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Abstract

A major challenge in complexity theory is to explicitly construct functions that have
small correlation with low-degree polynomials over F2. We introduce a new technique
to prove such correlation bounds with F2 polynomials. Using this technique, we bound
the correlation of an XOR of Majorities with constant degree polynomials. In fact, we
prove a more general XOR lemma that extends to arbitrary resilient functions. We
conjecture that the technique generalizes to higher degree polynomials as well.

A key ingredient in our new approach is a structural result about the Fourier spec-
trum of low degree polynomials over F2. We show that for any n-variate polynomial p
over F2 of degree at most d, there is a small set S ⊂ [n] of variables, such that almost
all of the Fourier mass of p lies on Fourier coefficients that intersect with S. In fact
our result is more general, and finds such a set S for any low-dimensional subspace of
polynomials. This generality is crucial in deriving the new XOR lemmas.
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1 Introduction

Understanding the power and limitations of multivariate polynomials over the field F2 as a
model of computation is of fundamental interest in complexity theory. A natural measure
of complexity of a Boolean function is the degree of the unique multilinear polynomial that
exactly computes it. However, under this measure the very simple ANDn function has
maximum possible degree n, since it is computed by the monomial x1x2 . . . xn. A robust
measure that is more indicative of complexity is the minimum degree of a polynomial that
correlates with a function. Following tradition in the computer science community, we define
the correlation of two Boolean functions f and g as:

corr(f, g) :=
∣∣Pr[f(x) = g(x)]− Pr[f(x) 6= g(x)]

∣∣.
Hence, corr(f, g) is a real number in the interval [0, 1], and the closer corr(f, g) is to 1 the
better g approximates f . Let Polyn,d denote the class of n-variate polynomials of degree at
most d over F2. Given any n-variate Boolean function f , the following is a natural quantity
that measures how well degree d polynomials approximate the function f :

corr(f, d) := max
p∈Polyn,d

corr(f, p).

One motivation for studying the above quantity stems from seminal works of Razborov
[Raz87] and Smolensky [Smo87], who proved that small-depth circuits can be well approx-
imated by low-degree polynomials over F2. This leads to a natural way of proving circuit
lower bounds by explicitly constructing functions that cannot be approximated by low-degree
polynomials. Another motivation for constructing average-case hard functions comes from
the seminal hardness vs. randomness paper of Nisan and Wigderson [NW94], where they
proved that an explicit average-case hard function for a complexity class can be used to con-
struct pseudorandom generators for the same complexity class. Pseudorandom generators
provide a generic way of removing or reducing the use of randomness, and have a host of
applications in computer science.

A third motivation to study correlation bounds for polynomials stems from connections
to obtaining certain bounds on the Fourier spectrum of polynomials. A recent line of work
[CHHL18, CHLT19] suggests a new way of constructing efficient pseudorandom generators
for polynomials and the class AC0[⊕] based on bounds on the Fourier mass on the level
2 Fourier coefficients. Such Fourier bounds look intimately connected with the problem of
proving new correlation bounds. In fact, a tight bound on the Fourier mass on level 1 Fourier
coefficients for polynomials was obtained in [CHLT19] using correlation bounds proved by
Razborov and Smolensky [Raz87, Smo93]. Finally, recent work of Golovnev, Kulikov, and
Williams [GKW19] shows that even mild improvements in known correlation bounds against
polynomials will result in new circuit lower bounds.

Known correlation bounds for polynomials. The best known correlation bounds
against polynomials can be described in two different regimes. For constant degree polyno-
mials, there exists explicit functions [BNS92,Bou05,GRS05,VW07] that have exponentially
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small correlation. More precisely, we know examples of explicit functions that have corre-
lation 2−Ω(n/2d) with degree d polynomials. Note that this gives nothing meaningful when
d = log n.

For the regime of large d, we have much weaker correlation bounds. In particular, tech-
niques introduced by Razborov [Raz87] and Smolensky [Smo93] can be used to show that
the n-variate MAJORITY function (which we shorthand as Maj) has correlation O(d/

√
n)

with degree d polynomials, and this is in fact the best known correlation bound in this
regime. In particular, even constructing an explicit function f : {0, 1}n → {0, 1} with
corr(f, n0.51) = o(1) or corr(f, log n) = O(1/n) remains an outstanding challenge. See the
survey by Viola [Vio09] for more discussion on the current state of the art in correlation
bounds for polynomials.

One way of constructing hard functions is to start with a mildly hard function, and use
some type of hardness amplification. A general template of hardness amplification is based
on XOR lemmas. Typically one starts with a function f such that corr(f, g) ≤ ε, for all
g in some function class G, and hopes to prove that the function computing the XOR of f
applied on k independent inputs has correlation εk with any g ∈ G. Some examples of such
XOR lemmas are known in complexity theory and cryptography [Yao82,Vaz86,VV84,GL89],
with the most well known being Yao’s XOR lemma. The only XOR lemmas for the class of
F2 polynomials is from the work of Viola and Wigderson [VW07], who proved the following
theorem.

Given any Boolean function f , define f⊕k to be the function that outputs the XOR of f
applied on k independent inputs.

Theorem 1.1 ( [VW07]). Suppose that for some Boolean function f : {0, 1}n → {0, 1}, we
have corr(f, d) ≤ 1− 1/2d. Then, for any integer k ≥ 1,

corr(f⊕k, d) ≤ 2−Ω(k/d·4d).

This was used in [VW07] to give a unified way of proving correlation bounds obtained
in [BNS92, Bou05, GRS05, VW07]. However, the above theorem does not give improved
bounds if the base function f has much smaller correlation with degree d polynomials (e.g.,
when applied to Maj).

1.1 Our results

One of the motivations for this work is a conjecture of [CHLT19] on the second level of
the Fourier spectrum of degree d polynomials, which would imply explicit pseudorandom
generators for AC0[⊕] with polylogarithmic seed-length. Such bounds on the Fourier spec-
trum of polynomials are related to bounding corr(Maj ⊕Maj, d) by a quantity of the form
poly(log n, d)/n. We discuss these connections in more details towards the end of this section
and in Section 6. Unfortunately, none of the known techniques for proving correlation bounds
with polynomials is capable of proving such bounds for Maj⊕Maj. The Razborov-Smolensky
technique cannot prove correlation bounds smaller than 1√

n
for any function. We discuss why
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the Viola-Wigderson approach of using Gowers norm doesn’t work in Appendix A. See the
survey by Viola [Vio09] for more discussion on limitations of existing techniques.

In this paper, we introduce a new technique for proving correlation bounds against F2

polynomials that is based on structural results for low-degree polynomials. Our new tech-
nique allows us to prove the desired bounds for correlation of Maj⊕Maj with constant degree
polynomials. That is, we prove that

corr(Maj⊕Maj, O(1)) ≤ poly(log n)

n
.

In fact our method allows proving correlation bounds for XOR of several copies of Maj.

Proposition 1.2 (informal). Let Maj be the Majority function on n bits. Then for any
k ≥ 1 it holds that

corr(Maj⊕k, O(1)) ≤
(

poly(k, log n)√
n

)k
.

As discussed above, even the k = 2 case of the above result was not known prior to our
work. In fact, we obtain nontrivial correlation bounds for degrees that can grow slowly with
n. See Section 5 for the precise statements of our results.

Correlation of polynomials with resilient functions. Our bounds for Maj are a special
case of more general correlation bounds that we prove for resilient functions. The notion of
resilience of Boolean functions, first introduced by Ben-Or and Linial [BL85], is well studied
in distributed computing with applications to collective coin flipping. Roughly speaking, a
function is highly resilient if no small coalition of its variables are able to bias the outcome
of the function.

Definition 1.3 (Resilient functions). Let f : {0, 1}n → {0, 1} be a Boolean function, and
S ⊂ [n] be an arbitrary subset of coordinates. The influence of S on f , denoted by IS(f),
is the probability that randomly fixing the coordinates outside S does not fix the value of f .
The function f is called (q, ε)-resilient if for every subset S ⊂ [n] of size at most q, we have
IS(f) ≤ ε.

The PARITY function is not even (1, .99)-resilient because any single coordinate can
change the value of the function (irrespective of the values of the other variables). On the
other hand, Maj is (Θ(

√
n), .01)-resilient, which is fairly good.

In particular, our correlation bounds hold for resilient functions with the stronger prop-
erty that the influence of a set S scales proportional to its cardinality. We call such functions
strong resilient functions.

Definition 1.4 (Strong resilient functions). A function f : {0, 1}n → {0, 1} is called strong
r-resilient if for all q ≤ r, f is a (q, q/r)-resilient function.

Fact 1.5. Maj is a strong Θ(
√
n)-resilient function.
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There are better strong resilient functions than Maj. Ben-Or and Linial [BL85]
showed that the recursive majority function, defined on n = 3k bits as Majk(x1, x2, x3) =
Maj(Majk−1(x1),Majk−1(x2),Majk−1(x3)) and Maj1 = Maj, is a strong nβ-resilient function,
where β = log3 2 ≈ 0.63 . Ajtai and Linial [AL93] proved the existence of Boolean functions
that are strong Ω(n/(log n)2)-resilient function. Recent works [Mek17,CZ19] explicitly con-
structed such strong resilient functions that match the probabilistic construction of [AL93].
A consequence of the KKL theorem [KKL88] is that this is almost tight. In particular, the
KKL theorem implies that for any Boolean function f , there exists a set S of size O(n/ log n)
such that IS(f) = Ω(1).

We need one more definition before stating our result for resilient functions. The bias of
a function f : {0, 1}n → {0, 1} is its correlation with constant functions, namely bias(f) =
corr(f, 0). Given d ≥ 1 we will take D = O(d)O(d) in the theorems below. Our main result
for resilient functions is the following.

Theorem 1.6 (informal version of Theorem 4.1). Let f : {0, 1}n → {0, 1} be a strong
r-resilient function. Then for d ≥ 1, there is a choice of D = O(d)O(d) such that

corr(f, d) ≤ bias(f) +
log(r)D

r
.

New XOR lemmas for polynomials. Our technique for proving correlation bounds for
resilient functions allows us to prove XOR lemmas for resilient functions. We state a slightly
informal version of our XOR lemma below.

Theorem 1.7 (informal version of Theorem 5.2). Let f : {0, 1}n → {0, 1} be a strong r-
resilient function. Assume furthermore that f is unbiased. Then for d ≥ 1, there is a choice
of D = O(d)O(d) such that

corr(f⊕k, d) ≤
(

(k log r)D

r

)k
.

Our correlation bounds for Maj⊕Maj and more generally Maj⊕k follow directly from the
above theorem by setting r = Θ(

√
n). We sketch a proof of this theorem in Section 1.3.

A structure theorem for polynomials. Our correlation bounds are based on a new
structural result for polynomials. To state our result precisely, we introduce a notion that
we call local correlation, first studied by Lovett, Mukhopadhyay and Shpilka [LMS13].

Define e : F2 → R as e(x) = (−1)x. For f : Fn2 → F2 define e(f) : Fn2 → R by
e(f)(x) = e(f(x)).

Definition 1.8 (Local correlation). Given a function F : Fn2 → R and S ⊂ [n] define the
S-local correlation of F as

∆S(F ) := Ex,y [F (x)F (y)|xSc = ySc ]− E[F ]2.

For f : Fn2 → F2 we abbreviate ∆S(f) = ∆S(e(f)).
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To develop some intuition about local correlation, we record the following simple fact.
Denote by US the uniform distribution over FS2 . Given x1 ∈ F[n]\S

2 and x2 ∈ FS2 , we denote by
F (x1, x2) the function F applied to the concatenated input (x1, x2) ∈ Fn2 , where x1 appears
in the coordinates given by [n] \ S and x2 in the coordinates given by S.

Fact 1.9. For any F : Fn2 → R, and any set S ⊆ [n],

∆S(F ) = Ex1∼U[n]\S

[
(Ex2∼US

[F (x1, x2)]− E[F ])2
]
.

Thus, if S-local correlation of F is small, then for most fixings of the variables outside S,
the average of the resulting restricted function is close to the global average of F . In other
words, for most fixings of the coordinates outside S, the restricted function on the resulting
affine subspace has bias that is close to the global bias of F .

Our method involves finding, for any low-degree polynomial p, a small set S with small
local correlation. For intuition, we discuss degrees 1 and 2 first. For degree 1, we can take
S to be any variable appearing in p, and we get |S| = 1 and ∆S(p) = 0.

For degree 2, we can write p = `0 +
∑r

i=1 `2i−1`2i, for p a rank r quadratic form, where the
linear terms `j = 〈vj, x〉, j = 1, . . . , 2r, are linearly independent linear functions. Construct
an n × 2r matrix M over F2, with vj as the j’th column. Then we can take S ⊂ [n] to
be any subset of size min{log(1/ε), 2r} such that the corresponding rows of M are linearly
independent. Note that such a set S indeed exists since the rank of M is 2r. The proof that
this indeed works follows from the Fourier interpretation of local correlation (Fact 1.12).
Briefly, Fact 1.12 implies that the S-local correlation of p equals the Fourier mass on the
subspace W = span{ei : i ∈ [n] \ S} (where ei’s denote the standard unit vectors in Fn2 ). It
can be shown that the Fourier mass of p is evenly spread on an affine shift V ′ of the subspace
V = span{vj : j ∈ [2r]}. It is then not difficult to prove that the affine dimension of V ′ ∩W
is at most dim(V )− log(1/ε), and hence the Fourier mass on W is bounded by ε.

Finding small S for larger degrees is much harder. Our main technical contribution is
the following theorem.

Theorem 1.10 (Informal version, special case of Theorem 3.1). For d ≥ 1, there is a choice
of D = O(d)O(d) such that the following holds. For any polynomial p ∈ Polyn,d and any
ε > 0, there exists a set S ⊂ [n] of size |S| ≤ log(1/ε)D such that ∆S(p) ≤ ε.

This is an exponential improvement in terms of the parameter ε over the bound of
(1/ε)O(4d) proved in [LMS13]. This improvement on the dependence of ε in the size of the
set S is crucial for our approach to prove correlation bounds, as it allows us to choose
ε = 1/poly(n), which is needed to analyze Majority or more general resilient functions. We
conjecture that this can be improved even further, and discuss this in Section 1.2.

In fact, our result is more general. We show in Theorem 3.1 that for any subspace
V ⊂ Polyn,d, there exists a set S ⊂ [n], |S| ≤ (dim(V ) log(1/ε))D, such that for all p ∈ V ,
∆S(p) ≤ ε. This generality is crucial in our application to proving the new XOR lemmas
for correlation against polynomials, which we explain below. Again, we conjecture that this
bound can be improved.

We give a proof overview of Theorem 1.10 in Section 1.4. Combining Theorem 1.10 with
Fact 1.9, we obtain the following useful result.
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Corollary 1.11. For any polynomial p ∈ Polyn,d, there exists a set of size S ⊂ [n], |S| ≤
(log(1/ε))D, such that

Pr
x1∼U[n]\S

[|Ex2∼US
[e(p(x1, x2))]− E[e(p)]| > ε] ≤ ε.

Proof sketch of Theorem 1.6. Given this structural result, it is simple to prove Theo-
rem 1.6. Roughly, Corollary 1.11 says that for any low degree polynomial p, there is a small
set S such that for most fixings of variables outside S, restricting p to S leaves its bias almost
unchanged. On the other hand, resilient functions f have the property that for most such
fixings, the restriction of f is constant. Therefore, for most fixings the restrictions of f and
p are uncorrelated.

In a little more detail, recall that we are trying to bound the quantity

|E[e(p(x)) · e(f(x))]|,

where p ∈ Polyn,d and f is a strong r-resilient function. For simplicity, we assume here that

bias(f) = 0 (see Section 4 for the general case). Recall that D = O(d)O(d) and define the
function C(d, ε) = (log(1/ε))D. Let ε be a parameter that we set later. By Corollary 1.11,
there exists a set S ⊂ [n], |S| ≤ C(d, ε4), such that with probability 1− ε over x1 ∼ U[n]\S,
we have |Ex2∼US

[e(p(x1, x2)]− E[e(p)]| ≤ ε. Further, since f is a strong r-resilient function,

with probability at least 1 − C(d,ε4)
r

over the sampling of x1, f(x1, ·) is a constant function.

Thus, with probability 1− C(d,ε4)
r
− ε over the sampling of x1 ∼ U[n]\S,

Ex2∼US
[e(f(x1, x2)) · (e(p(x1, x2))− E[e(p)])] ≤ ε.

Thus, it follows that |Ex[e(p(x)) ·e(f(x))]| ≤ C(d,ε4)
r

+2ε. We set ε = O(1/r). This completes
the proof sketch of Theorem 1.6.

On the Fourier spectrum of low degree polynomials. The S-local correlation of F
is related to the Fourier spectrum of F as the following fact shows.

Fact 1.12. ∆S(F ) =
∑

T⊆[n]:T 6=∅,T∩S=∅ F̂ (T )2.

Thus, ∆S(F ) ≤ ε if most of the Fourier mass of F is on sets that intersect S. Hence, an
immediate consequence of Theorem 1.10 is that for any polynomial p ∈ Polyn,d, there is a
small set S ⊂ [n] such that almost all of the Fourier mass of e(p) lies on Fourier coefficients
that intersect with S.

Corollary 1.13. For any polynomial p ∈ Polyn,d, there exists a set S ⊂ [n] of size at most
(log(1/ε))D such that ∑

T⊆[n]:T 6=∅,T∩S=∅

ê(p)(T )2 ≤ ε.
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The previous bound on the smallest such set S was |S| ≤ (1/ε)O(4d) [LMS13].
In a different direction, we show in Section 6 that bounding the Fourier mass of polyno-

mials on degree 2 coefficients is related to bounds on corr(Maj ⊕Maj, d). The motivation
for studying this quantity arises from recent works [CHHL18, CHLT19], where bounds on
Fourier tails of classes of Boolean functions have been been exploited to construct pseudo-
random generators. In particular, it is proved in [CHLT19] that if for a class of Boolean

functions F that is closed under restrictions, all f ∈ F satisfy
∑

1≤i<j≤n |f̂(i, j)| ≤ t, then
there exists an efficient pseudorandom generator for F with seed-length poly(log n, t).

It is conjectured in [CHLT19] that for any p ∈ Polyn,d,
∑

1≤i<j≤n |p̂(i, j)| ≤ d2. Proving
this will immediately imply explicit pseudorandom generators for the class AC0[⊕] with
polylogarithmic seed-length, which is an outstanding open question in complexity theory.
However, currently the best known bound is∑

1≤i<j≤n

|p̂(i, j)| ≤ min
{
O(2d), O(d

√
n log n)

}
,

while it was proved in [CHLT19] that
∑

i |p̂(i)| ≤ 4d. The proof of the latter bound crucially
used bounds on corr(Maj, d) due to Razborov and Smolensky [Raz87,Smo87]. A natural step

towards proving the above conjecture is to first bound the weaker quantity
∣∣∣∑1≤i<j≤n p̂(i, j)

∣∣∣.
We show in Section 6 this is related to proving bounds for corr(Maj⊕Maj, d).

1.2 Discussion and future directions

New correlation bounds. We view this paper as a proof of concept, showing that struc-
tural results such as Theorem 1.10 and Theorem 3.1 can be used to obtain correlation bounds
and XOR lemmas for resilient functions. As a result, any improvement to the bounds in
Theorem 1.10 immediately gives stronger correlation bounds for explicit functions that are
highly resilient. Furthermore, any improvement on Theorem 3.1 would lead to stronger XOR
type theorems. While our bounds are exponentially smaller than prior results in terms of
the error parameter ε, we believe that the dependence on degree d is far from optimal and
can be drastically improved.

Conjecture 1.14. Theorem 1.10 holds with |S| ≤ poly(d, log(1/ε)).

More generally, we believe that the following holds.

Conjecture 1.15. Theorem 3.1 holds with |S| ≤ poly(d, k, log(1/ε)).

Conjecture 1.15 allows one to replace Theorem 1.7 with much stronger correlation bounds.
For example, in the case of Maj⊕k we would get corr(Maj⊕k, log n) ≤ (log n)O(k)/nk/2, which
would be a major breakthrough for any k = ω(1).
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Pseudorandom generators. Another natural direction of research is to see if one can
extend techniques from [CHLT19] to construct efficient pseudorandom generators with seed-
length poly(log n, t) for any classes F of Boolean functions that is closed under restric-

tions, such that for all f ∈ F we have |
∑

1≤i<j≤n f̂(i, j)| ≤ t. (To recall, [CHLT19] makes

the stronger assumption
∑

1≤i<j≤n |f̂(i, j)| ≤ t). We show in Section 6 that the quantity

|
∑

1≤i<j≤n f̂(i, j)| is closely related to the correlation of f with Maj⊕Maj. Thus if one can
construct pseudorandom generators for such F , then along with Conjecture 1.15, this will
immediately imply polylogarithmic seed-length pseudorandom generators for AC0[⊕].

1.3 Proof sketch of Theorem 1.7

We now sketch the main ideas that are used to prove Theorem 1.7, for the case k = 2. The
general case can be proved using similar ideas based on an inductive strategy. Our goal is
to bound

|Ex,y[e(p(x, y))e(f(x))e(f(y))|,

for any polynomial p(x, y) ∈ Poly2n,d, where we assume that f is unbiased (namely,
E[e(f(x))] = 0). Towards this, define the following functions:

H(x, y) = e(p(x, y)) · e(f(y)),

K(x) = Ey[H(x, y)] = Ey[e(p(x, y)) · e(f(y))].

We have

Ex,y [e(p(x, y))e(f(x))e(f(y))] = Ex [K(x) · e(f(x))] = Ex[(K(x)− E[K]) · e(f(x))],

where the second equality holds because Ex[e(f(x))] = 0.
Define the function C(d, k, ε) = (k log(1/ε))D, where to recall D = D(d) = O(d)O(d). We

claim that there is a set S ⊂ [n], |S| ≤ C(d, k = logO(d)(r), ε = 1/r4), such that ∆S(K) ≤ ε.
Before proving this, we first assume such a set S and show how to obtain the required
correlation bound.

Let E1 be the event that on sampling x1 ∼ U[n]\S, the restricted function f(x1, ·) is a
constant function. Since f is a strong r-resilient function, it follows that Pr[E1] > 1− |S|/r.
Thus, we have

|Ex[(K(x)− E[K]) · e(f(x))]| ≤ |Ex[(K(x)− E[K]) · e(f(x))|E1]+

|Ex[(K(x)− E[K]) · e[f(x)]|¬E1]| · Pr[¬E1] (1)

We now individually bound the two terms appearing on right hand side of Equation (1).
Using Fact 1.9 and an application of Markov’s inequality, it follows that with probability
1− ε1/2 over x1 ∼ U[n]\S, we have |Ex2∼US

[K(x1, x2)−E[K]| ≤ ε1/2. Thus, the first term can
be bounded by O(ε1/2) = O(1/r2), by our choice of ε.

Next, we bound the term |Ex[(K(x) − E[K]) · e[f(x)]|¬E1]|. Consider any fixing of x.
Recalling that K(x) = Ey[e(p(x, y) · f(y)], it follows that for a fixed x, |K(x)| is just the
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correlation of a resilient function (namely, f(y)) with a polynomial of degree at most d
(namely, q(y) = p(x, y)). This is exactly the quantity we bound in Theorem 1.6. Thus, for
any x, |K(x)| ≤ (log r)D/r. Hence, we have

|Ex[(K(x)− E[K]) · e(f(x))|¬E1]| ≤ |Ex[K(x) · e[f(x)]|¬E1]|+ |E[K]| · |Ex[e(f(x))|¬E1]|
≤ max

x
|K(x)|+ |E[K]|

≤ 2 max
x
|K(x)| ≤ (log r)D/r.

Since Pr[E1] > 1 − |S|/r, we can now bound the second term appearing on the right hand
side of Equation (1). Using the above estimate, we have

|Ex[(K(x)− E[K]) · e[f(x)]|¬E1]| · Pr[¬E1] ≤ (log r)D · |S|
r2

.

Combining the above estimates, and continuing from Equation (1), we have

|Ex[(K(x)− E[K]) · e(f(x))]| ≤ (log r)D · |S|
r2

+O(1/r2).

Thus, we obtain the required correlation bound.
We now sketch the proof to show the existence of the set S such that ∆S(K) ≤ ε. Recall

that K(x) = Ey[H(x, y)] = Ey[e(p(x, y)) · e(f(y))]. For a randomly sampled subspace A of
dimension ` (to be fixed later), we have

K(x) = 2−n + (1− 2−n)Ey∈Fn
2 \{0}[e(p(x, y)) · e(f(y))]

= 2−n + EA Ea∈A\{0}[e(p(x, a) + f(a))].

Further, for distinct a, a′ ∈ Fn2\{0}, the events a ∈ A and a′ ∈ A are pairwise independent.
Using this, one can show the existence of a subspace A of dimension ` = O(log(1/ε)), such
that

Ex[(K(x)−KA(x))2] ≤ ε,

where KA(x) = 2−n + Ea∈A\{0}[e(p(x, a) + f(a))].
Thus, up to an additional error of ε, it is enough to find a set S such that for any a ∈ A,

∆S(qa) ≤ ε, where qa(x) = p(x, a) + f(a). We prove that the dimension of the span of
the polynomials {qa : a ∈ A} can be bounded by

(
`
≤d

)
. This follows from a more general

bound that we prove on the dimension of derivatives of polynomials (Claim 2.5). Now, we
can appeal to the more general version of Theorem 1.10 that works for low dimensional
subspaces of polynomials (Theorem 3.1) to finish the proof.

1.4 Proof overview of Theorem 1.10

At a high level, the proof of Theorem 1.10 goes via induction on d, using the well known
structure vs randomness paradigm. We sketch a more general version of Theorem 1.10 (see

10



Theorem 3.1) and prove the following: Let V ⊂ Polyn,d be a subspace of dimension k. We

prove the existence of a set S ⊂ [n], |S| ≤ C(d, k, ε) = (k log(1/ε))D for D = O(d)O(d), such
that for all f ∈ V , ∆S(f) ≤ ε.

We first introduce a definition. Let W be a linear space of functions g : Fn2 → F2. Define
the ball of radius r around W , denoted B(W, r), as the set of all functions G : Fn2 → R of
the form

B(W, r) :=

{
G =

∑
g∈W

cge(g) :
∑
|cg| ≤ r

}
.

Our key result that fits into the “structure vs randomness” paradigm, stated as
Lemma 3.3, is the following: we prove the existence of a low dimensional subspace
W ⊂ Polyn,d−1, such that each f ∈ V either has no large Fourier coefficient or is close
to a function in a small ball around W .

More precisely we prove the following result. For any F : {0, 1}n → R, define ‖F̂‖∞ =

maxγ |F̂ (γ)|.1 Let V ⊂ Polyn,d be a subspace of dimension k. For any parameters ε0, δ > 0,

we prove the existence of subspaces W ⊂ Polyn,d−1 of dimension ` = O(k log(1/ε0δ))
O(d) and

U ⊂ V , such that

(i) Each f ∈ V \ U satisfies ‖ê(f)‖∞ ≤ ε0.

(ii) Each f ∈ U can be expressed as e(f) = G+H, where G ∈ B(W, 1/εk0) and ‖H‖2 ≤ δ/εk0.

Before sketching the proof of this structure result, we first show how this can be used to
construct the required set S.

Let U,W1 be the subspaces that we get on applying the above structure result to V with
parameters δ, ε0 (to be fixed later). Since our proof is by induction on d (the base case, for
d = 1, is direct), we can assume that, for some parameter ε1 to be fixed later, there exists a
set S1 ⊂ [n], |S1| ≤ (k log(1/ε1))D such that for any g ∈ W1, ∆S1(g) ≤ ε1. For any f ∈ U ,
we use the fact that it is close (in L2 distance) to a function in a small ball around W , to
show that ∆S1(f) ≤ O((ε1 + δ)/ε2k

0 ).
Now suppose f ∈ V \U . Here appealing to a result proved by Lovett et al. [LMS13] (see

Lemma 3.4 and Lemma 3.5) we show that: for any set S ⊂ [n], any parameter m > 0, there
exists a subspace A ⊂ Fn2 of dimension m such that for any f ∈ V \ U , we have

∆S(f)2 ≤ 2k · Ea∼A[∆S(fa)] + 2−m + ‖e(f)‖2
∞,

where fa(x) := f(x + a)− f(x) is derivative of f in the direction a. Now, since f ∈ V \ U ,
we know that ‖e(f)‖2

∞ ≤ ε2
0. Further, note that W2 = {fa : a ∈ A} ⊂ Polyn,d−1. We prove

that the dimension of the space span{W2} can be bounded by
(
m
≤d

)
(see Claim 2.5), where

m is the dimension of A. Thus, again using induction, we get a set S2 ⊂ [n], such that
∆S2(g) ≤ ε2, for all g ∈ W2. It is now straightforward to show that for each f ∈ V \ U ,
∆S2(f)2 ≤ ε2 + 2k(ε2

0 + 2−m). Setting S = S1 ∪ S2, with appropriate choices of parameters
finishes the proof.

1see Section 2.2 for a quick recap of Boolean Fourier analysis.
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We now briefly sketch the proof of Lemma 3.3. A crucial ingredient (see Lemma 3.2)
is the following result about biased functions: Let f ∈ Polyn,d and η = E[e(f)], such that

|η| ≥ ε0. Then there exists a subspace W ⊂ Polyn,d−1 of dimension
(
c′ log(1/ε0δ)

≤d

)
, for some

constant c′, such that e(f) = G + H where G,H : Fn2 → R satisfy G ∈ B(W, 1/ε0) and
‖H‖2 ≤ δ.

Given this, we prove in Lemma 3.3, that the following iterative procedure can be used to
obtain the required subspaces U and W : Initialize U = W = {0}, and as long as there exists

f ∈ V \ U for which |f̂(γ)| > ε0 for some γ, apply the following update step. First, we add
f to U . Next, let l = 〈x, γ〉 be a linear function, and define f ′ = f − l so that bias(f ′) ≥ ε0.
Now using the Lemma 3.2, e(f ′) can be expressed as e(f ′) = G′ +H ′ where W ′ ⊂ Polyn,d−1

is a subspace of dimension at most
(
`
≤d

)
, G′ ∈ B(W ′, 1/ε0), and ‖H ′‖2 ≤ δ. We add to W

both W ′ and l.

1.5 Organization

We introduce some preliminaries in Section 2. We use Section 3 to present the proof of
Theorem 3.1, which is our main structure result for polynomials. We prove correlation
bounds of polynomials with resilient function in Section 4, and prove the XOR lemmas in
Section 5. In Section 6 we discuss applications to the Fourier spectrum of polynomials. We
analyze the order-2 Gowers norm of the Majority function in Appendix A.

2 Preliminaries

2.1 Notation

We identify Fn2 with {0, 1}n. We use lower case letters f, g, h to denotes functions Fn2 → F2,
and upper case letters F,G,H to denotes functions Fn2 → R. We use Un to denote the
uniform distribution on n bits. The XOR of two bits b1, b2 is denoted by b1 ⊕ b2. For any
x ∈ {0, 1}n, Maj(x) denotes the usual MAJORITY function. For a function F : {0, 1}n → R,
we use the shorthand E[F ] or Ex[F (x)] to denote the average of F , namely the quantity
1

2n

∑
x∈{0,1}n F (x). For a function f : {0, 1}n → {0, 1}, any set S ⊂ [n], x1 ∈ {0, 1}[n]\S,

and x2 ∈ {0, 1}S, we use f(x1, x2) to denote applying f to the concatenated inputs, with x1

appearing in the coordinates corresponding to [n] \ S and x2 appearing in the coordinates
corresponding to S. We use similar notations for functions F : {0, 1}n → R.

2.2 Fourier analysis of Boolean functions

We briefly review the basics of Boolean Fourier analysis and refer the reader to the excellent
book by O’Donnell [O’D14] for more details. Given F : Fn2 → R and γ ∈ Fn2 , let F̂ (γ) =

Ex[F (x)(−1)〈γ,x〉] denote its Fourier coefficients. Define ‖F̂‖∞ = maxγ |F̂ (γ)|. Further, for

any subset S ⊂ [n], define F̂ (S) = F̂ (γ), where γ ∈ Fn2 is the indicator vector for S. For a

12



Boolean function f : Fn2 → F2, we shorthand f̂(γ) = ê(f)(γ). Any function F : Fn2 → R has
a unique Fourier representation given by

F (x) =
∑
γ∈Fn

2

F̂ (γ) · (−1)〈γ,x〉.

For any function F : Fn2 → R, Parseval’s identity states that

Ex[F (x)2] =
∑
γ∈Fn

2

F̂ (γ)2.

2.3 Definitions of bias, correlation, covariance, and local correla-
tion

Define e : F2 → R by e(x) = (−1)x. For f : Fn2 → F2 define e(f) : Fn2 → R by e(f)(x) =
e(f(x)). The bias of f : Fn2 → F2 is bias(f) = |Ex e(f(x))|. Define the correlation of two
Boolean functions f, g : {0, 1}n → {0, 1} as:

corr(f, g) := |E[e(f(x))e(g(x)))| =
∣∣Pr[f(x) = g(x)]− Pr[f(x) 6= g(x)]

∣∣.
Define the covariance of two functions F,G with codomain R as:

cov(F,G) := E[F (x)G(x)]− E[F (x)]E[G(x)].

For Boolean f, g, define cov(f, g) = cov(e(f), e(g)). Thus, we have the following simple fact:

Fact 2.1. For Boolean functions f, g, we have:

corr(f, g) ≤ |cov(f, g)|+ bias(f).

Definition 2.2 (Local correlation). Given a function F : Fn2 → R and S ⊂ [n] define the
S-local correlation of F as

∆S(F ) = E[F (x)F (y)|xSc = ySc ]− E[F ]2.

For f : Fn2 → F2 we abbreviate ∆S(f) = ∆S(e(f)). The following is straightforward to
show.

Fact 2.3. For any F : Fn2 → R, and any set S ⊆ [n],

∆S(F ) =
∑

γ∈Fn
2 ,γ 6=0,γS=0

F̂ (γ)2.

13



2.4 Polynomials and their derivatives

Let Polyn,d denote the linear space of polynomials over Fn2 of total degree at most d. The fol-
lowing quantity measures how well degree d polynomials approximate a Boolean function f :

corr(f, d) := max
p∈Polyn,d

corr(f, p).

Define cov(f, d) analogously, and note that it is nonnegative. Observe that bias(f) =
corr(f, 0).

Definition 2.4. Given f ∈ Polyn,d define fa(x) = f(x + a) + f(x) to be its derivative in
direction a. Note that fa ∈ Polyn,d−1.

For a sequence S = (a1, . . . , ak) of directions, define fS(x) to be the iterated derivative.
It satisfies

fS(x) =
∑

φ 6=T⊆S

fΣT (x),

where ΣT =
∑

t∈T t. In addition, if f ∈ Polyn,d and |S| > d then fS ≡ 0. The following
claim bounds the dimension of the space of derivative polynomials. We use the shorthand(
`
≤d

)
=
∑d

i=0

(
`
i

)
.

Claim 2.5. Let f ∈ Polyn,d, and let A be an arbitrary subspace in Fn2 of dimension ` ≥ 1.

Let W = span{fa : a ∈ A}. Then dim(W ) ≤
(
`
≤d

)
.

Proof. Fix a basis B = {a1, . . . , a`} of the subspace A. Let

R = {fΣS : S ⊂ B, |S| ≤ d}

and let V = span(R). We prove the following statement: for any S ⊆ B, it holds that
fΣS ∈ V . This proves the claim as dim(V ) ≤ |R| ≤

(
`
≤d

)
, and any element a ∈ A can be

expressed as a = ΣS for some S ⊆ B. The proof is by induction on |S|. Clearly, this holds if
|S| ≤ d, so assume |S| > d. As f is a degree d polynomial, it holds that fS ≡ 0. This implies
that fΣS =

∑
T(S fΣT . We know by induction that fΣT ∈ V for all T ( S since |T | < |S|.

Thus also fΣS ∈ V .

3 Subspace of polynomials re-randomization

The main result that we prove in this section is that for any low-dimensional subspace V of
polynomials, there exists a small set S such that the S-correlation of any f ∈ V is small.
We now state our result more formally.

Theorem 3.1. Let V ⊂ Polyn,d be a subspace of dimension k ≥ 1 and let ε ∈ (0, 1/2).

Then there exists a set S ⊂ [n] of size |S| ≤ C(d, k, ε) = (k log(1/ε))(cd)d, for some absolute
constant c > 0, such that

∆S(f) ≤ ε ∀f ∈ V.

14



To prove Theorem 3.1 we start with a useful lemma regarding the structure of one biased
low-degree polynomial. Let W be a linear space of functions g : Fn2 → F2. Define the ball of
radius r around W , denoted B(W, r), as the set of all functions G : Fn2 → R of the form

B(W, r) :=

{
G =

∑
g∈W

cge(g) :
∑
|cg| ≤ r

}
.

Lemma 3.2. For ε, δ > 0, there exists ` = O(log(1/εδ)) such that the following holds. Let
f ∈ Polyn,d be a polynomial with |bias(f)| ≥ ε. Then there exists a subspace W ⊂ Polyn,d−1

of dimension
(
`
≤d

)
, such that we can express

e(f) = G+H

where G,H : Fn2 → R satisfy G ∈ B(W, 1/ε) and ‖H‖2 ≤ δ.

Proof. For d = 1, if bias(f) 6= 0 then f is a constant function, in which case we can take
W = {0}, G = f and H = 0. So assume d > 1 from now on.

Let η = E [e(f)] where |η| = bias(f) ≥ ε. We have

η · e(f(x)) = Ey∈Fn
2

[e(fy(x))] ∀x ∈ Fn2 .

Let ` = O(log(1/εδ)) to be determined later. If n ≤ ` then we can take W = {fy : y ∈ Fn2},
G = η−1 Ey∈Fn

2
[e(fy(x))] and H = 0, where the dimension of W is bounded by

(
n
≤d

)
≤
(
`
≤d

)
by Claim 2.5. Thus, we assume from now on that n > `.

Let A ⊂ Fn2 be a uniform linear subspace of dimension `. Then as

Ey∈Fn
2 \{0} [e(fy(x))] = EA Ea∈A\{0} [e(fa(x))]

and as f0 ≡ 0, we obtain

η · e(f)(x) = 2−n + (1− 2−n)Ey∈Fn
2 \{0} [e(fy(x))]

= 2−n + (1− 2−n)EA Ea∈A\{0} [e(fa(x))] .

For a fixed subspace A define

WA = {fa : a ∈ A},
GA(x) = 2−n + (1− 2−n)Ea∈A\{0} [e(fa(x))] ,

HA(x) = η · e(f(x))−GA(x).

Observe that GA ∈ B(WA, 1). Fix x ∈ Fn2 . For a random choice of A we get EA[HA(x)] = 0.
We now want to bound EA[HA(x)2]. To do this, we specify that we choose A by choosing

a random full rank linear map L : F`2 → Fn2 and setting A to be the range of L. For each
v ∈ F`2 \ {0}, define the random variable

Xv = η · e(f(x))− 2−n − (1− 2−n)e(fL(v)(x)) ∈ [−2, 2].
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Then

HA(x) =
1

|A| − 1

∑
v∈F`

2\{0}

Xv.

Note that for any v ∈ F`2 \ {0}, we have E[Xv] = 0.
Further, we claim that for any distinct v, w ∈ F`2 \ {0}, E[XvXw] ≤ 0. This can be seen

in the following way. Condition on the random variable L(v). Thus, L(w) is uniform over
Fn2 \{0, L(v)}. If we chose L(w) uniform on Fn2 \{0}, then clearly we would have E[XvXw] = 0
(since Xv is fixed, and E[Xw] = 0). But, we are removing one point (namely, L(v)) from the
support of L(w), where Xw = Xv and hence XwXv = X2

v ≥ 0. Thus it follows that(
1− 1

2n − 1

)
· E[XvXw] +

1

2n − 1
·X2

v = 0,

which implies E[XvXw] ≤ 0. Since this is true for any conditioning of L(v), the claim follows.
Thus, we have

EA[HA(x)2] ≤ 1

(|A| − 1)2

∑
v∈F`

2\{0}

E[X2
v ] ≤ 4

|A| − 1
.

By averaging, there exists a subspace A for which,

Ex[HA(x)2] ≤ 4

|A| − 1
.

The claim follows by taking W = WA, G = η−1GA and H = η−1HA. The dimension bound
on W follows from Claim 2.5. Observe that ‖H‖2 ≤ 2/(ε

√
|A| − 1). To obtain the bound

‖H‖2 ≤ δ we can set ` = dim(A) ≥ 1 + 2 log(2/εδ).

Now we continue to study the structure of a subspace of low-degree polynomials, by
iteratively applying Lemma 3.2.

Lemma 3.3. For ε ∈ (0, 1/2), δ > 0, there exists ` = O(log(1/εδ)) such that the following
holds. Let V ⊂ Polyn,d be a subspace of polynomials of dimension k. Then there exists a

subspace U ⊂ V and a subspace W ⊂ Polyn,d−1 of dimension k
(
`
≤d

)
such that the following

holds:

(i) Each f ∈ V \ U satisfies ‖ê(f)‖∞ ≤ ε.

(ii) Each f ∈ U can be expressed as e(f) = G+H, where G ∈ B(W, 1/εk) and ‖H‖2 ≤ δ/εk.

Proof. We describe a procedure for obtaining U and W . Initialize U = W = {0}. As long

as there exists f ∈ V \ U for which |f̂(γ)| > ε for some γ, apply the following update step:

1. U ← span(U ∪ {f}).

2. Let l = 〈x, γ〉 ∈ Polyn,1 so that f ′ = f − l satisfies bias(f ′) ≥ ε.
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3. Apply Lemma 3.2 to f ′. Let W ′ ⊂ Polyn,d−1 be the resulting subspace so that we can
express e(f ′) = G′ +H ′ where G′ ∈ B(W ′, 1/ε), ‖H ′‖2 ≤ δ.

4. W ← span(W ∪W ′ ∪ {l}).

5. We have e(f) = G + H where G = G′ · e(l), H = H ′ · e(l) satisfy G ∈ B(W, 1/ε) and
‖H‖2 = ‖H ′‖2 ≤ δ.

Assume that we applied the procedure m ≤ k times, so that at the end dim(U) = m. Let
f1, . . . , fm be the polynomials for which we applied the update step, and hence they form a
basis for U . For each fi we can express e(fi) = Gi+Hi where Gi ∈ B(W, 1/ε) and ‖Hi‖2 ≤ δ.
Any f ∈ U can be expressed as f =

∑
i∈S fi for some S ⊆ [m]. Assume for simplicity of

notation that S = {1, . . . , s}. Then

e(f) =
s∏
i=1

e(fi) =
s∏
i=1

(Gi +Hi) = G+H

where G =
∏s

i=1 Gi and H is the remaining terms. We get G ∈ B(W, 1/εk). To bound ‖H‖2

we write

H =
s∑
i=1

(
i−1∏
j=1

Gi

)
Hi

(
s∏

j=i+1

e(fi)

)
.

As ‖Gi‖∞ ≤ 1/ε and ‖e(fi)‖∞ = 1 and we assume ε < 1/2 we can bound

‖H‖2 ≤
s∑
i=1

(1/ε)i‖Hi‖2 ≤ δ/εk.

We will need the following lemmas from [LMS13].

Lemma 3.4 (Claim 31 in [LMS13] ). Let f : Fn2 → F2, S ⊆ [n], and A ⊂ Fn2 be a linear
subspace. Then

∆S(f)2 ≤ Ea∈A [∆S(fa)] + Ea∈A
[
bias(fa)

2
]
.

Lemma 3.5 (Claim 32 in [LMS13] ). Let f : Fn2 → F2, S ⊆ [n], and A ⊂ Fn2 be a random
linear subspace of dimension m. Then

EA Ea∈A
[
bias(fa)

2
]
≤ 2−m + ‖ê(f)‖2

∞.

We now prove Theorem 3.1.

Proof of Theorem 3.1. The proof is by induction on d. If d = 1 then it suffices to take
|S| = k for any ε > 0, so assume d ≥ 2 from now on. Let V ⊂ Polyn,d be a space of
polynomials of dimension k. Apply Lemma 3.3 with parameters ε0, δ to be determined later.
Let U ⊂ V and W1 ⊂ Polyn,d−1 be as obtained by the lemma, where k1 = dim(W1) = k

(
`
≤d

)
17



for ` = O(log(1/ε0δ)). Apply Theorem 3.1 inductively to W1 and error parameter ε1 to
obtain a set S1 ⊂ [n] such that

∆S1(g) ≤ ε1 ∀g ∈ W1.

We first analyze f ∈ U . Let F = e(f). We can express F = G + H with G ∈ B(W1, r) for
r = 1/εk0 and ‖H‖2 ≤ δ/εk0. Let G =

∑
g∈W1

cge(g) where
∑
|cg| ≤ r. Let Γ = {γ ∈ Fn2 : γ 6=

0, γS1 = 0}. We have

∆S1(f) =
∑
γ∈Γ

F̂ (γ)2 ≤
∑
γ∈Γ

(
Ĝ(γ) + Ĥ(γ)

)2

≤ 2

(∑
γ∈Γ

Ĝ(γ)2 +
∑
γ∈Γ

Ĥ(γ)2

)
.

We analyze each term separately. We can bound Ĝ(γ)2 by the Cauchy-Schwartz inequality

Ĝ(γ)2 =

(∑
g∈W1

cg ê(g)(γ)

)2

≤

(∑
g∈W1

|cg|

)(∑
g∈W1

|cg|ê(g)(γ)2

)
≤ r

∑
g∈W1

|cg|ê(g)(γ)2.

Summing over all γ ∈ Γ gives∑
γ∈Γ

Ĝ(γ)2 ≤ r
∑
g∈W1

|cg|
∑
γ∈Γ

ê(g)(γ)2 ≤ r
∑
g∈W1

|cg|∆S1(g) ≤ r2ε1.

Moving to bound the term for H, we have∑
γ∈Γ

Ĥ(γ)2 ≤
∑
γ∈Fn

2

Ĥ(γ)2 = ‖H‖2
2 ≤ δ2/ε2k

0 .

Combining these, and plugging in r = 1/εk0, we can bound

∆S1(f) ≤ 2(ε1 + δ2)/ε2k
0 ∀f ∈ U.

Next, we handle f ∈ V \ U . Let A ⊂ Fn2 be a random subspace of dimension m to be

determined later. As ‖ê(f)‖∞ ≤ ε0 for all f ∈ V \ U , Lemma 3.5 gives

EA
∑
f∈V \U

Ea∈A
[
bias(fa)

2
]
≤ |V \ U |(2−m + ε2

0) ≤ 2k(2−m + ε2
0).

By averaging there exists a choice of A such that

Ea∈A
[
bias(fa)

2
]
≤ 2k(2−m + ε2

0) ∀f ∈ V \ U.

Let W2 = {fa : f ∈ V, a ∈ A} where k2 = dim(W2) ≤ k
(
m
≤d

)
by applying Claim 2.5 to a

basis of V . Apply inductively Theorem 3.1 to W2 with error parameter ε2, to obtain a set
S2 ⊂ [n] such that

∆S2(g) ≤ ε2 ∀g ∈ W2.
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Next, applying Lemma 3.4 for the subspace A and any f ∈ V \ U gives

∆S2(f)2 ≤ Ea∈A ∆S2(fa) + Ea∈A
[
bias(fa)

2
]
≤ ε2 + 2k(2−m + ε2

0).

We take S = S1 ∪ S2. Thus for any f ∈ V we have that

∆S(f) ≤ max

(
2(ε1 + δ2)/ε2k

0 ,
√
ε2 + 2k(2−m + ε2

0)

)
.

We next set the parameters to obtain error ε. To simplify the calculations, we will assume
without loss of generality that ε = 2−k, by either decreasing ε or increasing k. Denote

D(d, k) := C(d, k, ε = 2−k).

We set
ε0 = ε2 = 2−O(k), ε1 = δ = 2−O(k2),m = O(k).

In addition we have k1 = k
(
`
≤d

)
and k2 = k

(
m
≤d

)
where ` = O(log(1/ε0δ)) = O(k3). Thus

|S| ≤ |S1|+ |S2| ≤ C(d− 1, k1, ε1) + C(d− 1, k2, ε2) ≤ 2D(d− 1, kλd)

for some absolute constant λ > 0. We obtain the recursion

D(d, k) ≤ 2D(d− 1, kλd)

which solves to
D(d, k) ≤ 2dk(λd)d .

Thus for any k ≥ 1 and ε ∈ (0, 1/2), for a large enough absolute constant c > 0 we have

C(d, k, ε) ≤ (k log(1/ε))(cd)d .

4 Correlation bounds for resilient functions

Our first main result is the following theorem. The function C(d, k, ε) is as given in Theo-
rem 3.1. For any function h, the quantity cov(h, d) is defined in Section 2.4. Combining this
theorem with Fact 2.1 gives Theorem 1.6.

Theorem 4.1. Let h : {0, 1}n → {0, 1} be a strong r-resilient function, and d ≥ 1. There is
D = O(d)O(d) such that

|cov(h, d)| ≤ C(d, 1, r−4) + 2

r
=

log(r)D

r
.
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Proof. Fix any f ∈ Polyn,d. Let F = e(f), G = F − E[F ] and H = e(h). Observe that

cov(f, h) = E[F (x)H(x)]− E[F ]E[H] = E[G(x)H(x)].

We proceed to bound |E[GH]|.
Let ε > 0 be a parameter that we will fix later. Using Theorem 3.1, there exists a set

S ⊂ [n], |S| = C(d, 1, ε) such that ∆S(F ) ≤ ε. Observe that

Ex1∼U[n]\S [(Ex2∼US
[G(x)])2] = ∆S(F ) ≤ ε.

Thus, by an application of Markov’s inequality, it follows that

Pr
x1∼U[n]\S

[(Ex2∼US
[G(x)])2 > ε1/2] ≤ ε1/2.

For x1 ∼ U[n]\S, let E1 denote the event that |Ex2∼US
[G(x)]| ≤ ε1/4, and E2 denote the event

that H(x1, ·) is a constant function. Observe that if x1 is such that both E1 and E2 hold,
then

|Ex2∼US
[G(x)H(x)]| = |Ex2∼US

[G(x)]| ≤ ε1/4.

We thus have

|E[G(x)H(x)]| ≤ Pr[¬E1] + Pr[¬E2] + ε1/4 ≤ ε1/2 +
|S|
r

+ ε1/4.

Setting ε = 1/r4 gives

|cov(h, f)| ≤ |S|+ 2

r
.

The above theorem can be applied to Maj to obtain an alternate proof of the Razborov-
Smolensky correlation bound [Raz87,Smo87] for d = O(1), up to logarithmic factors.

Corollary 4.2. corr(Maj,Polyn,O(1)) ≤ poly(log n)/
√
n.

Proof. Follows directly from Theorem 4.1 using Fact 1.5.

In the next section we extend these techniques to prove correlation bounds with XOR
of Maj, or more generally XOR of resilient functions. As we discussed in the introduction,
these results do not follow from the Razborov-Smolensky techniques.

5 Correlation bounds for XORs of resilient functions

We extend the techniques in the previous section to prove correlation bounds for XORs
of resilient functions. To simplify the bounds and proofs, we assume that the resilient
functions in question are unbiased. With a bit more work, we can obtain similar bounds for
the covariance even if the functions are biased.

Recall that the function C(d, k, ε) is as defined in Theorem 3.1. Given functions h1 :
{0, 1}n → {0, 1} and h2 : {0, 1}m → {0, 1} we let h1 ⊕ h2 : {0, 1}n+m → {0, 1} be given by
(h1 ⊕ h2)(x, y) = h1(x)⊕ h2(y).
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Theorem 5.1. Let h1 : {0, 1}n → {0, 1}, h2 : {0, 1}m → {0, 1}. Assume that h1, h2 are
unbiased, and that h1 is a strong r-resilient function. For ε > 0, there is m = O(log 1/ε)d

such that

corr(h1 ⊕ h2, d) ≤ corr(h2, d) · 2C(d,m, ε)

r
+ 2ε1/4.

We record some immediate consequences. For h : {0, 1}n → {0, 1} we denote by h⊕k :
{0, 1}nk → {0, 1} the function obtained by taking the direct sum of h iteratively k times,
namely h⊕1 = h and h⊕k = h⊕(k−1) ⊕ h.

Theorem 5.2. Let h : {0, 1}n → {0, 1} be an unbiased strong r-resilient function. For
d ≥ 1, there is D = O(d)O(d) such that

corr(h⊕k, d) ≤
(

(k log r)D

r

)k
.

Proof. Let αk = corr(h⊕k, d). Assume we already have a bound on αk−1, and we next derive
a bound on αk. Let ε to be determined later and set m = O(log 1/ε)d. Theorem 5.1 gives
that

αk ≤ αk−1 ·
2C(d,m, ε)

r
+ 2ε−1/4.

In order to bound C(d,m, ε) apply Theorem 3.1. Let D = dcd for a large enough constant
c > 0 so that

C(d,m, ε) ≤ (log 1/ε)D.

Set ε = r−4k. Then we obtain that

αk ≤ αk−1 ·
(4k(log r))D

r
+

2

rk
.

This gives the bound

αk ≤
(
O(k · log r)D

r

)k
.

The above result gives us a way to obtain new correlation bounds for XORs of Maj.

Corollary 5.3. Let Maj denote the Majority function on n bits. For d ≥ 1, there is D =
O(d)O(d) such that

corr(Maj⊕k, d) ≤
(

(k log n)D√
n

)k
.

We use the rest of the section to prove Theorem 5.1. Fix any f ∈ Polyn,d. First, we
define some useful functions: H1(x) = e(h1(x)), H2(y) = e(h2(y)), F (x, y) = e(f(x, y)),
G(x, y) = F (x, y)H2(y), K(x) = Ey[G(x, y)]. Our goal is to bound

corr(h1(x)⊕ h2(y), f(x, y)) = |E[F (x, y)H1(x)H2(y)]| = |E[K(x)H1(x)]|.

The following lemma is a key ingredient in our proof.
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Claim 5.4. For ε > 0, d ≥ 1, there is k = O(log 1/ε)d, such that there exists a set S ⊂ [n],
|S| ≤ C(d, k, ε) for which ∆S(K) ≤ ε.

Proof. For any subspace A in Fn2 , define WA to be subspace spanned by the polynomials
{f(x, a) : a ∈ A} and the constant function 1. We show that there exists a subspace A in
Fn2 of dimension ` = O(log(1/ε)) such that K(x) = V (x) + Z(x), where V ∈ B(WA, 1) and
‖Z‖2 ≤ ε/2. This will directly yield the claim using Theorem 3.1, noting the fact that by
an application of Claim 2.5, the dimension of WA is at most

(
`
≤d

)
+ 1 ≤ O(`d).

We now prove that K can be written as V +Z. The argument to show this is very similar
to the one used in the proof of Lemma 3.2. For a random subspace A of dimension `, we
have

K(x) = 2−n + (1− 2−n)Ey∈Fn
2 \{0}[e(f(x, y)) · e(h2(y))]

= 2−n + EA Ea∈A\{0}[e(f(x, a) + h2(a))].

For any subspace A in Fn2 , define

VA(x) = 2−n + Ea∈A\{0}[e(f(x, a) + h2(a))],

ZA(x) = K(x)− VA(x).

Note that VA ∈ B(WA, 1). For a fixed x ∈ Fn2 , and a random subspace A of dimension `,
observe that EA[ZA(x)] = 0. Proceeding similarly to Lemma 3.2, we can write ZA(x) as the
sum of zero-mean random variables with non-positive covariance, and conclude that

EA[ZA(x)2] ≤ 4

|A| − 1
.

Since the above holds for all x ∈ Fn2 , by an averaging argument there exists a subspace A
such that Ex[ZA(x)2] ≤ 4

|A|−1
. The claim now follows by setting V = VA and Z = ZA.

We now proceed to prove the required correlation bound.

Proof of Theorem 5.1. Let S be the set from Claim 5.4 such that ∆S(K) ≤ ε. Let β =
E[K] = Ex,y[e(f(x, y) + h2(y))] where β ≤ corr(h2, d). As E[H1] = 0 we have

corr(h1(x)⊕ h2(y), f(x, y)) = |Ex[(K(x)− β)H1(x)]|

Let x = (x1, x2) with x1 ∼ U[n]\S and x2 ∼ US. Let E1 = E1(x1) denote the event that
h1(x1, ·) is a constant function. By our assumption on h1 it holds that Pr[¬E1] ≤ |S|/r.
Thus we can bound

corr(h1(x)⊕ h2(y), f(x, y)) ≤ |Ex[(K(x)− β)H1(x)|E1]| (2)

+ |Ex[(K(x)− β)H1(x)|¬E1]| · |S|
r
. (3)
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We will first upper bound the term. Let E2 = E2(x1) denote the event that
|Ex2 [K(x1, x2)] − β| ≤ ε1/4. We claim that Pr[¬E2] ≤ ε1/2. To see this, let x2, x

′
2 ∼ US

be independent. Then

∆S(K) = Ex1 Ex2,x′2 [(K(x1, x2)− β)(K(x1, x
′
2)− β)]

= Ex1 [(Ex2 [K(x1, x2)]− β)2]

= Ex1 [(Ex2,y[F (x, y)H2(y)]− β)2].

The bound on Pr[¬E2] follows from Markov’s inequality using the fact that ∆S(K) ≤ ε.
Thus we can bound the first term in Equation (2) by

|Ex[(K(x)− β)H1(x)|E1] ≤ Ex1 |Ex2 [K(x1, x2)− β)]|E2|+ Pr[¬E2] ≤ 2ε1/4.

We now proceed to bound the second term. We have

|Ex[(K(x)− β)H1(x)|¬E1]| ≤ β + Ex,y[H1(x)H2(y)F (x, y)|¬E1].

Fix x such that E1 holds. Averaging the second term over y gives

Ey[H1(x)H2(y)F (x, y)] ≤ corr(h2, d).

Thus
|Ex[(K(x)− β)H1(x)|¬E1]| ≤ 2corr(h2, d).

Combining the bounds for the two terms in Equation (2) gives

corr(h1(x)⊕ h2(y), f(x, y)) ≤ 2ε1/4 + corr(h2, d) · 2C(d, k, ε)

r

for k = O(log 1/ε)d.

6 Level 2 Fourier bounds from correlation with XOR

of shifted majority

For x ∈ {0, 1}n, let |x| denote the Hamming weight of x. We define the class of shifted
majority functions, Maja : {0, 1}n → {0, 1} for a ∈ {0, 1, . . . , n} as

Maja(x) :=

{
1 if |x| > a

0 otherwise

The main result of this section is a bound on the level two Fourier mass of functions from
correlation bounds with XOR of shifted majority functions.
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Lemma 6.1. Let F be a family of 2n-variate Boolean functions that is closed under re-
labelling variables. Suppose that for all integers a, b such that n

2
− 2
√
n log n ≤ a, b ≤

n
2

+ 2
√
n log n, and any f ∈ F , it holds that

corr (f(x, y),Maja(x)⊕Majb(y)) ≤ t/n,

for some t ≥ 1. Then, ∣∣∣∣∣ ∑
1≤i<j≤2n

f̂({i, j})

∣∣∣∣∣ ≤ O(t log n).

We use the rest of the section to prove the above lemma. It is convenient to define the
following functions. For θ ∈ [n/2], let

Thrθ(x) :=

{
(−1)Maj(x) if |

∑
xi − n/2| ≥ θ

0 otherwise

Observe that for any θ ∈ [n/2],

2 · Thrθ(x) = e(Majn/2+θ−1(x)) + e(Majn/2−θ(x)).

We record a straightforward consequence of the above claim and the hypothesis of Lemma 6.1.

Claim 6.2. For all integers 1 ≤ a, b ≤ 2
√
n log n, and any f ∈ F , it holds that

|Ex,y[e(f(x, y))Thra(x)Thrb(y)]| ≤ t/n.

We use a couple of useful observations that appeared in [CHLT19].

Claim 6.3 ( [CHLT19]). For any x ∈ {0, 1}n,
∑

1≤i≤n e(xi) = 2
∑

1≤a≤n/2 Thra(x).

Claim 6.4 ( [CHLT19]). For any Boolean function f : {0, 1}n → {0, 1}, there exists an
equi-partition of [2n] into disjoint sets S, T such that∣∣∣∣∣ ∑

1≤i<j≤2n

f̂({i, j})

∣∣∣∣∣ ≤ 2

∣∣∣∣∣ ∑
i∈S,j∈T

f̂({i, j})

∣∣∣∣∣ .
We also note that for large enough a, the support of Thra is small. This is a straightfor-

ward consequence of the Chernoff bound.

Claim 6.5. For any a ≥ 2
√
n log n, we have E[|Thra|] ≤ O(1/n8).

Proof of Lemma 6.1. Let f ∈ F . Using Claim 6.4, it is enough to bound
∑

i∈S,j∈T f̂({i, j})
for some equipartition of [2n]. Without loss of generality suppose that S = [n] and T =
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[2n] \ S since we can always relabel variables without changing the Fourier spectrum. Let
F = e(f). We have∣∣∣∣∣ ∑
1≤i≤n,n+1≤j≤2n

f̂(i, j)

∣∣∣∣∣ =

∣∣∣∣∣ ∑
1≤i,j≤n

E[F (x, y)e(xi)e(yj)]

∣∣∣∣∣
=

∣∣∣∣∣E
[
F (x, y)

( ∑
1≤i≤n

e(xi)

)( ∑
1≤j≤n

e(yj)

)]∣∣∣∣∣
≤ 4

∑
1≤a≤n/2,1≤b≤n/2

|E[F (x, y)Thra(x)Thrb(y)]| (using Claim 6.3)

≤ 4
∑

1≤a,b≤2
√
n logn

|E[F (x, y)Thra(x)Thrb(y)]|+O(1/n6) (using Claim 6.5)

≤ 4t

n
· (4n log n) (using Claim 6.2)

= O(t log n).
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A 2-order Gowers norm of Majority

In this section, we discuss the XOR lemma proved by Viola and Wigderson [VW07], and why
it doesn’t seem to work in our setting. Their approach uses the Gowers norm of a function
as the measure of correlation of the function with polynomials. It is known that the order-d
Gowers norm of a function f (see below for definitions) is an upper bound on the correlation
of f with degree d − 1 polynomials [GT08]. To derive XOR lemmas for polynomials, Viola
and Wigderson use the fact that the Gowers norm of the product of functions defined on
disjoint inputs is multiplicative. However, it is not clear how to use this approach to prove
correlation bounds for XOR of Maj since the Gowers norm of Maj is too big. Specifically, in
this section we compute the order-2 Gowers norm of Maj and show that it is Θ(1/n1/4), while
the correlation of Maj with linear functions is Θ(1/n1/2). Thus, the bound on the order-2
Gowers norm of Maj yields a sub-optimal bound on the correlation of Maj with polynomials
of degree 1 (i.e. linear functions). As the Gowers norms are increasing, this implies that the
order-d Gowers norm of Maj is also at least Θ(1/n1/4). This indicates that the Gowers norm
is not the right measure to bound correlation of polynomials with Maj.

Let G be any Abelian group. For any positive integer d > 0, the Gowers norm of order
d of a function f : G→ C is defined as

‖f‖Ud
= |Ex,y1,y2,...,yd∈G[Dy1Dy2 . . . Dyd [f(x)]]|1/2d ,

where Dy(f(x)) := f(x+ y)f(x), is the multiplicative derivative of f in the direction y.
Let Maj denote the Majority function on n inputs, where we assume n is odd. We

shorthand F (x) = (−1)Maj(x), and so F : Fn2 → {−1, 1}. The following is the main result of
this section.
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Lemma A.1. ‖F‖U2 = Θ(1/n1/4).

We first record some useful facts for proving the above lemma. For any f : G→ C, define
‖f‖p = [

∑
x∈G |f(x)|p]1/p.

Fact A.2. For any function f : G→ C, we have ‖f‖U2 = ‖f̂‖4.

Fact A.3 (Theorem 5.19 in [O’D14]). For any S ⊆ [n], |S| = k, F̂ (S) = Fk where

Fk =

0 if k is even

1
2n−1 ·

(
n−1

(n−1)/2

)
· ((n−1)/2

(k−1)/2)
(n−1
k−1)

if k is odd

Thus we have the following identity:

‖F‖4
U2

= ‖F̂‖4
4 =

∑
S⊆[n]

|F̂ (S)|4 =
n∑
k=1

(
n

k

)
F 4
k .

We next bound this expression. Let γ = 1
2n−1 ·

(
n−1

(n−1)/2

)
where it is known that γ = Θ(1/

√
n).

Hence F1 = γ = Θ(1/
√
n) and we can lower bound ‖F‖4

U2
by using the terms for k = 1:

‖F‖4
U2
≥
(
n

1

)
F 4

1 = nγ4 = Ω(1/n).

Next we upper bound ‖F‖4
U2

. Observe that(
(n−1)/2
(k−1)/2

)2(
n−1
k−1

) =

(
k−1

(k−1)/2

)(
n−k

(n−k)/2

)(
n−1

(n−1)/2

) ≤ 1.

Thus (
n

k

)
F 4
k ≤

(
n

k

)
γ4(
n−1
k−1

)2 =
n

k
· γ4(

n−1
k−1

) =
Θ(1/n)

k
(
n−1
k−1

) .
The sum

∑
k≥1

1

k(n−1
k−1)

is bounded by O(1), and hence ‖F‖4
U2

= O(1/n).
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