Semi-Algebraic Proofs, IPS Lower Bounds and the τ-Conjecture: Can a Natural Number be Negative?∗†

Yaroslav Alekseev‡ Dima Grigoriev§ Edward A. Hirsch¶ Iddo Tzameret∥

Abstract

We introduce the binary value principle which is a simple subset-sum instance expressing that a natural number written in binary cannot be negative, relating it to central problems in proof and algebraic complexity. We prove conditional superpolynomial lower bounds on the Ideal Proof System (IPS) refutation size of this instance, based on a well-known hypothesis by Shub and Smale about the hardness of computing factorials, where IPS is the strong algebraic proof system introduced by Grochow and Pitassi [26]. Conversely, we show that short IPS refutations of this instance bridge the gap between sufficiently strong algebraic and semi-algebraic proof systems. Our results extend to full-fledged IPS the paradigm introduced in Forbes et al. [18], whereby lower bounds against subsystems of IPS were obtained using restricted algebraic circuit lower bounds, and demonstrate that the binary value principle captures the advantage of semi-algebraic over algebraic reasoning, for sufficiently strong systems. Specifically, we show the following:

Conditional IPS lower bounds: The Shub-Smale hypothesis [47] implies a superpolynomial lower bound on the size of IPS refutations of the binary value principle over the rationals defined as the unsatisfiable linear equation \(\sum_{i=1}^{n} 2^{-i} x_i = -1 \), for boolean \(x_i \)'s. Further, the related \(\tau \)-conjecture [47] implies a superpolynomial lower bound on the size of IPS refutations of a variant of the binary value principle over the ring of rational functions. No prior conditional lower bounds were known for IPS or for apparently much weaker propositional proof systems such as Frege.¹

Algebraic vs. semi-algebraic proofs: Admitting short refutations of the binary value principle is necessary for any algebraic proof system to fully simulate any known semi-algebraic proof system, and for strong enough algebraic proof systems it is also sufficient. In particular, we introduce a very strong proof system that simulates all known semi-algebraic proof systems (and most other known concrete propositional proof systems), under the name Cone Proof System (CPS), as a semi-algebraic analogue of the ideal proof system: CPS establishes the unsatisfiability of collections of polynomial equalities and inequalities over the reals, by representing sum-of-squares proofs (and extensions) as algebraic circuits. We prove that IPS is polynomially equivalent to CPS iff IPS admits polynomial-size refutations of the binary value principle (for the language of systems of equations that have no 0/1-solutions), over both \(\mathbb{Z} \) and \(\mathbb{Q} \).

* A preliminary report on parts of this work was delivered at Dagstuhl Proof Complexity meeting 2018. https://materials.dagstuhl.de/files/18/18051/18051.IddoTzameret.Slides.pptx
† The research presented in Section 3 is supported by Russian Science Foundation (project 16-11-10123).
‡ Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia, and Chebyshev Laboratory at St. Petersburg State University
¶ Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia. http://logic.pdmi.ras.ru/~hirsch
∥ Department of Computer Science, Royal Holloway, University of London. Iddo.Tzameret@rhul.ac.uk. http://www.cs.rhul.ac.uk/home/tzameret
¹ Though simple, the binary value principle is not a direct translation of a boolean formula, hence, similar to [18] and other results on algebraic proofs (e.g., Razborov [44]), IPS lower bounds on this principle do not necessarily entail lower bounds for Frege or its subsystems.
1 Introduction

This work connects three separate objects of study in computational complexity: algebraic proof systems, semi-algebraic proof systems and algebraic circuit complexity. The connecting point is a subset-sum instance expressing that the value of a natural number given in binary is nonnegative. We will show that this instance captures the advantage of semi-algebraic reasoning over algebraic reasoning in the regime of sufficiently strong proof systems, and is expected to be hard even for very strong algebraic proof systems. We begin with a general discussion about proof complexity, and then turn to algebraic and semi-algebraic proofs and their inter-relations, and the connection between circuit lower bounds and proof-size lower bounds.

Narrowly construed, proof complexity can be seen as a stratification of the NP vs. coNP question, whereby one aims to understand the complexity of stronger and stronger propositional proof systems as a gradual approach towards separating NP from coNP (and hence, also P from NP). This mirrors circuit complexity in which different circuit classes are analyzed in the hope to provide general super-polynomial circuit lower bounds. Broadly understood however, proof complexity serves as a way to study the computational resources required in different kind of reasoning, different algorithmic techniques and constraint solvers, as well as providing propositional analogues to weak first-order theories of arithmetic.

Algebraic proof systems have attracted immense amount of work in proof complexity, due to their simple nature, being a way to study the complexity of computer-algebra procedures such as the Gröbner basis algorithm, and their connection to different fragments of logical propositional proof systems with counting gates. Beginning with the fairly weak Nullstellensatz refutation system by Beame et al. [3] and culminating in the very strong Ideal Proof System by Grochow and Pitassi [26], many algebraic proof systems and variants have been studied. In such systems one basically operates with polynomial equations over a field using simple algebraic derivation rules such as additions of equations and multiplication of an equation by a variable, where variables are usually meant to range over $\{0, 1\}$ values.

Impagliazzo, Pudlák and Sgall [30], following Razborov [44], showed that the polynomial calculus, which is the standard dynamic algebraic proof system introduced in [12], requires exponential-size refutations (namely, those using an exponential number of monomials) for the simple symmetric unsatisfiable subset-sum instance $x_1 + \cdots + x_n = n + 1$. Note that refuting (that is, showing the unsatisfiability of) a linear equation $\sum_i \alpha_i x_i = \beta$ in which the variables x_i are boolean, establishes that there is no subset of the α_i numbers that sums up to β, and hence is considered to be a refutation of a subset-sum instance. Forbes et al. [18] showed that this symmetric subset-sum instance and its variants are hard for different subsystems of the very strong IPS algebraic proof system. Loosely speaking, IPS is a static Nullstellensatz refutation in which proof size is measured by algebraic circuit complexity instead of sparsity (that is, monomial size). In other words, IPS proofs are written as algebraic circuits, and thus can tailor the advantage that algebraic circuits have over sparse polynomials (somewhat reminiscent to the way Extended Frege can tailor the full strength of boolean circuits in comparison to resolution which operates merely with clauses).

The realm of semi-algebraic proof systems has emerged as an equally fruitful subject as algebraic proofs. Semi-algebraic proofs have been brought to the attention of complexity theory from optimization [35, 34] by the works of Pudlák [42] and Grigoriev and Vorobojov [25] (cf. [24]), and more recently, through its connection to approximation algorithms with the work of Barak et al. [2] (cf. [36] and the new excellent survey by Fleming et al. [17]). While algebraic proofs derive polynomials in the ideal of a given initial set of polynomials, semi-algebraic proofs extend it to allow deriving polynomials also in the cone of the initial polynomials (informally a cone is an “ideal that preserves positive signs”), hence potentially utilizing a stronger kind of reasoning. In particular [2]
considered the sum-of-squares refutation system (SoS for short). What makes SoS proofs important, for example to polynomial optimization, is the fact that the existence of a degree-d SoS certificate can be formulated as the feasibility of a semidefinite program (SDP), and hence can be solved in polynomial time. Berkholz [4] showed interestingly that in the regime of weak proof systems, even static semi-algebraic proofs, such as SoS, can simulate dynamic algebraic proof systems such as polynomial calculus. Grigoriev [22] showed that in this weak regime semi-algebraic proofs are in fact strictly stronger (with respect to degrees) than algebraic proofs, where the separating instances are simple polynomials (for example, symmetric subset sum instances). However, it was not known in general (e.g., for strong systems) whether semi-algebraic reasoning is strictly stronger than algebraic reasoning.

Another established tradition in proof complexity is to seek synergies between proofs and circuit lower bounds. In particular, proofs-to-circuits transformations in the form of feasible interpolation, and other close concepts have been pivotal in the search for proof complexity lower bounds, as well as in circuit lower bounds themselves (see Göös et al. [20] for a recent example). In fact, the conception of IPS itself was motivated by the attempt to show that very strong proof complexity lower bounds would result in algebraic complexity class separations such as \(\text{VP} \neq \text{VNP} \) (see [26] and the survey [41]). Li et al. [33] as well as Forbes et al. [18] went in the other direction and showed that certain restricted algebraic circuit lower bounds imply size lower bounds on subsystems of IPS. In particular, [18] devised a simple framework by which lower bounds on (subsystems of) IPS refutations are reduced to algebraic circuit lower bounds. [18] used this framework to establish lower bounds on subsystems of IPS refutations of variants of symmetric subset-sum instances when the IPS refutations are written as read once algebraic branching programs and multilinear formulas. But lower bounds on the size of full IPS refutations were not known.

1.1 Background

Algebraic Circuits. Algebraic circuits over some fixed chosen field or ring \(R \) compute formal polynomials in \(R[x_1, \ldots, x_n] \) via addition and multiplication gates, starting from the input variables \(x_1, \ldots, x_n \) and constants from \(R \). Formally, an algebraic circuit \(C \) is a finite directed acyclic graph where edges are directed from leaves (in-degree 0 nodes) towards the output (out-degree 0 node). Input nodes are leaves that are labeled with a variable from \(x_1, \ldots, x_n \); every other leaf is labelled with a scalar in \(R \). All the other nodes have in-degree two and are labeled with either + or \(\times \). A leaf is said to compute the variable or scalar that labels itself. A + (or \(\times \)) gate is said to compute the addition (product, resp.) of the polynomials computed by its incoming nodes. \(C \) computes the polynomial computed by its output node. The size of an algebraic circuit \(C \) is the number of nodes in it denoted \(|C|\), and the depth of a circuit is the length of the longest directed path in it. Note that the size of a field coefficient in this setting is 1 irrespective of the value of the coefficient. Sometimes it is important to consider the size of the coefficients appearing in the circuit (for instance, when we are concerned with the computational complexity of problems pertaining to algebraic circuits we need to have an efficient way to represent the circuits as bit strings). For this purpose we define a constant-free algebraic circuit to be an algebraic circuit in which the only constants used are \(0, 1, -1 \). Other constants must be built up using algebraic operations, which then count towards the size of the circuit. Constant-free algebraic circuit computes a polynomial over \(\mathbb{Z} \), but when we allow for constant sub-circuits (and only for constant sub-circuits) to contain division gates (in Sect. 3) we can also compute polynomials over \(\mathbb{Q} \) with constant-free circuits.

The \(\tau \)-Conjecture and Shub-Smale Hypothesis. Here we explain several important assumptions and conjectures that are known to lead to strong complexity lower bounds and complexity class
The following is a condition put forth in Sect. 2.2. Further, let τ be a univariate polynomial with integer coefficients, denote by $\tau(x)$ the number of distinct integer roots of f.

Theorem 1.1 ([47, 8]). 1. If the Shub-Smale hypothesis holds then $P_C \neq NP_C$. 2. If the Shub-Smale Hypothesis holds then $VP^0 \neq VNP^0$. In other words, Shub-Smale Hypothesis implies that the permanent does not have polynomial size constant-free algebraic circuits.

It is open whether the Shub-Smale hypothesis holds. What is known is that if Shub-Smale hypothesis does not hold then factoring of integers can be done in (nonuniform) polynomial time (cf. Blum et al. [6, p.126] and [11]).

Another related important assumption in algebraic complexity is the τ-conjecture. Let $f \in \mathbb{Z}[x]$ be a univariate polynomial with integer coefficients, denote by $\tau(f)$ the number of distinct integer roots of f.

τ-Conjecture ([47, 48]). There is a universal constant c, such that for every univariate polynomial $f \in \mathbb{Z}[x]$: $(1 + \tau(f))^c \geq \tau(f)$.

The consequences of the τ-conjecture are similar to the Shub-Smale Hypothesis:

Theorem 1.2 ([47, 8]). If the τ-conjecture holds then both $P_C \neq NP_C$ and $VP^0 \neq VNP^0$ hold.
Algebraic Proof Systems. A propositional proof system (following [15]) is a polynomial-time predicate \(V(\pi, x) \) that verifies purported proofs \(\pi \) (encoded naturally in binary) for propositional formulas \(x \) (also encoded in binary), such that \(\exists \pi \ (V(\pi, x) = \text{true}) \) iff \(x \) is a tautology. In the setting of algebraic proof systems, one can use a broader definition of a proof system: instead of \(V(\pi, x) \) being a polynomial-time predicate it is a coRP predicate (since polynomial identity testing is in coRP), and instead of providing proofs for propositional tautologies the system establishes proofs (in fact refutations) for sets of polynomial equations with no \(\{0, 1\} \) solutions.

Grochow and Pitassi [26], following [39], suggested the following algebraic proof system which is essentially a Nullstellensatz proof system [3] written as an algebraic circuit (this was showed in [18]). A proof in the Ideal Proof System is given as a single polynomial. We provide below the boolean version of IPS (which includes the boolean axioms), namely the version that establishes the unsatisfiability over 0-1 of a set of polynomial equations. (In what follows we follow the notation in [18]):

Definition 2 (boolean Ideal Proof System (IPS), Grochow-Pitassi [26]). Let \(f_1(\pi), \ldots, f_m(\pi), p(\pi) \) be a collection of polynomials in \(\mathbb{F}[x_1, \ldots, x_n] \) over the field \(\mathbb{F} \). An IPS proof of \(p(\pi) = 0 \) from \(\{f_j(\pi) = 0\}_{j=1}^m \), showing that \(p(\pi) = 0 \) is semantically implied from the assumptions \(\{f_j(\pi) = 0\}_{j=1}^m \) over 0-1 assignments, is an algebraic circuit \(C(\pi, \bar{y}, \bar{z}) \in \mathbb{F}[\bar{y}, y_1, \ldots, y_m, \bar{z}, z_1, \ldots, z_n] \) such that (the equalities in what follows stand for formal polynomial identities):

1. \(C(\pi, \bar{0}, \bar{0}) = 0 \); and
2. \(C(\pi, f_1(\pi), \ldots, f_m(\pi), x_1^2 - x_1, \ldots, x_n^2 - x_n) = p(\pi) \).

The size of the IPS proof is the size of the circuit \(C \). If \(C \) is assumed to be constant-free, we refer to the size of the proof as the size of the constant-free IPS proof. The variables \(\bar{y}, \bar{z} \) are called the placeholder variables since they are used as placeholders for the axioms. An IPS proof \(C(\pi, \bar{y}, \bar{z}) \) of \(1 = 0 \) from \(\{f_j(\pi) = 0\}_{j=1}^m \) is called an IPS refutation of \(\{f_j(\pi) = 0\}_{j=1}^m \) (note that in this case it must hold that \(\{f_j(\pi) = 0\}_{j=1}^m \) have no common solutions in \(\{0, 1\}^n \)).

Notice that the definition above adds the equations \(\{x_i^2 - x_i = 0\}_{i=1}^n \), called the set of boolean axioms denoted \(\bar{x}^2 - \bar{x} \), to the system \(\{f_j(\pi) = 0\}_{j=1}^m \). This allows to refute over \(\{0, 1\}^n \) unsatisfiable systems of equations. Also, note that the first equality in the definition of IPS means that the polynomial computed by \(C \) is in the ideal generated by \(\bar{y}, \bar{z} \), which in turn, following the second equality, means that \(C \) witnesses the fact that 1 is in the ideal generated by \(f_1(\pi), \ldots, f_m(\pi), x_1^2 - x_1, \ldots, x_n^2 - x_n \) (the existence of this witness, for unsatisfiable set of polynomials, stems from the Nullstellensatz theorem [3]). In order to use IPS as a propositional proof system for refuting unsatisfiable CNF formulas we fix the usual encoding of clauses as algebraic circuits (Definition 11).

Semi-Algebraic Proofs. The Positivstellensatz proof system, as defined by Grigoriev and Vorobjov [25], is a static refutation system for establishing the unsatisfiability over the reals \(\mathbb{R} \) of a system consisting of both polynomial equations \(\bar{F} = \{f_i(\pi) = 0\}_{i \in I} \) and polynomial inequalities \(\bar{H} = \{h_j(\pi) \geq 0\}_{j \in J} \), respectively. In Positivstellensatz one essentially derives a polynomial in the cone of the initial equalities and inequalities, in contrast to algebraic proofs in which one derives polynomial in the ideal of the initial polynomial equations. Loosely speaking, the cone serves as a non-negative closure of a set of polynomials, or in other words as a “positive ideal” (see Definition 12 and discussion in Sect. 2.6).

We will distinguish between the real Positivstellensatz in which variables are meant to range over the reals and boolean Positivstellensatz in which variables range over \(\{0, 1\} \).

\[\text{That is, } C(\pi, \bar{0}, \bar{0}) \text{ computes the zero polynomial and } C(\pi, f_1(\pi), \ldots, f_m(\pi), x_1^2 - x_1, \ldots, x_n^2 - x_n) \text{ computes the polynomial } p(\pi).\]
Definition 3 (real Positivstellensatz proof system (real PS) [25]). Let $\mathcal{F} := \{ f_i(\bar{x}) = 0 \}_{i \in I}$ be a set of polynomial equations and let $\mathcal{H} := \{ h_j(\bar{x}) \geq 0 \}_{j \in J}$ be a set of polynomial inequalities, where all polynomials are from $\mathbb{R}[x_1, \ldots, x_n]$. Assume that \mathcal{F}, \mathcal{H} have no common real solutions. A Positivstellensatz refutation of \mathcal{F}, \mathcal{H} is a collection of polynomials $\{ p_i \}_{i \in I}$ and $\{ s_{i,\zeta} \}_{i,\zeta}$ (for $i \in \mathbb{N}$, $\zeta \subseteq J$ and $I_\zeta \subseteq \mathbb{N}$) in $\mathbb{R}[x_1, \ldots, x_n]$ such that the following formal polynomial identity holds:

$$\sum_{i \in I} p_i \cdot f_i + \sum_{\zeta \subseteq J} \left(\prod_{j \in \zeta} h_j \cdot \left(\sum_{i \in I_\zeta} s_{i,\zeta}^2 \right) \right) = -1. \quad (1)$$

The **monomial size** of a Positivstellensatz refutation is the combined total number of monomials in $\{ p_i \}_{i \in I}$ and $\sum_{i \in I_\zeta} s_{i,\zeta}^2$, for all $\zeta \subseteq J$, that is, $\sum_{i \in I} |p_i| \cdot \text{monomials} + \sum_{\zeta \subseteq J} \left| \sum_{i \in I_\zeta} s_{i,\zeta}^2 \right| \cdot \text{monomials}$.

In order to use Positivstellensatz as a refutation system for collections of equations \mathcal{F} and inequalities \mathcal{H} that are unsatisfiable over 0-1 assignments, we need to include simple so-called boolean axioms. This is done in slightly different ways in different works (see for example [24, 1]). One way to do this, which is the way we follow, is the following:

Definition 4 ((boolean) Positivstellensatz proof system (boolean PS)). A **boolean Positivstellensatz proof** from a set of polynomial equations \mathcal{F}, and polynomial inequalities \mathcal{H}, is an algebraic Positivstellensatz proof in which the following **boolean axioms** are part of the axioms: the polynomial equations $x_i^2 - x_i = 0$ (for all $i \in [n]$) are included in \mathcal{F}, and the polynomial inequalities $x_i \geq 0$, $1 - x_i \geq 0$ (for all $i \in [n]$) are included in \mathcal{H}.

In this way, \mathcal{F}, \mathcal{H} have no common 0-1 solutions if there exists a boolean Positivstellensatz refutation of \mathcal{F}, \mathcal{H}. Eventually, to define the boolean Positivstellensatz as a propositional proof system for the unsatisfiable CNF formula we consider CNF formulas to be encoded as polynomial equalities according to Definition 11. This version is sometimes called **propositional Positivstellensatz**. As a default when referring to Positivstellensatz we mean the boolean Positivstellensatz version.

In recent years, starting mainly with the work of Barak, Brandao, Harrow, Kelner, Steurer and Zhou [2], a special case of the Positivstellensatz proof system has gained much interest due to its application in complexity and algorithms (cf. [36]). This is the **sum-of-squares** proof system (SoS), which is defined as follows:

Definition 5 (sum-of-squares proof system (SoS)). A **sum-of-squares proof** (SoS for short) is a Positivstellensatz proof in which in eq. 5 in Definition 13 we restrict the index sets $\zeta \subseteq J$ to be singletons, namely $|\zeta| = 1$, hence, disallowing arbitrary products of inequalities within themselves. The real, boolean and propositional versions of SoS are defined similar to Positivstellensatz.

1.2 Our Results and Techniques

We consider the following subset-sum instance written as an unsatisfiable linear equation with large coefficients, expressing the fact that natural numbers written in binary cannot be negative:

Definition 6 (Binary Value Principle BVP$_n$). The **binary value principle** over the variables x_1, \ldots, x_n, BVP$_n$ for short, is the following unsatisfiable (over $\{0,1\}$ assignments) linear equation:

$$x_1 + 2x_2 + 4x_3 + \cdots + 2^{n-1}x_n = -1.$$

At times we use a more general principle denoted BVP$_{n,M}$, which we call the **generalized binary value principle**: $x_1 + 2x_2 + 4x_3 + \cdots + 2^{n-1}x_n = -M$, for a positive integer M.

1.2.1 Lower Bounds

We show two kinds of conditional super-polynomial lower bounds against IPS proofs. The first is over the rationals and the integers and the second is over the field of rational functions of univariate polynomials in the variable y, denoted $\mathbb{Q}[y]$ (see Definition 20). We start with the first lower bound.

Theorem (Thm. 3.3). Under the Shub and Smale hypothesis, there are no poly(n)-size constant-free (boolean) IPS refutations of the binary value principle BVP_n over \mathbb{Q}.

This result can be viewed as pushing forward to full IPS the paradigm initiated by Forbes et al. [18] wherein proof complexity lower bound questions were reduced to algebraic circuit size lower bound questions: an IPS proof written as a circuit from a class C is obtained by reducing the problem to a lower bound on a polynomial computed in class C. In [18] the IPS lower bounds were unconditional. For unconditional lower bounds we can only hope to be able to lower bound IPS refutations that are represented with a restricted circuit class for which we already know lower bounds. In other words, in this approach we cannot hope to unconditionally prove full IPS lower bounds without first solving the corresponding circuit lower bound question, namely without providing (explicit) algebraic circuit lower bounds such as $\text{VP} \neq \text{VNP}$.\(^3\)

Proof sketch of Thm. 3.3: First, we show in Cor. 3.2 that it is enough to consider IPS refutations over \mathbb{Z} instead of \mathbb{Q}. An IPS refutation over \mathbb{Z} is a proof of a nonzero integer M instead of -1. Let $S_n := \sum_{i=1}^{n} 2^{i-1} x_i$ so that BVP is $S_n + 1 = 0$, and assume that the IPS refutation of BVP is written as follows (this can be assumed without loss of generality by a result of [18]):

$$Q(\pi) \cdot (S_n + 1) + \sum_{i=1}^{n} H(\pi) \cdot (x_i^2 - x_i) = M. \quad (2)$$

Since the IPS refutation is over \mathbb{Z} we know in particular that $Q(\pi)$ is an integer polynomial. Let us consider now only $\{0,1\}$ assignments to eq. 2. Since under $\{0,1\}$ assignments the boolean axioms $x_i^2 - x_i$ vanish we get from eq. 2:

$$Q(\pi) \cdot (S_n + 1) = M. \quad (3)$$

Observe that the image of $S_n + 1$ under boolean assignments is the set of all possible natural numbers between 1 to 2^n. In other words, for every number $b \in [2^n]$, there exists an assignment $\pi \in \{0,1\}^n$, such that $(S_n + 1)(\pi) = b$. Since $Q(\pi)$ is an integer polynomial, it evaluates to an integer under every $\{0,1\}$ assignment. Therefore, by eq. 3 M is a product of every natural number between 1 to 2^n. This already brings us close to the conditional lower bound: we assume contra-positively that there is a polynomial-size constant-free circuit that computes $Q(\pi)$, which implies that there exists a polynomial-size constant-free and variable-free circuit that computes M (because fixing any boolean assignment to the variables we get such a circuit over \mathbb{Z} computing M). We then show that if there exists a poly(n)-size constant-free circuit for $M \in \mathbb{Z}$, such that M is divisible by every number in $[2^n]$, then there exists a poly(n)-size circuit that computes $(2^n)!$.\(^3\)

Consider the poly(n)-size circuit for M^{2^n} that is obtained by n repeated squaring of M. Since M is divided by every natural number in $[2^n]$ it is in particular divisible by every prime number in $[2^n]$. It is possible to show that the power of every prime number in the prime factorisation of $(2^n)!$ is at most 2^n, from which we can conclude that M^{2^n} is an integer product of $(2^n)!$. We thus obtain a constant-free poly(n)-size circuit for a nonzero integer product of $(2^n)!$. From this it is easy to

\(^3\)Though, it should be mentioned that in proof complexity even non-explicit lower bounds are not known, and will constitute a breakthrough in the field; hence moving from non-explicit (and thus known) circuit lower bounds to (possibly also non-explicit) proof complexity lower bounds cannot be ruled out entirely.
show that for every m with $2^{n-1} \leq m \leq 2^n$ there is a poly(n)-size constant-free circuit computing a nonzero integer product of $m!$, hence that sequence $(c_n \cdot m!)_{m=1}^\infty$ admits a $\log^{O(1)} m$-size family of constant-free circuits, in contrast to the Shub-Smale hypothesis. □

Rational field lower bounds. Here we prove an IPS lower bound based on the τ-conjecture. Our lower bound is in fact proved for IPS refutations in which the placeholder variables have individual degree at most 1, namely the IPS certificate is multilinear in the y_i-variables. This variant is denoted IPS-LIN (Definition 21) in Forbes et al. [18], and was proved to be polynomially equivalent to IPS ([18, Theorem 4.4]). Nonetheless, we state the lower bound for IPS-LIN and not IPS because our IPS refutations are constant-free, and we have not verified that the equivalence of IPS with IPS-LIN carries over to the model of constant-free refutations (though we believe it does).

Theorem (Thm. 3.9). Suppose a system of polynomial equations $F_0(\bar{x}) = F_1(\bar{x}) = F_2(\bar{x}) = \cdots = F_n(\bar{x}) = 0$, $F_i \in \mathbb{Q}(y)[x_1, \ldots, x_n]$, where $F_0(\bar{x}) = y + \sum_{i=1}^n 2^i x_i$ and $F_i(\bar{x}) = x_i^2 - x_i$, has an IPS-LIN$_{\mathbb{Q}(y)}$ certificate $H_0(\bar{x}), \ldots, H_n(\bar{x})$, where each $H_i(\bar{x})$ can be computed by a $\mathbb{Q}(y)[x_1, \ldots, x_n]$-algebraic circuit of size poly(n). Then, the τ-conjecture is false.

We have seen that refuting $\sum_{i=1}^n x_i 2^{i-1} + 1 = 0$ is possibly hard for IPS. Moreover, when simulating CPS over \mathbb{Q} we may come to any similar inequality $\sum_{i=1}^n x_i 2^{i-1} + M = 0$ for a positive integer M. Can we in principle refute them all in an uniform manner?

Actually, we cannot even formulate such a statement over \mathbb{Q}, as expressing an inequality of unbounded range using equalities is hard. (Although we could formulate the negation as $\prod_{N=0}^{2^n-1} (\sum_{i=1}^n x_i 2^{i-1} - N) = 0$.) We introduce a system where we can formulate things that are close to this statement. Namely, this is IPS over $\mathbb{Q}(y)$, the field of rational functions of a single variable y. Once we refute $\sum_{i=1}^n x_i 2^{i-1} + y = 0$ in this system, we can substitute y in this refutation by any constant that does not appear in the denominators in the (finite!) proof thus getting a refutation for all but a finite number of integers. Indeed, this is possible and it would be even efficient for small coefficients instead of 2^{i-1}. However, the case of exponential coefficients remains hard, now under the τ-conjecture. We prove this conditional lower bound in Sect. 3.2.

The proof roughly extracts denominators from the refutation and obtains the efficient circuit that has all n-bit nonnegative integers as its roots and thus cannot exist under τ-conjecture.

1.2.2 Algebraic versus Semi-Algebraic Proofs

We exhibit the importance of the binary value principle by showing that it captures in a manner made precise the strength of semi-algebraic reasoning in the regime of strong (to very strong) proof systems, and formally those systems that can efficiently reason about bit arithmetic. Note that already Frege system can reason about bit arithmetic (see [19] following [9]); however, this alone is not sufficient to simulate semi-algebraic systems. Specifically, we show that short refutations of the binary value principle would bridge the gap between very strong algebraic reasoning captured by the ideal proof system and its semi-algebraic analogue that we introduce in this work, which we call the Cone Proof System (CPS for short).

Whereas IPS is devised to capture derivations in the *ideal* of initial given polynomials, CPS is defined so to exhibit derivations in the *cone* (Definition 12) of these polynomials. The cone proof system establishes that a collection of polynomial equations $\mathcal{F} := \{f_i = 0\}_i$ and polynomial inequalities $\mathcal{H} := \{h_i \geq 0\}_i$ are unsatisfiable over 0-1 assignments (or over real-valued assignments, when desired). In the spirit of IPS [26] we define a refutation in CPS as a *single* algebraic circuit. This circuit computes a polynomial that results from positive-preserving operations such as addition and product applied between the inequalities \mathcal{H} and themselves, as well as the use of nonnegative scalars and arbitrary squared polynomials. In order to simulate in CPS the free use of equations from
we incorporate in the set of inequalities \mathcal{H} the inequalities $f_i \geq 0$ and $-f_i \geq 0$ for each $f_i = 0$ in \mathcal{F} (we show that this enables one to add freely products of the polynomial f_i in CPS proofs, namely working in the ideal of \mathcal{F} (in addition to working in the cone of \mathcal{H}); see Sect. 4.1.1).

We first formalize the concept of a cone as an algebraic circuit. Let C be a circuit and v be a node in C. We call v a **squaring gate** if v is a product gate of which two incoming edges are emanating from the same node.

Definition 7 (\overline{y}-conic circuit). Let R be an ordered ring. We say that an algebraic circuit C computing a polynomial over $R[\overline{x}, \overline{y}]$ is a **conic circuit with respect to \overline{y}**, or \overline{y}-conic for short, if for every negative constant or a variable $x_i \in \overline{x}$, that appears as a leaf u in C, the following holds: every path p from u to the output gate of C contains a squaring gate.

Informally, a \overline{y}-conic circuit is a circuit in which we assume that the \overline{y}-variables are nonnegative, and any other input that may be negative (that is, a negative constant or an \overline{x}-variable) must be part of a squared sub-circuit.

CPS is defined roughly in the same way as IPS only that instead of circuits we use conic circuits:

Definition 8 ((boolean) Cone Proof System (CPS)). Consider a collection of polynomial equations $\mathcal{F} := \{ f_i(\overline{x}) = 0 \}_{i=1}^m$ and a collection of polynomial inequalities $\mathcal{H} := \{ h_i(\overline{x}) \geq 0 \}_{i=1}^l$, where all polynomials are from $R[x_1, \ldots, x_n]$. Assume that the following boolean axioms are included in the assumptions: \mathcal{F} includes $x_i^2 - x_i = 0$, and \mathcal{H} includes the inequalities $x_i \geq 0$ and $1 - x_i \geq 0$, for every variable $x_i \in \overline{x}$. Suppose further that \mathcal{H} includes (among possibly other inequalities) the two inequalities $f_i(\overline{x}) \geq 0$ and $-f_i(\overline{x}) \geq 0$ for every equation $f_i(\overline{x}) = 0$ in \mathcal{F} (including the equations $x_i^2 - x_i = 0$). A **CPS proof** of $p(\overline{x})$ from \mathcal{F} and \mathcal{H}, showing that \mathcal{F}, \mathcal{H} semantically imply the polynomial inequality $p(\overline{x}) \geq 0$ over 0-1 assignments, is an algebraic circuit $C(\overline{x}, \overline{y})$ computing a polynomial in $R[\overline{x}, y_1, \ldots, y_\ell]$, such that:\footnote{Note that formally we do not make use of the assumptions \mathcal{F} in CPS, as we assume always that the inequalities that correspond to the equalities in \mathcal{F} are present in \mathcal{H}. Thus, the indication of \mathcal{F} is done merely to maintain clarity and distinguish (semantically) between two kinds of assumptions: equalities and inequalities.}

1. $C(\overline{x}, \overline{y})$ is a \overline{y}-conic circuit; and
2. $C(\overline{x}, \mathcal{H}) = p(\overline{x})$,

where equality 2 above is a formal polynomial identity\footnote{That is, $C(\overline{x}, \mathcal{H})$ computes the polynomial $p(\overline{x})$.} in which the left hand side means that we substitute $h_i(\overline{x})$ for y_i, for all $i = 0, \ldots, \ell$. The **size** of a CPS proof is the size of the circuit C. The variables \overline{y} are the placeholder variables since they are used as a placeholder for the axioms. A CPS proof of -1 from \mathcal{F}, \mathcal{H} is called a **CPS refutation** of \mathcal{F}, \mathcal{H}.

To refute CNF formulas in CPS we use the algebraic translation of CNFs (Definition 11) into a set of polynomial equalities (we can equally express CNFs as inequalities; see Prop. 4.13). The real version of CPS, called **real CPS**, is defined similar to CPS only without the boolean axioms.

Remark 1.3. Formally, CPS proves only consequences from an initial set of inequalities \mathcal{H} and not equalities \mathcal{F}. However, we are not losing any power doing this. First, observe that an assignment satisfies \mathcal{F}, \mathcal{H} if it satisfies \mathcal{H} (in the case of boolean CPS an assignment that satisfies either \mathcal{F} or \mathcal{H} must be a $\{0, 1\}$ assignment). Second, we encode equalities $f_i(\overline{x}) = 0 \in \mathcal{F}$ using the two inequalities $f_i(\overline{x}) \geq 0$ and $-f_i(\overline{x}) \geq 0$ in \mathcal{H}. As shown in Thm. 4.7 this way we can derive any polynomial in the ideal of \mathcal{F}, and not merely in the cone of \mathcal{F}, as is required for equations (and similar to the definition of SoS), with at most a polynomial increase in size (when compared to IPS).

In contrast to IPS where a short refutation for BVP$_n$ would imply strong computational consequences, the binary value principle is trivially refutable in CPS (as well as in SoS):
Proposition (Prop. 4.1). CPS admits a linear size refutation of the binary value principle BVP\(_n\).

We show that IPS and CPS simulate each other if there exist small IPS refutations of the binary value principle. This provides a characterisation of semi-algebraic reasoning in terms of the binary value principle. In what follows, IPS\(_Z^*\) and CPS\(_Z^*\) stand for boolean versions of IPS and CPS, where both are proof systems for refuting unsatisfiable sets of polynomial equalities (not necessarily CNFs) and where the ‘\(^*\)’ superscript means that possible values that are computed along the IPS or CPS proofs (as circuits) are not super-exponential (when the input variables range over \{0, 1\}), namely, that the bit-size of these values are polynomial in the proof size (see Sect. 6).

Corollary (BVP characterizes the strength of boolean CPS, Cor. 6.4). 1. Constant-free IPS\(_Z^*\) is polynomially equivalent to constant-free CPS\(_Z^*\) iff constant-free IPS\(_Z^*\) admits poly(t)-size refutations of BVP\(_t\).

2. Constant-free IPS\(_Z^*\) is polynomially equivalent to constant-free CPS\(_Z^*\) iff for every positive integer \(M\) constant-free IPS\(_Z^*\) admits poly(t, \(\tau(M)\))-size refutations of BVP\(_{t, M}\).

Proof idea for part 1. (\(\Leftarrow\)) To show that IPS\(_Z^*\) simulates CPS\(_Z^*\) assuming short refutations of BVP\(_t\) we do the following: let \(C(\pi, \mathcal{F}) = -1\) be the CPS\(_Z^*\) refutation of \(\mathcal{F}\). Then, as a polynomial identity \(C(\pi, \overline{\mathcal{F}}) = -1\) is basically freely provable in IPS\(_Z^*\). We now use the ability of IPS to do efficient bit arithmetic, that we demonstrate formally in this work. Define \(\text{VAL}(\overline{w}) = w_1 + 2w_2 + \ldots + 2^{n-2}w_{n-1} - 2^{n-1}w_n\) to be the value of an integer number given by the \(n\) boolean bits \(w\) in the two’s complement scheme (where \(w_n\) is the sign bit). Our main novel technical lemma with respect to bit arithmetic in algebraic proofs is the following: for any circuit \(f\), IPS has a poly(|\(f|\))-size proof of

\[
\text{VAL}(\text{BIT}_1(f) \cdots \text{BIT}_n(f)) = f, \tag{4}
\]

where \(\text{BIT}_i(f)\) is the polynomial that computes the \(i\)th bit of the number computed by \(f\) as a function of the variables \(\pi\) to \(f\) that range over \{0, 1\} values. The novelty here is in connecting the value of a polynomial to its bit vector expressed as a function of the variables.

Denote \(C(\pi, \overline{\mathcal{F}})\) by \(C\) for short. By eq. 4 we have \(C = \text{VAL}(\text{BIT}_1(C) \cdots \text{BIT}_n(C)) = -1\). Since \(C\) is a conic circuit and thus preserves positive signs we can prove that the sign bit \(\text{BIT}_n(C) = 0\). We are thus left with the need to refute that the value of a positive number written in binary \(\text{BIT}_1(C) \cdots \text{BIT}_{n-1}(C)\) is non-negative, which is efficiently provable in IPS\(_Z^*\) by assumption. \(\square\)

The relative strength of proof systems. Figure 1 below provides a picture of the relative strength of algebraic and semi-algebraic proof systems giving the context for our results.

Note that CPS is among the strongest concrete proof systems for boolean tautologies to be formalized to date: it simulates IPS (Thm. 4.7) which is already considerably strong. Like IPS it can prove freely polynomial identities (Fact A.1), and so it “subsumes” in this sense polynomial identities (accordingly, CPS proofs needs the full power of coRP to be verified). It is unclear whether even ZFC (as a proof system for propositional logic) can simulate CPS (it is not hard to show that this would imply that polynomial identity testing is in \(P\)). Indeed, we are unaware of any concrete propositional proof system (even those that are only coRP-verifiable) that can simulate CPS.

Grigoriev [22] showed that algebraic proofs like PC cannot simulate semi-algebraic proofs like SoS because symmetric subset-sum instances such as \(x_1 + \cdots + x_n = -1\) require linear degrees (and exponential monomial size) [30], and Forbes et al. [18] extended these lower bounds on symmetric subset-sum instances to stronger algebraic proof systems, namely to subsystems of IPS. Our work (Thm. 3.3) extends this gap further, showing that even the strongest algebraic proof system known to date IPS cannot fully simulate even a weak proof system like SoS, assuming Shub-Smale hypothesis.
Exponential size lower bounds for semi-algebraic proof systems are known since [24], and such bounds for propositional versions of static Lovasz-Schrijver and constant degree Positivstellensatz systems were proved in [31]. Beame, Pitassi and Segerlind [38] started the study of lower bounds for semantic threshold systems, that include in particular tree-like Lovász-Schrijver systems. This line of research culminated in [21], where strong lower bounds were proved using critical block sensitivity, a notion introduced in [28].

1.3 Conclusions
This work demonstrates that a simple subset-sum principle, written as a linear equation, captures, in the boolean case (i.e., when variables range over \{0, 1\}), the apparent advantage of semi-algebraic proofs over algebraic proofs in the following sense: it is necessary for any boolean algebraic proof system that simulates full boolean semi-algebraic proofs to admit short refutations of the principle; and if the algebraic proof system is strong enough to be able to efficiently perform basic bit arithmetic, this condition is also sufficient to achieve such a simulation. To formalize these results we introduce a very strong proof system CPS that derives polynomials in the cone of initial axioms instead of in the ideal.

We show that CPS is expected to be stronger than even the very strong algebraic Ideal Proof System (IPS) formulated by Grochow and Pitassi in [26], since our subset-sum principle is hard for IPS assuming the hardness of computing factorials [47]. We establish a related lower bounds on IPS refutation-size based on the \(\tau\)-conjecture [47]. These lower bounds push forward the paradigm introduced by Forbes et al. [18]; whereas [18] showed how to obtain restricted IPS lower bounds for certain subset-sum instances, based on known lower bounds against restricted circuit classes, we show how to obtain general IPS lower bounds based on specific hardness assumptions from algebraic
1.4 Relation to other Work

Bit arithmetic and semi-algebraic proofs. In Sect. 5 we show how to reason about the bits of polynomial expressions within algebraic proofs. Bit arithmetic in proof complexity has already been used in Frege system (see [19] following [9]). Independently of our work, Impagliazzo et al. [29] considered the possibility to effectively simulate weak semi-algebraic proofs using medium-strength algebraic proofs. They have also considered expressing and reasoning with the bits of algebraic expressions, as we do in Sect. 5. However, their proof methods and results are fundamentally different from ours: first, they work in the weak proof systems regime, while we work in the strong systems regime. I.e., they aim to effectively simulate weak proof systems like constant degree sum-of-squares (in which polynomials are written as sum of monomials), while we aim to simulate very strong proof systems such as CPS (essentially, Positivstellensatz written as algebraic circuits). Second, they use a different way to express bits in their work. This is done in order to be able to reason about bits with bounded-depth algebraic circuits, while we do not need this mechanism. Third, they show only effective simulation and not simulation (namely, before the algebraic proofs can simulate a system of polynomial equations or inequalities, the equations and inequalities need to be pre-processed, that is, translated “off-line” to their bit-vector representation). Fourth, they do not consider the VAL function nor the binary value principle, while our work shows that essentially this is a necessary ingredient in a full simulation of strong semi-algebraic proof systems. In fact, we have the following:

Assuming the Shub-Smale hypothesis, our results rule out the possibility that even a very strong algebraic proof system such as IPS simulates (in contrast to the weaker notion of an effective simulation) even a weak semi-algebraic proof system like constant degree SoS measured by monomial size. In other words, assuming Shub-Smale hypothesis, we rule-out the possibility that the arguments in [29] (or any other argument) can yield a simulation of constant degree SoS by algebraic proofs operating with constant depth algebraic circuits (depth-d PC in [29]). It remains however open whether depth-d PC simulates constant degree SoS for the language of unsatisfiable CNF formulas or for unsatisfiable sets of linear equations with small coefficients.

Subset-sum lower bounds in proofs complexity. Different instances of the subset sum problem have been considered as hard instances for algebraic proof systems. For example, Impagliazzo et al. [30] provided an exponential size lower bound on the symmetric subset sum instance $x_1 + \cdots + x_n = n + 1$, for boolean x_i’s in the polynomial calculus refutation system. Grigoriev [22] proved that the version $\sum_{i=1}^n x_i = r$ for a non-integer $r \approx \frac{n}{2}$ requires linear degrees to refute in Positivstellensatz, [24] later transformed this idea into an exponential lower bound proof both for Positivstellensatz and static high-degree Lovasz-Schrijver proof systems.

Moreover, as discussed before, our lower bounds can be seen as an extension to the case of general IPS refutations of the approach introduced in Forbes et al. [18].

The work of Part and Tzameret [37] established unconditional exponential lower bounds on the size of resolution over linear equations refutations of the binary value principle, over any sufficiently large field \mathbb{F}, denoted $\text{Res}(\text{lin}_\mathbb{F})$. The proof techniques in [37] are completely different from the current work, but these results demonstrate that using instances with large coefficients in proof complexity provides new insight into the complexity of proof systems.

\footnote{Note that extending the paradigm in [18] to IPS operating with general circuits must result in conditional lower bounds, as long as explicit super-polynomial algebraic circuit lower bounds are open.}
2 Preliminaries

2.1 Notation

For a natural number we let \([n] = \{1, \ldots, n\}\). Let \(R\) be a ring. Denote by \(R[x_1, \ldots, x_n]\) the ring of multivariate polynomials with coefficients from \(R\) and variables \(x_1, \ldots, x_n\). We usually denote by \(\overline{x}\) the vector of variables \(x_1, \ldots, x_n\). We treat polynomials as formal linear combination of monomials, where a monomial is a product of variables. Hence, when we talk about the zero polynomial we mean the polynomial in which the coefficients of all monomials are zero. Similarly, two polynomials are said to be identical if their monomials have the same coefficients. The number of monomials in a polynomial \(f\) is the number of monomials with nonzero coefficients denoted \(|f|_{\#\text{monomials}}\). The degree of a multivariate polynomial (or total degree) is the maximal sum of variable powers in a monomial with a nonzero coefficient in the polynomial. We write \(\text{poly}(n)\) to denote a polynomial growth in \(n\), namely a function that is upper bounded by \(cn^c\), for some constant \(c\) independent of \(n\). Similarly, \(\text{poly}(n_1, \ldots, n_s)\) for some constant \(s\), means a polynomial growth that is at most \(kn_1^{c_1} \cdots n_s^{c_s}\), for \(k\) and \(c_j\)'s that are constants independent of \(n_1, \ldots, n_s\).

For \(S\) a set of polynomials from \(R[x_1, \ldots, x_n]\), we denote by \(\langle S \rangle\) the ideal generated by \(S\), namely the minimal set containing \(S\) such that if \(f, g \in \langle S \rangle\) then also \(\alpha f + \beta g \in \langle S \rangle\), for any \(\alpha, \beta \in R\).

2.2 Algebraic Circuits

Algebraic circuits over some fixed chosen field or ring \(R\) compute polynomials in \(R[x_1, \ldots, x_n]\) via addition and multiplication gates, starting from the input variables \(\overline{x}\) and constants from the field. More precisely, an algebraic circuit \(C\) is a finite directed acyclic graph where edges are directed from leaves (that is, in-degree 0 nodes) towards the output nodes (that is out-degree 0 nodes). By default, there is a single output node. Input nodes are in-degree 0 nodes that are labeled with a variable from \(x_1, \ldots, x_n\); every other in-degree zero node is labelled with a scalar element in \(R\). All the other nodes have in-degree two (unless otherwise stated) and are labeled with either + or \(\times\). An in-degree 0 node is said to compute the variable or scalar that labels itself. A + (or \(\times\)) gate is said to compute the addition (product, resp.) of the polynomials computed by its incoming nodes. The size of an algebraic circuit \(C\) is the number of nodes in it denoted \(|C|\), and the depth of a circuit is the length of the longest directed path in it. Note that the size of a field coefficient in this setting is 1 irrespective of the value of the coefficient. Sometimes it is important to consider the size of the coefficients appearing in the circuit (for instance, when we are concerned with the computational complexity of problems pertaining to algebraic circuits we need to have an efficient way to represent the circuits as bit strings). For this purpose it is standard to define a constant-free algebraic circuit to be an algebraic circuit in which the only constants used are 0, 1, \(-1\). Other constants must be built up using algebraic operations, which then count towards the size of the circuit.

An algebraic circuit is said to be a multi-output circuit if it has more than one output node, namely, more than one node of out-degree zero. Given a single-output algebraic circuit \(F(\overline{x})\) we denote by \(\overline{F}(\overline{x}) \in R[\overline{x}]\) the polynomial computed by \(F(\overline{x})\). We define the degree of a circuit \(C\) (similarly a node) as the total degree of the polynomial \(\hat{C}\) computed by \(C\), denoted \(\deg(C)\).

We will also use circuits that have division gates; when we need them, we define them explicitly.

Algebraic Complexity Classes. We now recall some basic notions from algebraic complexity (for more details see [46, Sec. 1.2]). Over a ring \(R\), \(\text{VP}_R\) (for “Valiant’s P”) is the class of families \(f = (f_n)_{n=1}^\infty\) of formal polynomials \(f_n\) such that \(f_n\) has \(\text{poly}(n)\) input variables, is of \(\text{poly}(n)\) degree, and can be computed by algebraic circuits over \(R\) of \(\text{poly}(n)\) size. \(\text{VNP}_R\) (for “Valiant’s NP”) is the class of families \(g\) of polynomials \(g_n\) such that \(g_n\) has \(\text{poly}(n)\) input variables and is of \(\text{poly}(n)\)
degree, and can be written as
\[g_n \left(x_1, \ldots, x_{\text{poly}(n)} \right) = \sum_{\vec{e} \in \{0,1\}^{\text{poly}(n)}} f_n(\vec{e}, \vec{x}) \]
for some family \((f_n) \in \mathsf{VP}_R \). A major question in algebraic complexity theory is whether the permanent polynomial can be computed by algebraic circuits of polynomial size. Since the permanent is complete for \(\mathsf{VNP} \) (under a suitable concept of algebraic reductions that are called p-projections), showing that no polynomial-size circuit can compute the permanent amounts to showing \(\mathsf{VP} \neq \mathsf{VNP} \) (cf. [51, 52, 53]).

Similarly, we can consider the constant-free versions of \(\mathsf{VP} \) and \(\mathsf{VNP} \): we denote by \(\mathsf{VP}^0 \) and \(\mathsf{VNP}^0 \) the class of polynomial-size and polynomial-degree constant-free algebraic circuits and the class of \(\mathsf{VNP} \) polynomials as above in which the family of polynomials \((f_n) \in \mathsf{VP}^0 \). In these definitions of \(\mathsf{VP}^0 \) and \(\mathsf{VNP}^0 \) we assume also that no division gate occur in the circuits, hence \(\mathsf{VP}^0 \) and \(\mathsf{VNP}^0 \) compute polynomials over \(\mathbb{Z} \). We shall also consider in Sect. 3 constant-free circuits over \(\mathbb{Q} \): these will be constant-free circuits in which constant sub-circuits (and only constant sub-circuits) may contain division gates.

2.3 The \(\tau \)-Conjecture and Shub-Smale Hypothesis

Here we explain several important assumptions and conjectures that are known to lead to strong complexity lower bounds and complexity class separations, all of which are relevant to our work. See for example Smale’s list of “mathematical problems for the next century” [48] for a short description and discussion about these problems.

Definition 9 (\(\tau \)-function [47]). Let \(f \in \mathbb{Z}[\vec{x}] \) be a multivariate polynomial over \(\mathbb{Z} \). Then \(\tau(f) \) is the minimal size of a constant-free algebraic circuit that computes \(f \) (that is, a circuit where the only possible constants that may appear on leaves are 1, 0, −1).

When we focus on constant polynomials, that is, numbers \(n \in \mathbb{Z} \), \(\tau(n) \) is the minimal-size circuit that can construct \(n \) from 1 using additions, subtractions and multiplications (but not divisions; note that subtraction of a term \(A \) can be constructed by \(-1 \cdot A \)).

We say that a family of (possibly constant) polynomials \((f_n)_{n \in \mathbb{N}} \) is **easy** if \(\tau(f_n) = \log^{O(1)} n \), for every \(n > 2 \), and **hard** otherwise.\(^7\)

The following are some known facts about \(\tau(\cdot) \):

- \((2^n)_{n \in \mathbb{N}} \) is **easy**. For instance, if \(n \) is a power of 2 then \(\tau(2^n) = \log n + 3 \), where \(\log \) denotes the logarithm in the base 2. We start with 3 nodes to build \(2 = 1 + 1 \) and then by \(\log n \) repeated squaring we arrive at \(((2^2)^2 \ldots)^2 = 2^{\log n} = 2n \).

- \((2^{2^n})_{n \in \mathbb{N}} \) is **hard**. This is clear from the straightforward upper bound on the largest integer that can be computed with \(k \) multiplication/addition/subtraction gates.

- A simple known upper bound on \(\tau \) is this [16]: for every integer \(m > 2 \), \(\tau(m) \leq 2 \log m \). This is shown by considering the binary expansion of \(m \).

- For every integer \(m \), the following lower bound is known \(\tau(m) \geq \log \log m \) [16].

\(^7\)We put the condition \(n > 2 \) instead of \(n \geq 1 \), because unlike [47] we do not add the constant 2 to the constants available in the circuit, hence to keep the same known upper bounds of \(\tau \) we skip the cases \(n = 1, 2 \).
While \((2^n)_{n \in \mathbb{N}}\) is easy and \((2^{2n})_{n \in \mathbb{N}}\) is hard, it is not known whether \((n!)_{n \in \mathbb{N}}\) is easy or hard, and as seen below, showing the hardness of \(\tau(m_n \cdot n!)\), for every sequence \((m_n \cdot n!)_{n \in \mathbb{N}}\) with \(m_n \in \mathbb{Z}\) any nonzero integers, has very strong consequences.

Blum, Shub and Smale [7] introduced an algebraic version of Turing machines that has access to a field \(K\) (Poizat observed that their model can be defined as algebraic circuits in which selection gates \(s(z, x, y)\) can be used; where a selection gate outputs \(x\) in case \(z = 0\) and \(y\) in case \(z = 1\)). In this model one can formalise and study a variant of the \(P\) vs. \(NP\) problem for languages solvable by polynomial-time machines with access to \(K\), denoted \(P_K\), versus nondeterministic polynomial-time machines with access to \(K\), denoted \(NP_K\).

The following is a condition put forth by Shub and Smale [47] (cf. [48]) towards separating \(P^C\) from \(NP^C\), for \(C\) the complex numbers:

Shub-Smale Hypothesis ([47, 48]). For every nonzero integer sequence \((m_n)_{n \in \mathbb{N}}\), the sequence \((m_n \cdot n!)_{n \in \mathbb{N}}\) is hard.

Shub and Smale, as well as Bürgisser, showed the following consequences of the Shub-Smale hypothesis:

Theorem 2.1 ([47, 8]).

1. If the Shub-Smale hypothesis holds then \(P^C \neq NP^C\).

2. If the Shub-Smale Hypothesis holds then \(VP^0 \neq VNP^0\). In other words, Shub-Smale Hypothesis implies that the permanent does not have polynomial size constant-free algebraic circuits over \(\mathbb{Z}\).

It is open whether the Shub-Smale hypothesis holds. What is known is that if Shub-Smale hypothesis does not hold then factoring of integers can be done in (nonuniform) polynomial time (cf. Blum et al. [6, p.126] and [11]).

Another related important assumption in algebraic complexity is the \(\tau\)-conjecture. Let \(f \in \mathbb{Z}[x]\) be a univariate polynomial with integer coefficients, denote by \(z(f)\) the number of distinct integer roots of \(f\).

\(\tau\)-Conjecture ([47, 48]). There is a universal constant \(c\), such that for every univariate polynomial \(f \in \mathbb{Z}[x]\):

\[
(1 + \tau(f))^c \geq z(f).
\]

The consequences of the \(\tau\)-conjecture are similar to the Shub-Smale Hypothesis:

Theorem 2.2 ([47, 8]). If the \(\tau\)-conjecture holds then both \(P^C \neq NP^C\) and \(VP^0 \neq VNP^0\) hold.

2.4 Basic Proof Complexity

In the standard setting of propositional proof complexity, a *propositional proof system* [15] is a polynomial-time predicate \(V(\pi, x)\) that verifies purported proofs \(\pi\) (encoded naturally in, say, binary) for propositional formulas \(x\) (also encoded naturally in binary), such that \(\exists \pi \ (V(\pi, x) = \text{true})\) iff \(x\) is a tautology.\(^8\) Hence, a propositional proof system is a complete and sound proof system for propositional logic in which a proof can be checked for correctness in polynomial time (though, note that a proof \(\pi\) may be exponentially larger than the tautology \(x\) it proves).

\(^8\)Historically, Cook and Reckhow [15] defined a propositional proof systems as a polynomial-time computable surjective mapping of bit strings (encoding purported proofs) onto the set of propositional tautologies (encoded as bit-strings as well). This is equivalent to the definition of propositional proof systems we presented, up to polynomial factors.
When considering algebraic proof systems that operate with algebraic circuits, such as IPS, it is common to relax the notion of a propositional proof system, so to require that the relation $V(\pi, x)$ is in probabilistic polynomial time, instead of deterministic polynomial time (since polynomial identities can be verified in coRP, while not known to be verified in P).

Furthermore, the language that a given proof system proves, namely the set of instances that the proof system proves to be tautological, or always satisfied, can be different from the set of propositional tautologies. First, we can consider a propositional proof system to be a refutation system in which a proof establishes that the initial set of axioms (e.g., clauses) is unsatisfiable, instead of always satisfied (i.e., tautological). For most cases, considering a propositional proof system to be a refutation system preserves all properties of the proof system, and thus the notions of refutation and proofs are used as synonyms. Second, we can define a proof system to be complete and sound for languages different or larger than unsatisfiable propositional formulas. For instance, in algebraic proof systems we usually consider proof systems that are sound and complete for the language of unsatisfiable sets of polynomial equations.

For the purpose of comparing the relative complexity of different proof systems we have the concept of simulation: given two proof systems P, Q for the same language, we say that P simulates Q if there is a function f that maps Q-proofs to P-proofs of the same instances with at most a polynomial blow-up in size. If f can be computed in polynomial time, this is called a p-simulation. If P and Q simulate each other we say that P and Q are polynomially-equivalent. If P and Q are two proof systems for different languages, prima facie we cannot compare their strength via the notion of simulation. However, if both P and Q prove (or refute) propositional instances like formulas in conjunctive normal form, or boolean tautologies, while encoding them in different ways (namely, they use different representations for essentially the same propositional formulas), we can fix a polynomial-time computable translation from one representation to the other. Under this translation we can consider P and Q to be proof systems for the same language, allowing us to use the notion of simulation between P and Q.

2.5 Algebraic Proofs

Grochow and Pitassi [26] suggested the following algebraic proof system which is essentially a Nullstellensatz proof system ([3]) written as an algebraic circuit. A proof in the Ideal Proof System is given as a single polynomial. We provide below the boolean version of IPS (which includes the boolean axioms), namely the version that establishes the unsatisfiability over 0-1 of a set of polynomial equations. In what follows we follow the notation in [18]:

Definition 10 (boolean Ideal Proof System (IPS), Grochow-Pitassi [26]). Let $f_1(\overline{x}), \ldots, f_m(\overline{x}), p(\overline{x})$ be a collection of polynomials in $\mathbb{F}[x_1, \ldots, x_n]$ over the field \mathbb{F}. An **IPS proof of** $p(\overline{x}) = 0$ **from** $\{f_j(\overline{x}) = 0\}_{j=1}^m$, showing that $p(\overline{x}) = 0$ is semantically implied from the assumptions $\{f_j(\overline{x}) = 0\}_{j=1}^m$ over 0-1 assignments, is an algebraic circuit $C(\overline{x}, \overline{y}, \overline{z}) \in \mathbb{F}[\overline{y}, y_1, \ldots, y_m, z_1, \ldots, z_n]$ such that (the equalities in what follows stand for formal polynomial identities):

1. $C(\overline{x}, \overline{0}, \overline{0}) = 0$; and
2. $C(\overline{x}, f_1(\overline{x}), \ldots, f_m(\overline{x}), x_1^2 - x_1, \ldots, x_n^2 - x_n) = p(\overline{x})$.

The size of the **IPS proof** is the size of the circuit C. If C is assumed to be constant-free, we refer to the size of the proof as the size of the constant-free IPS proof. The variables $\overline{y}, \overline{z}$ are called

That is, $C(\overline{x}, \overline{0}, \overline{0})$ computes the zero polynomial and $C(\overline{x}, f_1(\overline{x}), \ldots, f_m(\overline{x}), x_1^2 - x_1, \ldots, x_n^2 - x_n)$ computes the polynomial $p(\overline{x})$.
the placeholder variables since they are used as placeholders for the axioms. An IPS proof \(C(\overline{x}, \overline{y}, \overline{z}) \) of \(1 = 0 \) from \(\{ f_j(\overline{x}) = 0 \}_{j \in [m]} \) is called an IPS refutation of \(\{ f_j(\overline{x}) = 0 \}_{j \in [m]} \) (note that in this case it must hold that \(\{ f_j(\overline{x}) = 0 \}_{j=1}^m \) have no common solutions in \(\{0,1\}^n \)).

Notice that the definition above adds the equations \(\{ x_i^2 - x_i = 0 \}_{i=1}^n \), called the set of boolean axioms denoted \(\overline{x}^2 - \overline{x} \), to the system \(\{ f_j(\overline{x}) = 0 \}_{j=1}^m \). This allows to refute over \(\{0,1\}^n \) unsatisfiable systems of equations. Also, note that the first equality in the definition of IPS means that the polynomial computed by \(C \) is in the ideal generated by \(\overline{y}, \overline{z} \), which in turn, following the second equality, means that \(C \) witnesses the fact that 1 is in the ideal generated by \(f_1(\overline{x}), \ldots, f_m(\overline{x}), x_1^2 - x_1, \ldots, x_n^2 - x_n \) (the existence of this witness, for unsatisfiable set of polynomials, stems from the Nullstellensatz theorem [3]).

In order to use IPS as a propositional proof system (namely, a proof system for propositional tautologies), we need to fix the encoding of clauses as algebraic circuits.

Definition 11 (algebraic translation of CNF formulas). Given a CNF formula in the variables \(\overline{x} \), every clause \(\bigvee_{i \in I} x_i \lor \bigvee_{j \in N} \neg x_j \) is translated into \(\prod_{i \in I} (1 - x_i) \cdot \prod_{j \in N} x_j = 0 \). (Note that these terms are written as algebraic circuits as displayed, where products are not multiplied out.)

Notice that in this way a 0-1 assignment to a CNF is satisfying iff the assignment is satisfying all the equations in the algebraic translation of the CNF.

Therefore, using Definition 11 to encode CNF formulas, boolean IPS is considered as a propositional proof system for the language of unsatisfiable CNF formulas, sometimes called propositional IPS. We say that an IPS proof is an algebraic IPS proof, if we do not use the boolean axioms \(\overline{x}^2 - \overline{x} \) in the proof. As a default when referring to IPS we mean the boolean IPS version.

2.5.1 Conventions and Notations for IPS Proofs

An IPS proof over a specific field or ring is sometimes denoted IPS\(_F \) noting it is over \(F \). For two algebraic circuits \(F, G \), we define the size of the equation \(F = G \) to be the total circuit size of \(F \) and \(G \), namely, \(|F| + |G| \).

Let \(\mathcal{F} \) denote a set of polynomial equations \(\{ f_i(\overline{x}) = 0 \}_{i=1}^m \), and let \(C(\overline{x}, \overline{y}, \overline{z}) \in \mathbb{F}[\overline{x}, \overline{y}, \overline{z}] \) be an IPS proof of \(f(\overline{x}) \) from \(\mathcal{F} \) as in Definition Definition 10. Then we write \(C(\overline{x}, \mathcal{F}, \overline{x}^2 - \overline{x}) \) to denote the circuit \(C \) in which \(y_i \) is substituted by \(f_i(\overline{x}) \) and \(z_i \) is substituted by the boolean axiom \(x_i^2 - x_i \). By a slight abuse of notation we also call \(C(\overline{x}, \mathcal{F}, \overline{x}^2 - \overline{x}) = f(\overline{x}) \) an IPS proof of \(f(\overline{x}) \) from \(\mathcal{F} \) and \(\overline{x}^2 - \overline{x} \) (that is, displaying \(C(\overline{x}, \overline{y}, \overline{z}) \) after the substitution of the placeholder variables \(\overline{y}, \overline{z} \) by the axioms in \(\mathcal{F} \) and \(\overline{x}^2 - \overline{x} \), respectively).

For two polynomials \(f(\overline{x}), g(\overline{x}) \), an IPS proof of \(f(\overline{x}) = g(\overline{x}) \) from the assumptions \(\mathcal{F} \) is an IPS proof of \(f(\overline{x}) - g(\overline{x}) = 0 \) (note that in case \(f(\overline{x}) \) and \(g(\overline{x}) \) are identical as polynomials this is trivial to prove; see Fact A.1).

We denote by \(C : \mathcal{F} \vdash_{\text{IPS}}^p = 0 \) (resp. \(C : \mathcal{F} \vdash_{\text{IPS}}^p = g \)) the fact that \(p = 0 \) (resp. \(p = g \)) has an IPS proof \(C(\overline{x}, \overline{y}, \overline{z}) \) of size \(s \) from assumptions \(\mathcal{F} \). We may also suppress “\(= 0 \)” and write simply \(C : \mathcal{F} \vdash_{\text{IPS}}^p \) for \(C : \mathcal{F} \vdash_{\text{IPS}}^p = 0 \). Whenever we are only interested in claiming the existence of an IPS proof of size \(s \) of \(p = 0 \) from \(\mathcal{F} \) we suppress the \(C \) from the notation. Similarly, we can suppress the size parameter \(s \) from the notation. If \(F \) is a circuit computing a polynomial \(\hat{F} \in \mathbb{F}[\overline{x}] \), then we can talk about an IPS proof \(C \) of \(F \) from assumptions \(\mathcal{F} \), in symbols \(C : \mathcal{F} \vdash_{\text{IPS}}^p F \), meaning an IPS proof of \(\hat{F} \). Accordingly, for two circuits \(F, F' \) such that \(\hat{F} = F' \), we may speak about an IPS proof \(C \) of \(F \) from assumptions \(\mathcal{F} \) to refer to an IPS proof of \(F' \) from assumptions \(\mathcal{F} \).
2.6 Semi-Algebraic Proofs

The Positivstellensatz proof system, as defined by Grigoriev and Vorob’ev [25], is a refutation system for establishing the unsatisfiability over the reals \mathbb{R} of a system consisting of both polynomial equations $\mathcal{F} = \{f_i(\mathbf{x}) = 0\}_{i \in I}$ and polynomial inequalities $\mathcal{H} = \{h_j(\mathbf{x}) \geq 0\}_{j \in J}$, respectively. It is based on a restricted version of the Positivstellensatz theorem [32, 49]. In order to formulate it, we need to define the notion of a cone, as in [25], which serves as a non-negative closure of a set of polynomials, or informally the notion of a “positive ideal”. Usually the cone is defined as the set closed under non-negative linear combinations of polynomials (cf. [5]), but following [25] we are going to use a more general formulation which is sometimes called the sos cone.

Definition 12 (cone). Let $\mathcal{H} \subseteq \mathbb{R}[\mathbf{x}]$ be a set of polynomials over an ordered ring \mathbb{R}. Then the cone of \mathcal{H}, denoted $\text{cone}(\mathcal{H})$, is defined to be the smallest set $S \subseteq \mathbb{R}[\mathbf{x}]$ such that:

1. $\mathcal{H} \subseteq S$;
2. for any polynomial $s \in \mathbb{R}[\mathbf{x}]$, $s^2 \in S$;
3. for any positive constant $c > 0$, $c \in S$;
4. if $f, g \in S$, then both $f + g \in S$ and $f \cdot g \in S$.

Note that we have formulated the cone for any ordered ring (item item 3 would be superfluous for reals). This is because we are going to use this notion in the context of \mathbb{Z} and \mathbb{Q} (although the Positivstellensatz theorem does not hold for these rings, it is still possible to use Positivstellensatz refutations in the presence of the boolean axioms, namely as a refutation system for instances unsatisfiable over 0-1 value).

Note also that every sum of squares (that is, every sum of squared polynomials $\sum_i s_i^2$) is contained in every cone. Specifically, $\text{cone}(\emptyset)$ contains every sum of squares.

Similar to the way the Nullstellensatz proof system [3] establishes the unsatisfiability of sets of polynomial equations based on the Hilbert’s Nullstellensatz theorem [27] from algebraic geometry, the Positivstellensatz proof system is based on the Positivstellensatz theorem from semi-algebraic geometry:

Theorem 2.3 (Positivstellensatz theorem [32, 49], restricted version). Let $\mathcal{F} := \{f_i(\mathbf{x}) = 0\}_{i \in I}$ be a set of polynomial equations and let $\mathcal{H} := \{h_j(\mathbf{x}) \geq 0\}_{j \in J}$ be a set of polynomial inequalities, where all polynomials are from $\mathbb{R}[x_1, \ldots, x_n]$. There exists a pair of polynomials $f \in \langle \{f_i(\mathbf{x})\}_{i \in I} \rangle$ and $h \in \text{cone}(\{h_j(\mathbf{x})\}_{j \in J})$ such that $f + h = -1$ if and only if there is no assignment that satisfies both \mathcal{F} and \mathcal{H}.

The Positivstellensatz proof system is now natural to define. We shall distinguish between the real Positivstellensatz in which variables are meant to range over the reals and boolean Positivstellensatz in which variables range over $\{0, 1\}$.

Definition 13 (real Positivstellensatz proof system (real PS) [25]). Let $\mathcal{F} := \{f_i(\mathbf{x}) = 0\}_{i \in I}$ be a set of polynomial equations and let $\mathcal{H} := \{h_j(\mathbf{x}) \geq 0\}_{j \in J}$ be a set of polynomial inequalities, where all polynomials are from $\mathbb{R}[x_1, \ldots, x_n]$. Assume that \mathcal{F}, \mathcal{H} have no common real solutions. A Positivstellensatz refutation of \mathcal{F}, \mathcal{H} is a collection of polynomials $\{p_i\}_{i \in I}$ and $\{s_{i,\zeta}\}_{i,\zeta}$ (for $i \in \mathbb{N}$, $\zeta \subseteq J$ and $I_\zeta \subseteq I$) in $\mathbb{R}[x_1, \ldots, x_n]$ such that the following formal polynomial identity holds:

$$
\sum_{i \in I} p_i \cdot f_i + \sum_{\zeta \subseteq J} \prod_{j \in \zeta} h_j \cdot \left(\sum_{i \in I_\zeta} s_{i,\zeta}^2\right) = -1.
$$

(5)
The monomial size of a Positivstellensatz refutation is the combined total number of monomials in \(\{p_i\}_{i \in I}\) and \(\sum_{i \in I} s^2_{i,\zeta}\), for all \(\zeta \subseteq J\), that is, \(\sum_{i \in I} |p_i| \#\text{monomials} + \sum_{\zeta \subseteq J} \sum_{i \in I} s^2_{i,\zeta} \#\text{monomials}\).

Note that Grigoriev et al. [24] defined the size of Positivstellensatz proofs slightly differently: they included in the size of proofs both the number of monomials and the size of the coefficients of monomials written in binary (while this does not matter for their lower bounds). This is more natural when considering Positivstellensatz as a propositional proof system (which is polynomially verifiable).

In order to use Positivstellensatz as a refutation system for collections of equations \(F\) and inequalities \(H\) that are unsatisfiable over 0-1 assignments, we need to include simple so-called boolean axioms. This is done in slightly different ways in different works (see for example [24, 1]). One way to do this, which is the way we follow, is the following:

Definition 14 (boolean Positivstellensatz proof system (boolean PS)). A **boolean Positivstellensatz proof** from a set of polynomial equations \(F\), and polynomial inequalities \(H\), is an algebraic Positivstellensatz proof in which the following **boolean axioms** are part of the axioms: the polynomial equations \(x_i^2 - x_i = 0\) (for all \(i \in [n]\)) are included in \(F\), and the polynomial inequalities \(x_i \geq 0, 1 - x_i \geq 0\) (for all \(i \in [n]\)) are included in \(H\).

In this way, \(F, H\) have no common 0-1 solutions iff there exists a boolean Positivstellensatz refutation of \(F, H\). Eventually, to define the boolean Positivstellensatz as a propositional proof system for the unsatisfiable CNF formula we consider CNF formulas to be encoded as polynomial equalities according to **Definition 11**. This version is sometimes called **propositional Positivstellensatz**. As a default when referring to Positivstellensatz we mean the boolean Positivstellensatz version.

In recent years, starting mainly with the work of Barak, Brando, Harrow, Kelner, Steurer and Zhou [2], a special case of the Positivstellensatz proof system has gained much interest due to its application in complexity and algorithms (cf. [36]). This is the **sum-of-squares** proof system (SoS), which is defined as follows:

Definition 15 (sum-of-squares proof system). A **sum-of-squares proof** (SoS for short) is a Positivstellensatz proof in which in eq. 5 in **Definition 13** we restrict the index sets \(\zeta \subseteq J\) to be singletons, namely \(|\zeta| = 1\), hence, disallowing arbitrary products of inequalities within themselves. The real, boolean and propositional versions of SoS are defined similar to Positivstellensatz.

For most interesting cases SoS is also complete (and sound) by a result of Putinar [43].

2.6.1 Dynamic Positivstellensatz

Here we follow Grigoriev, Hirsch and Pasechnik [24] to define what is, to the best of our knowledge, the most general propositional Positivstellensatz- (or SoS-) based semi-algebraic proof system defined to date. It can be viewed as the generalization of (dynamic) Lovasz-Schrijver proof systems [35, 34] that have been put in the context of propositional proof complexity by Pudlák [42], and constitutes essentially a dynamic version of propositional Positivstellensatz (the proof size is measured by the total number of monomials appearing in the proof).

The translation of propositional formulas here is different from the algebraic translation (**Definition 11**). For higher degree proof systems, **Definition 11** and the definition that follows can be
reduced to one another (within the proof system, as long as both translations can be written down efficiently); however, we provide Definition 16 for the sake of consistency with earlier work.

Definition 16 (semi-algebraic translation of CNF formulas). Given a CNF formula in the variables π, every clause $\bigvee_{i \in P} x_i \lor \bigvee_{j \in N} \neg x_j$ is translated into $\sum_{i \in P} x_i + \sum_{j \in N} (1 - x_j) \geq 1$.

Notice that in this way a 0-1 assignment to a CNF formula is satisfying iff the assignment satisfies all the inequalities in the semi-algebraic translation of the CNF formula.

Definition 17 ($\text{LS}^\infty_{k,+} \cdot \{24\}$). Consider a boolean formula in conjunctive normal form and translate it into inequalities as in Definition 16. Take these inequalities as axioms, add the axioms $x \geq 0$, $1 - x \geq 0$, $x^2 - x \geq 0$ for each variable x. Allow also $h^2 \geq 0$ as an axiom, for any polynomial h of degree at most d. An $\text{LS}^d_{k,+}$ proof of the original formula is a derivation of $-1 \geq 0$ from these axioms using the following rules:

\[
\frac{f \geq 0}{f \geq 0}, \quad \frac{g \geq 0}{f + g \geq 0}, \quad \frac{f \geq 0}{\alpha f \geq 0} \text{ (for } \alpha \text{ a nonnegative integer)}, \quad \frac{f \geq 0, \ g \geq 0}{f \cdot g \geq 0}.
\]

In particular, $\text{LS}^\infty_{k,+}$ is such a proof without the restriction on the degree. Note that we have to write polynomials as sums of monomials (and not as circuits or formulas), so the verification of such proof is doable in deterministic polynomial-time.

The proof of the following simulation follows by definition and we omit the details:

Proposition 2.4. $\text{LS}^\infty_{k,+}$ simulates boolean Positivstellensatz.

3 Conditional IPS Lower Bounds

3.1 IPS Lower Bounds under Shub-Smale Hypothesis

Here we provide a super-polynomial conditional lower bound on the size of (boolean) IPS refutations of the binary value principle over the rationals based on the Shub-Smale Hypothesis (Sect. 2.3).

The conditional lower bound is first established for constant-free IPS proofs over \mathbb{Z} and then we extract a lower bound over \mathbb{Q} as a corollary using Cor. 3.2 below. Notice that we can consider IPS proofs also over rings, and not only fields. In the case of IPS over \mathbb{Z} we cannot anymore assume that refutations are proofs of the polynomial 1, rather we define refutations in IPS over \mathbb{Z} to be proofs of any nonzero constant polynomial (cf. [10, Definition 2.1]):

Definition 18 (IPS$_\mathbb{Z}$). An IPS$_\mathbb{Z}$ proof of $g(\overline{\pi}) \in \mathbb{Z}[\overline{\pi}]$ from a set of assumptions $\mathcal{F} \subseteq \mathbb{Z}[\overline{\pi}]$ is an IPS proof of $g(\overline{\pi})$ from \mathcal{F}, as in Definition 10, where $\mathbb{F} = \mathbb{Z}$ and all the constants in the IPS proof are from \mathbb{Z}. An IPS$_\mathbb{Z}$ refutation of \mathcal{F} is a proof of M, for $M \in \mathbb{Z} \setminus \{0\}$. (The definition is similar for the boolean and algebraic IPS versions.)

We will need to define a constant-free circuit over \mathbb{Q}.

Definition 19. A constant-free circuit over \mathbb{Q} is a constant-free algebraic circuit as in Sect. 2.2 that has additionally division gates \div, where $u \div v$ means that the polynomial computed by u is divided by the polynomial computed by v, such that for every division gate $u \div v$ in C the circuit v contains no variables and computes a nonzero constant. A constant-free IPS proof over \mathbb{Q} is an IPS proof written with a constant-free circuit over \mathbb{Q}.

The following proposition is proved by a simple induction on the circuit size, using sufficient products to cancel out the denominators in the circuit over \mathbb{Q}, turning it into a circuit over \mathbb{Z}.
Proposition 3.1 (from \(\mathbb{Q}\)-circuit to \(\mathbb{Z}\)-circuit). Let \(C\) be a size-\(s\) constant-free circuit over \(\mathbb{Q}\). Then there exists a size \(\leq 4s\) constant-free circuit computing \(M \cdot \hat{C}\), for some \(M \in \mathbb{Z} \setminus \{0\}\), with \(\tau(M) \leq 4s\).

Proof: We choose any topological order \(g_1, g_2, \ldots, g_l, \ldots, g_{|C|}\) on the gates of the constant-free circuit \(C\) over \(\mathbb{Q}\) (that is, if \(g_j\) has a directed path to \(g_k\) in \(C\) then \(j < k\)) and proceed by induction on \(|C|\) to eliminate the rational from the circuit (identifying the gate \(g_i\) with the sub-circuit of \(C\) for which \(g_i\) is its root).

Induction statement: Let \(g_1, \ldots, g_s\) be the topologically ordered gates of a constant-free circuit \(C\) over \(\mathbb{Q}\), where \(s = |C|\). Then, there exists a division-free constant-free circuit consisting of the corresponding topologically ordered gates \(g_{i1}, \ldots, g_{ia_1}, g_{i2}, \ldots, g_{ia_2}, \ldots, g_{is}, \ldots, g_{is_1}, \ldots, g_{ias}\), such that for every \(i \leq s\):

1. \(a_i \leq 4\) and \(g_{ia_i}\) computes the polynomial \(M_i \cdot g_i\), for some nonzero integer \(M_i\) (again, identifying the gate \(g_{ia_i}\) with the sub-circuit for which it is a root);

2. The integer \(M_i\) is constructed as a part of the circuit (except for the trivial case \(M_i = 1\)).

More precisely, there exists a division-free constant-free and variable-free (sub-)circuit \(g_{j,l}\), for \(j \leq i, \ell \leq 4\) that computes \(M_i\). In particular \(\tau(M_i) \leq 4i\);

3. Sub-circuits with no division gates remain intact: if \(g_i\) is a division-free constant-free circuit then \(M_i = 1\) and \(g_i\) is a sub-circuit of the new circuit. That is, \(g_{i1} = g_i, a_i = 1,\) and all gates in \(g_1, \ldots, g_i\) that are part of the sub-circuit \(g_i\) in \(C\) occur also as gates \(g_{j,\ell}\) (for some \(j \leq i, \ell \leq 4\)) in the new circuit \(g_{i1}\).

Base case: \(g_i\) is a variable or a constant in \(\{-1, 0, 1\}\). Hence, we put \(g_{i1} := g_i, a_i = 1,\) and \(M_i = 1\).

Induction step: In the case of a binary gate \(g_i = g_j \circ g_{\ell}\), for \(\circ \in \{\times, +, \div\}\) (where \(j, \ell < i\)), by induction hypothesis we already have division-free constant-free circuits \(g_{ja_j}\) and \(g_{\ell a_\ell}\) computing the polynomials \(M_j g_j\) and \(M_\ell g_{\ell}\), respectively, for some integers \(M_j, M_\ell\) that are also computed as part of the circuit.

Case 1: \(g_i\) is a division gate computing \(g_j / g_{\ell}\), where, by definition of circuits over \(\mathbb{Q}\), \(g_{\ell}\) is a division-free constant-free circuit computing a nonzero constant that contains no variables.

By induction hypothesis item 1 we have already constructed the two gates \(g_{ja_j}\) and \(g_{\ell a_\ell}\), where \(g_{ja_j}\) computes the polynomial \(M_j g_j\) for some nonzero integer \(M_j\). By item 2, \(M_j\) is already computed by one of the gates in the circuit. Finally, since \(g_{\ell}\) does not have division gates by definition, item 3 means that \(g_{\ell a_\ell} = g_{\ell}\) (and \(a_\ell = a_1\) and \(M_\ell = 1\)), and specifically \(g_{\ell}\) is a constant-free variable-free circuit.

We put \(g_{i2} := g_{ja_j}\) and \(g_{i1} := M_j \cdot g_{\ell a_\ell} = M_j \cdot g_{\ell}\) (that is, \(g_{i1}\) is a product gate that connects to the two previously constructed gates that compute the two integers \(M_j\) and \(g_{\ell}\), \(a_i = 2\) and \(M_i = M_j g_{\ell}\) is an integer). Hence, \(g_{i2}\) computes the polynomial \(g_{ja_j} = M_j g_j = g_{\ell} \cdot ((M_j g_j) / g_{\ell}) = g_{\ell} \cdot M_j \cdot (g_j / g_{\ell}) = (g_{\ell} \cdot M_j) \cdot g_j = M_i \cdot g_i\) and \(M_i = M_j g_{\ell}\) is an integer that is computed (as a constant-free variable-free circuit) by the gate \(g_{i1}\) as required.

Case 2: \(g_i = g_j + g_{\ell}\). In this case \(a_i = 2\) and \(M_i = M_j M_{\ell}\), and we put \(g_{i2} := g_{ja_j} \cdot g_{\ell a_\ell}\) and \(g_{i1} := M_i \cdot M_j\), where \(M_i, M_j\) are two integers that are computed already in the circuit (with a constant-free division-free and variable-free sub-circuit).

Case 3: \(g_i = g_j + g_{\ell}\). In this case \(a_i = 4\), \(M_i = M_j M_{\ell}\), and we put \(g_{i4} := M_{\ell} \cdot g_{ja_j} + M_j \cdot g_{\ell a_\ell}\), namely, we add three gates \(g_{i3}, g_{i4}\) (two products, both of which connects to previous gates, and one addition to add these two products). Finally, we put \(g_{i1} := M_i \cdot M_j\), where \(M_i, M_j\) are two
integers that are computed already in the circuit (with a constant-free division-free and variable-free sub-circuit).

An immediate corollary of Prop. 3.1 is:

Corollary 3.2 (from IPS\(_Q\) to IPS\(_Z\)). Boolean IPS\(_Z\) simulates boolean IPS\(_Q\), in the following sense: if there exists a size-s constant-free boolean IPS proof over \(\mathbb{Q}\) from \(\mathcal{F}\) of \(H\), for \(\mathcal{F}\) a set of assumptions written as constant-free algebraic circuits over \(\mathbb{Z}\) and \(H\) a constant-free algebraic circuit over \(\mathbb{Z}\), then there exists a size \(\leq 4s\) constant-free boolean IPS\(_Z\) proof of \(M \cdot H\), for some \(M \in \mathbb{Z} \setminus \{0\}\), such that \(\tau(M) \leq 4s\).

Theorem 3.3. Under the Shub and Smale Hypothesis, there are no poly\((n)\)-size constant-free (boolean) IPS refutations of the binary value principle BVP\(_n\) over \(\mathbb{Q}\).

Proof: Given Cor. 3.2, it suffices to prove the statement for constant-free (boolean) IPS\(_Z\).

We proceed to prove the contrapositive. Suppose that the binary value principle \(1 + \sum_{i=1}^{n} 2^{i-1}x_i = 0\) has a constant-free IPS\(_Z\) refutation (using only the boolean axioms) of size poly\((n)\). We will show that there is a sequence of nonzero natural numbers \(c_m\) such that \(\tau(c_m!) \leq (\log m)^c\), for all \(m \geq 2\), where \(c\) is a constant independent of \(m\). In other words, we will show that \((c_m!)^\infty_{m=1}\) is easy.

Assume that \(C(\vec{x}, \vec{y}, \vec{z})\) is the polynomial-size constant-free boolean IPS\(_Z\) refutation of \(1 + \sum_{i=1}^{n} 2^{i-1}x_i = 0\) (here we only have a single placeholder variable \(y\) for the single non-boolean axiom, that is, the binary value principle). For simplicity, denote \(G(\vec{x}) = 1 + \sum_{i=1}^{n} 2^{i-1}x_i\), \(F_i(\vec{x}) = x_i^2 - x_i\), and \(\overline{F}(\vec{x}) = \vec{x}^2 - \vec{x}\).

We know that there exists an integer constant \(M \neq 0\) such that

\[
C(\vec{x}, G(\vec{x}), \overline{F}(\vec{x})) = M. \tag{6}
\]

For every integer \(0 \leq k < 2^n\) we denote by \(\vec{b}_k := (b_{k1}, \ldots, b_{kn}) \in \{0,1\}^n\) its (positive, standard) binary representation, that is, \(k = \sum_{i=1}^{n} b_{ki}2^{i-1}\). Then, \(F_i(\vec{b}_k) = 0\) and \(G(\vec{b}_k) = 1 + k\), for all \(1 \leq i \leq n\), \(0 \leq k < 2^n\). Hence, by eq. 6:

\[
C(b_{k1}, \ldots, b_{kn}, 1 + k, \vec{0}) = M, \quad \text{for every integer } 0 \leq k < 2^n. \tag{7}
\]

Claim 3.4. \(M\) is divisible by every prime number less than \(2^n\).

Proof of claim: For a fixed \(0 \leq k < 2^n\) and its binary representation \(b_{k1}, \ldots, b_{kn}\), consider \(g(y) = C(b_{k1}, \ldots, b_{kn}, y, \vec{0})\) as a univariate polynomial in \(\mathbb{Z}[y]\). Then, \(g(1 + k) = M\) by eq. 7, and \(g(0) = 0\) holds since \(C(b_{k1}, \ldots, b_{kn}, 0, \vec{0}) = 0\), by the definition of IPS. Because \(g(0) = 0\), we know that \(g(y) = y \cdot g^*(y)\), for some \(g^*(y) \in \mathbb{Z}[y]\), meaning that \(g(1 + k) = (1 + k) \cdot g^*(1 + k) = M\). Since \(g^*(y)\) is an integer polynomial, this implies that \(M\) is a product of \(1 + k\).

Overall, this argument shows that for every \(1 \leq p \leq 2^n\), \(M\) is divisible by \(p\), and in particular \(M\) is divisible by every prime number less than \(2^n\). \(\blacksquare\) Claim

Note that once we substitute the all-zero assignment \(\vec{0}\) into eq. 6, we obtain a constant-free algebraic circuit of size poly\((n)\) with no variables computing \(M\), thus \(\tau(M) = \text{poly}(n)\). Then we can compute \(M^{2^n}\) using a constant-free algebraic circuit of size poly\((n)\) by taking \(M\) to the power 2, \(n\) many times (that is, using \(n\) repeated squaring), yielding \(\tau(M^{2^n}) = \text{poly}(n)\).

Claim 3.5. The power of every prime factor in \((2^n)!\) is at most \(2^n\).
Proof of claim: We show that for every number $k \in \mathbb{N}$, the power of every prime factor of $k!$ is at most k. Let $p_1^{k_1} \cdots p_r^{k_r}$ be the prime factorisation of $k!$, namely $k! = p_1^{k_1} \cdots p_r^{k_r}$ where each p_i is a prime number and $p_i \neq p_j$, for all $i \neq j$. To compute t_i we consider the k products $k, (k - 1) \cdots 1$, in $k! = k \cdot (k - 1) \cdots 1$, out of which only each p_ith number is divisible by p_i, hence only $\lfloor \frac{k}{p_i} \rfloor$ numbers are divisible by p_i. Consider now only these $\lfloor \frac{k}{p_i} \rfloor$ numbers which are divisible by p_i, and write them as $p_i \cdot \lfloor \frac{k}{p_i} \rfloor, p_i \cdot (\lfloor \frac{k}{p_i} \rfloor - 1), \ldots, p_i - 1$. Now we need once again to factor out the p_i products in $\lfloor \frac{k}{p_i} \rfloor, \lfloor \frac{k}{p_i} \rfloor - 1, \ldots, 1$. Hence, as before, we conclude that in these $\lfloor \frac{k}{p_i} \rfloor$ numbers only $\lfloor \frac{k}{p_i} \rfloor = \lfloor \frac{k}{p_i} \rfloor$ are divisible by p_i. Continuing in a similar fashion we obtain the equation $t_i = \lfloor \frac{k}{p_i} \rfloor + \lfloor \frac{k}{p_i} \rfloor + \lfloor \frac{k}{p_i} \rfloor + \cdots \leq \frac{k}{p_i - 1}$.

Consider the poly(n)-size circuit for M^{2^n} that exists by assumption. Since M is divisible by every prime number between 1 and 2^n, and since every prime factor of $(2^n)!$ is clearly at most 2^n, we get that M^{2^n} is divisible by the 2^n-th power of each prime factor of $(2^n)!$. By Claim 3.5 the power of every prime factor of $(2^n)!$ is at most 2^n, and so M^{2^n} is divisible by $(2^n)!$. We conclude that there are nonzero numbers $c_n \in \mathbb{N}$ such that the sequence $\{c_n \cdot (2^n)!\}_{n=1}^{\infty}$ is computable by a sequence of constant-free algebraic circuits of size poly(n), that is, $\tau(c_n \cdot (2^n)!) \leq n^c$ for some constant c independent of n. It remains to show that not only the multiples of factorials of powers of 2 are easy, but also the multiples of factorials of all natural numbers are easy.

For every natural number m, let $n \in \mathbb{N}$ be such that $2^{n-1} \leq m \leq 2^n$. Because $(2^n)!$ is clearly divisible by $m!$, there exists some $c_m \in \mathbb{N}$, such that $c_n \cdot (2^n)! = c_m \cdot m!$, where c_n is the natural number for which we have showed the existence of poly(n)-size constant-free circuit computing $c_n \cdot (2^n)!$. Hence, this same circuit also computes $c_m \cdot m!$, meaning that $\tau(c_m \cdot m!) \leq n^b \leq (\log(2m))^b \leq (\log m)^c$, for some constants b and c independent of m.

Why does an IPS lower bound on BVP not lead to EF lower bounds? Given that IPS (of possibly exponential degree) simulates Extended Frege (EF) [26, 41], it is interesting to consider why our conditional IPS lower bound for the BVP does not imply a conditional EF lower bound. Simply put, the answer is that the BVP is not a propositional tautology (or a direct translation of one). More precisely, there is no apparent way to translate the BVP into a propositional tautology for which a short EF proof translates into a short IPS refutation of the BVP. In other words, we can encode the BVP as a propositional tautology stating that the carry-save addition of the n numbers in the BVP has sign-bit 0 (and hence the addition is positive), but the problem is that there is no apparent way to efficiently derive in IPS this encoding from the BVP principle itself. Because from an equation like $f = 0$ we cannot in general efficiently derive in IPS that the sign-bit of f is zero, as we now explain.

One can think of the following translation of the BVP into a propositional tautology: we consider the addition of n numbers $2^{i-1}x_i$, for $x_i \in \{0, 1\}$ and $i = 1, \ldots, n$. Each $2^{i-1}x_i$ is written as a bit vector v_i of at most n bits, in the two’s complement notation. Each bit in v_i can be written as a polynomial-size boolean circuit in the single boolean variable x_i. Using carry-save addition we can construct a polynomial-size in n boolean circuit C computing the sign-bit of the addition of these n bit-vectors $\sum v_i$ (this is done as in Sect. 5). Now, the BVP can be encoded as the tautology $C \equiv \perp$ (namely, the sign bit of the addition is logically equivalent to false (equivalently, 0); note that since $2^{i-1} \geq 0$, for all i, this is indeed a tautology).

Apparently, there is a polynomial-size in n EF proof of $C \equiv \perp$ (using basically the same ideas as in Sect. 5). The question is whether we can turn this short EF proof into a short IPS refutation of the BVP. And apparently the answer is “no!” . The reason is that for this to work we first need to derive in IPS from the BVP the (arithmetization of the boolean circuit) $C \equiv \perp$. But such a derivation
is already morally equivalent to refuting the BVP itself. In other words, there is no apparent way to efficiently derive from the given BVP equation $\sum_{i=1}^{n}2^{i-1}x_{i} + 1 = 0$ any statement expressing a specific property pertaining to a single bit in the bit vector representation of $\sum_{i=1}^{n}2^{i-1}x_{i} + 1$ (as a function of the input boolean variables \vec{x}), and specifically no apparent way to derive $C \equiv \perp$. Our main technical Lemma 5.1 in Sect. 5, shows only that we can efficiently derive in IPS from the BVP equation a statement about the collective value of the bits, namely that if $\sum_{i=1}^{n}2^{i-1}x_{i} + 1$ is denoted by f we have the following:

if (i) the bits of f (computed as polynomial-size circuits of the input variables \vec{x}) are z_{1}, \ldots, z_{m}; and (ii) we know that $f = 0$; then (iii) $\sum_{i=1}^{m-1}2^{i-1}z_{i} - 2^{n-1}z_{m} = 0$ (where the left hand side is the value of the bit-vector z_{1}, \ldots, z_{m} that represents an integer in the two's complement scheme).

But from the equation in (iii) we apparently cannot conclude anything about the individual sign-bit z_{m}.

3.2 IPS over Rational Functions and the τ-Conjecture

In what follows we define another proof system that allows us to formulate a version of the binary value principle for almost every appropriate integer in a single equality: $\sum_{i=1}^{n}2^{i-1}x_{i} = y$ for a new variable y (that would be a trivial task for inequalities: just two inequalities $\sum_{i=1}^{n}2^{i-1}x_{i} \leq -1$ and $\sum_{i=1}^{n}2^{i-1}x_{i} \geq 2^{n}$ cover all contradictory cases). We then prove a lower bound for it, subject to the τ-conjecture. The system is IPS with rational functions in “variable” y as its basic field, and we will use this “variable” in the input as well. (We put the word “variable” in quotes to distinguish it from the input variables.)

Definition 20 (\mathbb{Q}-rational functions). We will use the field $\mathbb{Q}(y)$ of \mathbb{Q}-rational functions in y, that is, all functions $f(y)$ such that there exist \mathbb{Q}-polynomials $P(y)$ and (nonzero) $Q(y)$ with $f(y) = \frac{P(y)}{Q(y)}$.

In particular, in this system one can consider refutations of $\sum_{i=1}^{n}2^{i-1}x_{i} + y = 0$, where x_{i} are boolean variables (the boolean axioms $x_{i}^{2} - x_{i} = 0$ are included in the input). In this section we will be using the concept of a linear IPS refutation, defined in Forbes et al. [18]:

Definition 21 ([18]). An IPS-LIN$_{\mathbb{Q}(y)}$-certificate of the unsatisfiability of a system of polynomial equations $F_{1}(\vec{x}) = F_{2}(\vec{x}) = \cdots = F_{m}(\vec{x}) = 0$ is a set of polynomials $(H_{1}(\vec{x}), \ldots, H_{m}(\vec{x}))$, where each $H_{i}(\vec{x}) \in \mathbb{Q}(y)[x_{1}, \ldots, x_{n}]$, such that $F_{1}(\vec{x}) \cdot H_{1}(\vec{x}) + \cdots + F_{m}(\vec{x}) \cdot H_{m}(\vec{x}) = 1$ (as a formal polynomial equation).

Given that the algebraic closure of $\mathbb{Q}(y)$ involves infinite series, we restrict ourselves to a computationally meaningful case of boolean x_{i}’s, that is, we assume that F_{j}’s include $x_{i}^{2} - x_{i}$ for every variable x_{i}. The system is complete for this case, as discussed in the next subsection.

Note that once we have an IPS-LIN$_{\mathbb{Q}(y)}$-certificate for the boolean axioms and $\sum x_{i}a_{i} = y$, we can substitute for y any constant except for the finite number of roots of the denominators of H_{i}’s and get a valid IPS-LIN$_{\mathbb{Q}}$ refutation. Thus an IPS-LIN$_{\mathbb{Q}(y)}$-certificate can be viewed as a single proof for all but finitely many values of y.

To show this concept is meaningful, we first show a short IPS-LIN$_{\mathbb{Q}(y)}$ proof of $\sum_{i=1}^{n}a_{i}x_{i} = y$ for small scalars a_{i}. Then we demonstrate a lower bound for $a_{i} = 2^{i-1}$ modulo τ-conjecture.

However, we start with precise definitions of the complexity of IPS-LIN$_{\mathbb{Q}(y)}$-proofs and related completeness issues.
3.2.1 Complexity Considerations

To compute elements of \(\mathbb{Q}(y) \), we extend the definition of a constant-free circuit by allowing the use of gates for \(y \). The definition of a constant-free circuit over \(\mathbb{Q}(y) \) thus mimics Definition 19, but we allow now the constant \(y \) in addition to \(-1,0,1 \) (note that \(y \) is indeed a constant in terms of polynomials in \(\mathbb{Q}(y)[x_1,\ldots,x_n] \)).

Remark 3.6. [Forbes et al prove that IPS is polynomially equivalent to IPS-LIN when the scalars are given for free (that is, do not count towards the proof size). We believe that a similar transformation can be made for the constant-free model to establish the equivalence between IPS_{\mathbb{Q}(y)} and IPS-LIN_{\mathbb{Q}(y)}; however, we did not verify the details.

3.2.2 Upper Bound

Proposition 3.7. Suppose we have a system of polynomial equations \(F_0(\bar{x}) = F_1(\bar{x}) = F_2(\bar{x}) = \cdots = F_n(\bar{x}) = 0 \), where \(F_0(\bar{x}) = y + \sum_{i=1}^{n} a_i x_i, \ a_i \in \mathbb{N} \) and \(F_i(\bar{x}) = x_i^2 - x_i \). Then there is an IPS-LIN_{\mathbb{Q}(y)} certificate of this system consisting of \(H_0(\bar{x}), \ldots, H_n(\bar{x}) \), where each \(H_i(\bar{x}) \) can be computed by a constant-free algebraic circuit over \(\mathbb{Q}(y) \) of size \(\text{poly}(a_1 + \cdots + a_n) \).

Proof: We will construct our proof by induction:

Base case: suppose \(G_{0,i,t}(\bar{x}) = y + t, \ t \in \mathbb{N}, t \leq \sum_{i=1}^{n} a_i \). Then we can take \(H_{0,0,t}(\bar{x}) = \frac{1}{y+t} \) and \(H_{0,i,t} = 0 \) where \(1 \leq i \leq n, \ i \in \mathbb{N} \) as an IPS-LIN_{\mathbb{Q}(y)} certificate for a system of polynomial equations \(G_{0,i,t}(\bar{x}) = F_1(\bar{x}) = F_2(\bar{x}) = \cdots = F_n(\bar{x}) = 0 \).

Induction step: suppose we have already built certificates \(H_{k,0,t}(\bar{x}), \ldots, H_{k,n,t}(\bar{x}) \) for the systems of polynomial equations \(G_{k,t}(\bar{x}) = F_1(\bar{x}) = F_2(\bar{x}) = \cdots = F_n(\bar{x}) = 0 \) where \(G_{k,t}(\bar{x}) = y + t + a_1 x_1 + \cdots a_k x_k, \ t \in \mathbb{Z}, 0 \leq t \leq \sum_{i=1}^{k} a_i \). Now we will build certificates \(H_{k+1,0,t}(\bar{x}), \ldots, H_{k+1,n,t}(\bar{x}) \) for the systems of polynomial equations \(G_{k+1,t}(\bar{x}) = F_1(\bar{x}) = F_2(\bar{x}) = \cdots = F_n(\bar{x}) = 0 \) where \(G_{k+1,t}(\bar{x}) = y + t + a_1 x_1 + \cdots a_k x_k x_{k+1}, \ t \in \mathbb{Z}, 0 \leq t \leq \sum_{i=k+1}^{n} a_i \). There are the following cases:

1. If \(i > k + 1 \), then we will take \(H_{k+1,i,t}(\bar{x}) = 0 \).

2. If \(i = k + 1 \), then we will take \(H_{k+1,i,t}(\bar{x}) = a_{k+1}(H_{k,0,t}(\bar{x}) - H_{k,0,t+a_{k+1}}(\bar{x})) \).

3. If \(0 \leq i < k + 1 \), then we will take \(H_{k+1,i,t}(\bar{x}) = x_{k+1} H_{k,i,t+a_{k+1}}(\bar{x}) + (1 - x_{k+1})H_{k,i,t}(\bar{x}) \).

The main idea of this construction is the case analysis for \(x_{k+1} = 0, x_{k+1} = 1 \), that is,

\[(y + t + a_1 x_1 + \cdots + a_{k+1} x_{k+1}) x_{k+1} - a_{k+1}(x_{k+1}^2 - x_{k+1}) = (y + t + a_{k+1} + a_1 x_1 + \cdots a_k x_k) x_{k+1}\]

and

\[(y + t + a_1 x_1 + \cdots + a_{k+1} x_{k+1})(1 - x_{k+1}) + a_{k+1}(x_{k+1}^2 - x_{k+1}) = (y + t + a_1 x_1 + \cdots a_k x_k)(1 - x_{k+1})\]

which means that (using the induction hypothesis)

\[((y + t + a_1 x_1 + \cdots a_{k+1} x_{k+1}) x_{k+1} - a_{k+1}(x_{k+1}^2 - x_{k+1}))H_{k,0,t+a_{k+1}}(\bar{x}) + (x_{k+1}^2 - x_{k+1})H_{k,1,t+a_{k+1}}(\bar{x}) + \cdots + (x_k^2 - x_k) x_{k+1} H_{k,k,t+a_{k+1}}(\bar{x}) = x_{k+1}\]

24
and

\[(y + t + a_1 x_1 + \ldots + a_{k+1} x_{k+1})(1 - x_{k+1}) + a_{k+1}(x_{k+1}^2 - x_{k+1}))H_{k,0,t}(\pi) +
\]
\[+ (x_1^2 - x_1)(1 - x_{k+1})H_{k,1,t}(\pi) + \ldots + (x_k^2 - x_k)(1 - x_{k+1})H_{k,k,t}(\pi) = 1 - x_{k+1}\]

Summing up the equations for both cases, due to the fact that \((1 - x_{k+1}) + x_{k+1} = 1\) we get

\[G_{k+1,t} H_{k+1,0,t} + \sum_{i=1}^{n} F_i H_{k+1,i,t} = 1.\]

On each step of our induction we create no more than \(\text{poly}(a_1 + \ldots + a_n)\) new gates computing algebraic circuits for polynomial functions

\[H_{k,0,t}(\pi), \ldots, H_{k,n,t}(\pi).\]

Then we can take \(H_0(\pi) = H_{n,0,0}(\pi), \ldots, H_n(\pi) = H_{n,n,0}(\pi)\) to conclude our proof.

3.2.3 Lower Bound

Lemma 3.8. Suppose we have a constant-free circuit \(C\) over \(\mathbb{Q}(y)\) of size \(M\) computing a polynomial in \(\mathbb{Q}(y)[x_1, \ldots, x_n]\) that is a rational function \(f(y, x_1, \ldots, x_n)\). Then there are two constant-free circuits over \(\mathbb{Z}\) of size less than \(3M\) computing polynomial functions \(P(y, x_1, \ldots, x_n) \in \mathbb{Z}[y, x_1, \ldots, x_n]\) and \(Q(y) \in \mathbb{Z}[y]\) such that \(f(y, x_1, \ldots, x_n) = \frac{P(y, x_1, \ldots, x_n)}{Q(y)}\).

Proof: Consider any topological order \(g_1, \ldots, g_M\) on the gates of \(C\). We will gradually rewrite our circuit starting from \(g_1\). Assume that we have already done the job for \(g_1, \ldots, g_k\), that is, for each \(i \leq k\) there are appropriate algebraic circuits for polynomial functions \(P_i(y, x_1, \ldots, x_n) \in \mathbb{Z}[y, x_1, \ldots, x_n]\) and \(Q_i(y) \in \mathbb{Z}[y]\) such that \(g_i = \frac{P_i}{Q_i}\). We now augment these circuits to compute the polynomials for \(g_k\).

Here are all possible cases:

1. \(g_1\) is a variable \(x_j\), then \(P = x_j, Q = 1\).

2. \(g_1\) is a constant from \(\mathbb{Q}(y)\) (that is, 0, -1, 1, \(y\)), then \(P\) computes this constant, and \(Q = 1\).

3. \(g_{k+1} = \frac{g_i}{g_j}\) where \(i, j \leq k\). In this case \(P_i \in \mathbb{Q}(y)\) because of the structure of our \(\mathbb{Q}(y)[x_1, \ldots, x_n]\)-circuit. Then \(Q_{k+1} = Q_i P_j\) and \(P_{k+1} = P_i Q_j\) and sizes of the circuits for \(P_{k+1}\) and \(Q_{k+1}\) are less than \(3 \cdot (k + 1)\).

4. \(g_{k+1} = g_i \cdot g_j\), where \(i, j \leq k\). Then \(Q_{k+1} = Q_i Q_j\) and \(P_{k+1} = P_i P_j\) and sizes of the circuits for \(P_{k+1}\) and \(Q_{k+1}\) are less than \(3 \cdot (k + 1)\).

5. \(g_{k+1} = g_i + g_j\). Then \(P_{k+1} = P_i Q_j + P_j Q_i\) and \(Q_{k+1} = Q_i Q_j\) and sizes of the circuits for \(P_{k+1}\) and \(Q_{k+1}\) are less than \(3 \cdot (k + 1)\).

We can conclude our proof by taking \(P_M\) and \(Q_M\) as \(P\) and \(Q\), respectively.

Theorem 3.9. Suppose a system of polynomial equations \(F_0(\pi) = F_1(\pi) = F_2(\pi) = \ldots = F_n(\pi) = 0, F_i \in \mathbb{Q}(y)[x_1, \ldots, x_n]\), where \(F_0(\pi) = y + \sum_{i=1}^{n} 2^{i-1} x_i\) and \(F_i(\pi) = x_i^2 - x_i\), has an IPS-LIN certificate \(H_0(\pi), \ldots, H_n(\pi)\), where each \(H_i(\pi)\) can be computed by a poly(n)-size constant-free algebraic circuit over \(\mathbb{Q}(y)\). Then, the \(\tau\)-conjecture is false.

Proof: Based on the above lemma, we can say that there are polynomials \(P_i(y, x_1, \ldots, x_n) \in \mathbb{Z}[y, x_1, \ldots, x_n]\) and \(Q_i(y) \in \mathbb{Z}[y]\) such that \(H_i = \frac{P_i}{Q_i}\) for every \(i\). Also we know that

\[(y + x_1 + \ldots + 2^{n-1} x_n) \frac{P_0}{Q_0} + (x_1^2 - x_1) \frac{P_1}{Q_1} + \ldots + (x_n^2 - x_n) \frac{P_n}{Q_n} = 1\]
So we can derive that

\[(y + x_1 + \cdots + 2^{n-1}x_n)P_0 \prod_{j=1}^{n} Q_j + (x_1^2 - x_1)P_1 Q_0 \prod_{j=2}^{n} Q_j + \cdots + (x_n^2 - x_n)P_n \prod_{j=0}^{n-1} Q_j = \prod_{j=0}^{n} Q_j \quad (8)\]

Denote \(\prod_{j=0}^{n} Q_j\) by \(Q(y)\). From the above lemma we know that there is a constant-free circuit over \(\mathbb{Z}\) of size \(\text{poly}(n)\) for \(Q(y)\). Furthermore, for any integer \(y\) such that \(0 \geq y > -2^n\), there are values for \(x_i\) (namely, the bit expansion of \(-y\)) such that the left hand side of eq. 8 is zero, and hence \(Q(y) = 0\). However, it contradicts the \(\tau\)-conjecture.

\[\square\]

4 The Cone Proof System

Here we define a very strong semi-algebraic proof system under the name Cone Proof System (CPS for short). Similarly to other semi-algebraic systems, CPS establishes that a collection of polynomial equations \(\mathcal{F} := \{f_i = 0\}\) and polynomial inequalities \(\mathcal{H} := \{h_i \geq 0\}\) are unsatisfiable over 0-1 assignments (or over real-valued assignments, when desired (Definition 24)). In the spirit of the Ideal Proof System (IPS) of Grochow and Pitassi [26] we are going to define a refutation in CPS as a single algebraic circuit. Specifically, a CPS refutation is a circuit \(C\) that computes a polynomial that results from monotone operations such as addition and product applied between the inequalities \(\mathcal{H}\) and themselves, as well as the use of nonnegative scalars and arbitrary squared polynomials. In order to simulate in CPS the free use of equations from \(\mathcal{F}\) we incorporate in the set of inequalities \(\mathcal{H}\) the inequalities \(f_i \geq 0\) and \(-f_i \geq 0\) for each \(f_i = 0\) in \(\mathcal{F}\) (we show that this enables to add freely products of the polynomial \(f_i\) in CPS proofs, namely working in the ideal of \(\mathcal{F}\); see Sect. 4.1.1).

We need to formalise the concept of a cone as an algebraic circuit. For this we first introduce the notion of a squaring gate: let \(C\) be a circuit and \(v\) be a node in \(C\). We call \(v\) a squaring gate if \(v\) is a product gate whose two incoming edges are emanating from the same node. Therefore, if we denote by \(w\) the single node that has two outgoing edges to the squaring gate \(v\), then \(v\) computes \(w^2\) (that is, the square of the polynomial computed at node \(w\)).

The following is a definition of a circuit computing polynomials in the cone of the \(\overline{y}\) variables:

Definition 22 (\(\overline{y}\)-conic circuit). Let \(R\) be an ordered ring. We say that an algebraic circuit \(C\) computing a polynomial over \(R[\overline{x}, \overline{y}]\) is a **conic circuit with respect to** \(\overline{y}\), or \(\overline{y}\)-conic for short, if for every negative constant or a variable \(x_i \in \overline{x}\), that appears as a leaf \(u\) in \(C\), the following holds: every path \(p\) from \(u\) to the output gate of \(C\) contains a squaring gate.

Informally, a \(\overline{y}\)-conic circuit is a circuit in which we assume that the \(\overline{y}\)-variables are nonnegative, and any other input that may be negative (that is, a negative constant or an \(\overline{x}\)-variable) must be part of a squared sub-circuit. Here are examples of \(\overline{y}\)-conic circuits (over \(\mathbb{Z}\)): \(y_1, y_1 \cdot y_2, 3 + 2y_1, (−3)^2, x_1^2, (3 \cdot x_1 + 1)^2, (x_1y_2 + y_1)^2, y_1 + \cdots + y_m\). On the other hand, \(-1, x_1, x_1 \cdot y_2, -1 \cdot y_1 + 4\) are examples of non \(\overline{y}\)-conic circuits.

Note that if the \(\overline{y}\)-variables of a \(\overline{y}\)-conic circuit are assumed to take on non-negative values, then a \(\overline{y}\)-conic circuit computes only non-negative values. It is evident that \(\overline{y}\)-conic circuits can compute all and only polynomials that are in the cone of the \(\overline{y}\) variables. In other words, if \(\overline{y}\) are the variables \(y_1, \ldots, y_m\), then there exists a \(\overline{y}\)-conic circuit \(C(\overline{x}, \overline{y})\) that computes the polynomial \(p(\overline{x}, \overline{y})\) iff \(p(\overline{x}, \overline{y}) \in \text{cone}(y_1, \ldots, y_m) \subseteq R[\overline{x}, \overline{y}]\). Similarly, if \(\overline{f}(\overline{x})\) is a sequence of polynomials \(f_1(\overline{x}), \ldots, f_m(\overline{x})\), then there exists a \(\overline{y}\)-conic circuit \(C(\overline{x}, \overline{y})\) such that \(C(\overline{x}, \overline{f}(\overline{x})) = p(\overline{x})\) iff \(p(\overline{x})\) computes a polynomial in \(\text{cone}(\overline{f}(\overline{x})) \subseteq R[\overline{x}]\).
Deciding if a given circuit is \(\overline{y} \text{-conic} \) is in deterministic polynomial-time (see Claim 4.5 in Sect. 4.1).

Similar to IPS, we start by defining a boolean version for the Cone Proof System (Definition 23), which is a refutation system for sets of polynomial equations and inequalities with no \(\{0,1\} \) solutions. It is easy to define the corresponding real version of CPS that refutes sets of polynomial equations and inequalities that are unsatisfiable over the reals. This is done simply by taking out the boolean axioms from the system (Definition 24).

By default, when referring to CPS we will be speaking about the boolean version.

Definition 23 ((boolean) Cone Proof System (CPS)). Consider a collection of polynomial equations \(\mathcal{F} := \{ f_i(\overline{x}) = 0 \}_{i=1}^m \), and a collection of polynomial inequalities \(\mathcal{H} := \{ h_i(\overline{x}) \geq 0 \}_{i=1}^l \), where all polynomials are from \(\mathbb{R}[x_1, \ldots, x_n] \). Assume that the following boolean axioms are included in the assumptions: \(\mathcal{F} \) includes \(x_i^2 - x_i = 0 \), and \(\mathcal{H} \) includes the inequalities \(x_i \geq 0 \) and \(1 - x_i \geq 0 \), for every variable \(x_i \in \overline{x} \). Suppose further that \(\mathcal{H} \) includes (among possibly other inequalities) the two inequalities \(f_i(\overline{x}) \geq 0 \) and \(-f_i(\overline{x}) \geq 0 \) for every equation \(f_i(\overline{x}) = 0 \) in \(\mathcal{F} \) (including the equations \(x_i^2 - x_i = 0 \)). A CPS proof of \(p(\overline{x}) \) from \(\mathcal{F} \) and \(\mathcal{H} \), showing that \(\mathcal{F}, \mathcal{H} \) semantically imply the polynomial inequality \(p(\overline{x}) \geq 0 \) over \(0 \text{-} 1 \) assignments, is an algebraic circuit \(C(\overline{x}, \overline{\gamma}) \) computing a polynomial in \(\mathbb{R}[x_1, y_1, \ldots, y_l] \), such that:

1. \(C(\overline{x}, \overline{\gamma}) \) is a \(\overline{y} \text{-conic} \) circuit; and
2. \(C(\overline{x}, \overline{\gamma}) = p(\overline{x}) \),

where equality 2 above is a formal polynomial identity\(^{12}\) in which the left hand side means that we substitute \(h_i(\overline{x}) \) for \(y_i \), for \(i = 0, \ldots, l \).

The size of a CPS proof is the size of the circuit \(C \). The variables \(\overline{\gamma} \) are the placeholder variables since they are used as a placeholder for the axioms. A CPS proof of \(-1\) from \(\mathcal{F}, \mathcal{H} \) is called a CPS refutation of \(\mathcal{F}, \mathcal{H} \).

In what follows, we will write “conic” instead of “\(\overline{y} \text{-conic} \)” where the meaning of \(\overline{y} \) is clear from the context.

In order to refute propositional formulas in conjunctive normal form (CNF) in CPS we use the algebraic translation of CNFs (Definition 11), which is expressed as a set of polynomial equalities. We show in Prop. 4.13 that CPS can efficiently translate CNF formulas written as polynomial equalities to the standard way in which CNF formulas are written as polynomial inequalities. The real version of CPS is defined as follows:

Definition 24 (Real CPS). The real CPS system is defined similarly to boolean CPS except that boolean axioms are not included in the assumptions. That is, \(\mathcal{F} \) does not include \(x_i^2 - x_i = 0 \), and \(\mathcal{H} \) does not include the inequalities \(x_i \geq 0 \) and \(1 - x_i \geq 0 \) (for variables \(x_i \in \overline{x} \)).

Remark about CPS.

1. CPS should be thought of as a way to derive valid polynomial inequalities from a set of polynomial equations and inequalities from \(\mathbb{R}[\overline{x}] \). Loosely speaking, it is a circuit representation of the Positivstellensatz proof system (Definition 13), though in CPS the assumptions \(\mathcal{F}, \mathcal{H} \) (more precisely, placeholder variables of which) may have powers greater than one. That is, whereas eq. 5 is multilinear in the \(h_i \) variables, CPS is not.

\(^{11}\)Note that formally we do not make use of the assumptions \(\mathcal{F} \) in CPS, as we assume always that the inequalities that correspond to the equalities in \(\mathcal{F} \) are present in \(\mathcal{H} \). Thus, the indication of \(\mathcal{F} \) is done merely to maintain clarity and distinguish (semantically) between two kinds of assumptions: equalities and inequalities.

\(^{12}\)That is, \(C(\overline{x}, \overline{\gamma}) \) computes the polynomial \(p(\overline{x}) \).
2. We add the boolean axioms \(x_i^2 - x_i \geq 0, x_i - x_i^2 \geq 0, x_i \geq 0 \) and \(1 - x_i \geq 0 \) to \(\mathcal{H} \) as a default. Hence, the system can refute any set of inequalities (and equalities) that is unsatisfiable over 0-1 assignments.

3. Formally, CPS proves only consequences from an initial set of inequalities \(\mathcal{H} \) and not equalities \(\mathcal{F} \). However, we are not losing any power doing this. First, observe that:

An assignment satisfies \(\mathcal{F}, \mathcal{H} \) iff it satisfies \(\mathcal{H} \) (in the case of boolean CPS an assignment that satisfies either \(\mathcal{F} \) or \(\mathcal{H} \) must be a 0-1 assignment).

Second, we encode equalities \(f_i(x) = 0 \) \(\in \mathcal{F} \) using the two inequalities \(f_i(x) \geq 0 \) and \(-f_i(x) \geq 0 \) in \(\mathcal{H} \). As shown in Thm. 4.7 this way we can derive any polynomial in the ideal of \(\mathcal{F} \), and not merely in the cone of \(\mathcal{F} \), as is required for equations (and similar to the definition of SoS), with at most a polynomial increase in size (when compared to IPS).

To derive polynomials in the ideal of \(\mathcal{F} \) we need to be able to multiply \(f_i \) and \(-f_i \) (from \(\mathcal{H} \)) by any (positive) polynomial in the \(x \)-variables. There are two ways to achieve this in boolean CPS: the first, is to use the boolean axiom \(x_i \geq 0 \) in \(\mathcal{H} \). This allows to produce \(f_i \) and \(-f_i \) by any polynomial in the \(x \)-variables. The second way, the one we use in Prop. 4.6 to show that CPS simulates IPS in Thm. 4.7, is different and does not necessitate the addition of the axiom \(x_i \geq 0 \) to \(\mathcal{H} \). Since the second way does not use the boolean axiom \(x_i \geq 0 \) in \(\mathcal{H} \) we can use it in real CPS, hence allowing the derivation of polynomials in the ideal of \(\mathcal{F} \) within real CPS.

To exemplify a proof in CPS we provide the following simple proposition:

Proposition 4.1. CPS admits a linear size refutation of the binary value principle BVP\(_n\).

Proof: To simplify notation we put \(S := \sum_{i=1}^{n} 2^{i-1} \cdot x_i + 1 \). Let \(\mathcal{F} := \{S = 0, x_1^2 - x_1 = 0, \ldots, x_n^2 - x_n = 0\} \). Then by the definition of CPS \(\mathcal{H} \) contains the following correspondent \(4n + 2 \) axioms (\(4n \) boolean axioms, and two axioms for the single non-boolean axiom in \(\mathcal{F} \)):

\[
\mathcal{H} := \{ x_1 \geq 0, \ldots, x_n \geq 0, -S \geq 0, S \geq 0, x_1^2 - x_1 \geq 0, \ldots, x_n^2 - x_n \geq 0, -\sum_{i=1}^{n} 2^{i-1} \cdot x_i \geq 0, 1 - x_1 \geq 0, \ldots, 1 - x_n \geq 0 \}.
\]

Therefore, the CPS refutation of the binary value principle is defined as the following \(\overline{y} \)-conic circuit:

\[
C(\overline{x}, \overline{y}) := \left(\sum_{i=1}^{n} 2^{i-1} \cdot y_i \right) + y_{n+1}, \tag{9}
\]

where the placeholder variables \(y_1, y_2, \ldots, y_{4n+2} \) correspond to the axioms in \(\mathcal{H} \) in the order they appear above. Observe indeed that \(C(\overline{x}, \mathcal{H}) = C(\overline{x}, x_1, \ldots, x_n, -S, \ldots) = (\sum_{i=1}^{n} 2^{i-1} \cdot x_i) + (-S) = -1 \).

Observing the CPS refutation in eq. 9 we see that it is in fact already an SoS refutation:

Corollary 4.2. SoS admits a linear monomial size refutation of the binary value principle BVP\(_n\).
4.1 Basic Properties of CPS and Simulations

CPS is a very strong proof system. In fact, of all proof systems with randomized polynomial-time verification, given concretely, to the best of our knowledge CPS is the strongest to have been defined to this date. CPS simulates IPS as shown below, while we show that IPS simulates CPS only under the condition that there are short IPS refutations of the binary value principle.

Proposition 4.3 (CPS is sound and complete). Let \(R \) be an ordered ring. CPS (resp., real CPS) is a complete and sound proof system for the language of sets of polynomial equations and inequalities over \(R \) that have no \(0 \)-\(1 \) (resp. \(R \)-solutions) solutions. More precisely, given two sets of polynomial equalities and inequalities \(\mathcal{F}, \mathcal{H} \), respectively, where all polynomials are from \(R[x_1, \ldots, x_n] \), there exists a CPS (resp. real CPS) refutation of \(\mathcal{F}, \mathcal{H} \), iff there is no \(\{0,1\} \) assignment (resp. \(R \)-assignment) satisfying both \(\mathcal{F} \) and \(\mathcal{H} \) (iff there is no \(\{0,1\} \) assignment (resp. \(R \)-assignment) satisfying \(\mathcal{H} \)).

Proof: The completeness of boolean CPS follows from the simulation of propositional Positivstellensatz below (Thm. 4.10). The soundness of boolean CPS stems from the following. Assume that \(C(x, y) \) is a CPS refutation of \(\mathcal{F}, \mathcal{H} \). Recall that an assignment satisfies \(\mathcal{F}, \mathcal{H} \) iff it satisfies \(\mathcal{H} \). Assume by a way of contradiction that \(\alpha \) is a \(0 \)-\(1 \) assignment to \(x \) that satisfies \(\mathcal{F}, \mathcal{H} \). The circuit \(C(x, y) \) is \(y \)-conic and hence \(C(\alpha, \mathcal{H}(\alpha)) \) is non-negative assuming that the inputs to the \(y \) variables (that is, \(\mathcal{H}(\alpha) \)) are non-negative. Since \(\alpha \) satisfies \(\mathcal{H} \) we know that indeed \(h_i(\alpha) \geq 0 \), for every \(h_i(x) \in \mathcal{H} \). Therefore, \(\hat{C}(\alpha, \mathcal{H}(\alpha)) \geq 0 \), which contradicts our assumption that \(C(\alpha, \mathcal{H}(\alpha)) = -1 \).

The completeness for real CPS follows by similar arguments. \(\square \)

Proposition 4.4. A CPS proof (either real of boolean) can be checked for correctness in probabilistic polynomial-time.

Proof: Similar to IPS, we can verify condition 2 in Definition 23, that is \(C(x, \mathcal{H}) = p(x) \), in probabilistic polynomial-time (formally, in \(\text{coRP} \)). For condition 1 we need to check that \(C \) is a \(y \)-conic circuit, which can be done in \(\mathbb{P} \) via the following claim:

Claim 4.5. There is a polynomial-time algorithm to determine if a circuit \(C(x, y) \) is a \(y \)-conic circuit or not.

Proof of claim: We say that a directed path from a leaf \(u \) in \(C \) holding either a negative constant or an \(x \) variable to the output gate of \(C \) is bad if the path does not contain any squaring gate.

For each leaf \(u \) in \(C \) holding either a negative constant or an \(x \) variable we can determine the following property in \(\text{NL} \): there exists a bad path from \(u \) to the output gate of \(C \). This algorithm is in \(\text{NL} \) simply because nondeterministically we can go along a directed path from \(u \) to the output gate and check that no squaring gate was encountered along the way (we only need to record the current node and the current length of the path so to know when to terminate). This means that the complement problem of deciding that there does not exist a bad path from \(u \) to the output gate is in \(\text{coNL} \) which is known to be contained in \(\mathbb{P} \).

Our algorithm thus checks that each of the leaves holding negative constants do not possess any bad path to the output gate, which can be done in polynomial-time by the argument above. \(\square \)

As a corollary of Prop. 4.3 and Prop. 4.4 we get that, similar to IPS, if CPS is p-bounded (namely, admits polynomial-size refutations for every unsatisfiable CNF formula) then coNP is in MA, yielding in particular the polynomial hierarchy collapse to the third level (cf. [39, 26]).
4.1.1 CPS Simulates IPS

We now show that boolean CPS simulates boolean IPS for the language of \(\{0,1\} \)-unsatisfiable sets of polynomial equations over any ordered ring. Similarly, real CPS simulates algebraic IPS over \(\mathbb{Q} \). We translate an input equality \(f_i(\bar{x}) = 0 \) into a pair of inequalities \(f_i(\bar{x}) \geq 0 \) and \(-f_i(\bar{x}) \geq 0\). Note that an IPS proof is written as a general algebraic circuit (computing an element of an ideal), while a CPS proof is written as a more restrictive algebraic circuit, namely as a \(\overline{y} \)-conic circuit (computing an element of a cone). This means that a priori we cannot (obviously) multiply an inequality by an arbitrary polynomial in CPS. We thus demonstrate how to do it when we have opposite-sign inequalities. In order to do this, we represent an arbitrary polynomial as the difference of two nonnegative expressions.

Proposition 4.6 (minus gate normalisation). Let \(G(\bar{x}) \) be an algebraic circuit computing a polynomial in the \(\bar{x} \) variables over \(\mathbb{Q} \). Then, there is an algebraic circuit of the form \(G_P(\bar{x}) - G_N(\bar{x}) \) computing the same polynomial as \(G(\bar{x}) \) where \(G_P \) and \(G_N \) are \(\emptyset \)-conic. The size of \(G_P, G_N \) is at most linear in the size of \(G \).

Proof: This is somewhat reminiscent of Strassen’s conversion of a circuit with division gate to a circuit with only a single division gate at the top [50]. We are going to break inductively each node into a pair of nodes computing the positive and negative parts of the polynomial computed in that node. Formally, we define the circuits \(G_P, G_N \) (that may have common nodes) by induction on the size of \(G \) as follows:

Case 1: \(G = x_i \), for \(x_i \in \bar{x} \). Then, \(G_P := \frac{1}{2}(x_i^2 + 1), G_N := \frac{1}{2}(x_i - 1)^2 \).

Case 2: \(G = \alpha \), for \(\alpha \) a constant in the ring. Then

\[
G_P := \alpha, \quad G_N := 0, \quad \text{if} \ \alpha \geq 0;
\]

\[
G_P := 0, \quad G_N := \alpha, \quad \text{if} \ \alpha < 0.
\]

Case 3: \(G = F + H \). Then, \(G_P := F_P + H_P \) and \(G_N := F_N + H_N \).

Case 4: \(G = F \cdot H \). Then, \(G_P := F_P \cdot G_P + F_N \cdot G_N \) and \(G_N := F_P \cdot G_N + F_N \cdot G_P \).

The size of both \(G_P, G_N \) is \(O(|G|) \), namely linear in the size of \(G \). This is because we only add constantly many new nodes in \(G_P, G_N \) for any original node in \(G \); note that since we construct a new circuit computing the same polynomial as \(G \), we can re-use nodes computed already, in case 4: for example, \(F_P \) is the same node used in \(G_P \) and \(G_N \) (hence, indeed, the number of new added nodes for every original node in \(G \) is constant).

Theorem 4.7. Real CPS simulates algebraic IPS as a proof system for the language of unsatisfiable sets of polynomial equations over \(\mathbb{Q} \). In other words, there exists a constant \(c \) such that for any polynomial \(p(\bar{x}) \) and a set of polynomial equations \(\mathcal{F} \), if \(p(\bar{x}) \) has an IPS proof of size \(s \) from \(\mathcal{F} \) then there is a CPS proof of \(p(\bar{x}) \) from \(\mathcal{F} \) of size at most \(s^c \). Furthermore, boolean CPS simulates boolean IPS (for any ordered ring).

Remark 4.8. It is easy to see that fractional \(\mathbb{Q} \) coefficients are not needed in the case of boolean systems, as Case 1 in Prop. 4.6 above simplifies to \(G_P := x_i, G_N := 0 \) when \(x_i \)'s are nonnegative. This is the reason boolean CPS simulates boolean IPS over any ordered ring.

Specifically, if \(\mathcal{F} \) is a set of polynomial equations with no 0-1 satisfying assignments and suppose that there is an IPS refutation of \(\mathcal{F} \) with size \(s \), then there is a CPS refutation of \(\mathcal{F} \) with size at most \(s^c \).

Proof of Thm. 4.7. We are going to simulate both the boolean and the algebraic versions of IPS. The proof in both cases is the same.
Assume that \(C(\overline{x}, \overline{y}) \) is the IPS proof of \(p(\overline{x}) \) from \(\mathcal{F} = \{ f_i(\overline{x}) = 0 \}_{i=1}^\ell \), of size \(s \), and let \(\overline{y} = \{ y_1, \ldots, y_\ell \} \) be the placeholder variables for the equations in \(\mathcal{F} \). We assume for simplicity that if we simulate the boolean version of IPS the boolean axioms \(\overline{x}^2 - \overline{x} \) are also part of \(\mathcal{F} \) (while if we simulate the algebraic version of IPS these axioms are not part of \(\mathcal{F} \)). We use the following claim:

Claim 4.9. Let \(C(\overline{x}, \overline{y}) \) be a circuit of size \(s \), where \(\overline{y} = \{ y_1, \ldots, y_\ell \} \) and such that \(C(\overline{x}, \overline{0}) = 0 \). Then \(C \) can be written as a sum of circuits with only a polynomial increase in size as follows:
\[
C(\overline{x}, \overline{y}) = \sum_{i=1}^\ell y_i \cdot C_i(\overline{x}, \overline{y}).
\]

Proof of claim. We proceed by a standard process to factor out the \(\overline{y} \) variables one by one. Beginning with \(y_1 \) we get:
\[
C(\overline{y}, \overline{x}) = y_1 \cdot (C(1, \overline{y}', \overline{x}) - C(0, \overline{y}', \overline{x})) + C(0, \overline{y}', \overline{x}),
\]
where \(\overline{y}' \) denotes the vector of variables \(\{ y_2, \ldots, y_\ell \} \). In a similar manner we factor out the variable \(y_2 \) from \(C(0, \overline{y}', \overline{x}) \). Continuing in a similar fashion we conclude the claim. Notice that the size of the resulting circuit is \(O(|\mathcal{C}|^2) \), and that in the final iteration of the construction we factor out \(y_\ell \) from \(C(0, y_\ell, \overline{x}) \) it must hold that \(C(0, y_\ell, \overline{x}) = y_1 \cdot (C(1, 1, \overline{x}) - C(0, 0, \overline{x})) + C(0, 0, \overline{x}) = y_1 \cdot C(0, 1, \overline{x}) \), because by assumption \(C(0, 0, \overline{x}) = 0 \). \(\blacksquare \)

By this claim we have
\[
C(\overline{x}, \overline{y}) = \sum_{i=1}^\ell y_i \cdot C_i(\overline{x}, \overline{y})
\]
\[
= \sum_{i=1}^\ell y_i \cdot C_{i,P}(\overline{x}, \overline{y}) - \sum_{i=1}^\ell y_i \cdot C_{i,N}(\overline{x}, \overline{y}),
\]
where \(C_{i,P}(\overline{x}, \overline{y}), C_{i,N}(\overline{x}, \overline{y}) \) are the positive and negative parts of \(C_i(\overline{x}, \overline{y}) \), respectively, that exist by Prop. 4.6, written as circuits in which no negative constants occur (we do not need to distinguish between the variables \(\overline{x} \) and \(\overline{y} \) here).

We wish to construct now a CPS refutation of \(\mathcal{F} \). Our corresponding set of inequalities \(\overline{\mathcal{H}} \) will consist of \(f_i(\overline{x}) \geq 0, -f_i(\overline{x}) \geq 0 \), for every \(i \in [\ell] \). In total, \(|\overline{\mathcal{H}}| = 2\ell \). Accordingly, our CPS refutation of \(\mathcal{F} \), \(\overline{\mathcal{H}} \), will have \(2\ell \) placeholder variables for the axioms in \(\overline{\mathcal{H}} \) denoted as follows: \(\overline{y}_{i,P} \) are the \(\ell \) placeholder variables \(y_{i,P} \) corresponding to \(f_i(\overline{x}) \geq 0 \), \(i \in [\ell] \), \(\overline{y}_{i,N} \) are the \(\ell \) placeholder variables \(y_{i,N} \) corresponding to \(-f_i(\overline{x}) \geq 0 \), \(i \in [\ell] \).

Since \(C_{i,P} \) and \(C_{i,N} \) are \(\emptyset \)-conic circuits,
\[
\sum_{i=1}^\ell y_{i,P} \cdot C_{i,P}(\overline{x}, \overline{y}_{i,P}, \overline{y}_{i,N}) + \sum_{i=1}^\ell y_{i,N} \cdot C_{i,N}(\overline{x}, \overline{y}_{i,P}, \overline{y}_{i,N})
\]
is a \((\overline{y}_{i,P}, \overline{y}_{i,N}) \)-conic circuit. It constitutes a CPS proof of \(p(\overline{x}) \) from the assumptions \(f_i(\overline{x}) \geq 0, -f_i(\overline{x}) \geq 0 \), for \(i \in [\ell] \) of size linear in \(|\mathcal{C}| \) (as before, we denote by \(\overline{\mathcal{F}} \) the vector \(f_1(\overline{x}), \ldots, f_\ell(\overline{x}) \)):
\[
\sum_{i=1}^\ell f_i(\overline{x}) \cdot C_{i,P}(\overline{x}, \overline{F}) + \sum_{i=1}^\ell (-f_i(\overline{x})) \cdot C_{i,N}(\overline{x}, \overline{F})
\]
\[
= \sum_{i=1}^\ell f_i(\overline{x}) \cdot (C_{i,P}(\overline{x}, \overline{F}) - C_{i,N}(\overline{x}, \overline{F}))
\]
\[
= \sum_{i=1}^\ell f_i(\overline{x}) \cdot C(\overline{x}, \overline{F}) = C(\overline{x}, \overline{F}) = p(\overline{x}).
\]
4.1.2 CPS Simulates Positivstellensatz and SoS

The following theorem is immediate from the definitions.

Theorem 4.10. Real CPS simulates Positivstellensatz (and hence also SoS) proof system over the same ordered ring.

Proof: This follows immediately from the fact that CPS is a circuit representation of the second big sum in eq. 5. More formally, let \(\mathcal{F} := \{ f_i(\pi) = 0 \}_{i \in I} \) be a set of polynomial equations and let \(\mathcal{H} := \{ h_j(\pi) \geq 0 \}_{j \in J} \) be a set of polynomial inequalities, where all polynomials are from \(\mathbb{R}[x_1, \ldots, x_n] \).

Consider the following Positivstellensatz refutation of \(\mathcal{F}, \mathcal{H} \), where \(\{ p_i \}_{i \in I} \) and \(\{ s_i, \zeta \}_{i, \zeta} \) (for \(i \in \mathbb{N} \) and \(\zeta \subseteq J \)) are collections of polynomials in \(\mathbb{R}[x_1, \ldots, x_n] \):

\[
\sum_{i \in I} p_i \cdot f_i + \sum_{\zeta \subseteq J} \left(\prod_{j \in \zeta} h_j \cdot \left(\sum_{i \in I_\zeta} s_i^2 \right) \right) = -1.
\]

(11)

The size of the Positivstellensatz refutation is the combined total number of monomials in \(\{ p_i \}_{i \in I} \) and \(\sum_{i \in I_\zeta} s_i^2 \) for all \(\zeta \subseteq J \) (see Definition 13).

By definition every \(f_i(\pi) = 0 \in \mathcal{F} \) has corresponding two inequalities in \(\mathcal{H} \), \(f_i(\pi) \geq 0 \) and \(-f_i(\pi) \geq 0 \). Let the variables \(\zeta \) (to be used as placeholder variables) be partitioned into three disjoint parts: \(\zeta = \{ y_i \}_{i \in I} \cup \{ y_{i'} \}_{i' \in I'} \cup \{ y_j \}_{j \in J} \), where \(\{ y_i \}_{i \in I} \) are the placeholder variables for \(\{ f_i(\pi) \geq 0 \}_{i \in I} \) in \(\mathcal{H} \), \(\{ y_{i'} \}_{i' \in I'} \) are the placeholder variables for \(\{ -f_i(\pi) \geq 0 \}_{i \in I} \) in \(\mathcal{H} \) and \(\{ y_j \}_{j \in J} \) are the placeholder variables for \(\{ h_j(\pi) \geq 0 \}_{j \in J} \) in \(\mathcal{H} \). Assume also that for every \(i \in I \), \(p_i \cdot p \) is the sum of all non-negative monomials in \(p_i \) and \(p_i \cdot N \) is the sum of all negative monomials in \(p_i \). Define

\[
C(\pi, \zeta) := \sum_{i \in I} p_{i,P} \cdot y_i + \sum_{i' \in I'} p_{i',N} \cdot y_i + \sum_{\zeta \subseteq J} \left(\prod_{j \in \zeta} y_j \cdot \left(\sum_{i} s_i^2 \right) \right),
\]

where each of the three big sums is written as a sum of monomials.

Hence, \(C(\pi, \zeta) = -1 \) by eq. 11 and the size of \(C(\pi, \zeta) \) is linear in \(\sum_{i \in I} |p_i| \) monomials + \(\sum_{\zeta \subseteq J} \sum_{i \in I_\zeta} s_i^2 \) monomials.

Corollary 4.11. Boolean CPS simulates SoS and Positivstellensatz for inputs that include the boolean axioms.

4.1.3 CPS Simulates \(\text{LS}^{\infty}_{s,+} \) for CNFs Written as Inequalities

CPS can simulate the strongest semi-algebraic proof system as defined in Definition 17.

Theorem 4.12. Boolean CPS simulates \(\text{LS}^{\infty}_{s,+} \) (that is, “dynamic Positivstellensatz” from Definition 17).

Recall that CPS uses the algebraic translation of CNFs (Definition 11) as equations while earlier semi-algebraic systems historically used the semi-algebraic translation of CNFs (Definition 16) as inequalities. We will show below that one can be efficiently converted into the other. Modulo this proposition the proof of Thm. 4.12 is almost trivial.

Proof sketch of Thm. 4.12. It suffices to observe that the derivation rules (adding and multiplying two inequalities, taking a square of an arbitrary polynomial) are the same as the rules of constructing the conic circuit. Therefore, following the \(\text{LS}^{\infty}_{s,+} \) proof we construct a conic circuit that, given the axioms on the input, computes -1. \(\square \)
Proposition 4.13. There is a polynomial-size propositional CPS proof that starts from the algebraic translation of a clause as the two inequalities \(\prod_{i \in P}(1 - x_i) \cdot \prod_{j \in N} x_j \geq 0 \) and \(-\left(\prod_{i \in P}(1 - x_i) \cdot \prod_{j \in N} x_j \right) \geq 0 \), and derives the semi-algebraic translation of the clause \(\sum_{i \in P} x_i + \sum_{j \in N}(1 - x_j) - 1 \geq 0 \).

Recall that CPS works with inequalities, whereas equalities \(f = 0 \) in \(\mathcal{F} \) are interpreted as the two inequalities \(f \geq 0 \) and \(-f \geq 0 \) in \(\mathcal{H} \). Hence, Prop. 4.13 suffices to show that a clause given as an equality in \(\mathcal{F} \) can be translated efficiently in CPS to its semi-algebraic translation.

Proof of Prop. 4.13. We proceed by induction on the number of variables in the clause.

Base case: We start with one of the (algebraic) clauses \(x_1 \) or \(1 - x_1 \). In the former case, we start from \(-x_1 \) which is in \(\mathcal{H} \) by the definition of CPS, and we need to derive \((1 - x_1) - 1\), which is equal to \(-x_1\), hence we are done. In the latter case, we start from \(-(1 - x_1)\) which is \(x_1 - 1 \), hence we are done again.

Induction step:

Case 1: We start from the clause \((1 - x_n) \cdot \prod_{i \in P}(1 - x_i) \cdot \prod_{i \in N} x_i \) as a given equation (namely, in \(\mathcal{F} \); formally, the two corresponding inequalities are in \(\mathcal{H} \)), and we need to derive \(x_n + \sum_{i \in P} x_i + \sum_{i \in N}(1 - x_i) - 1 \) in CPS. We consider the two cases \(x_n = 0 \) and \(x_n = 1 \), and then use reasoning by boolean cases in CPS. Reasoning by boolean cases in propositional CPS is doable in polynomial-size by Prop. A.5 which states this for IPS and since propositional CPS simulates IPS by Thm. 4.7 for the language of polynomial equations \(\mathcal{F} \) (in our case the initial clauses are indeed given as equations, and thus CPS simulates IPS’ reasoning by boolean cases).

In case \(x_n = 0 \), \((1 - x_n) \cdot \prod_{i \in P}(1 - x_i) \cdot \prod_{i \in N} x_i = \prod_{i \in P}(1 - x_i) \cdot \prod_{i \in N} x_i \), from which, by induction hypothesis we can derive in CPS with a polynomial-size proof \(\sum_{i \in P} x_i + \sum_{i \in N}(1 - x_i) - 1 \). Since \(x_n = 0 \) we can add \(x_n \) to this expression obtaining \(x_n + \sum_{i \in P} x_i + \sum_{i \in N}(1 - x_i) - 1 \), and we are done.

In case \(x_n = 1 \), we have \(x_n + \sum_{i \in P} x_i + \sum_{i \in N}(1 - x_i) - 1 = 1 + \sum_{i \in P} x_i + \sum_{i \in N}(1 - x_i) - 1 = \sum_{i \in P} x_i + \sum_{i \in N}(1 - x_i) \). But \(\sum_{i \in P} x_i + \sum_{i \in N}(1 - x_i) \) is easily provable in propositional CPS because we have the axioms \(x_i \geq 0 \) and \(1 - x_i \geq 0 \) in \(\mathcal{H} \), for every variable \(x_i \), by definition.

Case 2: We start from the clause \(x_n \cdot \prod_{i \in P}(1 - x_i) \cdot \prod_{i \in N} x_i \), and we need to derive \((1 - x_n) + \sum_{i \in P} x_i + \sum_{i \in N}(1 - x_i) - 1 \) in CPS. This is similar to Case 1 above with the two boolean sub-cases \(x_n = 0 \) and \(x_n = 1 \) flipped.

5 Reasoning about Bits within Algebraic Proofs

In what follows we define a number of circuits implementing arithmetic in the two’s complement notation (see below for the details). Namely, we will define the following polynomial-size circuits:

\[\text{BIT}_i(f):\] if \(f \) is a circuit in the variables \(\overline{x} \) then \(\text{BIT}_i(f) \) computes the \(i \)th bit of the integer computed by \(f \) (as a function of the input variables \(\overline{x} \) where the variables \(\overline{x} \) range over 0-1 values).

\[\text{BIT}(f):\] a multi-output operation that computes the bit vector of \(f \) (as a function of the input variables \(\overline{x} \) where the variables \(\overline{x} \) range over 0-1 values).

\[\overline{\text{ADD}}(\overline{y}, \overline{z}):\] a multi-output carry-lookahead circuit that computes the bit vector of the sum of \(\overline{y} \) and \(\overline{z} \).
ADD\(_i(y, z)\): the circuit that computes the \(i\)th output bit in the carry-lookahead circuit ADD\((y, z)\).

CARRY\(_i(y, z)\): the carry for bit \(i\) when adding two bit vectors \(y, z\).

PROD\((y, z)\): the multi-output circuit computing binary multiplication of two bit vectors \(y\) and \(z\).

PROD\(_+(y, z)\): the multi-output circuit computing binary multiplication of two nonnegative bit vectors \(y\) and \(z\).

VAL\((z)\): the valuation function that converts \(z\) encoding an integer in the two’s complement representation to its integer value (see below).

ABS\((x)\): The multi-output circuit computing the two’s complement binary representation of the absolute value of an input integer \(x\) given in two’s complement.

We construct the BIT\(_i\) function by induction on the size of \(f\). In general this cannot be done for algebraic variables, but in our case we are assuming that the variables \(x_1, \ldots, x_n\) are boolean variables, and this allows us to carry out the constructions below, yielding a circuit of size which is polynomial in the size of the algebraic circuit of \(f\) where ring scalars are encoded in binary.

5.1 Basic Two’s Complement Arithmetic

Integer numbers are encoded in the two’s complement scheme since this scheme makes standard binary addition work for both positive and negative numbers, which simplifies the construction slightly. In the two’s complement scheme the value represented by the bit string \(w \in \{0, 1\}^k\) is determined by a function from \(\{0, 1\}^k\) to \(\mathbb{Z}\) as follows:

Definition 25 (the binary value operation VAL). Given a bit vector \(w_0 \cdots w_{k-1}\) of variables, denoted \(\overline{w}\), ranging over 0-1 values, define the following algebraic circuit with integer coefficients\(^\text{13}\):

\[
\text{VAL}(\overline{w}) := \sum_{i=0}^{k-2} 2^i \cdot w_i - 2^{k-1} \cdot w_{k-1}.
\]

The most significant bit (msb) \(w_{k-1}\) is called the sign bit of \(\overline{w}\).

Thus, VAL\((\overline{w}) = \sum_{i=0}^{k-2} 2^i \cdot w_i\) in case the sign bit \(w_{k-1} = 0\) (hence, \(\overline{w}\) encodes a positive integer), and VAL\((\overline{w}) = \sum_{i=0}^{k-2} 2^i \cdot w_i - 2^{k-1}\), in case the sign bit \(w_{k-1} = 1\) (hence, \(\overline{w}\) encodes a negative integer).

We will represent the integers computed inside the original algebraic circuit by variable length bit vectors (that is, different bit vectors may have different lengths). For each gate in a given circuit we will assign a number that is sufficiently large to store the bit vector of the integer it computes when the input variables range over 0-1 values; this number will be called the syntactic length of the gate (or equivalently, of the circuit whose output gate is this gate). The syntactic length of a gate is not necessarily the minimal number of bits needed to store a number, since we will find it convenient to use slightly more bits than is actually required at times. For instance, the product of two \(t\)-bit binary numbers can be stored with only \(2t - 1\) bits, but we will use \(2t + 3\) bits for a product. Given the syntactic length of algebraic gates such as \(+, \times\) as functions of the syntactic length of their incoming edges, we can compute by induction on circuit size the syntactic length of

\(^{13}\text{We assumed that algebraic circuits have fan-in two, hence VAL is written as a logarithmic depth circuit of addition gates (and product gates at the bottom of the circuit).}\)
any given gate in a circuit. It will be straightforward that the syntactic length of a constant-free (integer algebraic) circuit that has \(s \) gates and multiplicative depth \(D \) (that is, the longest directed path goes through at most \(D \) multiplications) is at most \(O(s2^D) \) (imagine repeated squaring of 2 as the worst case), and it is at most \(O(sd) \) for a constant-free circuit that has syntactic degree \(d \) (that is, it would compute a polynomial of total degree at most \(d \) if all constants \(-1\) are replaced by \(1 \); surely, \(d \leq 2^D \)).

When we need to make an operation over integers of different bit-length, we pad the shorter one (in the two’s complement scheme, a number is always padded by its sign bit, and it is immediate to see that such padding preserves the value of the number as computed by \(\text{VAL} \)).

We will use the boolean connectives \(\land, \lor, \oplus \), which stand for AND, OR and XOR, respectively. In order to use boolean connectives inside algebraic circuits, we define the arithmetization of connectives as follows:

Definition 26 (arithmetization operation \(\text{arit}(.\cdot) \)). For a variable \(y_i \), \(\text{arit}(y_i) := y_i \). For the truth values false \(\bot \) and true \(\top \) we put \(\text{arit}(\bot) := 0 \) and \(\text{arit}(\top) := 1 \). For logical connectives we define \(\text{arit}(A \land B) := \text{arit}(A) \cdot \text{arit}(B) \), \(\text{arit}(A \lor B) := 1 - (1 - \text{arit}(A)) \cdot (1 - \text{arit}(B)) \), and for the XOR operation we define \(\text{arit}(A \oplus B) := \text{arit}(A) + \text{arit}(B) - 2 \cdot \text{arit}(A) \cdot \text{arit}(B) \).

In this way, for every boolean circuit \(F(\bar{x}) \) with \(n \) variables and a boolean assignment \(\bar{x} \in \{0, 1\}^n \), \(\text{arit}(F)(\bar{x}) = 1 \) iff \(F(\bar{x}) = \text{true} \).

In what follows, we sometimes omit \(\text{arit}(\cdot) \) from our formulas and simply write \(\land, \lor, \oplus \) meaning the corresponding polynomials or algebraic circuits.

Addition is done with a carry lookahead adder as follows:

Definition 27 \((\text{CARRY}_i, \text{ADD}_i, \text{ADD}) \). When we use an adder for vectors of different size, we pad the extra bits of the shorter one by its sign bit. Suppose that we have a pair of length-\(t \) vectors of variables \(\bar{y} = (y_0, \ldots, y_{t-1}), \bar{z} = (z_0, \ldots, z_{t-1}) \) of the same size. We first pad the two vectors by a single additional bit \(y_k = y_{k-1} \) and \(z_t = z_{t-1} \), respectively (this is the way to deal with a possible overflow occurring while adding the two vectors). Define

\[
\text{CARRY}_i(\bar{y}, \bar{z}) := \begin{cases}
(y_{i-1} \land z_{i-1}) \lor ((y_{i-1} \lor z_{i-1}) \land \text{CARRY}_{i-1}(\bar{y}, \bar{z})), & i = 1, \ldots, t; \\
0, & i = 0,
\end{cases}
\]

and

\[
\text{ADD}_i(\bar{y}, \bar{z}) := y_i \oplus z_i \oplus \text{CARRY}_i(\bar{y}, \bar{z}), \quad i = 0, \ldots, t.
\]

Finally, define

\[
\overline{\text{ADD}}(\bar{y}, \bar{z}) := \text{ADD}_t(\bar{y}, \bar{z}) \cdots \text{ADD}_0(\bar{y}, \bar{z})
\]

(\text{that is, } \overline{\text{ADD}} \text{ is a multi-output circuit with } t + 1 \text{ output bits}).

It is worth noting that by **Definition 27** we have (where the equality means that the polynomials are identical, though the circuits for them is different):

\[
\text{CARRY}_i(\bar{y}, \bar{z}) = \begin{cases}
\bigvee_{r<i} \left(y_r \land z_r \land \bigwedge_{k=r+1}^{i-1} (y_k \lor z_k) \right), & i = 1, \ldots, t; \\
0, & i = 0.
\end{cases}
\]

Let \(s \) be a bit, and denote by \(e(s) \) the bit vector in which all bits are \(s \) (that is, \(e(s) = s \cdots s \)) and where the length of the vector is understood from the context. In the two’s complement scheme inverting a positive number is a two-step process: first flip its bits (that is, XOR with the all-1 vector) and then add 1 to the result. Hence, in what follows, to invert a negative number, and extract its absolute value, we first subtract 1 and then flip its bits.
Definition 28 (absolute value operation $\overline{\text{ABS}}$). Let \overline{x} be a t-bit vector representing an integer in two’s complement. Let s be its sign bit, and let $\overline{m} = e(s)$ be the t-bit vector all of which bits are s. Define $\overline{\text{ABS}}(\overline{x})$ as the multi-output circuit that outputs $t + 1$ bits as follows (where \oplus here is bit-wise XOR):

$$\overline{\text{ABS}}(\overline{x}) := \overline{\text{ADD}}(\overline{x}, \overline{m}) \oplus \overline{m}.$$

For the sake of the clarity of the proof, we compute the product of two t-bit numbers in the two’s complement notation somewhat less efficiently than it is usually done: we define the product of nonnegative numbers in the standard way, apply it to the absolute values of the numbers and then apply the appropriate sign bit. This way we get a slightly greater number of bits than needed to keep the value.

To define the multiplication of two t-bit integers in the two’s complement notation we first define an unsigned multiplication operator $\overline{\text{PROD}}_+$ which is easy to implement. It takes two non-negative integers (that is, their sign bit is zero, and this assumption is required for the circuit to work correctly), and performs the standard non-negative multiplication by performing $i = 0, \ldots, t - 1$ iterations, where the ith iteration consists of multiplying the first integer by the single i-th bit of the second integer, and then padding this product by i zeros to the right.

Definition 29 (product of two nonnegative numbers in binary $\overline{\text{PROD}}_+$). Let \overline{a} and \overline{b} be two t-bit integers where the sign bit of both $\overline{a}, \overline{b}$ is zero. We define t iterations $i = 0, \ldots, t - 1$; the result of the ith iteration is defined as the $(t + i)$-length vector $\overline{s}_i = s_{t+i-1}s_{t+i-2}\cdots s_{i,0}$ where

$$s_{ij} := a_{j-i} \land b_i,$$

$$s_{ij} := 0 \quad \text{for } 0 \leq j < i.$$

(Note that we use the sign bits a_{t-1}, b_{t-1} in this process although we assume it is zero; this is done in order to preserve uniformity with other parts of the construction.) The product of the two nonnegative t-bit numbers is defined as the sequential addition of all the results in all iterations:

$$\overline{\text{PROD}}_+(\overline{a}, \overline{b}) := \overline{\text{ADD}}\left(\overline{s}_{t-1}, \overline{\text{ADD}}(\overline{s}_{t-2}, \ldots, \overline{\text{ADD}}(\overline{s}_1, \overline{s}_0))\ldots\right).$$

The number of output bits of $\overline{\text{PROD}}_+$ is formally $2t$ including the sign bit.

Definition 30 (product of two numbers in binary $\overline{\text{PROD}}$). Let \overline{y} and \overline{z} be two t-bit integers in the two’s complement notation. Define the product of \overline{y} and \overline{z} by first multiplying the absolute values of the two numbers and then applying the corresponding sign bit:

$$\overline{\text{PROD}}(\overline{y}, \overline{z}) := \overline{\text{ADD}}\left(\overline{\text{PROD}}_+(\overline{\text{ABS}}(\overline{y}), \overline{\text{ABS}}(\overline{z})) \oplus \overline{m}, s\right),$$

where $s = y_{t-1} \oplus z_{t-1}$ and $\overline{m} = e(s)$, with y_{t-1}, z_{t-1} the sign bits of $\overline{y}, \overline{z}$ as bit vectors in the two’s complement notation, respectively.

Note that the number of bits that $\overline{\text{PROD}}$ outputs is $2t + 3$: given a t-bit number, its $\overline{\text{ABS}}$ is of size $t + 1$ (including the zero sign bit), the nonnegative product $\overline{\text{PROD}}_+$ of $\overline{\text{ABS}}(\overline{x})$ and $\overline{\text{ABS}}(\overline{y})$ has size $2(t + 1)$, bitwise $\overline{\text{XOR}}$ does not change the length, and adding s augments the result by one more bit.

Note that given the bit vectors $\overline{x}, \overline{y}$ of length t, the size of the circuit for $\overline{\text{CARRY}}_i(\overline{x}, \overline{y})$ is $O(t)$ by eq. 12, for $\overline{\text{ADD}}_i(\overline{x}, \overline{y})$ it is $O(t)$ as well, and for $\overline{\text{ADD}}(\overline{x}, \overline{y})$ it is still $O(t)$ because in eq. 13 we can re-use $\overline{\text{CARRY}}_i$. The size of $\overline{\text{ABS}}(\overline{x})$ is also $O(t)$ (this is addition and linear-size bitwise $\overline{\text{XOR}}$) and finally $\overline{\text{PROD}}(\overline{x}, \overline{y})$ is of size $O(t^2)$: we perform an addition of $O(t)$ bit vectors of size $O(t)$ each.

\footnote{Note that since the largest (in absolute value) negative number that can be represented by a t-bit binary vector in the two’s complement scheme is 2^{t-1}, while the largest positive number that can be represented in such a way is only $2^{t-1} - 1$, we need to store the absolute number of a t-bit integer in the two’s complement scheme using $t + 1$ bits.}
5.2 Extracting Bits and the Main Binary Value Lemma

We are now ready to define the algebraic circuit BIT, in which BIT_i is the ith bit, that extracts the bit vector of the output of a given algebraic circuit (as a function of the input variables, where the variables are considered to range over 0-1).

Definition 31 (the bit vector extraction operation BIT). Let F be an algebraic circuit with t its syntactic length. Assume that $0 \leq i \leq t - 1$. We define $\text{BIT}_i(F)$ to be the circuit computing the ith bit of F recursively as follows (note that BIT_1 is a circuit, that is, in the induction step of the construction we may re-use the same nodes more than once).

Case 1: $F = x_j$ for an input x_j. Then, $\text{BIT}_0(F) := x_j$, $\text{BIT}_1(F) := 0$ (in this case there are just two bits).

Case 2: $F = \alpha$, for $\alpha \in \mathbb{Z}$. Then, BIT_i is defined to be the ith bit of α in two’s complement notation, with at most t bits (i.e., $i < t$).

Case 3: $F = G + H$. Then $\text{BIT}(F) := \text{ADD}(\text{BIT}(G), \text{BIT}(H))$, and $\text{BIT}_i(F)$ is defined to be the ith bit of $\text{BIT}(F)$.

Case 4: $F = G \cdot H$. Then $\text{BIT}(F) := \text{PROD}(\text{BIT}(G), \text{BIT}(H))$, and $\text{BIT}_i(F)$ is defined to be the ith bit of $\text{BIT}(F)$.

Recall that in the latter two cases the shorter number is padded to match the length of the longer number by copying the sign bit before applying ADD or PROD.

Note that both $|\text{BIT}_i(F)|$ and $|\text{BIT}(F)|$ have size $O(t^2 \cdot |F|)$ (for t the syntactic length of F). To understand this upper bound, observe that every node in the circuit for $\text{BIT}(F)$ belongs to either a sub-circuit computing the ith bit of $\text{ADD}(\bar{x}, \bar{y})$ (i.e., $\text{ADD}_i(\bar{x}, \bar{y})$) or to a sub-circuit computing the ith bit of $\text{PROD}(\bar{x}, \bar{y})$, for some $0 \leq i \leq t$ and some two vectors of bits \bar{x}, \bar{y} that were already computed by the circuit (since this is a circuit, once the vectors \bar{x}, \bar{y} were computed we can use their result as many times as we like, without the need to compute them again). Hence, each addition gate in F contributes $O(t)$ nodes to $\text{BIT}(F)$ and each product gate in F contributes $O(t^2)$ nodes to $\text{BIT}(F)$. This accounts for the size $O(t^2 \cdot |F|)$ for $\text{BIT}(F)$ (as well as for $\text{BIT}_i(F)$).

For technical reasons we need the following definition:

Definition 32 (IPS sub-proof; multi-output IPS proofs). Let $C(\bar{x}, \bar{y})$ be an IPS proof from a set of polynomial equations as assumptions \mathcal{F} of $p(\bar{x})$ (that is, $C(\bar{x}, \mathcal{F}) = p(\bar{x})$ and $C(\bar{x}, \mathcal{U}) = 0$), and suppose that $C'(\bar{x}, \bar{y})$ is a sub-circuit of $C(\bar{x}, \bar{y})$ such that $C'(\bar{x}, \bar{y})$ is an IPS proof of $g(\bar{x})$ (that is, $C'(\bar{x}, \mathcal{F}) = g(\bar{x})$ and $C'(\bar{x}, \mathcal{U}) = 0$). Then, we say that $C'(\bar{x}, \bar{y})$ is a sub-proof of $C(\bar{x}, \bar{y})$, and also (by slight abuse of terminology) that $g(\bar{x})$ is a sub-proof of the IPS proof C of $p(\bar{x})$ from \mathcal{F}.

Furthermore, a multi-output circuit $C(\bar{x}, \bar{y})$ is said to be an IPS proof from assumptions \mathcal{F}, if each of its output gates computes an IPS proof.

For example, let the assumptions be $\mathcal{F} = \{x_2, (1 + x_1 \cdot x_2)\}$. The two-output circuit $C(\bar{x}, \bar{x})$ defined as $(x_1 \cdot y_1, x_1 \cdot y_2)$, where x_1 is joined by the two sub-circuits $x_1 \cdot y_1$ and $x_1 \cdot y_2$, is an IPS proof having two sub-proofs: the first is a sub-proof of $x_1 \cdot x_2$ from \mathcal{F}, and the second is a sub-proof of $x_1 \cdot (1 + x_1 x_2)$ from \mathcal{F}.

Lemma 5.1. (main binary value lemma) Let $F(\bar{x})$ be an algebraic circuit over \mathbb{Z} in the variables $\bar{x} = \{x_1, \ldots, x_n\}$, and suppose that the syntactic length of F is at most t. Then, there is an IPS proof of

$$F = \text{VAL}(\text{BIT}(F))$$

\[15\text{Notice that not all sub-circuits of } C \text{ are IPS proofs; e.g., if they are polynomials that are not in the ideal generated by } \bar{y}, \text{ they are not sub-proofs.}\]
of size poly(|F|, t) (there are no axioms for this IPS proof, except for the boolean axioms). Furthermore, if F(\overline{x}) is constant-free, the poly(|F|, t)-size IPS proof is also constant-free.

Proof: We will proceed, essentially, by induction on the structure of F. For technical reasons (since we work with circuits of which sub-circuits can be re-used) we are going to state our induction hypothesis on an IPS proof that consists, as sub-proofs, of other IPS proofs.

More precisely, let F_1, \ldots, F_k be a set of sub-circuits of F. We denote by \lambda(F_1, \ldots, F_k) the size of the IPS proof we are to construct; this proof will consist (as sub-proofs) of IPS proofs of F_i = VAL(\mathsf{BIT}(F_i)), for all i \in [k]. We let \lambda(\emptyset) := 0. We shall assume that at every step of the construction F_1 is of maximal size, namely there is no F_i that has size bigger than F_1 (possibly there are other F_j’s with the same size). In this way, we make sure that F_1 is not a sub-circuit of any other F_i. The IPS proof is to be constructed by induction on |F_1| so that in each step of the induction we deal with a single sub-circuit F_1 of F, such that |F_1| > 1. In the base case of the induction we thus have \lambda(F_1, \ldots, F_k) such that all F_i’s have size 1, namely, they are all the variables and constant gates that appear in F.

Note that since we treat the input to \lambda as a set we discard duplicate F_i’s from its input. For example, \lambda(G, H) = \lambda(G) in case G = H. (This is convenient in what follows, because F is a circuit and the IPS proof we construct is also a circuit, and hence can re-use multiple times the same IPS sub-proof; see below.)

We proceed by induction on |F_1|, the maximal size of a circuit in F_1, \ldots, F_k, to show the following: in case all F_1, \ldots, F_k are variables or constant nodes we show that

\[\lambda(F_1, \ldots, F_k) \leq c_0 kt, \]

for some constant c_0.

In case F_1 = G \circ H, for \circ \in \{+, \cdot\}, we show that

\[\lambda(F_1, \ldots, F_k) \leq \lambda(G, H, F_2, \ldots, F_k) + (t \cdot |F_1|)^b, \]

for some constants b independent of |F_1| and t. This recurrence relation immediately implies that \lambda(F) \leq |F| \cdot (t \cdot |F|)^b, which is polynomial in |F| and t (informally, every node in F contributes the additive term c_0t from (t \cdot |F|)^b to the recurrence).

Base case: All F_1, \ldots, F_k are variables or constant nodes. We construct a multi-output IPS proof C(\overline{x}, \overline{y}), that consists of k disjoint proofs of VAL(\mathsf{BIT}(F_j)) = F_j, for j \in [k].

Case 1: F_j = x_i, for i \in [n]. Thus, the syntactic length of F_j is 2 and by definition \text{VAL}(\mathsf{BIT}(x_i)) := \text{VAL}(0x_i) := x_i - 2^i \cdot 0 (the left equality is by definition of \mathsf{BIT}, and the right equality is by definition of \text{VAL}). Hence, \text{VAL}(\mathsf{BIT}(x_i)) = x_i is a true polynomial identity and so by **Fact A.1** we have an IPS proof of size precisely the size of the circuit for x_i - 2^i \cdot 0 - x_i which is at most, say, 20.

Case 2: F_j = \alpha, for \alpha \in \mathbb{Z}. Then, by **Definition 31**, \text{VAL}(\mathsf{BIT}(\alpha)) := \sum_{t=0}^{2^{t-1} \cdot \alpha_{t-1}} \cdot 2^{t-1} \cdot \alpha_{t-1}, where \alpha_{t-1} \ldots \alpha_0 is the correct bit vector of \alpha in the two’s complement notation (where t is the syntactic length of F_j). Hence, \text{VAL}(\mathsf{BIT}(\alpha)) = \alpha is a true polynomial identity of size at most c_0t, for some constant c_0. By **Fact A.1** we have an IPS proof of \text{VAL}(\mathsf{BIT}(\alpha)) = \alpha of size at most c_0t.

Hence, the total size of all the proofs of VAL(\mathsf{BIT}(F_j)) = F_j, for j \in [k], amounts to \lambda(F_1, \ldots, F_k) \leq c_0 kt, as required.

Induction step: We assume that the syntactic length of F_1 is t. We show that, in case F_1 = G + H, \lambda(F_1, \ldots, F_k) \leq \lambda(G, H, F_2, \ldots, F_k) + c_1 + (t \cdot |F_1|)^{b'}, for some constants b’ and c_1, and in case F_1 = G \cdot H we show that \lambda(F_1, \ldots, F_k) \leq \lambda(G, H, F_2, \ldots, F_k) + (t \cdot |F_1|)^a + (t \cdot |F_1|)^b, for some constants...
b' and a independent of t and |F1|. Thus, choosing a big enough constant b, e.g., b > 10 \cdot \max(a, b'), will conclude that λ(F) ≤ |F| \cdot (t \cdot |F|)^b, and hence will conclude the proof.

Case 1: F1 = G + H, with F1 of syntactic length t. Since the syntactic length of F1 is t, the syntactic length of BIT(G), BIT(H) is t − 1 (after padding BIT(G), BIT(H) to have the same size). We need to construct an IPS proof consisting of sub-proofs of VAL(BIT(F1)) = F1, . . . , VAL(BIT(Fk)) = Fk.

By induction hypothesis we have an IPS proof consisting of sub-proofs of \(G + H = \text{VAL(BIT}(G)) + \text{VAL(BIT}(H))\) and \(F_i = \text{VAL(BIT}(F_i))\), for \(i = 2, . . . , k\), of total size λ(G, H, F2, . . . , Fk) + c1, for some constant c1 (the constant c1 here is needed for the addition of the two proofs; see Fact A.3 in which c1 = 1). It thus suffices to prove

\[
\text{VAL(BIT}(G)) + \text{VAL(BIT}(H)) = \text{VAL(BIT}(F1))
\]

with an IPS proof of size at most \((t \cdot |F1|)^{b'}\), for some constant b' independent of t.

For simplicity of notation, let us denote the circuits for bits BIT(G) and BIT(H), by \(\bar{y}\) and \(\bar{z}\), respectively, and the syntactic length of \(\bar{y}, \bar{z}\) by \(r = t - 1\). We proceed slightly informally within IPS as follows (recall that polynomial identities of size s have trivial IPS proofs of size s by Fact A.1).

\[
\text{VAL}(\bar{y}) + \text{VAL}(\bar{z}) = \sum_{i=0}^{r-2} 2^i(y_i + z_i) - 2^{r-1}(y_{r-1} + z_{r-1}).
\]

On the other hand we have (recall the padded bits \(y_r = y_{r-1}, z_r = z_{r-1}\) in the definition of ADD)

\[
\text{VAL(BIT}(F1)) = \text{VAL(ADD}_0 (\bar{y}, \bar{z})\ldots\text{ADD}_r (\bar{y}, \bar{z})) \quad \text{(by definition of BIT)}
\]

\[
= \sum_{i=0}^{r-1} 2^i(z_i \oplus y_i \oplus \text{CARRY}_i(\bar{y}, \bar{z})) - 2^r(z_{r-1} \oplus y_{r-1} \oplus \text{CARRY}_r(\bar{y}, \bar{z}))
\]

(by definition of ADD_i and VAL).

Thus, to complete the case of addition, it remains to prove the following:

Claim 5.2. There is an IPS proof with size at most \((r \cdot |F1|)^{b''}\), for a constant b'' (independent of r, and such that b' will be chosen so that b' > b'') of the equation

\[
\sum_{i=0}^{r-2} 2^i(y_i + z_i) - 2^{r-1}(y_{r-1} + z_{r-1})
\]

\[
= \sum_{i=0}^{r-1} 2^i(z_i \oplus y_i \oplus \text{CARRY}_i(\bar{y}, \bar{z})) - 2^r(z_{r-1} \oplus y_{r-1} \oplus \text{CARRY}_r(\bar{y}, \bar{z})).
\]

Proof of claim: This is proved by induction on r as follows.

Base case: \(r = 2\). It is easy to see (or can be verified by hand) that in this case the two sides of the claim are equal for every \(y_0, z_0, y_1, z_1 \in \{0, 1\}\). Given that the number of bits in this case is constant, this is enough to conclude that there is an IPS proof of the above equation (using reasoning by boolean cases as in Prop. A.5, over a constant number of possible truth assignments for \(y_0, z_0, y_1, z_1\) of size \((2 \cdot |F|)^{b''}\), for some constant b''.

Induction step: To prove this step, notice that using the induction hypothesis we see that the equality we need to prove is

\[
(z_{r-2} + y_{r-2}) - (z_{r-1} + y_{r-1}) = z_{r-2} \oplus y_{r-2} \oplus \text{CARRY}_{r-1}(\bar{y}, \bar{z}) - z_{r-1} \oplus y_{r-1} \oplus \text{CARRY}_r(\bar{y}, \bar{z}).
\]
Substituting the definition for \(\text{CARRY}_{r-1} \) and \(\text{CARRY}_r \), we get a polynomial equation in five variables: \(z_{r-2}, y_{r-2}, z_{r-1}, y_{r-1}, \) and \(C \), where \(C = \text{CARRY}_{r-2}(\bar{\gamma}, \bar{z}) \). Once it is verified by hand on \(\{0,1\} \), we conclude that the circuit size of the proof is polynomial in the size of the circuits provided that these five “variables” are indeed boolean. Four of them are boolean by the hypothesis of the lemma, and the equation \(C^2 - C = 0 \) for the carry bit \(C \) is also easy to derive. Similarly to the above, we get an IPS proof of size at most \((r \cdot |F|)^b' \), for a constant \(b' \). \(\blacksquare \)

This concludes Case 1 (i.e., addition) of the induction step of the proof of Lemma 5.1.

Case 2: \(F_1 = G \cdot H \), with \(F_1 \) of syntactic length \(t \). We need to construct an IPS proof consisting of sub-proofs of \(\text{VAL}(\text{BIT}(F_1)) = F_1, \ldots, \text{VAL}(\text{BIT}(F_k)) = F_k \), of size at most \(\lambda(G, H, F_2, \ldots, F_k) + (t \cdot |F_1|)^a + (t \cdot |F_1|)^b' \), for constants \(a, b' \) independent of \(|F_1| \) and \(t \). By induction hypothesis we have an IPS proof consisting of sub-proofs of \(G \cdot H = \text{VAL}(\text{BIT}(G)) \cdot \text{VAL}(\text{BIT}(H)) \) and \(F_i = \text{VAL}(\text{BIT}(F_i)) \), for \(i = 2, \ldots, k \), of total size \(\lambda(G, H, F_2, \ldots, F_k) + |F_1| + c_2 \), for some constant \(c_2 \) (the term \(|F_1| + c_2 \) here is needed for the product of the two proofs \(G = \text{VAL}(\text{BIT}(G)) \) and \(H = \text{VAL}(\text{BIT}(H)) \); see Fact A.4). It thus suffices to prove

\[
\text{VAL}(\text{BIT}(F_1)) = \text{VAL}(\text{BIT}(G)) \cdot \text{VAL}(\text{BIT}(H))
\]

with an IPS proof of size at most \((t \cdot |F_1|)^b' \), for a constant \(b' \). Let \(r \) denote the syntactic length of \(G, H \). Since the syntactic length of \(F_1 \) is \(t \) we have \(t = 2r + 3 \).

In what follows, we use the notation from Definition 30, namely, \(\bar{\gamma} = \text{BIT}(G) \) and \(\bar{z} = \text{BIT}(H) \). We first prove two simple statements about \(\text{ABS} \).

Claim 5.3. Let \(\bar{z} \) be a bit vector of length \(r \) representing an integer in two’s complement and let \(s \) be the sign bit of \(\bar{z} \). Then \(\text{VAL}(\bar{z}) = (1 - 2s) \cdot \text{VAL}(\text{ABS}(\bar{z})) \) has an IPS proof from the boolean axioms, of size at most \(r^c \), for some constant \(c \) independent of \(r \).

Proof of claim: Recall that the size of \(\text{ABS}(\bar{z}) \) is \(O(r) \). We will apply (slightly informally) Prop. A.5 for reasoning by boolean cases in IPS as follows. Consider the two cases for the sign bit \(s \). In case \(s = 0 \) the claim is not hard to check; we will show only the case \(s = 1 \).

Recall that inverting a negative number via \(\text{ABS} \) is done by subtracting 1 (which is the same as adding the all-one vector) and then inverting all the bits in the resulting vector. Let \(\bar{\gamma} \) be a bit vector and \(\mathbf{1} \) be the all-one vector of the same length of \(\bar{\gamma} \), then

\[
\text{VAL}(\bar{\gamma} \oplus \mathbf{1}) = \sum_{i=0}^{r-2} (1 - y_i)2^i - (1 - y_{r-1})2^{r-1} = -1 - \text{VAL}(\bar{\gamma}). \quad (15)
\]

Using this, we have

\[
(1 - 2s) \cdot \text{VAL}(\text{ABS}(\bar{z})) = -1 \cdot \text{VAL}(\text{ADD}(\bar{z}, \mathbf{1}) \oplus \mathbf{1}) \quad \text{(by definition of \text{ABS})}
= -1 \cdot (-1 - \text{VAL}(\text{ADD}(\bar{z}, \mathbf{1}))) \quad \text{(by eq. 15 above)}
= 1 + \text{VAL}(\text{ADD}(\bar{z}, \mathbf{1})).
\]

By the addition case (Case 1 above) we can construct an IPS proof of \(\text{VAL}(\text{ADD}(\bar{z}, \mathbf{1})) = \text{VAL}(\bar{z}) + \text{VAL}(\mathbf{1}) = \text{VAL}(\bar{z}) - 1 \) of size at most \(r^{b'} \), for some constant \(b' \). This concludes the proof since we finally get \(1 + \text{VAL}(\text{ADD}(\bar{z}, \mathbf{1})) = \text{VAL}(\bar{z}) \), where the whole proof is of size at most \(r^c \), for some constant \(c \). \(\blacksquare \)
Claim 5.4 (non-negativeness of ABS). Let \overline{x} be a bit vector of length r representing an integer in two’s complement and let s be the circuit computing the sign bit of $\text{ABS}(\overline{x})$ according to Definition 28. Then $s = 0$ has a polynomial-size IPS proof (using only the boolean axioms).

Proof of claim: We proceed as before by considering the two cases of the sign of \overline{x}. The case of positive sign is easy to verify. In the case of a negative sign we have $\text{ABS}(\overline{x}) = \overline{\text{ADD}(\overline{x}, 1)} \oplus 1$, where by the definition of $\overline{\text{ADD}}$, \overline{x} is padded with an additional one bit $x_r = x_{r-1} = 1$, and hence the sign bit of $\text{ABS}(\overline{x})$ is computed as $\text{CARRY}_r(\overline{x}, 1) \oplus 1$ (note that $\overline{\text{ADD}}$ has one more bit than \overline{x}). By (eq. 14), $\text{CARRY}_r(\overline{x}, 1)$ is equal to (the arithmetization of) $\bigvee_{i < r} x_i$. Since $x_{r-1} = 1$, we can prove in IPS by a simple substitution that the arithmetization of $\bigvee_{i < r} x_i$ is the constant 1, leading to $\text{CARRY}_r(\overline{x}, 1) \oplus 1 = 0$. \blacksquare

We consider then the case of the multiplication of nonnegative numbers.

Claim 5.5. Let $\overline{y}, \overline{z}$ be two bit vectors of length r in the two’s complement notation. Then,

$$\text{VAL} \left(\text{PROD}_+ \left(\text{ABS}(\overline{y}), \text{ABS}(\overline{z}) \right) \right) = \text{VAL} \left(\text{ABS}(\overline{y}) \right) \cdot \text{VAL} \left(\text{ABS}(\overline{z}) \right)$$

has an IPS derivation (from the boolean axioms) of size r^c, for a constant c independent of r.

Proof of claim: Let \overline{y}^+ denote $\text{ABS}(\overline{y})$ and \overline{z}^+ denote $\text{ABS}(\overline{z})$, both of length $r + 1$ (we know from Claim 5.4 that the sign bits $\overline{y}^+_r, \overline{z}^+_r$ of \overline{y}^+ and \overline{z}^+, respectively, are zero). Recall Definition 30 of PROD, in which we defined the vector \overline{s}_i to be the result of multiplying the ith bit of \overline{z}^+, denoted z^+_i, with \overline{y}^+, and then padding it with i zeros to the right. First, we show that IPS can prove that this multiplication step is correct, in the sense that IPS has an $O(r)$-size proof of:

$$\text{VAL}(\overline{s}_i) = \text{VAL}(\overline{y}^+) \cdot z^+_i \cdot 2^i,$$

for every $i = 0, \ldots, r$. Indeed, for every $i = 0, \ldots, r$, by definition of \overline{s}_i we have the following polynomial identities:

$$\text{VAL}(\overline{s}_i) = \sum_{j=i}^{r+i-1} (y^+_j \cdot z^+_i)2^j - (y^+_i \cdot z^+_i)2^{r+i} = \left(\sum_{j=0}^{r-1} y^+_j 2^j \right) \cdot z^+_i \cdot 2^i$$

$$= \text{VAL}(\overline{y}^+) \cdot z^+_i \cdot 2^i$$

(we have used $y^+_r = z^+_r = 0$ here).

Second, based on the proof of the case of addition (Case 1 above), we can derive

$$\text{VAL}(\overline{\text{ADD}}(\overline{s}_r, \overline{\text{ADD}}(\overline{s}_{r-1}, \ldots, \overline{\text{ADD}}(\overline{s}_0, \overline{s}_1) \ldots)))$$

$$= \text{VAL}(\overline{s}_r) + \text{VAL}(\overline{\text{ADD}}(\overline{s}_{r-1}, \ldots, \overline{\text{ADD}}(\overline{s}_0, \overline{s}_1) \ldots)))$$

$$\vdots$$

$$= \text{VAL}(\overline{s}_r) + \cdots + \text{VAL}(\overline{s}_2) + \text{VAL}(\overline{\text{ADD}}(\overline{s}_0, \overline{s}_1))$$

$$= \sum_{i=0}^{r} \text{VAL}(\overline{s}_i).$$

Consider line eq. 17: each $\overline{\text{ADD}}$ there contributes $O(r)$ gates. Thus, in total eq. 17 has a circuit of size $O(r^2)$. Since line eq. 17 is of size $O(r^2)$, every step in which we use the addition case of the induction statement (Case 1), takes $r^{c'}$, for some constant $c' > 2$ independent of r. Hence, overall
we obtain an IPS proof of the equality between eq. 17 and eq. 18, of size $r^{b''}$, for some constant b'' independent of r.

Using (eq. 16) and $z_+^r = 0$ we conclude with an IPS proof that eq. 17 above (which by Definition 30 is $\text{VAL} \left(\text{PROD}_+ (\overline{y}, \overline{z}) \right)$) equals

$$\text{VAL}(\overline{y}) \cdot \left(\sum_{i=0}^{r-1} z_+^i 2^i \right),$$

which in turn is equal to $\text{VAL}(\overline{y}) \cdot \text{VAL}(\overline{z})$, by definition of VAL and the fact that $z_+^r = 0$. This amounts to an IPS proof of total size r^c, for a constant c independent of r. ■Claim

Finally, we arrive at the main case of multiplying two possibly negative integers written in the two’s complement scheme, each with bit vector of length r. Let $s = y_{r-1} \oplus z_{r-1}$ and let $\overline{m} = e(s)$ be a vector of length r in which every bit is s. Recall that

$$\text{PROD}(\overline{y}, \overline{z}) = \text{ADD} \left(\text{PROD}_+ (\text{ABS}(\overline{y}), \text{ABS}(\overline{z})) \oplus \overline{m}, s \right).$$

Claim 5.6. $\text{VAL} \left(\text{PROD}(\overline{y}, \overline{z}) \right) = (1 - 2s) \cdot \text{VAL}(\text{PROD}_+ (\text{ABS}(\overline{y}), \text{ABS}(\overline{z})))$ has an IPS derivation from the boolean axioms of size r^c, for some constant c independent of r.

Proof of claim: Consider the following two cases.

Case 1: $s = 1$. Note that inverting all bits affects the value of a bit vector as follows: if \overline{x} is a length k bit vector, then

$$\text{VAL}(\overline{x} \oplus e(s)) = \sum_{i=0}^{k-2} (1 - x_i)2^i - (1 - x_{k-1})2^{k-1} = -1 - \text{VAL}(\overline{x}). \quad (19)$$

Hence, since $s = 1$,

$$\text{VAL} \left(\text{PROD}(\overline{y}, \overline{z}) \right) = \text{VAL} \left(\text{ADD} \left(\text{PROD}_+ (\text{ABS}(\overline{y}), \text{ABS}(\overline{z})) \oplus \overline{m}, s \right) \right)$$

by definition of PROD

$$= \text{VAL} \left(\text{PROD}_+ (\text{ABS}(\overline{y}), \text{ABS}(\overline{z})) \oplus \overline{m} \right) + 1$$

by Case 1 (addition) of induction statement

$$= -1 - \text{VAL} \left(\text{PROD}_+ (\text{ABS}(\overline{y}), \text{ABS}(\overline{z})) \right) + 1$$

by eq. 19

$$= (1 - 2s) \cdot \text{VAL}(\text{PROD}_+ (\text{ABS}(\overline{y}), \text{ABS}(\overline{z})))$$

since $s = 1$.

Case 2: $s = 0$. This is an easier case, in which we show $\text{VAL} \left(\text{PROD}(\overline{y}, \overline{z}) \right) = \text{VAL}(\text{PROD}_+ (\text{ABS}(\overline{y}), \text{ABS}(\overline{z})))$, and so we are done by $s = 0$. We omit the details.

Using reasoning by boolean cases in IPS according to Prop. A.5 we conclude the claim. ■Claim

Taking together Claim 5.6, Claim 5.5 and Claim 3 (for \overline{y} and for \overline{z} of length t) we get the desired equality for the product case, where $s = y_{r-1} \oplus z_{r-1}$:

$$\text{VAL}(\text{PROD}(\overline{y}, \overline{z}))$$

$$= (1 - 2s) \cdot \text{VAL}(\text{PROD}_+ (\text{ABS}(\overline{y}), \text{ABS}(\overline{z})))$$

$$= (1 - 2s) \cdot \text{VAL}(\text{ABS}(\overline{y})) \cdot \text{VAL}(\text{ABS}(\overline{z}))$$

$$= (1 - 2y_{r-1}) \cdot \text{VAL}(\text{ABS}(\overline{y})) \cdot (1 - 2z_{r-1}) \cdot \text{VAL}(\text{ABS}(\overline{z}))$$

$$= \text{VAL}(\overline{y}) \cdot \text{VAL}(\overline{z}),$$
where the penultimate equation stems from the polynomial identity \((1 - 2y_{t-1}) \cdot (1 - 2z_{t-1}) = 1 - 2(y_{t-1} \oplus z_{t-1})\).

This concludes the proof of the first part of Lemma 5.1. For the second part, assuming that \(F(x)\) is constant-free, the proof is identical, noting simply that in the IPS proof we constructed above all coefficients are at most exponential in \(n\), and thus by the upper bound \(\tau(m) \leq O(\log m)\) for every \(m \in \mathbb{N}\), we get a constant-free IPS proof of size \(\text{poly}(n)\).

\[\square\]

6 Algebraic versus Semi-Algebraic Proof Systems

Here we show that IPS simulates CPS over \(\mathbb{Q}\) assuming the existence of small IPS refutations for the generalized binary value principle (and the binary value principle for the case of \(\mathbb{Z}\)). Under reasonable conditions we show that in fact IPS is polynomially equivalent to CPS assuming short IPS refutations of the (generalized) binary value principle, hence bridging the gap between algebraic and semi-algebraic proof systems in the regime of very strong proof systems. We work with the boolean versions of both CPS and IPS, meaning that the boolean axioms are present.

Moreover, we demonstrate two kinds of conditional simulations: a (standard) polynomial simulation for the language of unsatisfiable sets \(\mathcal{F}\) of polynomial equations, and in Sect. 6.2 an effective simulation (in the sense of Pitassi-Santhanam [40]) for the language of unsatisfiable sets containing both equations \(\mathcal{F}\) and inequalities \(\mathcal{H}\) over \(\mathbb{Z}\); similar reasoning works over \(\mathbb{Q}\). Note that we cannot hope to show a (standard) simulation of CPS by IPS for the language containing both polynomial equalities and polynomial inequalities, because inequalities are not expressible directly as polynomial equations in IPS; hence, for the sake of the second kind of simulation we first translate \(\mathcal{H}\) to bit representation and only then simulate the CPS proof, yielding an effective simulation.

We now prove the simulation for constant-free proofs over \(\mathbb{Q}\), and in Sect. 6.2 we will prove the effective simulation (over \(\mathbb{Z}\), which implies the same result over \(\mathbb{Q}\)).

Recall that IPS\(_Q\) and CPS\(_Q\) stand for IPS and CPS proofs over \(\mathbb{Q}\), respectively, and that by Prop. 3.1, given a constant-free circuit \(C\) over \(\mathbb{Q}\) we can turn it into a constant-free circuit \(C'\) over \(\mathbb{Z}\) computing \(M \cdot \tilde{C}\), for some nonzero integer \(M\), with \(|C'| \leq 4|C|\) and \(\tau(M) \leq 4|C|\).

Definition 33 (syntactic length of a circuit over \(\mathbb{Q}\)). The syntactic length of a circuit \(C\) over \(\mathbb{Q}\) is the syntactic length of the corresponding circuit \(C'\) over \(\mathbb{Z}\) constructed from \(\tilde{C}\) in Prop. 3.1.

The main technical theorem of this section is the following:

Theorem 6.1 (conditional simulation of constant-free boolean CPS\(_Q\) by constant-free boolean IPS\(_Q\)). Let \(\mathcal{F}\) denote a system of polynomial equations over \(\mathbb{Q}\) written as constant-free circuits \(\{F_i(x) = 0\}_{i \in I}\) and let \(C(x, \overline{F}) = -1\) be a constant-free CPS\(_Q\) refutation of \(\overline{F}\) where \(C(x, \overline{F})\) is of size \(s\) and syntactic length \(t\) (as in Definition 33).

Assume that the binary value principle BVP\(_{t,M}\) has a size \(\leq r\) constant-free IPS\(_Q\) refutation, for every given positive integer \(M\) with \(\tau(M) = O(s)\). Then, there is a constant-free IPS\(_Q\) refutation of \(\overline{F}\) with size \(\text{poly}(s, t, r)\).

Remark 6.2. 1. By inspection of the proof of Thm. 6.1 one can see that the degree of the simulating IPS refutation can be exponential in the size of the resulting circuit (clearly, the degree cannot be larger than that).

\[\text{We need to consider also the size of the CPS refutation after the substitution of } \overline{F} \text{ for the placeholder variables, that is, } C(x, \overline{F}), \text{ because of the slightly peculiar nature of IPS (similar to CPS) in which the size of a refutation does not include directly the size of the assumptions it refutes.}\]
2. Assuming that indeed propositional IPS simulates propositional CPS, by Prop. 4.13 propositional IPS also simulates any propositional CPS (or Positivstellensatz/SoS) refutation of CNF formulas given as inequalities. This is because if propositional CPS has a short refutation for a CNF given as inequalities (Definition 16) then from Prop. 4.13, propositional CPS also has a short refutation of the CNF given as equations (Definition 11).

Since the simulation of CPS by IPS in Thm. 6.1 depends on the syntactic length t of the simulated CPS proof, if we aim to achieve a (polynomial) simulation we need to bound the syntactic length of the CPS proofs to be at most polynomial in the proof size. We denote this restricted proof system by CPS$_{Z}^{s}$ and CPS$_{Q}^{s}$. In other words, a family $\{\pi_{i}\}_{i=1}^{\infty}$ of CPS$_{Z}$ (resp. CPS$_{Q}$) proofs is said to be a family of CPS$_{Z}^{s}$ (resp. CPS$_{Q}^{s}$) proofs if there is a constant c such that for every $i \in \mathbb{N}$, the syntactic length of π_{i} is at most $|\pi_{i}|^{c}$. In other words, the maximal value (over $\{0,1\}$-assignments to the variables) of every gate in CPS$_{Z}^{s}$ proof-sequence $\{\pi_{i}\}_{i=1}^{\infty}$ is bounded from above by $2^{\exp(\text{poly}(n))}$. It is important to note that most known examples of short semi-algebraic proofs of propositional formulas have polynomial syntactic length, as the multiplication of arbitrary inequalities is not used, and multiplying by x or by $1-x$ for a variable x increases the syntactic length additively. The use of division by scalars (for example, in the LS proof of PHP) can increase the syntactic length in Prop. 3.1; however, as those scalars have at most exponential (actually, polynomial) values, the transformation from rational numbers to integers can bring at most $(\exp(\text{poly}(n)))^{\text{proof-size}}$ factor, thus a polynomial number of bits.

Recall the terminology in Sect. 3.1: a refutation in IPS$_{Z}$ means a proof of M for some nonzero integer M. Further, we say that IPS$_{Z}$ simulates CPS$_{Q}$ if a size-s CPS$_{Q}$ proof of p from assumptions \mathcal{F} over \mathbb{Z} implies that there is a poly(s)-size IPS$_{Z}$ proof of $M \cdot p$ from \mathcal{F}, for some nonzero integer M.

The binary value principle thus characterizes exactly the apparent advantage CPS has over IPS, in the following sense:

Corollary 6.3 (BVP characterizes the strength of boolean CPS). In what follows, IPS and CPS stand for boolean IPS and boolean CPS, respectively, where both are proof systems for refuting unsatisfiable sets of polynomial equalities (not necessarily CNF formulas).

1. Constant-free IPS$_{Z}$ simulates constant-free CPS$_{Z}^{s}$ iff constant-free IPS$_{Z}$ admits poly(t)-size refutations of BVP$_{t}$.

2. Constant-free IPS$_{Q}$ simulates constant-free CPS$_{Q}^{s}$ iff for every positive integer M, constant-free IPS$_{Q}$ admits poly($t, \tau(M)$)-size refutations of BVP$_{t,M}$.

Proof: We show the proof of item 2 (which includes all the ideas for the other case).

(\Leftarrow) Assume that for every positive integer M constant-free IPS$_{Q}$ admits poly($t, \tau(M)$)-size refutations of BVP$_{t,M}$. Then specifically for $\tau(M) = O(s)$ there is a poly(t, s) upper bound on the size of constant-free IPS$_{Q}$ refutations of BVP$_{t,M}$. By Thm. 6.1 if there exists a syntactic-length t constant-free CPS$_{Q}^{s}$ refutation of \mathcal{F} then there exists a constant-free IPS refutation of \mathcal{F} with size poly(s, t, r) = poly(s), because $t = \text{poly}(s)$ by assumption and $r = \text{poly}(s, t)$.

(\Rightarrow) This follows from the CPS$_{Z}$ upper bound on BVP$_{n}$ demonstrated in Prop. 4.1. More precisely, it suffices to show that given a positive integer M there are constant-free CPS$_{Q}^{s}$ refutations of BVP$_{t,M}$ having poly($t, \tau(M)$)-size. Using the notation as in the proof of Prop. 4.1, we claim that the conic circuit $\frac{1}{M} \cdot \left(\sum_{i=1}^{t} 2^{i-1} \cdot y_{i}\right) + \frac{1}{M} \cdot y_{t+1}$ serves as such a refutation. Indeed, this conic circuit is easily written as an $O(t \cdot \log t + \tau(M))$-size constant-free circuit. This is because $\tau(2^{i-1}) = \log(i - 1)$, for every $i = 1, \ldots, t$, and $1/M$ is clearly of size $2 + \tau(M)$. That this conic circuit is a refutation of BVP$_{t,M}$ follows immediately from the definition (see the proof of Prop. 4.1).

The proof of item 1 is similar and we omit the details.
By Thm. 4.7 CPS simulates IPS, hence when considering IPS proofs of which the syntactic-length grows polynomially in the size of the proofs, Cor. 6.3 characterizes when IPS and CPS can simulate each other. More precisely, similar to CPS\textsubscript{QZ} and CPS\textsubscript{QZ} we denote by IPS\textsubscript{QZ} and IPS\textsubscript{QZ} the proof systems consisting of IPS proofs in which the syntactic length grows polynomial in the size of proofs (over \(\mathbb{Z}\) and \(\mathbb{Q}\), respectively). In other words, a family \(\{\pi_i\}_{i=1}^{\infty}\) of IPS\textsubscript{Z} (resp. IPS\textsubscript{Q}) proofs is said to be a family of IPS\textsubscript{Z} (resp. IPS\textsubscript{Q}) if there is a constant \(c\) such that for every \(i \in \mathbb{N}\), the syntactic length of \(\pi_i\) is at most \(|\pi_i|^c\).

Corollary 6.4 (Conditional equivalence of strong algebraic and semi-algebraic proofs). In what follows, IPS and CPS stand for boolean IPS and boolean CPS, respectively, where both are proof systems for refuting unsatisfiable sets of polynomial equalities (not necessarily CNF formulas).

1. Constant-free IPS\textsubscript{Z} is polynomially equivalent to constant-free CPS\textsubscript{Z} iff constant-free IPS\textsubscript{Z} admits \(\text{poly}(t)\)-size refutations of BVP\textsubscript{t}.

2. Constant-free IPS\textsubscript{Q} is polynomially equivalent to constant-free CPS\textsubscript{Q} iff for every positive integer \(M\) constant-free IPS\textsubscript{Q} admits \(\text{poly}(t, \tau(M))\)-size refutations of BVP\textsubscript{t,M}.

Remark 6.5. The results above in Thm. 6.1, Cor. 6.3 and Cor. 6.4 hold trivially also in the unit-cost model, where we consider the size of coefficient in the ring or field to be 1. More precisely, if we replace the term “constant-free proof” with the term “proof” the results still hold. This is because we limit the syntactic length of the original CPS circuit, and the size of circuit families of polynomial syntactic length in the unit-cost model is smaller or equal than their size in the constant-free model.

And if a family of constant-free circuits (proofs) \(C_n\) simulates a family of constant-free circuits with a polynomial syntactic length \(D_n\), then the corresponding circuit family \(C'_n\) in the unit-cost model also simulates the corresponding circuit family \(D'_n\) in the unit-cost model (because \(|D_n| \leq \text{poly}(|D'_n|))$).

6.1 Proof of Thm. 6.1

We need to show that there is an IPS\textsubscript{Z} refutation of \(\overline{F}\). We first translate the setting to the integers, since this will allow us to use the main binary value Lemma 5.1 which is stated for \(\mathbb{Z}\), as follows: we take the CPS\textsubscript{Q} refutation, turn it into a CPS\textsubscript{Z} refutation without increasing the size too much (the syntactic length stays the same by definition), and then simulate this refutation in IPS\textsubscript{Z}, that is, construct an IPS\textsubscript{Z} proof from \(\overline{F}\) of a nonzero integer \(M\). Dividing this IPS\textsubscript{Z} refutation by \(M\) we get the desired IPS\textsubscript{Q} refutation of \(\overline{F}\). We formalize this conversion in the following proposition:

Proposition 6.6 (going from constant-free CPS\textsubscript{Q} to constant-free CPS\textsubscript{Z}). Let \(\overline{F}\) denote a system of polynomial equations over \(\mathbb{Q}\) written as constant-free circuits \(\{F_i(\overline{x}) = 0\}_{i \in I}\) and let \(C(\overline{x}, \overline{F}) = -1\) be a constant CPS\textsubscript{Q} refutation of \(\overline{F}\), where \(C(\overline{x}, \overline{F})\) has size \(s\) and syntactic length \(t\). Then, there exists a set of polynomial equations over \(\mathbb{Z}\) denoted \(\overline{F}' = \{F_i'(\overline{x}) = 0\}_{i \in I}\), where \(F'_i(\overline{x}) = M_i \cdot F_i(\overline{x})\) for some nonnegative \(M_i \in \mathbb{Z}\), for all \(i \in I\), and a constant-free CPS\textsubscript{Z} proof \(C^*(\overline{x}, \overline{y})\) from \(\overline{F}'\) of \(M \cdot (-1)\), for some nonzero \(M \in \mathbb{Z}\), such that \(C^*(\overline{x}, \overline{F}')\) has both size and syntactic length \(\text{poly}(s, t)\).

Proof: The proof is identical to the proof of Prop. 3.1 (cf. Cor. 3.2). Specifically, given a constant-free circuit \(D\) over \(\mathbb{Q}\) the Induction Statement in the proof of Prop. 3.1 shows that there exists a size at most \(4|D|\) constant-free circuit \(D'\) over \(\mathbb{Z}\) that computes \(M \cdot \hat{D}\) for some nonzero integer \(M\). Accordingly, we turn \(\overline{F}\) into \(\overline{F}'\) and \(C(\overline{x}, \overline{y})\) into \(C^*(\overline{x}, \overline{y})\) in this way. By definition of syntactic length for circuits over \(\mathbb{Q}\) the syntactic length of \(C^*(\overline{x}, \overline{y})\) is \(t\).

By Prop. 6.6, to prove Thm. 6.1 we can assume without loss of generality that \(\overline{F}\) is a system of constant-free-circuit equations over \(\mathbb{Z}\) and that \(C(\overline{x}, \overline{F}) = -M\) is a constant-free CPS\textsubscript{Z} refutation,
where $C(\overline{x}, \overline{F})$ is of size s and syntactic length t. Thus, from now on we assume that all constant-free circuits and proofs are over \mathbb{Z}.

Given a multi-output circuit of size s, with m output gates, each computing the circuit H_i (for $i \in [m]$), we assume that an algebraic circuit for $\sum_{j=1}^{m} H_j$ is defined to be a sum of m summands, written as a binary tree of logarithmic in m depth, in which each summand H_j is defined as the circuit whose output is a product gate with its two children connected to the output gate of H_j, and where different H_j’s can have common nodes (so that the size of the circuit computing $\sum_{j=1}^{m} H_j$ is linear in s).

Lemma 6.7 (sign bit of sum of squares is zero). Consider the circuit $H = \sum_{j \in J} H_j^2$, and let $\text{BIT}_t(H)$ be the sign bit of $\text{BIT}(H)$. Then $\text{BIT}_t(H) = 0$ has a polynomial-size IPS proof (using only the boolean axioms).

Proof: Informally, the idea is to prove the desired equation using only the structure of sign bits of additions and squares appearing in top layers only (the layers close to the output gate) of H, without looking at the individual structure of the circuits H_j’s.

First, we show that the sum of two nonnegative numbers is nonnegative, that is, if a pair of circuits have sign bits that are zero then the sign bit of their addition is also zero, and in symbols:

$$\text{BIT}_t(F) = 0, \text{BIT}_t(G) = 0 \vdash_{\text{IPS}} \text{BIT}_{t+1}(F + G) = 0,$$

where the sign bit of F, G is bit t and the sign bit of $F + G$ is bit $t + 1$.

Let $y := \text{BIT}_t(F)$ and $z := \text{BIT}_t(G)$, then by Definition 27 the sign bit of $F + G$ is computed as $y \oplus z \oplus \text{CARRY}_{t+1}(\text{BIT}(F), \text{BIT}(G))$, because we have padded F and G by their sign bits y, z, respectively, before the addition. Given that $y = 0$ and $z = 0$ by assumption, we need to prove that $\text{CARRY}_{t+1}(\text{BIT}(F), \text{BIT}(G)) = 0$. By Definition 27 $\text{CARRY}_{t+1}(\text{BIT}(F), \text{BIT}(G)) = (y \land z) \lor ((y \lor z) \land \cdots)$. Since the arithmetic expressions (according to Definition 26) for $y \land z$ and $y \lor z$ can be easily proved to be zero (from $y = 0, z = 0$), and the same holds for $0 \land \cdots$, we conclude that the sign bit of $F + G$ is zero.

To prove that each of the squares H_j^2 are nonnegative, one needs to consider the two cases of the sign bit x of H_j and infer that the sign bit of the square is zero in both cases using Prop. A.5.

Recall that

$$\text{PROD}(\overline{y}, \overline{z}) := \text{ADD} \left(\text{PROD}_+ \left(\text{ABS}(\overline{y}), \text{ABS}(\overline{z}) \right) \oplus \overline{m}, s \right),$$

where $s = y_\ell \oplus z_\ell$ and $\overline{m} = \overline{e}(s)$, with y_ℓ, z_ℓ the sign bits of $\overline{y}, \overline{z}$ as bit vectors in the two’s complement notation, respectively.

In both cases of the sign of H_j, we have $s = 0$ and $\overline{m} = \overline{0}$ as y and z are equal in our case. Everything else is identical in both cases: the sign bit of PROD_+ is always zero, because PROD_+ is a consecutive sum of nonnegative numbers (the sign of each of those numbers s_i from the definition of PROD_+ is obtained by \land-ing a single bit with the sign of ABS, the latter being zero by Claim 5.4), and we have already proved that the sum of nonnegative numbers is nonnegative. Applying the latter fact once again, we conclude that the sign of H_j^2 is zero in both cases. \qed

We will need the following simple lemma:

Lemma 6.8. Let G be an algebraic circuit which is an arithmetization of a boolean circuit g (Definition 26). Then, IPS has a polynomial-size in $|G|$ derivation of $G^2 - G$ from the boolean axioms.
Proof: This is proved by induction on \(|G|\); see for example [23, Lemma 4], where this is proved for polynomial calculus over algebraic formulas denoted \(\mathcal{F}-PC\).

Since for any circuit \(F\), \(\text{BIT}_1(F)\) is the result of an arithmetization of a boolean circuit we have:

Corollary 6.9. Let \(F\) be a circuit, then IPS has a polynomial-size derivation of \(\text{BIT}_1(F)^2 - \text{BIT}_1(F)\) from the boolean axioms.

Lemma 6.10 (sign bit of literals is zero). Let \(x_i\) be a variable and let \(\text{BIT}_1(x_i)\) and \(\text{BIT}_1(1-x_i)\) be the sign bits of \(\text{BIT}(x_i)\) and \(\text{BIT}(1-x_i)\), respectively. Then \(\text{BIT}(x_i) = 0\) and \(\text{BIT}(1-x_i) = 0\) have constant-size IPS proofs (using only the boolean axioms).

Proof: Observe that indeed the syntactic length of \(x_i\) and \(1-x_i\) is 2. Now, \(\text{BIT}_1(x_i) = 0\) holds by definition, since we define \(\text{BIT}(x_i) = 0x_i\) (Definition 31). For \(\text{BIT}_1(1-x_i) = 0\), this follows by considering the two options \(x_i = 0\) and \(x_i = 1\) (where the size of the proofs is constant, since the statement itself is of constant size, namely, it involves only a single variable and a two-bit vector).

Lemma 6.11 (sign bits of axioms are zero). Given there are polynomial-size IPS proofs of \(\text{BIT}_1(f(\overline{x})) = 0\) from \(f(\overline{x}) = 0\) and the boolean axioms, where \(t + 1\) is the syntactic length of \(f(\overline{x})\).

Proof: By Lemma 5.1 we know that \(\text{VAL}(\text{BIT}(f)) = f\), and hence by assumption \(\text{VAL}(\text{BIT}(f)) = 0\). We need to show that under \(\text{VAL}(\text{BIT}(f)) = 0\) we can infer \(\text{BIT}_t(f) = 0\) with a short IPS proof. Note that this inference is a substitution instance of the following inference:

\[
\sum_{i=1}^{t} 2^{i-1}x_i - 2^t x_{t+1} = 0 \vdash_{\text{IPS}} x_{t+1} = 0, \tag{20}
\]

where we substitute \(\text{BIT}_{i-1}(f)\) for \(x_i\) \((i = 1, \ldots, t + 1)\). By Fact A.8, IPS proofs are closed under substitution instances (together with the fact that the corresponding substitution instances of the boolean axioms \(\overline{x}^2 - \overline{x}\) are also provable in IPS by Cor. 6.9) and so it remains to show that under the assumption that BVP has polynomial-size IPS refutations, eq. 20 holds.

To prove eq. 20 it suffices to show that the assumptions \(x_{t+1} = 1\) and \(\sum_{i=1}^{t} 2^{i-1}x_i - 2^t x_{t+1} = 0\) can be refuted with a polynomial-size IPS refutation.

Assuming \(x_{t+1} = 1\), \(\sum_{i=1}^{t} 2^{i-1}x_i - 2^t x_{t+1} = 0\) becomes \(\sum_{i=1}^{t} 2^{i-1}x_i - 2^t = 0\), and so it remains to show the following:

Claim. Under the assumption that BVP\(_n\) has poly\(_n\)-size IPS refutations, there are polynomial-size IPS refutations of \(\sum_{i=1}^{t} 2^{i-1}x_i - 2^t = 0\).

Proof of claim. Our assumption that there are polynomial-size IPS refutations of BVP\(_{t+1}\)

\[
\sum_{i=1}^{t+1} 2^{i-1}x_i + 1 = 0,
\]

implies that there are short refutation also of its substitution instance

\[
\sum_{i=1}^{t+1} 2^{i-1}(1-y_i) + 1 = 0 \text{ (again, by Fact A.8 and the fact that the substitution instance of the boolean axioms } \overline{x}^2 - \overline{x} \text{, are easily provable when substituting } 1-y_i \text{ for } x_i \text{'s; cf. Lemma Lemma 6.8).}
\]

But \(\sum_{i=1}^{t+1} 2^{i-1}(1-y_i) + 1 = -(\sum_{i=1}^{t+1} 2^{i-1}y_i - 2^t) = 0\). \(\blacksquare\)

Up to now, we have shown that for each algebraic circuit in the “base” of the conic circuit \(C(\overline{x}, \overline{y})\) comprising a CPS refutation (namely, the sub-circuits that substitute the placeholder variables \(\overline{y}\), as well as the \(\overline{x}\) variables themselves), the sign bit can be proved to be zero in IPS. The following lemma shows that under these assumptions IPS can prove that the conic circuit \(C(\overline{x}, \overline{y})\) itself has a zero sign bit (for simplicity we use only \(\overline{x}\) variables in the circuit \(C(\overline{x})\) below).
Lemma 6.12 (conic circuits preserve zero sign bits). Let $C(\overline{x})$ be a conic circuit over \mathbb{Z} in the variables $\overline{x} = \{x_1, \ldots, x_n\}$, let $\overline{H} := \{H_i(\overline{x})\}_{i=1}^n$ be n circuits and suppose that t is the syntactic length of $C(\overline{H})$. Then, there is a polynomial-size in $|C(\overline{H})|$ IPS proof that the sign bit of $C(\overline{H})$ is 0, that is, of $\text{BIT}_t(C(\overline{H})) = 0$, from the assumptions $\text{BIT}_{t_i-1}(H_i(\overline{x})) = 0$, for all $i \in [n]$, where t_i is the syntactic length of $H_i(\overline{x})$.

Proof: The proof is by induction on the size of C. Note that any conic circuit C is one of the following: (1) a variable x_i, (2) a non-negative constant α, (3) a square of some (not-necessarily conic) circuit, that is, $C = G^2$, or (4) an addition $C = G + H$ or product $C = G \cdot H$ of two conic circuits G, H. Therefore, the base cases of our induction will be the first three cases (1)-(3), and the induction steps will be the latter case (4).

Base case:
Case 1: $C = x_i$. Then from the assumption that $\text{BIT}_{t_j-1}(H_j(\overline{x})) = 0$ for all $j \in [n]$, we have that $C(\overline{H}) = H_i(\overline{x})$, and so we are done.

Case 2: $C = \alpha$, for a non-negative constant α. Then by Definition 31 $\text{BIT}(\alpha)$ is the actual bits of α in two’s complement. Since α is non-negative $\text{BIT}_{t-1}(C(\overline{H})) = \text{BIT}_t(\alpha) = 0$, for t the syntactic length of α.

Case 3: $C = G^2$ for some not-necessarily conic circuit G. This case follows from Lemma 6.7.

Induction step:
Case 1: $C = G + H$. This follows from the claim that the sign bit of the addition of non negative numbers is 0, as shown in the proof of Lemma 6.7.

Case 2: $C = G \cdot H$. This follows from the claim that the sign bit of the product of two non-negative integers is non-negative.

We are now ready to conclude the main theorem of this section.

Proof of Thm. 6.1. By assumption, $C(\overline{x}, \overline{y})$ is a conic circuit constituting a CPS refutation of \overline{x}. We assume that $\{f_i(\overline{x})\}_{i \in I}$ can be computed by a sequence of circuits $\{F_i(\overline{x})\}_{i \in I}$ such that $\sum_{i \in I} |F_i(\overline{x})| = u$. Hence, by the definition of CPS, we set \overline{H} to be the set of circuits that consists of $F_i(\overline{x})$ and $-F_i(\overline{x})$, for all $i \in I$, as well as the boolean axioms translation $x_i^2 - x_i$ and $-x_i^2 + x_i$, for all $i \in [n]$, and x_i and $1 - x_i$, for all $i \in [n]$. We thus have $C(\overline{x}, \overline{H}) = -M$ as a polynomial identity.

Since C is a conic circuit, and the sign bits of all variables \overline{x} and all circuits in \overline{H} can be proved in polynomial size (in u) to be 0, by Lemma 6.10 and Lemma 6.11, respectively, we know from Lemma 6.12 that the sign bit of $C(\overline{x}, \overline{H})$ is 0 as well. Since $C(\overline{x}, \overline{H}) = -M$ is a polynomial identity, by Fact A.1 $C(\overline{x}, \overline{H}) + M$ has an IPS proof of size equal to the size of the circuit $C(\overline{x}, \overline{H}) + M$ itself. We now proceed to use the short refutation of the BVP to get a short IPS refutation from the fact that the sign bit of $C(\overline{x}, \overline{H})$ is 0 and $C(\overline{x}, \overline{H}) + M = 0$. The following claim suffices for this purpose:

Claim 6.13. Assume that $\text{BVP}_{n,M}$ has poly($n, \tau(M)$)-size IPS refutations Let $F(\overline{x})$ be a circuit of syntactic length t and size s, such that IPS has a poly(s,t)-size proof of $\text{BIT}_{t-1}(F(\overline{x})) = 0$ (where $\text{BIT}_{t-1}(F(\overline{x}))$ is the sign bit of $F(\overline{x})$). Then there is a poly($s,t,\tau(M)$) refutation of $F(\overline{x}) + M = 0$.

Proof of claim: The size of the circuit $F(\overline{x}) + M$ is $s + \tau(M) + 1$. By Lemma 5.1, $VAL(\text{BIT}(F(\overline{x}) + M)) = F(\overline{x}) + M = 0$ has a polynomial size in $s + \tau(M) + 1$ IPS proof from the boolean axioms. By the proof of Lemma 5.1 we also have a polynomial-size in s and $\tau(M)$ IPS proof of

$$VAL(\text{BIT}(F(\overline{x}))) + M = 0,$$
namely, a proof of
\[M + \sum_{i=0}^{t-2} 2^i \cdot w_i - 2^{t-1} \cdot w_{t-1} = 0, \quad \text{where } w_i := \text{BIT}_i(F(\overline{x})). \]

By assumption, \(w_{t-1} = 0 \) has a polynomial-size IPS proof, where \(w_{t-1} \) is the sign bit of \(F(\overline{x}) \). This leads to
\[M + \sum_{i=0}^{t-1} 2^i \cdot w_i = 0. \quad (21) \]

Notice that eq. 21 is the binary value principle in which variables \(x_i \) for \(i = 1, \ldots, t \), are replaced by the circuits \(\text{BIT}_{i-1}(F(\overline{x})) \), denoted \(w_i \). We assumed that the binary value principle has polynomial-size (in \(t \) and \(\tau(M) \)) refutations (using only the boolean axioms as assumptions). Since IPS proofs are closed under substitutions of variables by circuits (Fact A.8), there is a poly\((t, |\text{BIT}(F)|, \tau(M))\)-size IPS refutation of eq. 21 from the substitution instances of the boolean axioms \(w_i^2 - w_i = 0 \), for \(i = 0, \ldots, t - 1 \). Since for every \(i = 0, \ldots, t - 1 \), \(w_i^2 - w_i = 0 \) has a short IPS proof by Cor. 6.9, and since \(|\text{BIT}(F)| = poly(t, |F|) \), we conclude that there exists a poly\((s, t, \tau(M))\)-size IPS refutation as desired.

\[\square \]

6.2 Effective Simulation of CPS Refutations with Inequalities

We now turn to conditional effective simulation of CPS as a refutation system for both equalities and inequalities by IPS. Effective simulation means that we are allowed to non-trivially translate the input equalities and inequalities before refuting them in IPS, as long as the translation procedure is polynomial-time and preserves unsatisfiability [40]. Similar to the case of conditional simulation, it is enough to consider only the case of CPS and IPS proofs over \(\mathbb{Z} \) to conclude it also for \(\mathbb{Q} \). We show here the case of non-constant-free boolean IPS and boolean CPS proofs over \(\mathbb{Z} \). The case over \(\mathbb{Q} \) and the cases of constant-free proofs over \(\mathbb{Z} \) and \(\mathbb{Q} \) are similar.

Note that since the construction of the circuit \(\text{BIT}_i(\cdot) \) (Sect. 5.2) is mechanical and uniform, there is a straightforward deterministic (uniform) polynomial-time algorithm that receives a set of polynomial inequalities \(\overline{H} = \{ H_j(\overline{x}) \geq 0 \} \) over \(\mathbb{Z} \) written as algebraic circuits (with coefficients written in binary) and outputs the polynomial equations, written as algebraic circuits, expressing that the sign bit of each \(H_j(\overline{x}) \) is 0 (hence, expressing the inequalities \(\overline{H} \)). This translation of inequalities to polynomial equalities serves as our translation from \(\overline{H} \) to the language of polynomial equations that is refutable in IPS. Given an inequality \(H_j(\overline{x}) \geq 0 \) we denote by \(H_j(\overline{x}) \geq 0 \) this translation; accordingly, we let \(\overline{H} = \{ H_j(\overline{x}) \geq 0 : H_j(\overline{x}) \in \overline{H} \} \).

Theorem 6.14 (conditional effective simulation of boolean CPS by boolean IPS). Assume that the generalized binary value principle BVP\(_{t,M} \) has poly\((t, \tau(M))\)-size boolean IPS refutations for every positive integer \(M \). Let \(\overline{F} \) denote a system of polynomial equations and let \(\overline{H} \) denote a system of polynomial inequalities written as circuits \(\{ H_j(\overline{x}) \geq 0 \}_{j \in J} \) (including all the equations in \(\overline{F} \) written as inequalities as described in Definition 23). Let \(C(\overline{x}, \overline{H}) = -1 \) be a CPS refutation of \(\overline{F} \) and \(\overline{H} \) where \(C(\overline{x}, \overline{H}) \) has size \(s \) and syntactic length \(t \). Then, there is a boolean IPS refutation of \(\overline{H} \) with size poly\((s, t)\).

Proof: This is identical to the proof of Thm. 6.1, only that we do not need to prove separately that the axioms in \(\overline{H} \) have all bit-vector representation in which the sign bit is 0, since here this is given to us as an assumption.

\[\square \]

\footnote{Equivalently, we can also show that there is a size poly\((s, t)\) IPS refutation of \(\overline{F} \) and \(\overline{H} \setminus \overline{F} \). But for simplicity we assume that the equalities \(\overline{F} \) are also translated via \(\cdot \).}
Appendix

A Basic Reasoning in IPS

Here we develop basic efficient reasoning in IPS. This is helpful for Sect. 5.2.

First we show that polynomial identities are proved for free in IPS:

Fact A.1. If \(F(\overline{x}) \) is a circuit in the variables \(\overline{x} \) over the field \(\mathbb{F} \) that computes the zero polynomial, then there is an IPS proof of \(F(\overline{x}) = 0 \) of size \(|F|\).

Proof of fact. The IPS proof of \(F(\overline{x}) = 0 \) is simply \(C(\overline{x}) := F(\overline{x}) \) (note that we do not need to use the boolean axioms nor any other axioms in this case). Observe that both conditions 1 and 2 for IPS hold in this case (Definition 10).

Fact A.2. Let \(F, G, H \) be circuits and \(\mathcal{F} \) be a collection of polynomial equations such that \(C : \mathcal{F} \vdash_{\text{IPS}}^s F = G \) and \(C' : \mathcal{F} \vdash_{\text{IPS}}^s G = H \). Then, \((C + C') : \mathcal{F} \vdash_{\text{IPS}}^{s_0 + s_1 + 1} F = H \).

Proof of fact. \(C(\overline{x}, \overline{F}, \overline{x}^2 - \overline{x}) + C'(\overline{x}, \overline{F}, \overline{x}^2 - \overline{x}) = F - G + G - H \).

Fact A.3. Let \(F, G \) be circuits and \(\overline{F} \) be a collection of polynomial equations such that \(C : \overline{F} \vdash_{\text{IPS}}^s F = G \) and \(C' : \overline{F} \vdash_{\text{IPS}}^s H = K \). Then, \((C + C') : \overline{F} \vdash_{\text{IPS}}^{s_0 + s_1 + 1} F + H = G + K \).

Proof of fact. \(C(\overline{x}, \overline{F}, \overline{x}^2 - \overline{x}) + C'(\overline{x}, \overline{F}, \overline{x}^2 - \overline{x}) = F - G + H - K \).

Fact A.4. Let \(F, G \) be circuits and \(\overline{F} \) be a collection of polynomial equations such that \(C : \overline{F} \vdash_{\text{IPS}}^s F = G \) and \(C' : \overline{F} \vdash_{\text{IPS}}^s H = K \). Assume that there is a circuit with two output gates, of size \(s \), with one output gate computing \(H \) and the other output gate computing \(G \). Then, \(\overline{F} \vdash_{\text{IPS}}^{s_0 + s_1 + s + 5} F \cdot H = G \cdot K \).

Proof of fact. Observe that \(C(\overline{x}, \overline{F}, \overline{x}^2 - \overline{x}) \cdot H + C'(\overline{x}, \overline{F}, \overline{x}^2 - \overline{x}) \cdot G = F \cdot H - G \cdot H + H \cdot G - K \cdot G = F \cdot H - G \cdot K \). Hence, the desired proof is the circuit \(C(\overline{x}, \overline{y}, \overline{z}) \cdot H(\overline{x}) + C'(\overline{x}, \overline{y}, \overline{z}) \cdot G(\overline{x}) \), which by assumption that there is a circuit of size \(s \) computing both \(H, G \), is at most \(s_0 + s_1 + s + 5 \) (here, \(H, G \) can have common nodes).

We now wish to show that basic reasoning by boolean cases is efficiently attainable in IPS. Specifically, we are going to show that if for a given constant many variables (or even boolean valued polynomials) \(V \), for every choice of a fixed (partial) boolean assignment to the variables \(V \) a polynomial equation is derivable, then it is derivable regardless (namely, derivable from the boolean axioms alone) in polynomial-size.

Proposition A.5 (proof by boolean cases in IPS). Let \(\mathbb{F} \) be a field. Let \(V = \{H_i(\overline{x})\}_{i \in I} \) be a set of circuits with \(|V| = r \), and \(\overline{F} \) be a collection of polynomial equations such that \(\{H_i^2(\overline{x}) - H_i(\overline{x}) = 0\}_{i \in I} \subseteq \overline{F} \). Assume that for every fixed assignment \(\overline{\alpha} \in \{0, 1\}^r \) we have \(\overline{F}, \{H_i(\overline{x}) = \alpha_i\}_{i \in I} \vdash_{\text{IPS}}^c f(\overline{x}) = 0 \), then \(\overline{F} \vdash_{\text{IPS}}^{c + r} f(\overline{x}) = 0 \), for some constant \(c \) independent of \(r \).

Proof: We proceed by induction on \(r \).

Base case: \(r = 0 \). In this case we assume that \(\overline{F} \vdash_{\text{IPS}}^c f(\overline{x}) = 0 \) and we wish to show that \(\overline{F} \vdash_{\text{IPS}}^{c + r} f(\overline{x}) = 0 \), for some constant \(c \), which is immediate since \(r = 0 \).

Induction step: \(r > 0 \). We assume that for every fixed assignment \(\overline{\alpha} \in \{0, 1\}^r \) we have \(\overline{F}, \{H_i = \alpha_i\}_{i \in I} \vdash_{\text{IPS}}^c f(\overline{x}) = 0 \), and we wish to show that \(\overline{F} \vdash_{\text{IPS}}^{c + r} f(\overline{x}) = 0 \), for some constant \(c \) independent of \(r \).
By our assumption above we know that for every fixed assignment $\bar{\alpha} \in \{0, 1\}^{r-1}$ we have:
\[
\overline{\mathcal{F}}, H_1(\bar{x}) = 0, \{H_i(\bar{x}) = \alpha_i\}_{i \in [1, l]} \vdash_{\text{IPS}} f(\bar{x}) = 0, \quad \text{and} \quad \overline{\mathcal{F}}, H_1(\bar{x}) = 1, \{H_i(\bar{x}) = \alpha_i\}_{i \in [1, l]} \vdash_{\text{IPS}} f(\bar{x}) = 0.
\] (22)
(23)

From eq. 22 and eq. 23, by induction hypothesis we have for some constant c independent of r:
\[
H_1(\bar{x}) = 0, \overline{\mathcal{F}} \vdash_{\text{IPS}}^{c^{-1} \cdot s} f(\bar{x}) = 0, \quad \text{and} \quad H_1(\bar{x}) = 1, \overline{\mathcal{F}} \vdash_{\text{IPS}}^{c^{-1} \cdot s} f(\bar{x}) = 0.
\] (24)
(25)

It thus remains to prove the following claim:

Claim A.6. Under the above assumptions eq. 24 and eq. 25, we have $\overline{\mathcal{F}} \vdash_{\text{IPS}}^{c^{-1} \cdot s} f(\bar{x}) = 0$.

Proof of claim: By eq. 24 and eq. 25 we have two IPS proofs $C(\bar{x}, \overline{y}, \overline{\alpha})$ and $C'(\bar{x}, \overline{y}, \overline{\alpha})$ such that $C(\bar{x}, \overline{\mathcal{F}}, H_1(\bar{x}), \bar{x}^2 - \bar{x}) = f(\bar{x})$ and $C'(\bar{x}, \overline{\mathcal{F}}, 1 - H_1(\bar{x}), \bar{x}^2 - \bar{x}) = f(\bar{x})$ (note indeed that $\overline{\mathcal{F}}, H_1(\bar{x})$ and $\bar{x}^2 - \bar{x}$ are the axioms in the former case, and similarly for the latter case, where now $1 - H_1(\bar{x})$ replaces the axiom $H_1(\bar{x})$) each of size $c^{-1} \cdot s$.

By the definition of IPS $C(\bar{x}, \overline{y}, \overline{\alpha}), C'(\bar{x}, \overline{y}, \overline{\alpha})$ both compute polynomials that are in the ideal generated by $\overline{y}, \overline{\alpha}$. This means that there are some polynomials Q_i, P_i, G, M, L_i, K_i, such that:
\[
\tilde{C}(\bar{x}, \overline{\mathcal{F}}, H_1(\bar{x}), \bar{x}^2 - \bar{x}) = \sum_{i} Q_i \cdot F_i + \sum_{i} L_i \cdot (x_i^2 - x_i) + G \cdot H_1(\bar{x}) = f(\bar{x}) \quad \text{and} \quad
\tilde{C}'(\bar{x}, \overline{\mathcal{F}}, 1 - H_1(\bar{x}), \bar{x}^2 - \bar{x}) = \sum_{i} P_i \cdot F_i + \sum_{i} K_i \cdot (x_i^2 - x_i) + M \cdot (1 - H_1(\bar{x})) = f(\bar{x})
\]
(here, $\overline{\mathcal{F}}, H_1(\bar{x})$ is substituted for \overline{y} in the first equation, and $\overline{\mathcal{F}}, 1 - H_1(\bar{x})$ is substituted for \overline{y} in the second equation).

Hence, we can multiply these two true polynomial identities by $(1 - H_1(\bar{x}))$ and $H_1(\bar{x})$, respectively, to get the following polynomial identities:
\[
(1 - H_1(\bar{x})) \cdot \tilde{C}(\bar{x}, \overline{\mathcal{F}}, H_1(\bar{x}), \bar{x}^2 - \bar{x}) = (1 - H_1(\bar{x})) \cdot \sum_{i} Q_i \cdot F_i + (1 - H_1(\bar{x})) \cdot \sum_{i} L_i \cdot (x_i^2 - x_i) + G \cdot H_1(\bar{x}) \cdot (1 - H_1(\bar{x})) = (1 - H_1(\bar{x})) \cdot f(\bar{x})
\]
and
\[
H_1(\bar{x}) \cdot \tilde{C}'(\bar{x}, \overline{\mathcal{F}}, H_1(\bar{x}), \bar{x}^2 - \bar{x}) = H_1(\bar{x}) \cdot \sum_{i} P_i \cdot F_i + H_1(\bar{x}) \cdot \sum_{i} K_i \cdot (x_i^2 - x_i) + H \cdot H_1(\bar{x}) \cdot (1 - x_i)
\]
\[= H_1(\bar{x}) \cdot f(\bar{x}).\]

Each of these two polynomial identities is an IPS proof from the assumptions $\overline{\mathcal{F}} = \{F_i\}_i$, the boolean axioms, and the assumption $H_1(\bar{x}) \cdot (1 - H_1(\bar{x})) \in \overline{\mathcal{F}}$ (more formally, $(1 - H_1(\bar{x})) \cdot C$ and $H_1(\bar{x}) \cdot C'$ are the circuits that constitute these pair of IPS proofs). Adding these two IPS proofs (note that the addition of two IPS proofs from a set of assumptions is still an IPS proof from that set of assumptions) we obtain the desired IPS proof of $f(\bar{x})$, with size $2 \cdot c^{-1} \cdot s + c_0 \leq c^r \cdot s$, for a large enough constant c independent of r. □
Prop. A.5 allows us to reason by cases in IPS. For example, assume that we know that either \(H_i(x) = 0 \) or \(H_i(x) = 1 \); namely that we have the assumption \(H_i(x) \cdot (H_i(x) - 1) = 0 \). Then, we can reason by cases as follows: if we can prove from \(H_i(x) = 0 \) that \(A \), with a polynomial-size proof, and from \(H_i(x) = 1 \) that \(B \), with a polynomial-size proof, then using Prop. A.5 we have a polynomial-size proof that \(A \cdot B = 0 \) from \(H_i(x) \cdot (H_i(x) - 1) = 0 \).

As an immediate corollary of Prop. A.5 we get the same proposition with \(H_i(x) \)'s substituted for variables:

Corollary A.7. Let \(F \) be a field. Let \(V = \{ x_i \}_{i \in I} \) be a set of variables with \(|V| = r \), and \(\mathcal{F} \) be a collection of polynomial equations. Assume that for every fixed assignment \(\alpha \in \{0, 1\}^r \) to the variables in \(V \) we have \(\mathcal{F}, \{ x_i = \alpha_i \}_{i \in I} \vdash_{\text{IPS}}^* f(x) = 0 \), then \(\mathcal{F} \vdash_{\text{IPS}}^* f(H/x) = 0 \), for some constant \(c \) independent of \(r \).

Fact A.8 (IPS proofs are closed under substitutions). Let \(C(\mathcal{F}, y, z) \) be an IPS proof of \(f(x) \) from the assumptions \(\{ F_i(x) \}_{i=1}^m \), and let \(\mathcal{H} = \{ H_i(x) \}_{i=1}^n \) be a set of algebraic circuits. Then, \(C(\mathcal{H}/x, y, z) \) is an IPS proof of \(f(H/x) \) from \(\{ F_i(H/x) \}_{i=1}^m \), where \(H/x \) stands for the substitution of \(x_i \) by \(H_i(x) \), for all \(i \in [n] \).

The proof of Fact A.8 is immediate.

Acknowledgement

We wish to thank Michael Forbes, Dima Itsykson, Toni Pitassi and Dima Sokolov for useful discussions at various stages of this work.

References

