
Semi-Algebraic Proofs, IPS Lower Bounds and the τ -Conjecture:

Can a Natural Number be Negative?∗†

Yaroslav Alekseev‡ Dima Grigoriev§ Edward A. Hirsch¶ Iddo Tzameret‖

Abstract

We introduce the binary value principle which is a simple subset-sum instance expressing that
a natural number written in binary cannot be negative, relating it to central problems in proof
and algebraic complexity. We prove conditional superpolynomial lower bounds on the Ideal Proof
System (IPS) refutation size of this instance, based on a well-known hypothesis by Shub and
Smale about the hardness of computing factorials, where IPS is the strong algebraic proof system
introduced by Grochow and Pitassi [26]. Conversely, we show that short IPS refutations of this
instance bridge the gap between sufficiently strong algebraic and semi-algebraic proof systems.
Our results extend to full-fledged IPS the paradigm introduced in Forbes et al. [18], whereby lower
bounds against subsystems of IPS were obtained using restricted algebraic circuit lower bounds,
and demonstrate that the binary value principle captures the advantage of semi-algebraic over
algebraic reasoning, for sufficiently strong systems. Specifically, we show the following:

Conditional IPS lower bounds: The Shub-Smale hypothesis [47] implies a superpolynomial
lower bound on the size of IPS refutations of the binary value principle over the rationals defined
as the unsatisfiable linear equation

∑n

i=1
2i−1xi = −1, for boolean xi’s. Further, the related

τ -conjecture [47] implies a superpolynomial lower bound on the size of IPS refutations of a
variant of the binary value principle over the ring of rational functions. No prior conditional
lower bounds were known for IPS or for apparently much weaker propositional proof systems
such as Frege.1

Algebraic vs. semi-algebraic proofs: Admitting short refutations of the binary value princi-
ple is necessary for any algebraic proof system to fully simulate any known semi-algebraic proof
system, and for strong enough algebraic proof systems it is also sufficient. In particular, we
introduce a very strong proof system that simulates all known semi-algebraic proof systems (and
most other known concrete propositional proof systems), under the name Cone Proof System
(CPS), as a semi-algebraic analogue of the ideal proof system: CPS establishes the unsatis-
fiability of collections of polynomial equalities and inequalities over the reals, by representing
sum-of-squares proofs (and extensions) as algebraic circuits. We prove that IPS is polynomially
equivalent to CPS iff IPS admits polynomial-size refutations of the binary value principle (for
the language of systems of equations that have no 0/1-solutions), over both Z and Q.

∗A preliminary report on parts of this work was delivered at Dagstuhl Proof Complexity meeting 2018.
https://materials.dagstuhl.de/files/18/18051/18051.IddoTzameret.Slides.pptx

†The research presented in Section 3 is supported by Russian Science Foundation (project 16-11-10123).
‡Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia, and Chebyshev Laboratory at St. Pe-

tersburg State University
§CNRS, Mathematiques, Universite de Lille, Villeneuve d’Ascq, 59655, France.

http://en.wikipedia.org/wiki/Dima_Grigoriev
¶Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia. http://logic.pdmi.ras.ru/~hirsch
‖Department of Computer Science, Royal Holloway, University of London. Iddo.Tzameret@rhul.ac.uk.

http://www.cs.rhul.ac.uk/home/tzameret
1Though simple, the binary value principle is not a direct translation of a boolean formula, hence, similar to [18]

and other results on algebraic proofs (e.g., Razborov [44]), IPS lower bounds on this principle do not necessarily entail
lower bounds for Frege or its subsystems.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 142 (2019)

https://materials.dagstuhl.de/files/18/18051/18051.IddoTzameret.Slides.pptx
http://en.wikipedia.org/wiki/Dima_Grigoriev
http://logic.pdmi.ras.ru/~hirsch
http://www.cs.rhul.ac.uk/home/tzameret

Contents

Contents 2

1 Introduction 1

1.1 Background . 2
1.2 Our Results and Techniques . 5

1.2.1 Lower Bounds . 6
1.2.2 Algebraic versus Semi-Algebraic Proofs . 7

1.3 Conclusions . 10
1.4 Relation to other Work . 11

2 Preliminaries 12

2.1 Notation . 12
2.2 Algebraic Circuits . 12
2.3 The τ -Conjecture and Shub-Smale Hypothesis . 13
2.4 Basic Proof Complexity . 14
2.5 Algebraic Proofs . 15

2.5.1 Conventions and Notations for IPS Proofs . 16
2.6 Semi-Algebraic Proofs . 17

2.6.1 Dynamic Positivstellensatz . 18

3 Conditional IPS Lower Bounds 19

3.1 IPS Lower Bounds under Shub-Smale Hypothesis . 19
3.2 IPS over Rational Functions and the τ -Conjecture . 23

3.2.1 Complexity Considerations . 24
3.2.2 Upper Bound . 24
3.2.3 Lower Bound . 25

4 The Cone Proof System 26

4.1 Basic Properties of CPS and Simulations . 29
4.1.1 CPS Simulates IPS . 30
4.1.2 CPS Simulates Positivstellensatz and SoS . 32
4.1.3 CPS Simulates LS∞

∗,+ for CNFs Written as Inequalities 32

5 Reasoning about Bits within Algebraic Proofs 33

5.1 Basic Two’s Complement Arithmetic . 34
5.2 Extracting Bits and the Main Binary Value Lemma . 37

6 Algebraic versus Semi-Algebraic Proof Systems 43

6.1 Proof of Thm. 6.1 . 45
6.2 Effective Simulation of CPS Refutations with Inequalities . 49

A Basic Reasoning in IPS 50

References 52

1 Introduction

This work connects three separate objects of study in computational complexity: algebraic proof
systems, semi-algebraic proof systems and algebraic circuit complexity. The connecting point is a
subset-sum instance expressing that the value of a natural number given in binary is nonnegative.
We will show that this instance captures the advantage of semi-algebraic reasoning over algebraic
reasoning in the regime of sufficiently strong proof systems, and is expected to be hard even for
very strong algebraic proof systems. We begin with a general discussion about proof complexity,
and then turn to algebraic and semi-algebraic proofs and their inter-relations, and the connection
between circuit lower bounds and proof-size lower bounds.

Narrowly construed, proof complexity can be seen as a stratification of the NP vs. coNP question,
whereby one aims to understand the complexity of stronger and stronger propositional proof systems
as a gradual approach towards separating NP from coNP (and hence, also P from NP). This mirrors
circuit complexity in which different circuit classes are analyzed in the hope to provide general
super-polynomial circuit lower bounds. Broadly understood however, proof complexity serves as a
way to study the computational resources required in different kind of reasoning, different algorithmic
techniques and constraint solvers, as well as providing propositional analogues to weak first-order
theories of arithmetic.

Algebraic proof systems have attracted immense amount of work in proof complexity, due to
their simple nature, being a way to study the complexity of computer-algebra procedures such as the
Gröbner basis algorithm, and their connection to different fragments of logical propositional proof
systems with counting gates. Beginning with the fairly weak Nullstellensatz refutation system by
Beame et al. [3] and culminating in the very strong Ideal Proof System by Grochow and Pitassi [26],
many algebraic proof systems and variants have been studied. In such systems one basically operates
with polynomial equations over a field using simple algebraic derivation rules such as additions of
equations and multiplication of an equation by a variable, where variables are usually meant to range
over {0, 1} values.

Impagliazzo, Pudlák and Sgall [30], following Razborov [44], showed that the polynomial calculus,
which is the standard dynamic algebraic proof system introduced in [12], requires exponential-size
refutations (namely, those using an exponential number of monomials) for the simple symmetric
unsatisfiable subset-sum instance x1 + · · · + xn = n + 1. Note that refuting (that is, showing the
unsatisfiability of) a linear equation

∑
i αixi = β in which the variables xi are boolean, establishes

that there is no subset of the αi numbers that sums up to β, and hence is considered to be a refutation
of a subset-sum instance. Forbes et al. [18] showed that this symmetric subset-sum instance and its
variants are hard for different subsystems of the very strong IPS algebraic proof system. Loosely
speaking, IPS is a static Nullstellensatz refutation in which proof size is measured by algebraic
circuit complexity instead of sparsity (that is, monomial size). In other words, IPS proofs are
written as algebraic circuits, and thus can tailor the advantage that algebraic circuits have over
sparse polynomials (somewhat reminiscent to the way Extended Frege can tailor the full strength of
boolean circuits in comparison to resolution which operates merely with clauses).

The realm of semi-algebraic proof systems has emerged as an equally fruitful subject as alge-
braic proofs. Semi-algebraic proofs have been brought to the attention of complexity theory from
optimization [35, 34] by the works of Pudlák [42] and Grigoriev and Vorobojov [25] (cf. [24]), and
more recently, through its connection to approximation algorithms with the work of Barak et al. [2]
(cf. [36] and the new excellent survey by Fleming et al. [17]). While algebraic proofs derive poly-
nomials in the ideal of a given initial set of polynomials, semi-algebraic proofs extend it to allow
deriving polynomials also in the cone of the initial polynomials (informally a cone is an “ideal that
preserves positive signs”), hence potentially utilizing a stronger kind of reasoning. In particular [2]

1

considered the sum-of-squares refutation system (SoS for short). What makes SoS proofs important,
for example to polynomial optimization, is the fact that the existence of a degree-d SoS certificate
can be formulated as the feasibility of a semidefinite program (SDP), and hence can be solved in
polynomial time. Berkholz [4] showed interestingly that in the regime of weak proof systems, even
static semi-algebraic proofs, such as SoS, can simulate dynamic algebraic proof systems such as poly-
nomial calculus. Grigoriev [22] showed that in this weak regime semi-algebraic proofs are in fact
strictly stronger (with respect to degrees) than algebraic proofs, where the separating instances are
simple polynomials (for example, symmetric subset sum instances). However, it was not known in
general (e.g., for strong systems) whether semi-algebraic reasoning is strictly stronger than algebraic
reasoning.

Another established tradition in proof complexity is to seek synergies between proofs and circuit
lower bounds. In particular, proofs-to-circuits transformations in the form of feasible interpolation,
and other close concepts have been pivotal in the search for proof complexity lower bounds, as
well as in circuit lower bounds themselves (see Göös et al. [20] for a recent example). In fact, the
conception of IPS itself was motivated by the attempt to show that very strong proof complexity
lower bounds would result in algebraic complexity class separations such as VP 6= VNP (see [26]
and the survey [41]). Li et al. [33] as well as Forbes et al. [18] went in the other direction and
showed that certain restricted algebraic circuit lower bounds imply size lower bounds on subsystems
of IPS. In particular, [18] devised a simple framework by which lower bounds on (subsystems of)
IPS refutations are reduced to algebraic circuit lower bounds. [18] used this framework to establish
lower bounds on subsystems of IPS refutations of variants of symmetric subset-sum instances when
the IPS refutations are written as read once algebraic branching programs and multilinear formulas.
But lower bounds on the size of full IPS refutations were not known.

1.1 Background

Algebraic Circuits. Algebraic circuits over some fixed chosen field or ring R compute formal
polynomials in R[x1, . . . , xn] via addition and multiplication gates, starting from the input variables
x and constants from R. Formally, an algebraic circuit C is a finite directed acyclic graph where
edges are directed from leaves (in-degree 0 nodes) towards the output (out-degree 0 node). Input
nodes are leaves that are labeled with a variable from x1, . . . , xn; every other leaf is labelled with
a scalar in R. All the other nodes have in-degree two and are labeled with either + or ×. A leaf
is said to compute the variable or scalar that labels itself. A + (or ×) gate is said to compute
the addition (product, resp.) of the polynomials computed by its incoming nodes. C computes the
polynomial computed by its output node. The size of an algebraic circuit C is the number of nodes
in it denoted |C|, and the depth of a circuit is the length of the longest directed path in it. Note that
the size of a field coefficient in this setting is 1 irrespective of the value of the coefficient. Sometimes
it is important to consider the size of the coefficients appearing in the circuit (for instance, when
we are concerned with the computational complexity of problems pertaining to algebraic circuits we
need to have an efficient way to represent the circuits as bit strings). For this purpose we define
a constant-free algebraic circuit to be an algebraic circuit in which the only constants used are
0, 1,−1. Other constants must be built up using algebraic operations, which then count towards the
size of the circuit. Constant-free algebraic circuit computes a polynomial over Z, but when we allow
for constant sub-circuits (and only for constant sub-circuits) to contain division gates (in Sect. 3) we
can also compute polynomials over Q with constant-free circuits.

The τ-Conjecture and Shub-Smale Hypothesis. Here we explain several important assump-
tions and conjectures that are known to lead to strong complexity lower bounds and complexity class

2

separations, all of which will play a role in our work (cf. [48]).

Definition 1 (τ -function [47]). Let f ∈ Z[x] be a multivariate polynomial over Z. Then τ(f) is the
minimal size of a constant-free algebraic circuit that computes f (that is, a circuit where the only
possible constants that may appear on leaves are 1, 0,−1).

When we focus on constant polynomials, that is, numbers n ∈ Z, τ(n) is the minimal-size circuit
that can construct n from 1 using additions, subtractions and multiplications (but not divisions;
note that subtraction of a term A can be constructed by (−1) ·A). We say that a family of (possibly
constant) polynomials (fn)n∈N is easy if τ(fn) = logO(1) n, for every n > 2, and hard otherwise.

A simple known upper bound on τ is this [16]: for every integer m > 2, τ(m) ≤ 2 logm. This is
shown by considering the binary expansion of m. For every integer m, the following lower bound is
known τ(m) ≥ log logm [16]. It is not hard to show that (2n)n∈N is easy. For instance, if n is a power
of 2 then τ(2n) = log n + 3, where log denotes the logarithm in the base 2. We start with 3 nodes

to build 2 = 1 + 1 and then by log n repeated squaring we arrive at ((22)2)2 . . .)2 = 22
logn

= 2n. On
the other hand, it is known that (22

n
)n∈N is hard. While (2n)n∈N is easy and (22

n
)n∈N is hard, it is

not known whether (n!)n∈N is easy or hard, and as seen below, showing the hardness of τ(mn · n!),
for every sequence (mn · n!)n∈N with mn ∈ Z any nonzero integers, has very strong consequences.

Let PK and NPK be the deterministic and nondeterministic versions of Turing machines in the
Blum-Shub-Smale model [7], respectively (see Sect. 2.3). Further, let VP

0 be the “Valiant” class
consisting of multivariate polynomial-families (fn(x))n∈N of polynomial degrees that can be computed
by constant-free (and division-free) polynomial-size circuits, and let VNP0 be the constant-free (and
division-free) “Valiant NP class” (see definitions in Sect. 2.2). The following is a condition put forth
by Shub and Smale [47] (cf. [48]) towards separating PC from NPC, for C the complex numbers:

Shub-Smale Hypothesis ([47, 48]). For every nonzero integer sequence (mn)n∈N, the sequence
(mn · n!)n∈N is hard.

Shub and Smale, as well as Bürgisser, showed the following consequences of the Shub-Smale
hypothesis:

Theorem 1.1 ([47, 8]). 1. If the Shub-Smale hypothesis holds then PC 6= NPC.

2. If the Shub-Smale Hypothesis holds then VP
0 6= VNP

0. In other words, Shub-Smale Hypothesis
implies that the permanent does not have polynomial size constant-free algebraic circuits.

It is open whether the Shub-Smale hypothesis holds. What is known is that if Shub-Smale
hypothesis does not hold then factoring of integers can be done in (nonuniform) polynomial time
(cf. Blum et al. [6, p.126] and [11]).

Another related important assumption in algebraic complexity is the τ -conjecture. Let f ∈ Z[x]
be a univariate polynomial with integer coefficients, denote by z(f) the number of distinct integer
roots of f .

τ-Conjecture ([47, 48]). There is a universal constant c, such that for every univariate polynomial
f ∈ Z[x]: (1 + τ(f))c ≥ z(f) .

The consequences of the τ -conjecture are similar to the Shub-Smale Hypothesis:

Theorem 1.2 ([47, 8]). If the τ -conjecture holds then both PC 6= NPC and VP
0 6= VNP

0 hold.

3

Algebraic Proof Systems. A propositional proof system (following [15]) is a polynomial-time
predicate V (π, x) that verifies purported proofs π (encoded naturally in binary) for propositional
formulas x (also encoded in binary), such that ∃π (V (π, x) = true) iff x is a tautology. In the setting
of algebraic proof systems, one can use a broader definition of a proof system: instead of V (π, x)
being a polynomial-time predicate it is a coRP predicate (since polynomial identity testing is in
coRP), and instead of providing proofs for propositional tautologies the system establishes proofs (in
fact refutations) for sets of polynomial equations with no {0, 1} solutions.

Grochow and Pitassi [26], following [39], suggested the following algebraic proof system which
is essentially a Nullstellensatz proof system [3] written as an algebraic circuit (this was showed in
[18]). A proof in the Ideal Proof System is given as a single polynomial. We provide below the
boolean version of IPS (which includes the boolean axioms), namely the version that establishes the
unsatisfiability over 0-1 of a set of polynomial equations. (In what follows we follow the notation in
[18]):

Definition 2 ((boolean) Ideal Proof System (IPS), Grochow-Pitassi [26]). Let f1(x), . . . , fm(x), p(x)
be a collection of polynomials in F[x1, . . . , xn] over the field F. An IPS proof of p(x) = 0 from

{fj(x) = 0}mj=1, showing that p(x) = 0 is semantically implied from the assumptions {fj(x) = 0}mj=1

over 0-1 assignments, is an algebraic circuit C(x, y, z) ∈ F[x, y1, . . . , ym, z1, . . . , zn] such that (the
equalities in what follows stand for formal polynomial identities2):

1. C(x, 0, 0) = 0; and

2. C(x, f1(x), . . . , fm(x), x21 − x1, . . . , x
2
n − xn) = p(x).

The size of the IPS proof is the size of the circuit C. If C is assumed to be constant-free, we refer
to the size of the proof as the size of the constant-free IPS proof. The variables y, z are called
the placeholder variables since they are used as placeholders for the axioms. An IPS proof C(x, y, z)
of 1 = 0 from {fj(x) = 0}j∈[m] is called an IPS refutation of {fj(x) = 0}j∈[m] (note that in this
case it must hold that {fj(x) = 0}mj=1 have no common solutions in {0, 1}n).

Notice that the definition above adds the equations {x2i − xi = 0}ni=1, called the set of boolean
axioms denoted x2−x, to the system {fj(x) = 0}mj=1. This allows to refute over {0, 1}n unsatisfiable
systems of equations. Also, note that the first equality in the definition of IPS means that the poly-
nomial computed by C is in the ideal generated by y, z, which in turn, following the second equality,
means that C witnesses the fact that 1 is in the ideal generated by f1(x), . . . , fm(x), x21−x1, . . . , x

2
n−xn

(the existence of this witness, for unsatisfiable set of polynomials, stems from the Nullstellensatz the-
orem [3]). In order to use IPS as a propositional proof system for refuting unsatisfiable CNF formulas
we fix the usual encoding of clauses as algebraic circuits (Definition 11).

Semi-Algebraic Proofs. The Positivstellensatz proof system, as defined by Grigoriev and Vorobo-
jov [25], is a static refutation system for establishing the unsatisfiability over the reals R of a
system consisting of both polynomial equations F = {fi(x) = 0}i∈I and polynomial inequalities
H = {hj(x) ≥ 0}j∈J , respectively. In Positivstellensatz one essentially derives a polynomial in the
cone of the initial equalities and inequalities, in contrast to algebraic proofs in which one derives
polynomial in the ideal of the initial polynomial equations. Loosely speaking, the cone serves as a
non-negative closure of a set of polynomials, or in other words as a “positive ideal” (see Definition 12
and discussion in Sect. 2.6).

We will distinguish between the real Positivstellensatz in which variables are meant to range over
the reals and boolean Positivstellensatz in which variables range over {0, 1}.

2That is, C(x, 0, 0) computes the zero polynomial and C(x, f1(x), . . . , fm(x), x2
1 − x1, . . . , x

2
n − xn) computes the

polynomial p(x).

4

Definition 3 (real Positivstellensatz proof system (real PS) [25]). Let F := {fi(x) = 0}i∈I be
a set of polynomial equations and let H := {hj(x) ≥ 0}j∈J be a set of polynomial inequalities,
where all polynomials are from R[x1, . . . , xn]. Assume that F , H have no common real solutions. A
Positivstellensatz refutation of F , H is a collection of polynomials {pi}i∈I and {si,ζ}i,ζ (for i ∈ N,
ζ ⊆ J and Iζ ⊆ N) in R[x1, . . . , xn] such that the following formal polynomial identity holds:

∑

i∈I

pi · fi +
∑

ζ⊆J

∏

j∈ζ

hj ·

∑

i∈Iζ

s2i,ζ

 = −1 . (1)

The monomial size of a Positivstellensatz refutation is the combined total number of monomials

in {pi}i∈I and
∑

i∈Iζ
s2i,ζ , for all ζ ⊆ J , that is,

∑
i∈I |pi|#monomials

+
∑

ζ⊆J

∣∣∣
∑

i∈Iζ
s2i,ζ

∣∣∣
#monomials

.

In order to use Positivstellensatz as a refutation system for collections of equations F and in-
equalities H that are unsatisfiable over 0-1 assignments, we need to include simple so-called boolean
axioms. This is done in slightly different ways in different works (see for example [24, 1]). One way
to do this, which is the way we follow, is the following:

Definition 4 ((boolean) Positivstellensatz proof system (boolean PS)). A boolean Positivstel-

lensatz proof from a set of polynomial equations F , and polynomial inequalities H, is an algebraic
Positivstellensatz proof in which the following boolean axioms are part of the axioms: the poly-
nomial equations x2i − xi = 0 (for all i ∈ [n]) are included in F , and the polynomial inequalities
xi ≥ 0, 1− xi ≥ 0 (for all i ∈ [n]) are included in H.

In this way, F , H have no common 0-1 solutions iff there exists a boolean Positivstellensatz refu-
tation of F , H. Eventually, to define the boolean Positivstellensatz as a propositional proof system
for the unsatisfiable CNF formula we consider CNF formulas to be encoded as polynomial equalities
according to Definition 11. This version is sometimes called propositional Positivstellensatz . As
a default when referring to Positivstellensatz we mean the boolean Positivstellensatz version.

In recent years, starting mainly with the work of Barak, Brandao, Harrow, Kelner, Steurer and
Zhou [2], a special case of the Positivstellensatz proof system has gained much interest due to its
application in complexity and algorithms (cf. [36]). This is the sum-of-squares proof system (SoS),
which is defined as follows:

Definition 5 (sum-of-squares proof system (SoS)). A sum-of-squares proof (SoS for short) is
a Positivstellensatz proof in which in eq. 5 in Definition 13 we restrict the index sets ζ ⊆ J to be
singletons, namely |ζ| = 1, hence, disallowing arbitrary products of inequalities within themselves.
The real, boolean and propositional versions of SoS are defined similar to Positivstellensatz.

1.2 Our Results and Techniques

We consider the following subset-sum instance written as an unsatisfiable linear equation with large
coefficients, expressing the fact that natural numbers written in binary cannot be negative:

Definition 6 (Binary Value Principle BVPn). The binary value principle over the variables
x1, . . . , xn, BVPn for short, is the following unsatisfiable (over {0, 1} assignments) linear equa-
tion:

x1 + 2x2 + 4x3 + · · ·+ 2n−1xn = −1 .

At times we use a more general principle denoted BVPn,M , which we call the generalized binary
value principle: x1 + 2x2 + 4x3 + · · ·+ 2n−1xn = −M, for a positive integer M .

5

1.2.1 Lower Bounds

We show two kinds of conditional super-polynomial lower bounds against IPS proofs. The first is
over the rationals and the integers and the second is over the field of rational functions of univariate
polynomials in the variable y, denoted Q[y] (see Definition 20). We start with the first lower bound.

Theorem (Thm. 3.3). Under the Shub and Smale hypothesis, there are no poly(n)-size constant-free
(boolean) IPS refutations of the binary value principle BVPn over Q.

This result can be viewed as pushing forward to full IPS the paradigm initiated by Forbes et al. [18]
wherein proof complexity lower bound questions were reduced to algebraic circuit size lower bound
questions: an IPS proof written as a circuit from a class C is obtained by reducing the problem to a
lower bound on a polynomial computed in class C. In [18] the IPS lower bounds were unconditional.
For unconditional lower bounds we can only hope to be able to lower bound IPS refutations that are
represented with a restricted circuit class for which we already know lower bounds. In other words,
in this approach we cannot hope to unconditionally prove full IPS lower bounds without first solving
the corresponding circuit lower bound question, namely without providing (explicit) algebraic circuit
lower bounds such as VP 6= VNP.3

Proof sketch of Thm. 3.3: First, we show in Cor. 3.2 that it is enough to consider IPS refutations
over Z instead of Q. An IPS refutation over Z is a proof of a nonzero integer M instead of −1. Let
Sn :=

∑n
i=1 2

i−1xi so that BVP is Sn+1 = 0, and assume that the IPS refutation of BVP is written
as follows (this can be assumed without loss of generality by a result of [18]):

Q(x) · (Sn + 1) +
n∑

i=1

H(x) · (x2i − xi) = M . (2)

Since the IPS refutation is over Z we know in particular that Q(x) is an integer polynomial. Let us
consider now only {0, 1} assignments to eq. 2. Since under {0, 1} assignments the boolean axioms
x2i − xi vanish we get from eq. 2:

Q(x) · (Sn + 1) = M . (3)

Observe that the image of Sn+1 under boolean assignments is the set of all possible natural numbers
between 1 to 2n. In other words, for every number b ∈ [2n], there exists an assignment α ∈ {0, 1}n,
such that (Sn + 1)(α) = b. Since Q(x) is an integer polynomial, it evaluates to an integer under
every {0, 1} assignment. Therefore, by eq. 3 M is a product of every natural number between 1 to
2n. This already brings us close to the conditional lower bound: we assume contra-positively that
there is a polynomial-size constant-free circuit that computes Q(x), which implies that there exists a
polynomial-size constant-free and variable-free circuit that computes M (because fixing any boolean
assignment to the variables we get such a circuit over over Z computing M). We then show that if
there exists a poly(n)-size constant-free circuit for M ∈ Z, such that M is divisible by every number
in [2n], then there exists a poly(n)-size circuit that computes (2n)!.

Consider the poly(n)-size circuit for M2n that is obtained by n repeated squaring of M . Since
M is divided by every natural number in [2n] it is in particular divisible by every prime number in
[2n]. It is possible to show that the power of every prime number in the prime factorisation of (2n)!
is at most 2n, from which we can conclude that M2n is an integer product of (2n)!. We thus obtain
a constant-free poly(n)-size circuit for a nonzero integer product of (2n)!. From this it is easy to

3Though, it should be mentioned that in proof complexity even non-explicit lower bounds are not known, and
will constitute a breakthrough in the field; hence moving from non-explicit (and thus known) circuit lower bounds to
(possibly also non-explicit) proof complexity lower bounds cannot be ruled out entirely.

6

show that for every m with 2n−1 ≤ m ≤ 2n there is a poly(n)-size constant-free circuit computing
a nonzero integer product of m!, hence that sequence (cm ·m!)∞m=1 admits a logO(1)m-size family of
constant-free circuits, in contrast to the Shub-Smale hypothesis.

Rational field lower bounds. Here we prove an IPS lower bound based on the τ -conjecture. Our
lower bound is in fact proved for IPS refutations in which the placeholder variables have individual
degree at most 1, namely the IPS certificate is multilinear in the y-variables. This variant is denoted
IPS-LIN (Definition 21) in Forbes et al. [18], and was proved to be polynomially equivalent to IPS
([18, Theorem 4.4]). Nonetheless, we state the lower bound for IPS-LIN and not IPS because our
IPS refutations are constant-free, and we have not verified that the equivalence of IPS with IPS-LIN
carries over to the model of constant-free refutations (though we believe it does).

Theorem (Thm. 3.9). Suppose a system of polynomial equations F0(x) = F1(x) = F2(x) = · · · =
Fn(x) = 0, Fi ∈ Q(y)[x1, . . . , xn], where F0(x) = y +

∑i=n
i=1 2

i−1xi and Fi(x) = x2i − xi, has an
IPS-LINQ(y) certificate H0(x), . . . , Hn(x), where each Hi(x) can be computed by a Q(y)[x1, . . . , xn]-
algebraic circuit of size poly(n) . Then, the τ -conjecture is false.

We have seen that refuting
∑n

i=1 xi2
i−1 + 1 = 0 is possibly hard for IPS. Moreover, when simu-

lating CPS over Q we may come to any similar inequality
∑n

i=1 xi2
i−1+M = 0 for a positive integer

M . Can we in principle refute them all in an uniform manner?
Actually, we cannot even formulate such a statement over Q, as expressing an inequality

of unbounded range using equalities is hard. (Although we could formulate the negation as∏2n−1
N=0 (

∑n
i=1 xi2

i−1 − N) = 0.) We introduce a system where we can formulate things that are
close to this statement. Namely, this is IPS over Q(y), the field of rational functions of a single vari-
able y. Once we refute

∑n
i=1 xi2

i−1 + y = 0 in this system, we can substitute y in this refutation by
any constant that does not appear in the denominators in the (finite!) proof thus getting a refutation
for all but a finite number of integers. Indeed, this is possible and it would be even efficient for small
coefficients instead of 2i−1. However, the case of exponential coefficients remains hard, now under
the τ -conjecture. We prove this conditional lower bound in Sect. 3.2.

The proof roughly extracts denominators from the refutation and obtains the efficient circuit that
has all n-bit nonnegative integers as its roots and thus cannot exist under τ -conjecture.

1.2.2 Algebraic versus Semi-Algebraic Proofs

We exhibit the importance of the binary value principle by showing that it captures in a manner
made precise the strength of semi-algebraic reasoning in the regime of strong (to very strong) proof
systems, and formally those systems that can efficiently reason about bit arithmetic. Note that
already Frege system can reason about bit arithmetic (see [19] following [9]); however, this alone is
not sufficient to simulate semi-algebraic systems. Specifically, we show that short refutations of the
binary value principle would bridge the gap between very strong algebraic reasoning captured by the
ideal proof system and its semi-algebraic analogue that we introduce in this work, which we call the
Cone Proof System (CPS for short).

Whereas IPS is devised to capture derivations in the ideal of initial given polynomials, CPS
is defined so to exhibit derivations in the cone (Definition 12) of these polynomials. The cone
proof system establishes that a collection of polynomial equations F := {fi = 0}i and polynomial
inequalities H := {hi ≥ 0}i are unsatisfiable over 0-1 assignments (or over real-valued assignments,
when desired). In the spirit of IPS [26] we define a refutation in CPS as a single algebraic circuit.
This circuit computes a polynomial that results from positive-preserving operations such as addition
and product applied between the inequalities H and themselves, as well as the use of nonnegative
scalars and arbitrary squared polynomials. In order to simulate in CPS the free use of equations from

7

F we incorporate in the set of inequalities H the inequalities fi ≥ 0 and −fi ≥ 0 for each fi = 0 in
F (we show that this enables one to add freely products of the polynomial fi in CPS proofs, namely
working in the ideal of F (in addition to working in the cone of H); see Sect. 4.1.1).

We first formalize the concept of a cone as an algebraic circuit. Let C be a circuit and v be
a node in C. We call v a squaring gate if v is a product gate of which two incoming edges are
emanating from the same node.

Definition 7 (y-conic circuit). Let R be an ordered ring. We say that an algebraic circuit C com-
puting a polynomial over R[x, y] is a conic circuit with respect to y, or y-conic for short, if for
every negative constant or a variable xi ∈ x, that appears as a leaf u in C, the following holds: every
path p from u to the output gate of C contains a squaring gate.

Informally, a y-conic circuit is a circuit in which we assume that the y-variables are nonnegative,
and any other input that may be negative (that is, a negative constant or an x-variable) must be
part of a squared sub-circuit.

CPS is defined roughly in the same way as IPS only that instead of circuits we use conic circuits:

Definition 8 ((boolean) Cone Proof System (CPS)). Consider a collection of polynomial equations
F := {fi(x) = 0}mi=1, and a collection of polynomial inequalities H := {hi(x) ≥ 0}ℓi=1, where all
polynomials are from R[x1, . . . , xn]. Assume that the following boolean axioms are included in the
assumptions: F includes x2i − xi = 0, and H includes the inequalities xi ≥ 0 and 1 − xi ≥ 0, for
every variable xi ∈ x. Suppose further that H includes (among possibly other inequalities) the two
inequalities fi(x) ≥ 0 and −fi(x) ≥ 0 for every equation fi(x) = 0 in F (including the equations
x2i − xi = 0). A CPS proof of p(x) from F and H, showing that F ,H semantically imply the
polynomial inequality p(x) ≥ 0 over 0-1 assignments, is an algebraic circuit C(x, y) computing a
polynomial in R[x, y1, . . . , yℓ], such that:4

1. C(x, y) is a y-conic circuit; and

2. C(x,H) = p(x),

where equality 2 above is a formal polynomial identity5 in which the left hand side means that we
substitute hi(x) for yi, for all i = 0, . . . , ℓ. The size of a CPS proof is the size of the circuit C. The
variables y are the placeholder variables since they are used as a placeholder for the axioms. A CPS
proof of −1 from F ,H is called a CPS refutation of F, H.

To refute CNF formulas in CPS we use the algebraic translation of CNFs (Definition 11) into a
set of polynomial equalities (we can equally express CNFs as inequalities; see Prop. 4.13). The real
version of CPS, called real CPS , is defined similar to CPS only without the boolean axioms.

Remark 1.3. Formally, CPS proves only consequences from an initial set of inequalities H and not
equalities F . However, we are not losing any power doing this. First, observe that an assignment
satisfies F , H iff it satisfies H (in the case of boolean CPS an assignment that satisfies either F or H
must be a {0, 1} assignment). Second, we encode equalities fi(x) = 0 ∈ F using the two inequalities
fi(x) ≥ 0 and −fi(x) ≥ 0 in H. As shown in Thm. 4.7 this way we can derive any polynomial in the
ideal of F , and not merely in the cone of F , as is required for equations (and similar to the definition
of SoS), with at most a polynomial increase in size (when compared to IPS).

In contrast to IPS where a short refutation for BVPn would imply strong computational conse-
quences, the binary value principle is trivially refutable in CPS (as well as in SoS):

4Note that formally we do not make use of the assumptions F in CPS, as we assume always that the inequalities
that correspond to the equalities in F are present in H. Thus, the indication of F is done merely to maintain clarity
and distinguish (semantically) between two kinds of assumptions: equalities and inequalities.

5That is, C(x,H) computes the polynomial p(x).

8

Proposition (Prop. 4.1). CPS admits a linear size refutation of the binary value principle BVPn.

We show that IPS and CPS simulate each other if there exist small IPS refutations of the binary
value principle. This provides a characterisation of semi-algebraic reasoning in terms of the binary
value principle. In what follows, IPS⋆Z and CPS⋆Z stand for boolean versions of IPS and CPS, where
both are proof systems for refuting unsatisfiable sets of polynomial equalities (not necessarily CNFs)
and where the ‘⋆’ superscript means that possible values that are computed along the IPS or CPS
proofs (as circuits) are not super-exponential (when the input variables range over {0, 1}), namely,
that the bit-size of these values are polynomial in the proof size (see Sect. 6).

Corollary (BVP characterizes the strength of boolean CPS, Cor. 6.4). 1. Constant-free IPS⋆Z is
polynomially equivalent to constant-free CPS⋆Z iff constant-free IPS⋆Z admits poly(t)-size refuta-
tions of BVPt.

2. Constant-free IPS⋆Q is polynomially equivalent to constant-free CPS⋆Q iff for every positive integer
M constant-free IPS⋆Q admits poly(t, τ(M))-size refutations of BVPt,M .

Proof idea for part 1. (⇐) To show that IPS⋆Z simulates CPS⋆Z assuming short refutations of BVPt

we do the following: let C(x,F) = −1 be the CPS⋆Z refutation of F . Then, as a polynomial identity
C(x,F) = −1 is basically freely provable in IPS⋆Z. We now use the ability of IPS to do efficient bit
arithmetic, that we demonstrate formally in this work. Define VAL(w) = w1+2w2+ . . . 2n−2wn−1−
2n−1wn to be the value of an integer number given by the n boolean bits w in the two’s complement
scheme (where wn is the sign bit). Our main novel technical lemma with respect to bit arithmetic
in algebraic proofs is the following: for any circuit f , IPS has a poly(|f |)-size proof of

VAL (BIT1(f) · · ·BITn(f)) = f, (4)

where BITi(f) is the polynomial that computes the ith bit of the number computed by f as a
function of the variables x to f that range over {0, 1} values. The novelty here is in connecting the
value of a polynomial to its bit vector expressed as a function of the variables.

Denote C(x,F) by C for short. By eq. 4 we have C = VAL (BIT1(C) · · ·BITn(C)) = −1. Since
C is a conic circuit and thus preserves positive signs we can prove that the sign bit BITn(C) = 0.
We are thus left with the need to refute that the value of a positive number written in binary
BIT1(C) · · ·BITn−1(C) is non-negative, which is efficiently provable in IPS⋆Z by assumption.

The relative strength of proof systems. Figure 1 below provides a picture of the relative
strength of algebraic and semi-algebraic proof systems giving the context for our results.

Note that CPS is among the strongest concrete proof systems for boolean tautologies to be
formalized to date: it simulates IPS (Thm. 4.7) which is already considerably strong. Like IPS it
can prove freely polynomial identities (Fact A.1), and so it “subsumes” in this sense polynomial
identities (accordingly, CPS proofs needs the full power of coRP to be verified). It is unclear whether
even ZFC (as a proof system for propositional logic) can simulate CPS (it is not hard to show that
this would imply that polynomial identity testing is in P). Indeed, we are unaware of any concrete
propositional proof system (even those that are only coRP-verifiable) that can simulate CPS.

Grigoriev [22] showed that algebraic proofs like PC cannot simulate semi-algebraic proofs like
SoS because symmetric subset-sum instances such as x1 + · · ·+ xn = −1 require linear degrees (and
exponential monomial size) [30], and Forbes et al. [18] extended these lower bounds on symmetric
subset-sum instances to stronger algebraic proof systems, namely to subsystems of IPS. Our work
(Thm. 3.3) extends this gap further, showing that even the strongest algebraic proof system known to
date IPS cannot fully simulate even a weak proof system like SoS, assuming Shub-Smale hypothesis.

9

CPS

IPS

Polynomial

Calculus

Nullstellensatz

SoS

Positivstellensatz

“Dynamic”

Positivstellensatz

Extended Frege

resolution

constant depth Frege

Frege

Strong
Systems

Very
Strong
Systems

Weak to
Medium
Strength
Systems

Semi-Algebraic Proofs
Systems for sets of
polynomial equations and
inequalities over a field
with 0-1 variables

Algebraic Proofs
Systems for sets of
polynomial
equations over a
field with 0-1
variables

Systems for
propositional logic

Strictly stronger

assuming Shub-

Smale hypothesis

s

s

s

s
s

s

Figure 1: Relative strength of propositional proof
systems (partial). An arrow Q → P means that

P simulates Q. While Q
s
→ P means “strictly

stronger”, i.e., P simulates Q but Q does not sim-
ulate P . Dashed line Q − − − P means that Q
and P are incomparable: P cannot simulate Q
and Q cannot simulate P . The three colored-
shaded vertical blocks indicate proof systems for
languages of increasing expressiveness (from right
to left): systems for propositional logic, for poly-
nomial equations with 0/1 variables (including en-
codings of propositional logic) and both polynomial
equations and inequalities with 0/1 variables. The
informal qualifications of strength mean roughly
the following: weak systems are those we know
super-polynomial lower bounds against, and their
strength and limitations are quite well understood
via feasible interpolation results and random CNFs
lower bounds. Medium strength systems are those
with some known lower bounds, but their strength
is less well understood; e.g., feasible interpolation
is not known for them. Strong systems are those
with no known lower bounds. Very strong proof
systems are those strong systems whose verification
is done in coRP, and they can prove freely any poly-
nomial identity (written as an algebraic circuit).

Exponential size lower bounds for semi-algebraic proof systems are known since [24], and such
bounds for propositional versions of static Lovasz-Schrijver and constant degree Positivstellensatz
systems were proved in [31]. Beame, Pitassi and Segerlind [38] started the study of lower bounds for
semantic threshold systems, that include in particular tree-like Lovász-Schrijver systems. This line
of research culminated in [21], where strong lower bounds were proved using critical block sensitivity,
a notion introduced in [28].

1.3 Conclusions

This work demonstrates that a simple subset-sum principle, written as a linear equation, captures,
in the boolean case (i.e., when variables range over {0, 1}), the apparent advantage of semi-algebraic
proofs over algebraic proofs in the following sense: it is necessary for any boolean algebraic proof
system that simulates full boolean semi-algebraic proofs to admit short refutations of the principle;
and if the algebraic proof system is strong enough to be able to efficiently perform basic bit arithmetic,
this condition is also sufficient to achieve such a simulation. To formalize these results we introduce
a very strong proof system CPS that derives polynomials in the cone of initial axioms instead of in
the ideal.

We show that CPS is expected to be stronger than even the very strong algebraic Ideal Proof
System (IPS) formulated by Grochow and Pitassi in [26], since our subset-sum principle is hard for
IPS assuming the hardness of computing factorials [47]. We establish a related lower bounds on
IPS refutation-size based on the τ -conjecture [47]. These lower bounds push forward the paradigm
introduced by Forbes et al. [18]: whereas [18] showed how to obtain restricted IPS lower bounds
for certain subset-sum instances, based on known lower bounds against restricted circuit classes, we
show how to obtain general IPS lower bounds based on specific hardness assumptions from algebraic

10

complexity.6

1.4 Relation to other Work

Bit arithmetic and semi-algebraic proofs. In Sect. 5 we show how to reason about the bits
of polynomial expressions within algebraic proofs. Bit arithmetic in proof complexity has already
been used in Frege system (see [19] following [9]). Independently of our work, Impagliazzo et al. [29]
considered the possibility to effectively simulate weak semi-algebraic proofs using medium-strength
algebraic proofs. They have also considered expressing and reasoning with the bits of algebraic
expressions, as we do in Sect. 5. However, their proof methods and results are fundamentally different
from ours: first, they work in the weak proof systems regime, while we work in the strong systems
regime. I.e., they aim to effectively simulate weak proof systems like constant degree sum-of-squares
(in which polynomials are written as sum of monomials), while we aim to simulate very strong proof
systems such as CPS (essentially, Positivstellensatz written as algebraic circuits). Second, they use
a different way to express bits in their work. This is done in order to be able to reason about bits
with bounded-depth algebraic circuits, while we do not need this mechanism. Third, they show only
effective simulation and not simulation (namely, before the algebraic proofs can simulate a system of
polynomial equations or inequalities, the equations and inequalities need to be pre-processed, that
is, translated “off-line“ to their bit-vector representation). Fourth, they do not consider the VAL
function nor the binary value principle, while our work shows that essentially this is a necessary
ingredient in a full simulation of strong semi-algebraic proof systems. In fact, we have the following:

Assuming the Shub-Smale hypothesis, our results rule out the possibility that even a very strong
algebraic proof system such as IPS simulates (in contrast to the weaker notion of an effective simu-
lation) even a weak semi-algebraic proof system like constant degree SoS measured by monomial size.
In other words, assuming Shub-Smale hypothesis, we rule-out the possibility that the arguments in
[29] (or any other argument) can yield a simulation of constant degree SoS by algebraic proofs oper-
ating with constant depth algebraic circuits (depth-d PC in [29]). It remains however open whether
depth-d PC simulates constant degree SoS for the language of unsatisfiable CNF formulas or for
unsatisfiable sets of linear equations with small coefficients.

Subset-sum lower bounds in proofs complexity. Different instances of the subset sum problem
have been considered as hard instances for algebraic proof systems. For example, Impagliazzo et
al. [30] provided an exponential size lower bound on the symmetric subset sum instance x1+· · ·+xn =
n+ 1, for boolean xi’s in the polynomial calculus refutation system. Grigoriev [22] proved that the
version

∑n
i=1 xi = r for a non-integer r ≈ n

2 requires linear degrees to refute in Positivstellensatz,
[24] later transformed this idea into an exponential lower bound proof both for Positivstellensatz and
static high-degree Lovasz-Schrijver proof systems.

Moreover, as discussed before, our lower bounds can be seen as an extension to the case of general
IPS refutations of the approach introduced in Forbes et al. [18].

The work of Part and Tzameret [37] established unconditional exponential lower bounds on the
size of resolution over linear equations refutations of the binary value principle, over any sufficiently
large field F, denoted Res(linF). The proof techniques in [37] are completely different from the current
work, but these results demonstrate that using instances with large coefficients in proof complexity
provides new insight into the complexity of proof systems.

6Note that extending the paradigm in [18] to IPS operating with general circuits must result in conditional lower
bounds, as long as explicit super-polynomial algebraic circuit lower bounds are open.

11

2 Preliminaries

2.1 Notation

For a natural number we let [n] = {1, . . . , n}. Let R be a ring. Denote by R[x1, . . . , xn] the ring of
multivariate polynomials with coefficients from R and variables x1, . . . , xn. We usually denote by x
the vector of variables x1, . . . , xn. We treat polynomials as formal linear combination of monomials,
where a monomial is a product of variables. Hence, when we talk about the zero polynomial we
mean the polynomial in which the coefficients of all monomials are zero. Similarly, two polynomials
are said to be identical if their monomials have the same coefficients. The number of monomials in a
polynomial f is the number of monomials with nonzero coefficients denoted |f |

#monomials
. The degree

of a multivariate polynomial (or total degree) is the maximal sum of variable powers in a monomial
with a nonzero coefficient in the polynomial. We write poly(n) to denote a polynomial growth in n,
namely a function that is upper bounded by cnc, for some constant c independent of n. Similarly,
poly(n1, . . . , ns) for some constant s, means a polynomial growth that is at most knc1

1 · · ·ncs
s , for k

and cji’s that are constants independent of n1, . . . , ns.
For S a set of polynomials from R[x1, . . . , xn], we denote by 〈S〉 the ideal generated by S, namely

the minimal set containing S such that if f, g ∈ 〈S〉 then also αf + βg ∈ 〈S〉, for any α, β ∈ R.

2.2 Algebraic Circuits

Algebraic circuits over some fixed chosen field or ring R compute polynomials in R[x1, . . . , xn] via
addition and multiplication gates, starting from the input variables x and constants from the field.
More precisely, an algebraic circuit C is a finite directed acyclic graph where edges are directed
from leaves (that is, in-degree 0 nodes) towards the output nodes (that is out-degree 0 nodes). By
default, there is a single output node. Input nodes are in-degree 0 nodes that are labeled with a
variable from x1, . . . , xn; every other in-degree zero node is labelled with a scalar element in R. All
the other nodes have in-degree two (unless otherwise stated) and are labeled with either + or ×. An
in-degree 0 node is said to compute the variable or scalar that labels itself. A + (or ×) gate is said
to compute the addition (product, resp.) of the polynomials computed by its incoming nodes. The
size of an algebraic circuit C is the number of nodes in it denoted |C|, and the depth of a circuit is
the length of the longest directed path in it. Note that the size of a field coefficient in this setting
is 1 irrespective of the value of the coefficient. Sometimes it is important to consider the size of the
coefficients appearing in the circuit (for instance, when we are concerned with the computational
complexity of problems pertaining to algebraic circuits we need to have an efficient way to represent
the circuits as bit strings). For this purpose it is standard to define a constant-free algebraic circuit
to be an algebraic circuit in which the only constants used are 0, 1,−1. Other constants must be
built up using algebraic operations, which then count towards the size of the circuit.

An algebraic circuit is said to be a multi-output circuit if it has more than one output node,
namely, more than one node of out-degree zero. Given a single-output algebraic circuit F (x) we
denote by F̂ (x) ∈ R[x] the polynomial computed by F (x). We define the degree of a circuit C
(similarly a node) as the total degree of the polynomial Ĉ computed by C, denoted deg(C).

We will also use circuits that have division gates; when we need them, we define them explicitly.

Algebraic Complexity Classes. We now recall some basic notions from algebraic complexity
(for more details see [46, Sec. 1.2]). Over a ring R, VPR (for “Valiant’s P”) is the class of families
f = (fn)

∞
n=1 of formal polynomials fn such that fn has poly(n) input variables, is of poly(n) degree,

and can be computed by algebraic circuits over R of poly(n) size. VNPR (for “Valiant’s NP”) is
the class of families g of polynomials gn such that gn has poly(n) input variables and is of poly(n)

12

degree, and can be written as

gn

(
x1, . . . , xpoly(n)

)
=

∑

e∈{0,1}poly(n)

fn(e, x)

for some family (fn) ∈ VPR. A major question in algebraic complexity theory is whether the
permanent polynomial can be computed by algebraic circuits of polynomial size. Since the permanent
is complete for VNP (under a suitable concept of algebraic reductions that are called p-projections),
showing that no polynomial-size circuit can compute the permanent amounts to showing VP 6=VNP

(cf. [51, 52, 53]).
Similarly, we can consider the constant-free versions of VP and VNP: we denote by VP

0 and VNP
0

the class of polynomial-size and polynomial-degree constant-free algebraic circuits and the class of
VNP polynomials as above in which the family of polynomials (fn) ∈ VP

0. In these definitions of VP0

and VNP
0 we assume also that no division gate occur in the circuits, hence VP

0 and VNP
0 compute

polynomials over Z. We shall also consider in Sect. 3 constant-free circuits over Q: these will be
constant-free circuits in which constant sub-circuits (and only constant sub-circuits) may contain
division gates.

2.3 The τ-Conjecture and Shub-Smale Hypothesis

Here we explain several important assumptions and conjectures that are known to lead to strong
complexity lower bounds and complexity class separations, all of which are relevant to our work. See
for example Smale’s list of “mathematical problems for the next century” [48] for a short description
and discussion about these problems.

Definition 9 (τ -function [47]). Let f ∈ Z[x] be a multivariate polynomial over Z. Then τ(f) is the
minimal size of a constant-free algebraic circuit that computes f (that is, a circuit where the only
possible constants that may appear on leaves are 1, 0,−1).

When we focus on constant polynomials, that is, numbers n ∈ Z, τ(n) is the minimal-size circuit
that can construct n from 1 using additions, subtractions and multiplications (but not divisions; note
that subtraction of a term A can be constructed by −1 ·A).

We say that a family of (possibly constant) polynomials (fn)n∈N is easy if τ(fn) = logO(1) n, for
every n > 2, and hard otherwise.7

The following are some known facts about τ(·):

• (2n)n∈N is easy. For instance, if n is a power of 2 then τ(2n) = log n+3, where log denotes the
logarithm in the base 2. We start with 3 nodes to build 2 = 1 + 1 and then by logn repeated
squaring we arrive at ((22)2)2 . . .)2 = 22

logn
= 2n.

• (22
n
)n∈N is hard. This is clear from the straightforward upper bound on the largest integer

that can be computed with k multiplication/addition/subtraction gates.

• A simple known upper bound on τ is this [16]: for every integer m > 2, τ(m) ≤ 2 logm. This
is shown by considering the binary expansion of m.

• For every integer m, the following lower bound is known τ(m) ≥ log logm [16].

7We put the condition n > 2 instead of n ≥ 1, because unlike [47] we do not add the constant 2 to the constants
available in the circuit, hence to keep the same known upper bounds of τ we skip the cases n = 1, 2.

13

While (2n)n∈N is easy and (22
n
)n∈N is hard, it is not known whether (n!)n∈N is easy or hard, and

as seen below, showing the hardness of τ(mn · n!), for every sequence (mn · n!)n∈N with mn ∈ Z any
nonzero integers, has very strong consequences.

Blum, Shub and Smale [7] introduced an algebraic version of Turing machines that has access to
a field K (Poizat observed that their model can be defined as algebraic circuits in which selection
gates s(z, x, y) can be used; where a selection gate outputs x in case z = 0 and y in case z = 1). In
this model one can formalise and study a variant of the P vs. NP problem for languages solvable by
polynomial-time machines with access to K, denoted PK , versus nondeterministic polynomial-time
machines with access to K, denoted NPK .

The following is a condition put forth by Shub and Smale [47] (cf. [48]) towards separating PC

from NPC, for C the complex numbers:

Shub-Smale Hypothesis ([47, 48]). For every nonzero integer sequence (mn)n∈N, the sequence
(mn · n!)n∈N is hard.

Shub and Smale, as well as Bürgisser, showed the following consequences of the Shub-Smale
hypothesis:

Theorem 2.1 ([47, 8]). 1. If the Shub-Smale hypothesis holds then PC 6= NPC.

2. If the Shub-Smale Hypothesis holds then VP
0 6= VNP

0. In other words, Shub-Smale Hypothesis
implies that the permanent does not have polynomial size constant-free algebraic circuits over
Z.

It is open whether the Shub-Smale hypothesis holds. What is known is that if Shub-Smale
hypothesis does not hold then factoring of integers can be done in (nonuniform) polynomial time
(cf. Blum et al. [6, p.126] and [11]).

Another related important assumption in algebraic complexity is the τ -conjecture. Let f ∈ Z[x]
be a univariate polynomial with integer coefficients, denote by z(f) the number of distinct integer
roots of f .

τ-Conjecture ([47, 48]). There is a universal constant c, such that for every univariate polynomial
f ∈ Z[x]:

(1 + τ(f))c ≥ z(f) .

The consequences of the τ -conjecture are similar to the Shub-Smale Hypothesis:

Theorem 2.2 ([47, 8]). If the τ -conjecture holds then both PC 6= NPC and VP
0 6= VNP

0 hold.

2.4 Basic Proof Complexity

In the standard setting of propositional proof complexity, a propositional proof system [15] is a
polynomial-time predicate V (π, x) that verifies purported proofs π (encoded naturally in, say, binary)
for propositional formulas x (also encoded naturally in binary), such that ∃π (V (π, x) = true) iff x
is a tautology.8 Hence, a propositional proof system is a complete and sound proof system for
propositional logic in which a proof can be checked for correctness in polynomial time (though, note
that a proof π may be exponentially larger than the tautology x it proves).

8Historically, Cook and Reckhow [15] defined a propositional proof systems as a polynomial-time computable surjec-
tive mapping of bit strings (encoding purported proofs) onto the set of propositional tautologies (encoded as bit-strings
as well). This is equivalent to the definition of propositional proof systems we presented, up to polynomial factors.

14

When considering algebraic proof systems that operate with algebraic circuits, such as IPS, it is
common to relax the notion of a propositional proof system, so to require that the relation V (π, x) is
in probabilistic polynomial time, instead of deterministic polynomial time (since polynomial identities
can be verified in coRP, while not known to be verified in P).

Furthermore, the language that a given proof system proves, namely the set of instances that
the proof system proves to be tautological, or always satisfied, can be different from the set of
propositional tautologies. First, we can consider a propositional proof system to be a refutation
system in which a proof establishes that the initial set of axioms (e.g., clauses) is unsatisfiable,
instead of always satisfied (i.e., tautological). For most cases, considering a propositional proof
system to be a refutation system preserves all properties of the proof system, and thus the notions
of refutation and proofs are used as synonyms. Second, we can define a proof system to be complete
and sound for languages different or larger than unsatisfiable propositional formulas. For instance,
in algebraic proof systems we usually consider proof systems that are sound and complete for the
language of unsatisfiable sets of polynomial equations.

For the purpose of comparing the relative complexity of different proof systems we have the
concept of simulation: given two proof systems P,Q for the same language, we say that P simulates

Q if there is a function f that maps Q-proofs to P -proofs of the same instances with at most a
polynomial blow-up in size. If f can be computed in polynomial time, this is called a p-simulation .
If P and Q simulate each other we say that P and Q are polynomially-equivalent. If P and Q are two
proof systems for different languages, prima facie we cannot compare their strength via the notion
of simulation. However, if both P and Q prove (or refute) propositional instances like formulas in
conjunctive normal form, or boolean tautologies, while encoding them in different ways (namely, they
use different representations for essentially the same propositional formulas), we can fix a polynomial-
time computable translation from one representation to the other. Under this translation we can
consider P and Q to be proof systems for the same language, allowing us to use the notion of
simulation between P and Q.

2.5 Algebraic Proofs

Grochow and Pitassi [26] suggested the following algebraic proof system which is essentially a Null-
stellensatz proof system ([3]) written as an algebraic circuit. A proof in the Ideal Proof System
is given as a single polynomial. We provide below the boolean version of IPS (which includes the
boolean axioms), namely the version that establishes the unsatisfiability over 0-1 of a set of polyno-
mial equations. In what follows we follow the notation in [18]:

Definition 10 ((boolean) Ideal Proof System (IPS), Grochow-Pitassi [26]). Let
f1(x), . . . , fm(x), p(x) be a collection of polynomials in F[x1, . . . , xn] over the field F. An
IPS proof of p(x) = 0 from {fj(x) = 0}mj=1, showing that p(x) = 0 is semantically
implied from the assumptions {fj(x) = 0}mj=1 over 0-1 assignments, is an algebraic circuit
C(x, y, z) ∈ F[x, y1, . . . , ym, z1, . . . , zn] such that (the equalities in what follows stand for formal
polynomial identities9):

1. C(x, 0, 0) = 0; and

2. C(x, f1(x), . . . , fm(x), x21 − x1, . . . , x
2
n − xn) = p(x).

The size of the IPS proof is the size of the circuit C. If C is assumed to be constant-free, we refer
to the size of the proof as the size of the constant-free IPS proof. The variables y, z are called

9That is, C(x, 0, 0) computes the zero polynomial and C(x, f1(x), . . . , fm(x), x2
1 − x1, . . . , x

2
n − xn) computes the

polynomial p(x).

15

the placeholder variables since they are used as placeholders for the axioms. An IPS proof C(x, y, z)
of 1 = 0 from {fj(x) = 0}j∈[m] is called an IPS refutation of {fj(x) = 0}j∈[m] (note that in this
case it must hold that {fj(x) = 0}mj=1 have no common solutions in {0, 1}n).

Notice that the definition above adds the equations {x2i − xi = 0}ni=1, called the set of boolean
axioms denoted x2−x, to the system {fj(x) = 0}mj=1. This allows to refute over {0, 1}n unsatisfiable
systems of equations. Also, note that the first equality in the definition of IPS means that the
polynomial computed by C is in the ideal generated by y, z, which in turn, following the second
equality, means that C witnesses the fact that 1 is in the ideal generated by f1(x), . . . , fm(x), x21 −
x1, . . . , x

2
n − xn (the existence of this witness, for unsatisfiable set of polynomials, stems from the

Nullstellensatz theorem [3]).
In order to use IPS as a propositional proof system (namely, a proof system for propositional

tautologies), we need to fix the encoding of clauses as algebraic circuits.

Definition 11 (algebraic translation of CNF formulas). Given a CNF formula in the variables x,
every clause

∨
i∈P xi ∨

∨
j∈N ¬xj is translated into

∏
i∈P (1 − xi) ·

∏
j∈N xj = 0. (Note that these

terms are written as algebraic circuits as displayed, where products are not multiplied out.)

Notice that in this way a 0-1 assignment to a CNF is satisfying iff the assignment is satisfying
all the equations in the algebraic translation of the CNF.

Therefore, using Definition 11 to encode CNF formulas, boolean IPS is considered as a proposi-
tional proof system for the language of unsatisfiable CNF formulas, sometimes called propositional

IPS . We say that an IPS proof is an algebraic IPS proof, if we do not use the boolean axioms
x2 − x in the proof. As a default when referring to IPS we mean the boolean IPS version.

2.5.1 Conventions and Notations for IPS Proofs

An IPS proof over a specific field or ring is sometimes denoted IPSF noting it is over F. For two
algebraic circuits F,G, we define the size of the equation F = G to be the total circuit size of F and
G, namely, |F |+ |G|.

Let F denote a set of polynomial equations {fi(x) = 0}mi=1, and let C(x, y, z) ∈ F[x, y, z] be an
IPS proof of f(x) from F as in Definition Definition 10. Then we write C(x,F , x2 − x) to denote
the circuit C in which yi is substituted by fi(x) and zi is substituted by the boolean axiom x2i − xi.
By a slight abuse of notation we also call C(x,F , x2 − x) = f(x) an IPS proof of f(x) from F and
x2 − x (that is, displaying C(x, y, z) after the substitution of the placeholder variables y, z by the
axioms in F and x2 − x, respectively).

For two polynomials f(x), g(x), an IPS proof of f(x) = g(x) from the assumptions F is an IPS
proof of f(x)− g(x) = 0 (note that in case f(x) and g(x) are identical as polynomials this is trivial
to prove; see Fact A.1).

We denote by C : F ⊢s
IPS p = 0 (resp. C : F ⊢s

IPS p = g) the fact that p = 0 (resp. p = g) has
an IPS proof C(x, y, z) of size s from assumptions F . We may also suppress “= 0” and write simply
C : F ⊢s

IPS p for C : F ⊢s
IPS p = 0. Whenever we are only interested in claiming the existence of an

IPS proof of size s of p = 0 from F we suppress the C from the notation. Similarly, we can suppress
the size parameter s from the notation. If F is a circuit computing a polynomial F̂ ∈ F[x], then we
can talk about an IPS proof C of F from assumptions F , in symbols C : F ⊢IPS F , meaning an IPS

proof of F̂ . Accordingly, for two circuits F, F ′ such that F̂ = F̂ ′, we may speak about an an IPS
proof C of F from assumptions F to refer to an IPS proof of F ′ from assumptions F .

16

2.6 Semi-Algebraic Proofs

The Positivstellensatz proof system, as defined by Grigoriev and Vorobojov [25], is a refutation
system for establishing the unsatisfiability over the reals R of a system consisting of both polynomial
equations F = {fi(x) = 0}i∈I and polynomial inequalities H = {hj(x) ≥ 0}j∈J , respectively. It
is based on a restricted version of the Positivstellensatz theorem [32, 49]. In order to formulate it,
we need to define the notion of a cone, as in [25], which serves as a non-negative closure of a set
of polynomials, or informally the notion of a “positive ideal”. Usually the cone is defined as the
set closed under non-negative linear combinations of polynomials (cf. [5]), but following [25] we are
going to use a more general formulation which is sometimes called the sos cone.

Definition 12 (cone). Let H ⊆ R[x] be a set of polynomials over an ordered ring R. Then the cone
of H, denoted cone(H), is defined to be the smallest set S ⊆ R[x] such that:

1. H ⊆ S;

2. for any polynomial s ∈ R[x], s2 ∈ S;

3. for any positive constant c > 0, c ∈ S;

4. if f, g ∈ S, then both f + g ∈ S and f · g ∈ S.

Note that we have formulated the cone for any ordered ring (item item 3 would be superfluous
for reals). This is because we are going to use this notion in the context of Z and Q (although
the Positivstellensatz theorem does not hold for these rings, it is still possible to use Positivstellen-
satz refutations in the presence of the boolean axioms, namely as a refutation system for instances
unsatisfiable over 0-1 value).

Note also that every sum of squares (that is, every sum of squared polynomials
∑

i s
2
i) is contained

in every cone. Specifically, cone(∅) contains every sum of squares.
Similar to the way the Nullstellensatz proof system [3] establishes the unsatisfiability of sets of

polynomial equations based on the Hilbert’s Nullstellensatz theorem [27] from algebraic geometry,
the Positivstellensatz proof system is based on the Positivstellensatz theorem from semi-algebraic
geometry:

Theorem 2.3 (Positivstellensatz theorem [32, 49], restricted version). Let F := {fi(x) = 0}i∈I
be a set of polynomial equations and let H := {hj(x) ≥ 0}j∈J be a set of polynomial inequalities,
where all polynomials are from R[x1, . . . , xn]. There exists a pair of polynomials f ∈ 〈{fi(x)}i∈I〉
and h ∈ cone({hj(x)}j∈J) such that f + h = −1 if and only if there is no assignment that satisfies
both F and H.

The Positivstellensatz proof system is now natural to define. We shall distinguish between the real
Positivstellensatz in which variables are meant to range over the reals and boolean Positivstellensatz
in which variables range over {0, 1}.

Definition 13 (real Positivstellensatz proof system (real PS) [25]). Let F := {fi(x) = 0}i∈I be
a set of polynomial equations and let H := {hj(x) ≥ 0}j∈J be a set of polynomial inequalities,
where all polynomials are from R[x1, . . . , xn]. Assume that F , H have no common real solutions. A
Positivstellensatz refutation of F , H is a collection of polynomials {pi}i∈I and {si,ζ}i,ζ (for i ∈ N,
ζ ⊆ J and Iζ ⊆ N) in R[x1, . . . , xn] such that the following formal polynomial identity holds:

∑

i∈I

pi · fi +
∑

ζ⊆J

∏

j∈ζ

hj ·

∑

i∈Iζ

s2i,ζ

 = −1 . (5)

17

The monomial size of a Positivstellensatz refutation is the combined total number of monomials

in {pi}i∈I and
∑

i∈Iζ
s2i,ζ , for all ζ ⊆ J , that is,

∑
i∈I |pi|#monomials

+
∑

ζ⊆J

∣∣∣
∑

i∈Iζ
s2i,ζ

∣∣∣
#monomials

. 10

Note that Grigoriev et al. [24] defined the size of Positivstellensatz proofs slightly differently:
they included in the size of proofs both the number of monomials and the size of the coefficients
of monomials written in binary (while this does not matter for their lower bounds). This is more
natural when considering Positivstellensatz as a propositional proof system (which is polynomially
verifiable).

In order to use Positivstellensatz as a refutation system for collections of equations F and in-
equalities H that are unsatisfiable over 0-1 assignments, we need to include simple so-called boolean
axioms. This is done in slightly different ways in different works (see for example [24, 1]). One way
to do this, which is the way we follow, is the following:

Definition 14 ((boolean) Positivstellensatz proof system (boolean PS)). A boolean Positivstel-

lensatz proof from a set of polynomial equations F , and polynomial inequalities H, is an algebraic
Positivstellensatz proof in which the following boolean axioms are part of the axioms: the poly-
nomial equations x2i − xi = 0 (for all i ∈ [n]) are included in F , and the polynomial inequalities
xi ≥ 0, 1− xi ≥ 0 (for all i ∈ [n]) are included in H.

In this way, F , H have no common 0-1 solutions iff there exists a boolean Positivstellensatz refu-
tation of F , H. Eventually, to define the boolean Positivstellensatz as a propositional proof system
for the unsatisfiable CNF formula we consider CNF formulas to be encoded as polynomial equalities
according to Definition 11. This version is sometimes called propositional Positivstellensatz . As
a default when referring to Positivstellensatz we mean the boolean Positivstellensatz version.

In recent years, starting mainly with the work of Barak, Brandao, Harrow, Kelner, Steurer and
Zhou [2], a special case of the Positivstellensatz proof system has gained much interest due to its
application in complexity and algorithms (cf. [36]). This is the sum-of-squares proof system (SoS),
which is defined as follows:

Definition 15 (sum-of-squares proof system). A sum-of-squares proof (SoS for short) is a Posi-
tivstellensatz proof in which in eq. 5 in Definition 13 we restrict the index sets ζ ⊆ J to be singletons,
namely |ζ| = 1, hence, disallowing arbitrary products of inequalities within themselves. The real,
boolean and propositional versions of SoS are defined similar to Positivstellensatz.

For most interesting cases SoS is also complete (and sound) by a result of Putinar [43].

2.6.1 Dynamic Positivstellensatz

Here we follow Grigoriev, Hirsch and Pasechnik [24] to define what is, to the best of our knowledge,
the most general propositional Positivstellensatz- (or SoS-) based semi-algebraic proof system defined
to date. It can be viewed as the generalization of (dynamic) Lovasz-Schrijver proof systems [35, 34]
that have been put in the context of propositional proof complexity by Pudlák [42], and constitutes
essentially a dynamic version of propositional Positivstellensatz (the proof size is measured by the
total number of monomials appearing in the proof).

The translation of propositional formulas here is different from the algebraic translation
(Definition 11). For higher degree proof systems, Definition 11 and the definition that follows can be

10The definition of size measure for Positivstellensatz and SoS proofs is slightly less standard than degree measure
(see discussion in [1]). We define the monomial size measure of Positivstellensatz proofs to count the monomials in pi
and s2i,ζ , while ignoring the monomials in the initial axioms in F , H. This choice of definition is closer to the definition
of size of IPS proofs, which ignores the size of the initial axioms.

18

reduced to one another (within the proof system, as long as both translations can be written down
efficiently); however, we provide Definition 16 for the sake of consistency with earlier work.

Definition 16 (semi-algebraic translation of CNF formulas). Given a CNF formula in the variables
x, every clause

∨
i∈P xi ∨

∨
j∈N ¬xj is translated into

∑
i∈P xi +

∑
j∈N (1− xj) ≥ 1.

Notice that in this way a 0-1 assignment to a CNF formula is satisfying iff the assignment satisfies
all the inequalities in the semi-algebraic translation of the CNF formula.

Definition 17 (LS∞∗,+ [24]). Consider a boolean formula in conjunctive normal form and translate
it into inequalities as in Definition 16. Take these inequalities as axioms, add the axioms x ≥ 0,
1 − x ≥ 0, x2 − x ≥ 0, x − x2 ≥ 0 for each variable x. Allow also h2 ≥ 0 as an axiom, for any
polynomial h of degree at most d. An LSd∗,+ proof of the original formula is a derivation of −1 ≥ 0
from these axioms using the following rules:

f ≥ 0, g ≥ 0

f + g ≥ 0

f ≥ 0

αf ≥ 0
(for α a nonnegative integer)

f ≥ 0, g ≥ 0

f · g ≥ 0
.

In particular, LS∞∗,+ is such a proof without the restriction on the degree. Note that we have to write
polynomials as sums of monomials (and not as circuits or formulas), so the verification of such proof
is doable in deterministic polynomial-time.

The proof of the following simulation follows by definition and we omit the details:

Proposition 2.4. LS∞∗,+ simulates boolean Positivstellensatz.

3 Conditional IPS Lower Bounds

3.1 IPS Lower Bounds under Shub-Smale Hypothesis

Here we provide a super-polynomial conditional lower bound on the size of (boolean) IPS refutations
of the binary value principle over the rationals based on the Shub-Smale Hypothesis (Sect. 2.3).

The conditional lower bound is first established for constant-free IPS proofs over Z and then we
extract a lower bound over Q as a corollary using Cor. 3.2 below. Notice that we can consider IPS
proofs also over rings, and not only fields. In the case of IPS over Z we cannot anymore assume that
refutations are proofs of the polynomial 1, rather we define refutations in IPS over Z to be proofs of
any nonzero constant polynomial (cf. [10, Definition 2.1]):

Definition 18 (IPSZ). An IPSZ proof of g(x) ∈ Z[x] from a set of assumptions F ⊆ Z[x] is an IPS
proof of g(x) from F , as in Definition 10, where F = Z and all the constants in the IPS proof are
from Z. An IPSZ refutation of F is a proof of M , for M ∈ Z \ {0}. (The definition is similar for
the boolean and algebraic IPS versions.)

We will need to define a constant-free circuit over Q.

Definition 19. A constant-free circuit over Q is a constant-free algebraic circuit as in Sect. 2.2 that
has additionally division gates ÷, where u ÷ v means that the polynomial computed by u is divided
by the polynomial computed by v, such that for every division gate u÷ v in C the circuit v contains
no variables and computes a nonzero constant. A constant-free IPS proof over Q is an IPS proof
written with a constant-free circuit over Q.

The following proposition is proved by a simple induction on the circuit size, using sufficient
products to cancel out the denominators in the circuit over Q, turning it into a circuit over Z.

19

Proposition 3.1 (from Q-circuit to Z-circuit). Let C be a size-s constant-free circuit over Q. Then
there exists a size ≤ 4s constant-free circuit computing M ·Ĉ, for some M ∈ Z\{0}, with τ(M) ≤ 4s.

Proof: We choose any topological order g1, g2, . . . , gi, . . . , g|C| on the gates of the constant-free circuit
C over Q (that is, if gj has a directed path to gk in C then j < k) and proceed by induction on |C|
to eliminate rationals from the circuit (identifying the gate gi with the sub-circuit of C for which gi
is its root).

Induction statement: Let g1, . . . , gs be the topologically ordered gates of a constant-free circuit
C over Q, where s = |C|. Then, there exists a division-free constant-free circuit consisting of the
corresponding topologically ordered gates g11, . . . , g1a1 , g21, . . . , g2a2 , . . . , gs1, . . . , gsas , such that for
every i ≤ s:

1. ai ≤ 4 and giai computes the polynomial Mi ·gi, for some nonzero integer Mi (again, identifying
the gate giai with the sub-circuit for which it is a root);

2. The integer Mi is constructed as a part of the circuit (except for the trivial case Mi = 1).
More precisely, there exists a division-free constant-free and variable-free (sub-)circuit gj,ℓ, for
j ≤ i, ℓ ≤ 4 that computes Mi. In particular τ(Mi) ≤ 4i;

3. Sub-circuits with no division gates remain intact: if gi is a division-free constant-free circuit
then Mi = 1 and gi is a sub-circuit of the new circuit. That is, gi1 = gi, ai = 1, and all gates in
g1, . . . , gi that are part of the sub-circuit gi in C occur also as gates gjℓ (for some j ≤ i, ℓ ≤ 4)
in the new circuit gi1.

Base case: gi is a variable or a constant in {−1, 0, 1}. Hence, we put gi1 := gi, ai = 1, and Mi = 1.

Induction step: In the case of a binary gate gi = gj ◦ gℓ, for ◦ ∈ {×,+,÷} (where j, ℓ < i), by
induction hypothesis we already have division-free constant-free circuits gjaj and gℓaℓ computing the
polynomials Mjgj and Mℓgℓ, respectively, for some integers Mj ,Mℓ that are also computed as part
of the circuit.

Case 1: gi is a division gate computing gj/gℓ, where, by definition of circuits over Q, gℓ is a
division-free constant-free circuit computing a nonzero constant that contains no variables.

By induction hypothesis item 1 we have already constructed the two gates gjaj and gℓaℓ , where
gjaj computes the polynomial Mjgj for some nonzero integer Mj . By item 2, Mj is already computed
by one of the gates in the circuit. Finally, since gℓ does not have division gates by definition, item 3
means that gℓaℓ = gℓ (and aℓ = a1 and Mℓ = 1), and specifically gℓ is a constant-free variable-free
circuit.

We put gi2 := gjaj and gi1 := Mj ·gℓaℓ = Mj ·gℓ (that is, gi1 is a product gate that connects to the
two previously constructed gates that compute the two integers Mj and gℓ), ai = 2 and Mi = Mjgℓ
is an integer. Hence, gi2 computes the polynomial gjaj = Mjgj = gℓ · ((Mjgj)/gℓ) = gℓ ·Mj · (gj/gℓ) =
(gℓ ·Mj) · gi = Mi · gi and Mi = Mjgℓ is an integer that is computed (as a constant-free variable-free
circuit) by the gate gi1 as required.
Case 2: gi = gj · gℓ. In this case ai = 2 and Mi = MjMℓ, and we put gi2 := gjaj · gℓaℓ and
gi1 := Mi · Mj , where Mi,Mj are two integers that are computed already in the circuit (with a
constant-free division-free and variable-free sub-circuit).
Case 3: gi = gj + gℓ. In this case ai = 4, Mi = MjMℓ, and we put gi4 := Mℓ · gjaj + Mj · gℓaℓ ,
namely, we add three gates gi2, gi3, gi4 (two products, both of which connects to previous gates, and
one addition to add these two products). Finally, we put gi1 := Mi · Mj , where Mi,Mj are two

20

integers that are computed already in the circuit (with a constant-free division-free and variable-free
sub-circuit).

An immediate corollary of Prop. 3.1 is:

Corollary 3.2 (from IPSQ to IPSZ). Boolean IPSZ simulates boolean IPSQ, in the following sense:
if there exists a size-s constant-free boolean IPS proof over Q from F of H, for F a set of assumptions
written as constant-free algebraic circuits over Z and H a constant-free algebraic circuit over Z, then
there exists a size ≤ 4s constant-free boolean IPSZ proof of M ·H, for some M ∈ Z \ {0}, such that
τ(M) ≤ 4s.

Theorem 3.3. Under the Shub and Smale Hypothesis, there are no poly(n)-size constant-free
(boolean) IPS refutations of the binary value principle BVPn over Q.

Proof: Given Cor. 3.2, it suffices to prove the statement for constant-free (boolean) IPSZ.
We proceed to prove the contrapositive. Suppose that the binary value principle 1+

∑i=n
i=1 2

i−1xi =
0 has a constant-free IPSZ refutation (using only the boolean axioms) of size poly(n). We will show
that there is a sequence of nonzero natural numbers cm such that τ(cmm!) ≤ (logm)c, for all m ≥ 2,
where c is a constant independent of m. In other words, we will show that (cmm!)∞m=1 is easy.

Assume that C(x, y, z) is the polynomial-size constant-free boolean IPSZ refutation of 1 +∑i=n
i=1 2

i−1xi = 0 (here we only have a single placeholder variable y for the single non-boolean axiom,
that is, the binary value principle). For simplicity, denote G(x) = 1 +

∑i=n
i=1 2

i−1xi, Fi(x) = x2i − xi,
and F (x) = x2 − x.

We know that there exists an integer constant M 6= 0 such that

C
(
x,G(x), F (x)

)
= M . (6)

For every integer 0 ≤ k < 2n we denote by bk := (bk1, . . . , bkn) ∈ {0, 1}n its (positive, standard)
binary representation, that is, k =

∑i=n
i=1 bki2

i−1. Then, Fi(bk) = 0 and G(bk) = 1 + k, for all
1 ≤ i ≤ n, 0 ≤ k < 2n. Hence, by eq. 6:

C(bk1, . . . , bkn, 1 + k, 0) = M, for every integer 0 ≤ k < 2n. (7)

Claim 3.4. M is divisible by every prime number less than 2n.

Proof of claim: For a fixed 0 ≤ k < 2n and its binary representation bk1, . . . , bkn, consider g(y) =
C(bk1, . . . , bkn, y, 0) as a univariate polynomial in Z[y]. Then, g(1 + k) = M by eq. 7, and g(0) = 0
holds since C(bk1, . . . , bkn, 0, 0) = 0, by the definition of IPS. Because g(0) = 0, we know that
g(y) = y · g⋆(y), for some g⋆(y) ∈ Z[y], meaning that g(1 + k) = (1 + k) · g⋆(1 + k) = M . Since g⋆(y)
is an integer polynomial, this implies that M is a product of 1 + k.

Overall, this argument shows that for every 1 ≤ p ≤ 2n, M is divisible by p, and in particular M
is divisible by every prime number less than 2n. Claim

Note that once we substitute the all-zero assignment 0 into eq. 6, we obtain a constant-free
algebraic circuit of size poly(n) with no variables computing M , thus τ(M) = poly(n). Then we can
compute M2n using a constant-free algebraic circuit of size poly(n) by taking M to the power 2, n
many times (that is, using n repeated squaring), yielding τ(M2n) = poly(n).

Claim 3.5. The power of every prime factor in (2n)! is at most 2n.

21

Proof of claim: We show that for every number k ∈ N, the power of every prime factor of k! is at
most k. Let pt11 · · · ptrr be the prime factorisation of k!, namely k! = pt11 · · · ptrr where each pi is a
prime number and pi 6= pj , for all i 6= j. To compute ti we consider the k products k, (k − 1), . . . , 1,
in k! = k · (k − 1) · · · 1, out of which only each pith number is divisible by pi, hence only ⌊ k

pi
⌋

numbers are divisible by pi. Consider now only these ⌊ k
pi
⌋ numbers in k! which are divisible by

pi, and write them as pi · ⌊
k
pi
⌋, pi · (⌊

k
pi
⌋ − 1), . . . , pi · 1. Now we need once again to factor out

the pi products in ⌊ k
pi
⌋, ⌊ k

pi
⌋ − 1, . . . , 1. Hence, as before, we conclude that in these ⌊ k

pi
⌋ numbers

only ⌊
⌊ k
pi

⌋

pi
⌋ = ⌊ k

p2i
⌋ are divisible by pi. Continuing in a similar fashion we obtain the equation

ti = ⌊ k
pi
⌋+ ⌊ k

p2i
⌋+ ⌊ k

p3i
⌋+ · · · ≤ k

p−1 . Claim

Consider the poly(n)-size circuit for M2n that exists by assumption. Since M is divisible by
every prime number between 1 and 2n, and since every prime factor of (2n)! is clearly at most 2n,
we get that M2n is divisible by the 2n-th power of each prime factor of (2n)!. By Claim 3.5 the
power of every prime factor of (2n)! is at most 2n, and so M2n is divisible by (2n)!. We conclude
that there are nonzero numbers cn ∈ N such that the sequence {cn · (2n)!}∞n=1 is computable by a
sequence of constant-free algebraic circuits of size poly(n), that is, τ(cn ·(2

n)!) ≤ nc for some constant
c independent of n. It remains to show that not only the multiples of factorials of powers of 2 are
easy, but also the multiples of factorials of all natural numbers are easy.

For every natural number m, let n ∈ N be such that 2n−1 ≤ m ≤ 2n. Because (2n)! is clearly
divisible bym!, there exists some cm ∈ N, such that cn ·(2

n)! = cm ·m!, where cn is the natural number
for which we have showed the existence of poly(n)-size constant-free circuit computing cn · (2n)!.
Hence, this same circuit also computes cm ·m!, meaning that τ(cm ·m!) ≤ nb ≤ (log(2m))b ≤ (logm)c,
for some constants b and c independent of m.

Why does an IPS lower bound on BVP not lead to EF lower bounds? Given that IPS
(of possibly exponential degree) simulates Extended Frege (EF) [26, 41], it is interesting to consider
why our conditional IPS lower bound for the BVP does not imply a conditional EF lower bound.
Simply put, the answer is that the BVP is not a propositional tautology (or a direct translation of
one). More precisely, there is no apparent way to translate the BVP into a propositional tautology
for which a short EF proof translates into a short IPS refutation of the BVP. In other words, we can
encode the BVP as a propositional tautology stating that the carry-save addition of the n numbers
in the BVP has sign-bit 0 (and hence the addition is positive), but the problem is that there is no
apparent way to efficiently derive in IPS this encoding from the BVP principle itself (!), because from
an equation like f = 0 we cannot in general efficiently derive in IPS that the sign-bit of f is zero, as
we now explain.

One can think of the following translation of the BVP into a propositional tautology: we consider
the addition of n numbers 2i−1xi, for xi ∈ {0, 1} and i = 1, . . . , n. Each 2i−1xi is written as a bit
vector vi of at most n bits, in the two’s complement notation. Each bit in vi can be written as a
polynomial-size boolean circuit in the single boolean variable xi. Using carry-save addition we can
construct a polynomial-size in n boolean circuit C computing the sign-bit of the addition of these
n bit-vectors

∑n
i=1 vi (this is done as in Sect. 5). Now, the BVP can be encoded as the tautology

C ≡⊥ (namely, the sign bit of the addition is logically equivalent to false (equivalently, 0); note that
since 2i−1 ≥ 0, for all i, this is indeed a tautology).

Apparently, there is a polynomial-size in n EF proof of C ≡⊥ (using basically the same ideas as
in Sect. 5). The question is whether we can turn this short EF proof into a short IPS refutation of
the BVP. And apparently the answer is “no!”. The reason is that for this to work we first need to
derive in IPS from the BVP the (arithmetization of the boolean circuit) C ≡⊥. But such a derivation

22

is already morally equivalent to refuting the BVP itself. In other words, there is no apparent way
to efficiently derive from the given BVP equation

∑n
i=1 2

i−1xi + 1 = 0 any statement expressing a
specific property pertaining to a single bit in the bit vector representation of

∑n
i=1 2

i−1xi + 1 (as a
function of the input boolean variables x), and specifically no apparent way to derive C ≡⊥. Our
main technical Lemma 5.1 in Sect. 5, shows only that we can efficiently derive in IPS from the BVP
equation a statement about the collective value of the bits, namely that if

∑n
i=1 2

i−1xi+1 is denoted
by f we have the following:

if (i) the bits of f (computed as polynomial-size circuits of the input variables x) are
z1, . . . , zm; and (ii) we know that f = 0;
then (iii)

∑m−1
i=1 2i−1zi − 2m−1zm = 0 (where the left hand side is the value of the

bit-vector z1, . . . , zm that represents an integer in the two’s complement scheme).

But from the equation in (iii) we apparently cannot conclude anything about the individual sign-bit
zm.

3.2 IPS over Rational Functions and the τ-Conjecture

In what follows we define another proof system that allows us to formulate a version of the binary
value principle for almost every appropriate integer in a single equality:

∑n
i=1 2

i−1xi = y for a new
variable y (that would be a trivial task for inequalities: just two inequalities

∑n
i=1 2

i−1xi ≤ −1 and∑n
i=1 2

i−1xi ≥ 2n cover all contradictory cases). We then prove a lower bound for it, subject to the
τ -conjecture. The system is IPS with rational functions in “variable” y as its basic field, and we will
use this “variable” in the input as well. (We put the word “variable” in quotes to distinguish it from
the input variables.)

Definition 20 (Q-rational functions). We will use the field Q(y) of Q-rational functions in y, that

is, all functions f(y) such that there exist Q-polynomials P (y) and (nonzero) Q(y) with f(y) = P (y)
Q(y) .

In particular, in this system one can consider refutations of
∑n

i=1 2
i−1xi + y = 0, where xi are

boolean variables (the boolean axioms x2i − xi = 0 are included in the input). In this section we will
be using the concept of a linear IPS refutation, defined in Forbes et al. [18]:

Definition 21 ([18]). An IPS-LINQ(y)-certificate of the unsatisfiability of a system of polynomial
equations F1(x) = F2(x) = · · · = Fm(x) = 0 is a set of polynomials (H1(x), . . . Hm(x)), where each
Hi(x) ∈ Q(y)[x1, . . . , xn], such that F1(x) ·H1(x) + · · ·+Fm(x) ·Hm(x) = 1 (as a formal polynomial
equation).

Given that the algebraic closure of Q(y) involves infinite series, we restrict ourselves to a com-
putationally meaningful case of boolean xi’s, that is, we assume that Fj ’s include x2i − xi for every
variable xi. The system is complete for this case, as discussed in the next subsection.

Note that once we have an IPS-LINQ(y)-certificate for the boolean axioms and
∑

xiai = y, we
can substitute for y any constant except for the finite number of roots of the denominators of Hi’s
and get a valid IPS-LINQ refutation. Thus an IPS-LINQ(y)-certificate can be viewed as a single proof
for all but finitely many values of y.

To show this concept is meaningful, we first show a short IPS-LINQ(y) proof of
∑n

i=1 aixi = y for
small scalars ai. Then we demonstrate a lower bound for ai = 2i−1 modulo τ -conjecture.

However, we start with precise definitions of the complexity of IPS-LINQ(y)-proofs and related
completeness issues.

23

3.2.1 Complexity Considerations

To compute elements of Q(y), we extend the definition of a constant-free circuit by allowing the use
of gates for y. The definition of a constant-free circuit over Q(y) thus mimics Definition 19, but
we allow now the constant y in addition to −1, 0, 1 (note that y is indeed a constant in terms of
polynomials in Q(y)[x1, . . . , xn]).

Note that the system we consider is complete for the boolean case, that is, for every inconsistent
(over {0, 1}) system of polynomial equations involving coefficients in Q(y) that contains the boolean
equation x2 − x = 0 for every variable x, there is an IPS-LINQ(y) certificate. Indeed, the system
remains inconsistent in the algebraic closure of Q(y) (as every solution must satisfy x2 − x = 0),
and thus by Hilbert’s Nullstellensatz the linear system that has Hi’s coefficients as variables and
expresses that Hi’s form a valid certificate, has a solution. Since the coefficients of this linear system
are in Q(y), so must be (some) solution.

Remark 3.6. In [18] Forbes et al prove that IPS is polynomially equivalent to IPS-LIN when the
scalars are given for free (that is, do not count towards the proof size). We believe that a similar
transformation can be made for the constant-free model to establish the equivalence between IPSQ(y)

and IPS-LINQ(y); however, we did not verify the details.

3.2.2 Upper Bound

Proposition 3.7. Suppose we have a system of polynomial equations F0(x) = F1(x) = F2(x) =
· · · = Fn(x) = 0, Fi ∈ Q(y)[x1, . . . , xn], where F0(x) = y +

∑i=n
i=1 aixi, ai ∈ N and Fi(x) = x2i − xi.

Then there is an IPS-LINQ(y) certificate of this system consisting of H0(x), . . . , Hn+1(x), where each
Hi(x) can be computed by a constant-free algebraic circuit over Q(y) of size poly(a1 + · · ·+ an).

Proof: We will construct our proof by induction:
Base case: suppose G0,t(x) = y + t, t ∈ N, t ≤

∑n
i=1 ai. Then we can take H0,0,t(x) =

1
y+t

and
H0,i,t = 0 where 1 ≤ i ≤ n, i ∈ N as an IPS-LINQ(y) certificate for a system of polynomial equations
G0,t(x) = F1(x) = F2(x) = · · · = Fn(x) = 0.

Induction step: suppose we have already built certificates Hk,0,t(x), . . . , Hk,n,t(x) for the sys-
tems of polynomial equations Gk,t(x) = F1(x) = F2(x) = · · · = Fn(x) = 0 where Gk,t(x) = y + t +
a1x1 + . . . akxk, t ∈ Z, 0 ≤ t ≤

∑n
i=k+1 ai. Now we will build certificates Hk+1,0,t(x), . . . , Hk+1,n,t(x)

for the systems of polynomial equations Gk+1,t(x) = F1(x) = F2(x) = · · · = Fn(x) = 0 where
Gk+1,t(x) = y + t+ a1x1 + . . . ak+1xk+1, t ∈ Z, 0 ≤ t ≤

∑n
i=k+2 ai. There are the following cases:

1. If i > k + 1, then we will take Hk+1,i,t(x) = 0.

2. If i = k + 1, then we will take Hk+1,i,t(x) = ak+1(Hk,0,t(x)−Hk,0,t+ak+1
(x)).

3. If 0 ≤ i < k + 1, then we will take Hk+1,i,t(x) = xk+1Hk,i,t+ak+1
(x) + (1− xk+1)Hk,i,t(x).

The main idea of this construction is the case analysis for xk+1 = 0, xk+1 = 1, that is,

(y + t+ a1x1 + . . .+ ak+1xk+1)xk+1 − ak+1(x
2
k+1 − xk+1) = (y + t+ ak+1 + a1x1 + . . . akxk)xk+1

and

(y+ t+ a1x1 + . . .+ ak+1xk+1)(1− xk+1) + ak+1(x
2
k+1 − xk+1) = (y+ t+ a1x1 + . . . akxk)(1− xk+1).

which means that (using the induction hypothesis)

((y + t+ a1x1 + . . . ak+1xk+1)xk+1 − ak+1(x
2
k+1 − xk+1))Hk,0,t+ak+1

(x)+

+ (x21 − x1)xk+1Hk,1,t+ak+1
(x) + . . .+ (x2k − xk)xk+1Hk,k,t+ak+1

(x) = xk+1

24

and

((y + t+ a1x1 + . . . ak+1xk+1)(1− xk+1) + ak+1(x
2
k+1 − xk+1))Hk,0,t(x)+

+ (x21 − x1)(1− xk+1)Hk,1,t(x) + . . .+ (x2k − xk)(1− xk+1)Hk,k,t(x) = 1− xk+1

Summing up the equations for both cases, due to the fact that (1 − xk+1) + xk+1 = 1 we get
Gk+1,tHk+1,0,t +

∑n
i=1 FiHk+1,i,t = 1.

On each step of our induction we create no more than poly(a1 + · · ·+ an) new gates computing
algebraic circuits for Q(y)[x1, . . . , xn]-polynomialsHk,0,t(x), . . . , Hk,n,t(x). Then we can takeH0(x) =
Hn,0,0(x), . . . , Hn(x) = Hn,n,0(x) to conclude our proof.

3.2.3 Lower Bound

Lemma 3.8. Suppose we have a constant-free circuit C over Q(y) of size M computing a polynomial
in Q(y)[x1, . . . , xn] that is a rational function f(y, x1, . . . , xn). Then there are two constant-free cir-
cuits over Z of size less than 3M computing polynomial functions P (y, x1, . . . , xn) ∈ Z[y, x1, . . . , xn]

and Q(y) ∈ Z[y] such that f(y, x1, . . . , xm) = P (y,x1,...,xn)
Q(y) .

Proof: Consider any topological order g1, . . . , gM on the gates of C. We will gradually rewrite our
circuit starting from g1. Assume that we have already done the job for g1, . . . , gk, that is, for each i ≤
k there are appropriate algebraic circuits for polynomial functions Pi(y, x1, . . . , xn) ∈ Z[y, x1, . . . , xn]
and Qi(y) ∈ Z[y] such that gi =

Pi

Qi
. We now augment these circuits to compute the polynomials for

gk.
Here are all possible cases:

1. g1 is a variable xj , then P = xj , Q = 1.

2. g1 is a constant from Q(y) (that is, 0,−1, 1, y), then P computes this constant, and Q = 1.

3. gk+1 = gi
gj
, where i, j ≤ k. In this case Pi ∈ Q(y) because of the structure of our

Q(y)[x1, . . . , xn]-circuit. Then Qk+1 = QiPj and Pk+1 = PiQj and sizes of the circuits for
Pk+1 and Qk+1 are less than 3 · (k + 1).

4. gk+1 = gi · gj , where i, j ≤ k. Then Qk+1 = QiQj and Pk+1 = PiPj and sizes of the circuits for
Pk+1 and Qk+1 are less than 3 · (k + 1).

5. gk+1 = gi + gj . Then Pk+1 = PiQj + PjQi and Qk = QiQj and sizes of the circuits for Pk+1

and Qk+1 are less than 3 · (k + 1).

We can conclude our proof by taking PM and QM as P and Q, respectively.

Theorem 3.9. Suppose a system of polynomial equations F0(x) = F1(x) = F2(x) = · · · = Fn(x) = 0,
Fi ∈ Q(y)[x1, . . . , xn], where F0(x) = y +

∑i=n
i=1 2

i−1xi and Fi(x) = x2i − xi, has an IPS-LINQ(y) cer-
tificate H0(x), . . . , Hn(x), where each Hi(x) can be computed by a poly(n)-size constant-free algebraic
circuit over Q(y). Then, the τ -conjecture is false.

Proof: Based on the above lemma, we can say that there are polynomials Pi(y, x1, . . . , xn) ∈
Z[y, x1, . . . , xn] and Qi(y) ∈ Z[y] such that Hi =

Pi

Qi
for every i. Also we know that

(y + x1 + · · ·+ 2n−1xn)
P0

Q0
+ (x21 − x1)

P1

Q1
+ · · ·+ (x2n − xn)

Pn

Qn

= 1

25

So we can derive that

(y + x1 + · · ·+ 2n−1xn)P0

n∏

j=1

Qj + (x21 − x1)P1Q0

n∏

j=2

Qj + · · ·+ (x2n − xn)Pn

n−1∏

j=0

Qj =

n∏

j=0

Qj (8)

Denote
∏n

j=0Qj by Q(y). From the above lemma we know that there is a constant-free circuit
over Z of size poly(n) for Q(y). Furthermore, for any integer y such that 0 ≥ y > −2n, there are
values for xi (namely, the bit expansion of −y) such that the left hand side of eq. 8 is zero, and hence
Q(y) = 0. However, it contradicts the τ -conjecture.

4 The Cone Proof System

Here we define a very strong semi-algebraic proof system under the name Cone Proof System (CPS
for short). Similarly to other semi-algebraic systems, CPS establishes that a collection of polynomial
equations F := {fi = 0}i and polynomial inequalities H := {hi ≥ 0}i are unsatisfiable over 0-1
assignments (or over real-valued assignments, when desired (Definition 24)). In the spirit of the
Ideal Proof System (IPS) of Grochow and Pitassi [26] we are going to define a refutation in CPS as
a single algebraic circuit. Specifically, a CPS refutation is a circuit C that computes a polynomial
that results from monotone operations such as addition and product applied between the inequalities
H and themselves, as well as the use of nonnegative scalars and arbitrary squared polynomials. In
order to simulate in CPS the free use of equations from F we incorporate in the set of inequalities
H the inequalities fi ≥ 0 and −fi ≥ 0 for each fi = 0 in F (we show that this enables to add freely
products of the polynomial fi in CPS proofs, namely working n the ideal of F ; see Sect. 4.1.1).

We need to formalise the concept of a cone as an algebraic circuit. For this we first introduce the
notion of a squaring gate: let C be a circuit and v be a node in C. We call v a squaring gate if
v is a product gate whose two incoming edges are emanating from the same node. Therefore, if we
denote by w the single node that has two outgoing edges to the squaring gate v, then v computes
w2 (that is, the square of the polynomial computed at node w).

The following is a definition of a circuit computing polynomials in the cone of the y variables:

Definition 22 (y-conic circuit). Let R be an ordered ring. We say that an algebraic circuit C
computing a polynomial over R[x, y] is a conic circuit with respect to y, or y-conic for short, if
for every negative constant or a variable xi ∈ x, that appears as a leaf u in C, the following holds:
every path p from u to the output gate of C contains a squaring gate.

Informally, a y-conic circuit is a circuit in which we assume that the y-variables are nonnegative,
and any other input that may be negative (that is, a negative constant or an x-variable) must be
part of a squared sub-circuit. Here are examples of y-conic circuits (over Z): y1, y1 · y2, 3 + 2y1,
(−3)2, x21, (3 ·−x1+1)2, (x1y2+y1)

2, y1+ · · ·+yn. On the other hand, −1, x1, x1 ·y2, −1 ·y1+4
are examples of non y-conic circuits.

Note that if the y-variables of a y-conic circuit are assumed to take on non-negative values,
then a y-conic circuit computes only non-negative values. It is evident that y-conic circuits can
compute all and only polynomials that are in the cone of the y variables. In other words, if y are the
variables y1, . . . , ym, then there exists a y-conic circuit C(x, y) that computes the polynomial p(x, y) iff
p(x, y) ∈ cone(y1, . . . , ym) ⊆ R[x, y]. Similarly, if f(x) is a sequence of polynomials f1(x), . . . , fm(x),
then there exists a y-conic circuit C(x, y) such that C(x, f(x)) = p(x) iff p(x) computes a polynomial
in cone

(
f(x)

)
⊆ R[x].

26

Deciding if a given circuit is y-conic is in deterministic polynomial-time (see Claim 4.5 in
Sect. 4.1).

Similar to IPS, we start by defining a boolean version for the Cone Proof System (Definition 23),
which is a refutation system for sets of polynomial equations and inequalities with no {0, 1} solutions.
It is easy to define the corresponding real version of CPS that refutes sets of polynomial equations
and inequalities that are unsatisfiable over the reals. This is done simply by taking out the boolean
axioms from the system (Definition 24).

By default, when referring to CPS we will be speaking about the boolean version.

Definition 23 ((boolean) Cone Proof System (CPS)). Consider a collection of polynomial equations
F := {fi(x) = 0}mi=1, and a collection of polynomial inequalities H := {hi(x) ≥ 0}ℓi=1, where all
polynomials are from R[x1, . . . , xn]. Assume that the following boolean axioms are included in the
assumptions: F includes x2i − xi = 0, and H includes the inequalities xi ≥ 0 and 1 − xi ≥ 0, for
every variable xi ∈ x. Suppose further that H includes (among possibly other inequalities) the two
inequalities fi(x) ≥ 0 and −fi(x) ≥ 0 for every equation fi(x) = 0 in F (including the equations
x2i − xi = 0). A CPS proof of p(x) from F and H, showing that F ,H semantically imply the
polynomial inequality p(x) ≥ 0 over 0-1 assignments, is an algebraic circuit C(x, y) computing a
polynomial in R[x, y1, . . . , yℓ], such that:11

1. C(x, y) is a y-conic circuit; and

2. C(x,H) = p(x),

where equality 2 above is a formal polynomial identity12 in which the left hand side means that we
substitute hi(x) for yi, for i = 0, . . . , ℓ.

The size of a CPS proof is the size of the circuit C. The variables y are the placeholder variables
since they are used as a placeholder for the axioms. A CPS proof of −1 from F ,H is called a CPS

refutation of F, H.

In what follows, we will write “conic” instead of “y-conic” where the meaning of y is clear from
the context.

In order to refute propositional formulas in conjunctive normal form (CNF) in CPS we use the
algebraic translation of CNFs (Definition 11), which is expressed as a set of polynomial equalities. We
show in Prop. 4.13 that CPS can efficiently translate CNF formulas written as polynomial equalities
to the standard way in which CNF formulas are written as polynomial inequalities. The real version
of CPS is defined as follows:

Definition 24 (Real CPS). The real CPS system is defined similarly to boolean CPS except that
boolean axioms are not included in the assumptions. That is, F does not include x2i − xi = 0, and
H does not include the inequalities xi ≥ 0 and 1− xi ≥ 0 (for variables xi ∈ x).

Remark about CPS.

1. CPS should be thought of as a way to derive valid polynomial inequalities from a set of poly-
nomial equations and inequalities from R[x]. Loosely speaking, it is a circuit representation
of the Positivstellensatz proof system (Definition 13), though in CPS the assumptions F , H
(more precisely, placeholder variables of which) may have powers greater than one. That is,
whereas eq. 5 is multilinear in the hi variables, CPS is not.

11Note that formally we do not make use of the assumptions F in CPS, as we assume always that the inequalities
that correspond to the equalities in F are present in H. Thus, the indication of F is done merely to maintain clarity
and distinguish (semantically) between two kinds of assumptions: equalities and inequalities.

12That is, C(x,H) computes the polynomial p(x).

27

2. We add the boolean axioms x2i − xi ≥ 0, xi − x2i ≥ 0, xi ≥ 0 and 1− xi ≥ 0 to H as a default.
Hence, the system can refute any set of inequalities (and equalities) that is unsatisfiable over
0-1 assignments.

3. Formally, CPS proves only consequences from an initial set of inequalities H and not equalities
F . However, we are not losing any power doing this. First, observe that:

An assignment satisfies F , H iff it satisfies H (in the case of boolean CPS an assign-
ment that satisfies either F or H must be a 0-1 assignment).

Second, we encode equalities fi(x) = 0 ∈ F using the two inequalities fi(x) ≥ 0 and −fi(x) ≥ 0
in H. As shown in Thm. 4.7 this way we can derive any polynomial in the ideal of F , and not
merely in the cone of F , as is required for equations (and similar to the definition of SoS), with
at most a polynomial increase in size (when compared to IPS).

To derive polynomials in the ideal of F we need to be able to multiply fi and −fi (from H)
by any (positive) polynomial in the x variables. There are two ways to achieve this in boolean
CPS: the first, is to use the boolean axiom xi ≥ 0 in H. This allows to product fi and −fi by
any polynomial in the x-variables. The second way, the one we use in Prop. 4.6 to show that
CPS simulates IPS in Thm. 4.7, is different and does not necessitate the addition of the axiom
xi ≥ 0 to H. Since the second way does not use the boolean axiom xi ≥ 0 in H we can use it
in real CPS, hence allowing the derivation of polynomials in the ideal of F within real CPS.

To exemplify a proof in CPS we provide the following simple proposition:

Proposition 4.1. CPS admits a linear size refutation of the binary value principle BVPn.

Proof: To simplify notation we put S :=
∑n

i=1 2
i−1 · xi + 1. Let F :={

S = 0, x21 − x1 = 0, . . . , x2n − xn = 0
}
. Then by the definition of CPS H contains the follow-

ing correspondent 4n + 2 axioms (4n boolean axioms, and two axioms for the single non-boolean
axiom in F):

H :=
{
x1 ≥ 0, . . . , xn ≥ 0, − S ≥ 0, S ≥ 0, x21 − x1 ≥ 0, . . . , x2n − xn ≥ 0,

−(x21 − x1) ≥ 0, . . . , − (x2n − xn) ≥ 0, 1− x1 ≥ 0, . . . , 1− xn ≥ 0
}
.

Therefore, the CPS refutation of the binary value principle is defined as the following y-conic circuit:

C(x, y) :=

(
n∑

i=1

2i−1 · yi

)
+ yn+1, (9)

where the placeholder variables y1, y2, . . . , y4n+2 correspond to the axioms in H in the order they
appear above. Observe indeed that C(x,H) = C(x, x1, . . . , xn,−S, . . .) =

(∑n
i=1 2

i−1 · xi
)
+ (−S) =

−1.

Observing the CPS refutation in eq. 9 we see that it is in fact already an SoS refutation:

Corollary 4.2. SoS admits a linear monomial size refutation of the binary value principle BVPn.

28

4.1 Basic Properties of CPS and Simulations

CPS is a very strong proof system. In fact, of all proof systems with randomized polynomial-time
verification, given concretely, to the best of our knowledge CPS is the strongest to have been defined
to this date. CPS simulates IPS as shown below, while we show that IPS simulates CPS only under
the condition that there are short IPS refutations of the binary value principle.

Proposition 4.3 (CPS is sound and complete). Let R be an ordered ring. CPS (resp., real CPS) is
a complete and sound proof system for the language of sets of polynomial equations and inequalities
over R that have no 0-1 (resp. R-solutions) solutions. More precisely, given two sets of polynomial
equalities and inequalities F , H, respectively, where all polynomials are from R[x1, . . . , xn], there ex-
ists a CPS (resp. real CPS) refutation of F , H, iff there is no {0, 1} assignment (resp. R-assignment)
satisfying both F and H (iff there is no {0, 1} assignment (resp. R-assignment) satisfying H).

Proof: The completeness of boolean CPS follows from the simulation of propositional Positivstel-
lensatz below (Thm. 4.10). The soundness of boolean CPS stems from the following. Assume that
C(x, y) is a CPS refutation of F , H. Recall that an assignment satisfies F , H iff it satisfies H.
Assume by a way of contradiction that α is a 0-1 assignment to x that satisfies F , H. The circuit
C(x, y) is y-conic and hence C(α,H(α)) is non-negative assuming that the inputs to the y variables
(that is, H(α)) are non-negative. Since α satisfies H we know that indeed hi(α) ≥ 0, for every
hi(x) ∈ H. Therefore, Ĉ(α,H(α)) ≥ 0, which contradicts our assumption that C(α,H(α)) = −1.

The completeness for real CPS follows by similar arguments.

Proposition 4.4. A CPS proof (either real of boolean) can be checked for correctness in probabilistic
polynomial-time.

Proof: Similar to IPS, we can verify condition 2 in Definition 23, that is C(x,H) = p(x), in proba-
bilistic polynomial-time (formally, in coRP). For condition 1 we need to check that C is a y-conic
circuit, which can be done in P via the following claim:

Claim 4.5. There is a polynomial-time algorithm to determine if a circuit C(x, y) is a y-conic circuit
or not.

Proof of claim: We say that a directed path from a leaf u in C holding either a negative constant or
an x variable to the output gate of C is bad if the path does not contain any squaring gate.

For each leaf u in C holding either a negative constant or an x variable we can determine the
following property in NL: there exists a bad path from u to the output gate of C. This algorithm
is in NL simply because nondeterministically we can go along a directed path from u to the output
gate and check that no squaring gate was encountered along the way (we only need to record the
current node and the current length of the path so to know when to terminate). This means that
the complement problem of deciding that there does not exist a bad path from u to the output gate
is in coNL which is known to be contained in P.

Our algorithm thus checks that each of the leaves holding negative constants do not possess any
bad path to the output gate, which can be done in polynomial-time by the argument above. Claim

As a corollary of Prop. 4.3 and Prop. 4.4 we get that, similar to IPS, if CPS is p-bounded (namely,
admits polynomial-size refutations for every unsatisfiable CNF formula) then coNP is in MA, yielding
in particular the polynomial hierarchy collapse to the third level (cf. [39, 26]).

29

4.1.1 CPS Simulates IPS

We now show that boolean CPS simulates boolean IPS for the language of {0, 1}-unsatisfiable sets
of polynomial equations over any ordered ring. Similarly, real CPS simulates algebraic IPS over Q.
We translate an input equality fi(x) = 0 into a pair of inequalities fi(x) ≥ 0 and −fi(x) ≥ 0, Note
that an IPS proof is written as a general algebraic circuit (computing an element of an ideal), while
a CPS proof is written as a more restrictive algebraic circuit, namely as a y-conic circuit (computing
an element of a cone). This means that a priori we cannot (obviously) multiply an inequality by
an arbitrary polynomial in CPS. We thus demonstrate how to do it when we have opposite-sign
inequalities. In order to do this, we represent an arbitrary polynomial as the difference of two
nonnegative expressions.

Proposition 4.6 (minus gate normalisation). Let G(x) be an algebraic circuit computing a poly-
nomial in the x variables over Q. Then, there is an algebraic circuit of the form GP (x) − GN (x)
computing the same polynomial as G(x) where GP and GN are ∅-conic. The size of GP , GN is at
most linear in the size of G.

Proof: This is somewhat reminiscent of Strassen’s conversion of a circuit with division gate to a
circuit with only a single division gate at the top [50]. We are going to break inductively each node
into a pair of nodes computing the positive and negative parts of the polynomial computed in that
node. Formally, we define the circuits GP , GN (that may have common nodes) by induction on the
size of G as follows:
Case 1: G = xi, for xi ∈ x. Then, GP := 1

2(x
2
i + 1), GN := 1

2(xi − 1)2.
Case 2: G = α, for α a constant in the ring. Then

GP := α, GN := 0, if α ≥ 0;
GP := 0, GN := α, if α < 0.

Case 3: G = F +H. Then, GP := FP +HP and GN := FN +HN .
Case 4: G = F ·H. Then, GP := FP ·GP + FN ·GN and GN := FP ·GN + FN ·GP .

The size of both GP , GN is O(|G|), namely linear in the size of G. This is because we only add
constantly many new nodes in GP , GN for any original node in G; note that since we construct a
new circuit computing the same polynomial as G, we can re-use nodes computed already, in case
4: for example, FP is the same node used in GP and GN (hence, indeed, the number of new added
nodes for every original node in G is constant).

Theorem 4.7. Real CPS simulates algebraic IPS as a proof system for the language of unsatisfiable
sets of polynomial equations over Q. In other words, there exists a constant c such that for any
polynomial p(x) and a set of polynomial equations F , if p(x) has an IPS proof of size s from F then
there is a CPS proof of p(x) from F of size at most sc. Furthermore, boolean CPS simulates boolean
IPS (for any ordered ring).

Remark 4.8. It is easy to see that fractional Q coefficients are not needed in the case of boolean
systems, as Case 1 in Prop. 4.6 above simplifies to GP := xi, GN := 0 when xi’s are nonnegative.
This is the reason boolean CPS simulates boolean IPS over any ordered ring.

Specifically, if F is a set of polynomial equations with no 0-1 satisfying assignments and suppose
that there is an IPS refutation of F with size s, then there is a CPS refutation of F with size at
most sc.

Proof of Thm. 4.7. We are going to simulate both the boolean and the algebraic versions of IPS.
The proof in both cases is the same.

30

Assume that C(x, y) is the IPS proof of p(x) from F = {fi(x) = 0}ℓi=1, of size s, and let
y = {y1, . . . , yℓ} be the placeholder variables for the equations in F . We assume for simplicity that
if we simulate the boolean version of IPS the boolean axioms x2 − x are also part of F (while if we
simulate the algebraic version of IPS these axioms are not part of F). We use the following claim:

Claim 4.9. Let C(x, y) be a circuit of size s, where y = {y1, . . . , yℓ} and such that C(x, 0) = 0.
Then C can be written as a sum of circuits with only a polynomial increase in size as follows:
C(x, y) =

∑ℓ
i=1 yi · Ci(x, y).

Proof of claim: We proceed by a standard process to factor out the y variables one by one. Beginning
with y1 we get:

C(y, x) = y1 ·
(
C(1, y′, x)− C(0, y′, x)

)
+ C(0, y′, x),

where y′ denotes the vector of variables (y2, . . . , yℓ). In a similar manner we factor out the variable
y2 from C(0, y′, x). Continuing in a similar fashion we conclude the claim. Notice that the size of the
resulting circuit is O(|C|2), and that in the final iteration of the construction we factor out yℓ from
C(0, yℓ, x) it must hold that C(0, yℓ, x) = y1 ·

(
C(0, 1, x)− C(0, 0, x)

)
+ C(0, 0, x) = y1 · C(0, 1, x),

because by assumption C(0, 0, x) = 0. Claim

By this claim we have

C(x, y) =
ℓ∑

i=1

yi · Ci(x, y)

=
ℓ∑

i=1

yi · Ci,P (x, y)−
ℓ∑

i=1

yi · Ci,N (x, y) , (10)

where Ci,P (x, y), Ci,N (x, y) are the positive and negative parts of Ci(x, y), respectively, that exist by
Prop. 4.6, written as circuits in which no negative constants occur (we do not need to distinguish
between the variables x and y here).

We wish to construct now a CPS refutation of F . Our corresponding set of inequalities H will
consist of fi(x) ≥ 0,−fi(x) ≥ 0, for every i ∈ [ℓ]. In total, |H| = 2ℓ. Accordingly, our CPS refutation
of F , H, will have 2ℓ placeholder variables for the axioms in H denoted as follows: yP are the ℓ
placeholder variables yi,P corresponding to fi(x) ≥ 0, i ∈ [l], yN are the ℓ placeholder variables yi,N
corresponding to −fi(x) ≥ 0, i ∈ [l].

Since Ci,P and Ci,N are ∅-conic circuits,

ℓ∑

i=1

yi,P · Ci,P (x, yP , yN) +

ℓ∑

i=1

yi,N · Ci,N (x, yP , yN)

is a (yP , yN)-conic circuit. It constitutes a CPS proof of p(x) from the assumptions fi(x) ≥
0,−fi(x) ≥ 0, for i ∈ [ℓ] of size linear in |C| (as before, we denote by F the vector f1(x), . . . , fℓ(x)):

ℓ∑

i=1

fi(x) · Ci,P (x,F) +

ℓ∑

i=1

(−fi(x)) · Ci,N (x,F)

=
ℓ∑

i=1

fi(x) ·
(
Ci,P (x,F)− Ci,N (x,F)

)

=

ℓ∑

i=1

fi(x) · Ci(x,F) = C(x,F) = p(x).

31

4.1.2 CPS Simulates Positivstellensatz and SoS

The following theorem is immediate from the definitions.

Theorem 4.10. Real CPS simulates Positivstellensatz (and hence also SoS) proof system over the
same ordered ring.

Proof: This follows immediately from the fact that CPS is a circuit representation of the second
big sum in eq. 5. More formally, let F := {fi(x) = 0}i∈I be a set of polynomial equations and let
H := {hj(x) ≥ 0}j∈J be a set of polynomial inequalities, where all polynomials are from R[x1, . . . , xn].
Consider the following Positivstellensatz refutation of F , H, where {pi}i∈I and {si,ζ}i,ζ (for i ∈ N

and ζ ⊆ J) are collections of polynomials in R[x1, . . . , xn]:

∑

i∈I

pi · fi +
∑

ζ⊆J

∏

j∈ζ

hj ·

∑

i∈Iζ

s2i,ζ

 = −1 . (11)

The size of the Positivstellensatz refutation is the combined total number of monomials in {pi}i∈I
and

∑
i∈Iζ

s2i,ζ , for all ζ ⊆ J (see Definition 13).

By definition every fi(x) = 0 ∈ F has corresponding two inequalities in H, fi(x) ≥ 0 and
−fi(x) ≥ 0. Let the variables y (to be used as placeholder variables) be partitioned into three
disjoint parts: y = {yi}i∈I ⊎ {yi′}i′∈I′ ⊎ {yj}j∈J , where {yi}i∈I are the placeholder variables for
{fi(x) ≥ 0}i∈I in H, {yi′}i′∈I′ are the placeholder variables for {−fi(x) ≥ 0}i∈I in H and {yj}j∈J
are the placeholder variables for {hj(x) ≥ 0}j∈J in H. Assume also that for every i ∈ I, pi,P is the
sum of all non-negative monomials in pi and pi,N is the sum of all negative monomials in pi. Define

C(x, y) :=
∑

i∈I

pi,P · yi +
∑

i′∈I′

pi,N · yi +
∑

ζ⊆J

∏

j∈ζ

yj ·

(
∑

i

s2i,ζ

)
 ,

where each of the three big sums is written as a sum of monomials.
Hence, C(x,H) = −1 by eq. 11 and the size of C(x, y) is linear in

∑
i∈I |pi|#monomials

+
∑

ζ⊆J

∑
i∈Iζ

∣∣∣s2i,ζ
∣∣∣
#monomials

.

Corollary 4.11. Boolean CPS simulates SoS and Positivstellensatz for inputs that include the
boolean axioms.

4.1.3 CPS Simulates LS∞
∗,+ for CNFs Written as Inequalities

CPS can simulate the strongest semi-algebraic proof system as defined in Definition 17.

Theorem 4.12. Boolean CPS simulates LS∞∗,+ (that is, “dynamic Positivstellensatz” from
Definition 17).

Recall that CPS uses the algebraic translation of CNFs (Definition 11) as equations while earlier
semi-algebraic systems historically used the semi-algebraic translation of CNFs (Definition 16) as
inequalities. We will show below that one can be efficiently converted into the other. Modulo this
proposition the proof of Thm. 4.12 is almost trivial.

Proof sketch of Thm. 4.12. It suffices to observe that the derivation rules (adding and multiplying
two inequalities, taking a square of an arbitrary polynomial) are the same as the rules of constructing
the conic circuit. Therefore, following the LS∞∗,+ proof we construct a conic circuit that, given the
axioms on the input, computes -1.

32

Proposition 4.13. There is a polynomial-size propositional CPS proof that starts from the
algebraic translation of a clause as the two inequalities

∏
i∈P (1 − xi) ·

∏
j∈N xj ≥ 0 and

−
(∏

i∈P (1− xi) ·
∏

j∈N xj

)
≥ 0, and derives the semi-algebraic translation of the clause

∑
i∈P xi +∑

j∈N (1− xj)− 1 ≥ 0.

Recall that CPS works with inequalities, whereas equalities f = 0 in F are interpreted as the
two inequalities f ≥ 0 and −f ≥ 0 in H. Hence, Prop. 4.13 suffices to show that a clause given as
an equality in F can be translated efficiently in CPS to its semi-algebraic translation.

Proof of Prop. 4.13. We proceed by induction on the number of variables in the clause.

Base case: We start with one of the (algebraic) clauses x1 or 1 − x1. In the former case, we start
from −x1 which is in H by the definition of CPS, and we need to derive (1− x1)− 1, which is equal
to −x1, hence we are done. In the latter case, we start from −(1− x1) which is x1 − 1, hence we are
done again.

Induction step:
Case 1: We start from the clause (1 − xn) ·

∏
i∈P (1 − xi) ·

∏
i∈N xi as a given equation (namely,

in F ; formally, the two corresponding inequalities are in H), and we need to derive xn +
∑

i∈P xi +∑
i∈N (1− xi)− 1 in CPS. We consider the two cases xn = 0 and xn = 1, and then use reasoning by

boolean cases in CPS. Reasoning by boolean cases in propositional CPS is doable in polynomial-size
by Prop. A.5 which states this for IPS and since propositional CPS simulates IPS by Thm. 4.7 for
the language of polynomial equations F (in our case the initial clauses are indeed given as equations,
and thus CPS simulates IPS’ reasoning by boolean cases).

In case xn = 0, (1−xn)·
∏

i∈P (1−xi)·
∏

i∈N xi =
∏

i∈P (1−xi)·
∏

i∈N xi, from which, by induction
hypothesis we can derive in CPS with a polynomial-size proof

∑
i∈P xi +

∑
i∈N (1 − xi) − 1. Since

xn = 0 we can add xn to this expression obtaining xn +
∑

i∈P xi +
∑

i∈N (1 − xi) − 1, and we are
done.

In case xn = 1, we have xn +
∑

i∈P xi +
∑

i∈N (1− xi)− 1 = 1 +
∑

i∈P xi +
∑

i∈N (1− xi)− 1 =∑
i∈P xi+

∑
i∈N (1−xi). But

∑
i∈P xi+

∑
i∈N (1−xi) is easily provable in propositional CPS because

we have the axioms xi ≥ 0 and 1− xi ≥ 0 in H, for every variable xi, by definition.
Case 2: We start from the clause xn ·

∏
i∈P (1 − xi) ·

∏
i∈N xi, and we need to derive (1 − xn) +∑

i∈P xi +
∑

i∈N (1− xi)− 1 in CPS. This is similar to Case 1 above with the two boolean sub-cases
xn = 0 and xn = 1 flipped.

5 Reasoning about Bits within Algebraic Proofs

In what follows we define a number of circuits implementing arithmetic in the two’s complement
notation (see below for the details). Namely, we will define the following polynomial-size circuits:

BITi(f): if f is a circuit in the variables x then BITi(f) computes the ith bit of the integer computed
by f (as a function of the input variables x where the variables x range over 0-1 values).

BIT(f): a multi-output operation that computes the bit vector of f (as a function of the input
variables x where the variables x range over 0-1 values).

ADD(y, z): a multi-output carry-lookahead circuit that computes the bit vector of the sum of y and
z.

33

ADDi(y, z): the circuit that computes the ith output bit in the carry-lookahead circuit ADD(y, z).

CARRYi(y, z): the carry for bit i when adding two bit vectors y, z.

PROD(y, z): the multi-output circuit computing binary multiplication of two bit vectors y and z.

PROD+(y, z): the multi-output circuit computing binary multiplication of two nonnegative bit vec-
tors y and z.

VAL(z): the valuation function that converts z encoding an integer in the two’s complement repre-
sentation to its integer value (see below).

ABS(x): The multi-output circuit computing the two’s complement binary representation of the
absolute value of an input integer x given in two’s complement.

We construct the BITi function by induction on the size of f . In general this cannot be done
for algebraic variables, but in our case we are assuming that the variables x1, . . . , xn are boolean
variables, and this allows us to carry out the constructions below, yielding a circuit of size which is
polynomial in the size of the algebraic circuit of f where ring scalars are encoded in binary.

5.1 Basic Two’s Complement Arithmetic

Integer numbers are encoded in the two’s complement scheme since this scheme makes standard
binary addition work for both positive and negative numbers, which simplifies the construction
slightly. In the two’s complement scheme the value represented by the bit string w ∈ {0, 1}k is
determined by a function from {0, 1}k to Z as follows:

Definition 25 (the binary value operation VAL). Given a bit vector w0 · · ·wk−1 of variables, denoted
w, ranging over 0-1 values, define the following algebraic circuit with integer coefficients13:

VAL(w) :=
k−2∑

i=0

2i · wi − 2k−1 · wk−1.

The most significant bit (msb) wk−1 is called the sign bit of w.

Thus, VAL(w) =
∑k−2

i=0 2i ·wi in case the sign bit wk−1 = 0 (hence, w encodes a positive integer),

and VAL(w) =
∑k−2

i=0 2i · wi − 2k−1, in case the sign bit wk−1 = 1 (hence, w encodes a negative
integer).

We will represent the integers computed inside the original algebraic circuit by variable length
bit vectors (that is, different bit vectors may have different lengths). For each gate in a given circuit
we will assign a number that is sufficiently large to store the bit vector of the integer it computes
when the input variables range over 0-1 values; this number will be called the syntactic length of
the gate (or equivalently, of the circuit whose output gate is this gate). The syntactic length of a
gate is not necessarily the minimal number of bits needed to store a number, since we will find it
convenient to use slightly more bits than is actually required at times. For instance, the product
of two t-bit binary numbers can be stored with only 2t − 1 bits, but we will use 2t + 3 bits for a
product. Given the syntactic length of algebraic gates such as +,× as functions of the syntactic
length of their incoming edges, we can compute by induction on circuit size the syntactic length of

13We assumed that algebraic circuits have fan-in two, hence VAL is written as a logarithmic depth circuit of addition
gates (and product gates at the bottom of the circuit).

34

any given gate in a circuit. It will be straightforward that the syntactic length of a constant-free
(integer algebraic) circuit that has s gates and multiplicative depth D (that is, the longest directed
path goes through at most D multiplications) is at most O(s2D) (imagine repeated squaring of 2 as
the worst case), and it is at most O(sd) for a constant-free circuit that has syntactic degree d (that
is, it would compute a polynomial of total degree at most d if all constants −1 are replaced by 1;
surely, d ≤ 2D).

When we need to make an operation over integers of different bit-length, we pad the shorter one
(in the two’s complement scheme, a number is always padded by its sign bit, and it is immediate to
see that such padding preserves the value of the number as computed by VAL).

We will use the boolean connectives ∧,∨,⊕, which stand for AND, OR and XOR, respectively. In
order to use boolean connectives inside algebraic circuits, we define the arithmetization of connectives
as follows:

Definition 26 (arithmetization operation arit(·)). For a variable yi, arit(yi) := yi. For the truth
values false ⊥ and true ⊤ we put arit(⊥) := 0 and arit(⊤) := 1. For logical connectives we define
arit(A ∧B) := arit(A) · arit(B), arit(A ∨B) := 1 − (1 − arit(A)) · (1 − arit(B)), and for the XOR
operation we define arit(A⊕B) := arit(A) + arit(B)− 2 · arit(A) · arit(B).

In this way, for every boolean circuit F (x) with n variables and a boolean assignment α ∈ {0, 1}n,
arit(F) (α) = 1 iff F (α) = true.

In what follows, we sometimes omit arit(·) from our formulas and simply write ∧, ∨, ⊕ meaning
the corresponding polynomials or algebraic circuits.

Addition is done with a carry lookahead adder as follows:

Definition 27 (CARRYi, ADDi, ADD). When we use an adder for vectors of different size, we
pad the extra bits of the shorter one by its sign bit. Suppose that we have a pair of length-t vectors
of variables y = (y0, . . . , yt−1), z = (z0, . . . , zt−1) of the same size. We first pad the two vectors by
a single additional bit yk = yk−1 and zt = zt−1, respectively (this is the way to deal with a possible
overflow occurring while adding the two vectors). Define

CARRYi(y, z) :=

{
(yi−1 ∧ zi−1) ∨ ((yi−1 ∨ zi−1) ∧ CARRYi−1(y, z)), i = 1, . . . , t;

0 , i = 0 ,
(12)

and
ADDi(y, z) := yi ⊕ zi ⊕ CARRYi(y, z) , i = 0, . . . , t.

Finally, define
ADD(y, z) := ADDt(y, z) · · ·ADD0(y, z) (13)

(that is, ADD is a multi-output circuit with t+ 1 output bits).

It is worth noting that by Definition 27 we have (where the equality means that the polynomials
are identical, though the circuits for them is different):

CARRYi(y, z) =

{∨
r<i

(
yr ∧ zr ∧

∧i−1
k=r+1(yk ∨ zk)

)
, i = 1, . . . , t;

0 , i = 0 .
(14)

Let s be a bit, and denote by e(s) the bit vector in which all bits are s (that is, e(s) = s · · · s)
and where the length of the vector is understood from the context. In the two’s complement scheme
inverting a positive number is a two-step process: first flip its bits (that is, XOR with the all-1 vector)
and then add 1 to the result. Hence, in what follows, to invert a negative number, and extract its
absolute value, we first subtract 1 and then flip its bits:

35

Definition 28 (absolute value operation ABS). Let x be a t-bit vector representing an integer in
two’s complement. Let s be its sign bit, and let m = e(s) be the t-bit vector all of which bits are
s. Define ABS(x) as the multi-output circuit that outputs t + 1 bits14 as follows (where ⊕ here is
bit-wise XOR):

ABS(x) := ADD(x,m)⊕m.

For the sake of the clarity of the proof, we compute the product of two t-bit numbers in the
two’s complement notation somewhat less efficiently than it is usually done: we define the product
of nonnegative numbers in the standard way, apply it to the absolute values of the numbers and then
apply the appropriate sign bit. This way we get a slightly greater number of bits than needed to
keep the value.

To define the multiplication of two t-bit integers in the two’s complement notation we first define
an unsigned multiplication operator PROD+ which is easy to implement. It takes two non-negative
integers (that is, their sign bit is zero, and this assumption is required for the circuit to work
correctly), and performs the standard non-negative multiplication by performing i = 0, . . . , t − 1
iterations, where the ith iteration consists of multiplying the first integer by the single i-th bit of the
second integer, and then padding this product by i zeros to the right.

Definition 29 (product of two nonnegative numbers in binary PROD+). Let a and b be two t-bit
integers where the sign bit of both a, b is zero. We define t iterations i = 0, . . . , t − 1; the result of
the ith iteration is defined as the (t+ i)-length vector si = si,t+i−1si,t+i−2 · · · si,0 where

sij := aj−i ∧ bi, for i ≤ j ≤ t− 1 + i,

sij := 0 for 0 ≤ j < i.

(Note that we use the sign bits at−1, bt−1 in this process although we assume it is zero; this is done in
order to preserve uniformity with other parts of the construction.) The product of the two nonnegative
t-bit numbers is defined as the sequential addition of all the results in all iterations:

PROD+(a, b) := ADD
(
st−1,ADD

(
st−2, . . . ,ADD(s1, s0)

)
. . .
)
.

The number of output bits of PROD+ is formally 2t including the sign bit.

Definition 30 (product of two numbers in binary PROD). Let y and z be two t-bit integers in the
two’s complement notation. Define the product of y and z by first multiplying the absolute values of
the two numbers and then applying the corresponding sign bit:

PROD(y, z) := ADD
(
PROD+

(
ABS(y),ABS(z)

)
⊕m, s

)
,

where s = yt−1 ⊕ zt−1 and m = e(s), with yt−1, zt−1 the sign bits of y, z as bit vectors in the two’s
complement notation, respectively.

Note that the number of bits that PROD outputs is 2t + 3: given a t-bit number, its ABS is of
size t+ 1 (including the zero sign bit), the nonnegative product PROD+ of ABS(x) and ABS(y) has
size 2(t+1), bitwise XOR does not change the length, and adding s augments the result by one more
bit.

Note that given the bit vectors x, y of length t, the size of the circuit for CARRYi(x, y) is O(t)
by eq. 12, for ADDi(x, y) it is O(t) as well, and for ADD(x, y) it is still O(t) because in eq. 13 we
can re-use CARRYi. The size of ABS(x) is also O(t) (this is addition and linear-size bitwise XOR)
and finally PROD(x, y) is of size O(t2): we perform an addition of O(t) bit vectors of size O(t) each.

14Note that since the largest (in absolute value) negative number that can be represented by a t-bit binary vector in
the two’s complement scheme is 2t−1, while the largest positive number that can be represented in such a way is only
2t−1 − 1, we need to store the absolute number of a t-bit integer in the two’s complement scheme using t+ 1 bits.

36

5.2 Extracting Bits and the Main Binary Value Lemma

We are now ready to define the algebraic circuit BIT, in which BITi is the ith bit, that extracts the
bit vector of the output of a given algebraic circuit (as a function of the input variables, where the
variables are considered to range over 0-1).

Definition 31 (the bit vector extraction operation BIT). Let F be an algebraic circuit with t its
syntactic length. Assume that 0 ≤ i ≤ t − 1. We define BITi(F) to be the circuit computing the
ith bit of F recursively as follows (note that BITi is a circuit, that is, in the induction step of the
construction we may re-use the same nodes more than once).
Case 1: F = xj for an input xj. Then, BIT0(F) := xj, BIT1(F) := 0 (in this case there are just
two bits).
Case 2: F = α, for α ∈ Z. Then, BITi is defined to be the ith bit of α in two’s complement
notation, with at most t bits (i.e., i < t).
Case 3: F = G +H. Then BIT(F) := ADD(BIT(G),BIT(H)), and BITi(F) is defined to be the
ith bit of BIT(F).
Case 4: F = G ·H. Then BIT(F) := PROD(BIT(G),BIT(H)), and BITi(F) is defined to be the
ith bit of BIT(F).

Recall that in the latter two cases the shorter number is padded to match the length of the longer
number by copying the sign bit before applying ADD or PROD.

Note that both |BITi(F)| and |BIT(F)| have size O(t2 · |F |) (for t the syntactic length of F). To
understand this upper bound, observe that every node in the circuit for BIT(F) belongs to either
a sub-circuit computing the ith bit of ADD(x, y) (i.e., ADDi(x, y)) or to a sub-circuit computing
the ith bit of PROD(x, y), for some 0 ≤ i ≤ t and some two vectors of bits x, y that were already
computed by the circuit (since this is a circuit, once the vectors x, y were computed we can use their
result as many times as we like, without the need to compute them again). Hence, each addition
gate in F contributes O(t) nodes to BIT(F) and each product gate in F contributes O(t2) nodes to
BIT(F). This accounts for the size O(t2 · |F |) for BIT(F) (as well as for BITi(F)).

For technical reasons we need the following definition:

Definition 32 (IPS sub-proof; multi-output IPS proofs). Let C(x, y) be an IPS proof from a set
of polynomial equations as assumptions F of p(x) (that is, C(x,F) = p(x) and C(x, 0) = 0), and
suppose that C ′(x, y) is a sub-circuit of C(x, y) such that C ′(x, y) is an IPS proof of g(x) (that is,
C ′(x,F) = g(x) and C ′(x, 0) = 0).15 Then, we say that C ′(x, y) is a sub-proof of C(x, y), and also
(by slight abuse of terminology) that g(x) is a sub-proof of the IPS proof C of p(x) from F .

Furthermore, a multi-output circuit C(x, y) is said to be an IPS proof from assumptions F , if
each of its output gates computes an IPS proof.

For example, let the assumptions be F = {x2, (1+x1x2)}. The two-output circuit C(x, x) defined
as (x1 ·y1, x1 ·y2), where x1 is joined by the two sub-circuits x1 ·y1 and x1 ·y2, is an IPS proof having
two sub-proofs: the first is a sub-proof of x1 ·x2 from F , and the second is a sub-proof of x1 ·(1+x1x2)
from F .

Lemma 5.1. (main binary value lemma) Let F (x) be an algebraic circuit over Z in the variables
x = {x1, . . . , xn}, and suppose that the syntactic length of F is at most t. Then, there is an IPS
proof of

F = VAL(BIT(F))

15Notice that not all sub-circuits of C are IPS proofs; e.g., if they are polynomials that are not in the ideal generated
by y, they are not sub-proofs.

37

of size poly(|F |, t) (there are no axioms for this IPS proof, except for the boolean axioms). Further-
more, if F (x) is constant-free, the poly(|F |, t)-size IPS proof is also constant-free.

Proof: We will proceed, essentially, by induction on the structure of F . For technical reasons (since
we work with circuits of which sub-circuits can be re-used) we are going to state our induction
hypothesis on an IPS proof that consists, as sub-proofs, of other IPS proofs.

More precisely, let F1, . . . , Fk be a set of sub-circuits of F . We denote by λ(F1, . . . , Fk) the
size of the IPS proof we are to construct; this proof will consist (as sub-proofs) of IPS proofs of
Fi = VAL(BIT(Fi)), for all i ∈ [k]. We let λ(∅) := 0. We shall assume that at every step of the
construction F1 is of maximal size, namely there is no Fi that has size bigger than F1 (possibly there
are other Fi’s with the same size). In this way, we make sure that F1 is not a sub-circuit of any other
Fi. The IPS proof is to be constructed by induction on |F1| so that in each step of the induction
we deal with a single sub-circuit F1 of F , such that |F1| > 1. In the base case of the induction we
thus have λ(F1, . . . , Fk) such that all Fi’s have size 1, namely, they are all the variables and constant
gates that appear in F .

Note that since we treat the input to λ as a set we discard duplicate Fi’s from its input. For
example, λ(G,H) = λ(G) in case G = H. (This is convenient in what follows, because F is a circuit
and the IPS proof we construct is also a circuit, and hence can re-use multiple times the same IPS
sub-proof; see below.)

We proceed by induction on |F1|, the maximal size of a circuit in F1, . . . , Fk, to show the following:
in case all F1, . . . , Fk are variables or constant nodes we show that

λ(F1, . . . , Fk) ≤ c0kt,

for some constant c0.
In case F1 = G ◦H, for ◦ ∈ {+, ·}, we show that

λ(F1, . . . , Fk) ≤ λ(G,H,F2, . . . , Fk) + (t · |F1|)
b,

for some constants b independent of |F1| and t. This recurrence relation immediately implies that
λ(F) ≤ |F | · (t · |F |)b, which is polynomial in |F | and t (informally, every node in F contributes the
additive term c0t or (t · |F |)b to the recurrence).

Base case: All F1, . . . , Fk are variables or constant nodes. We construct a multi-output IPS proof
C(x, y), that consists of k disjoint proofs of VAL(BIT(Fj)) = Fj , for j ∈ [k].

Case 1: Fj = xi, for i ∈ [n]. Thus, the syntactic length of Fj is 2 and by definition VAL(BIT(xi)) :=
VAL(0xi) := xi−21 ·0 (the left equality is by definition of BIT, and the right equality is by definition
of VAL). Hence, VAL(BIT(xi)) = xi is a true polynomial identity and so by Fact A.1 we have an
IPS proof of size precisely the size of the circuit for xi − 21 · 0− xi which is at most, say, 20.

Case 2: Fj = α, for α ∈ Z. Then, by Definition 31, VAL(BIT(α)) :=
∑t−2

i=0 2
iαi− 2t−1 ·αt−1, where

αt−1 . . . α0 is the correct bit vector of α in the two’s complement notation (where t is the syntactic
length of Fj). Hence, VAL(BIT(α)) = α is a true polynomial identity of size at most c0t, for some
constant c0. By Fact A.1 we have an IPS proof of VAL(BIT(α)) = α of size at most c0t.

Hence, the total size of all the proofs of VAL(BIT(Fj)) = Fj , for j ∈ [k], amounts to
λ(F1, . . . , Fk) ≤ c0kt, as required.

Induction step: We assume that the syntactic length of F1 is t. We show that, in case F1 = G+H,
λ(F1, . . . , Fk) ≤ λ(G,H,F2, . . . , Fk) + c1 + (t · |F1|)

b′ , for some constants b′ and c1, and in case
F1 = G·H we show that λ(F1, . . . , Fk) ≤ λ(G,H,F2, . . . , Fk)+(t·|F1|)

a+(t·|F1|)
b′ , for some constants

38

b′ and a independent of t and |F1|. Thus, choosing a big enough constant b, e.g., b > 10 ·max(a, b′),
will conclude that λ(F) ≤ |F | · (t · |F |)b, and hence will conclude the proof.

Case 1: F1 = G+H, with F1 of syntactic length t. Since the syntactic length of F1 is t, the syntactic
length of BIT(G),BIT(H) is t− 1 (after padding BIT(G),BIT(H) to have the same size). We need
to construct an IPS proof consisting of sub-proofs of VAL(BIT(F1)) = F1, . . . ,VAL(BIT(Fk)) = Fk.
By induction hypothesis we have an IPS proof consisting of sub-proofs of G+H = VAL(BIT(G)) +
VAL(BIT(H)) and Fi = VAL(BIT(Fi)), for i = 2, . . . , k, of total size λ(G,H,F2, . . . , Fk) + c1, for
some constant c1 (the constant c1 here is needed for the addition of the two proofs; see Fact A.3 in
which c1 = 1). It thus suffices to prove

VAL(BIT(G)) + VAL(BIT(H)) = VAL(BIT(F1))

with an IPS proof of size at most (t · |F1|)
b′ , for some constant b′ independent of t.

For simplicity of notation, let us denote the circuits for bits BIT(G) and BIT(H), by y and z,
respectively, and the syntactic length of y, z by r = t− 1. We proceed slightly informally within IPS
as follows (recall that polynomial identities of size s have trivial IPS proofs of size s by Fact A.1).

VAL(y) + VAL(z) =
r−2∑

i=0

2i(yi + zi)− 2r−1(yr−1 + zr−1).

On the other hand we have (recall the padded bits yr = yr−1, zr = zr−1 in the definition of ADD)

VAL(BIT(F1)) = VAL (ADD0 (y, z) . . .ADDr (y, z)) (by definition of BIT)

=
r−1∑

i=0

2i (zi ⊕ yi ⊕ CARRYi(y, z))− 2r(zr−1 ⊕ yr−1 ⊕ CARRYr(y, z))

(by definition of ADDi and VAL).

Thus, to complete the case of addition, it remains to prove the following:

Claim 5.2. There is an IPS proof with size at most (r · |F1|)
b′′, for a constant b′′ (independent of r,

and such that b′ will be chosen so that b′ > b′′) of the equation

r−2∑

i=0

2i(yi + zi)− 2r−1(yr−1 + zr−1)

=

r−1∑

i=0

2i (zi ⊕ yi ⊕ CARRYi(y, z))− 2r(zr−1 ⊕ yr−1 ⊕ CARRYr(y, z)) .

Proof of claim: This is proved by induction on r as follows.

Base case: r = 2. It is easy to see (or can be verified by hand) that in this case the two sides of the
claim are equal for every y0, z0, y1, z1 ∈ {0, 1}. Given that the number of bits in this case is constant,
this is enough to conclude that there is an IPS proof of the above equation (using reasoning by
boolean cases as in Prop. A.5, over a constant number of possible truth assignments for y0, z0, y1, z1)
of size (2 · |F |)b

′′
, for some constant b′′.

Induction step: To prove this step, notice that using the induction hypothesis we see that the equality
we need to prove is

(zr−2 + yr−2)− (zr−1 + yr−1) = zr−2 ⊕ yr−2 ⊕ CARRYr−1(y, z)− zr−1 ⊕ yr−1 ⊕ CARRYr(y, z) .

39

Substituting the definition for CARRYr−1 and CARRYr, we get a polynomial equation in five vari-
ables: zr−2, yr−2, zr−1, yr−1, and C, where C = CARRYr−2(y, z). Once it is verified by hand on
{0, 1}, we conclude that the circuit size of the proof is polynomial in the size of the circuits provided
that these five “variables” are indeed boolean. Four of them are boolean by the hypothesis of the
lemma, and the equation C2 − C = 0 for the carry bit C is also easy to derive. Similarly to the
above, we get an IPS proof of size at most (r · |F |)b

′′
, for a constant b′. Claim

This concludes Case 1 (i.e., addition) of the induction step of the proof of Lemma 5.1.

Case 2: F1 = G ·H, with F1 of syntactic length t. We need to construct an IPS proof consisting of
sub-proofs of VAL(BIT(F1)) = F1, . . . ,VAL(BIT(Fk)) = Fk, of size at most λ(G,H,F2, . . . , Fk)+(t ·
|F1|)

a + (t · |F1|)
b′ , for constants a, b′ independent of |F1| and t. By induction hypothesis we have an

IPS proof consisting of sub-proofs of G ·H = VAL(BIT(G)) ·VAL(BIT(H)) and Fi = VAL(BIT(Fi)),
for i = 2, . . . , k, of total size λ(G,H,F2, . . . , Fk) + |F1|+ c2, for some constant c2 (the term |F1|+ c2
here is needed for the product of the two proofs G = VAL(BIT(G)) and H = VAL(BIT(H)); see
Fact A.4). It thus suffices to prove

VAL(BIT(F1)) = VAL(BIT(G)) ·VAL(BIT(H))

with an IPS proof of size at most (t · |F1|)
b′ , for a constant b′. Let r denote the syntactic length of

G,H. Since the syntactic length of F1 is t we have t = 2r + 3.
In what follows, we use the notation from Definition 30, namely, y = BIT(G) and z = BIT(H).

We first prove two simple statements about ABS.

Claim 5.3. Let x be a bit vector of length r representing an integer in two’s complement and let s
be the sign bit of x. Then VAL(x) = (1 − 2s) · VAL

(
ABS(x)

)
has an IPS proof from the boolean

axioms, of size at most rc, for some constant c independent of r.

Proof of claim: Recall that the size of ABS(x) is O(r). We will apply (slightly informally) Prop. A.5
for reasoning by boolean cases in IPS as follows. Consider the two cases for the sign bit s. In case
s = 0 the claim is not hard to check; we will show only the case s = 1.

Recall that inverting a negative number via ABS is done by subtracting 1 (which is the same
as adding the all-one vector) and then inverting all the bits in the resulting vector. Let y be a bit
vector and 1 be the all-one vector of the same length of y, then

VAL(y ⊕ 1) =
r−2∑

i=0

(1− yi)2
i − (1− yr−1)2

r−1 = −1−VAL(y). (15)

Using this, we have

(1− 2s) ·VAL(ABS(x)) = −1 ·VAL(ADD(x,1)⊕ 1) (by definition of ABS)

= −1 · (−1−VAL(ADD(x,1))) (by eq. 15 above)

= 1 + VAL(ADD(x,1)).

By the addition case (Case 1 above) we can construct an IPS proof of VAL
(
ADD(x,1)

)
= VAL(x)+

VAL(1) = VAL(x) − 1 of size at most rb
′
, for some constant b′. This concludes the proof since we

finally get 1 + VAL(ADD(x,1)) = VAL(x), where the whole proof is of size at most rc, for some
constant c. Claim

40

Claim 5.4 (non-negativeness of ABS). Let x be a bit vector of length r representing an integer in
two’s complement and let s be the circuit computing the sign bit of ABS(x) according to Definition 28.
Then s = 0 has a polynomial-size IPS proof (using only the boolean axioms).

Proof of claim: We proceed as before by considering the two cases of the sign of x. The case of
positive sign is easy to verify. In the case of a negative sign we have ABS(x) = ADD(x,1) ⊕ 1,
where by the definition of ADD, x is padded with an additional one bit xr = xr−1 = 1, and hence
the sign bit of ABS(x) is computed as CARRYr(x,1) ⊕ 1 (note that ADD has one more bit than
x). By (eq. 14), CARRYr(x,1) is equal to (the arithmetization of)

∨
i<r xi. Since xr−1 = 1, we can

prove in IPS by a simple substitution that the arithmetization of
∨

i<r xi is the constant 1, leading
to CARRYr(x,1)⊕ 1 = 0. Claim

We consider then the case of the multiplication of nonnegative numbers.

Claim 5.5. Let y, z be two bit vectors of length r in the two’s complement notation. Then,

VAL
(
PROD+

(
ABS(y),ABS(z)

))
= VAL

(
ABS(y)

)
·VAL

(
ABS(z)

)

has an IPS derivation (from the boolean axioms) of size rc, for a constant c independent of r.

Proof of claim: Let y+ denote ABS(y) and z+ denote ABS(z), both of length r + 1 (we know from
Claim 5.4 that the sign bits y+r , z

+
r of y+ and z+, respectively, are zero). Recall Definition 30 of

PROD, in which we defined the vector si to be the result of multiplying the ith bit of z+, denoted
z+i , with y+, and then padding it with i zeros to the right. First, we show that IPS can prove that
this multiplication step is correct, in the sense that IPS has an O(r)-size proof of:

VAL(si) = VAL(y+) · z+i · 2i , (16)

for every i = 0, . . . , r. Indeed, for every i = 0, . . . , r, by definition of si we have the following
polynomial identities:

VAL(si) =
r+i−1∑

j=i

(y+j−iz
+
i)2

j − (y+r · z+i)2
r+i =

r−1∑

j=0

y+j 2
j

 · z+i · 2i

= VAL(y+) · z+i · 2i

(we have used y+r = z+r = 0 here).

Second, based on the proof of the case of addition (Case 1 above), we can derive

VAL(ADD(sr,ADD(sr−1, . . . ,ADD(s0, s1) . . .))) (17)

= VAL(sr) + VAL(ADD(sr−1, . . . ,ADD(s0, s1) . . .)))

...

= VAL(sr) + · · ·+VAL(s2) + VAL(ADD(s0, s1))

=
r∑

i=0

VAL(si) . (18)

Consider line eq. 17: each ADD there contributes O(r) gates. Thus, in total eq. 17 has a circuit of
size O(r2). Since line eq. 17 is of size O(r2), every step in which we use the addition case of the
induction statement (Case 1), takes rc

′
, for some constant c′ > 2 independent of r. Hence, overall

41

we obtain an IPS proof of the equality between eq. 17 and eq. 18, of size rb
′′
, for some constant b′′

independent of r.
Using (eq. 16) and z+r = 0 we conclude with an IPS proof that eq. 17 above (which by

Definition 30 is VAL
(
PROD+(y

+, z+)
)
) equals

VAL(y+) ·

(
r−1∑

i=0

z+i 2
i

)
,

which in turn is equal to VAL(y+) · VAL(z+), by definition of VAL and the fact that z+r = 0. This
amounts to an IPS proof of total size rc, for a constant c independent of r. Claim

Finally, we arrive at the main case of multiplying two possibly negative integers written in the
two’s complement scheme, each with bit vector of length r. Let s = yr−1 ⊕ zr−1 and let m = e(s) be
a vector of length r in which every bit is s. Recall that

PROD(y, z) = ADD
(
PROD+

(
ABS(y),ABS(z)

)
⊕m, s

)
.

Claim 5.6. VAL
(
PROD(y, z)

)
= (1− 2s) ·VAL

(
PROD+

(
ABS(y),ABS(z)

))
has an IPS derivation

from the boolean axioms of size rc, for some constant c independent of r.

Proof of claim: Consider the following two cases.
Case 1: s = 1. Note that inverting all bits affects the value of a bit vector as follows: if x is a
length k bit vector, then

VAL(x⊕ e(s)) =
k−2∑

i=0

(1− xi)2
i − (1− xk−1)2

k−1 = −1−VAL(x). (19)

Hence, since s = 1,

VAL
(
PROD(y, z)

)
= VAL

(
ADD

(
PROD+(ABS(y),ABS(z))⊕m, s

))
by definition of PROD

= VAL
(
PROD+(ABS(y),ABS(z))⊕m

)
+ 1

by Case 1 (addition) of induction statement

= −1−VAL
(
PROD+(ABS(y),ABS(z))

)
+ 1 by eq. 19

= (1− 2s) ·VAL
(
PROD+(ABS(y),ABS(z))

)
since s = 1.

Case 2: s = 0. This is an easier case, in which we show VAL
(
PROD(y, z)

)
=

VAL(PROD+

(
ABS(y),ABS(z)

)
), and so we are done by s = 0. We omit the details.

Using reasoning by boolean cases in IPS according to Prop. A.5 we conclude the claim. Claim

Taking together Claim 5.6, Claim 5.5 and Claim 5.3 (for y and for z of length t) we get the
desired equality for the product case, where s = yt−1 ⊕ zt−1:

VAL
(
PROD(y, z)

)

= (1− 2s) ·VAL
(
PROD+

(
ABS(y),ABS(z)

))

= (1− 2s) ·VAL
(
ABS(y)

)
·VAL

(
ABS(z)

)

= (1− 2yr−1) ·VAL
(
ABS(y)

)
· (1− 2zr−1) ·VAL

(
ABS(z)

)

= VAL(y) ·VAL(z) ,

42

where the penultimate equation stems from the polynomial identity (1 − 2yt−1) · (1 − 2zt−1) =
1− 2(yt−1 ⊕ zt−1).

This concludes the proof of the first part of Lemma 5.1. For the second part, assuming that F (x)
is constant-free, the proof is identical, noting simply that in the IPS proof we constructed above all
coefficients are at most exponential in n, and thus by the upper bound τ(m) ≤ O(logm) for every
m ∈ N, we get a constant-free IPS proof of size poly(n).

6 Algebraic versus Semi-Algebraic Proof Systems

Here we show that IPS simulates CPS over Q assuming the existence of small IPS refutations for
the generalized binary value principle (and the binary value principle for the case of Z). Under
reasonable conditions we show that in fact IPS is polynomially equivalent to CPS assuming short
IPS refutations of the (generalized) binary value principle, hence bridging the gap between algebraic
and semi-algebraic proof systems in the regime of very strong proof systems. We work with the
boolean versions of both CPS and IPS, meaning that the boolean axioms are present.

Moreover, we demonstrate two kinds of conditional simulations: a (standard) polynomial simu-
lation for the language of unsatisfiable sets F of polynomial equations, and in Sect. 6.2 an effective
simulation (in the sense of Pitassi-Santhanam [40]) for the language of unsatisfiable sets containing
both equations F and inequalities H over Z; similar reasoning works over Q). Note that we cannot
hope to show a (standard) simulation of CPS by IPS for the language containing both polynomial
equalities and polynomial inequalities, because inequalities are not expressible directly as polyno-
mial equations in IPS; hence, for the sake of the second kind of simulation we first translate H to
bit representation and only then simulate the CPS proof, yielding an effective simulation.

We now prove the simulation for constant-free proofs over Q, and in Sect. 6.2 we will prove the
effective simulation (over Z, which implies the same result over Q).

Recall that IPSQ and CPSQ stand for IPS and CPS proofs over Q, respectively, and that by
Prop. 3.1, given a constant-free circuit C over Q we can turn it into a constant-free circuit C ′ over
Z computing M · Ĉ, for some nonzero integer M , with |C ′| ≤ 4|C| and τ(M) ≤ 4|C|.

Definition 33 (syntactic length of a circuit over Q). The syntactic length of a circuit C over Q is
the syntactic length of the corresponding circuit C ′ over Z constructed from C in Prop. 3.1.

The main technical theorem of this section is the following:

Theorem 6.1 (conditional simulation of constant-free boolean CPSQ by constant-free boolean
IPSQ). Let F denote a system of polynomial equations over Q written as constant-free circuits
{Fi(x) = 0}i∈I and let C(x,F) = −1 be a constant-free CPSQ refutation of F where C(x,F) is of
size s and syntactic length t (as in Definition 33).16 Assume that the binary value principle BVPt,M

has a size ≤ r constant-free IPSQ refutation, for every given positive integer M with τ(M) = O(s).
Then, there is a constant-free IPSQ refutation of F with size poly(s, t, r).

Remark 6.2. 1. By inspection of the proof of Thm. 6.1 one can see that the degree of the simu-
lating IPS refutation can be exponential in the size of the resulting circuit (clearly, the degree
cannot be larger than that).

16We need to consider also the size of the CPS refutation after the substitution of F for the placeholder variables,
that is, C(x,F), because of the slightly peculiar nature of IPS (similar to CPS) in which the size of a refutation does
not include directly the size of the assumptions it refutes.

43

2. Assuming that indeed propositional IPS simulates propositional CPS, by Prop. 4.13 proposi-
tional IPS also simulates any propositional CPS (or Positivstellensatz/SoS) refutation of CNF
formulas given as inequalities. This is because if propositional CPS has a short refutation for
a CNF given as inequalities (Definition 16) then from Prop. 4.13, propositional CPS also has
a short refutation of the CNF given as equations (Definition 11).

Since the simulation of CPS by IPS in Thm. 6.1 depends on the syntactic length t of the simulated
CPS proof, if we aim to achieve a (polynomial) simulation we need to bound the syntactic length of
the CPS proofs to be at most polynomial in the proof size. We denote this restricted proof system by
CPS⋆Z and CPS⋆Q. In other words, a family {πi}

∞
i=1 of CPSZ (resp. CPSQ) proofs is said to be a family

of CPS⋆Z (resp. CPS⋆Q) proofs if there is a constant c such that for every i ∈ N, the syntactic length
of πi is at most |πi|

c. In other words, the maximal value (over {0, 1}-assignments to the variables)

of every gate in CPS⋆Z proof-sequence {πi}
∞
i=1 is bounded from above by 2|πi|

O(1)
.

It is important to note that most known examples of short semi-algebraic proofs of propositional
formulas have polynomial syntactic length, as the multiplication of arbitrary inequalities is not used,
and multiplying by x or by 1 − x for a variable x increases the syntactic length additively. The
use of division by scalars (for example, in the LS proof of PHP) can increase the syntactic length
in Prop. 3.1; however, as those scalars have at most exponential (actually, polynomial) values, the
transformation from rational numbers to integers can bring at most (exp(poly(n)))proof-size factor,
thus a polynomial number of bits.

Recall the terminology in Sect. 3.1: a refutation in IPSZ means a proof of M for some nonzero
integer M . Further, we say that IPSZ simulates CPSQ if a size-s CPSQ proof of p from assumptions
F over Z implies that there is a poly(s)-size IPSZ proof of M · p from F , for some nonzero integer
M .

The binary value principle thus characterizes exactly the apparent advantage CPS has over IPS,
in the following sense:

Corollary 6.3 (BVP characterizes the strength of boolean CPS). In what follows, IPS and CPS
stand for boolean IPS and boolean CPS, respectively, where both are proof systems for refuting un-
satisfiable sets of polynomial equalities (not necessarily CNF formulas).

1. Constant-free IPSZ simulates constant-free CPS⋆Z iff constant-free IPSZ admits poly(t)-size
refutations of BVPt.

2. Constant-free IPSQ simulates constant-free CPS⋆Q iff for every positive integer M , constant-free
IPSQ admits poly(t, τ(M))-size refutations of BVPt,M .

Proof: We show the proof of item 2 (which includes all the ideas for the other case).
(⇐) Assume that for every positive integer M constant-free IPSQ admits poly(t, τ(M))-size refu-
tations of BVPt,M . Then specifically for τ(M) = O(s) there is a poly(t, s) upper bound on the
size of constant-free IPSQ refutations of BVPt,M . By Thm. 6.1 if there exists a syntactic-length t
constant-free CPS⋆Q refutation of F then there exists a constant-free IPS refutation of F with size
poly(s, t, r) = poly(s), because t = poly(s) by assumption and r = poly(s, t).
(⇒) This follows from the CPSZ upper bound on BVPn demonstrated in Prop. 4.1. More precisely, it
suffices to show that given a positive integer M there are constant-free CPS⋆Q refutations of BVPt,M

having poly(t, τ(M))-size. Using the notation as in the proof of Prop. 4.1, we claim that the conic
circuit 1

M
·
(∑t

i=1 2
i−1 · yi

)
+ 1

M
· yt+1 serves as such a refutation. Indeed, this conic circuit is easily

written as an O(t · log t+ τ(M))-size constant-free circuit. This is because τ(2i−1) = log(i− 1), for
every i = 1, . . . , t, and 1/M is clearly of size 2 + τ(M). That this conic circuit is a refutation of
BVPt,M follows immediately from the definition (see the proof of Prop. 4.1).

The proof of item 1 is similar and we omit the details.

44

By Thm. 4.7 CPS simulates IPS, hence when considering IPS proofs of which the syntactic-length
grows polynomially in the size of the proofs, Cor. 6.3 characterizes when IPS and CPS can simulate
each other. More precisely, similar to CPS⋆Z and CPS⋆Q we denote by IPS⋆Z and IPS⋆Q the proof
systems consisting of IPS proofs in which the syntactic length grows polynomial in the size of proofs
(over Z and Q, respectively). In other words, a family {πi}

∞
i=1 of IPSZ (resp. IPSQ) proofs is said

to be a family of IPS⋆Z (resp. IPS⋆Q) proofs if there is a constant c such that for every i ∈ N, the
syntactic length of πi is at most |πi|

c.

Corollary 6.4 (Conditional equivalence of strong algebraic and semi-algebraic proofs). In what
follows, IPS and CPS stand for boolean IPS and boolean CPS, respectively, where both are proof
systems for refuting unsatisfiable sets of polynomial equalities (not necessarily CNF formulas).

1. Constant-free IPS⋆Z is polynomially equivalent to constant-free CPS⋆Z iff constant-free IPS⋆Z ad-
mits poly(t)-size refutations of BVPt.

2. Constant-free IPS⋆Q is polynomially equivalent to constant-free CPS⋆Q iff for every positive in-
teger M constant-free IPS⋆Q admits poly(t, τ(M))-size refutations of BVPt,M .

Remark 6.5. The results above in Thm. 6.1, Cor. 6.3 and Cor. 6.4 hold trivially also in the unit-
cost model, where we consider the size of coefficient in the ring or field to be 1. More precisely, if we
replace the term “constant-free proof” with the term “proof” the results still hold. This is because we
limit the syntactic length of the original CPS circuit, and the size of circuit families of polynomial
syntactic length in the unit-cost model is smaller or equal than their size in the constant-free model.
And if a family of constant-free circuits (proofs) Cn simulates a family of constant-free circuits with a
polynomial syntactic length Dn, then the corresponding circuit family C ′

n in the unit-cost model also
simulates the corresponding circuit family D′

n in the unit-cost model (because |Dn| ≤ poly(|D′
n|)).

6.1 Proof of Thm. 6.1

We need to show that there is an IPSZ refutation of F . We first translate the setting to the integers,
since this will allow us to use the main binary value Lemma 5.1 which is stated for Z, as follows:
we take the CPSQ refutation, turn it into a CPSZ refutation without increasing the size too much
(the syntactic length stays the same by definition), and then simulate this refutation in IPSZ, that
is, construct an IPSZ proof from F of a nonzero integer M . Dividing this IPSZ refutation by M we
get the desired IPSQ refutation of F . We formalize this conversion in the following proposition:

Proposition 6.6 (going from constant-free CPSQ to constant-free CPSZ). Let F denote a system of
polynomial equations over Q written as constant-free circuits {Fi(x) = 0}i∈I and let C(x,F) = −1
be a constant CPSQ refutation of F , where C(x,F) has size s and syntactic length t. Then, there
exists a set of polynomial equations over Z denoted F

⋆
= {F ⋆

i (x) = 0}i∈I , where F ⋆
i (x) = Mi · Fi(x)

for some nonnegative Mi ∈ Z, for all i ∈ I, and a constant-free CPSZ proof C⋆(x, y) from F
⋆
of

M · (−1), for some nonzero M ∈ Z, such that C⋆(x,F
⋆
) has both size and syntactic length poly(s, t).

Proof: The proof is identical to the proof of Prop. 3.1 (cf. Cor. 3.2). Specifically, given a constant-
free circuit D over Q the Induction Statement in the proof of Prop. 3.1 shows that there exists a
size at most 4|D| constant-free circuit D⋆ over Z that computes M · D̂ for some nonzero integer M .
Accordingly, we turn F into F

⋆
and C(z, y) into C⋆(z, y) in this way. By definition of syntactic

length for circuits over Q the syntactic length of C⋆(z, y) is t.

By Prop. 6.6, to prove Thm. 6.1 we can assume without loss of generality that F is a system of
constant-free-circuit equations over Z and that C(x,F) = −M is a constant-free CPSZ refutation,

45

where C(x,F) is of size s and syntactic length t. Thus, from now on we assume that all constant-free
circuits and proofs are over Z.

Given a multi-output circuit of size s, with m output gates, each computing the circuit Hi (for
i ∈ [m]), we assume that an algebraic circuit for

∑m
j=1H

2
j is defined to be a sum of m summands,

written as a binary tree of logarithmic in m depth, in which each summand H2
j is defined as the

circuit whose output is a product gate with its two children connected to the output gate of Hj , and
where different Hj ’s can have common nodes (so that the size of the circuit computing

∑m
j=1H

2
j is

linear in s).

Lemma 6.7 (sign bit of sum of squares is zero). Consider the circuit H =
∑

j∈J H
2
j , and let BITt(H)

be the sign bit of BIT(H). Then BITt(H) = 0 has a polynomial-size IPS proof (using only the boolean
axioms).

Proof: Informally, the idea is to prove the desired equation using only the structure of sign bits of
additions and squares appearing in top layers only (the layers close to the output gate) of H, without
looking at the individual structure of the circuits Hj ’s.

First, we show that the sum of two nonnegative numbers is nonnegative, that is, if a pair of
circuits have sign bits that are zero then the sign bit of their addition is also zero, and in symbols:

BITt(F) = 0, BITt(G) = 0 ⊢
poly(|F |,|G|)
IPS BITt+1(F +G) = 0 ,

where the sign bit of F,G is bit t and the sign bit of F +G is bit t+ 1.
Let y := BITt(F) and z := BITt(G), then by Definition 27 the sign bit of F + G is computed

as y ⊕ z ⊕ CARRYt+1(BIT(F),BIT(G)), because we have padded F and G by their sign bits y, z,
respectively, before the addition. Given that y = 0 and z = 0 by assumption, we need to prove that
CARRYt+1(BIT(F),BIT(G)) = 0. By Definition 27 CARRYt+1(BIT(F),BIT(G)) = (y ∧ z) ∨ ((y ∨
z) ∧ · · ·)). Since the arithmetic expressions (according to Definition 26) for y ∧ z and y ∨ z can be
easily proved to be zero (from y = 0, z = 0), and the same holds for 0 ∧ · · · , we conclude that the
sign bit of F +G is zero.

To prove that each of the squares H2
j are nonnegative, one needs to consider the two cases of the

sign bit x of Hj and infer that the sign bit of the square is zero in both cases using Prop. A.5.
Recall that

PROD(y, z) := ADD
(
PROD+

(
ABS(y),ABS(z)

)
⊕m, s

)
,

where s = yt′ ⊕ zt′ and m = e(s), with yt′ , zt′ the sign bits of y, z as bit vectors in the two’s
complement notation, respectively.

In both cases of the sign of Hj , we have s = 0 and m = 0 as y and z are equal in our case.
Everything else is identical in both cases: the sign bit of PROD+ is always zero, because PROD+ is
a consecutive sum of nonnegative numbers (the sign of each of those numbers si from the definition of
PROD+ is obtained by ∧-ing a single bit with the sign of ABS, the latter being zero by Claim 5.4),
and we have already proved that the sum of nonnegative numbers is nonnegative. Applying the
latter fact once again, we conclude that the sign of H2

j is zero in both cases.

We will need the following simple lemma:

Lemma 6.8. Let G be an algebraic circuit which is an arithmetization of a boolean circuit g
(Definition 26). Then, IPS has a polynomial-size in |G| derivation of G2 − G from the boolean
axioms.

46

Proof: This is proved by induction on |G|; see for example [23, Lemma 4], where this is proved for
polynomial calculus over algebraic formulas denoted F-PC.

Since for any circuit F , BITi(F) is the result of an arithmetization of a boolean circuit we have:

Corollary 6.9. Let F be a circuit, then IPS has a polynomial-size derivation of BITi(F)2−BITi(F)
from the boolean axioms.

Lemma 6.10 (sign bit of literals is zero). Let xi be a variable and let BIT1(xi) and BIT1(1 − xi)
be the sign bits of of BIT(xi) and BIT(1− xi), respectively. Then BIT(xi) = 0 and BIT(1− xi) = 0
have constant-size IPS proofs (using only the boolean axioms).

Proof: Observe that indeed the syntactic length of xi and 1 − xi is 2. Now, BIT1(xi) = 0 holds
by definition, since we define BIT(xi) = 0xi (Definition 31). For BIT1(1 − xi) = 0, this follows by
considering the two options xi = 0 and xi = 1 (where the size of the proofs is constant, since the
statement itself is of constant size, namely, it involves only a single variable and a two-bit vector).

Lemma 6.11 (sign bits of axioms are zero). Given there are polynomial-size IPS proofs of
BITt(f(x)) = 0 from f(x) = 0 and the boolean axioms, where t+ 1 is the syntactic length of f(x).

Proof: By Lemma 5.1 we know that VAL(BIT(f)) = f , and hence by assumption VAL(BIT(f)) = 0.
We need to show that under VAL(BIT(f)) = 0 we can infer BITt(f) = 0 with a short IPS proof.
Note that this inference is a substitution instance of the following inference:

t∑

i=1

2i−1xi − 2txt+1 = 0 ⊢IPS xt+1 = 0, (20)

where we substitute BITi−1(f) for xi (i = 1, . . . , t + 1). By Fact A.8, IPS proofs are closed under
substitution instances (together with the fact that the corresponding substitution instances of the
boolean axioms x2 − x are also provable in IPS by Cor. 6.9) and so it remains to show that under
the assumption that BVP has polynomial-size IPS refutations, eq. 20 holds.

To prove eq. 20 it suffices to show that the assumptions xt+1 = 1 and
∑t

i=1 2
i−1xi − 2txt+1 = 0

can be refuted with a polynomial-size IPS refutation.
Assuming xt+1 = 1,

∑t
i=1 2

i−1xi − 2txt+1 = 0 becomes
∑t

i=1 2
i−1xi − 2t = 0, and so it remains

to show the following:

Claim. Under the assumption that BVPn has poly(n)-size IPS refutations, there are polynomial-size
IPS refutations of

∑t
i=1 2

i−1xi − 2t = 0.

Proof of claim: Our assumption that there are polynomial-size IPS refutations of BVPt+1∑t+1
i=1 2

i−1xi + 1 = 0, implies that there are short refutation also of its substitution instance∑t+1
i=1 2

i−1(1 − yi) + 1 = 0 (again, by Fact A.8 and the fact that the substitution instance of the
boolean axioms x2−x, are easily provable when substituting 1− yi for xi’s; cf. Lemma Lemma 6.8).
But

∑t+1
i=1 2

i−1(1− yi) + 1 = −(
∑t+1

i=1 2
i−1yi − 2t) = 0. Claim

Up to now, we have shown that for each algebraic circuit in the “base” of the conic circuit C(x, y)
comprising a CPS refutation (namely, the sub-circuits that substitute the placeholder variables y,
as well as the x variables themselves), the sign bit can be proved to be zero in IPS. The following
lemma shows that under these assumptions IPS can prove that the conic circuit C(x, y) itself has a
zero sign bit (for simplicity we use only x variables in the circuit C(x) below).

47

Lemma 6.12 (conic circuits preserve zero sign bits). Let C(x) be a conic circuit over Z in the
variables x = {x1, . . . , xn}, let H := {Hi(x)}

n
i =1 be n circuits and suppose that t is the syntactic

length of C(H). Then, there is a polynomial-size in |C(H)| IPS proof that the sign bit of C(H) is
0, that is, of BITt(C(H)) = 0, from the assumptions BITti−1(Hi(x)) = 0, for all i ∈ [n], where ti is
the syntactic length of Hi(x).

Proof: The proof is by induction on the size of C. Note that any conic circuit C is one of the
following: (1) a variable xi, (2) a non-negative constant α, (3) a square of some (not-necessarily
conic) circuit, that is, C = G2, or (4) an addition C = G + H or product C = G · H of two conic
circuits G,H. Therefore, the base cases of our induction will be the first three cases (1)-(3), and the
induction steps will be the latter case (4).

Base case:
Case 1: C = xi. Then from the assumption that BITtj−1(Hj(x)) = 0 for all j ∈ [n], we have that

C(H) = Hi(x), and so we are done.
Case 2: C = α, for a non-negative constant α. Then by Definition 31 BIT(α) is the actual bits of
α in two’s complement. Since α is non-negative BITt−1(C(H)) = BITt(α) = 0, for t the syntactic
length of α.
Case 3: C = G2 for some not-necessarily conic circuit G. This case follows from Lemma 6.7.

Induction step:
Case 1: C = G+H. This follows from the claim that the sign bit of the addition of non negative
numbers is 0, as shown in the proof of Lemma 6.7.
Case 2: C = G ·H. This follows from the claim that the sign bit of the product of two non-negative
integers is non-negative.

We are now ready to conclude the main theorem of this section.

Proof of Thm. 6.1. By assumption, C(x, y) is a conic circuit constituting a CPS refutation of F . We
assume that {fi(x)}i∈I can be computed by a sequence of circuits {Fi(x)}i∈I such that

∑
i∈I |Fi(x)| =

u. Hence, by the definition of CPS, we set H to be the set of circuits that consists of Fi(x) and
−Fi(x), for all i ∈ I, as well as the boolean axioms translation x2i − xi and −x2i + xi, for all i ∈ [n],
and xi and 1− xi, for all i ∈ [n]. We thus have C(x,H) = −M as a polynomial identity.

Since C is a conic circuit, and the sign bits of all variables x and all circuits in H can be proved
in polynomial size (in u) to be 0, by Lemma 6.10 and Lemma 6.11, respectively, we know from
Lemma 6.12 that the sign bit of C(x,H) is 0 as well. Since C(x,H) = −M is a polynomial identity,
by Fact A.1 C(x,H)+M has an IPS proof of size equal to the size of the circuit C(x,H)+M itself.
We now proceed to use the short refutation of the BVP to get a short IPS refutation from the fact
that the sign bit of C(x,H) is 0 and C(x,H) +M = 0. The following claim suffices for this purpose:

Claim 6.13. Assume that BVPn,M has poly(n, τ(M))-size IPS refutations Let F (x) be a circuit of
syntactic length t and size s, such that IPS has a poly(s, t)-size proof of BITt−1(F (x)) = 0 (where
BITt−1(F (x)) is the sign bit of F (x)). Then there is a poly(s, t, τ(M)) refutation of F (x) +M = 0.

Proof of claim: The size of the circuit F (x)+M is s+ τ(M)+ 1. By Lemma 5.1, VAL(BIT(F (x)+
M)) = F (x) +M = 0 has a polynomial size in s+ τ(M) + 1 IPS proof from the boolean axioms. By
the proof of Lemma 5.1 we also have a polynomial-size in s and τ(M) IPS proof of

VAL
(
BIT(F (x))

)
+M = 0,

48

namely, a proof of

M +
t−2∑

i=0

2i · wi − 2t−1 · wt−1 = 0 , where wi := BITi(F (x)).

By assumption, wt−1 = 0 has a polynomial-size IPS proof, where wt−1 is the sign bit of F (x). This
leads to

M +

t−1∑

i=0

2i · wi = 0. (21)

Notice that eq. 21 is the binary value principle in which variables xi for i = 1, . . . , t, are replaced by
the circuits BITi−1(F (x)), denoted wi. We assumed that the binary value principle has polynomial-
size (in t and τ(M)) refutations (using only the boolean axioms as assumptions). Since IPS proofs
are closed under substitutions of variables by circuits (Fact A.8), there is a poly(t, |BIT(F)|, τ(M))-
size IPS refutation of eq. 21 from the substitution instances of the boolean axioms w2

i − wi = 0, for
i = 0, . . . , t− 1. Since for every i = 0, . . . , t− 1, w2

i − wi = 0 has a short IPS proof by Cor. 6.9, and
since |BIT(F)| = poly(t, |F |), we conclude that there exists a poly(s, t, τ(M))-size IPS refutation as
desired. Claim

6.2 Effective Simulation of CPS Refutations with Inequalities

We now turn to conditional effective simulation of CPS as a refutation system for both equalities
and inequalities by IPS. Effective simulation means that we are allowed to non-trivially translate the
input equalities and inequalities before refuting them in IPS, as long as the translation procedure
is polynomial-time and preserves unsatisfiability [40]. Similar to the case of conditional simulation,
it is enough to consider only the case of CPS and IPS proofs over Z to conclude it also for Q. We
show here the case of non-constant-free boolean IPS and boolean CPS proofs over Z. The case over
Q and the cases of constant-free proofs over Z and Q are similar.

Note that since the construction of the circuit BITi(·) (Sect. 5.2) is mechanical and uniform,
there is a straightforward deterministic (uniform) polynomial-time algorithm that receives a set of
polynomial inequalities H = {Hj(x) ≥ 0}j over Z written as algebraic circuits (with coefficients
written in binary) and outputs the polynomial equations, written as algebraic circuits, expressing
that the sign bit of each Hj(x) is 0 (hence, expressing the inequalities H). This translation of
inequalities to polynomial equalities serves as our translation from H to the language of polynomial
equations that is refutable in IPS. Given an inequality Hj(x) ≥ 0 we denote by Hj(x) ≥ 0 this
translation; accordingly, we let H = { Hj(x) ≥ 0 : Hj(x) ∈ H}.

Theorem 6.14 (conditional effective simulation of boolean CPS by boolean IPS). Assume that the
generalized binary value principle BVPt,M has poly(t, τ(M))-size boolean IPS refutations for every
positive integer M . Let F denote a system of polynomial equations and let H denote a system of
polynomial inequalities written as circuits {Hj(x) ≥ 0}j∈J (including all the equations in F written
as inequalities as described in Definition 23). Let C(x,H) = −1 be a CPS refutation of F and H
where C(x,H) has size s and syntactic length t. Then, there is a boolean IPS refutation of H with
size poly(s, t).17

Proof: This is identical to the proof of Thm. 6.1, only that we do not need to prove separately that
the axioms in H have all bit-vector representation in which the sign bit is 0, since here this is given
to us as an assumption.

17Equivalently, we can also show that there is a size poly(s, t) IPS refutation of F and H \ F . But for simplicity

we assume that the equalities F are also translated via · .

49

Appendix

A Basic Reasoning in IPS

Here we develop basic efficient reasoning in IPS. This is helpful for Sect. 5.2.
First we show that polynomial identities are proved for free in IPS:

Fact A.1. If F (x) is a circuit in the variables x over the field F that computes the zero polynomial,
then there is an IPS proof of F (x) = 0 of size |F |.

Proof of fact. The IPS proof of F (x) = 0 is simply C(x, z) := F (x) (note that we do not need to use
the boolean axioms nor any other axioms in this case). Observe that both conditions 1 and 2 for
IPS hold in this case (Definition 10).

Fact A.2. Let F,G,H be circuits and F be a collection of polynomial equations such that C : F ⊢s0
IPS

F = G and C ′ : F ⊢s1
IPS G = H. Then, (C + C ′) : F ⊢s0+s1+1

IPS F = H.

Proof of fact. C(x,F , x2 − x) + C ′(x,F , x2 − x) = F −G+G−H.

Fact A.3. Let F,G be circuits and F be a collection of polynomial equations such that C : F ⊢s0
IPS

F = G and C ′ : F ⊢s1
IPS H = K. Then, (C + C ′) : F ⊢s0+s1+1

IPS F +H = G+K.

Proof of fact. C(x,F , x2 − x) + C ′(x,F , x2 − x) = F −G+H −K.

Fact A.4. Let F,G be circuits and F be a collection of polynomial equations such that C : F ⊢s0
IPS F =

G and C ′ : F ⊢s1
IPS H = K. Assume that there is a circuit with two output gates, of size s, with one

output gate computing H and the other output gate computing G. Then, F ⊢s0+s1+s+5
IPS F ·H = G ·K.

Proof of fact. Observe that C(x,F , x2−x) ·H+C ′(x,F , x2−x) ·G = F ·H−G ·H+H ·G−K ·G =
F ·H −G ·K. Hence, the desired proof is the circuit C(x, y, z) ·H(x) + C ′(x, y, z) ·G(x), which by
assumption that there is a circuit of size s computing both H,G, is at most s0 + s1 + s + 5 (here,
H,G can have common nodes).

We now wish to show that basic reasoning by boolean cases is efficiently attainable in IPS.
Specifically, we are going to show that if for a given constant many variables (or even boolean
valued polynomials) V , for every choice of a fixed (partial) boolean assignment to the variables V a
polynomial equation is derivable, then it is derivable regardless (namely, derivable from the boolean
axioms alone) in polynomial-size.

Proposition A.5 (proof by boolean cases in IPS). Let F be a field. Let V = {Hi(x)}i∈I be a set
of circuits with |V | = r, and F be a collection of polynomial equations such that {H2

i (x) −Hi(x) =
0}i∈I ⊆ F . Assume that for every fixed assignment α ∈ {0, 1}r we have F , {Hi(x) = αi}i∈I ⊢s

IPS

f(x) = 0, then F ⊢cr·s
IPS f(x) = 0, for some constant c independent of r.

Proof: We proceed by induction on r.
Base case: r = 0. In this case we assume that F ⊢s

IPS f(x) = 0 and we wish to show that
F ⊢cr·s

IPS f(x) = 0, for some constant c, which is immediate since r = 0.
Induction step: r > 0. We assume that for every fixed assignment α ∈ {0, 1}r we have F , {Hi =
αi}i∈I ⊢s

IPS f(x) = 0, and we wish to show that F ⊢cr·s
IPS f(x) = 0, for some constant c independent

of r.

50

By our assumption above we know that for every fixed assignment α ∈ {0, 1}r−1 we have:

F , H1(x) = 0, {Hi(x) = αi}i∈I\1 ⊢
s
IPS f(x) = 0, and (22)

F , H1(x) = 1, {Hi(x) = αi}i∈I\1 ⊢
s
IPS f(x) = 0. (23)

From eq. 22 and eq. 23, by induction hypothesis we have for some constant c independent of r:

H1(x) = 0,F ⊢cr−1·s
IPS f(x) = 0, and (24)

H1(x) = 1,F ⊢cr−1·s
IPS f(x) = 0. (25)

It thus remains to prove the following claim:

Claim A.6. Under the above assumptions eq. 24 and eq. 25, we have F ⊢cr·s
IPS f(x) = 0.

Proof of claim: By eq. 24 and eq. 25 we have two IPS proofs C(x, y, z) and C ′(x, y, z) such that
C(x,F , H1(x), x

2 − x) = f(x) and C ′(x,F , 1 − H1(x), x
2 − x) = f(x) (note indeed that F , H1(x)

and x2 − x are the axioms in the former case, and similarly for the latter case, where now 1−H1(x)
replaces the axiom H1(x)) each of size cr−1 · s.

By the definition of IPS C(x, y, z), C ′(x, y, z) both compute polynomials that are in the ideal
generated by y, z. This means that there are some polynomials Qi, Pi, G,M,Li,Ki, such that:

Ĉ(x,F , H1(x), x
2 − x) =

∑

i

Qi · Fi +
∑

i

Li · (x
2
i − xi) +G ·H1(x) = f(x) and

Ĉ ′(x,F , 1−H1(x), x
2 − x) =

∑

i

Pi · Fi +
∑

i

Ki · (x
2
i − xi) +M · (1−H1(x)) = f(x)

(here, F , H1(x) is substituted for y in the first equation, and F , 1−H1(x) is substituted for y in the
second equation).

Hence, we can multiply these two true polynomial identities by (1 −H1(x)) and H1(x), respec-
tively, to get the following polynomial identities:

(1−H1(x)) · Ĉ(x,F , H1(x), x
2 − x) =

(1−H1(x)) ·
∑

i

Qi ·Fi+(1−H1(x)) ·
∑

i

Li · (x
2
i −xi)+G ·H1(x) · (1−H1(x)) = (1−H1(x)) · f(x)

and

H1(x) · Ĉ
′(x,F , H1(x), x

2 − x) = H1(x) ·
∑

i

Pi ·Fi +H1(x) ·
∑

i

Ki · (x
2
i − xi)+H ·H1(x) · (1− x1)

= H1(x) · f(x).

Each of these two polynomial identities is an IPS proof from the assumptions F = {Fi}i, the boolean
axioms, and the assumption H1(x) · (1−H1(x)) ∈ F (more formally, (1−H1(x)) ·C and H1(x) ·C

′

are the circuits that constitute these pair of IPS proofs). Adding these two IPS proofs (note that
the addition of two IPS proofs from a set of assumptions is still an IPS proof from that set of
assumptions) we obtain the desired IPS proof of f(x), with size 2 · cr−1 · s + c0 ≤ cr · s, for a large
enough constant c independent of r. Claim This concludes the proof of the proposition.

51

Prop. A.5 allows us to reason by cases in IPS. For example, assume that we know that either
Hi(x) = 0 or Hi(x) = 1; namely that we have the assumption Hi(x) · (Hi(x)− 1) = 0. Then, we can
reason by cases as follows: if we can prove from Hi(x) = 0 that A, with a polynomial-size proof, and
from Hi(x) = 1 that B, with a polynomial-size proof, then using Prop. A.5 we have a polynomial-size
proof that A ·B = 0 from Hi(x) · (Hi(x)− 1) = 0.

As an immediate corollary of Prop. A.5 we get the same proposition with Hi(x)’s substituted for
variables:

Corollary A.7. Let F be a field. Let V = {xi}i∈I be a set of variables with |V | = r, and F be
a collection of polynomial equations. Assume that for every fixed assignment α ∈ {0, 1}r to the
variables in V we have F , {xi = αi}i∈I ⊢s

IPS f(x) = 0, then F ⊢cr·s
IPS f(x) = 0, for some constant c

independent of r.

Fact A.8 (IPS proofs are closed under substitutions). Let C(x, y, z) be an IPS proof of f(x) from the
assumptions {Fi(x)}

m
i=1, and let H = {Hi(x)}

n
i=1 be a set of algebraic circuits. Then, C(H/x, y, z) is

an IPS proof of f(H/x) from {Fi(H/x)}mi=1, where H/x stands for the substitution of xi by Hi(x),
for all i ∈ [n].

The proof of Fact A.8 is immediate.

Acknowledgement

We wish to thank Michael Forbes, Dima Itsykson, Toni Pitassi and Dima Sokolov for useful discus-
sions at various stages of this work.

References

[1] Albert Atserias and Tuomas Hakoniemi. Size-degree trade-offs for sums-of-squares and Positivstellensatz
proofs. In 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick,
NJ, USA., pages 24:1–24:20, 2019. 1.1, 2.6, 10

[2] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David Steurer,
and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In STOC, pages
307–326, 2012. 1, 1.1, 2.6

[3] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák. Lower bounds
on Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc. (3), 73(1):1–26, 1996.
Preliminary version in the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS
1994). 1, 1.1, 1.1, 2.5, 2.5, 2.6

[4] Christoph Berkholz. The relation between polynomial calculus, sherali-adams, and sum-of-squares proofs.
In 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3,
2018, Caen, France, pages 11:1–11:14, 2018. 1

[5] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha Thomas, editors. Semidefinite Optimization and
Convex Algebraic Geometry. MPS-SIAM Series on Optimization. Society for Industrial and Applied
Mathematics (SIAM), March 2013. 2.6

[6] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation. Springer-
Verlag, Berlin, Heidelberg, 1998. 1.1, 2.3

[7] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the real
numbers: np- completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. (N.S.),
21(1):1–46, 07 1989. 1.1, 2.3

52

[8] Peter Bürgisser. On defining integers and proving arithmetic circuit lower bounds. Computational Com-
plexity, 18(1):81–103, 2009. 1.1, 1.2, 2.1, 2.2

[9] Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle. The Journal of Symbolic
Logic, (52):916–927, 1987. 1.2.2, 1.4

[10] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák, Alexander A. Razborov, and Jǐŕı
Sgall. Proof complexity in algebraic systems and bounded depth Frege systems with modular counting.
Computational Complexity, 6(3):256–298, 1996. 3.1

[11] Qi Cheng. On the ultimate complexity of factorials. Theor. Comput. Sci., 326(1-3):419–429, October
2004. 1.1, 2.3

[12] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm to find
proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(Philadelphia, PA, 1996), pages 174–183, New York, 1996. ACM. 1

[13] Stephen A. Cook and Robert A. Reckhow. Corrections for “On the lengths of proofs in the propositional
calculus (preliminary version)”. SIGACT News, 6(3):15–22, July 1974. 14

[14] Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the propositional calculus (pre-
liminary version). In Proceedings of the 6th Annual ACM Symposium on Theory of Computing (STOC
1974), pages 135–148, 1974. For corrections see Cook-Reckhow [13]. 15

[15] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. J. Symb.
Log., 44(1):36–50, 1979. This is a journal-version of Cook-Reckhow [14] and Reckhow [45]. 1.1, 2.4, 8

[16] W. de Melo and B. F. Svaiter. The cost of computing integers. Proc. Amer. Math. Soc., 124(5):1377–1378,
1996. 1.1, 2.3

[17] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient algorithm design.
Electronic Colloquium on Computational Complexity (ECCC), 26:106, 2019. 1

[18] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof complexity lower bounds
from algebraic circuit complexity. In 31st Conference on Computational Complexity, CCC 2016, May 29
to June 1, 2016, Tokyo, Japan, pages 32:1–32:17, 2016. (document), 1, 1, 1.1, 1.2.1, 1.2.1, 1.2.2, 1.3, 1.4,
6, 2.5, 3.2, 21, 3.6

[19] Andreas Goerdt. Cuting plane versus frege proof systems. In Egon Börger, Hans Kleine Büning,
Michael M. Richter, and Wolfgang Schönfeld, editors, Computer Science Logic, 4th Workshop, CSL ’90,
Heidelberg, Germany, October 1-5, 1990, Proceedings, volume 533 of Lecture Notes in Computer Science,
pages 174–194. Springer, 1990. 1.2.2, 1.4

[20] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone complexity
and TFNP. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12,
2019, San Diego, California, USA, pages 38:1–38:19, 2019. 1

[21] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity. SIAM J.
Comput., 47(5):1778–1806, 2018. 1.2.2

[22] D. Grigoriev. Complexity of Positivstellensatz proofs for the knapsack. Comput. Complexity, 10(2):139–
154, 2001. 1, 1.2.2, 1.4

[23] Dima Grigoriev and Edward A. Hirsch. Algebraic proof systems over formulas. Theoret. Comput. Sci.,
303(1):83–102, 2003. Logic and complexity in computer science (Créteil, 2001). 6.1

[24] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of semialgebraic proofs. Mosc.
Math. J., 2(4):647–679, 805, 2002. 1, 1.1, 1.2.2, 1.4, 2.6, 2.6.1, 17

[25] Dima Grigoriev and Nicolai Vorobjov. Complexity of null- and positivstellensatz proofs. Ann. Pure
Appl. Logic, 113(1-3):153–160, 2002. 1, 1.1, 3, 2.6, 13

[26] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial identity
testing: The ideal proof system. J. ACM, 65(6):37:1–37:59, 2018. (document), 1, 1.1, 2, 1.2.2, 1.3, 2.5,
10, 3.1, 4, 4.1

53

[27] David Hilbert. Hilbert’s invariant theory papers. Lie Groups: History, Frontiers and Applications, VIII.
Math Sci Press, Brookline, Mass., 1978. Translated from the German by Michael Ackerman, With
comments by Robert Hermann. 2.6

[28] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communication com-
plexity hardness to time-space trade-offs in proof complexity. In Proceedings of the 44th Symposium on
Theory of Computing (STOC), pages 233–248. ACM, 2012. 1.2.2

[29] Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. The surprising power of constant depth algebraic
proofs. Electronic Colloquium on Computational Complexity (ECCC), 26:24, 2019. 1.4

[30] Russell Impagliazzo, Pavel Pudlák, and Jǐŕı Sgall. Lower bounds for the polynomial calculus and the
gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999. 1, 1.2.2, 1.4

[31] Dmitry Itsykson and Arist Kojevnikov. Lower bounds of static lovasz-schrijver calculus proofs for tseitin
tautologies. Zapiski Nauchnyh Seminarov POMI, 340:10–32, 2006. (in Russian). English translation
appeared in Journal of Mathematical Sciences 145(3):4942-4952, 2007. 1.2.2

[32] J. L. Krivine. Anneaux preordonnes. Journal d’Analyse Mathématique, 12(1):307–326, 1964. 2.6, 2.3

[33] Fu Li, Iddo Tzameret, and Zhengyu Wang. Characterizing propositional proofs as noncommuta-
tive formulas. In SIAM Journal on Computing, volume 47, pages 1424–1462, 2018. Full Version:
http://arxiv.org/abs/1412.8746. 1

[34] L. Lovász. Stable sets and polynomials. Discrete Mathematics, 124:137–153, 1994. 1, 2.6.1

[35] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0–1 optimization. SIAM Journal on
Optimization, 1:166–190, 1991. 1, 2.6.1

[36] Ryan O’Donnell and Yuan Zhou. Approximability and proof complexity. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pages 1537–1556, 2013. 1, 1.1, 2.6

[37] Fedor Part and Iddo Tzameret. Resolution with counting: Different moduli and dag-like lower bounds.
Electronic Colloquium on Computational Complexity (ECCC), 25:117, 2018. 1.4

[38] Toniann Pitassi Paul Beame and Nathan Segerlind. Lower bounds for lovász–schrijver systems and beyond
follow from multiparty communication complexity. SIAM Journal on Computing, 37(3):845–869, 2007.
1.2.2

[39] Toniann Pitassi. Unsolvable systems of equations and proof complexity. In Proceedings of the International
Congress of Mathematicians, Vol. III (Berlin, 1998), number Vol. III, pages 451–460, 1998. 1.1, 4.1

[40] Toniann Pitassi and Rahul Santhanam. Effectively polynomial simulations. In Proceedings of Innovations
in Computer Science - ICS, pages 370–382, 2010. 6, 6.2

[41] Tonnian Pitassi and Iddo Tzameret. Algebraic proof complexity: Progress, frontiers and challenges. ACM
SIGLOG News, 3(3), 2016. 1, 3.1

[42] Pavel Pudlák. On the complexity of the propositional calculus. In Sets and proofs (Leeds, 1997), volume
258 of London Math. Soc. Lecture Note Ser., pages 197–218. Cambridge Univ. Press, Cambridge, 1999.
1, 2.6.1

[43] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics
Journal, 42(3):969–984, 1993. 2.6

[44] Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Complexity, 7(4):291–324,
1998. 1, 1

[45] Robert A. Reckhow. On the lengths of proofs in the propositional calculus. PhD thesis, University of
Toronto, 1976. 15

[46] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.
Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010. 2.2

54

http://arxiv.org/abs/1412.8746

[47] Michael Shub and Steve Smale. On the intractability of Hilbert’s Nullstellensatz and an algebraic version
of “NP 6=P?”. Duke Math. J., 81:47–54, 1995. (document), 1, 1.1, 1.1, 1.2, 1.3, 9, 7, 2.3, 2.1, 2.2

[48] Steve Smale. Mathematical problems for the next century. The Mathematical Intelligencer, 20(2):7–15,
1998. 1.1, 1.1, (document), 2.3, 2.3

[49] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Mathematische
Annalen, 207(2):87–97, 1974. 2.6, 2.3

[50] Volker Strassen. Vermeidung von divisionen. J. Reine Angew. Math., 264:182–202, 1973. (in German).
4.1.1

[51] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM Symposium
on the Theory of Computing, pages 249–261. ACM, 1979. 2.2

[52] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201, 1979.
2.2

[53] Leslie G. Valiant. Reducibility by algebraic projections. Logic and Algorithmic: International Symposium
in honour of Ernst Specker, 30:365–380, 1982. 2.2

55

— Page left blank for ECCC stamp —

56
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

