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Abstract

The probabilistic degree of a Boolean function f : {0, 1}n → {0, 1} is defined to be the
smallest d such that there is a random polynomial P of degree at most d that agrees with f
at each point with high probability. Introduced by Razborov (1987), upper and lower bounds
on probabilistic degrees of Boolean functions — specifically symmetric Boolean functions —
have been used to prove explicit lower bounds, design pseudorandom generators, and devise
algorithms for combinatorial problems.

In this paper, we characterize the probabilistic degrees of all symmetric Boolean functions
up to polylogarithmic factors over all fields of fixed characteristic (positive or zero).

1 Introduction

Studying the combinatorial and computational properties of Boolean functions by representing
them using multivariate polynomials (over some field F) is an oft-used technique in Theoretical
Computer Science. Such investigations into the complexity of Boolean functions have led to many
important advances in the area (see, e.g. [Bei93, O’D14, Wil14] for a large list of such results).

An “obvious” way of representing a Boolean function f : {0, 1}n → {0, 1} is via a multilinear
polynomial P ∈ F[x1, . . . , xn] such that P (a) = f(a) for all a ∈ {0, 1}n. While such a repre-
sentation has the advantage of being unique, understanding the computational complexity of f
sometimes requires us to understand polynomial representations where we allow some notion of
error in the representation. Many such representations have been studied, but we concentrate here
on the notion of Probabilistic degree of a Boolean function, introduced implicitly in a paper of
Razborov [Raz87]. It is defined as follows.

Definition 1 (Probabilistic polynomial and Probabilistic degree). Given a Boolean function f :
{0, 1}n → {0, 1} and an ε > 0, an ε-error probabilistic polynomial for f is a random polynomial
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P (with some distribution having finite support) over F[x1, . . . , xn] such that for each a ∈ {0, 1}n,

Pr
P

[P(a) 6= f(a)] ≤ ε.

We say that the degree of P, denoted deg(P), is at most d if the probability distribution defining
P is supported on polynomials of degree at most d. Finally, we define the ε-error probabilistic
degree of f , denoted pdegF

ε (f), to be the least d such that f has an ε-error probabilistic polynomial
of degree at most d.

When the field F is clear from context, we use pdegε(f) instead of pdegF
ε (f).

Intuitively, if we think of multivariate polynomials as algorithms and degree as a notion of
efficiency, then a low-degree probabilistic polynomial for a Boolean function f is an efficient ran-
domized algorithm for f .

The study of the probabilistic degree itself is by now a classical topic, and has had important
repercussions for other problems. We list three such examples below, referring the reader to the
papers for definitions and exact statements of the results.

• Razborov [Raz87] showed strong upper bounds on the probabilistic degree of the OR function
over fields of (fixed) positive characteristic. Along with lower bounds on the probabilistic
degree of some symmetric Boolean functions,1 this led to the first lower bounds for the
Boolean circuit class AC0[p], for prime p [Raz87, Smo87a, Smo93a].

• Tarui [Tar93] and Beigel, Reingold and Spielman [BRS91] showed upper bounds on the prob-
abilistic degree of the OR function over any characteristic (and in particular over the reals).
This leads to probabilistic degree upper bounds for the circuit class AC0, which was used
by Braverman [Bra10] to resolve a long-standing open problem of Linial and Nisan [LN90]
regarding pseudorandom generators for AC0.

• Alman and Williams [AW15] showed that for constant error, the probabilistic degree of any
symmetric Boolean function is at most O(

√
n), and used this to obtain the first subquadratic

algorithm for an offline version of the Nearest Neighbour problem in the Hamming metric.

In all the above results, it was important to understand the probabilistic degree of a certain class
of symmetric Boolean functions. However, the problem of characterizing the probabilistic degree of
symmetric Boolean functions in general does not seem to have been considered. This is somewhat
surprising, since this problem has been considered in a variety of other computational models, such
as AC0 circuits of polynomial size [FKPS85, BW87], AC0[p] circuits of quasipolynomial size [Lu01],
Approximate degree2 [Pat92] and constant-depth Perceptrons3 of quasipolynomial size [ZBT93].

1Recall that a symmetric Boolean function f : {0, 1}n → {0, 1} is a function such that f(x) depends only on the
Hamming weight of x. Examples include the threshold functions, Parity (counting modulo 2), etc..

2A Boolean function f : {0, 1}n → {0, 1} is said to have approximate degree at most d if there is a degree d
polynomial P ∈ R[x1, . . . , xn] such that at each a ∈ {0, 1}n, |f(a)− P (a)| ≤ 1/4.

3These are constant-depth circuits that have an output Majority gate with AC0 circuits feeding into it.
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Our result. In this paper, we give an almost-complete understanding of the probabilistic
degrees of all symmetric Boolean functions over all fields of fixed positive characteristic and char-
acteristic 0. For each Boolean function f on n variables, our upper bounds and lower bounds on
pdeg(f) are separated only by polylogarithmic factors in n.

We now introduce some notation and give a formal statement of our result. We shall use
the notation [a, b] to denote an interval in R as well as an interval in Z; the distinction will be
clear from the context. Throughout, fix some field F of characteristic p which is either a fixed
positive constant or 0. Let n be a growing integer parameter which will always be the number of
input variables. We use sBn to denote the set of all symmetric Boolean functions on n variables.
Note that each symmetric Boolean function f : {0, 1}n → {0, 1} is uniquely specified by a string
Spec f : [0, n]→ {0, 1}, which we call the Spectrum of f , in the sense that for any a ∈ {0, 1}n, we
have

f(a) = Spec f(|a|).

Given a f ∈ sBn, we define the period of f , denoted per(f), to be the smallest positive integer
b such that Spec f(i) = Spec f(i + b) for all i ∈ [0, n − b]. We say f is k-bounded if Spec f is
constant on the interval [k, n− k]; let B(f) denote the smallest k such that f is k-bounded.

Standard decomposition of a symmetric Boolean function [Lu01]. Fix any f ∈ sBn.
Among all symmetric Boolean functions f ′ ∈ sBn such that Spec f ′(i) = Spec f(i) for all i ∈
[dn/3e, b2n/3c], we choose a function g such that per(g) is as small as possible. We call g the
periodic part of f . Define h ∈ sBn by h = f ⊕ g. We call h the bounded part of f .

We will refer to the pair (g, h) as a standard decomposition of the function f . Note that we
have f = g ⊕ h.

Observation 2. Let f ∈ sBn and let (g, h) be a standard decomposition of f . Then, per(g) ≤ bn/3c
and B(h) ≤ dn/3e.

In this paper, we prove the following upper and lower bounds for the probabilistic degrees of
symmetric Boolean functions.

Theorem 3 (Upper bounds on probabilistic degree). Let F be a field of constant characteristic
p (possibly 0) and n ∈ N be a growing parameter. Let f ∈ sBn be arbitrary and let (g, h) be a
standard decomposition of f . Then we have the following for any ε > 0.

1. If per(g) = 1, then pdegF
ε (g) = 0.

If per(g) is a power of p, then pdegF
ε (g) ≤ per(g), [Lu01]

(Note that per(g) cannot be a power of p if p = 0.)

2. pdegF
ε (h) = Õ(

√
B(h) log(1/ε) + log(1/ε)) if B(h) > 1 and 0 otherwise, and

3. pdegF
ε (f) =


O(
√
n log(1/ε)) if per(g) > 1 and not a power of p, [AW15]

O(min{
√
n log(1/ε), per(g)}) if per(g) a power of p and B(h) = 0,

Õ(min{
√
n log(1/ε), per(g)+ otherwise.√

B(h) log(1/ε) + log(1/ε)})
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where the Õ(·) hides polylogarithmic factors in n (and are independent of ε). When p is positive,

we can replaced the Õ(·) with O(·) in all the above bounds.

We obtain almost (up to polylogarithmic factors) matching lower bounds for all symmetric
Boolean functions over all fields and all errors.

Theorem 4 (Lower bounds on probabilistic degree). Let F be a field of constant characteristic
p (possibly 0) and n ∈ N be a growing parameter. Let f ∈ sBn be arbitrary and let (g, h) be a
standard decomposition of f . Then for any ε ∈ [1/2n, 1/3], we have

1. pdegF
ε (g) = Ω̃(

√
n log(1/ε)) if per(g) > 1 and is not a power of p and Ω̃(min{

√
n log(1/ε), per(g)})

otherwise.

2. pdegF
ε (h) = Ω̃(

√
B(h) log(1/ε) + log(1/ε)) if B(h) ≥ 1, and

3. pdegF
ε (f) =


Ω̃(
√
n log(1/ε)) if per(g) > 1 and not a power of p,

Ω̃(min{
√
n log(1/ε), per(g)}) if per(g) a power of p and B(h) = 0,

Ω̃(min{
√
n log(1/ε), per(g) otherwise.

+
√
B(h) log(1/ε) + log(1/ε)})

where the Ω̃(·) hides poly(log n) factors (independent of ε).

Remark 5. A natural open question following our results is to remove the polylogarithmic factors
separating our upper and lower bounds. We remark that in characteristic 0, such gaps exist even
for the very simple OR function despite much effort [MNV16, HS16, BHMS18]. Over positive
characteristic, there is no obvious barrier, but our techniques fall short of proving tight lower
bounds for natural families of functions such as the Exact Threshold functions (defined in Section
2).

1.1 Proof Outline

For the outline below, we assume that the field is of fixed positive characteristic p.

Upper bounds. Given a symmetric Boolean function f on n variables with standard decom-
position (g, h), it is easy to check that pdegε(f) = O(pdegε(g) + pdegε(h)). So it suffices to upper
bound the probabilistic degrees of periodic and bounded functions respectively.

For periodic functions g with period a power of p, Lu [Lu01] showed that the exact degree of
the Boolean functions is at most per(g). If the period is not a power of p, then we use the upper
bound of Alman and Williams [AW15] that holds for all symmetric Boolean functions (as we show
below, this is nearly the best that is possible).

For a t-constant function h (defined in Section 3), we use the observation that any t-constant
function is essentially a linear combination of the threshold functions Thr0

n, . . . ,Thrtn (defined in
Section 2) and so it suffices to construct probabilistic polynomials for Thrin for i ∈ [0, t].4

4We actually need to construct probabilistic polynomials for all the threshold functions simultaneously. We
ignore this point in this high-level outline.
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Our main technical upper bound is a new probabilistic degree upper bound of O(
√
t log(1/ε)+

log(1/ε)) for any threshold function Thrtn. This upper bound interpolates smoothly between a
classical upper bound of O(log(1/ε)) due to Razborov [Raz87] for t = 1 and a recent result of
Alman and Williams [AW15] that yields O(

√
n log(1/ε)) for t = Ω(n).

The proof of our upper bound is based on the beautiful inductive construction of Alman and
Williams [AW15] which gives their above-mentioned result. The key difference between our proof
and the proof of [AW15] is that we need to handle separately the case when the error ε ≤ 2−Ω(t).5

In [AW15], this is a trivial case since any function on n Boolean variables has an exact polynomial
of degree n which is at most O(

√
n log(1/ε)) when ε ≤ 2−Ω(n). In our setting, the correct bound

in this case is O(log(1/ε)), which is non-obvious. We obtain this bound by a suitable modification
of Razborov’s technique (for t = 1) to handle larger thresholds.

Lower bounds. Here, our proof follows a result of Lu [Lu01], who gave a characterization
of symmetric Boolean functions that have quasipolynomial-sized AC0[p] circuits.6 To show circuit
lower bounds for a symmetric Boolean function h, Lu showed how to convert a circuit C computing
h to a circuit C ′ computing either the Majority or a MODq function (where q and p are relatively
prime). Since both of these are known to be hard for AC0[p] [Raz87, Smo87a], we get the lower
bound.

Lu’s basic idea was to use a few restrictions7 of h along with some additional circuitry to
compute either Majority or MODq. These functions are also known to have large probabilistic
degree (in fact, this is the source of the AC0[p] lower bound), and so this high-level idea seems
applicable to our setting as well. Indeed we do use this strategy, but our proofs are different when
it comes down to the details. As Lu’s aim was to derive optimal circuit lower bounds for h, his
reductions were tailored towards using as small an amount of additional circuitry as possible. Our
focus, however, is to prove the best possible probabilistic degree lower bound, so we would like our
reductions to be computable by polynomials of small degree. This makes the actual reductions
quite different.8

2 Preliminaries

Some Boolean functions. Fix some positive n ∈ N. The Majority function Majn on n
Boolean variables accepts exactly the inputs of Hamming weight greater than n/2. For t ∈ [0, n],
the Threshold function Thrtn accepts exactly the inputs of Hamming weight at least t; and similarly,
the Exact Threshold function EThrtn accepts exactly the inputs of Hamming weight exactly t.
Finally, for b ∈ [2, n] and i ∈ [0, b − 1], the function MODb,i

n accepts exactly those inputs a such
that |a| ≡ i (mod b). In the special case that i = 0, we also use MODb

n.

5This case comes up naturally in the inductive construction, even if one is ultimately only interested in the case
when ε is a constant.

6Recall that an AC0[p] circuit is a constant-depth circuit made up of gates that can compute the Boolean
functions AND, OR, NOT and MODp (defined below).

7A restriction of a Boolean function is obtained by setting some of its input variables to constants in {0, 1}.
8In an earlier version of this paper, we actually used Lu’s reductions (and variants thereof) directly in the setting

of probabilistic polynomials. This still works in certain parameter regimes because the additional circuitry itself
has low probabilistic degree. However, in the setting of small error, this strategy seems to yield suboptimal results.
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Fact 6. We have the following simple facts about probabilistic degrees. Let F be any field.

1. (Error reduction [HS16]) For any δ < ε ≤ 1/3 and any Boolean function f , if P is an ε-error
probabilistic polynomial for f , then Q = M(P1, . . . ,P`) is a δ-error probabilistic polynomial
for f where M is the exact multilinear polynomial for Maj` and P1, . . . ,P` are independent
copies of P. In particular, we have pdegF

δ (f) ≤ pdegF
ε (f) ·O(log(1/δ)/ log(1/ε)).

2. (Composition) For any Boolean function f on k variables and any Boolean functions g1, . . . , gk
on a common set of m variables, let h denote the natural composed function f(g1, . . . , gk) on
m variables. Then, for any ε, δ > 0, we have pdegF

ε+kδ(h) ≤ pdegF
ε (f) ·maxi∈[k] pdegF

δ (gi).

3. (Sum) Assume that f, g1, . . . , gk are all Boolean functions on a common set of m variables
such that f =

∑
i∈[k] gi. Then, for any δ > 0, we have pdegF

kδ(f) ≤ maxi∈[k] pdegF
δ (gi).

2.1 Some previous results on probabilistic degree

The following upper bounds on probabilistic degrees of OR and AND functions were proved by
Razborov [Raz87] and Smolensky [Smo87a] in the case of positive characteristic and Tarui [Tar93]
and Beigel, Reingold and Spielman [BRS91] in the general case. For the latter, we state a slightly
tighter result that follows from [Bra10, Lemma 8].

Lemma 7 (Razborov’s upper bound on probabilistic degrees of OR and AND). Let F be a field
of characteristic p. For p > 0, we have

pdegF
ε (ORn) = pdegF

ε (ANDn) ≤ pdlog(1/ε))e. (1)

For any p, we have

pdegF
ε (ORn) = pdegF

ε (ANDn) ≤ 4dlog ne · dlog(1/ε)e. (2)

Further, the probabilistic polynomials have one-sided error in the sense that on the all 0 input, they
output 0 with probability 1.

We now recall two probabilistic degree lower bounds due to Smolensky [Smo87b, Smo93b],
building on the work of Razborov [Raz87].

Lemma 8 (Smolensky’s lower bound for close-to-Majority functions). For any field F, any ε ∈
(1/2n, 1/5), and any Boolean function g on n variables that agrees with Majn on a 1− ε fraction
of its inputs, we have

pdegF
ε (g) = Ω(

√
n log(1/ε)).

Lemma 9 (Smolensky’s lower bound for MOD functions). For 2 ≤ b ≤ n/2, any F such that
char(F) = p is coprime to b, any ε ∈ (1/2n, 1/(3b)), there exists an i ∈ [0, b− 1] such that

pdegF
ε (MODb,i

n ) = Ω(
√
n log(1/bε)).

Remark 10. From the above lemma, it also easily follows that if b ≤ n/4, then for every i ∈
[0, b−1], we have pdegF

ε (MODb,i
n ) = Ω(

√
n log(1/bε)). This is the usual form in which Smolensky’s

lower bound is stated. The above form is slightly more useful to us because it holds for b up to n/2.

We will also need the following result of Alman and Williams [AW15].

Lemma 11. Let F be any field. For any n ≥ 1, ε > 0 and f ∈ sBn, pdegF
ε (f) = O(

√
n log(1/ε)).
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2.2 A string lemma

Given a function w : I → {0, 1} where I ⊆ N is an interval, we think of w as a string from the set
{0, 1}|I| in the natural way. For an interval J ⊆ I, we denote by w|J the substring of w obtained
by restriction to J .

The following simple lemma can be found, e.g. as a consequence of [JJJ80, Chapter I, Section
2, Theorem 1].

Lemma 12. Let w ∈ {0, 1}+ be any non-empty string and u, v ∈ {0, 1}+ such that w = uv = vu.
Then there exists a string z ∈ {0, 1}+ such that w is a power of z (i.e. w = zk for some k ≥ 2).

Corollary 13. Let g ∈ sBn be arbitrary with per(g) = b > 1. Then for all i, j ∈ [0, n− b+ 1] such
that i 6≡ j (mod b), we have Spec g|[i,i+b−1] 6= Spec g|[j,j+b−1].

Proof. Suppose Spec g|[i,i+b−1] = Spec g|[j,j+b−1] for some i 6≡ j (mod b). Assume without loss of
generality that i < j < i+ b. Let u = Spec g|[i,j−1], v = Spec g|[j,i+b−1], w = Spec g|[i+b,j+b−1]. Then
u = w and the assumption uv = vw implies uv = vu. By Lemma 12, there exists a string z such
that uv = zk for k ≥ 2 and therefore per(g) < b. This contradicts our assumption on b.

3 Upper bounds

In this section, we will first prove upper bounds on the probabilistic degree of a special class of
symmetric Boolean functions that we call t-constant functions, and then use it to prove Theorem
3.

3.1 Upper bound on probabilistic degree of t-constant functions

Definition 14 (t-constant function). For any positive n ∈ N and t ∈ [0, n], a Boolean function
f ∈ sBn is said to be t-constant if f |{x:|x|≥t} is a constant, that is, Spec f |[t,n] is a constant.

The following observation is immediate.

Observation 15. A Boolean function f : {0, 1}n → {0, 1} is t-constant if and only if f =∑t
j=0 ajThrjn, for some a0, . . . , at ∈ {−1, 0, 1}. In other words, f is t-constant if and only if there

exists a linear polynomial g(Y0, . . . , Yt) = a0Y0 + · · ·+ atYt ∈ F[Y0, . . . , Yt] with aj ∈ {−1, 0, 1}, j ∈
[0, t] such that f = g(Thr0

n, . . . ,Thrtn).

We will prove an upper bound on the probabilistic degree of t-constant Boolean functions. For
this, we first generalize the notion of probabilistic polynomial and probabilistic degree to a tuple
of Boolean functions. This generalization was implicit in [AW15].

Definition 16 (Probabilistic poly-tuple and probabilistic degree). Let f = (f1, . . . , fm) : {0, 1}n →
{0, 1}m be an m-tuple of Boolean functions and ε ∈ (0, 1). An ε-error probabilistic poly-tuple
for f is a random m-tuple of polynomials P (with some distribution having finite support) from
F[X1, . . . , Xn]m such that

Pr
P

[P(x) 6= f(x)] ≤ ε, for all x ∈ {0, 1}n.
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We say that the degree of P is at most d if P is supported on m-tuples of polynomials P =
(P1, . . . , Pm) where each Pi has degree at most d. Finally we define the ε-error probabilistic degree
of f , denoted by pdegF

ε (f), to be the least d such that f has an ε-error probabilistic poly-tuple of
degree at most d.

We make a definition for convenience.

Definition 17 (Threshold tuple). For positive n ∈ N, t ∈ [0, n], an (n, t)-threshold tuple is any
tuple of Boolean functions (Thrt1n , . . . ,Thrtmn ), with t1, . . . , tm ∈ [0, t] and max{t1, . . . , tm} ≤ t.

The main theorem of this subsection is the following.

Theorem 18. For any positive n ∈ N, t ∈ [0, n], if T is an (n, t)-threshold tuple and ε ∈ (0, 1/3),
then

pdegε(T ) =

{
Õ(
√
t log(1/ε) + log(1/ε)), char(F) = 0,

O(
√
t log(1/ε) + log(1/ε)), char(F) = p > 0.

.

As a corollary to the above theorem, we get an upper bound for the probabilistic degree of
t-constant functions.

Corollary 19. For any t-constant Boolean function f : {0, 1}n → {0, 1} and ε ∈ (0, 1/3),

pdegε(f) =

{
Õ(
√
t log(1/ε) + log(1/ε)), char(F) = 0,

O(
√
t log(1/ε) + log(1/ε)), char(F) = p > 0.

.

Proof. By Observation 15, there exists g(Y0, . . . , Yt) = a0Y0 + · · · + atYt ∈ F[Y0, . . . , Yt] with
aj ∈ {−1, 0, 1}, j ∈ [0, t] such that f = g(Thr0

n, . . . ,Thrtn). We note that deg g = 1. So by
Theorem 18, we get

pdegε(f) = deg g · pdegε(Thr0
n, . . . ,Thrtn) =

{
Õ(
√
t log(1/ε) + log(1/ε)), char(F) = 0,

O(
√
t log(1/ε) + log(1/ε)), char(F) = p > 0.

.

High-level outline of the proof. The basic strategy behind the inductive construction of
probabilistic poly-tuples is due to Alman and Williams [AW15]. We describe the construction
of an ε-error probabilistic polynomial for a single threshold Thrtn (the construction for a tuple is
similar). Assume that, by induction, we already have probabilistic polynomials Tm,t,ε for Thrtm
where m < n. The idea is to try to use Tm,t,ε for m < n to compute Thrtn(x). We do this by
sampling: we sample a random subvector x̂ of length n/10 of x by sampling uniform random
entries of x with replacement. If the Hamming weight of x is “sufficiently far” from the threshold
t, then the weight of x̂ is on the “same side” of t/10 as x is of t w.h.p. (say at least 1 − ε/4);
in particular, in this case Pn/10,t/10,ε/4 gives the right answer with probability 1− ε/4 and we are
done. However, if |x| is “not sufficiently far” from t, then we need to do something else: here, we
simply interpolate a polynomial that outputs the right answer on these values (see Theorem 21
below). Finally, to check which of “far” or the “not far” cases we are in, we again use the inductive
hypothesis on the subvector x̂, which again gives the right answer with probability 1−ε/4. Putting
these things together yields the ε-error probabilistic polynomial.
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In the analysis of the construction above, the distance parameter (say θ) that determines “far”
vs. “not far” comes from the concentration properties of Bernoulli random variables (see Lemma 20
below). in our setting, θ is roughly

√
t log(1/ε)). In particular, to check that |x| is not much larger

than t, we need to apply a probabilistic polynomial for the threshold function Thr
t/10+θ
n/10 to the

random vector x̂. Here, to keep the threshold parameter bounded by t, we need that log(1/ε) is
not much larger than t, or equivalently that ε is not much smaller than 2−t.

When ε does fall below 2−t,9 we need to do something different, as the above inductive strat-
egy fails. This case does not occur in [AW15] since there t = Ω(n) and when ε ≤ 2−n, we
can always use an exact polynomial representation of the threshold function (which has de-
gree n = O(

√
n log(1/ε))). In our setting, though, we aim for a bound of Õ(log(1/ε)) in this

case, which is non-trivial. To handle this case, we use a different construction, which is a
modification of Razborov’s probabilistic polynomial construction for the OR function (Lemma 7
above). This changes the base case of the induction and certain elements of the inductive analy-
sis. Overall, though, we are able to use these ideas to obtain a probabilistic polynomial of degree
Õ(
√
t log(1/ε) + log(1/ε)) (and only a constant-factor loss when the characteristic p > 0).

3.1.1 Proof of Theorem 18

Before we prove Theorem 18, we will gather a few results that we require. The following lemma is
a particular case of Bernstein’s inequality (Theorem 1.4, [DP09]).

Lemma 20. Let X1, . . . , Xm be independent and identically distributed Bernoulli random variables
with mean q. Let X =

∑m
i=1Xi. Then for any θ > 0,

Pr [|X −mq| > θ] ≤ 2 exp

(
− θ2

2mq(1− q) + 2θ/3

)
.

We will also need the following polynomial construction.

Theorem 21 (Lemma 3.1, [AW15]). For any symmetric Boolean function f : {0, 1}n → {0, 1}
and integer interval [a, b] ⊆ [0, n], there exists a symmetric multilinear polynomial EX[a,b]f ∈
Z[X1, . . . , Xn] such that deg(EX[a,b]f) ≤ b− a and Spec (EX[a,b]f)|[a,b] = Spec f |[a,b].

Remark 22. In particular, the polynomial EX[a,b]f may be interpreted as a polynomial over any
field F satisfying the above property.

We will now prove Theorem 18.

Proof of Theorem 18. For any a = (a1, . . . , ak), b = (b1, . . . , bk) ∈ Fk, fix the notation a ∗ b =
(a1b1, . . . , akbk). Throughout, the notation 1 will denote the constant-1 vector of appropriate
length.

For positive characteristic p, we prove that for any positive n ∈ N, t ∈ [0, n] and ε ∈
(0, 2−100), any (n, t)-threshold tuple T has an ε-error probabilistic poly-tuple T of degree at most
Ap
√
t log(1/ε) +Bp log(1/ε), for constants Ap = Bp = 6, 400, 000p (we make no effort to optimize

9Note that this can occur even if we are only interested in the case of (say) constant error. Since the inductive
strategy causes the error to drop at each stage, even if we start with constant ε, after a few stages we end up in the
setting where ε < 2−t.
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the constants). For p = 0, we prove a similar result with a degree bound of A0 log n ·
√
t log(1/ε) +

B0 log n · log(1/ε), for A0 = B0 = 64, 000, 000. This will prove the theorem for ε ≤ 2−100. To prove
the theorem for all ε ≤ 1/3, we use error reduction (Fact 6) and reduce the error to 2−100 and then
apply the result for small error.

The proof is by induction on the parameters n, t and ε. At any stage of the induction, given
an (n, t)-threshold tuple with error parameter ε, we construct the required probabilistic poly-tuple
by using the probabilistic poly-tuples (guaranteed by inductive hypothesis) for suitable threshold
poly-tuples with n/10 inputs and error parameter ε/4. Thus the base cases of the induction are
as follows.

Base Case: Suppose n ≤ 10. Let T = (T1, . . . , Tm) be an (n, t)-threshold tuple. Let Q1, . . . , Qm

be the unique multilinear polynomial representations of T1, . . . , Tm respectively. ThenQ = (Q1, . . . , Qm)
is an ε-error probabilistic poly-tuple for T , for all ε ∈ (0, 2−100), with degQ ≤ n = 10 ≤ Bp log(1/ε)
for all p (including 0). Hence the claim is proved in this case.

Base Case: Suppose ε ≤ 2−t/160000. Let T = (T1, . . . , Tm) = (Thrt1n , . . . ,Thrtmn ) be any (n, t)-
threshold tuple and let r = 6400000 log(1/ε).

Suppose n ≤ r. Let Q1, . . . , Qm be the unique multilinear representations of T1, . . . , Tm respec-
tively. Then Q = (Q1, . . . , Qm) is an ε-error probabilistic polynomial with degQ ≤ n ≤ r. This
proves the claim in this case.

Now suppose n > r. We first describe how to construct the probabilistic poly-tuple P in this
case. Assume for now that char(F) = p > 0.

• Let P1 = (EX[0,r]T1, . . . ,EX[0,r]Tm). Then degP1 ≤ r.

• Choose a uniformly random hash function H : [n] → [r] and let Sj = H−1(j), j ∈ [r].
Choose αi ∼ Fp, i ∈ [n] independently and uniformly at random and define Lj(x) =∑

i∈Sj
αixi, x ∈ {0, 1}n, j ∈ [r]. For i ∈ [m], let P

(i)
2 = Q

(i)
r (Lp−1

1 , . . . ,Lp−1
r ), where Q

(i)
r

is the unique multilinear polynomial representation of Thrtir . Let P2 = (P
(1)
2 , . . . ,P

(m)
2 ).

Note that deg(P2) ≤ (p− 1) ·
(

maxi deg(Q
(i)
r )
)
≤ (p− 1) · r.

• Define P = 1−(1−P1)∗(1−P2), that is, P = (P(1), . . . ,P(m)), where P(i) = OR2(P
(i)
1 ,P

(i)
2 ),

for all i ∈ [m]. We have deg(P) ≤ deg(P1) + deg(P2) ≤ p · r ≤ Bp log(1/ε).

We now show that P is indeed an ε-error probabilistic poly-tuple for T . Note that since
ε ≤ 2−t/160000, we have r = 6400000 log(1/ε) ≥ 40t > t. Thus ti ≤ t ≤ r, for all i ∈ [m]. Now fix
any a ∈ {0, 1}n. Let Za = {i ∈ [m] : Thrtin (a) = 0} and Na = {i ∈ [m] : Thrtin (a) = 1}. So we have
|a| < ti ≤ t ≤ r and hence EX[0,r]Ti(a) = 0, for all i ∈ Za. Also |(Lp−1

1 (a), . . . ,Lp−1
r (a))| ≤ |a| < ti

w.p.1, and so P
(i)
2 (a) = Q

(i)
r ((Lp−1

1 (a), . . . ,Lp−1
r (a))) = 0 w.p.1, for all i ∈ Za simultaneously. Thus

P(i)(a) = 0 w.p.1, for all i ∈ Za simultaneously.
Further we have |a| ≥ ti, for all i ∈ Na. We will now show that P(i)(a) = 1 w.p. at least 1− ε,

for all i ∈ Na simultaneously. If |a| ≤ r, then again P
(i)
1 (a) = 1, for all i ∈ Na and so P(i)(a) = 1

w.p.1. Now suppose |a| ≥ r (note that in this case, Na = [m]). Without loss of generality, assume

t1 ≤ · · · ≤ tm = t. Then we have P
(1)
2 (a) ≥ · · · ≥ P

(m)
2 (a) w.p. 1, under the order 1 > 0. So it is

enough to show that P
(m)
2 (a) = 1 w.p. at least 1− ε.
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Define I(H) = {j ∈ [r] : supp(a) ∩ Sj 6= ∅}. We get

Pr
[
P

(m)
2 (a) = 0

]
= Pr

[
P

(m)
2 (a) = 0

∣∣∣ |I(H)| < r/10
]
· Pr [|I(H)| < r/10]

+ Pr
[
P

(m)
2 (a) = 0

∣∣∣ |I(H)| ≥ r/10
]
· Pr [|I(H)| ≥ r/10]

≤ Pr [|I(H)| < r/10] + max
H:|I(H)|≥r/10

Pr
[
P

(m)
2 (a) = 0

∣∣∣ H
]
.

Since the function H : [n]→ [r] is chosen uniformly at random, the probability that I(H) ⊆ I for
any set I ⊆ [r] is (|I|/r)|a|. Using the fact that |a| > r and the union bound, we get

Pr [|I(H)| < r/10] ≤
∑

I⊆[r], |I|=r/10

Pr [I(H) ⊂ I] ≤
(

r

r/10

)
1

10r
≤ 1

4r
≤ ε

4
.

Now fix any H such that |I(H)| ≥ r/10, and let ` = |I(H)|. Note that P
(m)
2 (a) is 0 if and only

if at most t − 1 many Lj(a) are non-zero. We consider only j ∈ I(H). For each j ∈ I(H), the
probability that Lj(a) is non-zero is 1−1/p ≥ 1/2. Let Z denote the number of such Lj (j ∈ I(H)).
Thus, the expected value of Z is at least `/2 ≥ r/20 ≥ 2t. Thus, by Lemma 20,

Pr
[
P

(m)
2 (a) = 0

∣∣∣H] = Pr [|I(H) ∩ {j : Lj(a) = 1}| ≤ t− 1 | H]

≤ Pr
[
|Z− E[Z]| ≥ `/4 | H

]
≤ 2 exp

(
− `2/16

2 · ` · (1/4) + (2/3) · (`/4)

)
<
ε

2
.

where for the final inequality we have used the fact that ` ≥ r/10 ≥ 640000 log(1/ε). Thus

Pr
[
P

(m)
2 (a) = 0

]
≤ ε, proving the claim when char(F) = p > 0.

Now suppose char(F) = 0. Then we use the same construction as above except for one change:

for i ∈ [m] we let P
(i)
2 = Q

(i)
r (O1, . . . ,Or), where Q

(i)
r is the unique multilinear polynomial repre-

sentation of Thrtir , and for j ∈ [r], Oj is the 1/4-error probabilistic polynomial for ORSj
, the OR

function on variables (Xk : k ∈ Sj), given to us by Lemma 7. One can verify that the degree in
this case is bounded as above by 10r log n ≤ B0 log n · log(1/ε). The rest of the analysis follows
similarly, proving the base case when char(F) = 0.

Inductive Construction. For any positive characteristic p, any n′ < n, t′ ∈ [0, n′] and ε′ ∈
(0, 2−100), assume the existence of an ε′-error probabilistic poly-tuple for any (n′, t′)-threshold
tuple, with degree at most Ap

√
t′ log(1/ε′) +Bp log(1/ε′); similarly, for characteristic zero, assume

we have a probabilistic poly-tuple of degree A0 log n ·
√
t′ log(1/ε′) +B0 log n · log(1/ε′).

We now consider an (n, t)-threshold tuple T = (T1, . . . , Tm) = (Thrt1n , . . . ,Thrtmn ). Assume that
the parameter ε > 2−t/160000 since otherwise we can use the construction from the base case. Define

T ′ = (T ′1, . . . , T
′
m) =

(
Thr

t1/10
n/10 , . . . ,Thr

tm/10
n/10

)
,

T ′′+ = (T ′′1,+, . . . , T
′′
m,+) =

(
Thr

t1/10+20
√
t log(1/ε)

n/10 , . . . ,Thr
tm/10+20

√
t log(1/ε)

n/10

)
,

T ′′− = (T ′′1,−, . . . , T
′′
m,−) =

(
Thr

t1/10−20
√
t log(1/ε)

n/10 , . . . ,Thr
tm/10−20

√
t log(1/ε)

n/10

)
.
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By induction hypothesis, let T′,T′′+,T
′′
− be ε/4-error probabilistic poly-tuples for T ′, T ′′+, T

′′
− respec-

tively. Let N′′ = (1−T′′+)∗T′′−. For any x ∈ {0, 1}n, choose a random subvector x̂ ∈ {0, 1}n/10 with
each coordinate of x̂ chosen independently and uniformly at random from among the n coordinates
of x, with replacement. Define

T(x) = N′′(x̂) ∗ E(x) + (1−N′′)(x̂) ∗T′(x̂),

where E = (E1, . . . , Em), with Ei = EX
[ti−300

√
t log(1/ε),ti+300

√
t log(1/ε)]

Thrtin , i ∈ [m]. We will now

prove that T is an ε-error probabilistic poly-tuple for T .

Correctness of Inductive Construction. We now check that the construction above gives an ε-
error probabilistic poly-tuple for T . Fix any a ∈ {0, 1}n. Let â ∈ {0, 1}n/10 be chosen as given in
the inductive construction.

Suppose |a| ≤ 2t. Let θ = 10
√
t log(1/ε). Applying Lemma 20, we get

Pr [||â| − |a|/10| > θ] ≤ 2 exp

(
− θ2

2 · |a| · (|a|/n)(1− |a|/n)) + (2θ/3)

)
≤ 2 exp

(
− 100t log(1/ε)

2 · (2t) · (1/4) + 7
√
t log(1/ε)

)

≤ 2 exp

(
− 100t log(1/ε)

t+ 7
√
t log(1/ε)

)

≤ 2 exp

(
−100t log(1/ε)

2t

)
≤ ε/4.

where for the third inequality, we have used the fact that log(1/ε) ≤ t/160000.
By induction hypothesis, the probability that T′(â) does not agree with T ′(â) is at most ε/4,

and similarly for T′′+ and T′′−. Let Ga be the event that none of the above events occur and that
||â| − (|a|/10)| ≤ θ; by a union bound, the event Ga occurs with probability at least 1− ε. In this
case, we show that T(a) = T (a), which will prove the correctness of the construction in the case
that |a| ≤ 2t.

To see this, observe the following for each i ∈ [m].

• T′i(â) = Ti(a) if ||a| − ti| > 10θ. This is because T′i(â) = T ′i (â) by our assumption that
the event Ga has occurred. Further, we also have T ′i (â) = Ti(a) since |â − |a|/10| ≤ θ (by
occurrence of Ga) and hence |a| ≥ ti if and only if |â| ≥ ti/10.

• If ||a|− ti| > 30θ, then N′′i (â) = 0. This is because ||â|− |a|/10| ≤ θ and hence ||â|− ti/10| >
2θ. Hence, either T′′i,+(â) = 1 or T′′i,−(â) = 0 and therefore, N′′i (â) = 0.

Thus, when ||a| − ti| > 30θ, the definition of T yields Ti(a) = T′i(â) which equals Ti(a)
whenever ||a| − ti| > 10θ as argued above. We are therefore done in this case.

• If ||a| − ti| < 10θ, then N′′i (â) = 1. This is similar to the analogous statement above.

Therefore, when ||a|−ti| < 10θ, we have Ti(a) = Ei(a) = Ti(a) as |a| ∈ [ti−300
√
t log(1/ε), ti+

300
√
t log(1/ε)]. Hence, we are done in this case also.
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• If 10θ ≤ ||a| − ti| ≤ 30θ, then Ei(a) = T′(â) = Ti(a). Since N′′i (â) ∈ {0, 1} for each i ∈ [m],
we again obtain Ti(a) = Ti(a).

This shows that for any a such that |a| ≤ 2t, whenever Ga does not occur, T(a) = T (a).
Now suppose |a| > 2t. Then by Bernstein’s inequality (Lemma 20), we get

Pr [|â| < 1.5t/10] ≤ Pr [||â| − (|a|/10)| ≥ (|a|/40)]

≤ 2 exp

(
− (|a|/40)2

2 · |a| · (|a|/n)(1− (|a|/n)) + (2/3) · (|a|/40)

)
≤ 2 exp

(
− (|a|/40)2

2 · |a| · (1/4) + (2/3) · (|a|/40)

)
≤ 2 exp

(
−(|a|/40)2

(3|a|/5)

)
≤ 2 exp

(
− |a|

960

)
≤ 2 exp(−t/480) < ε/2.

Also, by the induction hypothesis, the probability that T′(â) does not agree with T ′(â) is at
most ε/4, and similarly for T′′+ and T′′−. Let Ga denote the event that none of the above events
occur and that |a| ≥ 3t/20; we have Pr [Ga] ≥ 1− ε. As above, we show that when Ga occurs, then
T(a) = T (a).

To see this, we proceed as follows.

• Since |a| ≥ 2t and |â| ≥ 3t/20, both T (a) and T′i(â) are both the constant-1 vector.

• Further, we note that we have N′′i (â) = 0 for each i ∈ [m]. This is because ||â| − ti/10| ≥
(|â| − t/10) ≥ t/20 > 20

√
t log(1/ε), where the final inequality uses t > 160000 log(1/ε).

This implies that Ti(a) = T′i(â) = 1 for each i ∈ [m].

Hence, when Ga does not occur, we have T(a) = T (a), which proves the correctness of the con-
struction.

Correctness of Degree. We need to argue that deg(T) satisfies the inductive claim. Suppose
char(F) = p > 0. We have

deg T ≤ deg N′′ + max{degE, deg T′}
≤ deg T′′+ + deg T′′− + max{degE, deg T′}.

13



Recall that Ap = Bp = 6400000p. Now

deg T′′+ + deg T′′− ≤ Ap

(√√√√ t

10
+ 20

√
t log

(
1

ε

)
+

√√√√ t

10
− 20

√
t log

(
1

ε

))√
log

(
4

ε

)
+ 2Bp log

(
4

ε

)

≤ Ap

√√√√( t
5

+ 2

√
t2

100
− 400t log

(
1

ε

))
log

(
4

ε

)
+ 2Bp log

(
4

ε

)

≤ Ap

√(
t

5
+ 2

√
t2

100
− t2

400

)
log

(
4

ε

)
+ 2Bp log

(
4

ε

)

≤ Ap

√(
2 +
√

3

10

)
t log

(
4

ε

)
+ 2Bp log

(
4

ε

)

≤ Ap

√
38t

100
log

(
4

ε

)
+ 2Bp log

(
4

ε

)
,

and

max{degE, deg T′} ≤ max

{
600

√
t log

(
1

ε

)
, Ap

√
t

10
log

(
4

ε

)
+Bp log

(
4

ε

)}

= Ap

√
t

10
log

(
4

ε

)
+Bp log

(
4

ε

)
.

So we get

deg T ≤
(√

38

100
+

√
1

10

)
Ap

√
t log

(
4

ε

)
+ 3Bp log

(
4

ε

)

≤ 94

100
Ap

√(
t log

(
1

ε

)
+ 2t

)
+ 3Bp log

(
1

ε

)
+ 6Bp

≤ 95

100
Ap

√
t log

(
1

ε

)
+ 4Bp log

(
1

ε

)

≤ 95

100
Ap

√
t log

(
1

ε

)
+ 3Bp log

(
1

ε

)
+Bp log

(
1

ε

)

≤ Ap

√
t log

(
1

ε

)
+Bp log

(
1

ε

)
.

where the third inequality uses ε ≤ 2−100 and the final inequality uses t > 160000 log(1/ε).
Now if char(F) = 0, then we get a similar degree bound with A0 = B0 = 64000000. This

completes the argument for correctness of degree.

14



3.2 Upper bound on pdegε(g)

This result is due to Lu [Lu01] but a proof is sketched here for completeness.
Recall that char(F) = p.
When per(g) = 1, g is a constant function and hence the result is trivial. So assume that

per(g) = pt for t ≥ 1. In this case, we show that g can be represented exactly as a linear
combination of elementary symmetric polynomials of degree at most D = pt − 1, which clearly
proves the upper bound stated in the theorem. To see that every such g has such a representation,
we proceed as follows.

Let V be the vector space generated by all functions f : {0, 1}n → F such that f can be written
as a linear combination of elementary symmetric polynomials of degree at most D. Clearly, since
there is a 1-1 correspondence between multilinear polynomials and functions from {0, 1}n to F, the
vector space V has dimension exactly D+1 = pt. Each function in f is a symmetric (not necessarily
Boolean) function on {0, 1}n. Further, a standard application of Lucas’ theorem (see [Luc78]) shows
that each f ∈ V satisfies

Spec f(i) = Spec f(i+ pt) (3)

for each i ≤ n− pt.
Now, consider the vector space W of all functions f ′ : {0, 1}n → F that satisfy property (3).

Clearly, W ⊆ V. Furthermore, the functions MODi
pt (i ∈ [0, pt − 1]) is a set of pt many linearly

independent functions in W . Hence, the dimension of W is exactly pt and therefore, W = V.
Since g ∈ W , we immediately see that g ∈ V and is hence a linear combination of elementary

symmetric polynomials of degree at most D.

3.3 Upper bound for pdegε(h).

Let B(h) = k. Thus we can write h = h1 + (1− h̃2), for k-constant symmetric Boolean functions

h1, h2, where h̃2(x1, . . . , xn) = h2(1 − x1, . . . , 1 − xn). But then by Corollary 19, pdegε(h1) =
pdegε(h2) = O(

√
k log(1/ε)+log(1/ε)) and so pdegε(h) = O(

√
k log(1/ε)+log(1/ε)) over positive

characteristic p. For p = 0, we obtain the same upper bound up to log-factors.

3.4 Upper bound for pdegε(f).

Let (g, h) be the standard decomposition of f . So f = g ⊕ h = g + h − 2gh. Further, we
already have the Alman-Williams bound of O(

√
n log(1/ε)) on pdegε(f) (Lemma 11). So we get

pdegε(f) = O(min{
√
n log(1/ε), per(g) +

√
B(h) log(1/ε) + log(1/ε)}) over positive characteristic

and the same bound up to log-factors over characteristic 0. This concludes the proof of Theorem 3.

4 Lower Bounds

We now prove the lower bounds given in Theorem 4. Throughout this section, let F be any field.
We use pdegε(·) instead of pdegF

ε (·).
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High-level outline of proof. We use a similar proof strategy to Lu [Lu01], who gave a
characterization of symmetric functions computable by quasipolynomial-sized AC0[p] circuits. To
prove a lower bound on the probabilistic degree of a symmetric function f ∈ sBn, we will use
known lower bounds for Majority (Lemma 8) and MODq functions (Lemma 9), where q is relatively
prime to the characteristic p. The basic idea is to use a few “restrictions” of f to compute either
a Majority function or a MODq function.

Here, a restriction of f is a function h ∈ sBm obtained by setting a few inputs of f to 0s and
1s. That is, we define h(x) = f(x0a1n−m−a) for some a. From the definition of such an h, it is
clear that for any δ > 0, pdegδ(h) ≤ pdegδ(f). We design a small number of such restrictions
h1, . . . , h` and a “combining function” P : {0, 1}` → {0, 1} such that either Majority of MODq can
be written as P (h1, . . . , h`).

The main restriction we will have on P is that it should be a low-degree polynomial.10 Given
this, using Fact 6, we can write

pdegε(P (h1, . . . , h`)) ≤ deg(P ) ·max
i

pdegε/`(hi) ≤ deg(P ) · pdegε/`(f) ≤ pdegε(h) · (log b · log `).

Using lower bounds on the probabilistic degree of Majority and MODq, we then get lower bounds
on the probabilistic degree of f .

The non-trivial part is to determine the hard function we use in the reduction and how to carry
out the reduction with a polynomial P of low degree. Both of these are dependent on the structure
of Spec f. We give the details below.

We start with a preliminary lemma.

Lemma 23. Let F be a set of functions mapping [0, n− 1] to {0, 1} such that

• 1− f ∈ F , for all f ∈ F .

• For every i, j ∈ [0, n− 1], i 6= j, there exists f ∈ F such that f(i) = 1, f(j) = 0.

Then there exists S ⊆ F such that |S| ≤ log n and fS =
∏

f∈S f has support size 1.11

Proof. It is enough to prove that for every positive integer k ≤ blog nc, there exists Sk ⊆ F such
that |S| ≤ k and 1 ≤ |supp(fSk

)| ≤ n/2k. We do so by induction on k.
If k = 1, consider any f ∈ F . If |supp(f)| ≤ n/2, then we choose S = {f}; otherwise we

have |supp(1 − f)| ≤ n/2 and then we choose S = {1 − f}. Now consider any k ∈ [blog nc − 1]
and assume the existence of Sk. If |supp(fSk

)| = 1, then we choose Sk+1 = Sk, which satisfies the
required conditions. Now suppose |supp(fSk

)| > 1. Choose any i, j ∈ supp(fSk
), i 6= j. By the

given condition, there exists fi,j ∈ F such that fi,j(i) = 1 and fi,j(j) = 0. If |supp(fi,jfSk
)| ≤

|supp(fSk
)|/2, then |supp(fi,jfSk

)| ≤ n/2k+1 and so we choose Sk+1 = Sk ∪ {fi,j}; otherwise we
have |supp((1− fi,j)fSk

)| ≤ |supp(fSk
)| ≤ n/2k+1 and so we choose Sk+1 = Sk ∪ {1− fi,j}.

At the end of this process, we have a set S such that 1 ≤ |supp(fS)| ≤ n/2blognc < 2 and hence
|supp(fS)| = 1.

Remark 24. The above lemma is also true if we take any interval I = [a, a+m− 1] in Z instead
of [0,m − 1]. This can be checked by further taking the bijection φa : [a, a + m − 1] → [0,m − 1]
defined as φ(x) = x− a, x ∈ [a, a+m− 1].

10This is the point of divergence from Lu’s result. His constraint on the function P was that it have a small
AC0[p] circuit. Our focus is different.

11Here, the product between functions mapping [0, n− 1] to F is defined pointwise.
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4.1 Lower bound on pdegε(g)

We start with a simple consequence of Lemma 23.
Let u : [0,m− 1]→ {0, 1} be any function. Let τm : [0,m− 1]→ [0,m− 1] be the cyclic-shift

operator: that is, τm(i) = i + 1 for i < m − 1, and τm(m − 1) = 0. We say that u is periodic if
u ◦ τ jm = u for some j ∈ [m− 1], and aperiodic otherwise.

Lemma 25. Let F be any field. Fix any u : [0,m− 1]→ {0, 1} that is aperiodic. Let uj = f ◦ τ jm
for j ∈ [0,m− 1]. For any g : [0,m− 1]→ F, there is a P ∈ F[Y0, . . . , Ym− 1] with degree at most
logm such that g = P (u0, . . . , um−1).

Proof. For any i ∈ [0,m − 1], let δi : [0,m − 1] → {0, 1} be the delta function supported only at
i. By linearity, it suffices to show the lemma for g ∈ {δ0, . . . , δm−1}. Further, by symmetry, it
suffices to show that there is at least one i such that δi is a polynomial of degree at most logm in
u0, . . . , um−1.

To prove the latter, we use Lemma 23. Let F = {uj : j ∈ [0,m− 1]}∪{1−uj : j ∈ [0,m− 1]}.
We first note that F satisfies the hypotheses of Lemma 23. Clearly, v ∈ F implies 1 − v ∈ F .
Now consider any i, j ∈ [0,m− 1], i 6= j. If v(i) = v(j) for all v ∈ F , then in particular, we have
uk(i) = uk(j), for all k ∈ [0,m − 1]. This implies u is periodic, which is a contradiction. Thus
there exists v ∈ F such that v(i) = 0, v(j) = 1. So by Lemma 23, there exists S ⊆ F , |S| ≤ logm
such that

∏
v∈S v has support size 1. We have S = {ûi1 , . . . , ûit}, where for every k ∈ [t], ûik is

either uik or 1− uik . So now for k ∈ [t], define

Mk(Y0, . . . , Ym−1) =

{
Yik , ûik = uik
1− Yik , ûik = 1− uik

Then we have the required polynomial as P (Y0, . . . , Ym−1) =
∏

k∈[t]Mk(Y0, . . . , Ym−1). Since
∏

v∈S v

has support size 1, we have P (u0, . . . , um−1) = δi, for some i ∈ [0,m− 1].

We now prove the lower bound for pdegε(g).

Lemma 26. For any ε ∈ [2−n, 1/3],

pdegε(g) ≥


Ω

(√
n log(1/ε)

log2 n

)
, per(g) is not a power of p

Ω

(
min{per(g),

√
n log(1/ε)}

log2 n

)
, per(g) is a power of p.

Proof. By Fact 6 item 1, we know that pdegε(g) = Θ(pdegδ(g)) as long as δ = εΘ(1). In particular,
we may assume without loss of generality that ε ∈ [2−n/10, 1/5].

Let b denote per(g). We know (Observation 2) that b := per(g) ≤ bn/3c.
We have two cases.

b is not a power of p. Define the function u : [0, b − 1] → {0, 1} by u(i) = Spec g(i).
Note that for uj = u ◦ τ jb (j ∈ [0, b − 1]), as defined in the statement of Lemma 25, we have
uj = Spec g(j + i) (the latter is well defined as j + i < 2b < n). Further, as b is the period of g,
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Corollary 13 implies that u 6= uj for all j ∈ [b − 1]. This means that u is aperiodic (as defined
above).

Let q be any prime divisor of b distinct from p. For each i ∈ [0, q − 1], define a function
vi : [0, b− 1]→ {0, 1} by vi(j) = 1 iff j ≡ i (mod q). Lemma 25 implies that for each i, there is a
Pi(Y0, . . . , Yb−1) of degree at most log b such that Pi(u0, . . . , ub−1) = vi.

Fix any i ∈ [0, b − 1] and consider the function Gi : {0, 1}n−b → F defined by Gi(x) =
Pi(g(x0b), g(x0b−11), . . . , g(x01b−1)). Clearly, as all the inputs to Pi are b-periodic symmetric func-
tions, the same holds for the function Gi. Further, for any j ∈ [0, b− 1], we see that

SpecGi(j) = Pi(Spec g(j), . . . , Spec g(j + b− 1))

= Pi(Specu0(j), . . . , Specub−1(j))

=

{
1 if j ≡ i (mod q),
0 otherwise.

This implies that Gi is in fact the MODq,i
n−b function. Note also that q ≤ b ≤ (n− b)/2. This will

be relevant below as we will apply Lemma 9 to one of the functions G0, . . . , Gq−1.
By Fact 6, for any δ > 0, we have that

pdegδ(Gi) ≤ (log b) · max
i∈[0,b−1]

pdegδ/b(g(x0b−i1i))

≤ (log b) · pdegδ/b(g) ≤ (log b) · pdegε(g) ·O
(

log(b/δ)

log(1/ε)

)
.

In particular, setting δ = ε/q, we have pdegε/q(Gi) ≤ pdegε(g) ·O(log2 b) for each i ∈ [0, b− 1].

On the other hand, Lemma 9 implies that for some i ∈ [0, q − 1], pdegε/b(Gi) = Ω(
√
n log(1/ε)).

Putting these together, we obtain the claimed lower bound on pdegε(g).

b is a power of p. In this case, we first choose parameters m, δ with the following properties.

(P1) m ∈ [n− b] and m ≡ (n− b) (mod 2).

(P2) (1/5) ≥ δ ≥ max{ε, 1/2m}.

(P3) 4
√
m log(1/δ) ≤ b.

(P4)
√
m log(1/δ) = Ω(min{b,

√
n log(1/ε)}).

We will show later how to find m, δ satisfying these properties. Assuming this for now,
we first prove the lower bound on pdegε(g). First, we fix some b-periodic symmetric function
G : {0, 1}n−b → {0, 1} so that G agrees with Majn−b on all inputs of weight a ∈ ((n − b)/2 −
2
√
m log(1/δ), (n − b)/2 + 2

√
m log(1/δ)) (it is possible to define such a b-periodic G because of

property (P3) above).
As in the previous case, we can use Lemma 25 to find a polynomial P ∈ F[Y0, . . . , Yb−1] of

degree at most log b so that SpecG(j) = P (Spec g(j), Spec g(j + 1), . . . , Spec g(j + (b− 1))) for all
j ∈ [0, n− b]. (We omit the proof as it is very similar.) This implies that for any x ∈ {0, 1}n−b,

G(x) = P (g(x0b), g(x0b−11), . . . , g(x01b−1)).
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In particular, pdegδ(G) ≤ (log b) · pdegδ/b(g) ≤ O(log2 b) · pdegδ(g).
Now, consider G′ : {0, 1}m → {0, 1} defined by G′(x) = G(x0t1t) where t = (n− b−m)/2 (note

that (P1) implies that (n− b−m) is even). Clearly, G′ agrees with G, and hence Majm, on inputs
of Hamming weight a ∈ (m/2−2

√
m log(1/δ),m/2 + 2

√
m log(1/δ)). By the Bernstein inequality

(Lemma 20), it follows that G′ agrees with Majm on at least a (1− δ) fraction of its inputs. Hence,
by Lemma 8, it follows that pdegδ(G

′) = Ω(
√
m log(1/δ)).

However, we have pdegδ(G
′) ≤ pdegδ(G) which in turn is bounded by O(log2 b) · pdegδ(g) as

argued above. So we obtain

pdegε(g) ≥ pdegδ(g) = Ω

(√
m log(1/δ)

log2 b

)
= Ω

(
min{b,

√
n log(1/ε)}

log2 n

)

where the first inequality follows from the fact that δ ≥ ε (by (P2)), and the second equality
follows from property (P4) above and the fact that b ≤ n.

It remains to show that we can choose m, δ satisfying (P1)-(P4) as above. This we do as follows.

1. If b ≤ 10
√
n, we take m to be the largest integer satisfying (P1) and such that m ≤ b2/100.

The parameter δ is set to 1/5.

2. If b ≥ n/10, we take m to be the largest integer satisfying (P1) and such that m ≤ n/100,
and set δ = max{ε, 2−m}.

3. Finally, if 10
√
n < b < n/10, then we take m = n− b and δ = max{ε, 2−b2/16m}.

In each case, the verification of properties (P1)-(P4) is a routine computation. (We assume
throughout that b is greater than a suitably large constant, since otherwise the statement of
the lemma is trivial.) This concludes the proof.

4.2 Lower bound on pdegε(h)

We start with the special case of thresholds.

Lemma 27. Assume 1 ≤ t ≤ n/2. For any ε ∈ [2−n, 1/3],

pdegε(Thrtn) = Ω(
√
t log(1/ε) + log(1/ε)).

Proof. By Fact 6 item 1, we can assume that ε ∈ [2−n/2, 1/5]. The proof breaks into two cases
depending on the relative magnitudes of ε and 2−t.

Consider the case when ε ≥ 1/2t. In this case, it suffices to show that pdegε(Thrtn) = Ω(
√
t log(1/ε)).

Note that Maj2t−1(x) = Thrt2t−1(x) = Thrtn(x0n−2t+1) for any x ∈ {0, 1}2t−1. Therefore, we have
by Lemma 8 that

pdegε(Thrtn) ≥ pdegε(Maj2t−1) = Ω(
√
t log(1/ε)).

Now, consider the case when ε < 2−t. Now, it suffices to show that pdegε(Thrtn) = Ω(log(1/ε)).
Note that we have ORdn/2e(x) = Thr1

dn/2e(x) = Thrtn(x1t−10bn/2c−t+1), and so the lemma is implied
by the following statement. For any positive integer m and ε ∈ [2−m, 1/3]

pdegε(ORm) = Ω(log(1/ε)). (4)
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While the above is possibly folklore, we don’t know of a reference with a proof, so we give one
here. Assume m, ε as above and let D denote pdegε(ORm). By setting some bits to 0, we also get
pdegε(ORm1) ≤ D where m1 = blog(1/ε)− 1c. Fix such a probabilistic polynomial P of degree at
most D for ORm1 . We have for every x ∈ {0, 1}m1 ,

Pr
P

[P(x) 6= ORm1(x)] ≤ ε <
1

2m1
.

By a union bound, there is some polynomial P in the support of the probability distribution
underlying P that agrees with the function ORm1 everywhere. However, the unique multilinear
polynomial representing ORm1 has degree m1. Hence, we see that deg(P) ≥ deg(P ) = m1 =
Ω(log(1/ε)) concluding the proof of (4).

We now prove the lower bound on pdegε(h) from Theorem 4.

Lemma 28. Assume B(h) ≥ 1. Then, ε ∈ [2−n, 1/3],

pdegε(h) = Ω

(√
B(h) log(1/ε) + log(1/ε)

log n

)
.

Proof. As in Lemma 26, we can assume that ε ∈ [2−n/10, 1/5].
By Observation 2, we have b := B(h) ≤ dn/3e and further, that either Spech(b − 1) = 1 or

Spech(n− b+ 1) = 1. We assume that Spech(b− 1) = 1 (the other case is similar).
Let m = bn/6c and t = db/3e. Note that t ≤ m.
For i ∈ [0, t− 1], define hi ∈ sBm+t by

hi(x) = h(x1b−t+i0n−m−b−i).

Then for every i ∈ [0, t− 1], we have Spechi = yi10m+i+1, for some yi ∈ {0, 1}t−1−i. By standard
linear algebra, it follows that the vector 1t0m+1 is in the span of the vectors Spechi (i ∈ [0, t− 1]).
It follows that we can write 1 − Thrtm+t =

∑t−1
i=0 αihi for some choice of α0, . . . , αt−1 ∈ F. So we

have
pdegε(Thrtm+t) ≤ max

i
pdegε/t(hi) ≤ pdegε/t(h) ≤ O(log b) · pdegε(h).

Lemma 27 now implies the lower bound.

4.3 Lower bound on pdegε(f)

We start with a slightly weaker lower bound on pdegε(f) that is independent of h.

Lemma 29. For any ε ∈ [2−n, 1/3],

pdegε(f) ≥


Ω

(√
n log(1/ε)

log2 n

)
if per(g) > 1 and not a power of p,

Ω

(
min{
√
n log(1/ε),per(g)}

log2 n

)
if per(g) a power of p.
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Proof. Similar to Lemma 26, we may assume that ε ∈ [2−n/100, 1/5].
The proof of this lemma splits into two cases depending on the magnitude of b := per(g). Let

n1 = n− 2dn/3e.
Assume first that b ≤ bn1/3c. Define f ′ ∈ sBn1 by f ′(x) = f(x0dn/3e1dn/3e). By our choice of

the function g, the function f ′ is also a function with period b. Now, the proof of Lemma 26 shows
that pdegε(f

′) is Ω̃(
√
n log(1/ε)) if b > 1 and not a power of p, and Ω̃(min{

√
n log(1/ε), b}) if b

is a power of p. The same lower bound immediately applies to f also, and hence the lemma is
proved in this case.

From now on, we assume that b > m := bn1/3c. In particular, this implies that there is no
periodic symmetric function in sBn with period at most m that agrees with f on inputs of weight
in I := [dn/3e, b2n/3c]. Thus, for each k ∈ [m], there exist rk ∈ I such that rk + k ∈ I and
Spec f(rk) 6= Spec f(rk + k).

Now, define a set of functions from sB3m as follows. For each i, j ∈ [m + 1, 2m] with i < j,
define fi,j(x) as follows. Set k = j − i. For rk as defined above, let

fi,j(x) = f(x1rk−i0n−3m−rk+i). (5)

The parameters above are chosen so that Spec fi,j(i) = Spec f(rk) and Spec fi,j(j) = Spec f(rk+k).
Consequently, we have Spec fi,j(i) 6= Spec fi,j(j). Let ui,j : [m + 1, 2m] → {0, 1} denote the
restriction of the function Spec fi,j to the interval [m + 1, 2m]. We denote by U the set {ui,j, 1 −
ui,j | m+ 1 ≤ i < j ≤ 2m}.

By Lemma 23, we know that there is a subset U ′ ⊆ U such that s := |U ′| = O(logm) and∏
u∈U ′ u has support {a} for some a ∈ [m+1, 2m]. Assume that U ′ = {ûi1,j1 , . . . , ûis,js} where each

ûit,jt is either uit,jt or 1− uit,jt for t ∈ [s].

Define f̂it,jt to be fit,jt if ûit,jt = uit,jt , and 1 − fit,jt otherwise. Let F ′ = {f̂it,jt | t ∈ [s]}. It
follows from the properties of U ′ that G :=

∏
F∈F ′ F ∈ sB3m satisfies

SpecG(a′) =

{
1 if a′ = a,
0 if a′ ∈ [m+ 1, 2m] \ {a}.

We will now use G to construct the Majority function on Θ(m) inputs. We assume that
a ≤ 3m/2 (the other case is similar). Let m1 = bm/2c and define Gi ∈ sBm1 for i ∈ [0,m1] by

Gi(x) = G(x1a−i03m−a+i−m1).

Note that SpecGi = yi10m1−i−1 for some yi ∈ {0, 1}i. In particular, the vectors SpecGi ∈ {0, 1}m1

are linearly independent and hence span Fm1+1. As a result, we can write Spec Majm1
=
∑

i=0 αi ·
(SpecGi) for some choice of α0, . . . , αm1 ∈ F. Equivalently, we have Majm1

=
∑m1

i=0 αiGi.
This implies that

pdegε(Majm1
) ≤ max

i∈[0,m1]
pdegε/m1

(Gi) ≤ pdegε/m(G).

The function G in turn is a product of s = O(logm) many functions from F ′. By (5), each
f ′ ∈ F ′ satisfies pdegδ(f

′) ≤ pdegδ(f) for any δ > 0. Hence, we have

pdegε(Majm1
) ≤ pdegε/m(G)

≤ O(logm) · max
m+1≤i<j≤2m,f ′∈F ′

pdegε/(m logm)(f
′)

≤ O(logm) · pdegε/(m logm)(f) ≤ O(log2m) · pdegε(f).
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As ε ≥ 2−n/100 ≥ 2−m1 , Lemma 8 implies that pdegε(Majm1
) = Ω(

√
m1 log(1/ε)) = Ω(

√
n log(1/ε)).

Along with the above inequality, this implies the desired lower bound on pdegε(f).

We are now ready to prove the final lower bound on pdegε(f).

Lemma 30. For any ε ∈ [2−n, 1/3],

pdegε(f) ≥


Ω̃(
√
n log(1/ε)) if per(g) > 1 and not a power of p,

Ω̃(min{
√
n log(1/ε), per(g)}) if per(g) a power of p and B(h) = 0,

Ω̃(min{
√
n log(1/ε), per(g) otherwise.

+
√
B(h) log(1/ε) + log(1/ε)})

Proof. Lemma 29 already implies the result in the case that any of the following conditions hold.

• per(g) is not a power of p, or

• per(g) is a power of p and per(g) ≥
√
n log(1/ε), or

• B(h) = 0.

So from now, we assume that per(g) is a power of p upper-bounded by
√
n log(1/ε) and that

B(h) ≥ 1. In this case, Lemma 29 shows that pdeg(f) ≥ Ω̃(per(g)). On the other hand, since

B(h) ≤ n and ε ≥ 2−n, the lower bound we need to show is Ω̃(per(g)+
√
B(h) log(1/ε)+log(1/ε)).

By Lemma 28, it suffices to show a lower bound of Ω̃(per(g) + pdegε(h)).
The analysis splits into two simple cases based on the relative magnitudes of per(g) and

pdegε(h).
Assume first that pdegε(h) ≤ 4 · per(g). In this case, we are trivially done, because we already

have pdeg(f) = Ω̃(per(g)), which is Ω̃(pdeg(g) + pdegε(h)) as a result of our assumption.
Now assume that pdegε(h) > 4 · per(g). We know that f = g ⊕ h and hence h = f ⊕ g. Hence,

we have

pdegε(h) ≤ 2(pdegε/2(f) + pdegε/2(g)) ≤ O(pdegε(f)) + 2 · per(g),

where the first inequality is a consequence of Fact 6 item 2 and the second is a consequence of
Fact 6 item 1 and Theorem 3. The above yields

pdegε(f) = Ω((pdegε(h)− 2 · per(g))) = Ω(pdegε(h)) = Ω(per(g) + pdegε(h)).

This finishes the proof.
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