
Semi-Algebraic Proofs, IPS Lower Bounds and the τ -Conjecture:

Can a Natural Number be Negative?

Yaroslav Alekseev∗ Dima Grigoriev† Edward A. Hirsch‡ Iddo Tzameret§

Abstract

We introduce the binary value principle which is a simple subset-sum instance expressing that
a natural number written in binary cannot be negative, relating it to central problems in proof
and algebraic complexity. We prove conditional superpolynomial lower bounds on the Ideal Proof
System (IPS) refutation size of this instance, based on a well-known hypothesis by Shub and
Smale about the hardness of computing factorials, where IPS is the strong algebraic proof system
introduced by Grochow and Pitassi [J. ACM, 65(6):37:1–55, 2018]. Conversely, we show that
short IPS refutations of this instance bridge the gap between sufficiently strong algebraic and
semi-algebraic proof systems. Our results extend to unrestricted IPS the paradigm introduced
in Forbes, Shpilka, Tzameret and Wigderson [Theory Comput., 17:1–88, 2021] whereby lower
bounds against subsystems of IPS were obtained using restricted algebraic circuit lower bounds,
and demonstrate that the binary value principle captures the advantage of semi-algebraic over
algebraic reasoning, for sufficiently strong systems. Specifically, we show the following:

Conditional IPS lower bounds: The Shub–Smale hypothesis [Duke Math. J., 81:47-54, 1995]
implies a superpolynomial lower bound on the size of IPS refutations of the binary value principle
over the rationals defined as the unsatisfiable linear equation

∑
n

i=1
2i−1xi = −1, for Boolean

xi’s. Further, the related and more widely known τ -conjecture [Duke Math. J., 81:47-54, 1995]
implies a superpolynomial lower bound on the size of IPS refutations of a variant of the binary
value principle over the ring of rational functions. No prior conditional lower bounds were known
for IPS or apparently weaker propositional proof systems such as Frege systems (though our
lower bounds do not translate to Frege lower bounds since the hard instances are not Boolean
formulas).

Algebraic vs. semi-algebraic proofs: Admitting short refutations of the binary value princi-
ple is necessary for any algebraic proof system to fully simulate any known semi-algebraic proof
system, and for strong enough algebraic proof systems it is also sufficient. In particular, we intro-
duce a very strong proof system that simulates all known semi-algebraic proof systems (and most
other known concrete propositional proof systems), under the name Cone Proof System (CPS),
as a semi-algebraic analogue of the Ideal Proof System: CPS establishes the unsatisfiability of
collections of polynomial equalities and inequalities over the reals, by representing sum-of-squares

∗Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia, and Chebyshev Laboratory at St. Pe-
tersburg State University. The research was supported in part by Russian Science Foundation (project 16-11-10123).

†CNRS, Mathematiques, Universite de Lille, Villeneuve d’Ascq, 59655, France.
http://en.wikipedia.org/wiki/Dima_Grigoriev

‡Department of Computer Science, Technion, Haifa, Israel; partially supported by the European Union’s Horizon
2020 research and innovation programme under grant agreement No 802020-ERC-HARMONIC. Part of this work has
been done when affiliated with Steklov Institute of Mathematics at St. Petersburg, St. Petersburg, Russia, supported
in part by Russian Science Foundation (project 16-11-10123). https://edwardahirsch.github.io/edwardahirsch/

§Department of Computing, Imperial College London. iddo.tzameret@gmail.com.
http://www.doc.ic.ac.uk/˜itzamere. Some parts of this work has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement
No. 101002742).

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 142 (2019)

http://en.wikipedia.org/wiki/Dima_Grigoriev
https://edwardahirsch.github.io/edwardahirsch/
http://www.doc.ic.ac.uk/~itzamere

proofs (and extensions) as algebraic circuits. We prove that IPS polynomially simulates CPS iff
IPS admits polynomial-size refutations of the binary value principle (for the language of systems
of equations that have no 0/1-solutions), over both Z and Q.

1 Introduction

This work connects three separate objects of study in computational complexity: algebraic proof
systems, semi-algebraic proof systems and algebraic circuit complexity. The connecting point is a
subset-sum instance expressing that the value of a natural number given in binary is nonnegative.
We will show that this instance captures the advantage of semi-algebraic reasoning over algebraic
reasoning in the regime of sufficiently strong proof systems, and is expected to be hard even for very
strong algebraic proof systems. We begin with a general discussion about proof complexity, and then
turn to algebraic and semi-algebraic proofs, their inter-relations, and the connection between circuit
lower bounds and proof-size lower bounds.

Narrowly construed, proof complexity can be viewed as a stratification of the NP vs. coNP

question, whereby one aims to understand the complexity of stronger and stronger propositional
proof systems as a gradual approach towards separating NP from coNP (and hence, also P from NP).
This mirrors circuit complexity in which different circuit classes are analyzed in the hope to provide
general super-polynomial circuit lower bounds. Broadly understood however, proof complexity serves
as a way to study the computational resources required in different kind of reasoning, different
algorithmic techniques and constraint solvers, as well as providing propositional analogues to weak
first-order theories of arithmetic.

Algebraic proof systems have attracted immense amount of work in proof complexity, due to
their simple nature, being a way to study the complexity of computer-algebra procedures such as the
Gröbner basis algorithm, and their connection to different fragments of propositional proof systems
with counting gates. Beginning with the fairly weak Nullstellensatz refutation system by Beame et
al [4] and culminating in the very strong Ideal Proof System by Grochow and Pitassi [28], many
algebraic proof systems and variants have been studied. In such systems one basically operates
with polynomial equations over a field using simple algebraic derivation rules such as additions of
equations and multiplication of an equation by a variable, where variables are usually meant to range
over {0, 1} values.

Impagliazzo, Pudlák and Sgall [33], following Razborov [51], showed that Polynomial Calculus,
which is the standard dynamic algebraic proof system introduced in [13], requires exponential-size
refutations (namely, those using an exponential number of monomials) for the simple symmetric
unsatisfiable subset-sum instance x1 + · · · + xn = n + 1. Note that refuting (that is, showing the
unsatisfiability of) a linear equation

∑
i αixi = β in which the variables xi are Boolean, establishes

that there is no subset of the αi numbers that sums up to β, and hence is considered to be a refutation
of a subset-sum instance. Forbes, Shpilka, Tzameret and Wigderson [19] showed that variants of this
symmetric subset-sum instance are hard for different subsystems of the very strong IPS algebraic
proof system, that is, when IPS refutations are written using various restricted algebraic circuit
classes. Loosely speaking, IPS is a static Nullstellensatz refutation in which proof-size is measured
by algebraic circuit complexity instead of sparsity (that is, monomial size). In other words, IPS
proofs are written as algebraic circuits, and thus can tailor the advantage that algebraic circuits
have over sparse polynomials (somewhat reminiscent to the way Extended Frege can tailor the full
strength of Boolean circuits in comparison to resolution which operates merely with clauses).

The realm of semi-algebraic proof systems has emerged as an equally fruitful subject as algebraic
proofs. Semi-algebraic proofs have been brought to the attention of complexity theory from opti-
mization [39, 38] by the works of Pudlák [48] and Grigoriev and Vorobojov [27] (cf. [26]), and more

2

recently, through their connection to approximation algorithms with the work of Barak et al. [3] (see
for example [42] and the new excellent survey by Fleming, Kothari and Pitassi [18]). While algebraic
proofs derive polynomials in the ideal of a given initial set of polynomials, semi-algebraic proofs
extend it to allow deriving polynomials also in the cone of the initial polynomials (informally a cone
is an “ideal that preserves positive signs”), hence potentially utilizing a stronger kind of reasoning. In
particular [3] considered the sum-of-squares (SoS) refutation system. What makes SoS important,
for example to polynomial optimization, is the fact that the existence of a degree-d SoS certificate can
be formulated as the feasibility of a semidefinite program (SDP), and hence can essentially be solved
in polynomial time (though, see O’Donnel [41] and subsequently Raghavendra-Weitz [50] about cases
in which the polynomial-time automatability of SoS does not apply).

Berkholz [5] showed interestingly that in the regime of weak proof systems, even static semi-
algebraic proofs, such as SoS, can simulate dynamic algebraic proof systems such as Polynomial
Calculus. Grigoriev [24] showed that in this weak regime semi-algebraic proofs are in fact strictly
stronger (with respect to degrees and size) than algebraic proofs, where the separating instances
are simple polynomials (for example, symmetric subset sum instances). However, the question of
whether semi-algebraic systems can simulate stronger algebraic systems has not been considered
before, to the best of our knowledge.

Another established tradition in proof complexity is to seek synergies between proofs and circuit
lower bounds. In particular, proofs-to-circuits transformations in the form of feasible interpolation,
and other close concepts have been pivotal in the search for proof complexity lower bounds, as well as
in circuit lower bounds themselves (see Göös, Kamath, Robere and Sokolov [21] for a recent example).
In fact, the conception of IPS itself was motivated by the attempt to show that very strong proof
complexity lower bounds would result in algebraic complexity class separations such as VP 6= VNP

(see [28, 53] and the survey [47]). Li, Tzameret and Wang [36] as well as Forbes et al. [19] went
in the other direction and showed that certain restricted algebraic circuit lower bounds imply size
lower bounds on subsystems of IPS. In particular, [19] devised a simple framework by which lower
bounds on (subsystems of) IPS refutations are reduced to algebraic circuit lower bounds. [19] used
this framework to establish lower bounds on subsystems of IPS refutations of variants of symmetric
subset-sum instances when the IPS refutations are written as read once algebraic branching programs
and multilinear formulas. But lower bounds on the size of unrestricted IPS refutations were not
known.

2 Preliminaries

2.1 Notation

For a natural number we let [n] = {1, . . . , n}. Let R be a ring. Denote by R[x1, . . . , xn] the ring of
multivariate polynomials with coefficients from R and variables x1, . . . , xn. We usually denote by x
the vector of variables x1, . . . , xn. We treat polynomials as formal linear combination of monomials,
where a monomial is a product of variables. Hence, when we talk about the zero polynomial we
mean the polynomial in which the coefficients of all monomials are zero. Similarly, two polynomials
are said to be identical if their monomials have the same coefficients. The number of monomials in a
polynomial f is the number of monomials with nonzero coefficients denoted |f |

#monomials
. The degree

of a multivariate polynomial (or total degree) is the maximal sum of variable powers in a monomial
with a nonzero coefficient in the polynomial. We write poly(n) to denote a polynomial growth in n,
namely a function that is upper bounded by cnc, for some constant c independent of n. Similarly,
poly(n1, . . . , ns) for some constant s, means a polynomial growth that is at most knc1

1 · · · ncs
s , for k

and cji’s that are constants independent of n1, . . . , ns.

3

For S a set of polynomials from R[x1, . . . , xn], we denote by 〈S〉 the ideal generated by S, namely
the minimal set containing S such that if f, g ∈ 〈S〉 then also αf + βg ∈ 〈S〉, for any α, β ∈ R.

2.2 Algebraic Circuits

Algebraic circuits over some fixed chosen field or ring R compute polynomials in R[x1, . . . , xn] via
addition and multiplication gates, starting from the input variables x and constants from the field.
More precisely, an algebraic circuit C is a finite directed acyclic graph where edges are directed
from leaves (that is, in-degree 0 nodes) towards the output nodes (that is out-degree 0 nodes). By
default, there is a single output node. Input nodes are in-degree 0 nodes that are labeled with a
variable from x1, . . . , xn; every other in-degree zero node is labelled with a scalar element in R. All
the other nodes have in-degree two (unless otherwise stated) and are labeled with either + or ×. An
in-degree 0 node is said to compute the variable or scalar that labels itself. A + (or ×) gate is said to
compute the addition (product, resp.) of the polynomials computed by its incoming nodes. The size

of an algebraic circuit C is the number of nodes in it denoted |C|, and the depth of a circuit is the
length of the longest directed path in it. Note that the size of a field coefficient in this setting is 1
irrespective of the value of the coefficient (this is called sometimes the “unit-cost” model). Sometimes
it is important to consider the size of the coefficients appearing in the circuit (for instance, when
we are concerned with the computational complexity of problems pertaining to algebraic circuits we
need to have an efficient way to represent the circuits as bit strings). For this purpose it is standard
to define a constant-free algebraic circuit to be an algebraic circuit in which the only constants
used are 0, 1, −1. Other constants must be built up using algebraic operations, which then count
towards the size of the circuit. Constant-free algebraic circuit computes a polynomial over Z, but
when we allow for constant sub-circuits (and only for constant sub-circuits) to contain division gates
(in Sect. 4) we can also compute polynomials over Q with constant-free circuits.

An algebraic circuit is said to be a multi-output circuit if it has more than one output node,
namely, more than one node of out-degree zero. Given a single-output algebraic circuit F (x) we
denote by F̂ (x) ∈ R[x] the polynomial computed by F (x), to distinguish at some points the circuit
from the polynomial it computes. We define the degree of a circuit C (similarly a node) as the total
degree of the polynomial Ĉ computed by C, denoted deg(C).

Algebraic Complexity Classes. We now recall some basic notions from algebraic complexity
(for more details see [54, Sec. 1.2]). Over a ring R, VPR (for “Valiant’s P”) is the class of families
f = (fn)∞

n=1 of formal polynomials fn such that fn has poly(n) input variables, is of poly(n) degree,
and can be computed by algebraic circuits over R of poly(n) size. VNPR (for “Valiant’s NP”) is
the class of families g of polynomials gn such that gn has poly(n) input variables and is of poly(n)
degree, and can be written as

gn

(
x1, . . . , xpoly(n)

)
=

∑

e∈{0,1}poly(n)

fn(e, x)

for some family (fn) ∈ VPR. A major question in algebraic complexity theory is whether the
permanent polynomial can be computed by algebraic circuits of polynomial size. Since the permanent
is complete for VNP (under a suitable concept of algebraic reductions that are called p-projections),
showing that no polynomial-size circuit can compute the permanent amounts to showing VP6=VNP

(cf. [59, 60, 62]).
Similarly, we can consider the constant-free versions of VP and VNP: we denote by VP

0 and VNP
0

the class of polynomial-size and polynomial-degree constant-free algebraic circuits and the class of
VNP polynomials as above in which the family of polynomials (fn) ∈ VP

0. In these definitions of VP
0

4

and VNP
0 we assume also that no division gate occur in the circuits, hence VP

0 and VNP
0 compute

polynomials over Z. We shall also consider in Sect. 4 constant-free circuits over Q: these will be
constant-free circuits in which constant sub-circuits (and only constant sub-circuits) may contain
division gates.

2.3 The τ-Conjecture and Shub–Smale Hypothesis

Here we explain several important assumptions and conjectures that are known to lead to strong
complexity lower bounds and complexity class separations, all of which are relevant to our work. See
for example Smale’s list of “mathematical problems for the next century” [56] for a short description
and discussion about these problems. Recall Definition 2.1 of the τ -function.

When we focus on constant polynomials, that is, numbers n ∈ Z, τ(n) is the minimal-size circuit
that can construct n from 1 using additions, subtractions and multiplications (but not divisions; note
that subtraction of a term A can be constructed by −1 · A).

Definition 2.1 (τ -function [55]). Let f ∈ Z[x] be a multivariate polynomial over Z. Then τ(f) is
the minimal size of a constant-free algebraic circuit that computes f (that is, a circuit where the only
possible constants that may appear on leaves are 1, 0, −1).

We say that a family of (possibly constant) polynomials (fn)n∈N is easy if there is a constant
c ∈ N such that τ(fn) ≤ logc n, for every n > 2, and hard otherwise.1

The following are some known facts about τ(·):

• (2n)n∈N is easy. For instance, if n is a power of 2 then τ(2n) = log n + 3, where log denotes the
logarithm in the base 2. We start with 3 nodes to build 2 = 1 + 1 and then by log n repeated
squaring we arrive at ((22)2)2 . . .)2 = 22log n

= 2n.

• (22n
)n∈N is hard. This is clear from the straightforward upper bound on the largest integer

that can be computed with k multiplication/addition/subtraction gates.

• A simple known upper bound on τ is this [17]: for every integer m > 2, τ(m) ≤ 2 log m. This
is shown by considering the binary expansion of m.

• For every integer m, the following lower bound is known τ(m) ≥ log log m [17].

While (2n)n∈N is easy and (22n
)n∈N is hard, it is not known whether (n!)n∈N is easy or hard, and

as seen below, showing the hardness of τ(mn · n!), for every sequence (mn · n!)n∈N with mn ∈ Z any
nonzero integers, has very strong consequences.

Blum, Shub and Smale [8] introduced an algebraic version of Turing machines that has access to
a field K (Poizat observed that their model can be defined as algebraic circuits in which selection
gates s(z, x, y) can be used; where a selection gate outputs x in case z = 0 and y in case z = 1). In
this model one can formalise and study a variant of the P vs. NP problem for languages solvable by
polynomial-time machines with access to K, denoted PK , versus nondeterministic polynomial-time
machines with access to K, denoted NPK .

The following is a condition put forth by Shub and Smale [55] (cf. [56]) towards separating PC

from NPC, for C the complex numbers:

Shub–Smale Hypothesis ([55, 56]). For every nonzero integer sequence (mn)n∈N, the sequence
(mn · n!)n∈N is hard.

1We put the condition n > 2 instead of n ≥ 1, because unlike [55] we do not add the constant 2 to the constants
available in the circuit. Therefore, to keep the same known upper bounds of τ we skip the cases n = 1, 2.

5

Shub and Smale, as well as Bürgisser, showed the following consequences of the Shub–Smale
hypothesis:

Theorem 2.2 ([55, 9]). 1. If the Shub–Smale hypothesis holds then PC 6= NPC.

2. If the Shub–Smale Hypothesis holds then VP
0 6= VNP

0. In other words, Shub–Smale Hypothesis
implies that the permanent does not have polynomial size constant-free algebraic circuits over
Z.

It is open whether the Shub–Smale hypothesis holds. What is known is that if Shub–Smale
hypothesis does not hold then factoring of integers can be done in (nonuniform) polynomial time
(cf. Blum et al [7, p.126] and [12]).

Another related important assumption in algebraic complexity is the τ -conjecture. Let f ∈ Z[x]
be a univariate polynomial with integer coefficients, denote by z(f) the number of distinct integer
roots of f .

τ-Conjecture ([55, 56]). There is a universal constant c, such that for every univariate polynomial
f ∈ Z[x]:

(1 + τ(f))c ≥ z(f) .

The consequences of the τ -conjecture are similar to the Shub–Smale Hypothesis:

Theorem 2.3 ([55, 9]). If the τ -conjecture holds then both PC 6= NPC and VP
0 6= VNP

0 hold.

2.4 Basic Proof Complexity

In the standard setting of propositional proof complexity, a propositional proof system [16] is a
polynomial-time predicate V (π, x) that verifies purported proofs π (encoded naturally in, say, binary)
for propositional formulas x (also encoded naturally in binary), such that ∃π (V (π, x) = true) iff x
is a tautology.2 Hence, a propositional proof system is a complete and sound proof system for
propositional logic in which a proof can be checked for correctness in polynomial time (though, note
that a proof π may be exponentially larger than the tautology x it proves).

When considering algebraic proof systems that operate with algebraic circuits, such as IPS, it is
common to relax the notion of a propositional proof system, so to require that the relation V (π, x) is
in probabilistic polynomial time, instead of deterministic polynomial time (since polynomial identities
can be verified in coRP, while not known to be verified in P).

Furthermore, the language that a given proof system proves, namely the set of instances that
the proof system proves to be tautological, or always satisfied, can be different from the set of
propositional tautologies. First, we can consider a propositional proof system to be a refutation
system in which a proof establishes that the initial set of axioms (e.g., clauses) is unsatisfiable,
instead of always satisfied (i.e., tautological). For most cases, considering a propositional proof
system to be a refutation system preserves all properties of the proof system, and thus the notions
of refutation and proofs are used as synonyms. Second, we can define a proof system to be complete
and sound for languages different or larger than unsatisfiable propositional formulas. For instance,
in algebraic proof systems we usually consider proof systems that are sound and complete for the
language of unsatisfiable sets of polynomial equations.

2Historically, Cook and Reckhow [16] defined a propositional proof systems as a polynomial-time computable sur-
jective mapping of bit strings (encoding purported proofs) onto the set of propositional tautologies (encoded as bit
strings as well). This is equivalent to the definition of propositional proof systems we presented, up to polynomial
factors.

6

For the purpose of comparing the relative complexity of different proof systems we have the
concept of simulation: given two proof systems P, Q for the same language, we say that P simulates

Q if there is a function f that maps Q-proofs to P -proofs of the same instances with at most a
polynomial blow-up in size. If f can be computed in polynomial time, this is called a p-simulation.
If P and Q simulate each other we say that P and Q are polynomially equivalent. If P and Q
are two proof systems for different languages, prima facie we cannot compare their strength via
the notion of simulation. However, if both P and Q prove (or refute) propositional instances like
formulas in conjunctive normal form, or Boolean tautologies, while encoding them in different ways
(namely, they use different representations for essentially the same propositional formulas), we can
fix a polynomial-time computable translation from one representation to the other. Under this
translation we can consider P and Q to be proof systems for the same language, allowing us to use
the notion of simulation between P and Q.

2.5 Algebraic Proofs

Grochow and Pitassi [28], following [45], suggested the following algebraic proof system which is
essentially a Nullstellensatz proof system [4] written as an algebraic circuit (this was shown in
[19]). A proof in the Ideal Proof System is given as a single polynomial. We provide below the
Boolean version of IPS (which includes the Boolean axioms), namely the version that establishes the
unsatisfiability over 0-1 of a set of polynomial equations. In what follows we follow the notation in
[19]:

Definition 2.4 ((Boolean) Ideal Proof System (IPS), Grochow-Pitassi [28]). Let
f1(x), . . . , fm(x), p(x) be a collection of polynomials in F[x1, . . . , xn] over the field F. An
IPS proof of p(x) = 0 from {fj(x) = 0}m

j=1, showing that p(x) = 0 is semantically
implied from the assumptions {fj(x) = 0}m

j=1 over 0-1 assignments, is an algebraic circuit
C(x, y, z) ∈ F[x, y1, . . . , ym, z1, . . . , zn] such that (the equalities in what follows stand for formal
polynomial identities3):

1. C(x, 0, 0) = 0; and

2. C(x, f1(x), . . . , fm(x), x2
1 − x1, . . . , x2

n − xn) = p(x).

The size of the IPS proof is the size of the circuit C. If C is assumed to be constant-free,
we refer to the size of the proof as the size of the constant-free IPS proof. The variables y, z
are called the placeholder variables since they are used as placeholders for the axioms. An IPS proof
C(x, y, z) of 1 = 0 from {fj(x) = 0}j∈[m] is called an IPS refutation of {fj(x) = 0}j∈[m] (note that
in this case it must hold that {fj(x) = 0}m

j=1 have no common solutions in {0, 1}n).

Notice that the definition above adds the equations {x2
i − xi = 0}n

i=1, called the set of Boolean

axioms denoted x2 −x, to the system {fj(x) = 0}m
j=1. This allows to refute over {0, 1}n unsatisfiable

systems of equations. Also, note that the first equality in the definition of IPS means that the
polynomial computed by C is in the ideal generated by y, z, which in turn, following the second
equality, means that C witnesses the fact that p(x) is in the ideal generated by f1(x), . . . , fm(x), x2

1 −
x1, . . . , x2

n −xn. (the existence of this witness, for unsatisfiable set of polynomials (that is, p(x) = 1),
stems from Hilbert’s Nullstellensatz [4]).

In order to use IPS as a propositional proof system (namely, a proof system for propositional
tautologies), we need to fix the encoding of clauses as algebraic circuits.

3That is, C(x, 0, 0) computes the zero polynomial and C(x, f1(x), . . . , fm(x), x2
1 − x1, . . . , x2

n − xn) computes the
polynomial p(x).

7

Definition 2.5 (algebraic translation of CNF formulas). Given a CNF formula in the variables x,
every clause

∨
i∈P xi ∨

∨
j∈N ¬xj is translated into

∏
i∈P (1−xi) ·

∏
j∈N xj = 0. (Note that these terms

are written as algebraic circuits as displayed, where products are not multiplied out.)

Notice that in this way a 0-1 assignment to a CNF is satisfying iff the assignment is satisfying
all the equations in the algebraic translation of the CNF.

Therefore, using Definition 2.5 to encode CNF formulas, Boolean IPS is considered as a proposi-
tional proof system for the language of unsatisfiable CNF formulas, sometimes called propositional

IPS. We say that an IPS proof is an algebraic IPS proof, if we do not use the Boolean axioms
x2 − x in the proof. As a default when referring to IPS we mean the Boolean IPS version.

2.5.1 Conventions and Notations for IPS Proofs

An IPS proof over a specific field or ring is sometimes denoted IPSF noting it is over F. For two
algebraic circuits F, G, we define the size of the equation F = G to be the total circuit size of F and
G, namely, |F | + |G|.

Let F denote a set of polynomial equations {fi(x) = 0}m
i=1, and let C(x, y, z) ∈ F[x, y, z] be an

IPS proof of f(x) from F as in Definition 2.4. Then we write C(x, F , x2 − x) to denote the circuit C
in which yi is substituted by fi(x) and zi is substituted by the Boolean axiom x2

i − xi. By a slight
abuse of notation we also call C(x, F , x2 − x) = f(x) an IPS proof of f(x) from F and x2 − x (that
is, displaying C(x, y, z) after the substitution of the placeholder variables y, z by the axioms in F
and x2 − x, respectively).

For two polynomials f(x), g(x), an IPS proof of f(x) = g(x) from the assumptions F is an IPS
proof of f(x) − g(x) = 0 (note that in case f(x) and g(x) are identical as polynomials this is trivial
to prove; see Fact A.1).

We denote by C : F ⊢s
IPS p = 0 (resp. C : F ⊢s

IPS p = g) the fact that p = 0 (resp. p = g) has
an IPS proof C(x, y, z) of size s from assumptions F . We may also suppress “= 0” and write simply
C : F ⊢s

IPS p for C : F ⊢s
IPS p = 0. Whenever we are only interested in claiming the existence of an

IPS proof of size s of p = 0 from F we suppress the C from the notation. Similarly, we can suppress
the size parameter s from the notation. If F is a circuit computing a polynomial F̂ ∈ F[x], then we
can talk about an IPS proof C of F from assumptions F , in symbols C : F ⊢IPS F , meaning an IPS
proof of F̂ . Accordingly, for two circuits F, F ′ such that F̂ = F̂ ′, we may speak about an an IPS
proof C of F from assumptions F to refer to an IPS proof of F ′ from assumptions F .

2.6 Semi-Algebraic Proofs

The Positivstellensatz proof system, as defined by Grigoriev and Vorobojov [27], is a refutation
system for establishing the unsatisfiability over the reals R of a system consisting of both polynomial
equations F = {fi(x) = 0}i∈I and polynomial inequalities H = {hj(x) ≥ 0}j∈J , respectively. It is
based on a restricted version of Krivine–Stengle’s Positivstellensatz [35, 57]. In order to formulate
it, we need to define the notion of a cone, as in [27], which serves as a non-negative closure of a
set of polynomials, or informally the notion of a “positive ideal”. Usually the cone is defined as the
set closed under non-negative linear combinations of polynomials (cf. [6]), but following [27] we are
going to use a more general formulation which is sometimes called the SoS cone.

Definition 2.6 (cone). Let H ⊆ R[x] be a set of polynomials over an ordered ring R. Then the cone
of H, denoted cone(H), is defined to be the smallest set S ⊆ R[x] such that:

1. H ⊆ S;

2. for any polynomial s ∈ R[x], s2 ∈ S;

8

3. for any positive constant c > 0, c ∈ S;

4. if f, g ∈ S, then both f + g ∈ S and f · g ∈ S.

Note that we have formulated the cone for any ordered ring (item item 3 would be superfluous for
reals). This is because we are going to use this notion in the context of Z and Q (although Krivine–
Stengle’s Positivstellensatz does not hold for these rings, it is still possible to use Positivstellensatz
refutations in the presence of the Boolean axioms, namely as a refutation system for instances
unsatisfiable over 0-1 value).

Note also that every sum of squares (that is, every sum of squared polynomials
∑

i s2
i) is contained

in every cone. Specifically, cone(∅) contains every sum of squares.
Similar to the way the Nullstellensatz proof system [4] establishes the unsatisfiability of sets

of polynomial equations based on the Hilbert’s Nullstellensatz [29] from algebraic geometry, the
Positivstellensatz proof system is based on Krivine–Stengle’s Positivstellensatz from semi-algebraic
geometry:

Theorem 2.7 (Positivstellensatz [35, 57], restricted version). Let F := {fi(x) = 0}i∈I be a set
of polynomial equations and let H := {hj(x) ≥ 0}j∈J be a set of polynomial inequalities, where
all polynomials are from R[x1, . . . , xn]. There exists a pair of polynomials f ∈ 〈{fi(x)}i∈I〉 and
h ∈ cone({hj(x)}j∈J) such that f + h = −1 if and only if there is no assignment that satisfies both
F and H.

The Positivstellensatz proof system is now natural to define. We shall distinguish between the real
Positivstellensatz in which variables are meant to range over the reals and Boolean Positivstellensatz
in which variables range over {0, 1}.

Definition 2.8 (real Positivstellensatz proof system (real PS) [27]). Let F := {fi(x) = 0}i∈I be
a set of polynomial equations and let H := {hj(x) ≥ 0}j∈J be a set of polynomial inequalities,
where all polynomials are from R[x1, . . . , xn]. Assume that F , H have no common real solutions. A
Positivstellensatz refutation of F , H is a collection of polynomials {pi}i∈I and {si,ζ}i,ζ (for i ∈ N,
ζ ⊆ J and Iζ ⊆ N) in R[x1, . . . , xn] such that the following formal polynomial identity holds:

∑

i∈I

pi · fi +
∑

ζ⊆J


∏

j∈ζ

hj ·


∑

i∈Iζ

s2
i,ζ




 = −1 . (1)

The monomial size of a Positivstellensatz refutation is the combined total number of monomials

in {pi}i∈I and
∑

i∈Iζ
s2

i,ζ , for all ζ ⊆ J , that is,
∑

i∈I |pi|#monomials
+
∑

ζ⊆J

∣∣∣
∑

i∈Iζ
s2

i,ζ

∣∣∣
#monomials

. 4

Note that Grigoriev, Hirsch, and Pasechnik [26] defined the size of Positivstellensatz proofs
slightly differently: they included in the size of proofs both the number of monomials and the
size of the coefficients of monomials written in binary (while this does not matter for their lower
bounds). This is more natural when considering Positivstellensatz as a propositional proof system
(which is polynomially verifiable).

In order to use Positivstellensatz as a refutation system for collections of equations F and in-
equalities H that are unsatisfiable over 0-1 assignments, we need to include simple Boolean axioms.
This is done in slightly different ways in different works (see for example [26, 2]). One way to do
this, which is the way we follow, is the following:

4The definition of size measure for Positivstellensatz and SoS proofs is slightly less standard than degree measure
(see discussion in [2]). We define the monomial size measure of Positivstellensatz proofs to count the monomials in pi

and s2
i,ζ , while ignoring the monomials in the initial axioms in F , H. This choice of definition is closer to the definition

of size of IPS proofs, which ignores the size of the initial axioms.

9

Definition 2.9 ((Boolean) Positivstellensatz proof system (Boolean PS)). A Boolean Positivstel-

lensatz proof from a set of polynomial equations F , and polynomial inequalities H, is an algebraic
Positivstellensatz proof in which the following Boolean axioms are part of the axioms: the poly-
nomial equations x2

i − xi = 0 (for all i ∈ [n]) are included in F , and the polynomial inequalities
xi ≥ 0, 1 − xi ≥ 0 (for all i ∈ [n]) are included in H.

In this way, F , H have no common 0-1 solutions iff there exists a Boolean Positivstellensatz refu-
tation of F , H. Eventually, to define the Boolean Positivstellensatz as a propositional proof system
for the unsatisfiable CNF formula we consider CNF formulas to be encoded as polynomial equalities
according to Definition 2.5. This version is sometimes called propositional Positivstellensatz.
As a default when referring to Positivstellensatz we mean the Boolean Positivstellensatz version.

In recent years, starting mainly with the work of Barak, Brandao, Harrow, Kelner, Steurer and
Zhou [3], a special case of the Positivstellensatz proof system has gained much interest due to its
application in complexity and algorithms (cf. [42]). This is the sum-of-squares proof system (SoS),
which is defined as follows:

Definition 2.10 (sum-of-squares proof system). A sum-of-squares proof (SoS for short) is a
Positivstellensatz proof in which in eq. 1 in Definition 2.8 we restrict the index sets ζ ⊆ J to be
singletons, namely |ζ| = 1, hence, disallowing arbitrary products of inequalities within themselves.
The real, Boolean and propositional versions of SoS are defined similar to Positivstellensatz.

For most interesting cases SoS is also complete (and sound) by a result of Putinar [49].

2.6.1 Dynamic Positivstellensatz

Here we follow Grigoriev, Hirsch and Pasechnik [26] to define what is, to the best of our knowledge,
the most general propositional Positivstellensatz- (or SoS-) based semi-algebraic proof system defined
to date. It can be viewed as the generalization of (dynamic) Lovász–Schrijver proof systems [39, 38]
that have been put in the context of propositional proof complexity by Pudlák [48], and constitutes
essentially a dynamic version of propositional Positivstellensatz (the proof size is measured by the
total number of monomials appearing in the proof).

The translation of propositional formulas here is different from the algebraic translation
(Definition 2.5). For higher degree proof systems, Definition 2.5 and the definition that follows
can be reduced to one another (within the proof system, as long as both translations can be written
down efficiently); however, we provide Definition 2.11 for the sake of consistency with earlier work.

Definition 2.11 (semi-algebraic translation of CNF formulas). Given a CNF formula in the variables
x, every clause

∨
i∈P xi ∨

∨
j∈N ¬xj is translated into

∑
i∈P xi +

∑
j∈N (1 − xj) ≥ 1.

Notice that in this way a 0-1 assignment to a CNF formula is satisfying iff the assignment satisfies
all the inequalities in the semi-algebraic translation of the CNF formula.

Definition 2.12 (LS∞
∗,+ [26]). Consider a Boolean formula in conjunctive normal form and translate

it into inequalities as in Definition 2.11. Take these inequalities as axioms, add the axioms x ≥ 0,
1 − x ≥ 0, x2 − x ≥ 0, x − x2 ≥ 0 for each variable x. Allow also h2 ≥ 0 as an axiom, for any
polynomial h of degree at most d. An LSd

∗,+ proof of the original formula is a derivation of −1 ≥ 0
from these axioms using the following rules:

f ≥ 0, g ≥ 0

f + g ≥ 0

f ≥ 0

αf ≥ 0
(for α a nonnegative integer)

f ≥ 0, g ≥ 0

f · g ≥ 0
.

10

In particular, LS∞
∗,+ is such a proof without the restriction on the degree. Note that we have to write

polynomials as sums of monomials (and not as circuits or formulas), so the verification of such
proof is doable in deterministic polynomial-time (assuming field operations and field coefficients are
deterministic polynomial-time computable).

The proof of the following simulation follows by definition and we omit the details:

Proposition 2.13. LS∞
∗,+ simulates Boolean Positivstellensatz.

3 Overview of Results and Organisation

We consider the following subset-sum instance written as an unsatisfiable linear equation with large
coefficients, expressing the fact that natural numbers written in binary cannot be negative:

Definition 3.1 (Binary Value Principle BVPn). The binary value principle over the variables
x1, . . . , xn, BVPn for short, is the following unsatisfiable (over {0, 1} assignments) linear
equation:

x1 + 2x2 + 4x3 + · · · + 2n−1xn = −1 .

At times we use a more general principle denoted BVPn,M , which we call the generalized binary
value principle: x1 + 2x2 + 4x3 + · · · + 2n−1xn = −M, for a positive integer M .

Note that, though simple, the binary value principle is not a direct translation of a Boolean
formula, hence, similarly to [19] and other results on algebraic proofs (e.g., Razborov [51]), IPS lower
bounds on this principle do not necessarily entail lower bounds for the usual (Boolean) Frege systems.

3.1 Lower Bounds

We prove two kinds of conditional super-polynomial lower bounds against IPS refutations. The first
is over Q and Z and the second is over the field Q(y) of rational functions of univariate polynomials
in the indeterminate y denoted Q[y] (see Definition 4.8). They are conditioned on two different
conjectures from the same paper by Shub and Smale [55]. We start with the first lower bound.

Theorem (Thm. 4.5). Under the Shub and Smale hypothesis, there are no poly(n)-size constant-free
(Boolean) IPS refutations of the binary value principle BVPn over Q.

This result can be viewed as generalizing to full IPS the proof method initiated by Forbes et
al. [19] wherein proof complexity lower bound questions are reduced to algebraic circuit size lower
bound questions: an IPS proof written as a circuit from a class C is obtained by showing that there
are no small C-circuits computing certain polynomials. Here, by “full IPS” we simply mean that
instead of using circuit lower bounds to obtain lower bounds against sub-systems of IPS, we use a
circuit lower bound, alas conditional, to obtain a lower bound against (general) IPS.

We stress that this approach can only lead to conditional lower bounds for full (unrestricted)
IPS, as long as we do not have (explicit) super-polynomial lower bounds against general algebraic
circuits, namely as long as we do not prove that VP

0 captures an extension of VNP
0 by divisions (see

Sect. 4.2.4 below).5

5Though, it should be mentioned that in proof complexity even non-explicit lower bounds are not known, and
will constitute a breakthrough in the field; hence moving from non-explicit (and thus known) circuit lower bounds to
(possibly also non-explicit) proof complexity lower bounds cannot be ruled out entirely.

11

Rational field lower bounds. We consider IPS operating over the field of rational functions in the
(new) indeterminate y, denoted Q(y) (Definition 4.8). This allows us to formulate a very interesting
version of the binary value principle. Roughly speaking, this version expresses the fact that the
BVP is “almost always” unsatisfiable. More precisely, consider the linear equation

∑n
i=1 aixi = y,

for integer ai’s, and y the new indeterminate. This equation is unsatisfiable for most y’s, when y
is substituted by an element from Q. We show that once we have an IPS refutation over Q(y) of
this equation we can substitute y by any rational number but a finite number of rational numbers
and get a valid IPS refutation over Q of the original BVP. Thus an IPS refutation over Q(y) of∑n

i=1 aixi = y can be viewed as a single refutation for all but finitely many values of y ∈ Q.
We show that while for polynomially bounded coefficients ai there are small Q(y)-IPS refutations

of
∑n

i=1 aixi = y, for
∑n

i=1 2i−1xi = y, there are no small refutations, assuming the τ -conjecture:

Theorem (Thm. 4.13). Suppose a system of polynomial equations F0(x) = F1(x) = F2(x) = · · · =
Fn(x) = 0, Fi ∈ Q(y)[x1, . . . , xn], where F0(x) = y +

∑i=n
i=1 2i−1xi and Fi(x) = x2

i − xi, has an
IPS-LINQ(y) certificate H0(x), . . . , Hn(x), where each Hi(x) can be computed by a Q(y)[x1, . . . , xn]-
algebraic circuit of size poly(n) . Then, the τ -conjecture is false.

Roughly speaking, the lower bound proof extracts denominators from the refutation and obtains
a small circuit that has all n-bit nonnegative integers as its roots and thus cannot exist under the
τ -conjecture.

We also raise an interesting question (Sect. 4.2.4) about the possibility that a lower bound on IPS
refutations of BVPn implies a separation of VNP

0
Q from VP

0
Q (generalising the result of [28] showing

that CNF formulas lower bounds in IPS implies VNP
0 6= VP

0).

3.2 Algebraic versus Semi-Algebraic Proofs

In Sect. 5 we exhibit the importance of the binary value principle by showing that it captures in
a manner made precise the strength of semi-algebraic reasoning in the regime of strong (to very
strong) proof systems, and formally those systems that can efficiently reason about bit arithmetic.
Note that already Frege system can reason about bit arithmetic (see [20] following [10]); however,
this alone is not sufficient to simulate semi-algebraic systems: one needs also to be able to prove the
BVP. Specifically, we show that short refutations of the binary value principle would bridge the gap
between very strong algebraic reasoning captured by the ideal proof system and its semi-algebraic
analogue that we introduce in this work, which we call the Cone Proof System (CPS for short;
Definition 5.2).

In contrast to IPS where a short refutation for BVPn would imply strong computational conse-
quences, the binary value principle is trivially refutable in CPS (as well as in SoS):

We show that IPS simulates CPS if there exist small IPS refutations of the binary value principle.
This provides a characterisation of semi-algebraic reasoning in terms of the binary value principle.

The relative strength of proof systems. Figure 1 provides an illustrative picture of the relative
strength of algebraic and semi-algebraic proof systems, which gives context to our results. Note that
CPS is among the strongest concrete proof systems for Boolean tautologies to be formalized to date:
it simulates IPS (Thm. 5.13) which is already very strong (note that constant-free IPS simulates
Extended Frege [28]). Like IPS it can prove freely polynomial identities, and so it “subsumes” in
this sense such identities (accordingly, CPS proofs needs the full power of coRP to be verified). It
is unclear whether even ZFC (namely, Zermelo-Fraenkel set theory with the axiom of choice) can
simulate CPS as a proof system for sets of polynomial equations over a field (it is not hard to show

12

CPS

IPS

Polynomial

Calculus

Nullstellensatz

SoS

Positivstellensatz

“Dynamic”

Positivstellensatz

Extended Frege

resolution

constant depth Frege

Frege

Strong
Systems

Very
Strong
Systems

Weak to
Medium
Strength
Systems

Semi-Algebraic Proofs
Systems for sets of
polynomial equations and
inequalities over a field
with 0-1 variables

Algebraic Proofs
Systems for sets of
polynomial
equations over a
field with 0-1
variables

Systems for
propositional logic

Strictly stronger

assuming Shub-

Smale hypothesis

s

s

s

s
s

s

Figure 1: Relative strength of propositional proof
systems (partial). An arrow Q → P means that

P simulates Q. While Q
s

→ P means “strictly
stronger”, i.e., P simulates Q but Q does not sim-
ulate P . Dashed line Q − − − P means that Q
and P are incomparable: P cannot simulate Q
and Q cannot simulate P . The three colored-
shaded vertical blocks indicate proof systems for
languages of increasing expressiveness (from right
to left): systems for propositional logic, for poly-
nomial equations with 0/1 variables (including en-
codings of propositional logic) and both polynomial
equations and inequalities with 0/1 variables. The
informal qualifications of strength mean roughly
the following: weak systems are those we know
super-polynomial lower bounds against, and their
strength and limitations are quite well understood
via feasible interpolation results and random CNFs
lower bounds. Medium strength systems are those
with some known lower bounds, but their strength
is less well understood; e.g., feasible interpolation
is not known for them. Strong systems are those
with no known lower bounds. Very strong proof
systems are those strong systems whose verification
is done in coRP, and they can prove freely any poly-
nomial identity (written as an algebraic circuit).

that this would imply that polynomial identity testing is in NP)6. Indeed, we are unaware of any
concrete propositional proof system (even those that are merely coRP-verifiable) that can simulate
CPS.

Grigoriev [24] showed that algebraic proofs like PC cannot simulate semi-algebraic proofs like
SoS because symmetric subset-sum instances such as x1 + · · · + xn = −1 require linear degrees (and
exponential monomial size) [33], and Forbes et al [19] extended these lower bounds on symmetric
subset-sum instances to stronger algebraic proof systems, namely to subsystems of IPS. Our work
(Thm. 4.5) extends this gap further, showing that even the strongest algebraic proof system known to
date IPS cannot fully simulate even a weak proof system like SoS, assuming Shub–Smale hypothesis.

Exponential size lower bounds for semi-algebraic proof systems are known since [26], and such
bounds for propositional versions of static Lovász–Schrijver and constant degree Positivstellensatz
systems were proved in [34]. Beame, Pitassi and Segerlind [44] started the study of lower bounds for
semantic threshold systems, that include in particular tree-like Lovász-Schrijver systems. This line
of research culminated in [22], where strong lower bounds were proved using critical block sensitivity,
a notion introduced in [31].

6Indeed, if ZFC simulates CPS, and hence IPS, as a proof system for F |= p = 0, where F is a set of polynomial
equations over Q written as algebraic circuits and F |= p = 0 means that the Q polynomial p written as an algebraic
circuit is in the ideal generated by F (equivalently, that every Q-assignment that nullifies F nullifies also p), then PIT
is in NP. The proof proceeds as follows: let C be an algebraic circuit over Q. Then there exists a size |C| IPS proof
of |= C = 0 iff C is identically zero. Hence, there exists a size poly(|C|) ZFC proof of |= C = 0 iff C is identically
zero. Since ZFC is verifiable in poly-time (we assume here some efficient encoding of circuits over Q), we conclude that
any algebraic circuit C over Q is identically zero iff it has a poly-time verifiable witness (where the witness is the ZFC
proof of |= C = 0).

13

3.3 Relation to other Work

Bit arithmetic and semi-algebraic proofs. In Sect. 6 we show how to reason about the bits
of polynomial expressions within algebraic proofs. Bit arithmetic in proof complexity was used
before in Frege systems (see [20] following [10]). Independently of our work presented initially
at [30], Impagliazzo, Mouli, and Pitassi [32] considered the possibility to effectively simulate weak
semi-algebraic proofs using medium-strength algebraic proofs. They have considered expressing and
reasoning with the bits of algebraic expressions, as we do in Sect. 6. However, their proof methods
and results are fundamentally different from ours: first, they work in the weak proof systems regime,
while we work in the strong systems regime. I.e., they aim to effectively simulate weak proof systems
like constant degree sum-of-squares (in which polynomials are written as sum of monomials), while
we aim to simulate very strong proof systems such as CPS (essentially, Positivstellensatz written as
algebraic circuits). Second, they use a different way to express bits in their work. This is done in
order to be able to reason about bits with bounded-depth algebraic circuits, while we do not need
this mechanism. Third, they show only effective simulation and not simulation (namely, before the
algebraic proofs can simulate a system of polynomial equations or inequalities, the equations and
inequalities need to be pre-processed, that is, translated “off-line“ to their bit-vector representation).
Fourth, they do not consider the VAL function nor the binary value principle, while our work shows
that essentially this is a necessary ingredient in a full simulation of strong semi-algebraic proof
systems. In fact, we have the following:

Assuming the Shub–Smale hypothesis, our results rule out the possibility that even a very strong
algebraic proof system such as IPS simulates (in contrast to the weaker notion of an effective simu-
lation) even a weak semi-algebraic proof system like constant degree SoS measured by monomial size.
In other words, assuming Shub–Smale hypothesis, we rule-out the possibility that the arguments
in [32] (or any other argument) can yield a simulation of constant degree SoS by algebraic proofs
operating with constant depth algebraic circuits (depth-d PC in [32]7). It remains however open
whether depth-d PC simulates constant degree SoS for the language of unsatisfiable CNF formulas
or for unsatisfiable sets of linear equations with small coefficients.

Another relevant very recent work that considers bit arithmetic in proof complexity from the
applied perspective of verification and SAT-solving is Liew et al [37]. That paper shows the advantage
of cutting planes (a proof system that operates with integral inequalities) over algebraic proof systems
(in the weak regime of Polynomial Calculus).

Subset-sum lower bounds in proofs complexity. Different instances of the subset sum problem
have been considered as hard instances for algebraic proof systems. For example, Impagliazzo,
Pudlák, and Sgall [33] provided an exponential lower bound on the size of refutations of the symmetric
subset sum instance x1 + · · · + xn = n + 1, for Boolean xi’s, in Polynomial Calculus. Grigoriev
[24] proved that the version

∑n
i=1 xi = r for a non-integer r ≈ n

2 requires linear degrees to refute
in Positivstellensatz, and [26] later transformed this idea into an exponential-size lower bound for
both Positivstellensatz and static high-degree Lovász–Schrijver proof systems. Moreover, as already
mentioned, our lower bounds can be seen as an extension to the case of general IPS refutations of
the approach introduced by Forbes et al [19].

The work of Part and Tzameret [43] established unconditional exponential lower bounds on the
size of resolution over linear equations refutations of the binary value principle, over any sufficiently
large field F, denoted Res(linF). The proof techniques in [43] are completely different from the current
work, but these results demonstrate that using instances with large coefficients in proof complexity
provides new insight into the complexity of proof systems.

7Here we use the fact that IPS simulates depth-d PC.

14

3.4 Subsequent Work

After the publication of the current work, Alekseev [1] showed unconditionally that the binary value
principle does not have small refutations in a strong algebraic proof system (PC with extension
variables) when refutation size is measured by bit-size (in contrast to algebraic circuit size; namely,
the coefficients appearing in the refutation must be of super-exponential magnitude). Furthermore,
Govindasamy, Hakoniemi and Tzameret [23] showed unconditionally that there are no polynomial-
size constant-depth IPS refutations of a simple variant of the subset-sum principle (when the IPS
refutations are multilinear).

4 Conditional IPS Lower Bounds

4.1 IPS Lower Bounds under Shub–Smale Hypothesis

Here we provide a super-polynomial conditional lower bound on the size of (Boolean) IPS refutations
of the binary value principle over the rationals based on the Shub–Smale Hypothesis (Sect. 2.3).

The conditional lower bound is first established for constant-free IPS proofs over Z and then we
extract a lower bound over Q as a corollary using Cor. 4.4 below. Notice that we can consider IPS
proofs also over rings, and not only fields, however it might make the proof system incomplete. In the
case of (Boolean) IPS over Z in order to keep the completeness it suffices to assume that refutations
are proofs of any nonzero constant polynomial rather than of 1 (cf. [11, Definition 2.1]):

Definition 4.1 (IPSZ). An IPSZ proof of g(x) ∈ Z[x] from a set of assumptions F ⊆ Z[x] is an IPS
proof of g(x) from F , as in Definition 2.4, where F = Z and all the constants in the IPS proof are
from Z. An IPSZ refutation of F is a proof of M , for M ∈ Z \ {0}. (The definition is similar for
the Boolean and algebraic IPS versions.)

It is easy to see that this system is complete (by multiplying a refutation over Q by the greatest
common denominator; we show a more efficient way below in Prop. 4.3).

We will need to define a constant-free circuit over Q (to define rational numbers we use division
by constants; not to be confused with circuits with division by polynomials that compute rational
functions).

Definition 4.2 (circuits and proofs over Q). A constant-free circuit over Q is a constant-free al-
gebraic circuit as in Sect. 2.2 that has an additional division gate ÷, where u ÷ v means that the
polynomial computed by u is divided by the polynomial computed by v. Moreover, we require that for
every division gate u ÷ v the sub-circuit v contains no variables and computes a nonzero constant.
A constant-free IPS proof over Q is an IPS proof written with a constant-free circuit over Q.

Note that circuits over Q may contain nested division gates. For example,
(

x1
(1+1)·(1+1)

·x2)

(1+1)·(1
1+1+1

)
which

formally is (x1 ÷ ((1 + 1) · (1 + 1)) · x2) ÷ (1 + 1) · (1 + (1 ÷ (1 + 1 + 1)). The following proposition
is proved by a simple induction on the circuit size, using sufficiently many products to cancel out
the denominators in the circuit over Q, turning it into a circuit over Z.

The following proposition is proved roughly along the lines of Valiant [61] (and is also reminiscent
of Strassen’s [58] argument to turn a circuit with division gates to a circuit division with only a single
division gate).

Proposition 4.3 (from Q-circuit to Z-circuit). Let C be a size-s constant-free circuit over Q com-
puting a polynomial q ∈ Q[x]. Then there exists a size ≤ 4s constant-free circuit (without division
gates) over Z computing M · q, for some M ∈ Z \ {0}, with τ(M) ≤ 4s.

15

Proof: We choose any topological order g1, g2, . . . , gi, . . . , g|C| on the gates of the constant-free circuit
C over Q (that is, if gj has a directed path to gk in C then j < k) and proceed by induction on |C|
to eliminate rationals from the circuit (identifying the gate gi with the sub-circuit of C for which gi

is its root, and denoting by ĝi the polynomial computed by gi).

Induction statement: Let g1, . . . , gs be the topologically ordered gates of a constant-free circuit
C over Q, where s = |C|. Then, there exists (division-free) constant-free circuits over Z consisting of
the corresponding topologically ordered gates g11, . . . , g1a1 , g21, . . . , g2a2 , . . . , gs1, . . . , gsas , such that
for every i ≤ s:

1. ai ≤ 4 and giai
is a constant-free and division-free circuit computing the polynomial Mi · gi

over Z, for some nonzero integer Mi (again, identifying the gate giai
with the sub-circuit for

which it is a root);

2. The integer Mi is constructed as a part of the circuit (except for the trivial case Mi = 1).
More precisely, there exists a division-free constant-free (sub-)circuit gjℓ, for j ≤ i, ℓ ≤ 4 that
computes Mi. In particular τ(Mi) ≤ 4i.

Base case: gi is a variable or a constant in {−1, 0, 1}. Hence, we put gi1 := gi, ai = 1, and Mi = 1.

Induction step: In the case of a binary gate gi = gj ◦ gℓ, for ◦ ∈ {×, +, ÷} (where j, ℓ < i), by
induction hypothesis we already have division-free constant-free circuits gjaj

and gℓaℓ
computing the

polynomials Mjgj and Mℓgℓ, respectively, for some integers Mj , Mℓ that are also computed as part
of the circuit.

Case 1: gi is a division gate computing gj/gℓ, where, by definition of circuits over Q, gℓ is a
constant-free circuit computing a nonzero constant.

By induction hypothesis item 1 we have already constructed the two division-free and constant-
free circuits gjaj

and gℓaℓ
, where

ĝjaj
= Mjgj and ĝℓaℓ

= Mℓgℓ ,

and Mjgj is a polynomial over Z, for some nonzero integer Mj , and Mℓgℓ is an integer number for
some nonzero integer Mℓ (gℓ can be rational).

By induction hypothesis item 2, Mj and Mℓ are already computed by some division-free gates in
the circuit. We thus put ai = 2 and

gi1 := Mj · gℓaℓ
= MjMℓgℓ and gi2 := Mℓ · gjaj

= MℓMjgj ,

(that is, gi1 is a product gate that connects to the two previously constructed gates computing the
two integers Mj and gℓaℓ

).
Letting Mi = MjMℓgℓ, we get that gi1 is a division-free circuit computing the integer Mi, and

gi2 is a division-free circuit computing the polynomial MjMℓgℓ · (gj/gℓ) = Mi · gi.
Case 2: gi = gj · gℓ. In this case ai = 2 and Mi = MjMℓ, and we put gi2 := gjaj

· gℓaℓ
and

gi1 := Mi · Mj , where Mi, Mj are two integers that are already computed (with a constant-free
division-free and variable-free sub-circuits).
Case 3: gi = gj + gℓ. In this case ai = 4, Mi = MjMℓ, and we put gi4 := Mℓ · gjaj

+ Mj · gℓaℓ
,

namely, we add three gates gi2, gi3, gi4 (two products, both of which connects to previous gates, and
one addition to add these two products). Finally, we put gi1 := Mi · Mj , where Mi, Mj are two
integers that are computed already (with a constant-free division-free sub-circuits).

16

An immediate corollary of Prop. 4.3 is:

Corollary 4.4 (from IPSQ to IPSZ). Boolean IPSZ simulates Boolean IPSQ, in the following sense:
if there exists a size-s constant-free Boolean IPS proof over Q from F of H, for F a set of assumptions
written as constant-free algebraic circuits over Z and H a constant-free algebraic circuit over Z, then
there exists a size ≤ 4s constant-free Boolean IPSZ proof of M · H, for some M ∈ Z \ {0}, such that
τ(M) ≤ 4s.

Theorem 4.5. Under the Shub and Smale Hypothesis, there are no poly(n)-size constant-free
(Boolean) IPS refutations of the binary value principle BVPn over Q.

Proof: Given Cor. 4.4, it suffices to prove the statement for constant-free (Boolean) IPSZ.
We proceed to prove the contrapositive. Suppose that the binary value principle 1+

∑i=n
i=1 2i−1xi =

0 has a constant-free IPSZ refutation (using only the boolean axioms) of size poly(n). We will show
that there is a sequence of nonzero natural numbers cm such that τ(cmm!) ≤ (log m)c, for all m ≥ 2,
where c is a constant independent of m. In other words, we will show that (cmm!)∞

m=1 is easy.
Assume that C(x, y, z) is the polynomial-size constant-free Boolean IPSZ refutation of 1 +∑i=n

i=1 2i−1xi = 0 (here we only have a single placeholder variable y for the single non-Boolean axiom,
that is, the binary value principle). For simplicity, denote G(x) = 1 +

∑i=n
i=1 2i−1xi, Fi(x) = x2

i − xi,
and F (x) = x2 − x.

We know that there exists an integer constant M 6= 0 such that

C
(
x, G(x), F (x)

)
= M . (2)

For every integer 0 ≤ k < 2n we denote by bk := (bk1, . . . , bkn) ∈ {0, 1}n its (positive, standard)
binary representation, that is, k =

∑i=n
i=1 bki2

i−1. Then, Fi(bk) = 0 and G(bk) = 1 + k, for all
1 ≤ i ≤ n, 0 ≤ k < 2n. Hence, by eq. 2:

C(bk1, . . . , bkn, 1 + k, 0) = M, for every integer 0 ≤ k < 2n. (3)

Claim 4.6. M is divisible by every prime number less than 2n.

Proof of claim: For a fixed 0 ≤ k < 2n and its binary representation bk1, . . . , bkn, consider g(y) =
C(bk1, . . . , bkn, y, 0) as a univariate polynomial in Z[y]. Then, g(1 + k) = M by eq. 3, and g(0) = 0
holds since C(bk1, . . . , bkn, 0, 0) = 0, by the definition of IPS. Because g(0) = 0 and g is not identically
0, we know that g(y) = y ·g⋆(y), for some g⋆(y) ∈ Z[y], meaning that g(1+k) = (1+k)·g⋆(1+k) = M .
Since g⋆(y) is an integer polynomial, this implies that M is a multiple of 1 + k.

Overall, this argument shows that for every 1 ≤ p ≤ 2n, M is divisible by p, and in particular M
is divisible by every prime number less than 2n. Claim

Note that once we substitute the all-zero assignment 0 into eq. 2, we obtain a constant-free
algebraic circuit of size poly(n) with no variables computing M , thus τ(M) = poly(n). Then we can
compute M2n

using a constant-free algebraic circuit of size poly(n) by taking M to the power 2, n
many times (that is, using n repeated squaring), yielding τ(M2n

) = poly(n).

Claim 4.7. The exponent of every prime factor in (2n)! is at most 2n.

Proof of claim: We show that for every number k ∈ N, the power of every prime factor of k! is at
most k. Let pt1

1 · · · ptr
r be the prime factorisation of k!, namely k! = pt1

1 · · · ptr
r where each pi is a

prime number and pi 6= pj , for all i 6= j. To compute ti we consider the k factors k, (k − 1), . . . , 1,

17

in k! = k · (k − 1) · · · 1, out of which only each pith number is divisible by pi, hence only ⌊ k
pi

⌋

numbers are divisible by pi. Consider now only these ⌊ k
pi

⌋ numbers in k! which are divisible by

pi, and write them as pi · ⌊ k
pi

⌋, pi · (⌊ k
pi

⌋ − 1), . . . , pi · 1. Now we need once again to factor out

the pi products in ⌊ k
pi

⌋, ⌊ k
pi

⌋ − 1, . . . , 1. Hence, as before, we conclude that in these ⌊ k
pi

⌋ numbers

only ⌊
⌊ k

pi
⌋

pi
⌋ ≤ ⌊ k

p2
i

⌋ are divisible by pi. Continuing in a similar fashion we obtain the equation

ti ≤ ⌊ k
pi

⌋ + ⌊ k
p2

i

⌋ + ⌊ k
p3

i

⌋ + · · · ≤ k
p−1 . Claim

Consider the poly(n)-size circuit for M2n
that exists by assumption. Since M is divisible by

every prime number between 1 and 2n, and since every prime factor of (2n)! is clearly at most 2n,
we get that M2n

is divisible by the 2n-th power of each prime factor of (2n)!. By Claim 4.7 the
power of every prime factor of (2n)! is at most 2n, and so M2n

is divisible by (2n)!. We conclude
that there are nonzero numbers cn ∈ N such that the sequence {cn · (2n)!}∞

n=1 is computable by a
sequence of constant-free algebraic circuits of size poly(n), that is, τ(cn ·(2n)!) ≤ nc for some constant
c independent of n. It remains to show that not only the multiples of factorials of powers of 2 are
easy, but also the multiples of factorials of all natural numbers are easy.

For every natural number m, let n ∈ N be such that 2n−1 ≤ m ≤ 2n. Because (2n)! is clearly
divisible by m!, there exists some cm ∈ N, such that cn ·(2n)! = cm ·m!, where cn is the natural number
for which we have showed the existence of poly(n)-size constant-free circuit computing cn · (2n)!.
Hence, this same circuit also computes cm ·m!, meaning that τ(cm ·m!) ≤ nb ≤ (log(2m))b ≤ (log m)c,
for some constants b and c independent of m.

Why does an IPS lower bound on BVP not lead to Extended Frege lower bounds?

Given that IPS (of possibly exponential degree) simulates Extended Frege (EF) [28, 47], it is inter-
esting to consider why our conditional IPS lower bound for the BVP does not imply a conditional
EF lower bound. Simply put, the answer is that the BVP is not a propositional tautology (or a
direct translation of one), and moreover we do not know how to efficiently derive in IPS any propo-
sitional contradiction from the BVP (note that if we could efficiently derive in IPS a propositional
contradiction, for example an unsatisfiable CNF formula [encoded as polynomials in the standard
way], we would immediately get a conditional Extended Frege lower bound).

Notice furthermore, that we can encode the BVP as a propositional tautology stating that the
carry-save addition of the n numbers in the BVP has sign-bit 0 (and hence the addition is positive),
but the problem is that there is no apparent way to efficiently derive in IPS this encoding from the
BVP principle itself, because from a polynomial equation like f = 0 we cannot in general efficiently
derive in IPS that the sign-bit of f is zero, as we now explain.

One can think of the following translation of the BVP into a propositional tautology: we consider
the addition of n numbers 2i−1xi, for xi ∈ {0, 1} and i = 1, . . . , n. Each 2i−1xi is written as a bit-
vector vi of at most n bits, in the two’s complement notation. Each bit in vi can be written as a
polynomial-size Boolean circuit in the single Boolean variable xi. Using carry-save addition we can
construct a polynomial-size in n Boolean circuit C computing the sign-bit of the addition of these n
bit vectors

∑n
i=1 vi (this is done as in Sect. 6). Now, the BVP can be encoded propositionally as the

contradiction C ≡ ⊤ (namely, the sign-bit of the addition of bit-vectors addition is logically equivalent
to true meaning that the sign is negative; note that this is indeed a contradiction). Although we can
think of the above natural propositional formulation of BVP, there is no apparent way to efficiently
in IPS derive this propositional formulation from BVP.

18

4.2 IPS over Rational Functions and the τ-Conjecture

Here we deal with IPS operating over the field of rational functions in the (new) indeterminate y. This
will allow us to formulate an interesting version of the binary value principle. Roughly speaking, this
version expresses the fact that the BVP is “almost always” unsatisfiable. More precisely, consider
the equation

∑n
i=1 2i−1xi = y. This equation is unsatisfiable for most y’s, when y is substituted

by an element from Q. In the setting of IPS refutations over the field of rational functions in the
indeterminate y, refuting

∑n
i=1 2i−1xi = y would correspond to refuting

∑n
i=1 2i−1xi = M , for all

M ∈ Q but a finite set of numbers from Q (see below).
We shall prove a super-polynomial lower bound on

∑n
i=1 2i−1xi = y, over the fields of rational

functions in the indeterminate y, subject to the τ -conjecture.

Definition 4.8 (Q-rational functions). Denote by Q(y) the field of Q-rational functions in y, that
is, all functions f(y) : Q → Q such that there exist P (y) ∈ Q[y] and nonzero Q(y) ∈ Q[y] with

f(y) = P (y)
Q(y) .

In particular, in this system one can consider refutations of
∑n

i=1 2i−1xi + y = 0, where xi are
Boolean variables (the Boolean axioms x2

i −xi = 0 are included in the initial axioms). In this section
we will be using the concept of a linear IPS refutation (proved to be polynomially equivalent to
general IPS, at least in the unit-cost model where each coefficient appearing in an algebraic circuit
is considered to contribute only 1 to the overall size of the circuit), defined in Forbes et al [19]:

Definition 4.9 ([19]). An IPS-LINQ(y)-certificate of the unsatisfiability of a system of polynomial
equations F1(x) = F2(x) = · · · = Fm(x) = 0 is a set of polynomials (H1(x), . . . Hm(x)), where each
Hi(x) ∈ Q(y)[x1, . . . , xn], such that F1(x) · H1(x) + · · · + Fm(x) · Hm(x) = 1 (as a formal polynomial
equation).

We assume that the Fj ’s include the Boolean axioms x2
i − xi for every variable xi. The system

is complete for this case, as discussed in the next subsection.
Note that once we have an IPS-LINQ(y)-certificate of a system of equations that include the

Boolean axioms and the equation
∑

i xiai = y, we can substitute for y any constant except for the
finite number of roots of the denominators of Hi’s and get a valid IPS-LINQ refutation. Thus an
IPS-LINQ(y)-certificate can be viewed as a single proof for all but finitely many values of y.

To show this concept is meaningful, we first show a short IPS-LINQ(y) proof of
∑n

i=1 aixi = y for
small scalars ai. Then we demonstrate a lower bound for ai = 2i−1 modulo the τ -conjecture.

We start with precise definitions of the complexity of IPS-LINQ(y)-proofs and related completeness
issues.

4.2.1 Computational complexity of elements in Q(y)

To compute elements of Q(y), we extend the definition of a constant-free circuit by allowing the use
of gates for y. The definition of a constant-free circuit over Q(y) thus mimics Definition 4.2, but we
allow now the constant y in addition to −1, 0, 1 (notice that y is indeed a constant in terms of the
polynomials in Q(y)[x1, . . . , xn]).

Note that the system we consider is complete for the Boolean case, that is, for every unsatisfiable
(over {0, 1}) set of polynomial equations involving coefficients in Q(y) that contains the Boolean
axiom x2 − x = 0 for every variable x, there is an IPS-LINQ(y) certificate. Indeed, the set of
equations remains unsatisfiable in the algebraic closure of Q(y) (since every solution must satisfy
x2 − x = 0), and thus by Hilbert’s Nullstellensatz the linear system that has Hi’s coefficients as
variables and expresses that the Hi’s form a valid certificate, has a solution. Since the coefficients of
this linear system are in Q(y), so must be (some) solution.

19

Remark 4.10. Forbes et al. [19] proved that IPS is polynomially equivalent to IPS-LIN when the
scalars are given for free (that is, do not count towards the proof size). We believe that a similar
transformation can be made in the constant-free model to establish the equivalence between IPSQ(y)

and IPS-LINQ(y), however, we did not verify this.

4.2.2 Upper Bound

Proposition 4.11. Suppose we have a system of polynomial equations F0(x) = F1(x) = F2(x) =
· · · = Fn(x) = 0, Fi ∈ Q(y)[x1, . . . , xn], where F0(x) = y +

∑i=n
i=1 aixi, ai ∈ N and Fi(x) = x2

i − xi.
Then, there is an IPS-LINQ(y) certificate of this system consisting of H0(x), . . . , Hn+1(x), where each
Hi(x) can be computed by a constant-free algebraic circuit over Q(y) of size poly(a1 + · · · + an).

Proof: We will construct our proof by induction on n. In each step of our induction we will use the
following notation:

• For each 0 ≤ k ≤ n, 0 ≤ t ≤
∑n

i=k+1 ai, t, k ∈ Z we define Gk,t(x) = y + t + a1x1 + . . . + akxk.

• In the induction step we will build the collection of certificates Hk+1,0,t(x), . . . , Hk+1,n,t(x) for
the systems of polynomial equations Gk+1,t(x) = F1(x) = F2(x) = · · · = Fn(x) = 0 for each
0 ≤ t ≤

∑n
i=k+1 ai.

Base case: suppose G0,t(x) = y + t, t ∈ N, t ≤
∑n

i=1 ai. Then we can take H0,0,t(x) = 1
y+t

and
H0,i,t = 0 where 1 ≤ i ≤ n, i ∈ N as an IPS-LINQ(y) certificate for a system of polynomial equations
G0,t(x) = F1(x) = F2(x) = · · · = Fn(x) = 0.

Induction step: suppose we have already built certificates Hk,0,t(x), . . . , Hk,n,t(x) for the sys-
tems of polynomial equations Gk,t(x) = F1(x) = F2(x) = · · · = Fn(x) = 0. Now we will build
certificates Hk+1,0,t(x), . . . , Hk+1,n,t(x) for the systems of polynomial equations Gk+1,t(x) = F1(x) =
F2(x) = · · · = Fn(x) = 0 where Gk+1,t(x) = y + t + a1x1 + . . . ak+1xk+1, t ∈ Z, 0 ≤ t ≤

∑n
i=k+2 ai.

There are the following cases:

1. If i > k + 1, then we will take Hk+1,i,t(x) = 0.

2. If i = k + 1, then we will take Hk+1,i,t(x) = ak+1(Hk,0,t(x) − Hk,0,t+ak+1
(x)).

3. If 0 ≤ i < k + 1, then we will take Hk+1,i,t(x) = xk+1Hk,i,t+ak+1
(x) + (1 − xk+1)Hk,i,t(x).

The main idea of this construction is the case analysis for xk+1 = 0, xk+1 = 1, that is,

(y + t + a1x1 + . . . + ak+1xk+1)xk+1 − ak+1(x2
k+1 − xk+1) = (y + t + ak+1 + a1x1 + . . . akxk)xk+1

and

(y + t + a1x1 + . . . + ak+1xk+1)(1 − xk+1) + ak+1(x2
k+1 − xk+1) = (y + t + a1x1 + . . . akxk)(1 − xk+1).

which means that (using the induction hypothesis)

((y + t + a1x1 + . . . ak+1xk+1)xk+1 − ak+1(x2
k+1 − xk+1))Hk,0,t+ak+1

(x)+

+ (x2
1 − x1)xk+1Hk,1,t+ak+1

(x) + . . . + (x2
k − xk)xk+1Hk,k,t+ak+1

(x) = xk+1

and

((y + t + a1x1 + . . . ak+1xk+1)(1 − xk+1) + ak+1(x2
k+1 − xk+1))Hk,0,t(x)+

+ (x2
1 − x1)(1 − xk+1)Hk,1,t(x) + . . . + (x2

k − xk)(1 − xk+1)Hk,k,t(x) = 1 − xk+1

20

Summing up the equations for both cases, due to the fact that (1 − xk+1) + xk+1 = 1 we get
Gk+1,tHk+1,0,t +

∑n
i=1 FiHk+1,i,t = 1.

In each step of our induction we create no more than poly(a1 + · · · + an) new gates computing
algebraic circuits for Q(y)[x1, . . . , xn]-polynomials Hk,0,t(x), . . . , Hk,n,t(x) for each 0 ≤ t ≤

∑n
i=k+1 ai.

Thus, we can take H0(x) = Hn,0,0(x), . . . , Hn(x) = Hn,n,0(x) to conclude our proof.

4.2.3 Lower Bound

Lemma 4.12. Suppose we have a constant-free circuit C over Q(y) of size M computing a polynomial
in Q(y)[x1, . . . , xn] that is a rational function f(y, x1, . . . , xn). Then there are two constant-free cir-
cuits over Z of size less than 4M computing polynomial functions P (y, x1, . . . , xn) ∈ Z[y, x1, . . . , xn]

and Q(y) ∈ Z[y] such that f(y, x1, . . . , xm) = P (y,x1,...,xn)
Q(y) .

Proof: Similar to Prop. 4.3, the proof of this lemma is similar to that given by Valiant in [61].
Consider any topological order g1, . . . , gM on the gates of C. We will gradually rewrite our circuit

starting from g1. Assume that we have already done the job for g1, . . . , gk, that is, for each i ≤ k
there are appropriate algebraic circuits for polynomial functions Pi(y, x1, . . . , xn) ∈ Z[y, x1, . . . , xn]
and Qi(y) ∈ Z[y] such that gi = Pi

Qi
. We now augment these circuits to compute the polynomials for

gk.
Here are all possible cases:

1. gk+1 is a variable xj , then Pk+1 = xj , Qk+1 = 1.

2. gk+1 is a constant from Q(y) (that is, 0, −1, 1, y), then Pk+1 computes this constant, and
Qk+1 = 1.

3. gk+1 = gi

gj
, where i, j ≤ k. In this case Pi ∈ Q(y) because of the structure of our

Q(y)[x1, . . . , xn]-circuit. Then Qk+1 = QiPj and Pk+1 = PiQj and sizes of the circuits for
Pk+1 and Qk+1 are less than 4 · (k + 1).

4. gk+1 = gi · gj , where i, j ≤ k. Then Qk+1 = QiQj and Pk+1 = PiPj and sizes of the circuits for
Pk+1 and Qk+1 are less than 4 · (k + 1).

5. gk+1 = gi + gj . Then Pk+1 = PiQj + PjQi and Qk+1 = QiQj and sizes of the circuits for Pk+1

and Qk+1 are less than 4 · (k + 1).

We can conclude our proof by taking PM and QM as P and Q, respectively.

Theorem 4.13. Suppose a system of polynomial equations F0(x) = F1(x) = F2(x) = · · · = Fn(x) =
0, Fi ∈ Q(y)[x1, . . . , xn], where F0(x) = y+

∑i=n
i=1 2i−1xi and Fi(x) = x2

i −xi, has an IPS-LINQ(y) cer-
tificate H0(x), . . . , Hn(x), where each Hi(x) can be computed by a poly(n)-size constant-free algebraic
circuit over Q(y). Then, the τ -conjecture is false.

Proof: Based on the above lemma, we can say that there are polynomials Pi(y, x1, . . . , xn) ∈
Z[y, x1, . . . , xn] and Qi(y) ∈ Z[y] such that Hi = Pi

Qi
for every i. Also we know that

(y + x1 + · · · + 2n−1xn)
P0

Q0
+ (x2

1 − x1)
P1

Q1
+ · · · + (x2

n − xn)
Pn

Qn

= 1

So we can derive that

21

(y + x1 + · · · + 2n−1xn)P0

n∏

j=1

Qj + (x2
1 − x1)P1Q0

n∏

j=2

Qj + · · · + (x2
n − xn)Pn

n−1∏

j=0

Qj =
n∏

j=0

Qj (4)

Denote
∏n

j=0 Qj by Q(y). From the above lemma we know that there is a constant-free circuit
over Z of size poly(n) for Q(y). Furthermore, for any integer y such that 0 ≥ y > −2n, there are
values for xi (namely, the bit expansion of −y) such that the left hand side of eq. 4 is zero, and hence
Q(y) = 0. However, it contradicts the τ -conjecture.

4.2.4 Some remarks on IPS over fields of rational functions and VNP with division

Consider BVPn as a particular case of the general subset sum equality
∑

aixi + c = 0. We can write
the polynomial coefficients in an IPS (or Nullstellensatz) refutation of this equality over the field
Q(w) as follows (where g(x) is the polynomial coefficient of BVPn in the refutation and the gi(x)’s
are the polynomial coefficients of the Boolean axioms for xi in the refutation):

g(x) =
∑

w̄∈{0,1}n

(1 − x1 + 2x1w1 − w1) · · · (1 − xn + 2xnwn − wn)/(a1w1 + · · · + anwn + c),

gi(x) = ai

∑

w∈{0,1}n

(1 − 2wi)(1 − x1 + 2x1w1 − w1) · · ·

(1 − xi−1 + 2xi−1wi−1 − wi−1)(1 − xi+1 + 2xi+1wi+1 − wi+1) · · ·

(1 − xn + 2xnwn − wn)/(a1w1 + · · · + anwn + c).

Note that g is the inverse of a1x1 + · · · + anxn + c in the quotient ring Q(w)[x]/(x2
1 − x1, . . . , x2

n − xn)
and that after multiplying out the expression g(a1x1 + · · ·+anxn +c)+g1(x2

1 −x1)+ · · ·+gn(x2
n −xn)

in the ring Q[x](w), we obtain a multilinear expression in x1, . . . , xn, meaning that it equals 1.
Notice also that we cannot prima facie conclude that such an IPS refutation is computable in

VNPQ(w), namely, we do not know how to compute g and the gi’s in VNPQ(w), because we used

division by polynomials to compute g and the gi’s. However, we can consider defining VNP
0
div as

the class of polynomials represented in the form
∑

w̄∈{0,1}n f(x, w)/g(w̄) for f, g ∈ VPQ. Hence, we

can compute g and the gi’s in VNP
0
div. Therefore, if VNP

0
div ⊆ VP

0
Q, IPS admits polynomial-size

refutations of BVPn (here VP
0
Q is the class of polynomials that can be computed by polynomial-size

constant-free circuits that allow dividing by constants similarly to Definition 4.2). In other words, a
super-polynomial lower bound against IPS refutations over Q implies a separation of VNP

0
div from

VP
0
Q, and assuming that VNP

0
div ⊆ VNP

0
Q, such a lower bound implies VNP

0
Q 6= VP

0
Q. As of now we

do not know whether VNP
0 = VP

0 yields polynomial-size constant-free IPS refutations of BVPn.

5 The Cone Proof System

Here we define a very strong semi-algebraic proof system under the name Cone Proof System (CPS
for short). Similarly to other semi-algebraic systems, CPS establishes that a collection of polynomial
equations F := {fi = 0}i and polynomial inequalities H := {hi ≥ 0}i over the integers, the rational
numbers or the reals, are unsatisfiable over 0-1 assignments (or over ring-valued assignments, when
desired (Definition 5.2)). In the spirit of the Ideal Proof System (IPS) of Grochow and Pitassi
[28] we are going to define a refutation in CPS as a single algebraic circuit. Specifically, a CPS
refutation is a circuit C that computes a polynomial that results from positive-preserving operations
such as addition and product applied between the inequalities H and themselves, as well as the use

22

of nonnegative scalars and arbitrary squared polynomials. In order to simulate in CPS the free use
of equations from F we incorporate in the set of inequalities H the inequalities fi ≥ 0 and −fi ≥ 0
for each fi = 0 in F (we show that this enables one to add freely products of the polynomial fi in
CPS proofs, namely working in the ideal of F ; see Sect. 5.1.1).

We need to formalise the concept of a cone as an algebraic circuit. For this we first introduce the
notion of a squaring gate: let C be a circuit and v be a node in C. We call v a squaring gate if
v is a product gate whose two incoming edges are emanating from the same node. Therefore, if we
denote by w the single node that has two outgoing edges to the squaring gate v, then v computes
w2 (that is, the square of the polynomial computed at node w).

The following is a definition of a circuit computing polynomials in the cone of the y variables:

Definition 5.1 (y-conic circuit). Let R be an ordered ring. We say that an algebraic circuit C
computing a polynomial over R[x, y] is a conic circuit with respect to y, or y-conic for short, if
for every negative constant or a variable xi ∈ x, that appears as a leaf u in C, the following holds:
every path p from u to the output gate of C contains a squaring gate.

Informally, a y-conic circuit is a circuit in which we assume that the y-variables are nonnegative,
and any other input that may be negative (that is, a negative constant or an x-variable) must be
part of a squared sub-circuit. Here are examples of y-conic circuits (over Z): y1, y1 · y2, 3 + 2y1,
(−3)2, x2

1, (3 ·−x1 +1)2, (x1y2 +y1)2, y1 + · · ·+yn. On the other hand, −1, x1, x1 ·y2, −1 ·y1 +4
are examples of non y-conic circuits.

Note that if the y-variables of a y-conic circuit are assumed to take on non-negative values,
then a y-conic circuit computes only non-negative values. It is evident that y-conic circuits can
compute all and only polynomials that are in the cone of the y variables. In other words, if y are the
variables y1, . . . , ym, then there exists a y-conic circuit C(x, y) that computes the polynomial p(x, y) iff
p(x, y) ∈ cone(y1, . . . , ym) ⊆ R[x, y]. Similarly, if f(x) is a sequence of polynomials f1(x), . . . , fm(x),
then there exists a y-conic circuit C(x, y) such that C(x, f(x)) = p(x) iff p(x) computes a polynomial

in cone
(
f(x)

)
⊆ R[x].

Deciding if a given circuit is y-conic is in deterministic polynomial-time (see Claim 5.10). In what
follows, we will write “conic” instead of “y-conic” where the meaning of y is clear from the context.

We start by defining the most general version of CPS over an ordered ring.

Definition 5.2 (CPS over an ordered ring R; R-CPS). Consider a collection of polynomial inequal-
ities H = {hi(x) ≥ 0}ℓ

i=1 (“assumptions”), where all polynomials are from R[x1, . . . , xn], with R and
ordered ring. We will denote the collection of inequalities and the collection of polynomials hi by the
same letter without further notice. An R-CPS proof of p(x) from H, showing that H semantically
imply the polynomial inequality p(x) ≥ 0, is an algebraic circuit C(x, y) computing a polynomial in
R[x, y1, . . . , yℓ], such that:

1. C(x, y) is a y-conic circuit; and

2. C(x, H) = p(x),

where item 2 above is a formal polynomial identity in which the left hand side means that we substitute
hi(x) for yi, for i = 0, . . . , ℓ.

The size of an R-CPS proof is the size of the circuit C (see Remark 5.3 item 3). The variables
y are the placeholder variables since they are used as placeholders for the axioms. A CPS proof of
a negative constant from H is called an R-CPS refutation of H. In the case that R is a field we
assume that this constant is −1.

23

Remark 5.3. 1. CPS should be thought of as a way to derive valid polynomial inequalities from a
set of polynomial equations and inequalities from R[x]. Loosely speaking, it is a circuit represen-
tation of the Positivstellensatz proof system (Definition 2.8), though in CPS the assumptions
(more precisely, placeholder variables) may have powers greater than one. That is, whereas
eq. 1 is multilinear in the hi variables, CPS is not.

2. In the definition of R-CPS we do not use equations (and unlike the Positivstellensatz we do not
make a derivation in the corresponding ideal). However, we are not losing any power doing this.
Let F be a set of equations, and denote −F = {−f}

f∈F (similarly to inequalities, we denote
a collection of polynomial equations and a collection of the corresponding polynomials by the
same letter). First, observe that the assignments satisfying the set of inequalities H, F , −F are
exactly the assignments satisfying the equalities F and inequalities H. We show in Thm. 5.13
that if we encode equalities in F as pairs of inequalities in F , −F , we can derive any polynomial
in the ideal generated by F (and not merely in the cone of F), as required for equations (and
similar to the definition of SoS), with at most a polynomial increase in size (when compared to
IPS). Therefore, we will sometimes speak about R-CPS refutations for sets of both

equations and inequalities.

3. Note that we have defined the size of an R-CPS proof as the size of the circuit C. This can be
taken to be the circuit-size in the unit-cost model in which coefficients are of size 1 over any
ordered ring R, or using the constant-free circuit model when working over Q or Z.

Note that similar to other semi-algebraic proof systems devoid of the Boolean axioms R-CPS is
not necessarily complete (while its soundness is shown in Prop. 5.8). We will consider its particular
complete cases. In the case where R is a real closed field its completeness follows from the simulation
of Positivstellensatz (Thm. 5.16). We will also consider “Boolean” CPS, where the assumptions
ensure 0-1 solutions (Definition 5.4). Boolean CPS is complete for R = Q and even for R = Z.

We now define the Boolean Cone Proof System. By default, when referring to CPS we will be
speaking about the Boolean version and hence may suppress the work “Boolean”.

Definition 5.4 ((Boolean) Cone Proof System (CPS)). This is R-CPS as in Definition 5.2 that
in addition the assumptions H contain for every variable x, the inequalities (note that the first two
inequalities mean that implicitly we work with the equality x2 − x = 0):

x2 − x ≥ 0

x − x2 ≥ 0

x ≥ 0

1 − x ≥ 0.

Remark 5.5. To derive polynomials in the ideal of F we need to be able to multiply fi and −fi

(from H) by any (positive) polynomial in the x variables. There are two ways to achieve this in
Boolean CPS: the first, is to use the Boolean axiom xi ≥ 0 in H. This allows to product fi and −fi

by any polynomial in the x-variables. The second way, the one we use in Prop. 5.12 to show that
CPS simulates IPS, is different and does not necessitate the addition of the axiom xi ≥ 0 to H. Since
the second way does not use the Boolean axiom xi ≥ 0 in H we can use it in CPS over an ordered
ring, hence allowing the derivation of polynomials in the ideal of F within the latter proof system.

In order to refute propositional formulas in conjunctive normal form (CNF) in CPS we use the
algebraic translation of CNFs (Definition 2.5), which is expressed as a set of polynomial equalities. We

24

show in Prop. 5.19 that CPS can efficiently translate CNF formulas written as polynomial equalities
to the standard way in which CNF formulas are written as polynomial inequalities.

To exemplify a proof in CPS we provide the following simple proposition:

Proposition 5.6. CPS admits a linear size refutation of the binary value principle BVPn.

Proof: To simplify notation we put S :=
∑n

i=1 2i−1 · xi + 1. The set of assumptions includes S = 0
and the Boolean assumptions. Then by the definition of CPS the conic circuit can use the following
axioms:

H :=
{

x1 ≥ 0, . . . , xn ≥ 0, − S ≥ 0, S ≥ 0, x2
1 − x1 ≥ 0, . . . , x2

n − xn ≥ 0,

−(x2
1 − x1) ≥ 0, . . . , − (x2

n − xn) ≥ 0, 1 − x1 ≥ 0, . . . , 1 − xn ≥ 0
}

.

Therefore, the CPS refutation of the binary value principle is defined as the following y-conic circuit:

C(x, y) :=

(
n∑

i=1

2i−1 · yi

)
+ yn+1, (5)

where the placeholder variables y1, y2, . . . , y4n+2 correspond to the axioms in H in the order they
appear above (note that most yi’s do not appear in eq. 5, because the corresponding axioms are not
needed for the proof). Observe indeed that C(x, H) = C(x, x1, . . . , xn, −S, . . .) =

(∑n
i=1 2i−1 · xi

)
+

(−S) = −1.

Observing the CPS refutation in eq. 5 we see that it is in fact already an SoS refutation:

Corollary 5.7. SoS admits a linear monomial size refutation of the binary value principle BVPn.

5.1 Basic Properties of CPS and Simulations

CPS is a very strong proof system. In fact, of all proof systems with randomized polynomial-time
verification, given concretely (namely, as a circuit or a sequence of circuits8), to the best of our
knowledge CPS is the strongest to have been defined to this date. CPS simulates IPS as shown
below, while we show that IPS simulates CPS only under the condition that there are short IPS
refutations of the binary value principle.

Now we show that soundness and completeness of CPS hold over the the same rings for which
Positivestellensatz is sound and complete, whereas, similar to IPS, the probabilistically polynomial-
time verifiability of CPS reduces to polynomial identity testing.

Proposition 5.8 (Soundness and completeness). Boolean CPS is sound and complete over every
ordered ring, and F-CPS is sound and complete for every real closed field F. More precisely, let
R be an ordered ring, and F be a real closed field. Then, given a set of polynomial inequalities H,
where all polynomials are from R[x1, . . . , xn] (resp., F[x1, . . . , xn]) there exists a CPS (resp., F-CPS)
refutation of H, iff there is no {0, 1} assignment (resp., F-assignment) satisfying H.

8Though one should be aware of “non-standard” “concrete” proof systems that extend Extended Frege with addi-
tional axiom schemes expressing for instance the reflection principle for some very strong proof system, or the correctness
of certain computations (e.g., that a given circuit computes correctly a certain function).

25

Proof: The soundness of Boolean CPS and F-CPS is clear: assume that C(x, y) is a CPS refutation
of H. Assume by a way of contradiction that α is a 0-1 assignment to x in that satisfies H in the
case of CPS (or an F-assignment to x in the case of F-CPS). The circuit C(x, y) is y-conic and
hence C(α, H(α)) is non-negative assuming that the inputs to the y variables (that is, H(α)) are
non-negative. Since α satisfies H we know that indeed hi(α) ≥ 0, for every hi(x) ∈ H. Therefore,
Ĉ(α, H(α)) ≥ 0, which contradicts our assumption that C(α, H(α)) = −1.

The completeness of Boolean CPS follows e.g., from the completeness of propositional Positivstel-
lensatz and its simulation below (Thm. 5.16). The completeness of F-CPS stems from Thm. 2.7
(which holds for every real closed field).

Proposition 5.9. A constant-free CPS proof over Z or Q can be checked for correctness in proba-
bilistic polynomial time.

Proof: Similar to IPS, we can verify condition 2 in Definition 5.2, that is C(x, H) = p(x), in proba-
bilistic polynomial-time (formally, in coRP). Note that to check condition 2 we need to be able to
do polynomial identity testing, which is in coRP for constant-free circuits in Z. For Q we can use
Prop. 4.3 to turn the identity to an identity over Z.

For condition 1 in Definition 5.2 we need to check that C is a y-conic circuit, which can be done
in P (in fact NL) via the following claim:

Claim 5.10. There is a non-deterministic logspace (thus polynomial-time) algorithm to determine
if a circuit C(x, y) is a y-conic circuit or not (over any ring)

Proof of claim: We say that a directed path from a leaf u in C holding either a negative constant or
an x variable to the output gate of C is bad if the path does not contain any squaring gate.

For each leaf u in C holding either a negative constant or an x variable we can determine the
following property in NL: there exists a bad path from u to the output gate of C. This algorithm
is in NL simply because nondeterministically we can go along a directed path from u to the output
gate and check that no squaring gate was encountered along the way (we only need to record the
current node and the current length of the path so to know when to terminate). This means that
the complement problem of deciding that there does not exist a bad path from u to the output gate
is in coNL, which is equal to NL by the Immerman–Szelepcsényi Theorem.

Our algorithm thus enumerates the leaves and checks that each of the leaves holding negative
constants do not possess any bad path to the output gate. Claim

Similar to IPS, as a corollary we get the following:

Corollary 5.11. If constant-free CPS over Z or Q is p-bounded (namely, admits polynomial-size
refutations for every unsatisfiable CNF formula) then coNP is in MA, yielding in particular the
polynomial hierarchy collapse to the third level (cf. [45, 28]).

5.1.1 CPS Simulates IPS

We now show that Boolean CPS (Definition 5.4) simulates Boolean IPS for the language of {0, 1}-
unsatisfiable sets of polynomial equations over any ordered ring. Similarly, Q-CPS simulates IPS over
Q. We translate an input equality fi(x) = 0 into a pair of inequalities fi(x) ≥ 0 and −fi(x) ≥ 0. Note
that an IPS proof is written as a general algebraic circuit (computing an element of an ideal), while a
CPS proof is written as a more restrictive algebraic circuit, namely as a y-conic circuit (computing an
element of a cone). This means that in CPS a priori we cannot multiply an inequality by an arbitrary
polynomial. We thus demonstrate how to do it when we have opposite-sign inequalities. For this
purpose, we represent an arbitrary polynomial as the difference of two nonnegative expressions.

26

Proposition 5.12 (minus gate normalisation). Let G(x) be an algebraic circuit computing a poly-
nomial in the x variables over Q. Then, there is an algebraic circuit of the form GP (x) − GN (x)
computing the same polynomial as G(x) where GP and GN are ∅-conic. The size of GP , GN is at
most linear in the size of G.

Proof: This is somewhat reminiscent of Strassen’s conversion of a circuit with division gate to a
circuit with only a single division gate at the top [58]. We are going to break inductively each node
into a pair of nodes computing the positive and negative parts of the polynomial computed in that
node. Formally, we define the circuits GP , GN (that may have common nodes) by induction on the
size of G as follows:
Case 1: G = xi, for xi ∈ x. Then, GP := 1

2(x2
i + 1), GN := 1

2(xi − 1)2.
Case 2: G = α, for α a constant in the ring. Then

GP := α, GN := 0, if α ≥ 0;
GP := 0, GN := α, if α < 0.

Case 3: G = F + H. Then, GP := FP + HP and GN := FN + HN .
Case 4: G = F · H. Then, GP := FP · HP + FN · HN and GN := FP · HN + FN · HP .

The size of both GP , GN is O(|G|), namely linear in the size of G. This is because we only add
constantly many new nodes in GP , GN for any original node in G; note that since we construct a
new circuit computing the same polynomial as G, we can re-use nodes computed already, in case
4: for example, FP is the same node used in GP and GN (hence, indeed, the number of new added
nodes for every original node in G is constant).

Theorem 5.13. Q-CPS simulates algebraic IPS as a proof system for the language of unsatisfiable
sets of polynomial equations over Q. In other words, there exists a constant c such that for any
polynomial p(x) and a set of polynomial equations F over Q, if p(x) has an IPS proof of size s from
F then there is a CPS proof of p(x) from F of size at most sc. Furthermore, Boolean CPS simulates
Boolean IPS (for any ordered ring).

Remark 5.14. It is easy to see that fractional Q coefficients are not needed in the case of Boolean
systems, as Case 1 in Prop. 5.12 above simplifies to GP := xi, GN := 0 when xi’s are nonnegative.
This is the reason Boolean CPS simulates Boolean IPS over any ordered ring.

Specifically, if F is a set of polynomial equations with no 0-1 satisfying assignments and suppose
that there is an IPS refutation of F with size s, then there is a CPS refutation of F with size at
most sc.

Proof of Thm. 5.13. We are going to simulate both the Boolean and the algebraic versions of IPS.
The proof in both cases is the same.

Assume that C(x, y) is the IPS proof of p(x) from F = {fi(x) = 0}ℓ
i=1, of size s, and let

y = {y1, . . . , yℓ} be the placeholder variables for the equations in F . We assume for simplicity that
if we simulate the Boolean version of IPS the Boolean axioms x2 − x are also part of F (while if we
simulate the algebraic version of IPS these axioms are not part of F). We use the following claim
which is proved by a standard process that factors out the y variables one by one:

Claim 5.15. Let C(x, y) be a circuit of size s, where y = {y1, . . . , yℓ} and such that C(x, 0) = 0.
Then C can be written as a sum of circuits with only a polynomial increase in size as follows:
C(x, y) =

∑ℓ
i=1 yi · Ci(x, y).

27

Proof of claim: We proceed by a standard process to factor out the y variables one by one. Beginning
with y1 we get:

C(y, x) = y1 ·
(
C(1, y′, x) − C(0, y′, x)

)
+ C(0, y′, x),

where y′ denotes the vector of variables (y2, . . . , yℓ). In a similar manner we factor out the variable
y2 from C(0, y′, x). Continuing in a similar fashion we conclude the claim. Notice that the size of the
resulting circuit is O(|C|2), and that in the final iteration of the construction we factor out yℓ from
C(0, yℓ, x) it must hold that C(0, yℓ, x) = y1 ·

(
C(0, 1, x) − C(0, 0, x)

)
+ C(0, 0, x) = y1 · C(0, 1, x),

because by assumption C(0, 0, x) = 0. Claim

By this claim we have

C(x, y) =
ℓ∑

i=1

yi · Ci(x, y)

=
ℓ∑

i=1

yi · Ci,P (x, y) −
ℓ∑

i=1

yi · Ci,N (x, y) , (6)

where Ci,P (x, y), Ci,N (x, y) are the positive and negative parts of Ci(x, y), respectively, that exist by
Prop. 5.12, written as circuits in which no negative constants occur (we do not need to distinguish
between the variables x and y here).

We wish to construct now a CPS refutation of F . Our corresponding set of inequalities H will
consist of fi(x) ≥ 0, −fi(x) ≥ 0, for every i ∈ [ℓ]. In total, |H| = 2ℓ. Accordingly, our CPS refutation
of F , H, will have 2ℓ placeholder variables for the axioms in H denoted as follows: yP are the ℓ
placeholder variables yi,P corresponding to fi(x) ≥ 0, i ∈ [l], yN are the ℓ placeholder variables yi,N

corresponding to −fi(x) ≥ 0, i ∈ [l].
Since Ci,P and Ci,N are ∅-conic circuits,

ℓ∑

i=1

yi,P · Ci,P (x, yP , yN) +
ℓ∑

i=1

yi,N · Ci,N (x, yP , yN)

is a (yP , yN)-conic circuit. It constitutes a CPS proof of p(x) from the assumptions fi(x) ≥
0, −fi(x) ≥ 0, for i ∈ [ℓ] of size linear in |C| (as before, we denote by F the vector f1(x), . . . , fℓ(x)):

ℓ∑

i=1

fi(x) · Ci,P (x, F) +
ℓ∑

i=1

(−fi(x)) · Ci,N (x, F)

=
ℓ∑

i=1

fi(x) ·
(
Ci,P (x, F) − Ci,N (x, F)

)

=
ℓ∑

i=1

fi(x) · Ci(x, F) = C(x, F) = p(x).

5.1.2 CPS Simulates Positivstellensatz and SoS

We now turn to simulation results. Recall that the size of CPS (and similarly, IPS) is defined either
as a constant-free circuit-size over Q or Z, or as a circuit-size in the unit-cost model (Remark 5.3
item 3). The following theorem is immediate from the definitions.

28

Theorem 5.16. CPS over an ordered ring R simulates Positivstellensatz (and hence also SoS) over
R.

Proof: This follows immediately from the fact that CPS is a circuit representation of the second
big sum in eq. 1. More formally, let F := {fi(x) = 0}i∈I be a set of polynomial equations and let
H := {hj(x) ≥ 0}j∈J be a set of polynomial inequalities, where all polynomials are from R[x1, . . . , xn].
Consider the following Positivstellensatz refutation of F , H, where {pi}i∈I and {si,ζ}i,ζ (for i ∈ N

and ζ ⊆ J) are collections of polynomials in R[x1, . . . , xn]:

∑

i∈I

pi · fi +
∑

ζ⊆J


∏

j∈ζ

hj ·


∑

i∈Iζ

s2
i,ζ




 = −1 . (7)

The size of the Positivstellensatz refutation is the combined total number of monomials in {pi}i∈I

and
∑

i∈Iζ
s2

i,ζ , for all ζ ⊆ J (see Definition 2.8).

By definition every fi(x) = 0 ∈ F has corresponding two inequalities in H, fi(x) ≥ 0 and
−fi(x) ≥ 0. Let the variables y (to be used as placeholder variables) be partitioned into three
disjoint parts: y = {yi}i∈I ⊎ {yi′}i′∈I′ ⊎ {yj}j∈J , where {yi}i∈I are the placeholder variables for
{fi(x) ≥ 0}i∈I in H, {yi′}i′∈I′ are the placeholder variables for {−fi(x) ≥ 0}i∈I in H and {yj}j∈J

are the placeholder variables for {hj(x) ≥ 0}j∈J in H. Assume also that for every i ∈ I, pi,P is the
sum of all non-negative monomials in pi and pi,N is the sum of all negative monomials in pi. Define

C(x, y) :=
∑

i∈I

pi,P · yi +
∑

i′∈I′

pi,N · yi +
∑

ζ⊆J


∏

j∈ζ

yj ·

(
∑

i

s2
i,ζ

)
 ,

where each of the three big sums is written as a sum of monomials.
Hence, C(x, H) = −1 by eq. 7 and the size of C(x, y) is linear in

∑
i∈I |pi|#monomials

+
∑

ζ⊆J

∑
i∈Iζ

∣∣∣s2
i,ζ

∣∣∣
#monomials

.

Corollary 5.17. Boolean CPS simulates SoS and Positivstellensatz for inputs that include the
Boolean axioms.

5.1.3 CPS Simulates LS∞
∗,+ for CNFs Written as Inequalities

CPS can simulate the strong semi-algebraic proof system as defined in Definition 2.12.

Theorem 5.18. Boolean CPS simulates LS∞
∗,+ (that is, “dynamic Positivstellensatz” from

Definition 2.12).

Recall that CPS uses the algebraic translation of CNFs (Definition 2.5) as equations while earlier
semi-algebraic systems historically used the semi-algebraic translation of CNFs (Definition 2.11) as
inequalities. We will show below that one can be efficiently converted into the other. Modulo this
proposition the proof of Thm. 5.18 is almost trivial.

Proof sketch of Thm. 5.18. It suffices to observe that the derivation rules (adding and multiplying
two inequalities, taking a square of an arbitrary polynomial) are the same as the rules of constructing
the conic circuit. Therefore, following the LS∞

∗,+ proof we construct a conic circuit that, given the
axioms on the input, computes -1.

29

Proposition 5.19 ([26], Lemmas 3.1 and 3.2). There is a polynomial-size propositional CPS proof
that starts from the algebraic translation of a clause as the two inequalities

∏
i∈P (1−xi) ·

∏
j∈N xj ≥ 0

and −
(∏

i∈P (1 − xi) ·
∏

j∈N xj

)
≥ 0, and derives the semi-algebraic translation of the clause

∑
i∈P xi +

∑
j∈N (1 − xj) − 1 ≥ 0, and vice versa.

Recall that CPS works with inequalities, whereas equalities f = 0 in F are interpreted as the
two inequalities f ≥ 0 and −f ≥ 0 in H. Hence, Prop. 5.19 suffices to show that a clause given as
an equality in F can be translated efficiently in CPS to its semi-algebraic translation.

Proof of Prop. 5.19. Such efficient proofs were shown in [26, Lemmas 3.1 and 3.2] for a much weaker
semi-algebraic proof system. The only difference of a proof in CPS is that we are allowed to write
arbitrary formulas without multiplying out brackets. We provide a full proof in CPS in the direction
that we use, for the sake of being self-contained.

We proceed by induction on the number of variables in the clause.

Base case: We start with one of the (algebraic) clauses x1 or 1 − x1. In the former case, we start
from −x1 which is in H by the definition of CPS, and we need to derive (1 − x1) − 1, which is equal
to −x1, hence we are done. In the latter case, we start from −(1 − x1) which is x1 − 1, hence we are
done again.

Induction step:
Case 1: We start from the clause (1 − xn) ·

∏
i∈P (1 − xi) ·

∏
i∈N xi as a given equation (namely,

in F ; formally, the two corresponding inequalities are in H), and we need to derive xn +
∑

i∈P xi +∑
i∈N (1 − xi) − 1 in CPS. We consider the two cases xn = 0 and xn = 1, and then use reasoning by

Boolean cases in CPS. Reasoning by Boolean cases in propositional CPS is doable in polynomial-size
by Prop. A.5 which states this for IPS and since propositional CPS simulates IPS by Thm. 5.13 for
the language of polynomial equations F (in our case the initial clauses are indeed given as equations,
and thus CPS simulates IPS’ reasoning by Boolean cases).

In case xn = 0, (1−xn) ·
∏

i∈P (1−xi) ·
∏

i∈N xi =
∏

i∈P (1−xi) ·
∏

i∈N xi, from which, by induction
hypothesis we can derive in CPS with a polynomial-size proof

∑
i∈P xi +

∑
i∈N (1 − xi) − 1. Since

xn = 0 we can add xn to this expression obtaining xn +
∑

i∈P xi +
∑

i∈N (1−xi)−1, and we are done.
In case xn = 1, we have xn +

∑
i∈P xi +

∑
i∈N (1 − xi) − 1 = 1 +

∑
i∈P xi +

∑
i∈N (1 − xi) − 1 =∑

i∈P xi +
∑

i∈N (1−xi). But
∑

i∈P xi +
∑

i∈N (1−xi) is easily provable in propositional CPS because
we have the axioms xi ≥ 0 and 1 − xi ≥ 0 in H, for every variable xi, by definition.
Case 2: We start from the clause xn ·

∏
i∈P (1 − xi) ·

∏
i∈N xi, and we need to derive (1 − xn) +∑

i∈P xi +
∑

i∈N (1 − xi) − 1 in CPS. This is similar to Case 1 above with the two Boolean sub-cases
xn = 0 and xn = 1 flipped.

6 Reasoning about Bits within Algebraic Proofs

In what follows we define a number of circuits implementing arithmetic in the two’s complement
notation (see below for the details). Namely, we will define the following polynomial-size circuits:

BITi(f): if f is a circuit in the variables x then BITi(f) computes the ith bit of the integer computed
by f (as a function of the input variables x where the variables x range over 0-1 values).

BIT(f): a multi-output operation that computes the bit vector of f (as a function of the input
variables x where the variables x range over 0-1 values).

30

ADD(y, z): a multi-output carry-lookahead circuit that computes the bit vector of the sum of y and
z.

ADDi(y, z): the circuit that computes the ith output bit in the carry-lookahead circuit ADD(y, z).

CARRYi(y, z): the carry for bit i when adding two bit vectors y, z.

PROD(y, z): the multi-output circuit computing binary multiplication of two bit vectors y and z.

PROD+(y, z): the multi-output circuit computing binary multiplication of two nonnegative bit vec-
tors y and z.

VAL(z): the valuation function that converts z encoding an integer in the two’s complement repre-
sentation to its integer value (see below).

ABS(x): The multi-output circuit computing the two’s complement binary representation of the
absolute value of an input integer x given in two’s complement.

We construct the BITi function by induction on the size of f . In general this cannot be done
for algebraic variables, but in our case we are assuming that the variables x1, . . . , xn are Boolean
variables, and this allows us to carry out the constructions below, yielding a circuit of size which is
polynomial in the size of the algebraic circuit of f where ring scalars are encoded in binary.

6.1 Basic Two’s Complement Arithmetic

Two’s Complement is a standard way of representing integers in computers, in particular, it allows
to treat positive and negative integers in exactly the same way when, for example, adding them.
Buss [10] and Goerdt [20] considered binary arithmetic as carried out in Frege proof system (see also
the textbook by Lu [40]). However, Buss and Goerdt work used the more restrictive computational
model of (Boolean) formulas, while we work with (algebraic) circuits. Moreover, we shall work with
non-Boolean polynomials like VAL in Lemma 6.9 (that is, polynomials that can evaluate to non
Boolean values, and these polynomials have no direct translation in Frege). Therefore, we prove our
construction from scratch in IPS.

In the two’s complement scheme the value represented by the bit string w ∈ {0, 1}k is determined
by a function from {0, 1}k to Z as follows:

Definition 6.1 (the binary value operation VAL). Given a bit vector w0 · · · wk−1 of variables, denoted
w, ranging over 0-1 values, define the following algebraic circuit with integer coefficients9:

VAL(w) :=
k−2∑

i=0

2i · wi − 2k−1 · wk−1.

The most significant bit (msb) wk−1 is called the sign bit of w.

Thus, VAL(w) =
∑k−2

i=0 2i · wi in case the sign bit wk−1 = 0 (hence, w encodes a positive integer),
and VAL(w) =

∑k−2
i=0 2i · wi − 2k−1, in case the sign bit wk−1 = 1 (hence, w encodes a negative

integer).

We will represent the integers computed inside the original algebraic circuit by variable length
bit vectors (that is, different bit vectors may have different lengths). For each gate in a given circuit

9We assumed that algebraic circuits have fan-in two, hence VAL is written as a logarithmic depth circuit of addition
gates (and product gates at the bottom of the circuit).

31

we will assign a number that is sufficiently large to store the bit vector of the integer it computes
when the input variables range over 0-1 values; this number will be called the syntactic length of
the gate (or equivalently, of the circuit whose output gate is this gate). The syntactic length of a
gate is not necessarily the minimal number of bits needed to store a number, since we will find it
convenient to use slightly more bits than is actually required at times. For instance, the product
of two t-bit binary numbers can be stored with only 2t − 1 bits, but we will use 2t + 3 bits for a
product. Given the syntactic length of algebraic gates such as +, × as functions of the syntactic
length of their incoming edges, we can compute by induction on circuit size the syntactic length of
any given gate in a circuit. It will be straightforward that the syntactic length of a constant-free
(integer algebraic) circuit that has s gates and multiplicative depth D (that is, the longest directed
path goes through at most D multiplications) is at most O(s2D) (imagine repeated squaring of 2 as
the worst case), and it is at most O(sd) for a constant-free circuit that has syntactic degree d (that
is, it would compute a polynomial of total degree at most d if all constants −1 are replaced by 1;
surely, d ≤ 2D).

When we need to make an operation over integers of different bit length, we pad the shorter one
(in the two’s complement scheme, a number is always padded by its sign bit, and it is immediate to
see that such padding preserves the value of the number as computed by VAL).

We will use the Boolean connectives ∧, ∨, ⊕, which stand for AND, OR and XOR, respectively. In
order to use Boolean connectives inside algebraic circuits, we define the arithmetization of connectives
as follows:

Definition 6.2 (arithmetization operation arit(·)). For a variable yi, arit(yi) := yi. For the truth
values false ⊥ and true ⊤ we put arit(⊥) := 0 and arit(⊤) := 1. For logical connectives we define
arit(A ∧ B) := arit(A) · arit(B), arit(A ∨ B) := 1 − (1 − arit(A)) · (1 − arit(B)), and for the XOR
operation we define arit(A ⊕ B) := arit(A) + arit(B) − 2 · arit(A) · arit(B).

In this way, for every Boolean circuit F (x) with n variables and a Boolean assignment α ∈ {0, 1}n,
arit(F) (α) = 1 iff F (α) = true.

In what follows, we sometimes omit arit(·) from our formulas and simply write ∧, ∨, ⊕ meaning
the corresponding polynomials or algebraic circuits.

Addition is done with a carry lookahead adder as follows:

Definition 6.3 (CARRYi, ADDi, ADD). When we use an adder for vectors of different size, we
pad the extra bits of the shorter one by its sign bit. Suppose that we have a pair of length-t vectors
of variables y = (y0, . . . , yt−1), z = (z0, . . . , zt−1) of the same size. We first pad the two vectors by
a single additional bit yk = yk−1 and zt = zt−1, respectively (this is the way to deal with a possible
overflow occurring while adding the two vectors). Define

CARRYi(y, z) :=

{
(yi−1 ∧ zi−1) ∨ ((yi−1 ∨ zi−1) ∧ CARRYi−1(y, z)), i = 1, . . . , t;

0 , i = 0 ,
(8)

and
ADDi(y, z) := yi ⊕ zi ⊕ CARRYi(y, z) , i = 0, . . . , t.

Finally, define
ADD(y, z) := ADDt(y, z) · · · ADD0(y, z) (9)

(that is, ADD is a multi-output circuit with t + 1 output bits).

32

It is worth noting that by Definition 6.3 we have (where the equality means that the polynomials
are identical, though the circuits for them is different):

CARRYi(y, z) =





∨
r<i

(
yr ∧ zr ∧

∧i−1
k=r+1(yk ∨ zk)

)
, i = 1, . . . , t;

0 , i = 0 .
(10)

Let s be a bit, and denote by e(s) the bit vector in which all bits are s (that is, e(s) = s · · · s)
and where the length of the vector is understood from the context. In the two’s complement scheme
inverting a positive number is a two-step process: first flip its bits (that is, XOR with the all-1 vector)
and then add 1 to the result. Hence, in what follows, to invert a negative number, and extract its
absolute value, we first subtract 1 and then flip its bits:

Definition 6.4 (absolute value operation ABS). Let x be a t-bit vector representing an integer in
two’s complement. Let s be its sign bit, and let m = e(s) be the t-bit vector all of which bits are s.
Define ABS(x) as the multi-output circuit that outputs t+1 bits10 as follows (where ⊕ here is bitwise
XOR):

ABS(x) := ADD(x, m) ⊕ m.

For the sake of the clarity of the proof, we compute the product of two t-bit numbers in the
two’s complement notation somewhat less efficiently than it is usually done: we define the product
of nonnegative numbers in the standard way, apply it to the absolute values of the numbers and then
apply the appropriate sign bit. This way we get a slightly greater number of bits than needed to
keep the value.

To define the multiplication of two t-bit integers in the two’s complement notation we first define
an unsigned multiplication operator PROD+ which is easy to implement. It takes two non-negative
integers (that is, their sign bit is zero, and this assumption is required for the circuit to work
correctly), and performs the standard non-negative multiplication by performing i = 0, . . . , t − 1
iterations, where the ith iteration consists of multiplying the first integer by the single i-th bit of the
second integer, and then padding this product by i zeros to the right.

Definition 6.5 (product of two nonnegative numbers in binary PROD+). Let a and b be two t-bit
integers where the sign bit of both a, b is zero. We define t iterations i = 0, . . . , t − 1; the result of
the ith iteration is defined as the (t + i)-length vector si = si,t+i−1si,t+i−2 · · · si,0 where

sij := aj−i ∧ bi, for i ≤ j ≤ t − 1 + i,

sij := 0 for 0 ≤ j < i.

(Note that we use the sign bits at−1, bt−1 in this process although we assume it is zero; this is done in
order to preserve uniformity with other parts of the construction.) The product of the two nonnegative
t-bit numbers is defined as the sequential addition of all the results in all iterations:

PROD+(a, b) := ADD
(
st−1, ADD

(
st−2, . . . , ADD (s1, s0)

)
. . .
)

.

The number of output bits of PROD+ is formally 2t including the sign bit.

10Note that since the largest (in absolute value) negative number that can be represented by a t-bit binary vector in
the two’s complement scheme is 2t−1, while the largest positive number that can be represented in such a way is only
2t−1 − 1, we need to store the absolute number of a t-bit integer in the two’s complement scheme using t + 1 bits.

33

Definition 6.6 (product of two numbers in binary PROD). Let y and z be two t-bit integers in the
two’s complement notation. Define the product of y and z by first multiplying the absolute values of
the two numbers and then applying the corresponding sign bit:

PROD(y, z) := ADD
(
PROD+

(
ABS(y), ABS(z)

)
⊕ m, s

)
,

where s = yt−1 ⊕ zt−1 and m = e(s), with yt−1, zt−1 the sign bits of y, z as bit vectors in the two’s
complement notation, respectively.

Note that the number of bits that PROD outputs is 2t + 3: given a t-bit number, its ABS is of
size t + 1 (including the zero sign bit), the nonnegative product PROD+ of ABS(x) and ABS(y) has
size 2(t + 1), bitwise XOR does not change the length, and adding s augments the result by one more
bit.

Note that given the bit vectors x, y of length t, the size of the circuit for CARRYi(x, y) is O(t)
by eq. 8, for ADDi(x, y) it is O(t) as well, and for ADD(x, y) it is still O(t) because in eq. 9 we can
re-use CARRYi. The size of ABS(x) is also O(t) (this is addition and linear-size bitwise XOR) and
finally PROD(x, y) is of size O(t2): we perform an addition of O(t) bit vectors of size O(t) each.

6.2 Extracting Bits and the Main Binary Value Lemma

We are now ready to define the algebraic circuit BIT, in which BITi is the ith bit, that extracts the
bit vector of the output of a given algebraic circuit (as a function of the input variables, where the
variables are considered to range over 0-1).

Definition 6.7 (the bit vector extraction operation BIT). Let F be an algebraic circuit with t its
syntactic length. Assume that 0 ≤ i ≤ t − 1. We define BITi(F) to be the circuit computing the
ith bit of F recursively as follows (note that BITi is a circuit, that is, in the induction step of the
construction we may re-use the same nodes more than once).
Case 1: F = xj for an input xj. Then, BIT0(F) := xj, BIT1(F) := 0 (in this case there are just
two bits).
Case 2: F = α, for α ∈ Z. Then, BITi is defined to be the ith bit of α in two’s complement
notation, with at most t bits (i.e., i < t).
Case 3: F = G + H. Then BIT(F) := ADD(BIT(G), BIT(H)), and BITi(F) is defined to be the
ith bit of BIT(F).
Case 4: F = G · H. Then BIT(F) := PROD(BIT(G), BIT(H)), and BITi(F) is defined to be the
ith bit of BIT(F).

Recall that in the latter two cases the shorter number is padded to match the length of the longer
number by copying the sign bit before applying ADD or PROD.

Note that both |BITi(F)| and |BIT(F)| have size O(t2 · |F |) (for t the syntactic length of F). To
understand this upper bound, observe that every node in the circuit for BIT(F) belongs to either
a sub-circuit computing the ith bit of ADD(x, y) (i.e., ADDi(x, y)) or to a sub-circuit computing
the ith bit of PROD(x, y), for some 0 ≤ i ≤ t and some two vectors of bits x, y that were already
computed by the circuit (since this is a circuit, once the vectors x, y were computed we can use their
result as many times as we like, without the need to compute them again). Hence, each addition
gate in F contributes O(t) nodes to BIT(F) and each product gate in F contributes O(t2) nodes to
BIT(F). This accounts for the size O(t2 · |F |) for BIT(F) (as well as for BITi(F)).

For technical reasons we need the following definition:

Definition 6.8 (IPS sub-proof; multi-output IPS proofs). Let C(x, y) be an IPS proof from a set
of polynomial equations as assumptions F of p(x) (that is, C(x, F) = p(x) and C(x, 0) = 0), and

34

suppose that C ′(x, y) is a sub-circuit of C(x, y) such that C ′(x, y) is an IPS proof of g(x) (that is,
C ′(x, F) = g(x) and C ′(x, 0) = 0).11 Then, we say that C ′(x, y) is a sub-proof of C(x, y), and also
(by slight abuse of terminology) that g(x) is a sub-proof of the IPS proof C of p(x) from F .

Furthermore, a multi-output circuit C(x, y) is said to be an IPS proof from assumptions F , if
each of its output gates computes an IPS proof.

For example, let the assumptions be F = {x2, (1+x1x2)}. The two-output circuit C(x, x) defined
as (x1 ·y1, x1 ·y2), where x1 is joined by the two sub-circuits x1 ·y1 and x1 ·y2, is an IPS proof having
two sub-proofs: the first is a sub-proof of x1 ·x2 from F , and the second is a sub-proof of x1 ·(1+x1x2)
from F .

Lemma 6.9. (main binary value lemma) Let F (x) be an algebraic circuit over Z in the variables
x = {x1, . . . , xn}, and suppose that the syntactic length of F is at most t. Then, there is an IPS
proof of

F = VAL(BIT(F))

of size poly(|F |, t) (there are no axioms for this IPS proof, except for the Boolean axioms). Further-
more, if F (x) is constant-free, the poly(|F |, t)-size IPS proof is also constant-free.

Proof: We will proceed, essentially, by induction on the structure of F . For technical reasons (since
we work with circuits of which sub-circuits can be re-used) we are going to state our induction
hypothesis on an IPS proof that consists, as sub-proofs, of other IPS proofs.

More precisely, let F1, . . . , Fk be a set of sub-circuits of F . We denote by λ(F1, . . . , Fk) the
size of the IPS proof we are to construct; this proof will consist (as sub-proofs) of IPS proofs of
Fi = VAL(BIT(Fi)), for all i ∈ [k]. We let λ(∅) := 0. We shall assume that at every step of the
construction F1 is of maximal size, namely there is no Fi that has size bigger than F1 (possibly there
are other Fi’s with the same size). In this way, we make sure that F1 is not a sub-circuit of any other
Fi. The IPS proof is to be constructed by induction on |F1| so that in each step of the induction
we deal with a single sub-circuit F1 of F , such that |F1| > 1. In the base case of the induction we
thus have λ(F1, . . . , Fk) such that all Fi’s have size 1, namely, they are all the variables and constant
gates that appear in F .

Note that since we treat the input to λ as a set we discard duplicate Fi’s from its input. For
example, λ(G, H) = λ(G) in case G = H. (This is convenient in what follows, because F is a circuit
and the IPS proof we construct is also a circuit, and hence can re-use multiple times the same IPS
sub-proof; see below.)

We proceed by induction on |F1|, the maximal size of a circuit in F1, . . . , Fk, to show the following:
in case all F1, . . . , Fk are variables or constant nodes we show that

λ(F1, . . . , Fk) ≤ c0kt,

for some constant c0.
In case F1 = G ◦ H, for ◦ ∈ {+, ·}, we show that

λ(F1, . . . , Fk) ≤ λ(G, H, F2, . . . , Fk) + (t · |F1|)b,

for some constants b independent of |F1| and t. This recurrence relation immediately implies that
λ(F) ≤ |F | · (t · |F |)b, which is polynomial in |F | and t (informally, every node in F contributes the
additive term c0t or (t · |F |)b to the recurrence).

11Notice that not all sub-circuits of C are IPS proofs; e.g., if they are polynomials that are not in the ideal generated
by y, they are not sub-proofs.

35

Base case: All F1, . . . , Fk are variables or constant nodes. We construct a multi-output IPS proof
C(x, y), that consists of k disjoint proofs of VAL(BIT(Fj)) = Fj , for j ∈ [k].

Case 1: Fj = xi, for i ∈ [n]. Thus, the syntactic length of Fj is 2 and by definition VAL(BIT(xi)) :=
VAL(0xi) := xi −21 ·0 (the left equality is by definition of BIT, and the right equality is by definition
of VAL). Hence, VAL(BIT(xi)) = xi is a true polynomial identity and so by Fact A.1 we have an
IPS proof of size precisely the size of the circuit for xi − 21 · 0 − xi which is at most, say, 20.

Case 2: Fj = α, for α ∈ Z. Then, by Definition 6.7, VAL(BIT(α)) :=
∑t−2

i=0 2iαi − 2t−1 · αt−1, where
αt−1 . . . α0 is the correct bit vector of α in the two’s complement notation (where t is the syntactic
length of Fj). Hence, VAL(BIT(α)) = α is a true polynomial identity of size at most c0t, for some
constant c0. By Fact A.1 we have an IPS proof of VAL(BIT(α)) = α of size at most c0t.

Hence, the total size of all the proofs of VAL(BIT(Fj)) = Fj , for j ∈ [k], amounts to
λ(F1, . . . , Fk) ≤ c0kt, as required.

Induction step: We assume that the syntactic length of F1 is t. We show that, in case F1 = G + H,
λ(F1, . . . , Fk) ≤ λ(G, H, F2, . . . , Fk) + c1 + (t · |F1|)b′

, for some constants b′ and c1, and in case
F1 = G·H we show that λ(F1, . . . , Fk) ≤ λ(G, H, F2, . . . , Fk)+(t·|F1|)a+(t·|F1|)b′

, for some constants
b′ and a independent of t and |F1|. Thus, choosing a big enough constant b, e.g., b > 10 · max(a, b′),
will conclude that λ(F) ≤ |F | · (t · |F |)b, and hence will conclude the proof.

Case 1: F1 = G+H, with F1 of syntactic length t. Since the syntactic length of F1 is t, the syntactic
length of BIT(G), BIT(H) is t − 1 (after padding BIT(G), BIT(H) to have the same size). We need
to construct an IPS proof consisting of sub-proofs of VAL(BIT(F1)) = F1, . . . , VAL(BIT(Fk)) = Fk.
By induction hypothesis we have an IPS proof consisting of sub-proofs of G + H = VAL(BIT(G)) +
VAL(BIT(H)) and Fi = VAL(BIT(Fi)), for i = 2, . . . , k, of total size λ(G, H, F2, . . . , Fk) + c1, for
some constant c1 (the constant c1 here is needed for the addition of the two proofs; see Fact A.3 in
which c1 = 1). It thus suffices to prove

VAL(BIT(G)) + VAL(BIT(H)) = VAL(BIT(F1))

with an IPS proof of size at most (t · |F1|)b′

, for some constant b′ independent of t.
For simplicity of notation, let us denote the circuits for bits BIT(G) and BIT(H), by y and z,

respectively, and the syntactic length of y, z by r = t − 1. We proceed slightly informally within IPS
as follows (recall that polynomial identities of size s have trivial IPS proofs of size s by Fact A.1).

VAL(y) + VAL(z) =
r−2∑

i=0

2i(yi + zi) − 2r−1(yr−1 + zr−1).

On the other hand we have (recall the padded bits yr = yr−1, zr = zr−1 in the definition of ADD)

VAL(BIT(F1)) = VAL (ADD0 (y, z) . . . ADDr (y, z)) (by definition of BIT)

=
r−1∑

i=0

2i (zi ⊕ yi ⊕ CARRYi(y, z)) − 2r(zr−1 ⊕ yr−1 ⊕ CARRYr(y, z))

(by definition of ADDi and VAL).

Thus, to complete the case of addition, it remains to prove the following:

36

Claim 6.10. There is an IPS proof with size at most (r · |F1|)b′′

, for a constant b′′ (independent of
r, and such that b′ will be chosen so that b′ > b′′) of the equation

r−2∑

i=0

2i(yi + zi) − 2r−1(yr−1 + zr−1)

=
r−1∑

i=0

2i (zi ⊕ yi ⊕ CARRYi(y, z)) − 2r(zr−1 ⊕ yr−1 ⊕ CARRYr(y, z)) .

Proof of claim: This is proved by induction on r as follows.

Base case: r = 2. It is easy to see (or can be verified by hand) that in this case the two sides of the
claim are equal for every y0, z0, y1, z1 ∈ {0, 1}. Given that the number of bits in this case is constant,
this is enough to conclude that there is an IPS proof of the above equation (using reasoning by
Boolean cases as in Prop. A.5, over a constant number of possible truth assignments for y0, z0, y1, z1)
of size (2 · |F |)b′′

, for some constant b′′.

Induction step: To prove this step, notice that using the induction hypothesis we see that the equality
we need to prove is

(zr−2 + yr−2) − (zr−1 + yr−1) = zr−2 ⊕ yr−2 ⊕ CARRYr−1(y, z) − zr−1 ⊕ yr−1 ⊕ CARRYr(y, z) .

Substituting the definition for CARRYr−1 and CARRYr, we get a polynomial equation in five vari-
ables: zr−2, yr−2, zr−1, yr−1, and C, where C = CARRYr−2(y, z). Once it is verified by hand on
{0, 1}, we conclude that the circuit size of the proof is polynomial in the size of the circuits provided
that these five “variables” are indeed Boolean. Four of them are Boolean by the hypothesis of the
lemma, and the equation C2 − C = 0 for the carry bit C is also easy to derive. Similarly to the
above, we get an IPS proof of size at most (r · |F |)b′′

, for a constant b′. Claim

This concludes Case 1 (i.e., addition) of the induction step of the proof of Lemma 6.9.

Case 2: F1 = G · H, with F1 of syntactic length t. We need to construct an IPS proof consisting of
sub-proofs of VAL(BIT(F1)) = F1, . . . , VAL(BIT(Fk)) = Fk, of size at most λ(G, H, F2, . . . , Fk) + (t ·
|F1|)a + (t · |F1|)b′

, for constants a, b′ independent of |F1| and t. By induction hypothesis we have an
IPS proof consisting of sub-proofs of G ·H = VAL(BIT(G)) ·VAL(BIT(H)) and Fi = VAL(BIT(Fi)),
for i = 2, . . . , k, of total size λ(G, H, F2, . . . , Fk) + |F1| + c2, for some constant c2 (the term |F1| + c2

here is needed for the product of the two proofs G = VAL(BIT(G)) and H = VAL(BIT(H)); see
Fact A.4). It thus suffices to prove

VAL(BIT(F1)) = VAL(BIT(G)) · VAL(BIT(H))

with an IPS proof of size at most (t · |F1|)b′

, for a constant b′. Let r denote the syntactic length of
G, H. Since the syntactic length of F1 is t we have t = 2r + 3.

In what follows, we use the notation from Definition 6.6, namely, y = BIT(G) and z = BIT(H).
We first prove two simple statements about ABS.

Claim 6.11. Let x be a bit vector of length r representing an integer in two’s complement and let

s be the sign bit of x. Then VAL(x) = (1 − 2s) · VAL
(
ABS(x)

)
has an IPS proof from the Boolean

axioms, of size at most rc, for some constant c independent of r.

37

Proof of claim: Recall that the size of ABS(x) is O(r). We will apply (slightly informally) Prop. A.5
for reasoning by Boolean cases in IPS as follows. Consider the two cases for the sign bit s. In case
s = 0 the claim is not hard to check; we will show only the case s = 1.

Recall that inverting a negative number via ABS is done by subtracting 1 (which is the same
as adding the all-one vector) and then inverting all the bits in the resulting vector. Let y be a bit
vector and 1 be the all-one vector of the same length of y, then

VAL(y ⊕ 1) =
r−2∑

i=0

(1 − yi)2
i − (1 − yr−1)2r−1 = −1 − VAL(y). (11)

Using this, we have

(1 − 2s) · VAL(ABS(x)) = −1 · VAL(ADD(x, 1) ⊕ 1) (by definition of ABS)

= −1 · (−1 − VAL(ADD(x, 1))) (by eq. 11 above)

= 1 + VAL(ADD(x, 1)).

By the addition case (Case 1 above) we can construct an IPS proof of VAL
(
ADD(x, 1)

)
= VAL(x)+

VAL(1) = VAL(x) − 1 of size at most rb′

, for some constant b′. This concludes the proof since we
finally get 1 + VAL(ADD(x, 1)) = VAL(x), where the whole proof is of size at most rc, for some
constant c. Claim

Claim 6.12 (non-negativeness of ABS). Let x be a bit vector of length r representing an integer in
two’s complement and let s be the circuit computing the sign bit of ABS(x) according to Definition 6.4.
Then s = 0 has a polynomial-size IPS proof (using only the Boolean axioms).

Proof of claim: We proceed as before by considering the two cases of the sign of x. The case of
positive sign is easy to verify. In the case of a negative sign we have ABS(x) = ADD(x, 1) ⊕ 1,
where by the definition of ADD, x is padded with an additional one bit xr = xr−1 = 1, and hence
the sign bit of ABS(x) is computed as CARRYr(x, 1) ⊕ 1 (note that ADD has one more bit than
x). By (eq. 10), CARRYr(x, 1) is equal to (the arithmetization of)

∨
i<r xi. Since xr−1 = 1, we can

prove in IPS by a simple substitution that the arithmetization of
∨

i<r xi is the constant 1, leading
to CARRYr(x, 1) ⊕ 1 = 0. Claim

We consider then the case of the multiplication of nonnegative numbers.

Claim 6.13. Let y, z be two bit vectors of length r in the two’s complement notation. Then,

VAL
(
PROD+

(
ABS(y), ABS(z)

))
= VAL

(
ABS(y)

)
· VAL

(
ABS(z)

)

has an IPS derivation (from the Boolean axioms) of size rc, for a constant c independent of r.

Proof of claim: Let y+ denote ABS(y) and z+ denote ABS(z), both of length r + 1 (we know from
Claim 6.12 that the sign bits y+

r , z+
r of y+ and z+, respectively, are zero). Recall Definition 6.6 of

PROD, in which we defined the vector si to be the result of multiplying the ith bit of z+, denoted
z+

i , with y+, and then padding it with i zeros to the right. First, we show that IPS can prove that
this multiplication step is correct, in the sense that IPS has an O(r)-size proof of:

VAL(si) = VAL(y+) · z+
i · 2i , (12)

38

for every i = 0, . . . , r. Indeed, for every i = 0, . . . , r, by definition of si we have the following
polynomial identities:

VAL(si) =
r+i−1∑

j=i

(y+
j−iz

+
i)2j − (y+

r · z+
i)2r+i =




r−1∑

j=0

y+
j 2j


 · z+

i · 2i

= VAL(y+) · z+
i · 2i

(we have used y+
r = z+

r = 0 here).

Second, based on the proof of the case of addition (Case 1 above), we can derive

VAL(ADD(sr,ADD(sr−1, . . . , ADD(s0, s1) . . .))) (13)

= VAL(sr) + VAL(ADD(sr−1, . . . , ADD(s0, s1) . . .)))

...

= VAL(sr) + · · · + VAL(s2) + VAL(ADD(s0, s1))

=
r∑

i=0

VAL(si) . (14)

Consider line eq. 13: each ADD there contributes O(r) gates. Thus, in total eq. 13 has a circuit of
size O(r2). Since line eq. 13 is of size O(r2), every step in which we use the addition case of the
induction statement (Case 1), takes rc′

, for some constant c′ > 2 independent of r. Hence, overall
we obtain an IPS proof of the equality between eq. 13 and eq. 14, of size rb′′

, for some constant b′′

independent of r.
Using (eq. 12) and z+

r = 0 we conclude with an IPS proof that eq. 13 above (which by

Definition 6.6 is VAL
(
PROD+(y+, z+)

)
) equals

VAL(y+) ·

(
r−1∑

i=0

z+
i 2i

)
,

which in turn is equal to VAL(y+) · VAL(z+), by definition of VAL and the fact that z+
r = 0. This

amounts to an IPS proof of total size rc, for a constant c independent of r. Claim

Finally, we arrive at the main case of multiplying two possibly negative integers written in the
two’s complement scheme, each with bit vector of length r. Let s = yr−1 ⊕ zr−1 and let m = e(s) be
a vector of length r in which every bit is s. Recall that

PROD(y, z) = ADD
(
PROD+

(
ABS(y), ABS(z)

)
⊕ m, s

)
.

Claim 6.14. VAL
(
PROD(y, z)

)
= (1−2s)·VAL

(
PROD+

(
ABS(y), ABS(z)

))
has an IPS derivation

from the Boolean axioms of size rc, for some constant c independent of r.

Proof of claim: Consider the following two cases.
Case 1: s = 1. Note that inverting all bits affects the value of a bit vector as follows: if x is a
length k bit vector, then

VAL(x ⊕ e(s)) =
k−2∑

i=0

(1 − xi)2
i − (1 − xk−1)2k−1 = −1 − VAL(x). (15)

39

Hence, since s = 1,

VAL
(
PROD(y, z)

)
= VAL

(
ADD

(
PROD+(ABS(y), ABS(z)) ⊕ m, s

))
by definition of PROD

= VAL
(
PROD+(ABS(y), ABS(z)) ⊕ m

)
+ 1

by Case 1 (addition) of induction statement

= −1 − VAL
(
PROD+(ABS(y), ABS(z))

)
+ 1 by eq. 15

= (1 − 2s) · VAL
(
PROD+(ABS(y), ABS(z))

)
since s = 1.

Case 2: s = 0. This is an easier case, in which we show VAL
(
PROD(y, z)

)
=

VAL(PROD+

(
ABS(y), ABS(z)

)
), and so we are done by s = 0. We omit the details.

Using reasoning by Boolean cases in IPS according to Prop. A.5 we conclude the claim. Claim

Taking together Claim 6.14, Claim 6.13 and Claim 6.11 (for y and for z of length t) we get the
desired equality for the product case, where s = yt−1 ⊕ zt−1:

VAL
(
PROD(y, z)

)

= (1 − 2s) · VAL
(
PROD+

(
ABS(y), ABS(z)

))

= (1 − 2s) · VAL
(
ABS(y)

)
· VAL

(
ABS(z)

)

= (1 − 2yr−1) · VAL
(
ABS(y)

)
· (1 − 2zr−1) · VAL

(
ABS(z)

)

= VAL(y) · VAL(z) ,

where the penultimate equation stems from the polynomial identity (1 − 2yt−1) · (1 − 2zt−1) =
1 − 2(yt−1 ⊕ zt−1).

This concludes the proof of the first part of Lemma 6.9. For the second part, assuming that F (x)
is constant-free, the proof is identical, noting simply that in the IPS proof we constructed above all
coefficients are at most exponential in n, and thus by the upper bound τ(m) ≤ O(log m) for every
m ∈ N, we get a constant-free IPS proof of size poly(n).

7 Algebraic versus Semi-Algebraic Proof Systems

Here we show that IPS simulates CPS over Q assuming the existence of small IPS refutations for the
generalized binary value principle (and the binary value principle for the case of Z). We work with
the Boolean versions of both CPS and IPS, meaning that the Boolean axioms are present.

We demonstrate two kinds of conditional simulations: a (standard) polynomial simulation for the
language of unsatisfiable sets F of polynomial equations, and in Sect. 7.2 an effective simulation (in
the sense of Pitassi-Santhanam [46]) for the language of unsatisfiable sets containing both equations
F and inequalities H over Z; similar reasoning works over Q). Note that we cannot hope to show
a (standard) simulation of CPS by IPS for the language containing both polynomial equalities and
polynomial inequalities, because inequalities are not expressible directly as polynomial equations in
IPS; hence, for the sake of the second kind of simulation we first translate H to bit representation
and only then simulate the CPS proof, yielding an effective simulation.

We now prove the simulation for constant-free proofs over Q, and in Sect. 7.2 we will prove the
effective simulation (over Z, which implies the same result over Q).

40

Recall that IPSQ and CPSQ stand for IPS and CPS proofs over Q, respectively, and that by
Prop. 4.3, given a constant-free circuit C over Q we can turn it into a constant-free circuit C ′ over
Z computing M · Ĉ, for some nonzero integer M , with |C ′| ≤ 4|C| and τ(M) ≤ 4|C|.

Definition 7.1 (syntactic length of a circuit over Q). The syntactic length of a circuit C over Q is
the syntactic length of the corresponding circuit C ′ over Z constructed from C in Prop. 4.3.

The main technical theorem of this section is the following:

Theorem 7.2 (conditional simulation of constant-free Boolean CPSQ by constant-free Boolean
IPSQ). Let F denote a system of polynomial equations over Q written as constant-free circuits
{Fi(x) = 0}i∈I and let C(x, F) = −1 be a constant-free CPSQ refutation of F where C(x, F) is of
size s and syntactic length t (as in Definition 7.1).12 Assume that the binary value principle BVPt,M

has a size ≤ r constant-free IPSQ refutation, for every given positive integer M with τ(M) = O(s).
Then, there is a constant-free IPSQ refutation of F with size poly(s, t, r).

Remark 7.3. 1. By inspection of the proof of Thm. 7.2 one can see that the degree of the simu-
lating IPS refutation can be exponential in the size of the resulting circuit (clearly, the degree
cannot be larger than that).

2. Assuming that indeed propositional IPS simulates propositional CPS, by Prop. 5.19 proposi-
tional IPS also simulates any propositional CPS (or Positivstellensatz/SoS) refutation of CNF
formulas given as inequalities. This is because if propositional CPS has a short refutation for a
CNF given as inequalities (Definition 2.11) then from Prop. 5.19, propositional CPS also has
a short refutation of the CNF given as equations (Definition 2.5).

Since the simulation of CPS by IPS in Thm. 7.2 depends on the syntactic length t of the simulated
CPS proof, if we aim to achieve a (polynomial) simulation we need to bound the syntactic length of
the CPS proofs to be at most polynomial in the proof size. We denote this restricted proof system by
CPS⋆

Z and CPS⋆
Q. In other words, a family {πi}

∞
i=1 of CPSZ (resp. CPSQ) proofs is said to be a family

of CPS⋆
Z (resp. CPS⋆

Q) proofs if there is a constant c such that for every i ∈ N, the syntactic length
of πi is at most |πi|

c. In other words, the maximal value (over {0, 1}-assignments to the variables)

of every gate in CPS⋆
Z proof-sequence {πi}

∞
i=1 is bounded from above by 2|πi|

O(1)
.

It is important to note that most known examples of short semi-algebraic proofs of propositional
formulas have polynomial syntactic length, as the multiplication of arbitrary inequalities is not used,
and multiplying by x or by 1 − x for a variable x increases the syntactic length additively. The
use of division by scalars (for example, in the LS proof of PHP) can increase the syntactic length
in Prop. 4.3; however, as those scalars have at most exponential (actually, polynomial) values, the
transformation from rational numbers to integers can bring at most (exp(poly(n)))proof-size factor,
thus a polynomial number of bits.

Recall the terminology in Sect. 4.1: a refutation in IPSZ means a proof of M for some nonzero
integer M . Further, we say that IPSZ simulates CPSQ if a size-s CPSQ proof of p from assumptions
F over Z implies that there is a poly(s)-size IPSZ proof of M · p from F , for some nonzero integer
M .

The binary value principle thus characterizes exactly the apparent advantage CPS has over IPS,
in the following sense:

12We need to consider also the size of the CPS refutation after the substitution of F for the placeholder variables,
that is, C(x, F), because of the slightly peculiar nature of IPS (similar to CPS) in which the size of a refutation does
not include directly the size of the assumptions it refutes.

41

Corollary 7.4 (BVP characterizes the strength of Boolean CPS). In what follows, IPS and CPS
stand for Boolean IPS and Boolean CPS, respectively, where both are proof systems for refuting
unsatisfiable sets of polynomial equalities (not necessarily CNF formulas).

1. Constant-free IPSZ simulates constant-free CPS⋆
Z iff constant-free IPSZ admits poly(t)-size

refutations of BVPt.

2. Constant-free IPSQ simulates constant-free CPS⋆
Q iff for every positive integer M , constant-free

IPSQ admits poly(t, τ(M))-size refutations of BVPt,M .

Proof: We show the proof of item 2 (which includes all the ideas for the other case).
(⇐) Assume that for every positive integer M constant-free IPSQ admits poly(t, τ(M))-size refu-
tations of BVPt,M . Then specifically for τ(M) = O(s) there is a poly(t, s) upper bound on the
size of constant-free IPSQ refutations of BVPt,M . By Thm. 7.2 if there exists a syntactic-length t
constant-free CPS⋆

Q refutation of F then there exists a constant-free IPS refutation of F with size
poly(s, t, r) = poly(s), because t = poly(s) by assumption and r = poly(s, t).
(⇒) This follows from the CPSZ upper bound on BVPn demonstrated in Prop. 5.6. More precisely, it
suffices to show that given a positive integer M there are constant-free CPS⋆

Q refutations of BVPt,M

having poly(t, τ(M))-size. Using the notation as in the proof of Prop. 5.6, we claim that the conic

circuit 1
M

·
(∑t

i=1 2i−1 · yi

)
+ 1

M
· yt+1 serves as such a refutation. Indeed, this conic circuit is easily

written as an O(t · log t + τ(M))-size constant-free circuit. This is because τ(2i−1) = log(i − 1), for
every i = 1, . . . , t, and 1/M is clearly of size 2 + τ(M). That this conic circuit is a refutation of
BVPt,M follows immediately from the definition (see the proof of Prop. 5.6).

The proof of item 1 is similar and we omit the details.

Remark 7.5. The results above in Thm. 7.2 and Cor. 7.4 hold trivially also in the unit-cost model,
where we consider the size of coefficient in the ring or field to be 1. More precisely, if we replace the
term “constant-free proof” with the term “proof” the results still hold. This is because we limit the
syntactic length of the original CPS circuit, and the size of circuit families of polynomial syntactic
length in the unit-cost model is smaller or equal than their size in the constant-free model. And
if a family of constant-free circuits (proofs) Cn simulates a family of constant-free circuits with a
polynomial syntactic length Dn, then the corresponding circuit family C ′

n in the unit-cost model also
simulates the corresponding circuit family D′

n in the unit-cost model (because |Dn| ≤ poly(|D′
n|)).

7.1 Proof of Thm. 7.2

We need to show that there is an IPSZ refutation of F . We first translate the setting to the integers,
since this will allow us to use the main binary value Lemma 6.9 which is stated for Z, as follows:
we take the CPSQ refutation, turn it into a CPSZ refutation without increasing the size too much
(the syntactic length stays the same by definition), and then simulate this refutation in IPSZ, that
is, construct an IPSZ proof from F of a nonzero integer M . Dividing this IPSZ refutation by M we
get the desired IPSQ refutation of F . We formalize this conversion in the following proposition:

Proposition 7.6 (going from constant-free CPSQ to constant-free CPSZ). Let F denote a system of
polynomial equations over Q written as constant-free circuits {Fi(x) = 0}i∈I and let C(x, F) = −1
be a constant CPSQ refutation of F , where C(x, F) has size s and syntactic length t. Then, there
exists a set of polynomial equations over Z denoted F

⋆
= {F ⋆

i (x) = 0}i∈I , where F ⋆
i (x) = Mi · Fi(x)

for some nonnegative Mi ∈ Z, for all i ∈ I, and a constant-free CPSZ proof C⋆(x, y) from F
⋆

of
M · (−1), for some nonzero M ∈ Z, such that C⋆(x, F

⋆
) has both size and syntactic length poly(s, t).

42

Proof: The proof is identical to the proof of Prop. 4.3 (cf. Cor. 4.4). Specifically, given a constant-
free circuit D over Q the Induction Statement in the proof of Prop. 4.3 shows that there exists a
size at most 4|D| constant-free circuit D⋆ over Z that computes M · D̂ for some nonzero integer M .
Accordingly, we turn F into F

⋆
and C(z, y) into C⋆(z, y) in this way. By definition of syntactic

length for circuits over Q the syntactic length of C⋆(z, y) is t.

By Prop. 7.6, to prove Thm. 7.2 we can assume without loss of generality that F is a system of
constant-free-circuit equations over Z and that C(x, F) = −M is a constant-free CPSZ refutation,
where C(x, F) is of size s and syntactic length t. Thus, from now on we assume that all constant-free
circuits and proofs are over Z.

Given a multi-output circuit of size s, with m output gates, each computing the circuit Hi (for
i ∈ [m]), we assume that an algebraic circuit for

∑m
j=1 H2

j is defined to be a sum of m summands,
written as a binary tree of logarithmic in m depth, in which each summand H2

j is defined as the
circuit whose output is a product gate with its two children connected to the output gate of Hj , and
where different Hj ’s can have common nodes (so that the size of the circuit computing

∑m
j=1 H2

j is
linear in s).

Lemma 7.7 (sign bit of sum of squares is zero). Consider the circuit H =
∑

j∈J H2
j , and let BITt(H)

be the sign bit of BIT(H). Then BITt(H) = 0 has a polynomial-size IPS proof (using only the Boolean
axioms).

Proof: Informally, the idea is to prove the desired equation using only the structure of sign bits of
additions and squares appearing in top layers only (the layers close to the output gate) of H, without
looking at the individual structure of the circuits Hj ’s.

First, we show that the sum of two nonnegative numbers is nonnegative, that is, if a pair of
circuits have sign bits that are zero then the sign bit of their addition is also zero, and in symbols:

BITt(F) = 0, BITt(G) = 0 ⊢
poly(|F |,|G|)
IPS BITt+1(F + G) = 0 ,

where the sign bit of F, G is bit t and the sign bit of F + G is bit t + 1.
Let y := BITt(F) and z := BITt(G), then by Definition 6.3 the sign bit of F + G is computed

as y ⊕ z ⊕ CARRYt+1(BIT(F), BIT(G)), because we have padded F and G by their sign bits y, z,
respectively, before the addition. Given that y = 0 and z = 0 by assumption, we need to prove that
CARRYt+1(BIT(F), BIT(G)) = 0. By Definition 6.3 CARRYt+1(BIT(F), BIT(G)) = (y ∧ z) ∨ ((y ∨
z) ∧ · · ·)). Since the arithmetic expressions (according to Definition 6.2) for y ∧ z and y ∨ z can be
easily proved to be zero (from y = 0, z = 0), and the same holds for 0 ∧ · · · , we conclude that the
sign bit of F + G is zero.

To prove that each of the squares H2
j are nonnegative, one needs to consider the two cases of the

sign bit x of Hj and infer that the sign bit of the square is zero in both cases using Prop. A.5.
Recall that

PROD(y, z) := ADD
(
PROD+

(
ABS(y), ABS(z)

)
⊕ m, s

)
,

where s = yt′ ⊕ zt′ and m = e(s), with yt′ , zt′ the sign bits of y, z as bit vectors in the two’s
complement notation, respectively.

In both cases of the sign of Hj , we have s = 0 and m = 0 as y and z are equal in our case.
Everything else is identical in both cases: the sign bit of PROD+ is always zero, because PROD+ is
a consecutive sum of nonnegative numbers (the sign of each of those numbers si from the definition of
PROD+ is obtained by ∧-ing a single bit with the sign of ABS, the latter being zero by Claim 6.12),
and we have already proved that the sum of nonnegative numbers is nonnegative. Applying the
latter fact once again, we conclude that the sign of H2

j is zero in both cases.

43

We will need the following simple lemma:

Lemma 7.8. Let G be an algebraic circuit which is an arithmetization of a Boolean circuit g
(Definition 6.2). Then, IPS has a polynomial-size in |G| derivation of G2 − G from the Boolean
axioms.

Proof: This is proved by induction on |G|; see for example [25, Lemma 4], where this is proved for
Polynomial Calculus over algebraic formulas denoted F-PC.

Since for any circuit F , BITi(F) is the result of an arithmetization of a Boolean circuit we have:

Corollary 7.9. Let F be a circuit, then IPS has a polynomial-size derivation of BITi(F)2 −BITi(F)
from the Boolean axioms.

Lemma 7.10 (sign bit of literals is zero). Let xi be a variable and let BIT1(xi) and BIT1(1 − xi)
be the sign bits of of BIT(xi) and BIT(1 − xi), respectively. Then BIT(xi) = 0 and BIT(1 − xi) = 0
have constant-size IPS proofs (using only the Boolean axioms).

Proof: Observe that indeed the syntactic length of xi and 1 − xi is 2. Now, BIT1(xi) = 0 holds
by definition, since we define BIT(xi) = 0xi (Definition 6.7). For BIT1(1 − xi) = 0, this follows by
considering the two options xi = 0 and xi = 1 (where the size of the proofs is constant, since the
statement itself is of constant size, namely, it involves only a single variable and a two-bit vector).

Lemma 7.11 (sign bits of axioms are zero). Under the assumption that BVPn has poly(n)-size IPS
refutations, there are polynomial-size IPS proofs of BITt(f(x)) = 0 from f(x) = 0 and the Boolean
axioms, where t + 1 is the syntactic length of f(x).

Proof: By Lemma 6.9 we know that VAL(BIT(f)) = f , and hence by assumption VAL(BIT(f)) = 0.
We need to show that under VAL(BIT(f)) = 0 we can infer BITt(f) = 0 with a short IPS proof.
Note that this inference is a substitution instance of the following inference:

t∑

i=1

2i−1xi − 2txt+1 = 0 ⊢IPS xt+1 = 0, (16)

where we substitute BITi−1(f) for xi (i = 1, . . . , t + 1). By Fact A.8, IPS proofs are closed under
substitution instances (together with the fact that the corresponding substitution instances of the
Boolean axioms x2 − x are also provable in IPS by Cor. 7.9) and so it remains to show that under
the assumption that BVP has polynomial-size IPS refutations, eq. 16 holds.

To prove eq. 16 it suffices to show that the assumptions xt+1 = 1 and
∑t

i=1 2i−1xi − 2txt+1 = 0
can be refuted with a polynomial-size IPS refutation.

Assuming xt+1 = 1,
∑t

i=1 2i−1xi − 2txt+1 = 0 becomes
∑t

i=1 2i−1xi − 2t = 0, and so it remains
to show the following:

Claim. Under the assumption that BVPn has poly(n)-size IPS refutations, there are polynomial-size
IPS refutations of

∑t
i=1 2i−1xi − 2t = 0.

Proof of claim: Our assumption that there are polynomial-size IPS refutations of BVPt+1∑t+1
i=1 2i−1xi + 1 = 0, implies that there are short refutation also of its substitution instance∑t+1
i=1 2i−1(1 − yi) + 1 = 0 (again, by Fact A.8 and the fact that the substitution instance of the

Boolean axioms x2 − x, are easily provable when substituting 1 − yi for xi’s; cf. Lemma Lemma 7.8).
But

∑t+1
i=1 2i−1(1 − yi) + 1 = −(

∑t+1
i=1 2i−1yi − 2t) = 0. Claim

44

Up to now, we have shown that for each algebraic circuit in the “base” of the conic circuit C(x, y)
comprising a CPS refutation (namely, the sub-circuits that substitute the placeholder variables y,
as well as the x variables themselves), the sign bit can be proved to be zero in IPS. The following
lemma shows that under these assumptions IPS can prove that the conic circuit C(x, y) itself has a
zero sign bit (for simplicity we use only x variables in the circuit C(x) below).

Lemma 7.12 (conic circuits preserve zero sign bits). Let C(x) be a conic circuit over Z in the
variables x = {x1, . . . , xn}, let H := {Hi(x)}n

i =1 be n circuits and suppose that t is the syntactic
length of C(H). Then, there is a polynomial-size in |C(H)| IPS proof that the sign bit of C(H) is
0, that is, of BITt(C(H)) = 0, from the assumptions BITti−1(Hi(x)) = 0, for all i ∈ [n], where ti is
the syntactic length of Hi(x).

Proof: The proof is by induction on the size of C. Note that any conic circuit C is one of the
following: (1) a variable xi, (2) a non-negative constant α, (3) a square of some (not-necessarily
conic) circuit, that is, C = G2, or (4) an addition C = G + H or product C = G · H of two conic
circuits G, H. Therefore, the base cases of our induction will be the first three cases (1)-(3), and the
induction steps will be the latter case (4).

Base case:
Case 1: C = xi. Then from the assumption that BITtj−1(Hj(x)) = 0 for all j ∈ [n], we have that
C(H) = Hi(x), and so we are done.
Case 2: C = α, for a non-negative constant α. Then by Definition 6.7 BIT(α) is the actual bits of
α in two’s complement. Since α is non-negative BITt−1(C(H)) = BITt(α) = 0, for t the syntactic
length of α.
Case 3: C = G2 for some not-necessarily conic circuit G. This case follows from Lemma 7.7.

Induction step:
Case 1: C = G + H. This follows from the claim that the sign bit of the addition of non negative
numbers is 0, as shown in the proof of Lemma 7.7.
Case 2: C = G ·H. This follows from the claim that the sign bit of the product of two non-negative
integers is non-negative.

We are now ready to conclude the main theorem of this section.

Proof of Thm. 7.2. By assumption, C(x, y) is a conic circuit constituting a CPS refutation of F . We
assume that {fi(x)}i∈I can be computed by a sequence of circuits {Fi(x)}i∈I such that

∑
i∈I |Fi(x)| =

u. Hence, by the definition of CPS, we set H to be the set of circuits that consists of Fi(x) and
−Fi(x), for all i ∈ I, as well as the Boolean axioms translation x2

i − xi and −x2
i + xi, for all i ∈ [n],

and xi and 1 − xi, for all i ∈ [n]. We thus have C(x, H) = −M as a polynomial identity.
Since C is a conic circuit, and the sign bits of all variables x and all circuits in H can be proved

in polynomial size (in u) to be 0, by Lemma 7.10 and Lemma 7.11, respectively, we know from
Lemma 7.12 that the sign bit of C(x, H) is 0 as well. Since C(x, H) = −M is a polynomial identity,
by Fact A.1 C(x, H) + M has an IPS proof of size equal to the size of the circuit C(x, H) + M itself.
We now proceed to use the short refutation of the BVP to get a short IPS refutation from the fact
that the sign bit of C(x, H) is 0 and C(x, H) + M = 0. The following claim suffices for this purpose:

Claim 7.13. Assume that BVPn,M has poly(n, τ(M))-size IPS refutations Let F (x) be a circuit of
syntactic length t and size s, such that IPS has a poly(s, t)-size proof of BITt−1(F (x)) = 0 (where
BITt−1(F (x)) is the sign bit of F (x)). Then there is a poly(s, t, τ(M)) refutation of F (x) + M = 0.

45

Proof of claim: The size of the circuit F (x) + M is s + τ(M) + 1. By Lemma 6.9, VAL(BIT(F (x) +
M)) = F (x) + M = 0 has a polynomial size in s + τ(M) + 1 IPS proof from the Boolean axioms. By
the proof of Lemma 6.9 we also have a polynomial-size in s and τ(M) IPS proof of

VAL
(
BIT(F (x))

)
+ M = 0,

namely, a proof of

M +
t−2∑

i=0

2i · wi − 2t−1 · wt−1 = 0 , where wi := BITi(F (x)).

By assumption, wt−1 = 0 has a polynomial-size IPS proof, where wt−1 is the sign bit of F (x). This
leads to

M +
t−1∑

i=0

2i · wi = 0. (17)

Notice that eq. 17 is the binary value principle in which variables xi for i = 1, . . . , t, are replaced by
the circuits BITi−1(F (x)), denoted wi. We assumed that the binary value principle has polynomial-
size (in t and τ(M)) refutations (using the Boolean axioms). Since IPS proofs are closed under
substitutions of variables by circuits (Fact A.8), there is a poly(t, |BIT(F)|, τ(M))-size IPS refutation
of eq. 17 from the substitution instances of the Boolean axioms w2

i − wi = 0, for i = 0, . . . , t − 1.
Since for every i = 0, . . . , t − 1, w2

i − wi = 0 has a short IPS proof by Cor. 7.9, and since |BIT(F)| =
poly(t, |F |), we conclude that there exists a poly(s, t, τ(M))-size IPS refutation as desired. Claim

7.2 Effective Simulation of CPS Refutations with Inequalities

We now turn to conditional effective simulation of CPS as a refutation system for both equalities
and inequalities by IPS. Effective simulation means that we are allowed to non-trivially translate the
input equalities and inequalities before refuting them in IPS, as long as the translation procedure is
polynomial-time and preserves unsatisfiability [46]. Similar to the case of conditional simulation, it
is enough to consider only the case of CPS and IPS proofs over Z to conclude it also for Q. We show
here the case of non-constant-free Boolean IPS and Boolean CPS proofs over Z. The case over Q

and the cases of constant-free proofs over Z and Q are similar.
Note that since the construction of the circuit BITi(·) (Sect. 6.2) is mechanical and uniform,

there is a straightforward deterministic (uniform) polynomial-time algorithm that receives a set of
polynomial inequalities H = {Hj(x) ≥ 0}j over Z written as algebraic circuits (with coefficients
written in binary) and outputs the polynomial equations, written as algebraic circuits, expressing
that the sign bit of each Hj(x) is 0 (hence, expressing the inequalities H). This translation of
inequalities to polynomial equalities serves as our translation from H to the language of polynomial
equations that is refutable in IPS. Given an inequality Hj(x) ≥ 0 we denote by JHj(x) ≥ 0K this
translation; accordingly, we let

q
H

y
= {JHj(x) ≥ 0K : Hj(x) ∈ H}.

Theorem 7.14 (conditional effective simulation of Boolean CPS by Boolean IPS). Assume that the
generalized binary value principle BVPt,M has poly(t, τ(M))-size Boolean IPS refutations for every
positive integer M . Let H denote a system of polynomial inequalities written as circuits {Hj(x) ≥
0}j∈J . Let C(x, H) = −1 be a CPS refutation H where C(x, H) has size s and syntactic length t.
Then, there is a Boolean IPS refutation of

q
H

y
with size poly(s, t).

Proof: This is identical to the proof of Thm. 7.2, only that we do not need to prove separately that
the axioms in H have all bit vector representation in which the sign bit is 0, since here this is given
to us as an assumption.

46

8 Conclusions

This work demonstrates that a simple subset-sum principle, written as a linear equation, captures,
in the Boolean case (i.e., when variables range over {0, 1}), the apparent advantage of semi-algebraic
proofs over algebraic proofs in the following sense: it is necessary for any Boolean algebraic proof
system that simulates full Boolean semi-algebraic proofs to admit short refutations of the principle;
and if the algebraic proof system is strong enough to be able to efficiently perform bit arithmetic,
this condition is also sufficient to achieve such a simulation. To formalize these results we introduce
a very strong proof system CPS that derives polynomials in the cone of initial axioms instead of in
the ideal.

We showed that CPS is expected to be stronger than even the very strong algebraic Ideal Proof
System (IPS) formulated by Grochow and Pitassi in [28], since our subset-sum principle is hard
for IPS assuming the hardness of computing factorials [55]. We established a related lower bound
on IPS refutation-size based on the τ -conjecture [55]. These lower bounds advance the approach
introduced by Forbes et al. [19]: whereas [19] showed how to obtain restricted IPS lower bounds
for certain subset-sum instances, based on known lower bounds against restricted circuit classes, we
show how to obtain general IPS lower bounds based on specific hardness assumptions from algebraic
complexity.13

The conjectured hard instance we introduce (namely, the binary value principle) may have a
further important role in proof complexity and related areas. In proof complexity, in parallel to the
current work Part and Tzameret [43] showed the binary value principle to be unconditionally hard
for proof systems in the weak regime of resolution extensions, and Alekseev [1] subsequently showed
similar lower bounds. The binary value principle and related bit-arithmetic instances were also found
to be relevant to contemporary SAT-solving as shown recently by Liew et al. [37].

Appendix

A Basic Reasoning in IPS

Here we develop basic efficient reasoning in IPS. This is helpful for Sect. 6.2.
First we show that polynomial identities are proved for free in IPS:

Fact A.1. If F (x) is a circuit in the variables x over the field F that computes the zero polynomial,
then there is an IPS proof of F (x) = 0 of size |F |.

Proof of fact. The IPS proof of F (x) = 0 is simply C(x, z) := F (x) (note that we do not need to use
the Boolean axioms nor any other axioms in this case). Observe that both conditions 1 and 2 for
IPS hold in this case (Definition 2.4).

Fact A.2. Let F, G, H be circuits and F be a collection of polynomial equations such that C : F ⊢s0
IPS

F = G and C ′ : F ⊢s1
IPS G = H. Then, (C + C ′) : F ⊢s0+s1+1

IPS F = H.

Proof of fact. C(x, F , x2 − x) + C ′(x, F , x2 − x) = F − G + G − H.

Fact A.3. Let F, G be circuits and F be a collection of polynomial equations such that C : F ⊢s0
IPS

F = G and C ′ : F ⊢s1
IPS H = K. Then, (C + C ′) : F ⊢s0+s1+1

IPS F + H = G + K.

Proof of fact. C(x, F , x2 − x) + C ′(x, F , x2 − x) = F − G + H − K.

13Note again that extending the approach in [19] to IPS operating with general circuits must result in conditional
lower bounds, as long as explicit super-polynomial algebraic circuit lower bounds are not known.

47

Fact A.4. Let F, G be circuits and F be a collection of polynomial equations such that C : F ⊢s0
IPS F =

G and C ′ : F ⊢s1
IPS H = K. Assume that there is a circuit with two output gates, of size s, with one

output gate computing H and the other output gate computing G. Then, F ⊢s0+s1+s+5
IPS F ·H = G ·K.

Proof of fact. Observe that C(x, F , x2 −x) ·H +C ′(x, F , x2 −x) ·G = F ·H −G ·H +H ·G−K ·G =
F · H − G · K. Hence, the desired proof is the circuit C(x, y, z) · H(x) + C ′(x, y, z) · G(x), which by
assumption that there is a circuit of size s computing both H, G, is at most s0 + s1 + s + 5 (here,
H, G can have common nodes).

We now wish to show that basic reasoning by Boolean cases is efficiently attainable in IPS.
Specifically, we are going to show that if for a given constant many variables (or even Boolean
valued polynomials) V , for every choice of a fixed (partial) Boolean assignment to the variables V a
polynomial equation is derivable, then it is derivable regardless (namely, derivable from the Boolean
axioms alone) in polynomial-size.

Proposition A.5 (proof by Boolean cases in IPS). Let F be a field. Let V = {Hi(x)}i∈I be a set
of circuits with |V | = r, and F be a collection of polynomial equations such that {H2

i (x) − Hi(x) =
0}i∈I ⊆ F . Assume that for every fixed assignment α ∈ {0, 1}r we have F , {Hi(x) = αi}i∈I ⊢s

IPS

f(x) = 0, then F ⊢cr·s
IPS f(x) = 0, for some constant c independent of r.

Proof: We proceed by induction on r.
Base case: r = 0. In this case we assume that F ⊢s

IPS f(x) = 0 and we wish to show that
F ⊢cr·s

IPS f(x) = 0, for some constant c, which is immediate since r = 0.
Induction step: r > 0. We assume that for every fixed assignment α ∈ {0, 1}r we have F , {Hi =
αi}i∈I ⊢s

IPS f(x) = 0, and we wish to show that F ⊢cr·s
IPS f(x) = 0, for some constant c independent

of r.
By our assumption above we know that for every fixed assignment α ∈ {0, 1}r−1 we have:

F , H1(x) = 0, {Hi(x) = αi}i∈I\1 ⊢s
IPS f(x) = 0, and (18)

F , H1(x) = 1, {Hi(x) = αi}i∈I\1 ⊢s
IPS f(x) = 0. (19)

From eq. 18 and eq. 19, by induction hypothesis we have for some constant c independent of r:

H1(x) = 0, F ⊢cr−1·s
IPS f(x) = 0, and (20)

H1(x) = 1, F ⊢cr−1·s
IPS f(x) = 0. (21)

It thus remains to prove the following claim:

Claim A.6. Under the above assumptions eq. 20 and eq. 21, we have F ⊢cr·s
IPS f(x) = 0.

Proof of claim: By eq. 20 and eq. 21 we have two IPS proofs C(x, y, z) and C ′(x, y, z) such that
C(x, F , H1(x), x2 − x) = f(x) and C ′(x, F , 1 − H1(x), x2 − x) = f(x) (note indeed that F , H1(x)
and x2 − x are the axioms in the former case, and similarly for the latter case, where now 1 − H1(x)
replaces the axiom H1(x)) each of size cr−1 · s.

By the definition of IPS C(x, y, z), C ′(x, y, z) both compute polynomials that are in the ideal
generated by y, z. This means that there are some polynomials Qi, Pi, G, M, Li, Ki, such that:

Ĉ(x, F , H1(x), x2 − x) =
∑

i

Qi · Fi +
∑

i

Li · (x2
i − xi) + G · H1(x) = f(x) and

Ĉ ′(x, F , 1 − H1(x), x2 − x) =
∑

i

Pi · Fi +
∑

i

Ki · (x2
i − xi) + M · (1 − H1(x)) = f(x)

48

(here, F , H1(x) is substituted for y in the first equation, and F , 1 − H1(x) is substituted for y in the
second equation).

Hence, we can multiply these two true polynomial identities by (1 − H1(x)) and H1(x), respec-
tively, to get the following polynomial identities:

(1 − H1(x)) · Ĉ(x, F , H1(x), x2 − x) =

(1 − H1(x)) ·
∑

i

Qi · Fi + (1 − H1(x)) ·
∑

i

Li · (x2
i − xi) + G · H1(x) · (1 − H1(x)) = (1 − H1(x)) · f(x)

and

H1(x) · Ĉ ′(x, F , H1(x), x2 − x) = H1(x) ·
∑

i

Pi · Fi + H1(x) ·
∑

i

Ki · (x2
i − xi) + H · H1(x) · (1 − x1)

= H1(x) · f(x).

Each of these two polynomial identities is an IPS proof from the assumptions F = {Fi}i, the Boolean
axioms, and the assumption H1(x) · (1 − H1(x)) ∈ F (more formally, (1 − H1(x)) · C and H1(x) · C ′

are the circuits that constitute these pair of IPS proofs). Adding these two IPS proofs (note that
the addition of two IPS proofs from a set of assumptions is still an IPS proof from that set of
assumptions) we obtain the desired IPS proof of f(x), with size 2 · cr−1 · s + c0 ≤ cr · s, for a large
enough constant c independent of r. Claim This concludes the proof of the proposition.

Prop. A.5 allows us to reason by cases in IPS. For example, assume that we know that either
Hi(x) = 0 or Hi(x) = 1; namely that we have the assumption Hi(x) · (Hi(x) − 1) = 0. Then, we can
reason by cases as follows: if we can prove from Hi(x) = 0 that A, with a polynomial-size proof, and
from Hi(x) = 1 that B, with a polynomial-size proof, then using Prop. A.5 we have a polynomial-size
proof that A · B = 0 from Hi(x) · (Hi(x) − 1) = 0.

As an immediate corollary of Prop. A.5 we get the same proposition with Hi(x)’s substituted for
variables:

Corollary A.7. Let F be a field. Let V = {xi}i∈I be a set of variables with |V | = r, and F be
a collection of polynomial equations. Assume that for every fixed assignment α ∈ {0, 1}r to the
variables in V we have F , {xi = αi}i∈I ⊢s

IPS f(x) = 0, then F ⊢cr·s
IPS f(x) = 0, for some constant c

independent of r.

Fact A.8 (IPS proofs are closed under substitutions). Let C(x, y, z) be an IPS proof of f(x) from the
assumptions {Fi(x)}m

i=1, and let H = {Hi(x)}n
i=1 be a set of algebraic circuits. Then, C(H/x, y, z) is

an IPS proof of f(H/x) from {Fi(H/x)}m
i=1, where H/x stands for the substitution of xi by Hi(x),

for all i ∈ [n].

The proof of Fact A.8 is immediate.

Acknowledgement

We wish to thank Michael Forbes, Dima Itsykson, Toni Pitassi and Dima Sokolov for useful discus-
sions at various stages of this work. We also wish to thank the anonymous reviewers both of the
extended abstract of this work and its journal version for very useful comments, suggestions, and
corrections.

49

References

[1] Yaroslav Alekseev. A lower bound for polynomial calculus with extension rule. In Valentine Kabanets,
editor, 36th Computational Complexity Conference, CCC 2021, July 20-23, 2021, Toronto, Ontario,
Canada (Virtual Conference), volume 200 of LIPIcs, pages 21:1–21:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. 3.4, 8

[2] Albert Atserias and Tuomas Hakoniemi. Size-degree trade-offs for sums-of-squares and Positivstellensatz
proofs. In 34th Computational Complexity Conference, CCC 2019, July 18-20, 2019, New Brunswick,
NJ, USA., pages 24:1–24:20, 2019. 2.6, 4

[3] Boaz Barak, Fernando G. S. L. Brandão, Aram Wettroth Harrow, Jonathan A. Kelner, David Steurer,
and Yuan Zhou. Hypercontractivity, sum-of-squares proofs, and their applications. In STOC, pages
307–326, 2012. 1, 2.6

[4] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák. Lower bounds on
Hilbert’s Nullstellensatz and propositional proofs. Proc. London Math. Soc. (3), 73(1):1–26, 1996. 1, 2.5,
2.5, 2.6

[5] Christoph Berkholz. The Relation between Polynomial Calculus, Sherali-Adams, and Sum-of-Squares
Proofs. In Rolf Niedermeier and Brigitte Vallée, editors, 35th Symposium on Theoretical Aspects of
Computer Science (STACS 2018), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 11:1–11:14, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. 1

[6] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha Thomas, editors. Semidefinite Optimization and
Convex Algebraic Geometry. MPS-SIAM Series on Optimization. Society for Industrial and Applied
Mathematics (SIAM), March 2013. 2.6

[7] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real Computation. Springer-
Verlag, Berlin, Heidelberg, 1998. 2.3

[8] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity over the real
numbers: np- completeness, recursive functions and universal machines. Bull. Amer. Math. Soc. (N.S.),
21(1):1–46, 07 1989. 2.3

[9] Peter Bürgisser. On defining integers and proving arithmetic circuit lower bounds. Computational Com-
plexity, 18(1):81–103, 2009. 2.2, 2.3

[10] Samuel R. Buss. Polynomial size proofs of the propositional pigeonhole principle. The Journal of Symbolic
Logic, (52):916–927, 1987. 3.2, 3.3, 6.1

[11] Samuel R. Buss, Russell Impagliazzo, Jan Kraj́ıček, Pavel Pudlák, Alexander A. Razborov, and Jǐŕı
Sgall. Proof complexity in algebraic systems and bounded depth Frege systems with modular counting.
Computational Complexity, 6(3):256–298, 1996. 4.1

[12] Qi Cheng. On the ultimate complexity of factorials. Theor. Comput. Sci., 326(1-3):419–429, October
2004. 2.3

[13] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algorithm to find
proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium on the Theory of Computing
(Philadelphia, PA, 1996), pages 174–183, New York, 1996. ACM. 1

[14] Stephen A. Cook and Robert A. Reckhow. Corrections for “On the lengths of proofs in the propositional
calculus (preliminary version)”. SIGACT News, 6(3):15–22, July 1974. 15

[15] Stephen A. Cook and Robert A. Reckhow. On the lengths of proofs in the propositional calculus (pre-
liminary version). In Proceedings of the 6th Annual ACM Symposium on Theory of Computing (STOC
1974), pages 135–148, 1974. For corrections see Cook-Reckhow [14]. 16

[16] Stephen A. Cook and Robert A. Reckhow. The relative efficiency of propositional proof systems. J. Symb.
Log., 44(1):36–50, 1979. This is a journal-version of Cook-Reckhow [15] and Reckhow [52]. 2.4, 2

50

[17] W. de Melo and B. F. Svaiter. The cost of computing integers. Proc. Amer. Math. Soc., 124(5):1377–1378,
1996. 2.3

[18] Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic proofs and efficient algorithm design.
Found. Trends Theor. Comput. Sci., 14(1-2):1–221, 2019. 1

[19] Michael A. Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof complexity lower bounds
from algebraic circuit complexity. Theory Comput., 17:1–88, 2021. 1, 2.5, 3, 3.1, 3.2, 3.3, 4.2, 4.9, 4.10,
8, 13

[20] Andreas Goerdt. Cutting plane versus Frege proof systems. In Egon Börger, Hans Kleine Büning,
Michael M. Richter, and Wolfgang Schönfeld, editors, Computer Science Logic, 4th Workshop, CSL ’90,
Heidelberg, Germany, October 1-5, 1990, Proceedings, volume 533 of Lecture Notes in Computer Science,
pages 174–194. Springer, 1990. 3.2, 3.3, 6.1

[21] Mika Göös, Pritish Kamath, Robert Robere, and Dmitry Sokolov. Adventures in monotone complexity
and TFNP. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, January 10-12,
2019, San Diego, California, USA, pages 38:1–38:19, 2019. 1

[22] Mika Göös and Toniann Pitassi. Communication lower bounds via critical block sensitivity. SIAM J.
Comput., 47(5):1778–1806, 2018. 3.2

[23] Nashlen Govindasamy, Tuomas Hakoniemi, and Iddo Tzameret. Simple hard instances for low-depth
algebraic proofs. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS),
2022. 3.4

[24] D. Grigoriev. Complexity of Positivstellensatz proofs for the knapsack. Comput. Complexity, 10(2):139–
154, 2001. 1, 3.2, 3.3

[25] Dima Grigoriev and Edward A. Hirsch. Algebraic proof systems over formulas. Theoret. Comput. Sci.,
303(1):83–102, 2003. Logic and complexity in computer science (Créteil, 2001). 7.1

[26] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of semialgebraic proofs. Mosc.
Math. J., 2(4):647–679, 805, 2002. 1, 2.6, 2.6.1, 2.12, 3.2, 3.3, 5.19, 5.1.3

[27] Dima Grigoriev and Nicolai Vorobjov. Complexity of Null- and Positivstellensatz proofs. Ann. Pure
Appl. Logic, 113(1-3):153–160, 2002. 1, 2.6, 2.8

[28] Joshua A. Grochow and Toniann Pitassi. Circuit complexity, proof complexity, and polynomial identity
testing: The ideal proof system. J. ACM, 65(6):37:1–37:59, 2018. 1, 2.5, 2.4, 3.1, 3.2, 4.1, 5, 5.11, 8

[29] David Hilbert. Hilbert’s invariant theory papers. Lie Groups: History, Frontiers and Applications, VIII.
Math Sci Press, Brookline, Mass., 1978. Translated from the German by Michael Ackerman, With
comments by Robert Hermann. 2.6

[30] Edward Hirsch and Iddo Tzameret. Nullstellensatz is equivalent to sum-of-
squares, over algebraic circuits. In Proof Complexity (Dagstuhl Seminar 18051),
pages 124–157. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik, 2018., Feb. 2018.
https://materials.dagstuhl.de/files/18/18051/18051.IddoTzameret.Slides.pptx. 3.3

[31] Trinh Huynh and Jakob Nordström. On the virtue of succinct proofs: amplifying communication com-
plexity hardness to time-space trade-offs in proof complexity. In Proceedings of the 44th Symposium on
Theory of Computing (STOC), pages 233–248. ACM, 2012. 3.2

[32] Russell Impagliazzo, Sasank Mouli, and Toniann Pitassi. The surprising power of constant depth algebraic
proofs. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS ’20: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020,
pages 591–603. ACM, 2020. 3.3

[33] Russell Impagliazzo, Pavel Pudlák, and Jǐŕı Sgall. Lower bounds for the polynomial calculus and the
Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999. 1, 3.2, 3.3

51

https://materials.dagstuhl.de/files/18/18051/18051.IddoTzameret.Slides.pptx

[34] Dmitry Itsykson and Arist Kojevnikov. Lower bounds of static Lovasz-Schrijver calculus proofs for Tseitin
tautologies. Zapiski Nauchnyh Seminarov POMI, 340:10–32, 2006. (in Russian). English translation
appeared in Journal of Mathematical Sciences 145(3):4942-4952, 2007. 3.2

[35] J. L. Krivine. Anneaux preordonnes. Journal d’Analyse Mathématique, 12(1):307–326, 1964. 2.6, 2.7

[36] Fu Li, Iddo Tzameret, and Zhengyu Wang. Characterizing propositional proofs as noncommuta-
tive formulas. In SIAM Journal on Computing, volume 47, pages 1424–1462, 2018. Full Version:
http://arxiv.org/abs/1412.8746. 1

[37] Vincent Liew, Paul Beame, Jo Devriendt, Jan Elffers, and Jakob Nordström. Verifying properties of
bit-vector multiplication using cutting planes reasoning. In Proceedings of the 20th Conference on Formal
Methods in Computer-Aided Design – FMCAD 2020, 2020. 3.3, 8

[38] L. Lovász. Stable sets and polynomials. Discrete Mathematics, 124:137–153, 1994. 1, 2.6.1

[39] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0–1 optimization. SIAM Journal on
Optimization, 1:166–190, 1991. 1, 2.6.1

[40] Mi Lu. Arithmetic and Logic in Computer Systems. Wiley, 2004. 6.1

[41] Ryan O’Donnell. SOS is not obviously automatizable, even approximately. In Christos H. Papadimitriou,
editor, 8th Innovations in Theoretical Computer Science Conference, ITCS 2017, January 9-11, 2017,
Berkeley, CA, USA, volume 67 of LIPIcs, pages 59:1–59:10. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. 1

[42] Ryan O’Donnell and Yuan Zhou. Approximability and proof complexity. In Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pages 1537–1556, 2013. 1, 2.6

[43] Fedor Part and Iddo Tzameret. Resolution with counting: Dag-like lower bounds and different moduli.
Comput. Complex., 30(1):2, 2021. 3.3, 8

[44] Toniann Pitassi Paul Beame and Nathan Segerlind. Lower bounds for Lovász–Schrijver systems and
beyond follow from multiparty communication complexity. SIAM Journal on Computing, 37(3):845–869,
2007. 3.2

[45] Toniann Pitassi. Unsolvable systems of equations and proof complexity. In Proceedings of the International
Congress of Mathematicians, Vol. III (Berlin, 1998), number Vol. III, pages 451–460, 1998. 2.5, 5.11

[46] Toniann Pitassi and Rahul Santhanam. Effectively polynomial simulations. In Proceedings of Innovations
in Computer Science - ICS, pages 370–382, 2010. 7, 7.2

[47] Tonnian Pitassi and Iddo Tzameret. Algebraic proof complexity: Progress, frontiers and challenges. ACM
SIGLOG News, 3(3), 2016. 1, 4.1

[48] Pavel Pudlák. On the complexity of the propositional calculus. In Sets and proofs (Leeds, 1997), volume
258 of London Math. Soc. Lecture Note Ser., pages 197–218. Cambridge Univ. Press, Cambridge, 1999.
1, 2.6.1

[49] Mihai Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Mathematics
Journal, 42(3):969–984, 1993. 2.6

[50] Prasad Raghavendra and Benjamin Weitz. On the bit complexity of sum-of-squares proofs. In Ioannis
Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80
of LIPIcs, pages 80:1–80:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. 1

[51] Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Complexity, 7(4):291–324,
1998. 1, 3

[52] Robert A. Reckhow. On the lengths of proofs in the propositional calculus. PhD thesis, University of
Toronto, 1976. 16

52

http://arxiv.org/abs/1412.8746

[53] Rahul Santhanam and Iddo Tzameret. Iterated lower bound formulas: a diagonalization-based approach
to proof complexity. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021,
pages 234–247. ACM, 2021. 1

[54] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open questions.
Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010. 2.2

[55] Michael Shub and Steve Smale. On the intractability of Hilbert’s Nullstellensatz and an algebraic version
of “NP6=P?”. Duke Math. J., 81:47–54, 1995. 2.1, 2.3, (document), 1, 2.2, 2.3, 3.1, 8

[56] Steve Smale. Mathematical problems for the next century. The Mathematical Intelligencer, 20(2):7–15,
1998. 2.3, 2.3, (document)

[57] Gilbert Stengle. A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Mathematische
Annalen, 207(2):87–97, 1974. 2.6, 2.7

[58] Volker Strassen. Vermeidung von divisionen. J. Reine Angew. Math., 264:182–202, 1973. (in German).
4.1, 5.1.1

[59] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual ACM Symposium
on the Theory of Computing, pages 249–261. ACM, 1979. 2.2

[60] Leslie G. Valiant. The complexity of computing the permanent. Theor. Comput. Sci., 8:189–201, 1979.
2.2

[61] Leslie G. Valiant. Negation can be exponentially powerful. Theor. Comput. Sci., 12:303–314, 1980. 4.1,
4.2.3

[62] Leslie G. Valiant. Reducibility by algebraic projections. Logic and Algorithmic: International Symposium
in honour of Ernst Specker, 30:365–380, 1982. 2.2

53

— Page left blank for ECCC stamp —

54
ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

