

th

root of unity.

Now by the Chinese remainder theorem, there is a ring isomorphism between Zn and Zx1 × · · · × Zxj .
We can thus view Fn as a matrix whose rows and columns are indexed by elements of Zx1

× · · · × Zxj and
such that the entry Fn|AB corresponding to tuples A = (a1, . . . , aj) and B = (b1, . . . , bj) is γc where c is the
unique element of Zn with c ≡ aibi mod xi for all i.

For each matrix Fxi its rows and columns are labeled with elements of Zxi and its entries are Fxi|ab = γa·bi .
Thus in the Kronecker product, the rows and columns are labeled with elements of Zx1 ×· · ·×Zxj such that
the entry corresponding to tuples (a1, . . . , aj) and (b1, . . . , bj) is

γa1b11 . . . γ
ajbj
j = γ

c1a1b1
n
x1

+···+cjajbj nxj

For each xi, we compute the residue of the exponent in the above expression mod xi. The term ciaibi
n
xi

is
congruent to aibi by definition and all other terms are 0 so the sum is congruent to aibi mod xi. Thus, for
some permutation of the rows and columns of Fn, it is equal to the Kronecker product Fx1 ⊗ · · · ⊗ Fxj , as
desired.

Lemma 4.9. Let M = A⊗B where A is an m×m matrix and B is an n×n matrix. For any two integers
r1, r2 we have

rM (r1n+ r2m) ≤ rA(r1)rB(r2)

Proof. The proof of this lemma is similar to the proof of Lemma 2.18. There are matrices E,F with atmost
rA(r1) and rB(r2) nonzero entries respectively such that rank(A + E) ≤ r1 and rank(B + F ) ≤ r2. We will
now show that rank(M − E ⊗ F ) ≤ r1n+ r2m. Indeed

M − E ⊗ F = (A+ E)⊗B − E ⊗ (B + F )

and the right hand side of the above has rank at most r1n+ r2m since rank multiplies under the Kronecker
product. Clearly E⊗F has at most rA(r1)rB(r2) nonzero entries in each row and column so we are done.

Lemma 4.10. Consider the matrix

A = (Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
a1

)⊗ · · · ⊗ (Ftn ⊗ · · · ⊗ Ftn︸ ︷︷ ︸
an

)

Let 0 < ε < 0.1 be some chosen parameter and D be some sufficiently large constant (possibly depending on

ε). Assume t1 ≤ t2 · · · ≤ tn and ai ≥ max
(
t2i (log ti)

2

ε10 , D
)

for all i. Let P = ta11 . . . tann and L = d2 log logP e.
Then

rA

(
P

1− ε6

10Lt2n log tn

)
≤ P 5ε
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Proof. First, we consider the case when there exists an integer B such that B ≤ ta11 , . . . , t
an
n ≤ B2. Note

that (Fti ⊗ · · · ⊗ Fti︸ ︷︷ ︸
ai

) = Hti,ai . By Theorem 3.1, for each i there exists a matrix Ei such that Ei has at most

tεaii nonzero entries in each row and column and rank(Hti,ai − Ei) ≤ t
ai

(
1− ε4

t2
i

log ti

)
i . Let Ai = Hti,ai − Ei.

(Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
a1

)⊗ · · · ⊗ (Ftn ⊗ · · · ⊗ Ftn︸ ︷︷ ︸
an

) = (E1 +A1)⊗ · · · ⊗ (En +An) =
∑
S⊂[n]

(⊗
i∈S

Ai

)
⊗

(⊗
i′ /∈S

Ei′

)

=
∑

S⊂[n],|S|≥εn

(⊗
i∈S

Ai

)
⊗

(⊗
i′ /∈S

Ei′

)
+

∑
S⊂[n],|S|<εn

(⊗
i∈S

Ai

)
⊗

(⊗
i′ /∈S

Ei′

)
Let the first term above be N1 and the second term be N2. We bound the rank of N1 and the number of
nonzero entries in each row and column of N2. Note that by grouping terms in the sum for N1, we can find
matrices ES for all S ⊂ [n] with |S| = εn and write

N1 =
∑

S⊂[n],|S|=εn

(⊗
i∈S

Ai

)
⊗ ES

Now we have

rank(N1) ≤
∑

S⊂[n],|S|=εn

P
∏
i∈S

1

t

aiε
4

t2
i

log ti

i

≤
(
n

εn

)
P(

B
ε4

t2n log tn

)εn ≤ (n)εn(
εn
3

)εn P(
B

ε4

t2n log tn

)εn ≤ (3

ε

)εn
P

B
ε5n

t2n log tn

Note that B
ε4

t2n log tn ≥ t
anε

4

2t2n log tn
n ≥ max

(
t0.5 log tn
n , t

Dε4

2t2n log tn
n

)
. Either the first term is larger than ε

−100
ε or tn

is bounded above by some function of ε in which case if we choose D sufficiently large, the second term will

be larger than ε
−100
ε . In any case we get

rank(N1) ≤ P(
ε
3B

ε4

t2n log tn

)εn ≤ P

B
ε5n

2t2n log tn

≤ P 1− ε5

4t2n log tn

Now we bound the number of nonzero entries in each row and column of N2. This number is at most

2nB2εnP ε ≤ 2nP 3ε ≤ P 4ε

Thus, when we have B ≤ ta11 , . . . , tann ≤ B2,

rA

(
P

1− ε5

4t2n log tn

)
≤ P 4ε

Now we move on to the case where we no longer have control over the range of values ta11 , . . . , t
an
n . Fix

k = 2D and consider the intervals I1 = [k, k2), I2 = [k2, k4), . . . , Ij = [k2
j−1

, k2
j

), . . . and so on. Note

A =
⊗
i∈[L]

 ⊗
t
aj
j ∈Ii

(Ftj ⊗ · · · ⊗ Ftj︸ ︷︷ ︸
aj

)


For an integer i, let Pi =

∏
t
aj
j ∈Ii

t
aj
j . Let T be the set of indices i ∈ [L] such that Pi ≥ P

ε
2L . Then

A =

⊗
i∈T

 ⊗
t
aj
j ∈Ii

(Ftj ⊗ · · · ⊗ Ftj︸ ︷︷ ︸
aj

)


⊗

⊗
i/∈T

 ⊗
t
aj
j ∈Ii

(Ftj ⊗ · · · ⊗ Ftj︸ ︷︷ ︸
aj

)


 = B ⊗ C
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(where naturally B denotes the first term and C denotes the second)

Note that the dimension of the matrix C is at most
(
P

ε
2L

)L
= P

ε
2 . We now apply Lemma 4.9 repeatedly

to bound the rigidity of B. Let Bi =

⊗t
aj
j ∈Ii

(Ftj ⊗ · · · ⊗ Ftj︸ ︷︷ ︸
aj

)

.

rB

(∏
i∈T

Pi

)∑
i∈T

1

P
ε5

4t2n log tn

i


 ≤ (∏

i∈T
Pi

)4ε

From the above statements about B,C we deduce that

rA

(
P

1− ε6

10Lt2n log tn

)
≤ rA

(
LP

1− ε6

8Lt2n log tn

)
≤ P 5ε

4.2 Proof of Theorem 4.7

To complete the proof of Theorem 4.7, we will break FN into submatrices, show that each submatrix is
non-rigid using techniques from the previous section, and then combine our estimates to conclude that FN is
non-rigid. Recall that N is (l, x)-factorable with x

(log x)C0+100 ≤ l ≤ x
(log x)C0+10 , meaning N = q1q2 . . . ql for

some distinct primes q1, . . . , ql where qi − 1 has no large prime power divisors for all i. Let γ be a primitive
N th root of unity.

Definition 4.11. For a subset S ⊂ [l] define multN (S) =
∏
s∈S qs and factN (S) =

∏
s∈S(qs − 1).

Definition 4.12. For all S ⊂ [l] we will define TS as the subset of [N ]× [N ] indexed by (i, j) such that

ij 6≡ 0 mod qs ∀s ∈ S
ij ≡ 0 mod qs ∀s /∈ S

Note that as S ranges over all subsets of [l], the sets TS form a partition of [N ]× [N ].

For each S, we will divide the set TS into submatrices such that when filled with the corresponding entries
of FN , we can apply Lemma 4.10 to show that each submatrix is nonrigid. The key intuition is that for a
given prime qi, once we restrict to nonzero residues, the multiplicative subgroup actually has the additive
structure of Zqi−1. Since qi − 1 is smooth, Zqi−1 is a direct sum of cyclic groups of small order.

Definition 4.13. For all S ⊂ [l], we define the factN (S)× factN (S) matrix M(S) as follows. Let RS be the
set of residues modulo multN (S) that are relatively prime to multN (S). Note that |RS | = factN (S). Each
row and each column of M(S) is indexed by an element of RS and the entry in row i and column j is θi·j

where θ is a primitive multN (S) root of unity. The exact order of the rows and columns will not matter for
our uses. Note that replacing θ with θk for k relatively prime to multN (S) simply permutes the rows so it
does not matter which root of unity we choose.

Lemma 4.14. Consider the set of entries in FN indexed by elements of TS. We can partition this set
into

∏
s/∈S(2qs − 1) submatrices each of size factN (S) × factN (S) that are equivalent to M(S) up to some

permutation of rows and columns.

Proof. In TS , for each prime qs with s /∈ S, there are 2qs − 1 choices for what i and j are mod qs. Now
fix the choice of i, j mod qs for all s /∈ S. Say we restrict to indices with i ≡ c1 mod

∏
s/∈S qs and j ≡ c2

mod
∏
s/∈S qs.
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We are left with a factN (S) × factN (S) matrix, call it A, where i and j run over all residues modulo
multN (S) that are relatively prime to multN (S). Naturally, label all rows and columns of this matrix by
what the corresponding indices i and j are modulo multN (S). For a row labeled a and a column labeled
b, we compute the entry Aab. The value is γa

′·b′ where a′ is the unique element of ZN such that a′ ≡ a
mod multN (S) and a′ ≡ c1 mod

∏
s/∈S qs and b′ is defined similarly. We have

a′ · b′ ≡ ab mod multN (S)

a′ · b′ ≡ c1c2 ≡ 0 mod
∏
s/∈S

qs

Therefore
a′b′ ≡ k

∏
s/∈S

qsab mod multN (S)

where k is defined as an integer such that k
∏
s/∈S qs ≡ 1 mod multN (S). Note that k clearly exists since∏

s/∈S qs and multN (S) are relatively prime. Since γk
∏
s/∈S qs is a primitive multN (S) root of unity, the matrix

A is equivalent to M(S) up to some permutation, as desired.

Lemma 4.15. For a subset S ⊂ [l] with |S| = k and M(S) (as defined in Definition 4.13) a factN (S) ×
factN (S) matrix as described above. we have

rM(S)

(
factN (S)

2ε6x0.37

)
≤ (factN (S))

6ε

as long as k ≥ x
(log x)C0+200

Proof. WLOG S = {1, 2, . . . , k}. Consider the factorizations of q1 − 1, . . . , qk − 1 into prime powers. For
each prime power peii ≤ x0.3, let c(peii ) be the number of indices j for which peii appears (exactly) in the
factorization of qj − 1. Consider all prime powers peii for which c(peii ) < x0.62.

∏
t,c(t)≤x0.62

tc(t) ≤
(

(x0.3)x
0.62
)x0.3

≤ xx
0.92

Now consider all prime powers say t1, . . . , tn for which c(ti) ≥ x0.62. Let P = t
c(t1)
1 . . . t

c(tn)
n . From the above

we know that as long as x is sufficiently large

P ≥ factN (S)

xx0.92 ≥ (factN (S))
(1−ε)

(
x

(log x)C0+1

)εk
xx0.92 ≥ (factN (S))

(1−ε)
(2)

We will use the prime powers ti and Theorem 3.1 to show that M(S) is not rigid. Note that we can
associate each row and column of M(S) to a k-tuple (a1, . . . , ak) where ai ∈ Zqi−1 as follows. First, it is
clear that each row and column of M(S) can be associated to a k-tuple (z1, . . . , zk) ∈ Z∗q1 × · · · × Z∗qk . Now
Z∗qi can be viewed as a cyclic group on qi− 1 elements. This allows us to create a bijection between the rows
and columns of M(S) and elements of Zq1−1 × · · · × Zqk−1.

Also note that for a row indexed by A = (a1, . . . , ak) and a column indexed by B = (b1, . . . , bk), the
entry M(S)AB is dependent only on A+B. We will now decompose M(S) into several P × P submatrices.
In particular, we can write qi − 1 = diTi where Ti is a product of some subset of {t1, . . . , tn} and di is
relatively prime to Ti. We have T1T2 . . . Tk = P . For each A′, B′ ∈ Zd1 ×· · ·×Zdk , we can construct a P ×P
submatrix M(S,A′, B′) consisting of all entries M(S)AB of M(S) such that A ≡ A′, B ≡ B′ (where the
equivalence is over Zd1 ×· · ·×Zdk). This gives us d2 different submatrices where d = d1 . . . dk. Naturally, we
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can associate each row and column of a submatrix M(S,A′, B′) with an element of ZT1 ×· · ·×ZTk such that
for a row labeled I and a column labeled J , the entry M(S,A′, B′)IJ only depends on I + J . In particular,
this means that X (M(S,A′, B′))X is diagonal where X = FT1

⊗ · · · ⊗ FTk . Now, using Lemma 4.8, we can
rewrite

X = (Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
c(t1)

)⊗ · · · ⊗ (Ftn ⊗ · · · ⊗ Ftn︸ ︷︷ ︸
c(tn)

)

Since for x sufficiently large, c(ti) ≥ x0.62 ≥ t2i (log ti)
2

ε10 , we can use Lemma 4.10 and get that

rX

(
P

1− ε6

20(log logP )x0.62

)
≤ P 5ε

Let E be the matrix of changes to reduce the rank of X according to the above. We have that E has at
most P ε nonzero entries in each row and column, and

rank(X − E) ≤ P 1− ε6

20(log logP )x0.62

We can write M(S) in block form as
M(S,A1, B1) M(S,A1, B2) . . . M(S,A1, Bd)
M(S,A2, B1) M(S,A2, B2) . . . M(S,A1, Bd)

...
...

. . .
...

M(S,Ad, B1) M(S,Ad, B2) . . . M(S,Ad, Bd)


where A1, . . . , Ad and B1, . . . , Bd range over the elements of Zd1 × · · · ×Zdk . We can rearrange the above asM(S,A1, B1) . . . M(S,A1, Bd)

...
. . .

...
M(S,Ad, B1) . . . M(S,Ad, Bd)

 =

XD11X . . . XD1dX
...

. . .
...

XDd1X . . . XDddX


where the Dij are diagonal matrices. Now consider the matrix

E(S) =

ED11E . . . ED1dE
...

. . .
...

EDd1E . . . EDddE


We have

M(S)− E(S) =

XD11X − ED11E . . . XD1dX − ED1dE
...

. . .
...

XDd1X − EDd1E . . . XDddX − EDddE

 =

XD11(X − E) . . . XD1d(X − E)
...

. . .
...

XDd1(X − E) . . . XDdd(X − E)

+

(X − E)D11E . . . (X − E)D1dE
...

. . .
...

(X − E)Dd1E . . . (X − E)DddE


In the above expression, each of the two terms has rank at most

dP
1− ε6

20(log log P )x0.62 =
factN (S)

P
ε6

20(log log P )x0.62

≤ 1

2

(
factN (S)

2ε6x0.37

)
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Note that when computing the rank, we only multiply by d (and not d2) because the small blocks are all
multiplied by the same low rank matrix on either the left or right. The number of nonzero entries in each

row and column of E(S) is at most P 5εd = factN (S)
P 1−5ε . Since P ≥ (factN (S))

1−ε
, we conclude

rM(S)

(
factN (S)

2ε6x0.37

)
≤ (factN (S))

6ε

We are now ready to complete the analysis of the non-rigidity of the Fourier transform matrix FN .

Proof of Theorem 4.7. Set the threshold m = x0.365 and k0 = l−m. The sets TS , as S ranges over all subsets
of [l], form a partition of [N ]× [N ]. For each S ⊂ [l] with |S| ≥ k0, we will divide TS into factN (S)× factN (S)
submatrices using Lemma 4.14 and change entries to reduce the rank of every submatrix according to Lemma
4.15. We will not touch the entries in sets TS for |S| < k0. Call the resulting matrix M ′. We now estimate
the rank of M ′ and then the maximum number of entries changed in any row or column.

We remove all rows and columns corresponding to integers divisible by at least m
2 of the primes q1, . . . , ql.

The number of rows and columns removed is at most

N

 ∑
S⊂[l],|S|=m

2

∏
i∈S

1

qi

 ≤ N(
x

(log x)C0

)m
2

(
l
m
2

)
< N

(
l
x

(log x)C0

)m
2

≤ N

(log x)x0.365

The remaining entries must be subdivided into matrices of the form M(S) for various subsets S ⊂ [l],
|S| ≥ k0. Say q1 < q2 < · · · < ql. The number of such submatrices is at most

N2

((q1 − 1) . . . (qk0 − 1))
2 ≤ (qk0+1 . . . ql)

2

(
q1 . . . qk0

(q1 − 1) . . . (qk0 − 1)

)2

≤ 3(qk0+1 . . . ql)
2 ≤ 3x2m

Each one of the submatrices has rank at most

N

2ε6x0.37

so in total the rank is at most

N
3x2m

2ε6x0.37 ≤
N

2ε6x0.369

Combining the two parts we easily get

rank(M ′) ≤ N

2ε6x0.365

Now we bound the number of entries changed. The number of entries changed in each row or column is
at most

N

((q1 − 1) . . . (qk0 − 1))
N6ε ≤ (qk0+1 . . . ql)

(
q1 . . . qk0

(q1 − 1) . . . (qk0 − 1)

)
N6ε ≤ 3N6ε+1.1ml ≤ N7ε

As 2ε
6x0.365 ≥ 2ε

6(logN)0.36 for sufficiently large x, we conclude

rFN

(
N

2ε6(logN)0.36

)
≤ N7ε
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5 Non-rigidity of All Circulant Matrices

In the previous section, we showed that there exists an infinite set of Fourier matrices that are not Valiant-
rigid. In this section, we will bootstrap the results from Section 4 to show that in fact, all sufficiently large
Fourier matrices are not rigid.

The first ingredient will be a stronger form of Lemma 4.5. Recall that a prime q is defined to be x-good if
x

(log x)C0
≤ q ≤ x and all prime powers dividing q− 1 are at most x0.3 and that an integer N is defined to be

(l, x)-factorable if it can be written as the product of l distinct x-good primes.

Lemma 5.1. For all sufficiently large integers K, there exist l, x,N such that x
(log x)C0+100 ≤ l ≤ x

(log x)C0+10 ,

N is (l, x)-factorable, and K < N < K(logK)2.

Proof. Call an N well-factorable if it is (l, x)-factorable for some x and x
(log x)C0+100 ≤ l ≤ x

(log x)C0+10 . Let

N0 be the largest integer that is well-factorable with N0 ≤ K. Say N0 is (l, x)-factorable.

We have N0 = q1 . . . ql where q1, . . . , ql are distinct, x-good primes. If l < b x
(log x)C0+10 c then by Lemma

4.5, we can find another x-good prime ql+1. We can then replace N0 with ql+1N0. ql+1N0 > K by the
maximality of N0 and also ql+1N0 ≤ N0x ≤ N0(logN0)2 so ql+1N0 satisfies the desired properties.

We now consider the case where l = b x
(log x)C0+10 c. First, if q1, . . . , ql are not the l largest x-good primes then

we can replace one of them say q1 with q′1 > q1. The number N ′ = q′1q2 . . . ql is well-factorable and between
N0 and N0(log x)C0 . Using the maximality of N0, we deduce that N ′ must be in the desired range.

On the other hand if q1, . . . , ql are the l largest x-good primes, we know they are actually all between
3x

(log x)C0
and x. This is because by Lemma 4.5, there are at least 10x

(log x)C0
distinct x-good primes. Let

x′ = 2x. The above implies that q1, . . . , ql are x′-good and clearly x′

(log x′)C0+100 ≤ l ≤ x′

(log x′)C0+10 . Further-

more, x′

(log x′)C0+10 >
x

(log x)C0+10 +1 so l = b x
(log x)C0+10 c < b x′

(log x′)C0+10 c and we can now repeat the argument

from the first case.

We can now complete the proof that all circulant matrices are not rigid.

Theorem 5.2. Let 0 < ε < 0.1 be a given parameter. For all sufficiently large N , if M is an N × N
adjusted-circulant (or Hankel) matrix

rM

(
N

2ε6(logN)0.35

)
≤ N15ε

Proof. First we analyze circulant matrices of size N0 where N0 is (l, x)-factorable for some x
(log x)C0+100 ≤

l ≤ x
(log x)C0+10 . Theorem 4.7 and Lemma 2.18 imply that for M0 an N0 × N0 circulant matrix where N0

satisfies the previously mentioned properties,

rM0

(
2N0

2ε6(logN0)0.36

)
≤ N14ε

0

Now for a circulant matrix M of arbitrary size N × N , note that it is possible to embed an M in the
upper left corner of a circulant matrix of any size at least 2N . By Lemma 5.1, there exists an N0 that is
(l, x)-factorable for some x

(log x)C0+100 ≤ l ≤ x
(log x)C0+10 such that

N0

(logN0)2
≤ N ≤ N0

2
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We deduce

r
Fq
M

(
2N0

2ε6(logN0)0.36

)
≤ N14ε

0

Rewriting the bounds in terms of N we get

r
Fq
M

(
N

2ε6(logN)0.35

)
≤ N15ε

Remark. Note that our proof actually shows something slightly stronger, namely that the changes to reduce
the rank of a circulant matrix are actually fixed linear combinations of the entries. See Definition 8.1 and
Claim 8.2 for a more precise statement.

From the above and Claim 2.19, we immediately deduce that all Fourier matrices are not rigid.

Theorem 5.3. Let 0 < ε < 0.1 be a given parameter. For all sufficiently large N ,

rFN

(
N

2ε6(logN)0.35

)
≤ N15ε

6 Non-rigidity of Group Algebra Matrices for Abelian Groups

Using the results from the previous section, we can show that group algebra matrices for any abelian group
are not Valiant-rigid.

Theorem 6.1. Let 0 < ε < 0.1 be fixed. Let G be an abelian group and f : G → C be a function. Let
M = MG(f) be the adjusted group algebra matrix. If |G| is sufficiently large then

rM

(
2|G|

2ε8(log |G|)0.32

)
≤ |G|38ε

Proof. By the fundamental theorem of finite abelian groups, we can write G = Zn1
⊕ · · · ⊕ Zna . In light of

Lemma 2.18, it suffices to bound the rigidity of F = Fn1 ⊗ · · · ⊗ Fna .
WLOG, n1 ≤ n2 ≤ · · · ≤ na. We will choose k to be a fixed, sufficiently large positive integer. By

Theorem 5.3, we can ensure that for N > k

rFN

(
N

2ε6(logN)0.35

)
≤ N15ε

Consider the ranges I1 = [k, k2), I2 = [k2, k4), . . . Ij = [k2
j−1

, k2
j

) . . . and so on. Let Sj be a multiset defined
by Sj = Ij ∩ {n1, . . . , na}. Fix a j and say the elements of Sj are x1 ≤ · · · ≤ xb. By Theorem 5.3, for each
xi, there are matrices Exi and Axi such that Fxi = Axi +Exi , Exi has at most x15εi nonzero entries in each
row and column, and

rank(Axi) ≤
xi

2ε6(log xi)0.35

Now we can write

Mj = Fx1
⊗ · · · ⊗ Fxb = (Ax1

+ Ex1
)⊗ · · · ⊗ (Axb + Exb) =

∑
S⊂[b]

(⊗
i∈S

Axi

)
⊗

(⊗
i′ /∈S

Ex′i

)

=
∑

S⊂[b],|S|≥εb

(⊗
i∈S

Axi

)
⊗

(⊗
i′ /∈S

Ex′i

)
+

∑
S⊂[b],|S|<εb

(⊗
i∈S

Axi

)
⊗

(⊗
i′ /∈S

Ex′i

)
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Let the first term above be N1 and the second term be N2. We will bound the rank of N1 and the number
of nonzero entries in each row and column of N2. Note that by grouping the terms in the sum for N1 we
can write it in the form ∑

S⊂[b],|S|=dεbe

⊗
i∈S

Axi ⊗ ES

where for each S, ES is some matrix. This implies that

rank(N1) ≤
(

b

dεbe

)
x1 . . . xb(

2ε6(log x1)0.35
)dεbe ≤ bdεbe

( εb3 )dεbe
x1 . . . xb(

2ε6(log x1)0.35
)dεbe = x1 . . . xb

(
3

ε2ε6(log x1)0.35

)dεbe
As long as k is sufficiently large, we have

rank(N1) ≤ x1 . . . xb
(

3

ε2ε6(log x1)0.35

)dεbe
≤ x1 . . . xb

(
1

2ε6(log x1)0.34

)dεbe
≤ x1 . . . xb

2ε7(log x1...xb)0.33

where in the last step we used the fact that xi ≤ x21 for all i. The number of nonzero entries in each row or
column of N2 is at most

2bxb . . . xb−bεbc+1(xb−bεbc . . . x1)15ε = 2b(x1 . . . xb)
15ε(xb . . . xb−bεbc+1)1−15ε ≤ (x1 . . . xb)

18ε

Note in the last step above, we used the fact that xi ≤ x21.

For each integer c between 2 and k, let nc be the number of copies of c in the set {n1, . . . , na}. If nc ≥ k2(log k)2

ε4

then by Theorem 3.1, if we define Ac = Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

then

rAc

(
c
nc(1− ε4

k2 log k
)
)
≤ cncε

Let L = d2 log log |G|e and ensure that |G| is sufficiently large so that L > k. Let T be the set of integers c
between 2 and k such that cnc ≥ |G| ε2L (note that as long as |G| is sufficiently large, all elements of T must

satisfy nc ≥ k2(log k)2

ε4 ). Let R be the set of indices j for which
∏
x∈Sj x ≥ |G|

ε
2L . Since Sj is clearly empty

for j ≥ L, the matrix F can be written as

F =

 ⊗
2≤c<k

Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

⊗
 ⊗

1≤j≤L

Mj


Define

B =

⊗
c/∈T

Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

⊗
⊗
j /∈R

Mj


Note that the size of B is at most

(
|G| ε2L

)k+L ≤ |G|ε. Also F = B ⊗D where

D =

⊗
c∈T

Fc ⊗ · · · ⊗ Fc︸ ︷︷ ︸
nc

⊗
⊗
j∈R

Mj


For any rank r, rM (|B|r) ≤ |B|rD(r). Applying Lemma 4.9 iteratively, we get

rD

 |G|
|B|

∑
c∈T

1

c
nc

ε4

k2 log k

+
∑
j∈R

1

2
ε7(log

∏
x∈Sj

x)0.33

 ≤ ( |G|
|B|

)18ε
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Note that∑
c∈T

1

c
nc

ε4

k2 log k

+
∑
j∈R

1

2
ε7(log

∏
x∈Sj

x)0.33

 ≤ k

|G|
ε5

2Lk2 log k

+
L

2ε
8( log |G|

2L )
0.33 ≤

1

2ε8(log |G|)0.32

Overall, we conclude

rF

(
|G|

2ε8(log |G|)0.32

)
≤ |B|

(
|G|
|B|

)18ε

≤ |G|19ε

Since FMF is diagonal, Lemma 2.18 gives the desired.

7 Finite Field Case

In this section, we sketch how to modify the proofs in the previous sections to deal with matrices over a
finite field. The main difficulty that arises when attempting to extend the above methods to finite fields is
that the entries of the corresponding Fourier matrix might not exist in the field. Furthermore, for a finite
field Fq and integer k with gcd(k, q) > 1, there are no primitive kth roots of unity over any extension of Fq.
The first lemma in this section allows us to lift to a field extension and then argue that if a matrix is highly
non-rigid over some low-degree extension then it also cannot be rigid over the base field.

Lemma 7.1. Consider a finite field Fq and some algebraic extension Fq[γ] where γ is some primitive dth root
of unity with gcd(q, d) = 1. If the degree of the minimal polynomial of γ is g then for any matrix M ∈ Fn×nq

and any positive integer r,

r
Fq
M (gr) ≤ r

Fq [γ]
M (r)

Proof. Say the conjugates of γ are γ1, . . . , γg where γ1 = γ. Let S be the set of all primitive dth roots of
unity. First we show that there exists an integer k such that γk1 + · · ·+ γkg 6= 0. Let the prime factorization

of d be pe11 . . . pemm and set c = p1p2 . . . pm. Note that
∑
x∈S x

d
c is equal to d

c times the sum of all primitive

cth roots of unity. The sum of all φ(c) primitive cth roots of unity is either 1 or −1 (and is thus nonzero)

and thus
∑
x∈S x

d
c is nonzero. Also, the set S can be partitioned into exactly φ(d)

g families of the form

{γa1 , . . . , γag} where a is some positive integer. In particular, the sum of the d
c -powers of the elements in one

of these families must be nonzero so there must be some positive integer k such that γk1 + · · ·+ γkg 6= 0.

Let s = r
Fq [γ]
M (r). There must be a matrix E ∈ Fq[γ]n×n with at most s nonzero entries in each row

and column such that rankFq [γ](M − E) ≤ r. Now consider a family of g matrices E = E1, . . . , Eg obtained
by taking E and replacing γ with each of its conjugates. Define the matrix E′ as follows

E′ =

(
γk1

γk1 + · · ·+ γkg
E1 + · · ·+

γkg
γk1 + · · ·+ γkg

Eg

)

Note that γk1 + · · ·+ γkg ∈ Fq and also γk1E1 + · · ·+ γkgEg ∈ Fn×nq so E′ ∈ Fn×nq and E′ clearly has at most s
nonzero entries in each row and column. Next

M − E′ =
1

γk1 + · · ·+ γkg

(
γk1 (M − E1) + · · ·+ γkg (M − Eg)

)
so rankFq (M − E′) ≤ gr. Writing M = (M − E′) + E′, we immediately get the desired conclusion.

Following the proof of Lemma 4.10, we can prove the following analog over finite fields.
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Lemma 7.2. Let 0 < ε < 0.1 be some chosen parameter, Fq be a fixed finite field, and D be some sufficiently
large constant (possibly depending on ε and q). Consider positive integers t1 ≤ t2 · · · ≤ tn with gcd(ti, q) = 1

for all i. Also assume ai ≥ max
(
t2i (log ti)

2

ε10 , D
)

for all i. Let P = ta11 . . . tann and L = d2 log logP e.

Consider the field extension Fq[ω1, . . . , ωn] where ωi is a primitive ti
th root of unity. Let Fti be the ti × ti

Fourier matrix with entries over the field extension. Let

A = (Ft1 ⊗ · · · ⊗ Ft1︸ ︷︷ ︸
a1

)⊗ · · · ⊗ (Ftn ⊗ · · · ⊗ Ftn︸ ︷︷ ︸
an

)

Then we have

r
Fq [ω1,...,ωn]
A

(
P

1− ε6

10Lt2n log tn

)
≤ P 5ε

We also need a slight modification in the proof of Lemma 4.15. The parameters x,N will be set the same
way as in Section 4. Recall Definition 4.13:

Definition (Restatement of 4.13). For all S ⊂ [l], we define the factN (S) × factN (S) matrix M(S) as
follows. Let RS be the set of residues modulo multN (S) that are relatively prime to multN (S). Note that
|RS | = factN (S). Each row and each column of M(S) is indexed by an element of RS and the entry in
row i and column j is θi·j where θ is a primitive multN (S) root of unity. The exact order of the rows and
columns will not matter for our uses. Note that replacing θ with θk for k relatively prime to multN (S) simply
permutes the rows so it does not matter which root of unity we choose.

Remark. Note if γ is a primitive N th root of unity, the matrix M(S) is defined over the extension Fq[γ]
for all subsets S.

Lemma 7.3. Let γ be a primitive N th root of unity. Let ω1, . . . , ωa be roots of unity of order t1, . . . , ta
where {t1, . . . , ta} is the set of all prime powers at most x0.3. For a subset S ⊂ [l] with |S| = k and M(S)
(as defined in Definition 4.13) a factN (S)× factN (S) matrix. we have

r
Fq [γ,ω1,...,ωa]

M(S)

(
factN (S)

2ε6x0.37

)
≤ (factN (S))

6ε

as long as k ≥ x
(log x)C0+200

Proof Sketch. The only necessary change in the proof is due to the fact that for an integer k with gcd(k, q) >
1, primitive kth roots of unity do not exist over an extension of Fq. To deal with this, we will use a more precise
bound than (2) where prime powers not relatively prime to q are also excluded from the product on the LHS.

WLOG S = {1, 2, . . . , k}. Consider the factorizations of q1 − 1, . . . , qk − 1 into prime powers. For each
prime power peii ≤ x0.3, let c(peii ) be the number of indices j for which peii appears (exactly) in the factor-
ization of qj − 1. Also let p be the characteristic of the finite field Fq that we are working over (so q is a
power of p). Note that

(q1 − 1) . . . (qk − 1) =
∏
t

tc(t) = pc(p)p2c(p
2) . . . pfc(p

f )
∏

gcd(t,p)=1

tc(t)

where t ranges over all prime powers at most x0.3 and pf is the largest power of p that is at most x0.3. For
a power of p, say pi, let d(pi) be the number of indices j such that qj − 1 is divisible (not necessarily exactly
divisible) by pi. Let L = b(1000 + C0) logp log xc

pc(p)p2c(p
2) . . . pfc(p

f ) = pd(p)+d(p
2)+···+d(pf ) ≤ p

∑L
i=1 d(p

i)+
∑f
i=L+1 d(p

i) ≤ pLk+f
x

(log x)1000+C0

≤ (log x)(1000+C0)kx
x

(log x)1000+C0
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Next, consider all prime powers peii for which c(peii ) < x0.62.∏
t,c(t)≤x0.62

tc(t) ≤
(

(x0.3)x
0.62
)x0.3

≤ xx
0.92

Now WLOG say t1, . . . , tn are the set of prime powers for which gcd(ti, p) = 1 and c(ti) ≥ x0.62. Let

P = t
c(t1)
1 . . . t

c(tn)
n . From the above we know that as long as x is sufficiently large

P ≥ factN (S)

xx0.92(log x)(1000+C0)kx
x

(log x)1000+C0

≥ (factN (S))
(1−ε)

(
x

(log x)C0+1

)εk
xx0.92(log x)(1000+C0)kx

x

(log x)1000+C0

≥ (factN (S))
(1−ε)

The remainder of the proof can be completed in the same way as Lemma 4.15.

Using the above we can show the following analog of Theorem 4.7.

Theorem 7.4. Let Fq be a fixed finite field and 0 < ε < 0.1 be some constant. Let x be sufficiently large
and N = q1q2 . . . ql be a (l, x)-factorable number with gcd(N, q) = 1 and x

(log x)C0+100 ≤ l ≤ x
(log x)C0+10 . Let

t1, . . . , ta be the set of prime powers at most x0.3 that are relatively prime to q. Let ω1, . . . , ωa be primitive
t1, . . . , ta roots of unity and let γ be a primitive N th root of unity. Then

r
Fq [γ,ω1,...,ωn]
FN

(
N

2ε6(logN)0.36

)
≤ N7ε

Combining Theorem 7.4 with Lemma 7.1 we get our main theorem for circulant matrices over finite fields.

Theorem 7.5. Let 0 < ε < 0.1 be a given parameter and Fq be a fixed finite field. For all sufficiently large
N , if M is an N ×N adjusted-circulant (or Hankel) matrix

r
Fq
M

(
N

2ε6(logN)0.35

)
≤ N15ε

Proof. First we analyze circulant matrices of size N0 where N0 is (l, x)-factorable for some x
(log x)C0+100 ≤

l ≤ x
(log x)C0+10 . Theorem 4.7 and Lemma 2.18 imply that for M0 an N0 × N0 circulant matrix where N0

satisfies the previously mentioned properties,

r
Fq [γ,ω1,...,ωa]
M0

(
2N0

2ε6(logN0)0.36

)
≤ N14ε

0

Now we analyze the degree of the extension Fq[γ, ω1, . . . , ωa]. Note Fq[γ, ω1, . . . , ωa] ⊂ Fq[η] where η is a
primitive root of unity of degree C = N0 lcm(t1, t2, . . . ta). The degree of the extension Fq[η] is the order of q
modulo C. N0 factors into a product of distinct x-good primes and all prime powers dividing lcm(t1, t2, . . . ta)
are at most x0.3. Thus for any prime power r dividing C, the order of q modulo r divides

(
x0.3

)
!. Overall,

the order of q mod C is at most (
x0.3

)
! < x0.3x

0.3

≤ 2(logN0)
0.31

Thus the degree of the extension Fq[γ, ω1, . . . , ωa] is at most 2(logN0)
0.31

. By Lemma 7.1

r
Fq
M0

(
N0

2ε6(logN0)0.359

)
≤ N14ε

0

Now for a circulant matrix M of arbitrary size N × N , note that it is possible to embed an M in the
upper left corner of a circulant matrix of any size at least 2N . By Lemma 5.1, there exists an N0 that is
(l, x)-factorable for some x

(log x)C0+100 ≤ l ≤ x
(log x)C0+10 such that

N0

(logN0)2
≤ N ≤ N0

2
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We deduce

r
Fq
M

(
N0

2ε6(logN0)0.359

)
≤ N14ε

0

Rewriting the bounds in terms of N we get

r
Fq
M

(
N

2ε6(logN)0.35

)
≤ N15ε

8 Group Algebra Matrices over Finite Fields

We will now generalize Theorem 6.1 to matrices over a finite field Fq. Write the underlying abelian group G
as a direct product of cyclic groups Zn1

⊗ · · ·⊗Zna . While for matrices with entries in C, it sufficed to work
with the Kronecker product of the Fourier matrices Fn1

⊗ · · · ⊗ Fna , we require slightly different techniques
for rigidity over a fixed finite field as an extension containing all of the necessary roots of unity could have
too high degree. Instead of working through Fourier matrices, we will work directly with the group algebra
matrices themselves.

First note that Theorem 5.2 can be slightly strengthened so that to reduce the rank of any circulant
matrices, the locations to be changed are fixed and the changes are fixed linear combinations of the entries
of the circulant matrix. More precisely, we make the following definition.

Definition 8.1. Given a group G with |G| = n, we say G is (r, s)-reducible over Fq if the following properties
hold

• There exists a set of entries S ⊂ [n]× [n] such that S contains at most s nonzero entries in each row
and column

• There are matrices A,B ∈ Fn×nq such that

rank(A), rank(B) ≤ r

• There are matrices E1, . . . , En ∈ Fn×nq with all nonzero entries in S and arbitrary matrices Y1, . . . , Yn ∈
Fn×nq and Z1, . . . , Zn,∈ Fn×nq such that for any group algebra matrix of G, say M , with top row
consisting of entries x1, . . . , xn,

M = A(x1Y1 + · · ·+ xnYn) + (x1Z1 + · · ·+ xnZn)B + (x1E1 + · · ·+ xnEn)

If the group G is (r, s)-reducible over Fq we write

Non
Fq
G (r) ≤ s

We call the matrices A,B (r, s)-reduction matrices and call the matrices Y1, . . . , Yn, Z1, . . . , Zn, E1, . . . , En
(r, s)-reduction helpers. We write YM = x1Y1 + · · ·+ xnYn and similar for ZM and EM .

We now reformulate Theorem 5.2 below.

Claim 8.2. For fixed ε > 0 and all sufficiently large N ,

Non
Fq
ZN

(
N

2ε6(logN)0.35

)
≤ N15ε
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Proof. First consider when N0 is (l, x)-factorable for some x
(log x)C0+100 ≤ l ≤ x

(log x)C0+10 . Let M0 be a

N0×N0 circulant matrix (i.e. a group algebra matrix for ZN0
) over Fq and say the entries in its top row are

x1, . . . , xN0 . Let γ be a primitive N0
th root of unity and t1, . . . tn be the set of prime powers at most x0.3

that are relatively prime to q. Let ω1, . . . , ωn be primitive t1, . . . , tn roots of unity. By Theorem 7.4, there
exists a matrix E over Fq[γ, ω1, . . . , ωn] with at most N7ε

0 nonzero entries in each row and column such that

rank(FN0
− E) ≤ N0

2ε6(logN0)0.36

Now write
M0 = F ∗N0

DFN0
= (FN0

− E)∗DFN0
+ E∗D(FN0

− E) + E∗DE

where D is a diagonal matrix whose entries are linear combinations of x1, . . . , xN0
. Note that all of the above

matrices have entries contained in Fq[η] where η is a primitive root of unity of degree C = N0 lcm(t1, . . . , tn).

As argued before, the degree of the extension is at most 2(logN0)
0.31

. Let the conjugates of η be η1 =
η, η2, . . . , ηm. Let F 1

N0
, . . . , FmN0

be obtained by taking FN0
and replacing η with its conjugates. Define

D1, . . . , Dm, E1, . . . , Em similarly. As in the proof of Lemma 7.1, there exists an integer k such that ηk1 +
· · ·+ ηkm 6= 0. We now have

M0 =
1

ηk1 + · · ·+ ηkm

(
m∑
i=1

ηki (F iN0
− Ei)∗DiF iN0

+

m∑
i=1

ηki E
i∗Di(F iN0

− Ei) +

m∑
i=1

ηki E
i∗DiEi

)

Note that 1
ηk1+···+ηkm

∈ Fq and all three of the sums are matrices whose entries are linear combinations of

x1, . . . , xN0
with coefficients in Fq. The last term satisfies the desired sparsity constraint as it has at most

N14ε
0 nonzero entries in each row and column and the locations of these entries are independent of M0.

It remains to argue that the first two terms satisfy the desired rank constraint. Note that the span of
the columns of (F 1

N0
− E1), . . . , (FmN0

− Em) has dimension at most

mN0

2ε6(logN0)0.36
≤ N0

2ε6(logN0)0.359

over Fq[η]N0 . Therefore, the dimension of the intersection of this subspace with FN0
q , say V , has dimension

at most N0

2ε
6(logN0)0.359

. In particular we can write

m∑
i=1

ηki (F iN0
− Ei)∗DiF iN0

= x1C1 + · · ·+ xN0
CN0

for some fixed matrices C1, . . . , CN0 with entries over Fq. Also all columns of C1, . . . , CN0 must be in V so
each can be written as AYi where A is a fixed matrix with rank at most mN0

2ε
6(logN0)0.36

. Thus there exists fixed

matrices Y1, . . . , YN0 ∈ Fn×nq and a matrix A satisfying the desired rank constraint such that

m∑
i=1

ηki (F iN0
− Ei)∗DiF iN0

= A(x1Y1 + · · ·+ xN0YN0)

A similar argument shows that the second term can also be written in the desired form.

Now to extend to arbitrary N (not necessarily (l, x)-factorable), simply note that any circulant matrix
of size N can be embedded into a circulant matrix of size at least 2N where all of the entries in the larger
matrix are linear combinations of the entries of the original matrix. We can then apply Lemma 5.1 and
complete the proof in the same way as Theorem 5.2.
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Now we introduce the main technical result of this section that allows us to deal with direct products of
groups.

Claim 8.3. Say we have a set of groups G1, . . . , Ga such that |Gi| = ni. Say that for each 1 ≤ i ≤ a, Gi
is (ri, si)-reducible over Fq. Let G = G1 ⊗ · · · ⊗Ga and |G| = n = n1n2 . . . na. Then for any integer l and
group algebra matrix M of G over Fq, we have

r
Fq
M (r) ≤ s

where

r =
∑

S⊂[a],|S|=l

2l
∏
i∈S

√
rini

∏
i′ /∈S

ni′

s =
∑

S⊂[a],|S|<l

2|S|
∏
i∈S

ni
∏
i′ /∈S

si′

Proof. For each 1 ≤ i ≤ a, let Ai, Bi be the (ri, si)-reduction matrices for the group Gi. We will write M as
a sum of simpler “component” matrices. First, we can write M as follows

M =

 M1 . . . M n
n1

...
. . .

...
M n

n1
. . .


such that each Mi is a group algebra matrix of G1. Now we can write

M =


A1YM1

. . . A1YM n
n1

...
...

. . .
...

A1YM n
n1

. . .

+


ZM1

B1 . . . ZM n
n1

B1

...
...

. . .
...

ZM n
n1

B1 . . .

+


EM1

. . . EM n
n1

...
...

. . .
...

EM n
n1

. . .


Call the three matrices above the first, second and third components respectively. Now in each of the ma-
trices above, we can form blocks that correspond to group algebra matrices of G2. We then decompose each
into three parts and iterate the process. We end up with 3a distinct matrices each of which corresponds to
choosing one of the three components for each of G1, . . . , Ga. For each of the 3a distinct matrices, we label
it MI where I = (i1, . . . ia) ∈ {1, 2, 3}a is a tuple where ij is 1 if the first component of Gj is chosen, ij is 2
if the second component of Gj is chosen, and ij is 3 if the third component of Gj is chosen.

Let S1(I), S2(I), S3(I) ⊂ [a] denote the subsets of locations where the entry of I is 1, 2 or 3 respectively.
Write

M =
∑

I∈{1,2,3}a

|S3(I)|≤a−l

MI +
∑

I∈{1,2,3}a

|S3(I)|>a−l

MI

We claim the first term is low-rank while the second term is sparse. For each 1 ≤ i ≤ a, there exists a set
of linearly independent vectors vi1, . . . , v

i
ni−ri such that vijA

i = 0 and a set of linearly independent vectors

ui1, . . . , u
i
ni−ri such that Biuij = 0 for all 1 ≤ j ≤ ni− ri. We can complete the set {vi1, . . . , vini−ri} to a basis

{vi1, . . . , vini} and similar for {ui1, . . . , uini}. Now say we are given a matrix MI with I ∈ {1, 2, 3}a. We claim

rank(MI) ≤
∏

i∈S1(I)

ri
∏

i∈[a]\S1(I)

ni

To see this, consider the basis of Fnq consisting of the vectors v1j1 ⊗ v2j2 ⊗ · · · ⊗ vaja where (j1, . . . , ja) ∈
[n1]× · · · × [na]. If for some index i ∈ S1(I), ji ≤ ni − ri, then(

v1j1 ⊗ v
2
j2 ⊗ · · · ⊗ v

a
ja

)
MI = 0
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Thus the number of vectors v in this basis such that vMI 6= 0 is at most
∏
i∈S1(I) ri

∏
i∈[a]\S1(I) ni. Similarly,

we get

rank(MI) ≤
∏

i∈S2(I)

ri
∏

i∈[a]\S2(I)

ni

Also note that if for two distinct tuples I, I ′, S1(I) ⊂ S1(I ′), we get using the same argument above that

rank(MI +MI′) ≤
∏

i∈S1(I)

ri
∏

i∈[a]\S1(I)

ni

In the sum ∑
I∈{1,2,3}a

|S3(I)|≤a−l

MI

we can essentially merge all of the terms and consider only the tuples I with |S3(I)| = a− l. In particular,

rank

 ∑
I∈{1,2,3}a

|S3(I)|≤a−l

MI

 ≤ ∑
I∈{1,2,3}a

|S3(I)|=a−l

min

 ∏
i∈S2(I)

ri
∏

i∈[a]\S2(I)

ni,
∏

i∈S1(I)

ri
∏

i∈[a]\S1(I)

ni


≤

∑
I∈{1,2,3}a

|S3(I)|=a−l

∏
i∈[a]\S3(I)

√
rini

∏
i∈S3(I)

ni =
∑

S⊂[a],|S|=l

2l
∏
i∈S

√
rini

∏
i′ /∈S

ni′

Now it remains to bound the sparsity of ∑
I∈{1,2,3}a

|S3(I)|>a−l

MI

Note that the number of nonzero entries in each row and column of MI is at most
∏
i∈S3(I) si

∏
i∈[a]\S3(I) ni

and for each fixed subset S3(I), there are exactly 2|S
3(I)| possible tuples I. Thus the number of nonzero

entries in each row and column of the sum is at most∑
I∈{1,2,3}a

|S3(I)|>a−l

∏
i∈S3(I)

si
∏

i∈[a]\S3(I)

ni =
∑

S⊂[a],|S|<l

2|S|
∏

i∈[a]\S

si
∏
i∈S

ni

Overall we have shown how to write M as the sum of a matrix with the desired rank and a matrix with the
desired sparsity, completing the proof.

We are now ready to prove the main theorem about rigidity of group algebra matrices.

Theorem 8.4. Let Fq be a fixed finite field and ε < 0.1 be a fixed constant. Let G be an abelian group. As
long as |G| is sufficiently large, for any group algebra matrix M of G over Fq, we have

r
Fq
M

(
|G|

2ε20(log |G|)0.3

)
≤ |G|100ε

Proof. We can essentially follow the same method as the proof of Theorem 6.1 except using Claim 8.3 to
deal with direct products of cyclic groups that are roughly the same size.
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9 Final Remarks

Theorem 6.1 naturally raises the question of what happens when G is a non-abelian group. When G is non-
abelian, it is no longer possible to diagonalize the matrix MG(f) but there is a change of basis matrix A such
that AMG(f)A∗ is block-diagonal where the diagonal blocks correspond to the irreducible representations of
G. When all of the irreducible representations of G are small, it may be possible to use similar techniques
to the ones used here. On the other hand, this suggests that perhaps MG(f) is a candidate for rigidity when
all irreducible representations of G are large (for instance quasi-random groups [Gow08]).
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